5,388 Matching Annotations
  1. May 2024
    1. Author response:

      We thank the reviewers for their positive feedback and helpful suggestions for improving our manuscript.

      We appreciate the reviewers highlighting areas where we can improve clarity, particularly in the analysis methodologies and details. We agree that additional control experiments and expansion on single-molecule tracking analysis will provide additional support for our interpretations. 

      We acknowledge the reviewers' suggestion to describe our work's relationship to other studies. While some of our findings are similar to those in past studies, our work introduces a new approach for labeling euchromatin with direct sequence specificity on a genome-wide scale, enabling a deeper understanding of euchromatin organization and dynamics. We will provide more context on the novelty of our work and incorporate a more comprehensive discussion of our work’s relation to other studies in the manuscript.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors use the model organism Drosophila to explore the sex and age impacts of a TBI method. They find age and sex differences: older age is susceptible to mild TBI and females are also more susceptible. In particular, they pursue a finding that virgin vs mated females show different responses: virgins are protected but mated females succumb to TBI with climbing deficits. In fact, virgin females compared to mated females are largely protected. They discover that this is associated with exposure of the females to Sex Peptides in the reproductive neurons of the female reproductive tract. When they extend to RNAseq of brains, they show that there are very few genes in common between males, mated females, virgins and females mated with males lacking Sex Peptide. The few chronic genes associated with mated females seem associated with the immune system. These findings suggest that mated females have a compromised immune system, which might make them more vulnerable.

      Strengths:

      This is an interesting paper that allows a detailed comparison of sex and age in TBI which is largely only possible in such a simple model, where large numbers and many variations can be addressed. Overall the findings are interesting.

      Weaknesses:

      Although the findings beyond Sex Peptide are observational, the work sets the stage for more detailed studies to pursue the role of the genes they find by RNAseq and whether for example, boosting the innate immune system would protect the mated females, among other experiments.

      We thank the reviewer for their time and effort in evaluating our manuscript. We agree that future studies are needed to further determine the role of the genes that we have identified through RNA sequencing in the late life emergence of neurodegenerative conditions after the exposure to mild head trauma. We would like to investigate whether elevating mated female immunity can mitigate the risk for age-dependent neurodegeneration after mild head trauma.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors use the Drosophila model system to study the impact of mild head trauma on sex-dependent brain deficits. They identify Sex Peptide as a modulator of greater negative outcome in female flies. Additionally, they observe that increased age at the time of injury results in worse outcomes, especially in females, and that this is due to chronic suppression of innate immune defense networks in mated females. The results demonstrate a novel signaling pathway that promotes age- and sex-dependent outcomes after head injury.

      Strengths:

      The authors have modified their previously reported TBI model in flies to mimic mild TBI, which is novel. Methods are explained in detail, allowing for reproducibility. Experiments are rigorous with appropriate statistics. A number of important controls are included. The work tells a complete mechanistic story and adds important data to increase our understanding of sex-dependent differences in recovery after TBI. The discussion is comprehensive and puts the work in the context of the field.

      Weaknesses:

      A very minor weakness is that exact n values should be included in the figure legends. There should also be confirmation of knockdown by RNAi in female flies either by immunohistochemistry or qRT-PCR if possible.

      We thank the reviewer for the evaluation of our manuscript and for the suggestion to include the exact n values in the figure legends. We will include the n values in our revision.

      Regarding RNAi knockdown of sex peptide receptors (SPRs), we agree that confirmation of the knockdown by IHC or qRT-PCR will further strengthen our findings.  It should be noted, however, that the RNAi line we used has been extensively validated by Yapici et al., 2007 and several subsequent publications. Importantly, the effectiveness of SPR knockdown is evident in female flies as they exhibit dramatically reduced egg laying and, importantly, lack the typical post-mating behaviors (such as rejection of male flies after initial mating) observed in the wild type mated female flies. In fact, female flies with RNAi-mediated SPR knockdown behave identically to females mated with SP-null male flies, confirming the effective disruption of the SP-SPR signaling pathway. We will revise the manuscript to make these points clear. 

      Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors used a Drosophila model to show that exposure to repetitive mild TBI causes neurodegenerative conditions that emerge late in life and disproportionately affect females. In addition to well-known age-dependent impact, the authors identified Sex Peptide (SP) signaling as a key factor in female susceptibility to post-injury brain deficits.

      Strengths:

      The authors have presented a compelling set of results showing that female Sex Peptide signaling adversely affects late-life neurodegeneration after early-life exposure to repetitive mild head injury in Drosophila. They have (1) compared the phenotypes of adult male and female flies sustaining TBI at different ages, and the phenotypes of virgin females and mated females, (2) compared the phenotypes of eliminating SP signaling in mating females and introducing SP-signaling into virgin females, (3) compared transcriptomic changes of different groups in response to TBI. The results are generally consistent and robust.

      Weaknesses:

      The authors have made their claims largely based on assaying climbing index and vacuole formation as the only indicators of late-life neurodegeneration after TBI. However, these phenotypes are not really specific to TBI-related neurodegeneration, and the significance and mechanisms of especially vacuole formation are not clear. The authors should perform additional analyses on TBI-related neurodegeneration in flies, which have been shown before (Genetics. 2015 Oct; 201(2): 377-402). Furthermore, it is also really surprising to see so few DEGs even in wild-type males and mated females, and to see that none of the DEGs overlapped among groups or are even related to the SP-signaling. This raises questions about the validity of the RNA-seq analysis. It is critical to independently verify their RNA-sequencing results and to add some more molecular evidence to support their conclusion. Finally, it is unknown what the implication of female fly mating and its associated Sex Peptide signaling would be to mammalians or humans, and what are the mechanisms underlying the sexual dimorphism.

      We thank the reviewer for the thorough evaluation of our manuscript. The reviewer raised a very important question: whether the neurodegeneration observed in our model is specific to TBI. As the reviewer rightly pointed out, the neurodegenerative phenotypes are unlikely specific to TBI-related neurodegeneration. Throughout the manuscript, we have tried to convey the notion that the mild physical impacts to the head represent one form of environmental insults, which in combination with other risk factors such as aging can lead to the emergence of neurodegenerative conditions. It should be noted that the negative geotaxis assay and vacuolation quantification are two well-established approaches to assess sensorimotor deficits and frank brain degeneration in fly brains.

      It is important to emphasize that the head-specific impacts delivered to the flies in our study are much milder than those used in previous studies. As we showed in our figure 1, this very mild form of head trauma (referred to as vmHT) did not cause any death, nor affected the lifespan of the injured flies. Our supplemental data also show very minimal structural neuronal damage and essentially no acute and chronic apoptosis induced by vmHT exposure. Consistently, we did not observe any exoskeletal or eye damage immediately following injuries, nor did we observe any retinal degeneration and pseudopupil loss at the chronic stage of these flies. We will incorporate these important points in the revision. 

      We agree that future studies are needed to independently validate our RNA sequencing results. We believe that the small number of DEGs are likely due to two unique features of our study: (1) the very mild nature of our injury paradigm and (2) the chronic examination timepoint that was long after the head injury and SP exposure, which distinguish our study from previous fly TBI studies.  As pointed out in the manuscript, our study was aimed to understand how early life exposure to repetitive head traumatic insults could lead to the late-life onset of neurodegenerative conditions. We hope to further validate our results in our next phase of experiments using single-cell RNA sequencing and RT-qPCR.

      As the reviewer pointed out, it would be very interesting to explore the possible roles of sex peptide-signaling in other animals and humans. As far as we know, there is no known mammalian ortholog to the insect sex peptide, so it would be difficult to study SP or an SP-like molecule in mammalian models. However, we believe that prolonged post-mating changes associated with reproduction in female fruit flies contribute to their elevated vulnerability to neurodegeneration.  In this regard, drastic changes within the biology of female mammals associated with reproduction can potentially lead to vulnerability to neurodegeneration. We agree that this demands further study, which may be done with future collaborators using rodent or large animal models.  We have discussed this point in the manuscript, but will revise it to further clarify the discussion.

    1. Author response:

      Reviewer #1 (Public Review):

      Summary:

      In this study, López-Jiménez and colleagues demonstrated the utility of using high-content microscopy in dissecting host and bacterial determinants that play a role in the establishment of infection using Shigella flexneri as a model. The manuscript nicely identifies that infection with Shigella results in a block to DNA replication and protein synthesis. At the same time, the host responds, in part, via the entrapment of Shigella in septin cages.

      Strengths:

      The main strength of this manuscript is its technical aspects. They nicely demonstrate how an automated microscopy pipeline coupled with artificial intelligence can be used to gain new insights regarding elements of bacterial pathogenesis, using Shigella flexneri as a model system. Using this pipeline enabled the investigators to enhance the field's general understanding regarding the role of septin cages in responding to invading Shigella. This platform should be of interest to those who study a variety of intracellular microbial pathogens.

      Another strength of the manuscript is the demonstration - using cell biology-based approaches- that infection with Shigella blocks DNA replication and protein synthesis. These observations nicely dovetail with the prior findings of other groups. Nevertheless, their clever click-chemistry-based approaches provide visual evidence of these phenomena and should interest many.

      We thank the Reviewer for their enthusiasm on the technical aspects of this paper, regarding both the automated microscopy pipeline coupled with artificial intelligence and the click-chemistry based approaches to dissect DNA replication and protein synthesis by microscopy.

      Weaknesses:

      There are two main weaknesses of this work. First, the studies are limited to findings obtained using a single immortalized cell line. It is appreciated that HeLa cells serve as an excellent model for studying aspects of Shigella pathogenesis and host responses. However, it would be nice to see that similar observations are observed with an epithelial cell line of intestinal, preferably colonic origin, and eventually, with a non-immortalized cell line, although it is appreciated that the latter studies are beyond the scope of this work.

      The immortalized cell line HeLa is widely regarded as a paradigm to study infection by Shigella and other intracellular pathogens. However, we agree that future studies beyond the scope of this work should include other cell lines (eg. epithelial cells of colonic origin, macrophages, primary cells). 

      The other weakness is that the studies are minimally mechanistic. For example, the investigators have data to suggest that infection with Shigella leads to an arrest in DNA replication and protein synthesis; however, no follow-up studies have been conducted to determine how these host cell processes are disabled. Interestingly, Zhang and colleagues recently identified that the Shigella OspC effectors target eukaryotic translation initiation factor 3 to block host cell translation (PMID: 38368608). This paper should be discussed and cited in the discussion.

      We appreciate the Reviewer’s concern about the lack of follow up work on observations of host DNA and protein synthesis arrest upon Shigella infection, which will be the focus of future studies. We acknowledge the recent work of Zhang et al. (Cell Reports, 2024) considering their similar results on protein translation arrest, and we fully agree that this reference should be more fully discussed in a revised version of the manuscript.

      Reviewer #2 (Public Review):

      Summary:

      Septin caging has emerged as one of the innate immune responses of eukaryotic cells to infections by intracellular bacteria. This fascinating assembly of eukaryotic proteins into complex structures restricts bacteria motility within the cytoplasm of host cells, thereby facilitating recognition by cytosolic sensors and components of the autophagy machinery. Given the different types of septin caging that have been described thus far, a single-cell, unbiased approach to quantify and characterise septin recruitment at bacteria is important to fully grasp the role and function of caging. Thus, the authors have developed an automated image analysis pipeline allowing bacterial segmentation and classification of septin cages that will be very useful in the future, applied to study the role of host and bacterial factors, compare different bacterial strains, or even compare infections by clinical isolates.

      Strengths:

      The authors developed a solid pipeline that has been thoroughly validated. When tested on infected cells, automated analysis corroborated previous observations and allowed the unbiased quantification of the different types of septin cages as well as the correlation between caging and bacterial metabolic activity. This approach will prove an essential asset in the further characterisation of septin cages for future studies.

      We thank the Reviewer for their positive comments, and for highlighting the strength of our imaging and analysis pipeline to analyse Shigella-septin interactions.

      Weaknesses:

      As the main aim of the manuscript is to describe the newly developed analysis pipeline, the results illustrated in the manuscript are essentially descriptive. The developed pipeline seems exceptionally efficient in recognising septin cages in infected cells but its application for a broader purpose or field of study remains limited.

      The main objective of this manuscript is the development of imaging and analysis tools to study Shigella infection, and in particular, Shigella interactions with the septin cytoskeleton. In future work we will provide more mechanistic insight with novel experiments and broader applicability, using different cell lines (in agreement with Reviewer 1), mutants or clinical isolates of Shigella and different bacteria species (eg. Listeria, Salmonella, mycobacteria).

      Reviewer #3 (Public Review):

      Summary:

      The manuscript uses high-content imaging and advanced image-analysis tools to monitor the infection of epithelial cells by Shigella. They perform some analysis on the state of the cells (through measurements of DNA and protein synthesis), and then they focus on differential recruitment of Sept7 to the bacteria. They link this recruitment with the activity of the bacterial T3SS, which is a very interesting discovery. Overall, I found numerous exciting elements in this manuscript, and I have a couple of reservations. Please see below for more details on my reservations. Nevertheless, I think that these issues can be addressed by the authors, and doing so will help to make it a convincing and interesting piece for the community working on intracellular pathogens. The authors should also carefully re-edit their manuscript to avoid overselling their data (see below for issues I see there). I would consider taking out the first figure and starting with Figure 3 (Figure 2 could be re-organized in the later parts)- that could help to make the flow of the manuscript better.

      Strengths:

      The high-content analysis including the innovative analytical workflows are very promising and could be used by a large number of scientists working on intracellular bacteria. The finding that Septins (through SEPT7) are differentially regulated through actively secreting bacteria is very exciting and can steer novel research directions.

      We thank the Reviewer for their constructive feedback and the excitement for our results, including our findings on T3SS activity and Shigella-septin interactions_._ In accordance with the Reviewer’s comments, we agree to carefully re-edit our manuscript to avoid overselling our data in a future version of the manuscript. We will also consider to rearrange figures depending on new results.

      Weaknesses:

      The manuscript makes a connection between two research lines (1: Shigella infection and DNA/protein synthesis, 2: regulation of septins around invading Shigella) that are not fully developed - this makes it sometimes difficult to understand the take-home messages of the authors.

      We agree that the manuscript is mostly technical and therefore some of our experimental observations would benefit from follow up mechanistic studies in the future. We highlight our vision for broader applicability in response to weaknesses raised by Reviewer 2.

      It is not clear whether the analysis that was done on projected images actually reflects the phenotypes of the original 3D data. This issue needs to be carefully addressed.

      We agree with the Reviewer that characterizing 3D data using 2D projected images has limitations.

      We observe an increase in cell and nuclear surface that does not strictly imply a change in volume. This is why we measure Hoechst intensity in the nucleus using SUM-projection (as it can be used as a proxy of DNA content of the cell). However, we agree that future use of other markers (such as fluorescent labelled histones) would make our conclusions more robust.

      Regarding the different orientation of intracellular bacteria, we agree that investigation of septin recruitment is more challenging when bacteria are placed perpendicular to the acquisition plane. In a first step, we trained a Convolutional Neural Network (CNN) using 2D data, as it is easier/faster to train and requires fewer annotated images. In doing so, we already managed to correctly identify 80% of Shigella interacting with septins, which enabled us to observe higher T3SS activity in this population. In future studies, we will maximize the 3D potential of our data and retrain a CNN that will allow more precise identification of Shigella-septin interactions and in depth characterization of volumetric parameters.

    1. Author response:

      We would like to thank all reviewers and editors for their thorough peer review and valuable suggestions. In these provisional responses, we summarize the main concerns raised by the reviewers and outline our planned revisions to address them in the manuscript.

      Overall, we are pleased to note that the reviewers agree on the potential value of our updated toolbox for gene editing, highlighting its various applications. However, they also raised several valid concerns, which we have summarized and responded to as follows:

      (1) Mutant phenotypes in transfected populations can be occasionally reversed or escaped. This suggests it will not be possible to detect growth-associated phenotypes in pooled screens. An experiment with a pooled loss-of-function screen to test this is missing.

      Escapes or reversals of mutant phenotypes have been observed with other genetic tools used for loss-of-function screening, including lentiviral CRISPR approaches in mammalian systems and RNAi in Trypanosoma brucei. Cells can escape phenotypes through various mechanisms, such as promoter silencing or selection of non-deleterious mutations. Additionally, not every CRISPR guide is efficient in generating a mutant phenotype, and RNAi constructs can also vary in their effectiveness. Despite these challenges, genome-wide loss-of-function screens have been successfully carried out in mammalian cells and Trypanosoma parasites. Therefore, we believe that the observed escape of one mutant phenotype does not preclude the detection of growth-associated or other phenotypes in pooled screens. Moreover, we did not observe a reversal of the mutant phenotype in L. mexicana, L. donovani, and L. major parasites expressing tdTomato from an expression cassette integrated into the 18S rRNA SSU locus (Figure 4). However, the reviewers are rightfully requesting a pooled loss-of-function screen to validate this. Since submitting this manuscript, we have conducted multiple pooled loss-of-function screens, which have confirmed the ability of our here presented method to detect a range of mutant phenotypes in pooled screening formats. We will include these results in our revised manuscript.

      (2) The possibility of mis-integration of the CBE sgRNA expression construct into an entirely different locus is not explored.

      We plan to reanalyze our ONT sequencing data to verify if the CBE sgRNA expression construct was integrated into an unintended loci. If we detect any mis-integration events, we will evaluate their potential negative impacts and discuss these findings in the revised manuscript.

      (3) The achieved increase in editing efficiency compared to the previous base editing method could be more clearly presented.

      We have directly compared our improved method to our previous base editing method in Figures 1E and 4, demonstrating higher editing rates in a much shorter time. In the revised manuscript, we will present and describe the increase in editing rate more clearly.

      (4) The improvements on CBE sgRNA guide design are hypothetical and untested.

      We agree that the improvements to the CBE sgRNA design are currently hypothetical. We plan to systematically test our guide design principles in future studies. Since this will require testing hundreds of guides to draw robust conclusions, we believe that this aspect is beyond the scope of the current study. However, we will discuss our plans for future validation in the revised manuscript.

      Overall, we appreciate the reviewers' insights and are committed to addressing their concerns thoroughly. We believe that the planned revisions and additional experiments will significantly strengthen our manuscript and provide a more comprehensive evaluation of our updated gene editing toolbox.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #2 (Public Review):

      Weaknesses:

      The comparison of affinity predictions derived from AlphaFold2 and H3-opt models, based on molecular dynamics simulations, should have been discussed in depth. In some cases, there are huge differences between the estimations from H3-opt models and those from experimental structures. It seems that the authors obtained average differences of the real delta, instead of average differences of the absolute value of the delta. This can be misleading, because high negative differences might be compensated by high positive differences when computing the mean value. Moreover, it would have been good for the authors to disclose the trajectories from the MD simulations.

      Thanks for your careful checks. We fully understand your concerns about the large differences when calculating affinity. To understand the source of these huge differences, we carefully analyzed the trajectories of the input structures during MD simulations. We found that the antigen-antibody complex shifted as it transited from NVT to NPT during pre-equilibrium, even when restraints are used to determine the protein structure. To address this issue, we consulted the solution provided on Amber's mailing list (http://archive.ambermd.org/202102/0298.html) and modified the top file ATOMS_MOLECULE item of the simulation system to merge the antigen-antibody complexes into one molecule. As a result, the number of SOLVENT_POINTERS was also adjusted. Finally, we performed all MD simulations and calculated affinities of all complexes.

      We have corrected the “Afterwards, a 25000-step NVT simulation with a time step of 1 fs was performed to gradually heat the system from 0 K to 100 K. A 250000-step NPT simulation with a time step of 2 fs was carried out to further heat the system from 100 K to 298 K.” into “Afterwards, a 400-ps NVT simulation with a time step of 2 fs was performed to gradually heat the system from 0 K to 298 K (0–100 K: 100 ps; 100-298 K: 200 ps; hold 298 K: 100 ps), and a 100-ps NPT simulation with a time step of 2 fs was performed to equilibrate the density of the system. During heating and density equilibration, we constrained the antigen-antibody structure with a restraint value of 10 kcal×mol-1×Å-2.” and added the following sentence in the Method section of our revised manuscript: “The first 50 ns restrains the non-hydrogen atoms of the antigen-antibody complex, and the last 50 ns restrains the non-hydrogen atoms of the antigen, with a constraint value of 10 kcal×mol-1×Å-2”

      In addition, we have corrected the calculation of mean deltas using absolute values and have demonstrated that the average affinities of structures predicted by H3-OPT were closer to those of experimentally determined structures than values obtained through AF2. These results have been updated in the revised manuscript. However, significant differences still exist between the estimations of H3-OPT models and those derived from experimental structures in few cases. We found that antibodies moved away from antigens both in AF2 and H3-OPT predicted complexes during simulations, resulting in RMSDbackbone (RMSD of antibody backbone) exceeding 20 Å. These deviations led to significant structural changes in the complexes and consequently resulted in notable differences in affinity calculations. Thus, we removed three samples (PDBID: 4qhu, 6flc, 6plk) from benchmark because these predicted structures moved away from the antigen structure during MD simulations, resulting in huge energy differences from the native structures.

      Author response table 1.

      We also appreciate your reminder, and we have calculated all RMSDbackbone during production runs (SI Fig. 5).

      Author response image 1.

      Reviewer #3 (Public Review):

      Weaknesses:

      The proposed method lacks of a confidence score or a warning to help guiding the users in moderate to challenging cases.

      We were sorry for our mistakes. We have updated our GitHub code and added following sentences to clarify how we train this confidence score module in Method Section: “Confidence score prediction module

      We apply an MSE loss for confidence prediction, label error was calculated as the Cα deviation of each residue after alignment. The inputs of this module are the same as those used for H3-OPT, and it generates a confidence score ranging from 0 to 100. The dropout rates of H3-OPT were set to 0.25. The learning rate and weight decay of Adam optimizer are set to 1 × 10−5 and 1 × 10−4, respectively.”

      Reviewer #2 (Recommendations For The Authors):

      I would strongly suggest that the authors deepen their discussion on the affinity prediction based on Molecular Dynamics. In particular, why do the authors think that some structures exhibit huge differences between the predictions from the experimental structure and the predicted by H3-opt? Also, please compute the mean deltas using the absolute value and not the real value; the letter can be extremely misleading and hidden very high differences in different directions that are compensating when averaging.

      I would also advice to include graphical results of the MD trajectories, at least as Supp. Material.

      We gratefully thank you for your feedback and fully understand your concerns. We found the source of these huge differences and solved this problem by changing method of MD simulations. Then, we calculated all affinities and corrected the mean deltas calculation using the absolute value. The RMSDbackbone values were also measured to enable accurate affinity predictions during production runs (SI Fig. 5). There are still big differences between the estimations of H3-OPT models and those from experimental structures in some cases. We found that antibodies moved away from antigens both in AF2 and H3-OPT predicted complexes during simulations, resulting in RMSDbackbone exceeding 20 Å. These deviations led to significant structural changes in the complexes and consequently resulted in notable differences in affinity calculations. Thus, we removed three samples (PDBID: 4qhu, 6flc, 6plk) from benchmark.

      Thanks again for your professional advice.

      Reviewer #3 (Recommendations For The Authors):

      (1) I am pleased with the most of the answers provided by the authors to the first review. In my humble opinion, the new manuscript has greatly improved. However, I think some answers to the reviewers are worth to be included in the main text or supporting information for the benefit of general readers. In particular, the requested statistics (i.e. p-values for Cα-RMSD values across the modeling approaches, p-values and error bars in Fig 5a and 5b, etc.) should be introduced in the manuscript.

      We sincerely appreciate your advice. We have added the statistics values to Fig. 4 and Fig. 5 to our manuscript.

      Author response image 2.

      Author response image 3.

      (2) Similarly, authors state in the answers that "we have trained a separate module to predict the confidence score of the optimized CDR-H3 loops". That sounds a great improvement to H3-OPT! However, I couldn't find any reference of that new module in the reviewed version of the manuscript, nor in the available GitHub code. That is the reason for me to hold the weakness "The proposed method lacks of a confidence score".

      We were really sorry for our careless mistakes. Thank you for your reminding. We have updated our GitHub code and added following sentences to clarify how we train this confidence score module in Method Section:

      “Confidence score prediction module

      We apply an MSE loss for confidence prediction, label error was calculated as the Cα deviation of each residue after alignment. The inputs of this module are the same as those used for H3-OPT, and it generates a confidence score ranging from 0 to 100. The dropout rates of H3-OPT were set to 0.25. The learning rate and weight decay of Adam optimizer are set to 1 × 10−5 and 1 × 10−4, respectively.”

      (3) I acknowledge all the efforts made for solving new mutant/designed nanobody structures. Judging from the solved structures, mutants Y95F and Q118N seems critical to either crystallographic or dimerization contacts stabilizing the CDR-H3 loop, hence preventing the formation of crystals. Clearly, solving a molecular structure is a challenge, hence including the following comment in the manuscript is relevant for readers to correctly asset the magnitude of the validation: "The sequence identities of the VH domain and H3 loop are 0.816 and 0.647, respectively, comparing with the best template. The CDR-H3 lengths of these nanobodies are both 17. According to our classification strategy, these nanobodies belong to Sub1. The confidence scores of these AlphaFold2 predicted loops were all higher than 0.8, and these loops were accepted as the outputs of H3-OPT by CBM."

      We appreciate your kind recommendations and have revised “Although Mut1 (E45A) and Mut2 (Q14N) shared the same CDR-H3 sequences as WT, only minor variations were observed in the CDR-H3. H3-OPT generated accurate predictions with Cα-RMSDs of 1.510 Å, 1.541 Å and 1.411 Å for the WT, Mut1, and Mut2, respectively.” into “Although Mut1 (E45A) and Mut2 (Q14N) shared the same CDR-H3 sequences as WT (LengthCDR-H3 = 17), only minor variations were observed in the CDR-H3. H3-OPT generated accurate predictions with Cα-RMSDs of 1.510 Å, 1.541 Å and 1.411 Å for the WT, Mut1, and Mut2, respectively (The confidence scores of these AlphaFold2 predicted loops were all higher than 0.8, and these loops were accepted as the outputs of H3-OPT by CBM). ”. In addition, we have added following sentence in the legend of Figure 4 to ensure that readers can appropriately evaluate the significance and reliability of our validations: “The sequence identities of the VH domain and H3 loop are 0.816 and 0.647, respectively, comparing with the best template.”.

      (4) As pointed out in the first review, I think the work https://doi.org/10.1021/acs.jctc.1c00341 is worth acknowledging in section "2.2 Molecular dynamics (MD) simulations could not provide accurate CDR-H3 loop conformations" of supplementary material, as it constitutes a clear reference (and probably one of the few) to the MD simulations that authors pretend to perform. Similarly, the work https://doi.org/10.3390/molecules28103991 introduces a former benchmark on AI algorithms for predicting antibody and nanobody structures that readers may find interest to contrast with the present work. Indeed, this later reference is used by authors to answer a reviewer comment.

      Thanks a lot for your valuable comments. We have added these references in the proper positions in our manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We would like to thank the editors and reviewers for their encouraging comments. Reviewer 1 raises an important question regarding the translation of biomarker derived data into dietary recommendations, taking the high variability in food composition into consideration. Unfortunately, there is no straightforward answer as the high variability in food composition means that the number of cups of tea for 200mg of flavan-3-ols will depend on the flavanol content of the tea. A probabilistic modelling approach, as we have used to investigate the impact of food content variability on estimated associations with health outcomes, would be a possible solution. This could provide food based recommendations that would meet a defined intake with a certain probability. However, developing and exploring such models is beyond the scope of this manuscript and we have therefore decided not to include this in our response. We have stated in the manuscript that such a method needs to be developed.

      We have addressed the typographical errors and the other comments as follows:

      •   Line 126 - this is the first mention of DR-FCT and as such it needs to be defined. This was a typo and it was corrected throughout the manuscript. The actual abbreviation is DD-FCT and it is defined in line 78.

      •   Figure 4 - what exactly is this figure trying to convey to the reader? A better explanation about this figure is needed. Figure legend was updated and extent hoping to increase clarity.

      •   Figure 5 - Why are the graphs presented differently, meaning why are the data for the flavan-3-ols and epicatechin differentiated for men and women and not nitrate. The sample size for nitrate was too small to stratify in the same way as for flavan-3-ols.

      •   Line 365 - more information is needed, I am assuming the authors are stating ”The tableone package for R ...”. As requested by the reviewer, additional details are now included.

      We have also revised the abstract, the conclusion and the discussion of limitations of the biomarker approach to improve readabilty of the manuscript.

    1. Author response:

      We are thankful to the expert reviewers and the editorial team for their assessment of our manuscript and valuable comments, which will help us to improve our manuscript. While Reviewer #1 appreciated the comprehensive assessment using advanced methods, Reviewer #2 asked for an extension of traditional neuropathological and neuroradiological assessments. Both reviewers identified limitations of the study like the inability to provide direct histopathological evidence for meningitis due to missing meninges tissue, resulting in the conclusions being based on indirect evidence. The reviewers raised concerns about potential post mortem penetration of bacteria into the brain parenchyma. Reviewer #1 also questioned the evidence for cortical siderosis based on the intensity of histological stains.

      We agree with both reviewers and the editorial comment that a traditional neuropathological assessment of meningeal status would have strongly boosted the study's conclusions. Please note that the opportunistic sampling approach after a wild animal’s “natural” death, which is the only ethical method to study infection biology in great apes, is intrinsically accompanied by some limitations such as the lack of standardized post mortem intervals or incomplete sampling. In the revised version of the manuscript, we will complement the advanced MRI and histology already presented by extended traditional neuroradiological and neuropathological assessments as recommended by Reviewer #2, including a report on the status of other organs. However, it is important to note that the interpretation of post mortem MRI of brain material collected in the field differs substantially from conventional in vivo MRI and requires tailored analysis and interpretation. Below we comment on three aspects addressed by reviewers:

      * Missing meninges *: The meninges and associated vessels had to be removed to reduce blood-related artifacts in previously performed MRI measurements. We are aware that this poses a major limitation of this study, and thus rely on the evidence derived from the material at hand. Neuropathological assessment is in agreement with the reviewer's comments that no overt acute bacterial meningitis with e.g. turbid appearance, purulent exudates or frank hemorrhages is apparent in the macroscopic inspection of the presented material. However, the macroscopic changes should be evaluated in the light of the brief time interval between bacterial colonization and death. Meningeal bacterial invasion was visualized on a few meningeal residues we found in case 1, proofing the invasion of the subarachnoid space. Based on the reviewer's suggestions, the microscopic neuropathological evaluation will be expanded with the aim to identify further regions with meningeal residues to include more regions to 1) reduce potential sampling bias and 2) to better characterize the leptomeningeal infiltrates focusing on early inflammatory markers.<br />  However, an extensive assessment of the histopathological inflammatory status must be clarified in future studies on specimens with remaining meninges.

      *Putrefaction/Post mortem bacterial proliferation*:<br /> Reviewers raised important points by remarking  that the tissue alterations could be due to putrefaction/post mortem effects. Classical bacterial putrefaction is unlikely, since no mixed flora of opportunistic bacteria was detected, suggesting that time before fixation was sufficient to prevent secondary bacterial invasion in the presented specimens. Moreover, it has been shown that for the post mortem interval of <24 hours bacterial invasion of the brain is rare even at higher temperatures (Ith et al 2011, https://doi.org/10.1002/nbm.1623). The possibility of post mortem tissue propagation of Bcbva must be considered, since there is a lack of experimental data on the pathogen’s growth after host death, which has been discussed by us in the "Limitations" section in the original manuscript. Although it seems plausible that post mortem multiplication in the brain does occur to a certain extent, several observations suggest that this is not the only mechanism at play in the presented cases. We observed early  microglial activation and astrogliosis indicating a beginning inflammatory reaction in the brain parenchyma. Taken together, the data presented suggest a short time interval between bacterial colonization and death. Under this premise, further analyses for the revision of the manuscript will more closely investigate pathological in vivo tissue alterations.

      *Siderosis* Signs of cortical siderosis were evident in the MRI images of all adult cases (1, 3, and 4), appearing as a hyperintense rim in quantitative R2* maps, indicating substantially elevated levels of iron on the brain surface. These findings were confirmed by Perls’s stain for iron. Such rims in R2* are a typical sign of cortical iron deposition due to siderosis, as observed in conditions like angiopathies. Meningeal bleedings are the most probable source of the elevated iron levels in the cortex. Importantly, such signs were never observed in the post mortem brains of chimpanzees not infected with Anthrax (about 30 cases analyzed so far). Reviewer #1 noted that the intensity of the Perls’s stain seemed too low for siderosis. However, this intensity can vary depending on staining procedure and may be lower for the acute and short disease course of Bcbva-induced Anthrax compared to the chronic human cases Reviewer #1 may be referring to. Taken together, we believe that the evidence of cortical siderosis is compelling, speaking in favor of pre mortem meningeal hemorrhage.

      In summary, in the revised version of the manuscript, we plan to: (1) add a traditional neuroradiological assessment of all scans; (2) present an extended traditional neuropathological assessment of all cases; (3) report results on the status of early inflammatory markers; and (4) discuss the limitations of the study in more detail.

    1. Author response:

      Public Reviews:

      We thank the reviewers for their overall positive assessments and constructive feedback

      Reviewer #1 (Public Review):

      Summary:

      The study explored the biomechanics of kangaroo hopping across both speed and animal size to try and explain the unique and remarkable energetics of kangaroo locomotion.

      Strengths:

      The study brings kangaroo locomotion biomechanics into the 21st century. It is a remarkably difficult project to accomplish. There is excellent attention to detail, supported by clear writing and figures.

      Weaknesses:

      The authors oversell their findings, but the mystery still persists.

      The manuscript lacks a big-picture summary with pointers to how one might resolve the big question.

      General Comments

      This is a very impressive tour de force by an all-star collaborative team of researchers. The study represents a tremendous leap forward (pun intended) in terms of our understanding of kangaroo locomotion. Some might wonder why such an unusual species is of much interest. But, in my opinion, the classic study by Dawson and Taylor in 1973 of kangaroos launched the modern era of running biomechanics/energetics and applies to varying degrees to all animals that use bouncing gaits (running, trotting, galloping and of course hopping). The puzzling metabolic energetics findings of Dawson & Taylor (little if any increase in metabolic power despite increasing forward speed) remain a giant unsolved problem in comparative locomotor biomechanics and energetics. It is our "dark matter problem".

      Thank you for the kind words

      This study is certainly a hop towards solving the problem. But, the title of the paper overpromises and the authors present little attempt to provide an overview of the remaining big issues.

      We will modify the title to reflect this comment.  

      The study clearly shows that the ankle and to a lesser extent the mtp joint are where the action is. They clearly show in great detail by how much and by what means the ankle joint tendons experience increased stress at faster forward speeds.

      Since these were zoo animals, direct measures were not feasible, but the conclusion that the tendons are storing and returning more elastic energy per hop at faster speeds is solid.

      The conclusion that net muscle work per hop changes little from slow to fast forward speeds is also solid.

      Doing less muscle work can only be good if one is trying to minimize metabolic energy consumption. However, to achieve greater tendon stresses, there must be greater muscle forces. Unless one is willing to reject the premise of the cost of generating force hypothesis, that is an important issue to confront.

      Further, the present data support the Kram & Dawson finding of decreased contact times at faster forward speeds. Kram & Taylor and subsequent applications of (and challenges to) their approach supports the idea that shorter contact times (tc) require recruiting more expensive muscle fibers and hence greater metabolic costs. Therefore, I think that it is incumbent on the present authors to clarify that this study has still not tied up the metabolic energetics across speed problems and placed a bow atop the package.

      Fortunately, I am confident that the impressive collective brain power that comprises this author list can craft a paragraph or two that summarizes these ideas and points out how the group is now uniquely and enviably poised to explore the problem more using a dynamic SIMM model that incorporates muscle energetics (perhaps ala' Umberger et al.). Or perhaps they have other ideas about how they can really solve the problem.

      You have raised important points, thank you for this feedback. We will add a paragraph discussing the limitations of our study and ensure the revised manuscript makes it clear which mysteries remain. We intend to address muscle forces, contact time, and energetics in future work when we have implemented all hindlimb muscles within the musculoskeletal model.  

      I have a few issues with the other half of this study (i.e. animal size effects). I would enjoy reading a new paragraph by these authors in the Discussion that considers the evolutionary origins and implications of such small safety factors. Surely, it would need to be speculative, but that's OK.

      We will integrate this into the discussion.

      Reviewer #2 (Public Review):

      Summary

      This is a fascinating topic that has intrigued scientists for decades. I applaud the authors for trying to tackle this enigma. In this manuscript, the authors primarily measured hopping biomechanics data from kangaroos and performed inverse dynamics.

      While these biomechanical analyses were thorough and impressively incorporated collected anatomical data and an Opensim model, I'm afraid that they did not satisfactorily address how kangaroos can hop faster and not consume more metabolic energy, unique from other animals.

      Noticeably, the authors did not collect metabolic data nor did they model metabolic rates using their modelling framework. Instead, they performed a somewhat traditional inverse dynamics analysis from multiple animals hopping at a self-selected speed.

      We aimed to provide a joint-level explanation, but we will address the limitations of not modelling the energy consumers themselves (the skeletal muscles) in the revised manuscript. We plan to expand upon muscle level energetics in the future with a more detailed MSK model.

      Within these analyses, the authors largely focused on ankle EMA, discussing its potential importance (because it affects tendon stress, which affects tendon strain energy, which affects muscle mechanics) on the metabolic cost of hopping. However, EMA was roughly estimated (CoP was fixed to the foot, not measured)…

      As noted in our methods, EMA was not calculated from a fixed centre of pressure (CoP). We did fix the medial-lateral position, owing to the fact that both feet contacted the force plate together, but the anteroposterior movement of the CoP was recorded by the force plate and thus allowed to move. We report the movement (or lack of movement) in our results. The anterior-posterior axis is the most relevant to lengthening or shortening the distance of the ‘out-lever’ R, and thereby EMA.

      It is necessary to assume fixed medial-lateral position because a single force trace and CoP is recorded when two feet land on the force plate. The medial-lateral forces on each foot cancel out so there is no overall medial-lateral movement if the forces are symmetrical (e.g. if the kangaroo is hopping in a straight path and one foot is not in front of the other). We only used symmetrical trials so that the anterior-posterior movement of the CoP would be reliable.

      and did not detectibly associate with hopping speed (see results).

      Yet, the authors interpret their EMA findings as though it systematically related with speed to explain their theory on how metabolic cost is unique in kangaroos vs. other animals.

      Indeed, the relationship between R and speed (and therefore EMA and speed) was not significant. However, the significant change in ankle height with speed, combined with no systematic change in COP at midstance, demonstrates that R would get longer at faster speeds. If we consider the nonsignificant relationship between R and speed to indicate that there is no change in R, then these two results conflict. We could not find a flaw in our methods, so instead concluded that the nonsignificant relationship between R and speed may be due to a small change in R being undetectable in our data. Taking both results into account, we think it is more likely that there is a non-detectable change in R, rather than no change in R with speed, but we presented both results for transparency.

      These speed vs. biomechanics relationships were limited by comparisons across different animals hopping at different speeds and could have been strengthened using repeated measures design.

      There is significant variation in speed within individuals, not just between individuals. The preferred speed of kangaroos is 2-4.5 m/s, but most individuals show a wide range within this. Eight of our 16 kangaroos had a maximum speed that was between 1-2m/s faster than their slowest trial. Repeated measures of these eight individuals comprises 78 out of the 100 trials.

      It would be ideal to collect data across the full range of speeds for all individuals, but it is not feasible in this type of experimental setting. Interference such as chasing is dangerous to kangaroos as they are prone to strong adverse reactions to stress.

      There are also multiple inconsistencies between the authors' theory on how mechanics affect energetics and the cited literature, which leaves me somewhat confused and wanting more clarification and information on how mechanics and energetics relate.

      We will ensure that this is clearer in the revised manuscript.

      My apologies for the less-than-favorable review, I think that this is a neat biomechanics study - but am unsure if it adds much to the literature on the topic of kangaroo hopping energetics in its current form.

      Reviewer #3 (Public Review):

      Summary:

      The goal of this study is to understand how, unlike other mammals, kangaroos are able to increase hopping speed without a concomitant increase in metabolic cost. They use a biomechancial analysis of kangaroo hopping data across a range of speeds to investigate how posture, effective mechanical advantage, and tendon stress vary with speed and mass. The main finding is that a change in posture leads to increasing effective mechanical advantage with speed, which ultimately increases tendon elastic energy storage and returns via greater tendon strain. Thus kangaroos may be able to conserve energy with increasing speed by flexing more, which increases tendon strain.

      Strengths:

      The approach and effort invested into collecting this valuable dataset of kangaroo locomotion is impressive. The dataset alone is a valuable contribution.

      Thank you!

      Weaknesses:

      Despite these strengths, I have concerns regarding the strength of the results and the overall clarity of the paper and methods used (which likely influences how convincingly the main results come across).

      (1) The paper seems to hinge on the finding that EMA decreases with increasing speed and that this contributes significantly to greater tendon strain estimated with increasing speed. It is very difficult to be convinced by this result for a number of reasons:

      • It appears that kangaroos hopped at their preferred speed. Thus the variability observed is across individuals not within. Is this large enough of a range (either within or across subjects) to make conclusions about the effect of speed, without results being susceptible to differences between subjects?

      Apologies, this was not clear in the manuscript. Kangaroos hopping at their preferred speed means we did not chase or startle them into high speeds to comply with ethics and enclosure limitations. Thus we did not record a wide range of speed within the bounds of what kangaroos are capable of (up to 12 m/s), but for the range we did measure (~2-4.5 m/s), there is variation hopping speed within each individual kangaroo. Out of 16 individuals, eight individuals had a difference of 1-2m/s between their slowest and fastest trials, and these kangaroos accounted for 78 out of 100 trials. Of the remainder, six individuals had three for fewer trials each, and two individual had highly repeatable speeds (3 out of 4, and 6 out of 7 trials were within 0.5 m/s). We will ensure this is clear in the revised manuscript.

      In the literature cited, what was the range of speeds measured, and was it within or between subjects?

      For other literature, to our knowledge the highest speed measured is ~9.5m/s (see supplementary Fig1b) and there were multiple measures for several individuals (see methods Kram & Dawson 1998).

      • Assuming that there is a compelling relationship between EMA and velocity, how reasonable is it to extrapolate to the conclusion that this increases tendon strain and ultimately saves metabolic cost?

      They correlate EMA with tendon strain, but this would still not suggest a causal relationship (incidentally the p-value for the correlation is not reported).

      We will add supporting literature on the relationship between metabolic cost and tendon stress (or strain), to elaborate on why the correlation between EMA and stress is important.

      Tendon strain could be increasing with ground reaction force, independent of EMA.

      Even if there is a correlation between strain and EMA, is it not a mathematical necessity in their model that all else being equal, tendon stress will increase as ema decreases? I may be missing something, but nonetheless, it would be helpful for the authors to clarify the strength of the evidence supporting their conclusions.

      Yes, GRF also contributes to the increase in tendon stress in the mechanism we propose. We have illustrated this in Fig 6, however we will make this clearer in the revised discussion.

      • The statistical approach is not well-described. It is not clear what the form of the statistical model used was and whether the analysis treated each trial individually or grouped trials by the kangaroo. There is also no mention of how many trials per kangaroo, or the range of speeds (or masses) tested.

      The methods include the statistical model with the variables that we used, as well as the kangaroo masses (13.7 to 26.6 kg, mean: 20.9 ± 3.4 kg). We will move the range of speeds from the supplementary material to the results or figure captions. We will add information on the number of trials per kangaroo to the methods.

      We did not group the data e.g. by using an average speed per individual for all their trials, or by comparing fast to slow groups (this was for display purposes in our figures, which we will make clearer in the methods).

      Related to this, there is no mention of how different speeds were obtained. It seems that kangaroos hopped at a self-selected pace, thus it appears that not much variation was observed. I appreciate the difficulty of conducting these experiments in a controlled manner, but this doesn't exempt the authors from providing the details of their approach.

      • Some figures (Figure 2 for example) present means for one of three speeds, yet the speeds are not reported (except in the legend) nor how these bins were determined, nor how many trials or kangaroos fit in each bin. A similar comment applies to the mass categories. It would be more convincing if the authors plotted the main metrics vs. speed to illustrate the significant trends they are reporting.

      Thank you for this comment. The bins are used only for display purposes and not within the analysis. In the revised manuscript, we will ensure this is clear.

      (2) The significance of the effects of mass is not clear. The introduction and abstract suggest that the paper is focused on the effect of speed, yet the effects of mass are reported throughout as well, without a clear understanding of the significance. This weakness is further exaggerated by the fact that the details of the subject masses are not reported.

      Indeed, the primary aim of our study was to explore the influence of speed, given the uncoupling of energy from hopping speed in kangaroos. We included mass to ensure that the effects of speed were not driven by body mass (i.e.: that larger kangaroos hopped faster).  

      (3) The paper needs to be significantly re-written to better incorporate the methods into the results section. Since the results come before the methods, some of the methods must necessarily be described such that the study can be understood at some level without turning to the dedicated methods section. As written, it is very difficult to understand the basis of the approach, analysis, and metrics without turning to the methods.

      We agree, and in the revised manuscript will incorporate some of the methodological details within the results.

      Author response image 1.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Major findings or outcomes include a genome for the wasp, characterization of the venom constituents and teratocyte and ovipositor expression profiles, as well as information about Trichopria ecology and parasitism strategies. It was found that Trichopria cannot discriminate among hosts by age, but can identify previously parasitized hosts. The authors also investigated whether superparasitism by Trichopria wasps improved parasitism outcomes (it did), presumably by increasing venom and teratocyte concentrations/densities. Elegant use of Drosophila ectopic expression tools allowed for functional characterization of venom components (Timps), and showed that these proteins are responsible for parasitoid-induced delays in host development. After finding that teratocytes produce a large number of proteases, experiments showed that these contribute to digestion of host tissues for parasite consumption.<br /> The discussion ties these elements together by suggesting that genes used for aiding in parasitism via different parts of the parasitism arsenal arise from gene duplication and shifts in tissue of expression (to venom glands or teratocytes).

      Strengths:

      The strength of this manuscript is that it describes the parasitism strategies used by Trichopria wasps at a molecular and behavioral level with broad strokes. It represents a large amount of work that in previous decades might have been published in several different papers. Including all of these data in a manuscript together makes for a comprehensive and interesting study.

      Weaknesses:

      The weakness is that the breadth of the study results in fairly shallow mechanistic or functional results for any given facet of Trichopria's biology. Although none of the findings are especially novel given results from other parasitoid species in previous publications, integrating results together provides significant information about Trichopria biology.

      We thank the reviewer for appreciating the importance of our study.

      Reviewer #2 (Public Review):

      Summary:

      Key findings of this research include the sequencing of the wasp's genome, identification of venom constituents and teratocytes, and examination of Trichopria drosophilae (Td)'s ecology and parasitic strategies. It was observed that Td doesn't distinguish between hosts based on age but can recognize previously parasitized hosts. The study also explored whether multiple parasitisms by Td improved outcomes, which indeed it did, possibly by increasing venom and teratocyte levels. Utilizing Drosophila ectopic expression tools, the authors functionally characterized venom components, specifically tissue inhibitors of metalloproteinases (Timps), which were found to cause delays in host development. Additionally, experiments revealed that teratocytes produce numerous proteases, aiding in the digestion of host tissues for parasite consumption. The discussion suggests that genes involved in different aspects of parasitism may arise from gene duplication and shifts in tissue expression to venom glands or teratocytes.

      Strengths:

      This manuscript provides an in-depth and detailed depiction of the parasitic strategies employed by Td wasps, spanning both molecular and behavioral aspects. It consolidates a significant amount of research that, in the past, might have been distributed across multiple papers. By presenting all this data in a single manuscript, it delivers a comprehensive and engaging study that could help future developments in the field of biological control against a major insect pest.

      Weaknesses:

      While none of the findings are particularly groundbreaking, as similar results have been reported for other parasitoid species in prior research, the integration of these results into one comprehensive overview offers valuable biological insights into an interesting new potential biocontrol species.

      We thank the reviewer for appreciating the importance of our study and for the suggestions on how to improve it.

      Reviewer #1 (Recommendations For The Authors):

      No additional comments

      Reviewer #2 (Recommendations For The Authors):

      Minor comments:

      Line 68 : would be better to spell out the name of the genus at first mention of the species

      It has been corrected as suggested.

      Lines 90-92 : This statement does to coincide with the figure. Could you please explain this better?

      We have carefully checked the statement and the corresponding figure panels, but failed to find the disparity between them. Perhaps, the similar and neighboring labels of Dsuz and Dsan might cause confusion of the emergence rates. To further avoid this potential, we have modified fig.1b and 1c by highlighting the focal host Dsuz.

      Lines 124: could you tell the mention of these genes (Piwi) is important in this context, particularly, for non- full-on experts in this field?

      A previous study has revealed the relationship between the expansion of piwi and large genome, we meant to report a different pattern in our focal genome. We understand your confusion might be caused by the inserted statement regarding the repeat that separated them. Thus, we have moved the citation of previous finding to the place immediately precedent to the conclusion.

      Line 233: "...composition remains largely unknown.." for Td or in general? Not clear..

      Thank you. To make it clear, we have modified this sentence as “Although teratocytes have been reported in several other parasitoids, their molecular composition remains largely unknown in general”.

      Line 286: "at a certain time".. confusing, please rephrase.

      We have rephrased it as “After a certain time (2 or 4 hours for oviposition choice)”.

      Line 293-294: I find this sentence quite hard to follow. Could you please rephrase it and/or expand this concept to make it clearer?

      We have modified this sentence as “The parasitic success of Td largely relies on locating a young host; however, Td does not have the ability to discriminate between young and old hosts. Whether Td has evolved any adaptive strategies to compensate for this disadvantage?”

      Line 314: "it would be interesting".. this is too weak of an argument. Please corroborate your motivation more soundly.

      We have changed this statement as “Because Td allows conditional intraspecific competition, the next compelling question would be whether Td allows interspecific competition with larval parasitoids.”

      Line 391: Divergent evolution is too of a big word in this context. I would tune it down to something like: "Studying ecological niche differentiation ".

      Thank you. It has been corrected as suggested.

    1. Author response:

      The following is the authors’ response to the original reviews. 

      eLife assessment<br /> This important manuscript follows up on previous findings from the same lab supporting the idea that deficits in learning due to enhanced synaptic plasticity are due to saturation effects. Compelling evidence is presented that behavioral learning deficits associated with enhanced synaptic plasticity in a transgenic mouse model can be rescued by manipulations designed to reverse the saturation of synaptic plasticity. In particular, the finding that a previously FDA-approved therapeutic can rescue learning could provide new insights for biologists, psychologists, and others studying learning and neurodevelopment.

      eLife assessment, Significance of findings

      This valuable manuscript follows up on previous findings from the same lab supporting the idea that deficits in learning due to enhanced synaptic plasticity are due to saturation effects. 

      According to the eLife criteria for assessing significance, the “valuable” assessment indicates “findings that have theoretical or practical implications for a subfield.” We have revised the manuscript to emphasize the “theoretical and practical implications beyond a single subfield” which “substantially advance our understanding of major research questions”, with “profound implications” and the potential for “widespread influence,” the eLife criteria for a designation of “landmark” significance.   

      The most immediate implications of our results are for the two major neuroscience subfields of cerebellar research and autism research. However, as recognized by Reviewer 2, the implications are much broader than that: “the finding that a previously FDA-approved therapeutic can rescue learning could provide important new insights for biologists, psychologists, and others studying learning and neurodevelopment.” We have substantially revised the Discussion section of the manuscript to more explicitly lay out how the central idea of our manuscript-- that the capacity for learning at any given moment is powerfully influenced by dynamic, activity- and plasticity-dependent changes in the threshold for synaptic plasticity over short timescales of tens of minutes to hours --has implications for scientific thinking and experiments on plasticity and learning throughout the brain, as well as clinical practice for a wide array of brain disorders associated with altered plasticity and learning impairment. 

      To emphasize the broad conceptual implications of our research, we have reframed our conclusions in terms of metaplasticity rather than saturation of plasticity throughout the revised manuscript. In our previous submission, we had used the “saturation “ terminology for continuity with our previous NguyenVu et al 2017 eLife paper, and mentioned the related idea of threshold metaplasticity in a single sentence: “Similarly, the aberrant recruitment of LTD before training may lead, not to its saturation per se, but to some other kind of reduced availability, such as an increased threshold for its induction (Bienenstock, Cooper, and Munro, 1982; Leet, Bear, and Gaier, 2022).” However, we now appreciate that metaplasticity is a more general conceptual framework for our findings, and therefore emphasize this concept in the revised manuscript, while still making the conceptual link with the “saturation” idea presented in NguyenVu et al 2017 (lines 236-238). 

      The concept of a sliding threshold for synaptic plasticity (threshold metaplasticity) was proposed four decades ago by Bienenstock, Cooper and Munro (1982) as a mechanism for countering an instability inherent in Hebbian plasticity whereby correlated pre- and post-synaptic activity strengthens a synapse, which leads to an increase in correlated activity, which in turn leads to further strengthening. To counter this, BCM proposed a sliding threshold whereby increases in neural activity increase the threshold for LTP and decreases in activity decrease the threshold for LTP, thereby providing a mechanism for stabilizing firing rates and synaptic weights. This BCM sliding threshold model has been highly influential in theoretical and computational neuroscience, but experimental evidence for whether and how such a mechanism functions in vivo has been quite limited.  

      Our work extends the previous, limited experimental evidence for a BCM-like sliding threshold in vivo in several significant ways, which we now discuss in the revised manuscript:

      First, we analyze threshold metaplasticity at synapses where the plasticity is not Hebbian and lacks the inherent instability that inspired the BCM model. The synapses onto cerebellar Purkinje cells have been described as “anti-Hebbian” because the associative form of plasticity is synaptic LTD of excitatory inputs. This anti-Hebbian associative plasticity lacks the instability inherent in Hebbian plasticity. Moreover, a BCM-like sliding threshold that increases the threshold for associative LTD with increased firing rates and decreases threshold for LTD with decreased firing rates would tend to oppose rather than support the stability of firing rates, nevertheless we find evidence for this in our experimental results. Thus, for cerebellar LTD, the central function of the sliding threshold may not be the stabilization of firing rates, but rather to limit plasticity in order to suppress the overwrite of new memories or to allocate different memories to the synapses of different Purkinje cells. 

      Second, we analyze the influence of a BCM-like sliding threshold for plasticity on behavioral learning. Most previous evidence for the BCM model in vivo has derived from studies of the effects of sensory deprivation (e.g., monocular occlusion) on the functional connectivity of sensory circuits (Kirkwood et al., 1996; Desai et al. 2002; Fong et al., 2021) rather than on learning per se.  

      Third, our results provide evidence for major changes in the threshold for plasticity over short time scales and with more subtle manipulations of neural activity than used in previous studies, with practical implications for clinical application. Previously, metaplasticity has been demonstrated with sensory deprivation over multiple days (Kirkwood et al., 1996; Desai et al. 2002) or with drastic changes in neural activity, such as with TTX in the retina (Fong et al, 2021), TMS (Hamada et al 2008), or high frequency electrical stimulation in vitro (Holland & Wagner 1998; Montgomery & Madison 2002) or in vivo (Abraham et al 2001). In contrast, we provide evidence for metaplasticity induced by 30 min of behavioral manipulation (pre-training) and by the relatively subtle pharmacological manipulation of activity with systemic administration of diazepam, a drug approved for humans. Thus, our work contributes not only conceptually to understanding the function of threshold metaplasticity in vivo, but also offers practical observations that could pave the way for novel therapeutic interventions.  

      Fourth, whereas efforts to enhance plasticity and learning have largely focused on increasing the excitability of neurons during learning to help cross the threshold for plasticity (e.g., Albergaria et al., 2018; Yamaguchi et al., 2020; Le Friec et al., 2017), we take the opposite, somewhat counterintuitive approach of inhibiting the excitability of neurons during a period before learning to reset the threshold for plasticity to a state compatible with new learning. To our knowledge, the only other application of such an approach in an animal model of a brain disorder has been inhibiting peripheral (retinal) activity with TTX for treatment of amblyopia (Fong et al, 2021). Our findings from CNS inhibition with a single systemic dose of diazepam greatly expands the potential applications, which could readily be tested in other mouse models of human disorders, and other learning deficits. Even in cases where the specific synaptic impairments and circuitry are less fully understood, the impact of suppressing neural activity during a period before training to reduce the threshold for plasticity could be empirically tested.  

      Fifth, our work extends the consideration of a BCM-like sliding threshold for plasticity to the cerebellum, whereas previous work has focused on models and experimental studies of forebrain circuits. Currently there is a surge of interest in the contribution of the cerebellum to functions and brain disorders previously ascribed to forebrain, hence we anticipate broad interest in this work. 

      Sixth, our results suggest that the history of plasticity rather than the history of firing rates may be the homeostat controlling the threshold for plasticity, at least at the synapses under consideration. Diazepam pre-treatment only enhanced learning in the L7-Fmr1 KO mice with a low “baseline” threshold for plasticity, as measured in vitro, and not WT mice. This suggests it is not the neural activity per se that drives the change in threshold for plasticity, but the interaction of activity with the plasticity mechanism.

      In the revised Discussion, we make all of the above points, to make the implications more clear to readers.  

      The broad interest in this topic is illustrated by two concrete examples. First, an abstract of this work was honored with selection for oral presentation at the November 2023 Symposium of the Molecular and Cellular Cognition Society, a conceptually wide-ranging organization with thousands of members worldwide. Second, the most closely related published work on activity-dependent metaplasticity in vivo, the Fong et al 2021 eLife paper demonstrating reversal of amblyopia by suppression of activity in the retina by TTX, attracted such broad interest, not just of professional scientists, but also the general public, as to be reported on National Public Radio’s All Things Considered, with an audience of 11.9 million people worldwide.  

      In considering the potential of this work for widespread influence, it is important to note that activitydriven changes in the threshold for plasticity could very well be a general property of most if not all synapses, yet very little is known about its function in vivo, especially during learning.  Therefore, the seminal conceptual and practical advances described above have the potential for profound implications throughout neuroscience, psychiatry, neurology and computer science/AI, the eLife criterion for designation as “landmark” in significance. We respectfully request that the reviewers and editor reassess the significance of our findings in light of our much-improved discussion of the broad significance of the work.

      eLife assessment, Strength of support

      Convincing evidence is presented that behavioral learning deficits associated with enhanced synaptic plasticity in a transgenic mouse model can be rescued by manipulations designed to reverse the saturation of synaptic plasticity. In particular, the finding that a previously FDA-approved therapeutic can rescue learning could provide important new insights for biologists, psychologists, and others studying learning and neurodevelopment.

      The designation of “Convincing” indicates “methodology in line with current state-of the-art.” In the revised Discussion, we more clearly highlight that our evidence is “more rigorous than current state-ofthe-art” in several respects, thereby meeting the eLife criterion for “Compelling”:

      (1) Comparison of learning deficits and effects of behavioral and pharmacological pretreatment across five closely related oculomotor learning tasks, which all depend on the same region of the cerebellum (the flocculus), but which previous work has found to vary in their dependence on LTD at the cerebellar parallel fiber-to-Purkinje cell synapses. 

      The “state-of-the-art” behavioral standard in the field of learning is assessment of a single learning task that depends on a given brain area, with the implicit or explicit assumption that the task chosen is representative of “cerebellum-dependent learning” or hippocampus-, amygdala-, basal ganglia-, cortex- dependent learning, etc. Sometimes there is a no-learning behavioral control. 

      Our study exceeds this standard by comparing across many different closely related learning tasks, which all depend on the cerebellar flocculus and other shared vestibular, visual, and oculomotor circuitry, but vary in their dependence on LTD at the cerebellar parallel fiber-to-Purkinje cell synapses. In the original submission, we reported results for high-frequency VOR-increase learning that were dramatically different than for three other VOR learning tasks for which there is less evidence for a role of LTD. Reviewer 2 noted, “the specificity of the effects to forms of plasticity previously shown to require LTD is remarkable.” In the revised manuscript, we provide new data for a second oculomotor learning task in which LTD has been implicated, OKR adaptation, with very similar results as for high-frequency VORincrease learning. The remarkable specificity of both the learning deficits and the effects of pre-training manipulations, in two different lines of mice, for the two specific learning tasks in which LTD has been most strongly implicated, and not the other three oculomotor learning tasks, substantially strengthens the evidence for the conclusion that the learning deficits and effects of pre-training are related specifically to the lower threshold for LTD, rather than the result of some other effect of the gene KO or pre-treatment on the cerebellar or oculomotor circuitry (discussed on lines 270-290 of revised manuscript). 

      (2) Replication of findings in more than one line of mice, targeting distinct signaling pathways, with a common impact of enhancing LTD at the cerebellar PF-Purkinje cell synapses.  

      State-of-the-art is to report the effects of one specific molecular signaling pathway on behavior. 

      In the first part of this Research Advance, we replicate the findings of Nguyen-Vu et al 2017 for a completely different line of mice with enhanced LTD at the parallel fiber-to-Purkinje cell synapses. Like the comparison across LTD-dependent and LTD-independent oculomotor learning tasks, the comparison across completely different lines of mice with enhanced LTD strengthens the evidence that the shared behavioral phenotypes are a reflection of the state of LTD rather than other “off-target” effects of each mutation (discussed on lines 291-309 of revised manuscript).

      (3) Reversal of learning impairments with more than one type of treatment. 

      State-of-the-art is to be able to reverse a learning deficit or other functional impairment in an animal model of a brain disorder with a single treatment; indeed, success in this respect is viewed as wildly exciting, as evidenced by the reception by the scientific and lay communities of the Fong et al, 2021 eLife report of reversal of amblyopia by TTX treatment of the retina. 

      In the current work, we demonstrate reversal of learning deficits with two different types of treatment during the period before training, one behavioral and one pharmacological. The current diazepam pretreatment results provide a fundamentally new type of evidence for the hypothesis that the threshold for LTD and LTD-dependent learning varies with the recent history of activity in the circuit, complementing the evidence from behavioral and optogenetic pre-training approaches used previously in Nguyen-Vu et al, 2017 (discussed on lines 151-158 and 246-255 of revised manuscript).

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Shakhawat et al., investigated how enhancement of plasticity and impairment could result in the same behavioral phenotype. The authors tested the hypothesis that learning impairments result from saturation of plasticity mechanisms and had previously tested this hypothesis using mice lacking two class I major histocompatibility molecules. The current study extends this work by testing the saturation hypothesis in a Purkinje-cell (L7) specific Fmr1 knockout mouse mice, which have enhanced parallel fiber-Purkinje cell LTD. The authors found that L7-Fmr1 knockout mice are impaired on an oculomotor learning task and both pre-training, to reverse LTD, and diazepam, to suppress neural activity, eliminated the deficit when compared to controls.

      Strengths:

      This study tests the "saturation hypothesis" to understand plasticity in learning using a well-known behavior task, VOR, and an additional genetic mouse line with a cerebellar cell-specific target, L7-Fmr1 KO. This hypothesis is of interest to the community as it evokes a novel inquisition into LTD that has not been examined previously.

      Utilizing a cell-specific mouse line that has been previously used as a genetic model to study Fragile X syndrome is a unique way to study the role of Purkinje cells and the Fmr1 gene. This increases the understanding in the field in regards to Fragile X syndrome and LTD.

      The VOR task is a classic behavior task that is well understood, therefore using this metric is very reliable for testing new animal models and treatment strategies. The effects of pretraining are clearly robust and this analysis technique could be applied across different behavior data sets.

      The rescue shown using diazepam is very interesting as this is a therapeutic that could be used in clinical populations as it is already approved.

      There was a proper use of controls and all animal information was described. The statistical analysis and figures are clear and well describe the results.

      We thank the reviewer for summarizing the main strengths of our original submission. We have further strengthened the revised submission by 

      (1) more fully discussing the broad conceptual implications, as outlined above; 

      (2) adding additional new data (Fig. 5) showing that another LTD-dependent oculomotor learning task, optokinetic reflex (OKR) adaptation, is impaired in the L7-Fmr1 KO mice and rescued by pre-treatment with diazepam, as we had already shown for high-frequency VOR increase learning;  3) responding to the specific points raised by the reviewers, as detailed below.

      Weaknesses:

      While the proposed hypothesis is tested using genetic animal models and the VOR task, LTD itself is not measured. This study would have benefited from a direct analysis of LTD in the cerebellar cortex in the proposed circuits.

      Our current experiments were motivated by the direct analysis of cerebellar LTD in Fmr1 knock out mice that was already published (Koekkoek et al., 2005). In that previous work, LTD was analyzed in both Purkinje cell selective L7-Fmr1 KO mice (Koekkoek et al., 2005; Fig. 4D), as used in our study, and global Fmr1 knock out mice (Koekkoek et al., 2005; Fig. 4B). Both lines were found to have enhanced LTD, as cited in the Introduction of our manuscript (lines 48-51, 63-64). The goal of our current study was to build on this previous work by analyzing the behavioral correlates of the findings from this previous, direct analysis of LTD. 

      Diazepam was shown to rescue learning in L7-Fmr1 KO mice, but this drug is a benzodiazepine and can cause a physical dependence. While the concentrations used in this study were quite low and animals were dosed acutely, potential side-effects of the drug were not examined, including any possible withdrawal. 

      In humans, diazepam (valium) is one of the most frequently prescribed drugs in the world, and the side effects and withdrawal symptoms have been extensively studied and documented.1 Withdrawal symptoms are generally not observed with treatments of less than 2 weeks (Brett and Murnion, 2015). After longterm treatments tapering of the dosage is recommended to mitigate withdrawal (Brett and Murnion, 2015 and https://americanaddictioncenters.org/valium-treatment/withdrawal-duration). The extensive data on the safety of diazepam in humans lowers the barrier to potential clinical translation of our basic science findings, although we emphasize that our own expertise is scientific, and translation to Fragile X patients or other patient groups will require additional development of the research by clinicians.

      Given the extensive history of research on this drug, we focused on looking for side effects that would reflect an adverse effect of diazepam on the function of the same oculomotor neural circuitry whose ability to support certain oculomotor learning tasks was improved after diazepam. In other words, we assessed whether the pharmacological manipulation was enhancing certain functions of a given circuit at the expense of others. As we note (line 164), “The acute effect of diazepam administration [measured 2 hours after administration] was to impair learning” in both WT and L7-Fmr1 KO mice. One could consider this a side effect. More importantly, we also tested extensively for oculomotor side-effects during the therapeutic period when learning impairments were eliminated in the L7-Fmr1 KOs, 18-24 hours post-administration, and have a full section of the Results describing our findings about this, titled “Specificity of pre-training effects on learning.” As described in the Results and Discussion (lines 184195, 312-318, Figure 3, figure 3-supplement1; figure 4B; figure 5-supplement 1), we found no such adverse side-effects, which is again encouraging with respect to the translational potential of our findings. 

      This drug is not specific to Purkinje cells or cerebellar circuits, so the action of the drug on cerebellar circuitry is not well understood for the study presented.

      The effects of diazepam are indeed not specific to Purkinje cells, but rather are known to be widespread. Diazepam is a positive allosteric modulator of GABAA receptors, which are found throughout the brain, including the cerebellum. When delivered systemically, as we did in our experiments, diazepam will suppress neural activity throughout the brain by facilitating inhibition, as documented by decades of previous research with this and related benzodiazepines, including dozens of studies of the effects of diazepam in the cerebellum. 

      To our knowledge, there is currently no drug that can specifically inhibit Purkinje cells, especially one that can be given systemically to cross the blood-brain barrier. Moreover, if such a drug did exist, we would not predict it to have the same effect as diazepam in reversing the learning deficits of the L7-Fmr1 KO mice, because the latter presumably depends on suppression of activity in the cerebellar granule cells and neurons of the inferior olive, whose axons form the parallel fibers and climbing fibers, and whose correlated activity controls LTD at the parallel fiber-Purkinje cell synapses.  

      We have revised the text to clarify the key point that despite its widespread action on the brain, the effects of diazepam on cerebellum-dependent learning were remarkably specific (lines 184-195, 210-228, 312318). During the period 18-24 hours after a single dose of diazepam, the learning deficits of L7-Fmr1 KO mice on two LTD-dependent oculomotor learning tasks were completely reversed, with no effects on the same tasks in WT mice, and no effects (“side-effects”) in L7-Fmr1 KO mice or WT mice on other, LTDindependent oculomotor learning tasks that depend on the same region of the cerebellum, and no effects on baseline performance of visually or vestibularly driven eye movements. 

      As described in the revised Discussion (lines 318-323), the non-specific mild suppression of neural activity throughout the brain by diazepam makes it a potentially generalizable approach for inducing BCM-like shifts in the threshold for associative plasticity to facilitate subsequent learning. More specifically, diazepam-mediated reduction of activity throughout the brain has the potential to lower any aberrantly high thresholds for associative plasticity at synapses throughout the brain, and thereby reverse any learning deficits associated with such aberrantly high plasticity thresholds. This approach might even be useful in cases where the neural circuitry supporting a given behavior is not well characterized and the specific synapses responsible for the learning deficit are unknown. On lines 323-327 we compare this generalizable approach with the challenges of designing task- and circuit-specific approaches to reset the threshold for plasticity, particularly in circuits that are less well characterized than the oculomotor circuit.

      It was not mentioned if L7-Fmr1 KO mice have behavior impairments that worsen with age or if Purkinje cells and the cerebellar microcircuit are intact throughout the lifespan. 

      At the adult ages used in our study (8-22 weeks), the oculomotor circuitry, including the Fmr1-deficient Purkinje cells, appears to be functionally intact because all of the oculomotor performance and learning tasks we tested were either normal, or could be restored to normal with brief behavioral and/or pharmacological pre-treatment.  

      Any degeneration of the Fmr1-deficient Purkinje cells or cerebellar microcircuit or additional behavioral impairments at older ages, if they should exist, would not alter our interpretation of the results from 8-22 week old adults regarding history- and activity-dependent changes in the capacity for LTD-dependent learning. Therefore, we leave the question of changes throughout the lifespan to investigators with an interest and expertise in development and/or aging. 

      Only a small handful of the scores of previous studies of the Fmr1 KO mouse model have investigated age-dependent effects; the reviewer may be interested in papers such as Tang et al., 2015 (doi: 10.1073/pnas.1502258112) or Martin et al., 2016 (doi: 10.1093/cercor/bhv031). 

      Connections between Purkinje cells and interneurons could also influence the behavior results found.

      This comment is repeated below in a more general form (Reviewer 1, second to last comment)—please see our response there and lines 270-309 of the revised manuscript for a discussion of how concerns about “off-target” effects are mitigated by the high degree of specificity of the learning deficits and effects of pre-training for the specific learning tasks in which LTD has been previously implicated, and the very similar findings in two different lines of mice with enhanced LTD.

      While males and females were both used for the current study, only 7 of each sex were analyzed, which could be underpowered. While it might be justified to combine sexes for this particular study, it would be worth understanding this model in more detail.

      We performed additional analyses to address the question of whether there might be sex differences that were not detected because of the sample size.

      (1) In a new figure, Fig. 1-figure supplement 1, we break out the results for male and female mice in separate plots, and show that all of the effects of both the KO of Fmr1 from the Purkinje cells and of pretreatment with diazepam that are observed in the full cohort are also statistically significant in just the subset of male mice, and just the subset of female mice (see Fig. 1-figure supplement 1 legend for statistics). In other words, qualitatively, there are no sex differences, and all of the conclusions of our manuscript are statistically valid in both male and female mice. This strengthens the justification for combining sexes for the specific scientific purposes of our study.  

      (2) We performed a power analysis to determine how many mice would be needed to determine whether the very, very small quantitative differences between male and female mice are significant. The analysis indicates that this would require upwards of 70 mice of each sex for WT mice (Cohen’s d, 0.6162; power

      0.95) and upwards of 2500 mice of each sex for L7-Fmr1 KO mice (Cohen’s d, 0.0989; power 0.95). Since the very small quantitative sex differences observed in our cohorts would not alter our scientific conclusions or the possibility for clinical application to patients of both sexes, even if the small quantitative differences turned out to be significant, the very large number of animals needed did not seem warranted for the current scientific purposes. Researchers focused on sex differences may find a motivation to pursue this issue further.   

      Training was only shown up to 30 minutes and learning did not seem to plateau in most cases. What would happen if training continued beyond the 30 minutes? Would L7-Fmr1 KO mice catch-up to WT littermates? Nguyen-Vu

      (1) For VOR learning, we used a 30 min training time because in our past (e.g., Boyden et al., 2003; Kimpo and Raymond, 2007; Nguyen-Vu et al., 2013; Nguyen-Vu et al., 2017) and current results, we find that VOR learning does plateau quite rapidly, with little or no additional adaptive change in the VOR observed between the tests of learning after 30 min vs 20 min of VOR-increase training, in WT or L7Fmr1 KO mice (Fig. 1A; WT, p=0.917; L7-Fmr1 KO, p=0.861; 20 vs. 30 min; Tukey). In the L7-Fmr1 KO mice, there is no significant high-frequency VOR-increase learning after 30 min training, and the mean VOR gain is even slightly lower on average (not significant) than before training (Fig. 1A, red). Therefore, we have no reason to expect that the L7-Fmr1 KO mice would catch up to WT after additional VOR-increase training.  

      (2) We have added new data on OKR adaptation, induced with 60 min of training (Fig. 5). The L7-Fmr1 KO mice exhibited impaired OKR adaptation, even with 60 min of training (p= 1.27x10-4, Tukey). In our experience, restraint for longer than 60 min produces a behavioral state that is not conducive to learning, as also reported by (Katoh and Yamagiwa, 2018), therefore longer training times were not attempted. 

      The pathway discussed as the main focus for VOR in this learning paradigm was connections between parallel fibers (PF) and Purkinje cells, but the possibility of other local or downstream circuitry being involved was not discussed. PF-Purkinje cell circuits were not directly analyzed, which makes this claim difficult to assess.

      In the revised manuscript (lines 299-309), we have expanded our discussion of the possibility that loss of expression of Fmr1 from Purkinje cells in the Purkinje cell-specific L7-Fmr1 KO mice might influence other synapses or intrinsic properties of the Purkinje cells (including synapses from interneurons, as raised in this reviewer’s comment above), in addition to enhancing associative LTD at the parallel fiberPurkinje cell synapses. 

      It is a very general limitation of all perturbation studies, even cell-type specific perturbation studies as in the current case, that it is never possible to completely rule out “off-target” effects of the manipulation. Because of this, causality cannot be definitively concluded from correlations (e.g., between the effects of a perturbation observed at the cellular and behavioral level), and therefore we make no such claim in our manuscript. Rather, we conclude that our results “provide evidence for,” “support,” “predict,” or “are consistent with” the hypothesis of a history- and activity-dependent change in the threshold for associative LTD at the parallel fiber-Purkinje cells.

      That said, perturbation is still one of the major tools in the experimental toolbox, and there are approaches for mitigating concern about off-target effects. We highlight three aspects of our experimental design that accomplish this (lines 184-228, 256-309). First, we show nearly identical learning impairments and effects of behavioral pretreatment in lines of mice with two completely different molecular manipulations that have the common effect of enhancing PF-Purkinje cell LTD, but are likely to have different off-target cellular effects on the Purkinje cells and their synapses. Second, we show that the learning impairments were highly specific to oculomotor learning tasks in which PF-Purkinje cell LTD was previously implicated, with no such effects on three other oculomotor learning tasks that depend on the same region of the cerebellum and oculomotor circuitry. In the original submission, we provided data for one LTDdependent oculomotor learning task, high-frequency VOR-increase learning; in the revised manuscript we provide new data for a second LTD-dependent oculomotor learning task, optokinetic reflex adaptation, with nearly identical results (Fig. 5). Third, we show that the effects of diazepam pre-treatment were highly specific to the same two LTD-dependent oculomotor learning tasks and also highly specific to the L7-Fmr1 KO mice with enhanced LTD and not WT mice. These three features of the experimental design are not common in studies of learning, especially in combination. On lines 256-309, we provide an expanded discussion of how together, these three features of the design strengthen the evidence that the learning impairments and effects of diazepam pre-treatment on learning are related to LTD at the PF-Pk synapses, while acknowledging the possibility of other effects on the circuit. 

      The authors mostly achieved their aim and the results support their conclusion and proposed hypothesis. This work will be impactful on the field as it uses a new Purkinje-cell specific mouse model to study a classic cerebellar task. The use of diazepam could be further analyzed in other genetic models of neurodevelopmental disorders to understand if effects on LTD can rescue other pathways and behavior outcomes.

      We agree that the present findings are potentially relevant for a very wide array of behavioral tasks, disease models, and brain areas beyond the specific ones in our study, and we make this point on lines 310-338 of the revised manuscript. 

      Reviewer #2 (Public Review):

      This manuscript explores the seemingly paradoxical observation that enhanced synaptic plasticity impairs (rather than enhances) certain forms of learning and memory. The central hypothesis is that such impairments arise due to saturation of synaptic plasticity, such that the synaptic plasticity required for learning can no longer be induced. A prior study provided evidence for this hypothesis using transgenic mice that lack major histocompatibility class 1 molecules and show enhanced long-term depression (LTD) at synapses between granule cells and Purkinje cells of the cerebellum. The study found that a form of LTD-dependent motor learning-increasing the gain of the vestibulo-ocular reflex (VOR)-is impaired in these mice and can be rescued by manipulations designed to "unsaturate" LTD. The present study extends this line of investigation to another transgenic mouse line with enhanced LTD, namely, mice with the Fragile X gene knocked out. The main findings are that VOR gain increased learning is selectively impaired in these mice but can be rescued by specific manipulations of visuomotor experience known to reverse cerebellar LTD. Additionally, the authors show that a transient global enhancement of neuronal inhibition also selectively rescues gain increases learning. This latter finding has potential clinical relevance since the drug used to boost inhibition, diazepam, is FDA-approved and commonly used in the clinic. The evidence provided for the saturation is somewhat indirect because directly measuring synaptic strength in vivo is technically difficult. Nevertheless, the experimental results are solid. In particular, the specificity of the effects to forms of plasticity previously shown to require LTD is remarkable. The authors should consider including a brief discussion of some of the important untested assumptions of the saturation hypothesis, including the requirement that cerebellar LTD depends not only on pre- and postsynaptic activity (as is typically assumed) but also on the prior history of synaptic activation.

      We thank the reviewer for this exceptionally clear and concise assessment of the findings and strengths of the manuscript.

      We agree that one of the most “remarkable” aspects of our findings is the specificity of the effects for oculomotor learning tasks for which there is the strongest previous evidence for a role of PF-Purkinje cell LTD. In the original manuscript, we tested just one LTD-dependent oculomotor learning task, highfrequency VOR increase learning; in the revised manuscript, we strengthen the case for LTD-dependent task specificity by adding new data (Fig. 5) showing the same effects for OKR adaptation, an additional LTD-dependent oculomotor learning task.

      The reviewer’s suggestion to include discussion of “untested assumptions”, “including the requirement that cerebellar LTD depends not only on pre- and postsynaptic activity (as is typically assumed) but also on the prior history of synaptic activation” prompted us to more deeply consider the broader implications of our results, and extensively revise the Discussion accordingly. We clarify that we consider historydependent changes in the threshold for LTD to be a prediction of the behavioral and pharmacological findings (lines 339-347, 356) rather than an assumption. In addition, we highlight the broader implications of the results by putting them in the context of work in other brain areas on historydependent changes in the threshold for plasticity, i.e., metaplasticity, going back to the seminal Bienenstock-Cooper-Munro (BCM; year) theory (lines 348-378).  

      Reviewer #1 (Recommendations for The Authors):

      The text and figures are very clear to read, but there are a couple of questions that remain:

      The concentrations chosen for diazepam are not well described and it is unclear why the concentrations jump from 2.5 mg/kg to 0.5 mg/kg. Please add an explanation for these concentrations and if any additional behavior outcomes were observed.

      Our choice of diazepam concentrations was guided by the concentrations reported in the literature to be effective in mice, which suggest that a higher dose (2 mg/kg) can have additional effects not observed with a lower effective dose (0.5 mg/kg) (Pádua-Reis et al, 2021). Since we did not know how much enhancement of inhibition/suppression of activity might be necessary to substantially reduce the induction of PF-Purkinje cell LTD, we did pilot experiments to test concentrations at the low and high ends of the doses typically used in mice. These pilot experiments revealed that a lower dose of 0.4 or 0.5 mg/kg was comparable to the higher dose of 2.5 mg/kg in suppressing VOR-increase learning 2 hours after administration (Fig. 3 – figure supplement 2). Anecdotally, we observed higher levels of locomotor activity and other abnormal cage behavior during the period immediately after administration of the higher compared to the lower dose. To limit these side effects and any possibility of dependence, we used only the lower dose in all subsequent experiments. We clarify this rationale for using a lower dose in the legend of Fig. 3 – figure supplement 2.   

      Figure 4 describes low-frequency VOR, but the paragraph discussing these results (line 191) mentions high-frequency VOR-increase learning. It is unclear where the results are for the high-frequency data. Please include or rephrase for clearer understanding.

      In the revised manuscript, we clarify that the 1 Hz vestibular and visual stimuli used in Figs. 1-3 is the

      “high” frequency, which yields different results than the “low” frequency of 0.5 Hz (Fig. 4), as also observed in Boyden et al 2006, and Nguyen-Vu et al, 2017. 

      Reviewer #2 (Recommendations For The Authors):

      The authors should consider including a brief discussion of some of the important untested assumptions of the saturation hypothesis, including the requirement that cerebellar LTD depends not only on pre- and postsynaptic activity (as is typically assumed) but also on the prior history of synaptic activation.

      We thank the reviewer for this comment, which, along with your public comments, inspired us to thoroughly reconsider and revise our Discussion. We think this has greatly improved the manuscript, and will substantially increase its appeal to a broad segment of the neuroscience research community, including computational neuroscientists as well as those interested in synaptic physiology, learning and memory, or plasticity-related brain disorders including autism. 

      Note that we consider the idea that ”LTD depends not only on pre- and post- synaptic activity but also on the prior history of synaptic activation” to be the central prediction of the threshold metaplasticity hypothesis rather than an assumption, and in the revised manuscript we explicitly refer to this as a prediction (line 339, 356).  We also added a discussion of multiple known cellular phenomena in the Purkinje cells and their synapses that can regulate LTD and thus represent candidate mechanisms for LTD threshold metaplasticity (lines 339-347). Again, sincere thanks for prompting us to write a vastly improved Discussion section.

      Editor's note:

      Should you choose to revise your manuscript, please include full statistical reporting including exact pvalues wherever possible alongside the summary statistics (test statistic and df) and 95% confidence intervals. These should be reported in the main text for all key questions and not only when the p-value is less than 0.05.

      We have added exact p-values throughout the manuscript.  

      References

      Albergaria C, Silva NT, Pritchett DL, Carey MR. (2018). Locomotor activity modulates associative learning in mouse cerebellum. Nat Neurosci.21:725-735. doi: 10.1038/s41593-018-0129-x.

      Abraham WC, Mason-Parker SE, Bear MF, Tate WT. (2001). Heterosynaptic metaplasticity in the hippocampus in vivo: A BCM-like modifiable threshold for LTP. Proc Natl Acad Sci USA. 98:1092410929.

      Bienenstock E, Cooper L, Munro P. (1982). Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 2:32-48. https://doi.org/10.1523/JNEUROSCI.02-01-00032.1982

      Brett J, Murnion B. (2015). Management of benzodiazepine misuse and dependence. Aust Prescr.38:152155. doi: 10.18773/austprescr.055.

      Boyden ES, Raymond JL. (2003). Active Reversal of Motor Memories Reveals Rules Governing Memory Encoding. Neuron.39:1031-1042. https://doi.org/10.1016/S0896-6273(03)00562-2

      Boyden ES, Katoh A, Pyle JL, Chatila TA, Tsien RW, Raymond JL. (2006). Selective engagement of plasticity mechanisms for motor memory storage. Neuron. 51:823-834. https://doi.org/10.1016/j.neuron.2006.08.026

      Desai NS, Cudmore RH, Nelson SB, Turrigiano GG. (2002). Critical periods for experience-dependent synaptic scaling in visual cortex. Nat Neurosci. 5:783-789. doi: 10.1038/nn878.

      Fong M, Duffy KR, Leet MP, Candler CT, Bear MF. (2021). Correction of amblyopia in cats and mice after the critical period. ELife.10:e70023. https://doi.org/10.7554/eLife.70023

      Hamada M, Terao Y, Hanajima R, Shirota Y, Nakatani-Enomoto S, Furubayashi T, Matsumoto H, Ugawa Y. (2008). Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation. J Physiol. 586:3927-3947. doi: 10.1113/jphysiol.2008.152793.

      Katoh A, Yamagiwa A. (2018). Inhibition of PVN neurons influences stress-induced changes of motor learning in the VOR. Society for Neuroscience. Online Program No. 067.14.

      Kimpo RR, Raymond JL. (2007). Impaired motor learning in the vestibulo-ocular reflex in mice with multiple climbing fiber input to cerebellar Purkinje cells. J Neurosci. 27:5672-5682. doi:

      10.1523/JNEUROSCI.0801-07.2007.

      Kirkwood A, Rioult MG, Bear MF. (1996). Experience-dependent modification of synaptic plasticity in visual cortex. Nature. 381:526–528. https://doi.org/10.1038/381526a0

      Koekkoek SK, Yamaguchi K, Milojkovic BA, Dortland BR, Ruigrok TJ, Maex R, De Graaf W, Smit AE, VanderWerf F, Bakker CE, Willemsen R, Ikeda T, Kakizawa S, Onodera K, Nelson DL, Mientjes E, Joosten M, De Schutter E, Oostra BA, Ito M, De Zeeuw CI. (2005). Deletion of FMR1 in Purkinje Cells Enhances Parallel Fiber LTD, Enlarges Spines, and Attenuates Cerebellar Eyelid Conditioning in Fragile X Syndrome. Neuron. 47:339–352. https://doi.org/10.1016/j.neuron.2005.07.005

      Le Friec A, Salabert AS, Davoust C, Demain B, Vieu C, Vaysse L, Payoux P, Loubinoux I. (2017). Enhancing Plasticity of the Central Nervous System: Drugs, Stem Cell Therapy, and Neuro-Implants. Neural Plast. 2017:2545736. doi: 10.1155/2017/2545736.

      Leet MP, Bear MF, Gaier ED. (2022). Metaplasticity: a key to visual recovery from amblyopia in adulthood? Curr Opin Ophthalmol. 33:512–518. https://doi.org/10.1097/ICU.0000000000000901

      Martin HGS, Lassalle O, Brown JT, Manzoni OJ. (2016). Age-Dependent Long-Term Potentiation Deficits in the Prefrontal Cortex of the Fmr1 Knockout Mouse Model of Fragile X Syndrome. Cereb Cortex. 26:2084–2092. doi: 10.1093/cercor/bhv031.

      Montgomery JM, Madison DV. (2002). State-dependent heterogeneity in synaptic depression between pyramidal cell pairs. Neuron. 33:765-777. doi: 10.1016/s0896-6273(02)00606-2.

      Nguyen-Vu TDB, Kimpo RR, Rinaldi JM, Kohli A, Zeng H, Deisseroth K, Raymond JL. (2013). Cerebellar Purkinje cell activity drives motor learning. Nat Neurosci. 16:1734-1736. doi:

      10.1038/nn.3576.

      Nguyen-Vu TB, Zhao GQ, Lahiri S, Kimpo RR, Lee H, Ganguli S, Shatz CJ, Raymond JL. (2017). A saturation hypothesis to explain both enhanced and impaired learning with enhanced plasticity. ELife. 6:e20147. https://doi.org/10.7554/eLife.20147

      Pádua-Reis M, Nôga DA, Tort ABL, Blunder M. (2021). Diazepam causes sedative rather than anxiolytic effects in C57BL/6J mice. Sci Rep. 2021;11:9335.

      Singh A, Nagpal R, Mittal SK, Bahuguna C, Kumar P. (2017). Pharmacological therapy for amblyopia. Taiwan J Ophthalmol. 7:62-69. doi: 10.4103/tjo.tjo_8_17.

      Tang B, Wang T, Wan H, Han L, Qin X, Zhang Y, Wang J, Yu C, Berton F, Francesconi W, Yates JR 3rd, Vanderklish PW, Liao L. (2015). Fmr1 deficiency promotes age-dependent alterations in the cortical synaptic proteome. Proc Natl Acad Sci USA. 112:E4697-E4706. doi: 10.1073/pnas.1502258112.

      Yamaguchi T, Moriya K, Tanabe S, Kondo K, Otaka Y, Tanaka S. (2020). Transcranial direct-current stimulation combined with attention increases cortical excitability and improves motor learning in healthy volunteers. J Neuroeng Rehabil. 17:23. doi: 10.1186/s12984-020-00665-7.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife assessment

      This valuable work performed fMRI experiments in a rodent model of absence seizures. The results provide new information regarding the brain's responsiveness to environmental stimuli during absence seizures. The authors suggest reduced responsiveness occurs during this type of seizure, and the evidence leading to the conclusion is solid, although reviewers had divergent opinions.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this paper, the effects of two sensory stimuli (visual and somatosensory) on fMRI responsiveness during absence seizures were investigated in GEARS rats with concurrent EEG recordings. SPM analysis of fMRI showed a significant reduction in whole-brain responsiveness during the ictal period compared to the interictal period under both stimuli, and this phenomenon was replicated in a structurally constrained whole-brain computational model of rat brains.

      The conclusion of this paper is that whole-brain responsiveness to both sensory stimuli is inhibited and spatially impeded during seizures.

      Reviewer #2 (Public Review):

      Summary:

      This study examined the possible affect of spike-wave discharges (SWDs) on the response to visual or somatosensory stimulation using fMRI and EEG. This is a significant topic because SWDs often are called seizures and because there is non-responsiveness at this time, it would be logical that responses to sensory stimulation are reduced. On the other hand, in rodents with SWDs, sensory stimulation (a noise, for example) often terminates the SWD/seizure.

      In humans, these periods of SWDs are due to thalamocortical oscillations. A certain percentage of the normal population can have SWDs in response to photic stimulation at specific frequencies. Other individuals develop SWDs without stimulation. They disrupt consciousness. Individuals have an absent look, or "absence", which is called absence epilepsy.

      The authors use a rat model to study the responses to stimulation of the visual or somatosensory systems during and in between SWDs. They report that the response to stimulation is reduced during the SWDs. While some data show this nicely, the authors also report on lines 396-8 "When comparing statistical responses between both states, significant changes (p<0.05, cluster-) were noticed in somatosensory auditory frontal..., with these regions being less activated in interictal state (see also Figure 4). That statement is at odds with their conclusion. I do not see that this issue was addressed.

      See comments below starting with “We acknowledge the reviewer…”.

      They also conclude that stimulation slows the pathways activated by the stimulus. I do not see any data proving this. It would require repeated assessments of the pathways in time. This issue was not addressed.

      See comments below starting with “We acknowledge the reviewer…”.

      The authors also study the hemodynamic response function (HRF) and it is not clear what conclusions can be made from the data. This is still an issue. No conclusions appear to be possible to make.

      See comments below starting with “We acknowledge the reviewer…”.

      Finally, the authors use a model to analyze the data. This model is novel and while that is a strength, its validation is unclear. The authors did not add any validation of their model.

      See comments below starting with “We acknowledge the reviewer…”.

      Strengths:

      Use of fMRI and EEG to study SWDs in rats.

      Weaknesses:

      Several aspects of the Methods and Results were improved but some are still are unclear.

      We acknowledge the reviewer for the concerns of we not addressing the comments above. However, we emphasize that most of the comments were addressed in the already sent “Response to Review Comments” and in the updated manuscript. Here we repeat the responses and provide also additional clarifications to some of the comments.

      We thank the reviewer for noting the discrepancy in the statement of “less activated in interictal state”. The statement should have been written vice versa. We also address that the direction of activation change between groups can be misinterpreted based on statistical maps itself (Figure 3) where only statistical changes are visible and not the polarity of response (can be seen in Figure 4). Therefore, we have made a following changes in the section 3.3.: “There were more voxels with significant changes of activity during interictal state compared to ictal state (136% more). Comparing the statistical responses between interictal and ictal states revealed significant changes (p<0.05, cluster-level corrected) in the visual, somatosensory, and medial frontal cortices. In the ictal state, these regions showed significant hemodynamic decreases when comparing to interictal state, and these polarity changes can be seen the hemodynamic response functions (Figure 4).”

      We agree with the reviewer that there are no data showing slowing of the pathways in response to stimulus. However, we are a bit confused about this comment, as to what part in conclusion section it refers to. We did not intentionally claim that stimulation slows the activated pathways in the manuscript.

      Reviewer is right that strong claims cannot be made from HRF by itself. Therefore, we have avoided to such phrasing throughout the manuscript. In the conclusion section, we speculate that HRF decreases “could play a role in decreased sensory perception” but also state that “further studies are required”. The observed HRF decreases (rather than increases) in the cortex when stimulation was applied during SWD, was discussed in section 4.4., where we speculated that neuronal suppression (possible apparent in negative HRFs) caused by SWD can prevent responsiveness. Conclusion now states the following: “Moreover, the detected decreases in the cortical HRF when sensory stimulation was applied during spike-and-wave discharges, could play a role in decreased sensory perception. Further studies are required to evaluate whether this HRF change is a cause or a consequence of the reduced neuronal response.”

      We point out that the main validation of the model and its details were provided in the previous answer to the reviewer and added to the manuscript. The model presented in the paper is based on a mean-field formalism that captures neuronal activity at the mesoscale level. This mean-field formalism is derived via a detailed statistical description of the activity of a spiking neuronal population of excitatory and inhibitory with conductance-based synaptic interactions. Thus, the validation of the mean-field model is performed via direct comparison between the dynamics obtained from the mean-field model and the dynamics obtained from the underlying spiking neural network model. This comparison is shown in the supplementary material of the manuscript, where the transition studied in the paper between interictal (asynchronous irregular activity) and ictal (SWD dynamics) activity, which is predicted by the mean-field model, is indeed observed in the underlying spiking neuronal model. The existence of these two types of dynamics and the transition between them is the main component of the model used to build the analysis of the responsiveness performed in the paper (which has been properly validated).

      Reviewer #3 (Public Review):

      Summary:

      This is an interesting paper investigating fMRI changes during sensory (visual, tactile) stimulation and absence seizures in the GAERS model. The results are potentially important for the field and do suggest that sensory stimulation may not activate brain regions normally during absence seizures. But the findings are limited by substantial methodological issues that do not enable fMRI signals related to absence seizures to be fully disentangled from fMRI signals related to the sensory stimuli.

      Strengths:

      Investigating fMRI brain responses to sensory stimuli during absence seizures in an animal model is a novel approach with potential to yield important insights.

      Use of an awake, habituated model is a valid and potentially powerful approach.

      Weaknesses:

      The major difficulty with interpreting the results of this study is that the duration of the visual and tactile stimuli were 6 seconds, which is very close to the mean seizure duration per Table 1. Therefore the HRF model looking at fMRI responses to visual or auditory stimuli occurring during seizures was simultaneously weighting both seizure activity and the sensory (visual or auditory) stimuli over the same time intervals on average. The resulting maps and time courses claiming to show fMRI changes from visual or auditory stimulation during seizures will therefore in reality contain some mix of both sensory stimulation-related signals and seizure-related signals. The main claim that the sensory stimuli do not elicit the same activations during seizures as they do in the interictal period may still be true. But the attempts to localize these differences in space or time will be contaminated by the seizure related signals.

      In their response to this comment the authors state that some seizures had longer than average duration, and that they attempted to model the effects of both seizures and sensory stimulation. However these factors do not mitigate the concern because the mean duration of seizures and sensory stimulation remain nearly identical, and the models used therefore will not be able to effectively separate signals related to seizures and related to sensory stimulation.

      Regressors for seizures were formed by including periods of seizures without any stimulation present. In theory, if seizures were perfectly modeled by the regressor, the left variance is completely orthogonal to the main effect of the stimulus. Furthermore, only the cases where the seizures are longer than the stimulus are used to calculate the responsiveness of the stimulus (while the cases where the seizures are shorter than the stimulus are used as nuisance regressors to account for error variance). However, we agree with the reviewer that in practice all effects of the seizure cannot be removed completely from the effect of stimulus. We have addressed this concern in the “physiologic and methodology consideration” section: “We note a caution that presented maps and time courses showing fMRI changes from visual or whisker stimulation during seizures may contain a mixture of both sensory stimulation-related signals and seizure-related signals. To minimize this contamination in the linear model used, we considered both stimulation and seizure-only states as regressors of interest and used seizure-only responses as nuisance regressors to account for error variance. Thereby, the effects caused by the stimulation should be separated as much as possible from the effects caused by the seizure itself.”

      The claims that differences were observed for example between visual cortex and superior colliculus signals with visual stim during seizures vs interictal remain unconvincing due to above.

      Maps shown in Figure 3 do not show clear changes in the areas claimed to be involved.

      In their response the authors enlarged the cross sections. However there are still discrepancies between the images and the way they are described in the text. For example, in the Results text the authors say that comparing the interictal and ictal states revealed less activation in the somatosensory cortex during the ictal than during the interictal state, yet Figure 3 bottom row left shows greater activation in somatosensory cortex in this contrast.

      We note that the direction of activation change between groups can be misinterpreted based on statistical maps itself (Figure 3) where only statistical changes are visible and not the polarity of response (can be seen in Figure 4). Therefore, we have made the following changes to the section 3.3.: “There were more voxels with significant changes of activity during interictal state compared to ictal state (136% more). Comparing the statistical responses between interictal and ictal states revealed significant changes (p<0.05, cluster-level corrected) in the visual, somatosensory, and medial frontal cortices. In the ictal state, these regions showed significant hemodynamic decreases when comparing to interictal state, and these polarity changes can be seen the hemodynamic response functions (Figure 4).”

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Authors have revised this paper with a lot of detail. The paper can be accepted for publication in this version.

      Reviewer #2 (Recommendations For The Authors):

      Reviewer #1

      (1) The analysis in this paper does not directly answer the scientific question posed by the authors, which is to explore the mechanisms of the reduced brain responsiveness to external stimuli during absence seizures (in terms of altered information processing), but merely characterizes the spatial involvement of such reduced responsiveness. The same holds for the use of mean-field modeling, which merely reproduces experimental results without explaining them mechanistically as what the authors have claimed at the head of the paper.

      We agree with the reviewer that the manuscript does not answer specifically about the mechanisms of reduced brain responsiveness. The main scientific question addressed in the manuscript was to compare whole-brain responsiveness of stimulus between ictal and interictal states. The sentence that can lead to misinterpretations in the manuscript abstract: "The mechanism underlying the reduced responsiveness to external stimulus remains unknown." was therefore modified to the following "The whole-brain spatial and temporal characteristics of reduced responsiveness to external stimulus remains unknown".

      This change did not address the issue. The problem is that there is no experimentation to address the underlying mechanisms of the results. I also think the changed language in the abstract is less clear than the original.

      We fully agree that this manuscript does not answer or claim to be answering about the mechanisms of reduced brain responsiveness. The main scientific question addressed in the manuscript was to compare whole-brain responsiveness of stimulus between ictal and interictal states, by means of hemodynamics and mean-field simulation.

      We have changed the language of the abstract to the following:

      “In patients suffering absence epilepsy, recurring seizures can significantly decrease their quality of life and lead to yet untreatable comorbidities. Absence seizures are characterized by spike-and-wave discharges on the electroencephalogram associated with a transient alteration of consciousness. However, it is still unknown how the brain responds to external stimuli during and outside of seizures.

      This study aimed to investigate responsiveness to visual and somatosensory stimulation in GAERS, a well-established rat model for absence epilepsy. Animals were maintained in a non-curarized awake state allowing for naturally occurring seizures to be produced inside the magnet. They were imaged continuously using a quiet zero-echo-time functional magnetic resonance imaging (fMRI) sequence. Sensory stimulations were applied during interictal and ictal periods. Whole brain responsiveness and hemodynamic responses were compared between these two states. Additionally, a mean-field simulation model was used to mechanistically explain the changes of neural responsiveness to visual stimulation between interictal and ictal states.

      Results showed that, during a seizure, whole-brain responses to both sensory stimulations were suppressed and spatially hindered. In several cortical regions, hemodynamic responses were negatively polarized during seizures, despite the application of a stimulus. The simulation experiments also showed restricted propagation of spontaneous activity due to stimulation and so agreed well with fMRI findings. These results suggest that sensory processing observed during an interictal state is hindered or even suppressed by the occurrence of an absence seizure, potentially contributing to decreased responsiveness during this absence epileptic process.”

      The authors also study the hemodynamic response function (HRF) and it is not clear what conclusions can be made from the data.

      The response of the authors did not clarify this issue. Instead, they explained why they examined HRF and that they can only speculate what the data means.

      Reviewer is right that strong claims cannot be made from HRF by itself. Therefore, we have avoided to such phrasing throughout the manuscript. In the conclusion section, we speculate that HRF decreases “could play a role in decreased sensory perception” but also state that “further studies are required”.

      Finally, the authors use a model to analyze the data. This model is novel and while that is a strength, its validation is unclear. The conclusion is that the modeling supports the conclusions of the study, which is useful.

      Details about the model were added.

      This is not entirely satisfactory because there is still no validation of the model.

      We point out that the main validation of the model and its details were provided in the previous answer to the reviewer and added to the manuscript. The model presented in the paper is based on a mean-field formalism that captures neuronal activity at the mesoscale level. This mean-field formalism is derived via a detailed statistical description of the activity of a spiking neuronal population of excitatory and inhibitory with conductance-based synaptic interactions. Thus, the validation of the mean-field model is performed via direct comparison between the dynamics obtained from the mean-field model and the dynamics obtained from the underlying spiking neural network model. This comparison is shown in the supplementary material of the manuscript, where the transition studied in the paper between interictal (asynchronous irregular activity) and ictal (SWD dynamics) activity, which is predicted by the mean-field model, is indeed observed in the underlying spiking neuronal model. The existence of these two types of dynamics and the transition between them is the main component of the model used to build the analysis of the responsiveness performed in the paper (which has been properly validated).

      How is ROI defined in this paper? What type of atlas is used?

      Anatomical ROIs were drawn based on Paxinos and Watson rat brain atlas 7th edition. Region was selected if there were statistically significant activations detected inside that region, based on activation maps. We clarified the definition of ROI as the following:<br /> "Anatomical ROIs, based on Paxinos atlas (Paxinos and Watson rat brain atlas 7th edition), were drawn on the brain areas where statistical differences were seen in activation maps."

      This is helpful, but the unstained brain does not show the borders of the areas. Therefore just saying an atlas was used is not enough. How in an unstained brain can the areas be accurately outlined?

      Areas of the brain were differentiated by co-registering the functional MRI images with an T1-weighted anatomical reference brain that was created on site from the same data set that was used for the manuscript. Potential co-registration inaccuracies created by using a reference brain measured in different site, sequence and a rat strain can be thus avoided. T1-images create sufficient contrast to differentiate main brain areas, but for more accurate border definition (e.g., to differentiate different thalamic nuclei), a coordinate system of the atlas and coordinates known in the used anatomical brain, were used to pinpoint exact borders of the brain areas.

      Reviewer #2

      The following also is not precise:

      "Although seizures are initially triggered by hyperactive somatosensory cortical neurons, the majority of neuronal populations are deactivated rather than activated during the seizure, resulting in an overall decrease in neuronal activity during SWD (McCafferty et al. 2023)."

      What neuronal populations? Cortex? Which neurons in the cortex? Those projecting to the thalamus? What about thalamocortical relay cells? Thalamic gabaergic neurons?

      Please check that these issues were corrected.

      The issues were addressed as follows:

      “Although SWDs are initially triggered by hyperactive somatosensory cortical neurons, neuronal firing rates, especially in majority of frontoparietal cortical and thalamocortical relay neurons, are decreased rather than increased during SWD, resulting in an overall decrease in activity in these neuronal populations (McCafferty et al., 2023). Previous fMRI studies have demonstrated blood volume or BOLD signal decreases in several cortical regions including parietal and occipital cortex, but also, quite surprisingly, increases in subcortical regions such as thalamus, medulla and pons (David et al., 2008; McCafferty et al., 2023).”

      Results

      After removing problematic animals and sessions, was there sufficient power? There probably wasn't enough to determine sex differences.

      After removing problematic sessions, we found statistically significant results (multiple comparison corrected) results in both activation maps, and hemodynamic responses. To determine sex differences, there were not enough animals for statistical findings (p>0.05).

      This is not the question. The question is whether there was sufficient power.

      A simple power calculation was performed as follows: considering a t-test, a risk alpha of 0.05, a power of 0.8, matched pairs (seizure/control), we can detect an effect size of 0.37 with our 4 animals, considering repeated measurements (4 sessions/animal x 11 seizure/control pairs per session). This is now mentioned in the manuscript.

      Table 1 has no statistical comparisons.

      Table 1 is purely an illustration of stimulation and seizure occurrence. There is no specific interest to compare stimulation types (in what state of seizure it occurred) as it does not provide any meaningful inferences to the study.

      Table 1 could be improved by statistics. More could be said and there would be justification to include it.

      We thank the reviewer for the suggestion, but as it is yet unclear to what statistical comparison would be feasible to do, we opt to leave it out.

      Statistical activation maps - it is not clear how this was done.

      Creation of statistical maps are explained in section 2.5.3.

      This section is not clear.

      We have added a reference (https://doi.org/10.1002/hbm.460020402) for readers to familiarize themselves with the concept of statistical parametric mapping.

      Fig 3 "F-contrast maps." Please explain.

      Creation of statistical maps are explained in section 2.5.3.

      This section is unclear.

      We have added a reference (https://doi.org/10.1002/hbm.460020402) for readers to familiarize themself with the concept of statistical parametric mapping.

      Reviewer #3 (Recommendations For The Authors):

      Aside from the concerns listed as weaknesses above which were not addressed, most of the more minor comments were addressed by the authors in the resubmission. However, the comment below was not addressed because it is impossible to see any firing rate changes elicited by sensory stimuli (if they are present) due to the scale during seizures. The seizure signals should be removed or accounted for by the model so that any possible sensory stimulus-related signals could be seen, and displayed on the same scale as firing rates without seizures. Prior comment (unaddressed) is repeated below:

      Figure 6-figure supplement 1, the scales are very different for many of the plots so they are hard to compare. Especially in the ictal periods (D, E, F) it is hard to see if any changes are happening during ictal stimulation similar to interictal stimulation due to very different scales. The activity related to SWD is so large that it overshadows the rest, and perhaps should be subtracted out.

      These two comments were addressed and replied in the previous round of reviews. Regarding the different scales of the plots from Figure 6-figure supplement 1, we point out that all the plots in the same scale are already presented in Figure 6 of the main-text. Regarding the activity related to SWD and sensory stimulation, we remark that the effect of the stimulation should be (and was) evaluated with respect to the ongoing activity. All the results concerning the neuronal responsiveness presented in the paper evaluate the statistical significance of the changes in activity produced by the stimulation with respect to the ongoing activity (during ictal and interictal states respectively). For this reason, all the plots containing the time series of neuronal activity in the simulations include the ongoing activity (with SWD dynamics when present) for proper comparison and relevant analysis. 

      Additional changes:

      In the section 3.2., the sentence: “In addition, responses were observed in the somatosensory cortex during a seizure state.” was removed for clarification purposes as deactivation rather than activation was observed in this brain area during a seizure state.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Major concerns:

      (1) It is not clear about the biological significance of the inhibitory effects of human Abeta42 on gammasecretase activity. As the authors mentioned in the Discussion, it is plausible that Abeta42 may concentrate up to microM level in endosomes. However, subsets of FAD mutations in APP and presenilin 1 and 2 increase Abeta42/Abeta40 ratio and lead to Abeta42 deposition in brain. APP knock-in mice NLF and NLGF also develop Abeta42 deposition in age-dependent manner, although they produce more human Abeta42 than human Abeta40. 

      If the production of Abeta42 is attenuated, which results in less Abeta42 deposition in brain. So, it is unlikely that human Abeta42 interferes gamma-secretase activity in physiological conditions. This reviewer has an impression that inhibition of gamma-secretase by human Abeta42 is an interesting artifact in high Abeta42 concentration. If the authors disagree with this reviewer's comment, this manuscript needs more discussion in this point of view. 

      We thank the Reviewer for raising this key conceptual point, we acknowledge that it was insufficiently discussed in the original manuscript. In response to this point, we introduced the following paragraph in the discussion section of the revised manuscript:

      “From a mechanistic standpoint, the competitive nature of the Aβ42-mediated inhibition implies

      that it is partial, reversible, and regulated by the relative concentrations of the Aβ42 peptide (inhibitor) and the endogenous substrates (Figure 10C and 10D). The model that we put forward is that cellular uptake, as well as endosomal production of Aβ, result in increased intracellular concentration of Aβ42, facilitating γ-secretase inhibition and leading to the buildup of APP-CTFs (and γ-secretase substrates in general). As Aβ42 levels fall, the augmented concentration of substrates shifts the equilibrium towards their processing and subsequent Aβ production. As Aβ42 levels rise again, the equilibrium is shifted back towards inhibition. This cyclic inhibitory mechanism will translate into pulses of (partial) γsecretase inhibition, which will alter γ-secretase mediated-signaling (arising from increased CTF levels at the membrane or decreased release of soluble intracellular domains from substrates). These alterations may affect the dynamics of systems oscillating in the brain, such as NOTCH signaling, implicated in memory formation, and potentially others (related to e.g. cadherins, p75 or neuregulins). It is worth noting that oscillations in γ-secretase activity induced by treatment with a γ-secretase inhibitor semagacestat have been proposed to have contributed to the cognitive alterations observed in semagacestat treated patients in the failed Phase-3 IDENTITY clinical trial (7) and that semagacestat, like Aβ42, acts as a high affinity competitor of substrates (85).

      The convergence of Aβ42 and tau at the synapse has been proposed to underlie synaptic dysfunction in AD (86-89), and recent assessment of APP-CTF levels in synaptosome-enriched fractions from healthy control, SAD and FAD brains (temporal cortices) has shown that APP fragments concentrate at higher levels in the synapse in AD-affected than in control individuals (90).  Our analysis adds that endogenous Aβ42 concentrates in synaptosomes derived from end-stage AD brains to reach ~10 nM, a concentration that in CM from human neurons inhibits γ-secretase in PC12 cells (Figure 7). Furthermore, the restricted localization of Aβ in endolysosomal vesicles, within synaptosomes, likely increases the local peptide concentration to the levels that inhibit γ-secretase-mediated processing of substrates in this compartment. In addition, we argue that the deposition of Aβ42 in plaques may be preceded a critical increase in the levels of Aβ present in endosomes and the cyclical inhibition of γsecretase activity that we propose. Under this view, reductions in γ-secretase activity may be a (transient) downstream consequence of increases in Aβ due to failed clearance, as represented by plaque deposition, contributing to AD pathogenesis.“

      We have also added figures 10C and 10D, presented here for convenience.

      Author response image 1.

      (2) It is not clear whether the FRET-based assay in living cells really reflects gamma-secretase activity.

      This reviewer thinks that the authors need at least biochemical data, such as levels of Abeta. 

      We have established a novel, HiBiT tag based assay reporting on the global γ-secretase activity in cells, using as a proxy the total levels of secreted HiBiT-tagged Aβ peptides. The assay and findings are presented in the revised manuscript as follows:

      In the result section, in the “Aβ42 treatment leads to the accumulation of APP C-terminal fragments in neuronal cell lines and human neuron” subsection:

      “The increments in the APP-CTF/FL ratio suggested that Aβ42 (partially) inhibits the global γ-

      secretase activity. To further investigate this, we measured the direct products of the γ-secretase mediated proteolysis of APP. Since the detection of the endogenous Aβ products via standard ELISA methods was precluded by the presence of exogenous human Aβ42 (treatment), we used an N-terminally tagged version of APPC99 and quantified the amount of total secreted Aβ, which is a proxy for the global γsecretase activity. Briefly, we overexpressed human APPC99 N-terminally tagged with a short 11 amino acid long HiBiT tag in human embryonic kidney (HEK) cells, treated these cultures with human Aβ42 or p3 17-42 peptides at 1 μM or DAPT (GSI) at 10 µM, and determined total HiBiT-Aβ levels in conditioned media (CM). DAPT was considered to result in full γ-secretase inhibition, and hence the values recorded in DAPT treated conditions were used for the background subtraction. We found a ~50% reduction in luminescence signal, directly linked to HiBiT-Aβ levels, in CM of cells treated with human Aβ42 and no effect of p3 peptide treatment, relative to the DMSO control (Figure 3D). The observed reduction in the total Aβ products is consistent with the partial inhibition of γ -secretase by Aβ42.”

      In Methods:

      “Analysis of γ-secretase substrate proteolysis in cultured cells using secreted HiBiT-Aβ or -Aβ-like peptide levels as a proxy for the global γ-secretase endopeptidase activity

      HEK293 stably expressing APP-CTF (C99) or a NOTCH1-based substrate (similar in size as

      APP- C99) both N-terminally tagged with the HiBiT tag were plated at the density of 10000 cells per 96-well, and 24h after plating treated with Aβ or p3 peptides diluted in OPTIMEM (Thermo Fisher Scientific) supplemented with 5% FBS (Gibco). Conditioned media was collected and subjected to analysis using Nano-Glo® HiBiT Extracellular Detection System (Promega). Briefly, 50 µl of the medium was mixed with 50 µl of the reaction mixture containing LgBiT Protein (1:100) and Nano-Glo HiBiT Extracellular Substrate (1:50) in Nano-Glo HiBiT Extracellular Buffer, and the reaction was incubated for 10 minutes at room temperature. Luminescence signal corresponding to the amount of the extracellular HiBiT-Aβ or -Aβ-like peptides was measured using victor plate reader with default luminescence measurement settings.”

      As the direct substrate of γ -secretase was used in this analysis, the observed reduction (~50%) in the levels of N-terminally-tagged (HiBiT) Aβ peptides in the presence of 1 µM Aβ42, relative to control conditions, demonstrates a selective inhibition of γ-secretase by Aβ42 (not by the p3). These data complement the FRET-based findings presented in Figure 5.

      (3) Processing of APP-CTF in living cells is not only the cleavage by gamma-secretase. This reviewer thinks that the authors need at least biochemical data, such as levels of Abeta in Figures 4, 5 and 7.

      We tried to measure the levels of Aβ peptides secreted by cells into the culture medium directly by ELISA (using different protocols) or MS (using established methods, as reported in Koch et al, 2023), but exogenous Aβ42 (treatment) present at relatively high levels interfered with the readout and rendered the analysis inconclusive. 

      However, we were successful in the determination of total secreted (HiBiT-tagged) Aβ peptides from the HiBiT tagged APP-C99 substrate, as indicated in the previous point. The quantification of the levels of these peptides showed that Aβ42 treatment resulted in ~50% reduction in the γ -secretase mediated processing of the tagged substrate.    

      In addition, we would like to highlight that our analysis of the contribution of other APP-CTF degradation pathways, using cycloheximide-based assays in the constant presence of γ-secretase inhibitor, failed to reveal significant differences between Aβ42 treated cells and controls (Figure 6B & C). The lack of a significant impact of Aβ42 on the half-life of APP-CTFs under the conditions of γsecretase inhibition maintained by inhibitor treatment is consistent with the proposed Aβ42-mediated inhibitory mechanism.

      (4) Similar to comment #3. Processing of Pancad-CTF and p75 in living cells may be not only the cleavage by gamma-secretase. This reviewer thinks that the authors need at least biochemical data, such as levels of ICDs in Figures 6C and E. 

      To address this comment we have now performed additional experiments where we measured Nterminal Aβ-like peptides derived from NOTCH1-based substrate using the HiBiT-based assay. These experiments showed a reduction in the aforementioned peptides in the cells treated with Aβ42 relative to the vehicle control, and hence further confirmed the inhibitory action of Aβ42. These new data have been included as Figure 8D in the revised manuscript and described as follow:

      Finally, we measured the direct N-terminal products generated by γ-secretase proteolysis from a HiBiT-tagged NOTCH1-based substrate, an estimate of the global γ-secretase activity. We quantified the Aβ-like peptides secreted by HEK 293 cells stably expressing this HiBiT-tagged substrate upon treatment with 1 µM Aβ1-42,  p3 17-42 peptide or  DAPT (GSI) (Figure 8D). DAPT treatment was considered to result in a complete γ-secretase inhibition, and hence the values recorded in the DAPT condition were used for background subtraction. A ~20% significant reduction in the amount of secreted

      N-terminal HiBiT-tagged peptides derived from the NOTCH1-based substrates in cells treated with Aβ1-

      42 supports the inhibitory action of Aβ1-42 on γ-secretase mediated proteolysis.

      Minor concerns:

      (1) Murine Abeta42 may be converted to murine Abeta38 easily, compared to human Abeta42. This may be a reason why murine Abeta42 exhibits no inhibitory effect on gamma-secretase activity. 

      In order to address this question, we performed additional experiments where we assessed the processing of murine Aβ42 into Aβ38. Analogous to human Aβ42, the murine Aβ42 peptide was not processed to Aβ38 in the assay conditions. These new data have been integrated in the manuscript and added as a Supplementary figure 1B.

      (2) It is curious to know the levels of C99 and C83 in cells in supplementary figure 3.  

      The conditions used in these assays were analogous to the conditions used in the figure 3 (i.e. treatment with Aβ peptides at 1 µM concentrations). Such conditions were associated with profound and consistent APP-CTF accumulation in this model system.

      Reviewer #2 (Recommendations For The Authors):

      In the current study, the authors show that Aβs with low affinity for γ-secretase, but when present at relatively high concentrations, can compete with the longer, higher affinity APPC99 substrate for binding and processing. They also performed kinetic analyses and demonstrate that human Aβ1-42 inhibits γ-secretase-mediated processing of APP C99 and other substrates. Interestingly, neither murine Aβ1-42 nor human p3 (17-42 amino acids in Aβ) peptides exerted inhibition under similar conditions. The authors also show that human Aβ1-42-mediated inhibition of γ-secretase activity results in the accumulation of unprocessed, which leads to p75-dependent activation of caspase 3 in basal forebrain cholinergic neurons (BFCNs) and PC12 cells. 

      These analyses demonstrate that, as seen for γ-secretase inhibitors, Aβ1-42 potentiates this marker of apoptosis. However, these are no any in vivo data to support the physiological significance of the current finding. The author should show in APP KO mice whether gamma-secretase enzymatic activity is elevated or not, and putting back Aβ42 peptide will abolish these in vivo effects. 

      The findings presented in this manuscript form the basis for further in vitro and in vivo research to investigate the mechanisms of inhibition and its contribution to brain pathophysiology. Here, we used well-controlled model systems to investigate a novel mechanism of Aβ42 toxicity. Multiple mechanisms regulate the local concentration of Aβ42 in vivo, making the dissection of the biochemical mechanisms of the inhibition more complex. Nevertheless, beyond the scope of this report, we consider these very reasonable comments as a motivation for further research activities. 

      The experimental concentrations for Aβ42 peptide in the assay are too high, which are far beyond the physiological concentrations or pathological levels. The artificial observations are not supported by any in vivo experimental evidence.

      It is correct that in the majority of the experiments we used low μM concentrations of Aβ42. However, we would like to note that we have also performed experiments where conditioned medium collected from human APP.Swe expressing neurons was used as a source of Aβ. In these experiments total Aβ concentration was in low nM range (0.5-1 nM) (Figure 7). Treatment with this conditioned medium  led to the increase APP-CTF levels, supporting  that low nM concentrations of Aβ are sufficient for partial inhibition of  γ-secretase. 

      In addition, we highlight that analyses of the brains of the AD affected individuals have shown that APPCTFs accumulate in both sporadic and genetic forms of the disease (Pera et al. 2013, Vaillant-Beuchot et al. 2021); and recently, Ferrer-Raventós et al. 2023 have revealed a correlation between APP-CTFs and Aβ levels at the synapse (Ferrer-Raventós et al. 2023). We therefore assessed the concentration of Aβ42 in synaptosomes derived from frontal cortices of post-mortem AD and age-matched non-demented (ND) control individuals. Our findings and conclusions are included in the revised version as follows: 

      In the results section:

      “We next investigated the levels of Aβ42 in synaptosomes derived from frontal cortices of post-mortem AD and age-matched non-demented (ND) control individuals (Figure 10B). Towards this, we prepared synaptosomes from frozen brain tissues using Percoll gradient procedure (62, 63). Intact synaptosomes were spun to obtain a pellet which was resuspended in minimum amount of PBS, allowing us to estimate the volume containing the resuspended synaptosome sample. This is likely an overestimate of the actual synaptosome volume. Finally, synaptosomes were lysed in RIPA buffer and Aβ peptide concentrations measured using ELISA (MSD). We observed that the concentration of Aβ42 in the synaptosomes from (end-stage) AD tissues was significantly higher (10.7 nM)  than those isolated from non-demented tissues (0.7 nM), p<0.0005***. These data provide evidence for accumulation at nM concentrations of endogenous Aβ42 in synaptosomes in end-stage AD brains. Given that we measured Aβ42 concentration in synaptosomes, we speculate that even higher concentrations of this peptide may be present in the endolysosome vesicle system, and therein inhibit the endogenous processing of APP-CTF at the synapse. Of note treatment of PC12 cells with conditioned medium containing even lower amounts of Aβ (low nanomolar range (0.5-1 nM)) resulted in the accumulation of APP-CTFs.” 

      In the discussion: 

      “The convergence of Aβ42 and tau at the synapse has been proposed to underlie synaptic dysfunction in AD (86-89), and recent assessment of APP-CTF levels in synaptosome-enriched fractions from healthy control, SAD and FAD brains (temporal cortices) has shown that APP fragments concentrate at higher levels in the synapse in AD-affected than in control individuals (90).  Our analysis adds that endogenous Aβ42 concentrates in synaptosomes derived from end-stage AD brains to reach ~10 nM, a concentration that in CM from human neurons inhibits γ-secretase in PC12 cells (Figure 7). Furthermore, the restricted localization of Aβ in endolysosomal vesicles, within synaptosomes, likely increases the local peptide concentration to the levels that inhibit γ-secretase-mediated processing of substrates in this compartment. In addition, we argue that the deposition of Aβ42 in plaques may be preceded by a critical increase in the levels of Aβ present in endosomes and the cyclical inhibition of γ-secretase activity that we propose. Under this view, reductions in γ-secretase activity may be a (transient) downstream consequence of increases in Aβ due to failed clearance, as represented by plaque deposition, contributing to AD pathogenesis. ”

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife assessment

      This important study explores infants' attention patterns in real-world settings using advanced protocols and cutting-edge methods. The presented evidence for the role of EEG theta power in infants' attention is currently incomplete. The study will be of interest to researchers working on the development and control of attention.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The paper investigates the physiological and neural processes that relate to infants' attention allocation in a naturalistic setting. Contrary to experimental paradigms that are usually employed in developmental research, this study investigates attention processes while letting the infants be free to play with three toys in the vicinity of their caregiver, which is closer to a common, everyday life context. The paper focuses on infants at 5 and 10 months of age and finds differences in what predicts attention allocation. At 5 months, attention episodes are shorter and their duration is predicted by autonomic arousal. At 10 months, attention episodes are longer, and their duration can be predicted by theta power. Moreover, theta power predicted the proportion of looking at the toys, as well as a decrease in arousal (heart rate). Overall, the authors conclude that attentional systems change across development, becoming more driven by cortical processes.

      Strengths:

      I enjoyed reading the paper, I am impressed with the level of detail of the analyses, and I am strongly in favour of the overall approach, which tries to move beyond in-lab settings. The collection of multiple sources of data (EEG, heart rate, looking behaviour) at two different ages (5 and 10 months) is a key strength of this paper. The original analyses, which build onto robust EEG preprocessing, are an additional feat that improves the overall value of the paper. The careful consideration of how theta power might change before, during, and in the prediction of attention episodes is especially remarkable. However, I have a few major concerns that I would like the authors to address, especially on the methodological side.

      Points of improvement

      (1) Noise

      The first concern is the level of noise across age groups, periods of attention allocation, and metrics. Starting with EEG, I appreciate the analysis of noise reported in supplementary materials. The analysis focuses on a broad level (average noise in 5-month-olds vs 10-month-olds) but variations might be more fine-grained (for example, noise in 5mos might be due to fussiness and crying, while at 10 months it might be due to increased movements). More importantly, noise might even be the same across age groups, but correlated to other aspects of their behaviour (head or eye movements) that are directly related to the measures of interest. Is it possible that noise might co-vary with some of the behaviours of interest, thus leading to either spurious effects or false negatives? One way to address this issue would be for example to check if noise in the signal can predict attention episodes. If this is the case, noise should be added as a covariate in many of the analyses of this paper. 

      We thank the reviewer for this comment. We certainly have evidence that even the most state-of-the-art cleaning procedures (such as machine-learning trained ICA decompositions, as we applied here) are unable to remove eye movement artifact entirely from EEG data (Haresign et al., 2021; Phillips et al., 2023). (This applies to our data but also to others’ where confounding effects of eye movements are generally not considered.) Importantly, however, our analyses have been designed very carefully with this explicit challenge in mind. All of our analyses compare changes in the relationship between brain activity and attention as a function of age, and there is no evidence to suggest that different sources of noise (e.g. crying vs. movement) would associate differently with attention durations nor change their interactions with attention over developmental time. And figures 5 and 7, for example, both look at the relationship of EEG data at one moment in time to a child’s attention patterns hundreds or thousands of milliseconds before and after that moment, for which there is no possibility that head or eye movement artifact can have systematically influenced the results.

      Moving onto the video coding, I see that inter-rater reliability was not very high. Is this due to the fine-grained nature of the coding (20ms)? Is it driven by differences in expertise among the two coders? Or because coding this fine-grained behaviour from video data is simply too difficult? The main dependent variable (looking duration) is extracted from the video coding, and I think the authors should be confident they are maximising measurement accuracy.

      We appreciate the concern. To calculate IRR we used this function (Cardillo G. (2007) Cohen's kappa: compute the Cohen's kappa ratio on a square matrix. http://www.mathworks.com/matlabcentral/fileexchange/15365). Our “Observed agreement” was 0.7 (std= 0.15). However, we decided to report the Cohen's kappa coefficient, which is generally thought to be a more robust measure as it takes into account the agreement occurring by chance. We conducted the training meticulously (refer to response to Q6, R3), and we have confidence that our coders performed to the best of their abilities.

      (2) Cross-correlation analyses

      I would like to raise two issues here. The first is the potential problem of using auto-correlated variables as input for cross-correlations. I am not sure whether theta power was significantly autocorrelated. If it is, could it explain the cross-correlation result? The fact that the cross-correlation plots in Figure 6 peak at zero, and are significant (but lower) around zero, makes me think that it could be a consequence of periods around zero being autocorrelated. Relatedly: how does the fact that the significant lag includes zero, and a bit before, affect the interpretation of this effect? 

      Just to clarify this analysis, we did include a plot showing autocorrelation of theta activity in the original submission (Figs 7A and 7B in the revised paper). These indicate that theta shows little to no autocorrelation. And we can see no way in which this might have influenced our results. From their comments, the reviewer seems rather to be thinking of phasic changes in the autocorrelation, and whether the possibility that greater stability in theta during the time period around looks might have caused the cross-correlation result shown in 7E. Again though we can see no way in which this might be true, as the cross-correlation indicates that greater theta power is associated with a greater likelihood of looking, and this would not have been affected by changes in the autocorrelation.

      A second issue with the cross-correlation analyses is the coding of the looking behaviour. If I understand correctly, if an infant looked for a full second at the same object, they would get a maximum score (e.g., 1) while if they looked at 500ms at the object and 500ms away from the object, they would receive a score of e.g., 0.5. However, if they looked at one object for 500ms and another object for 500ms, they would receive a maximum score (e.g., 1). The reason seems unclear to me because these are different attention episodes, but they would be treated as one. In addition, the authors also show that within an attentional episode theta power changes (for 10mos). What is the reason behind this scoring system? Wouldn't it be better to adjust by the number of attention switches, e.g., with the formula: looking-time/(1+N_switches), so that if infants looked for a full second, but made 1 switch from one object to the other, the score would be .5, thus reflecting that attention was terminated within that episode? 

      We appreciate this suggestion. This is something we did not consider, and we thank the reviewer for raising it. In response to their comment, we have now rerun the analyses using the new measure (looking-time/(1+N_switches), and we are reassured to find that the results remain highly consistent. Please see Author response image 1 below where you can see the original results in orange and the new measure in blue at 5 and 10 months.

      Author response image 1.

      (3) Clearer definitions of variables, constructs, and visualisations

      The second issue is the overall clarity and systematicity of the paper. The concept of attention appears with many different names. Only in the abstract, it is described as attention control, attentional behaviours, attentiveness, attention durations, attention shifts and attention episode. More names are used elsewhere in the paper. Although some of them are indeed meant to describe different aspects, others are overlapping. As a consequence, the main results also become more difficult to grasp. For example, it is stated that autonomic arousal predicts attention, but it's harder to understand what specific aspect (duration of looking, disengagement, etc.) it is predictive of. Relatedly, the cognitive process under investigation (e.g., attention) and its operationalization (e.g., duration of consecutive looking toward a toy) are used interchangeably. I would want to see more demarcation between different concepts and between concepts and measurements.

      We appreciate the comment and we have clarified the concepts and their operationalisation throughout the revised manuscript.

      General Remarks

      In general, the authors achieved their aim in that they successfully showed the relationship between looking behaviour (as a proxy of attention), autonomic arousal, and electrophysiology. Two aspects are especially interesting. First, the fact that at 5 months, autonomic arousal predicts the duration of subsequent attention episodes, but at 10 months this effect is not present. Conversely, at 10 months, theta power predicts the duration of looking episodes, but this effect is not present in 5-month-old infants. This pattern of results suggests that younger infants have less control over their attention, which mostly depends on their current state of arousal, but older infants have gained cortical control of their attention, which in turn impacts their looking behaviour and arousal.

      We thank the reviewer for the close attention that they have paid to our manuscript, and for their insightful comments.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript explores infants' attention patterns in real-world settings and their relationship with autonomic arousal and EEG oscillations in the theta frequency band. The study included 5- and 10-month-old infants during free play. The results showed that the 5-month-old group exhibited a decline in HR forward-predicted attentional behaviors, while the 10-month-old group exhibited increased theta power following shifts in gaze, indicating the start of a new attention episode. Additionally, this increase in theta power predicted the duration of infants' looking behavior.

      Strengths:

      The study's strengths lie in its utilization of advanced protocols and cutting-edge techniques to assess infants' neural activity and autonomic arousal associated with their attention patterns, as well as the extensive data coding and processing. Overall, the findings have important theoretical implications for the development of infant attention.

      Weaknesses:

      Certain methodological procedures require further clarification, e.g., details on EEG data processing. Additionally, it would be beneficial to eliminate possible confounding factors and consider alternative interpretations, e,g., whether the differences observed between the two age groups were partly due to varying levels of general arousal and engagement during the free play.

      We thank the reviewer for their suggestions and have addressed them in our point-by-point responses below.

      Reviewer #3 (Public Review):

      Summary:

      Much of the literature on attention has focused on static, non-contingent stimuli that can be easily controlled and replicated--a mismatch with the actual day-to-day deployment of attention. The same limitation is evident in the developmental literature, which is further hampered by infants' limited behavioral repertoires and the general difficulty in collecting robust and reliable data in the first year of life. The current study engages young infants as they play with age-appropriate toys, capturing visual attention, cardiac measures of arousal, and EEG-based metrics of cognitive processing. The authors find that the temporal relations between measures are different at age 5 months vs. age 10 months. In particular, at 5 months of age, cardiac arousal appears to precede attention, while at 10 months of age attention processes lead to shifts in neural markers of engagement, as captured in theta activity.

      Strengths:

      The study brings to the forefront sophisticated analytical and methodological techniques to bring greater validity to the work typically done in the research lab. By using measures in the moment, they can more closely link biological measures to actual behaviors and cognitive stages. Often, we are forced to capture these measures in separate contexts and then infer in-the-moment relations. The data and techniques provide insights for future research work.

      Weaknesses:

      The sample is relatively modest, although this is somewhat balanced by the sheer number of data points generated by the moment-to-moment analyses. In addition, the study is cross-sectional, so the data cannot capture true change over time. Larger samples, followed over time, will provide a stronger test for the robustness and reliability of the preliminary data noted here. Finally, while the method certainly provides for a more active and interactive infant in testing, we are a few steps removed from the complexity of daily life and social interactions.

      We thank the reviewer for their suggestions and have addressed them in our point-by-point responses below.

      Reviewer #1 (Recommendations For The Authors):

      Here are some specific ways in which clarity can be improved:

      A. Regarding the distinction between constructs, or measures and constructs:

      i. In the results section, I would prefer to mention looking at duration and heart rate as metrics that have been measured, while in the introduction and discussion, a clear 1-to-1 link between construct/cognitive process and behavioural or (neuro)psychophysical measure can be made (e.g., sustained attention is measured via looking durations; autonomic arousal is measured via heart-rate). 

      The way attention and arousal were operationalised are now clarified throughout the text, especially in the results.

      ii. Relatedly, the "attention" variable is not really measuring attention directly. It is rather measuring looking time (proportion of looking time to the toys?), which is the operationalisation, which is hypothesised to be related to attention (the construct/cognitive process). I would make the distinction between the two stronger.

      This distinction between looking and paying attention is clearer now in the reviewed manuscript as per R1 and R3’s suggestions. We have also added a paragraph in the Introduction to clarify it and pointed out its limitations (see pg.5).

      B. Each analysis should be set out to address a specific hypothesis. I would rather see hypotheses in the introduction (without direct reference to the details of the models that were used), and how a specific relation between variables should follow from such hypotheses. This would also solve the issue that some analyses did not seem directly necessary to the main goal of the paper. For example:

      i. Are ACF and survival probability analyses aimed at proving different points, or are they different analyses to prove the same point? Consider either making clearer how they differ or moving one to supplementary materials.

      We clarified this in pg. 4 of the revised manuscript.

      ii. The autocorrelation results are not mentioned in the introduction. Are they aiming to show that the variables can be used for cross-correlation? Please clarify their role or remove them.

      We clarified this in pg. 4 of the revised manuscript.

      C. Clarity of cross-correlation figures. To ensure clarity when presenting a cross-correlation plot, it's important to provide information on the lead-lag relationships and which variable is considered X and which is Y. This could be done by labelling the axes more clearly (e.g., the left-hand side of the - axis specifies x leads y, right hand specifies y leads x) or adding a legend (e.g., dashed line indicates x leading y, solid line indicates y leading x). Finally, the limits of the x-axis are consistent across plots, but the limits of the y-axis differ, which makes it harder to visually compare the different plots. More broadly, the plots could have clearer labels, and their resolution could also be improved. 

      This information on what variable precedes/ follows was in the caption of the figures. However, we have edited the figures as per the reviewer’s suggestion and added this information in the figures themselves. We have also uploaded all the figures in higher resolution.

      D. Figure 7 was extremely helpful for understanding the paper, and I would rather have it as Figure 1 in the introduction. 

      We have moved figure 7 to figure 1 as per this request.

      E. Statistics should always be reported, and effects should always be described. For example, results of autocorrelation are not reported, and from the plot, it is also not clear if the effects are significant (the caption states that red dots indicate significance, but there are no red dots. Does this mean there is no autocorrelation?).

      We apologise – this was hard to read in the original. We have clarified that there is no autocorrelation present in Fig 7A and 7D.

      And if so, given that theta is a wave, how is it possible that there is no autocorrelation (connected to point 1)? 

      We thank the reviewer for raising this point. In fact, theta power is looking at oscillatory activity in the EEG within the 3-6Hz window (i.e. 3 to 6 oscillations per second). Whereas we were analysing the autocorrelation in the EEG data by looking at changes in theta power between consecutive 1 second long windows. To say that there is no autocorrelation in the data means that, if there is more 3-6Hz activity within one particular 1-second window, there tends not to be significantly more 3-6Hz activity within the 1-second windows immediately before and after.

      F. Alpha power is introduced later on, and in the discussion, it is mentioned that the effects that were found go against the authors' expectations. However, alpha power and the authors' expectations about it are not mentioned in the introduction. 

      We thank the reviewer for this comment. We have added a paragraph on alpha in the introduction (pg.4).

      Minor points:

      1. At the end of 1st page of introduction, the authors state that: 

      “How children allocate their attention in experimenter-controlled, screen-based lab tasks differs, however, from actual real-world attention in several ways (32-34). For example, the real-world is interactive and manipulable, and so how we interact with the world determines what information we, in turn, receive from it: experiences generate behaviours (35).”

      I think there's more to this though - Lab-based studies can be made interactive too (e.g., Meyer et al., 2023, Stahl & Feigenson, 2015). What remains unexplored is how infants actively and freely initiate and self-structure their attention, rather than how they respond to experimental manipulations.

      Meyer, M., van Schaik, J. E., Poli, F., & Hunnius, S. (2023). How infant‐directed actions enhance infants' attention, learning, and exploration: Evidence from EEG and computational modeling. Developmental Science, 26(1), e13259.

      Stahl, A. E., & Feigenson, L. (2015). Observing the unexpected enhances infants' learning and exploration. Science, 348(6230), 91-94.

      We thank the reviewer for this suggestion and added their point in pg. 4.

      (2) Regarding analysis 4:

      a. In analysis 1 you showed that the duration of attentional episodes changes with age. Is it fair to keep the same start, middle, and termination ranges across age groups? Is 3-4 seconds "middle" for 5-month-olds? 

      We appreciate the comment. There are many ways we could have run these analyses and, in fact, in other papers we have done it differently, for example by splitting each look in 3, irrespective of its duration (Phillips et al., 2023).

      However, one aspect we took into account was the observation that 5-month-old infants exhibited more shorter looks compared to older infants. We recognized that dividing each into 3 parts, regardless of its duration, might have impacted the results. Presumably, the activity during the middle and termination phases of a 1.5-second look differs from that of a look lasting over 7 seconds.

      Two additional factors that provided us with confidence in our approach were: 1) while the definition of "middle" was somewhat arbitrary, it allowed us to maintain consistency in our analyses across different age points. And, 2) we obtained a comparable amount of observations across the two time points (e.g. “middle” at 5 months we had 172 events at 5 months, and 194 events at 10 months).

      b. It is recommended not to interpret lower-level interactions if more complex interactions are not significant. How are the interaction effects in a simpler model in which the 3-way interaction is removed? 

      We appreciate the comment. We tried to follow the same steps as in (Xie et al., 2018). However, we have re-analysed the data removing the 3-way interaction and the significance of the results stayed the same. Please see Author response image 2 below (first: new analyses without the 3-way interactions, second: original analyses that included the 3-way interaction).

      Author response image 2.

      (3) Figure S1: there seems to be an outlier in the bottom-right panel. Do results hold excluding it? 

      We re-run these analyses as per this suggestion and the results stayed the same (refer to SM pg. 2).

      (4) Figure S2 should refer to 10 months instead of 12.

      We thank the reviewer for noticing this typo, we have changed it in the reviewed manuscript (see SM pg. 3). 

      (5) In the 2nd paragraph of the discussion, I found this sentence unclear: "From Analysis 1 we found that infants at both ages showed a preferred modal reorientation rate". 

      We clarified this in the reviewed manuscript in pg10

      (6) Discussion: many (infant) studies have used theta in anticipation of receiving information (Begus et al., 2016) surprising events (Meyer et al., 2023), and especially exploration (Begus et al., 2015). Can you make a broader point on how these findings inform our interpretation of theta in the infant population (go more from description to underlying mechanisms)? 

      We have extended on this point on interpreting frequency bands in pg13 of the reviewed manuscript and thank the reviewer for bringing it up.

      Begus, K., Gliga, T., & Southgate, V. (2016). Infants' preferences for native speakers are associated with an expectation of information. Proceedings of the National Academy of Sciences, 113(44), 12397-12402.

      Meyer, M., van Schaik, J. E., Poli, F., & Hunnius, S. (2023). How infant‐directed actions enhance infants' attention, learning, and exploration: Evidence from EEG and computational modeling. Developmental Science, 26(1), e13259.

      Begus, K., Southgate, V., & Gliga, T. (2015). Neural mechanisms of infant learning: differences in frontal theta activity during object exploration modulate subsequent object recognition. Biology letters, 11(5), 20150041.

      (7) 2nd page of discussion, last paragraph: "preferred modal reorientation timer" is not a neural/cognitive mechanism, just a resulting behaviour. 

      We agree with this comment and thank the reviewer for bringing it out to our attention. We clarified this in in pg12 and pg13 of the reviewed manuscript.

      Reviewer #2 (Recommendations For The Authors):

      I have a few comments and questions that I think the authors should consider addressing in a revised version. Please see below:

      (1) During preprocessing (steps 5 and 6), it seems like the "noisy channels" were rejected using the pop_rejchan.m function and then interpolated. This procedure is common in infant EEG analysis, but a concern arises: was there no upper limit for channel interpolation? Did the authors still perform bad channel interpolation even when more than 30% or 40% of the channels were identified as "bad" at the beginning with the continuous data? 

      We did state in the original manuscript that “participants with fewer than 30% channels interpolated at 5 months and 25% at 10 months made it to the final step (ICA) and final analyses”. In the revised version we have re-written this section in order to make this more clear (pg. 17).

      (2) I am also perplexed about the sequencing of the ICA pruning step. If the intention of ICA pruning is to eliminate artificial components, would it be more logical to perform this procedure before the conventional artifacts' rejection (i.e., step 7), rather than after? In addition, what was the methodology employed by the authors to identify the artificial ICA components? Was it done through manual visual inspection or utilizing specific toolboxes? 

      We agree that the ICA is often run before, however, the decision to reject continuous data prior to ICA was to remove the very worst sections of data (where almost all channels were affected), which can arise during times when infants fuss or pull the caps. Thus, this step was applied at this point in the pipeline so that these sections of really bad data were not inputted into the ICA. This is fairly widespread practice in cleaning infant data.

      Concerning the reviewer’s second question, of how ICA components were removed – the answer to this is described in considerable detail in the paper that we refer to in that setion of the manuscript. This was done by training a classifier specially designed to clean naturalistic infant EEG data (Haresign et al., 2021) and has since been employed in similar studies (e.g. Georgieva et al., 2020; Phillips et al., 2023).

      (3) Please clarify how the relative power was calculated for the theta (3-6Hz) and alpha (6-9Hz) bands. Were they calculated by dividing the ratio of theta or alpha power to the power between 3 and 9Hz, or the total power between 1 (or 3) and 20 Hz? In other words, what does the term "all frequency bands" refer to in section 4.3.7? 

      We thank the reviewer for this comment, we have now clarified this in pg. 22.

      (4) One of the key discoveries presented in this paper is the observation that attention shifts are accompanied by a subsequent enhancement in theta band power shortly after the shifts occur. Is it possible that this effect or alteration might be linked to infants' saccades, which are used as indicators of attention shifts? Would it be feasible to analyze the disparities in amplitude between the left and right frontal electrodes (e.g., Fp1 and Fp2, which could be viewed as virtual horizontal EOG channels) in relation to theta band power, in order to eliminate the possibility that the augmentation of theta power was attributable to the intensity of the saccades? 

      We appreciate the concern. Average saccade duration in infants is about 40ms (Garbutt et al., 2007). Our finding that the positive cross-correlation between theta and look duration is present not only when we examine zero-lag data but also when we examine how theta forwards-predicts attention 1-2 seconds afterwards seems therefore unlikely to be directly attributable to saccade-related artifact. Concerning the reviewer’s suggestion – this is something that we have tried in the past. Unfortunately, however, our experience is that identifying saccades based on the disparity between Fp1 and Fp2 is much too unreliable to be of any use in analysing data. Even if specially positioned HEOG electrodes are used, we still find the saccade detection to be insufficiently reliable. In ongoing work we are tracking eye movements separately, in order to be able to address this point more satisfactorily.

      (5) The following question is related to my previous comment. Why is the duration of the relationship between theta power and moment-to-moment changes in attention so short? If theta is indeed associated with attention and information processing, shouldn't the relationship between the two variables strengthen as the attention episode progresses? Given that the authors themselves suggest that "One possible interpretation of this is that neural activity associates with the maintenance more than the initiation of attentional behaviors," it raises the question of (is in contradiction to) why the duration of the relationship is not longer but declines drastically (Figure 6). 

      We thank the reviewer for raising this excellent point. Certainly we argue that this, together with the low autocorrelation values for theta documented in Fig 7A and 7D challenge many conventional ways of interpreting theta. We are continuing to investigate this question in ongoing work.

      (6) Have the authors conducted a comparison of alpha relative power and HR deceleration durations between 5 and 10-month-old infants? This analysis could provide insights into whether the differences observed between the two age groups were partly due to varying levels of general arousal and engagement during free play.

      We thank the reviewer for this suggestion. Indeed, this is an aspect we investigated but ultimately, given that our primary emphasis was on the theta frequency, and considering the length of the manuscript, we decided not to incorporate. However, we attached Author response image 3 below showing there was no significant interaction between HR and alpha band.

      Author response image 3.

      Reviewer #3 (Recommendations For The Authors):

      (1) In reading the manuscript, the language used seems to imply longitudinal data or at the very least the ability to detect change or maturation. Given the cross-sectional nature of the data, the language should be tempered throughout. The data are illustrative but not definitive. 

      We thank the reviewer for this comment. We have now clarified that “Data was analysed in a cross-sectional manner” in pg15.

      (2) The sample size is quite modest, particularly in the specific age groups. This is likely tempered by the sheer number of data points available. This latter argument is implied in the text, but not as explicitly noted. (However, I may have missed this as the text is quite dense). I think more notice is needed on the reliability and stability of the findings given the sample. 

      We have clarified this in pg16.

      (3) On a related note, how was the sample size determined? Was there a power analysis to help guide decision-making for both recruitment and choosing which analyses to proceed with? Again, the analytic approach is quite sophisticated and the questions are of central interest to researchers, but I was left feeling maybe these two aspects of the study were out-sprinting the available data. The general impression is that the sample is small, but it is not until looking at table s7, that it is in full relief. I think this should be more prominent in the main body of the study.

      We have clarified this in pg16.

      (4) The devotes a few sentences to the relation between looking and attention. However, this distinction is central to the design of the study, and any philosophical differences regarding what take-away points can be generated. In my reading, I think this point needs to be more heavily interrogated. 

      This distinction between looking and paying attention is clearer now in the reviewed manuscript as per R1 and R3’s suggestions. We have also added a paragraph in the Introduction to clarify it and pointed out its limitations (see pg.5).

      (5) I would temper the real-world attention language. This study is certainly a great step forward, relative to static faces on a computer screen. However, there are still a great number of artificial constraints that have been added. That is not to say that the constraints are bad--they are necessary to carry out the work. However, it should be acknowledged that it constrains the external validity. 

      We have added a paragraph to acknowledged limitations of the setup in pg. 14.

      (6) The kappa on the coding is not strong. The authors chose to proceed nonetheless. Given that, I think more information is needed on how coders were trained, how they were standardized, and what parameters were used to decide they were ready to code independently. Again, with the sample size and the kappa presented, I think more discussion is needed regarding the robustness of the findings. 

      We appreciate the concern. As per our answer to R1, we chose to report the most stringent calculator of inter-rater reliability, but other calculation methods (i.e., percent agreement) return higher scores (see response to R1).

      As per the training, we wrote an extensively detailed coding scheme describing exactly how to code each look that was handed to our coders. Throughout the initial months of training, we meet with the coders on a weekly basis to discuss questions and individual frames that looked ambiguous. After each session, we would revise the coding scheme to incorporate additional details, aiming to make the coding process progressively less subjective. During this period, every coder analysed the same interactions, and inter-rater reliability (IRR) was assessed weekly, comparing their evaluations with mine (Marta). With time, the coders had fewer questions and IRR increased. At that point, we deemed them sufficiently trained, and began assigning them different interactions from each other. Periodically, though, we all assessed the same interaction and meet to review and discuss our coding outputs.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their constructive comments on our manuscript and their appreciation of the results. We provide point-by-point responses bellow. For your convenience we highlight here the main changes to the manuscript.

      ·        More descriptive terminology for the contextual cues (Ctx.A / Ctx.noA is now referred to as LIGHT / DARK).

      ·        Schematic of experiment timeline highlighting the exclusion of non-discriminators following the initial acquisition period. This explains the absence of baseline sex differences post acquisition and clears up some misconceptions about lack of replicability.

      ·        New data (time in port preCS) showing that a prior reward does not cause continued presence in port.

      ·        Several text edits to address all the points raised by the reviewers.

      We hope that the editors and reviewers will be satisfied with this revised version and find the strength of the evidence more convincing.

      Reviewer #1 (Recommendations For The Authors):

      In relation to weaknesses points 1-4 in the public review:

      (1) With regards to the claim (page 4 of pdf), I think I can see what the authors are getting at when they claim "Only Ctx-dep.01 engages context-gated reward predictions", because the same reward is available in each context, and the animal must use contextual information to determine which cue will be rewarded. In other words, it has a discriminative purpose. In Ctx-dep.O1/O2, however, although the context doesn't serve a discriminative purpose in the sense that one cue will always earn a unique outcome, regardless of context, the fact that these cues are differentially rewarded in the different context means that animals may well form context-gated cue-outcome associations (e.g. CtxA-(CS1-O1), CtxnoA-(CS2-O2)). Moreover, the context is informative in this group in telling the animal which cue will be rewarded, even prior to outcome delivery, such that I don't think contextual information will fade to the background of the association and attention be lost to it in the way, say Mackintosh (1975) might predict. Therefore, I don't think this statement is correct.

      I suggest that the authors refine the statement to be more accurate.

      We agree with the reviewer —the context is absolutely relevant for rats trained in the Ctx-dep. O1/O2 task. We have edited the text in several places to make this clear. The question is how (by what mechanism) does the context participate in the control of behavior in this group. The reviewer correctly points out that, just like rats trained in the Ctx-dep. O1 task, rats trained in the Ctx-dep. O1/O2 might have formed context-gated cue-outcome associations. We now clearly acknowledge that in the text.

      However, because in this group the two outcomes are always encountered in different contexts, we argue that these rats could also have formed a direct association between the two contexts and the two outcomes. In other words, each context might directly evoke the expectation of a distinct reward outcome (prepare to drink, or prepare to eat). On a given trial, if the cue and context both tend to activate the same outcome representation, the converging cue+context excitation can add up. This would produce a context-sensitive response, but not via hierarchical modulation process (unlike Ctx-dep O1). Arguably, this last associative mechanism is much simpler and might explain why almost all rats in Ctx-dep. O1/O2 group learned the discrimination and at a much faster rate.

      Therefore, while rats trained in Ctx-dep O1/O2 might engage a combination of associative processes to achieve context-sensitive behavior (including hierarchical associations), only rats in the Ctx-dep O1 critically and unambiguously rely on hierarchical associations to achieve context-sensitive behavior.

      (2) I think the results shown in Figure 1 are very interesting, and well supported by the statistics. It's so nice to see a significant interaction, as so many papers try to report these types of effects without it. However, I do wonder how specific the results are to contextual modulation. That is, should a discriminative discrete cue be used instead of each context (e.g. CS1 indicates CS2 earns O1, CS3 indicates CS4 earns O1), would female rats still be as slow to learn the discrimination?

      I am just curious as to whether the authors have thoughts on this.

      We have not tested this and are not aware of a paper that examined this question specifically.

      However, we would like to point out that in the suggested design (CS1→[CS2→O1]; CS3→[CS4→O1]) the discriminative cues (CS1 and CS3) would almost certainly also acquire substantial reward-predictive value, either because of their direct association with the reward, or via second-order conditioning. This would complicate the interpretation of the results in terms of hierarchical associations. Incorporating non-rewarded presentation of CS1 and CS3 alone (i.e. extinguishing those cues, as is sometimes done in occasion setting experiments) would be one way to reduce the reward expectation evoked by those cues, but this approach has some limitations. Indeed, as mentioned by Rescorla (2006) “During extinction, the net associative strength of a stimulus declines to the level of [a response] threshold, but further decrement stops at that point”. So while extinguished CS1 and CS3 might no longer evoke overt behavioral responses, these cues could retain nonnegligible subthreshold excitatory connection with the US.  Individually, these cues might fail to evoke responding but could nonetheless increase responding during the CS1→CS2 trials (or CS3→CS4 trials), via simple summation. (Rescorla, 2006: “the compound of two [extinguished] stimuli has a strength that exceeds the threshold and so evokes responding”).

      This type of consideration is precisely why we opted for the behavioral task used in the study. In Ctx-dep. O1, the discriminative stimuli exert opposite effects on the two target cues, which rules out summation effects as a mechanism for context-sensitive behavior.

      (3) Pages 8-9 of pdf, where the biological basis or the delayed acquisition of contextual control in females is considered, I find this to be written from a place of assuming that what is observed in the males is the default behaviour. That is, although the estrous cycle and its effects on synaptic plasticity/physiology may well account for the results, is there not a similar argument to be made for androgens in males? Perhaps the androgens also somehow alter synaptic plasticity/physiology, leading to their faster speed, reduced performance stability, and increased susceptibility to stress.

      I would like the argument that female behaviour might be the default, and male behaviour the deviation to be considered in the discussion in addition to those already stated.

      We regret if we gave the impression that male behavior was the default. The paper is intended to report sex differences but we don’t view either sex as the default. To correct this impression, we have added a few sentences in the discussion to highlight male-hormonal factors as well as non-gonadal genetic factors that might have contributed to the observed sex differences.

      (4) In addition, the OFC - which is the brain region found to have differential expression of c-fos in males and females in Figure 5 - is not explicitly discussed with regard to the biological mechanisms of differences, which seems odd.

      I suggest OFC be discussed with regard to biological mechanisms of differences.

      We added a few sentences in the discussion to i) highlight the parallel between our study and human fMRI studies showing superior OFC activation in females during the regulation of emotional responses, ii) Suggest a potential relationship between the reported sex differences (speed of acquisition, robustness of performance, and OFC activation in context-gated reward prediction), iii) acknowledge our ignorance of the root causes of these sex differences.

      We wish we could offer a better answer. We have attempted to offer possible proximal explanations for the observed sex differences, but ultimately our work did not address the root causes of these behavioral and neural sex differences. Therefore we feel that further attempts to explain these differences would be too speculative.

      (5) I did wonder if the authors were aware that in the Rescorla-Wagner model, contextual stimuli are thought to summate with discrete cues to enter into the association with the outcome (i.e., the error term is between lambda and sigmaV, with sigmaV the 'summation' of all stimuli present on a trial, including contextual stimuli). Typically, this is not considered much, because the cue itself is so salient and more consistently paired with reward (whereas the ever-present context is often paired with no reward), but nevertheless, it is a part of the association. I'm not sure it's wrong to say that the background circumstances under which events occur are thought to play little role (as in the second sentence of the introduction), but I was wondering if the authors were aware of this fact when they wrote that.

      This sentence in the introduction was meant to introduce the distinction between eliciting stimuli and modulating contexts. Admittedly, this paints a naive picture, which we now acknowledge (we hope that the rest of the paper provides more nuance). As pointed out by this reviewer, the context is also a stimulus, and, just like any other stimulus, it is eligible for direct association with an outcome. The possibility for direct context→outcome association is precisely the rational for the Ctx-dep O1/O2 group.

      (6) Context-noA - Seems a little confusing for a name, why not just call it context B? NoA appears to imply that nothing happens in A or no outcome is available, whereas this is not always the case.

      We debated which terminology to use. We felt that “Context A vs. Context B” should perhaps be reserved to situations where the global context changes (e.g. two different conditioning boxes with different odors, floor texture etc., with proper counterbalancing procedures). We felt that “Context A vs noA” might be more appropriate here, as we are manipulating the local context by introducing (or removing) one single stimulus (the houselight). In this revised version we followed this reviewer’s advice and adopted a more descriptive, and hopefully less confusing, terminology: "Light vs Dark”.

      (7) Why is it that in the text the Ctx-dep O1/O2 is explained before simple and no discrimination, but in the Figure Ctx-dep O1/O2 is shown last? These should be consistent.

      Thanks for pointing that out. We have switched the order of task description to be consistent with the figures.

      (8) Page 6 (of pdf) - could the authors elaborate a little on why or how (or both) the delivery of reward can interfere with the expression of context-dependent discrimination? Do they just mean the performance of discrimination (e.g., animals will sit at the food port longer if there is food there because they are sitting there and eating it, which does not necessarily reflect the expectation of food based on cue presentations?), in which case it is not the discrimination itself that is being interfered with, just the measure of it. Perhaps the authors could elaborate by just inserting a sentence.

      We have added a few sentences to discuss this effect.

      The first clarification that we can make is that the reduced discrimination performance following reward is not simply due to animals’ continued presence in the reward port. We have added the time pre-cue to Fig. 3 B-F. This measure is not affected by previous reward history, showing that rats are leaving the port between trials.

      So what is driving this effect? At this stage, we are agnostic about the mechanism(s) for this effect. Kuchibhotla et al. (2019) —who first reported a similar effect— proposed a model in which recent rewards modify the threshold for behavioral responses (i.e. performance). In this model, a cue might evoke a weak reward prediction but evoke a strong behavioral response if presented after a reward. Additionally, we believe that learning factors might also contribute to the effect reported here. Indeed, the behavioral response on a given trial likely reflects the balance of hierarchical (context-dependent) associations vs. direct associations (Bradfield and Balleine, 2013). Naturally, this balance is dynamic and influenced by trial history. For instance, a Light:X+ trial might increase the value of cue X and promote responding during the following Dark:X- trial. The same logic could be applied to the influence of the context (e.g., Light:X+ trial might promote responding to a subsequent Light:Y- trial). We are currently working on a computational model that captures the dynamic interplay between hierarchical associations and direct associations. We hope that this model will provide some insight into the learning/performance mechanism for the effects reported here. However this computational work is still in the early stages and beyond the scope of the present study.

      (9) The lack of effect in the Ctx-dep O1/O2 groups in Figure 4 could be due to a lack of power - the group sizes are a lot smaller for this group than for Ctx-dep O1 where an interaction was detected. I think this should be at least addressed in the discussion (i.e., that this lack of effect is possibly due to less power here, as the effects are in the same direction).

      Good point. We now acknowledge this limitation in the text.

      Reviewer #2 (Recommendations For The Authors):

      (1) Please comment on the failure to replicate the sex differences across experiments. Perhaps this is due to some change in the training procedure that is briefly mentioned in the methods (a reduction in the number of rewarded trials) but it is unclear.

      The reviewer correctly observed that Fig. 3-5 do not show sex differences in baseline condition. This is not because of a replication failure, but because non-discriminating subjects were excluded from the experiment at the end of the acquisition period (after 72 training sessions). We now clarify this in the Method and Results section. We also added a schematic of the experiment timeline that highlights the exclusion of non-discriminators at the end of the acquisition period (Fig 1).

      On the topic of replicability, the data for Ctx-dep O1 was collected over 3 cohorts (over the course of 2 years) and the sex difference pattern was consistent.  For instance, the proportion of discriminators vs. non-discriminators for males and females trained in Ctx-dep O1, showed similar patterns across cohorts (see below).

      Author response table 1.

      (2) The design of this experiment makes it possible to analyse whether there is a differential outcome effect (DOE). The DOE would indeed predict better discrimination in group cxt-dep O1/O2 versus cxt-dep O1, which seems to be exactly what the authors observe although between-group statistics are not reported. Inspection of Figure 1 suggests that there may be a DOE in females but not in males. I wonder if the authors might consider reanalysing the data to check this.

      Indeed, there is clearly a differential outcome effect. We now point out this DOE in relation to the latency to achieve discrimination criterion (Fig. 2 C-D). Rats in the Ctx-dep. O1/O2 group acquired discrimination (reached criterion) much faster than rats in in the Ctx-dep. O1 group.

      Following the reviewer’s suggestion, we provide here the results of targeted ANOVAs (focusing exclusively on Ctx-dep. O1 and Ctx-dep. O1/O2) to investigate a potential sex-dependent effect of DOE (i.e. Sex x Task interactions), see figure below. A three-way ANOVA (Sex x Task x Session) conducted on the discrimination index reveal a main effect of Task (F1, 86 \= 173.560, P < 0.001), Session (F2.678, 230.329 \= 140.479, P<0.001) and a marginal effect of Sex (F1,86 = 3.929, P = 0.051), but critically no Task x Sex or Task x Sex x Session interaction (P ≥ 0.504). A two-way ANOVA (Sex x Task) conducted on the sessions to criterion revealed a main effect of both factors (Sex F1, 63 = 9.52, P = 0.003; Task F1, 62 = 184.143, P < 0.001) but critically, no Sex x Task interaction (P = 0.233).  These results indicate that the use of two different outcomes clearly facilitated the acquisition of context-dependent discrimination (DOE effect), but this effect benefited both sexes equally. We thank the reviewer for recommending this analysis.

      Author response image 1.

      Differential outcome effect (DOE) affects males and females equally. A. Discrimination ratio over the acquisition period. B. trials to criterion. Compared to animals trained with a single outcome (Ctx-dep. O1), the introducing dissociable outcomes for the two type of rewarded trials (Ctx-dep. O1/O2) profoundly facilitated the acquisition of discriminated behavior. This effect benefited both sexes equally.

      (3) Some minor points for clarification that the authors may also wish to address:

      - Figure 3: is data presented from sessions 71-80 only or for all sessions? I didn't fully follow the explanation offered in the results section.

      That’s right. The data presented in Fig. 3 considers only sessions 71-80, in discriminator rats —when performance is globally stable. We have edited the text to make this clearer. These 10 sessions represent a total of 800 trials (=10 session * 80 trials). The first trial of a session what not included in the analysis since it was not preceded by any trial. For the remaining 790 trials (10 session x 79 trials), we examined how the outcome of the past trial (reward or nonrewarded) influenced responding on the next trial.  This large sample size (790 trials / rat) was required to ensure that enough data was collected for each possible trial history scenario.

      - The authors argue that females are protected from the disrupting effect of stress. It might be useful if the authors offer further explanation as to what they mean by "protected".

      By “protected”, we simply mean “less sensitive”. We have reworded this sentence in that way. We do not claim to have an understanding of the precise mechanism for this sex dependent effect (although our data point to a possible role of the OFC).

      - The authors state that "delivery of reward, while critical for learning, can also interfere with the expression of context-dependent discrimination". This statement should be explained in further detail. For instance, why should reward delivery specifically impair context-dependent discrimination but not other forms of discrimination?

      We have reworded this sentence to be more inclusive. Indeed, delivery of reward also interferes with other forms of discrimination, particularly when discrimination performance is not yet optimal. We have also added a paragraph to discuss the possible mechanisms by which reward might interfere with discrimination performance in our task.   

      Reviewer #3 (Recommendations For The Authors):

      I do not suggest additional experiments, but I do hope you continue the behavioral work to characterize what is being learned in the task. I think the approach is promising. I would suggest reporting the % time in port and port entries for the entire CS. There is no justification for only analyzing the response in the last 5s.

      We thank the reviewer for the encouragement.

      We opted to focus on the time in port for two main reasons:

      (1) This measure is relatively consistent across the two different reward outcomes (unlike the rate of port entries). Indeed, consistent with prior studies (Delamater et al., 2017), we observed that the type of reward (solid or liquid) influences the topography of the anticipatory magazine-directed behavior. Specifically, cues paired with pellets elicited significantly more port entries than cues paired with chocolate milk. The opposite pattern was observed for time in port --cues paired with chocolate milk elicited more sustained time in port compared to cues paired with pellets (see figure below). While these measures (port entries and time in port) show opposite bias for the two possible outcomes, the size of this bias is much smaller for the time in port (Cohen’s d effect size: port entries: 1.41; time in port: 0.62). As a result, the discrimination ratio calculated from Time in port is consistent across the two outcomes (P = 0.078; effect size: 0.07), which is not the case for the discrimination ratio calculated from port entries (P = 0.007; effect size 0.32 see figure below).

      (2) Unlike the rate of port entries, the time in port shows monotonic increase during training in these tasks. Indeed, we observed here and in past work (Keiflin et al., 2019), that the rate of port entries initially increases with training, but then slightly decreases; particularly for cues paired with liquid reward. In contrast, the time in port continues to increase, or remains high, with extended training. This is easy to understand if we consider the extreme case of a hypothetical rat that might enter the port once upon cue presentation and maintain continued presence in port for the whole cue duration. This rat would have a relatively low rate of port entry (a single port entry per trial) but a high time in port.

      This is not to say that the rate of port entries is not a valid measure overall (we have used, and continue to use, this metric in other preparations). However, for the reasons explained above, we believe that the time in port is a better metric for reward anticipation in this specific study.

      Moreover, we chose to focus our analysis on the last 5s of the cue because that’s when anticipatory food cup behavior is more reliably observed (in our preparation >2/3 of the total time in port in occurs during the last 5s of the cue) and less contaminated by orienting behaviors (Holland, 1977, 1980, 2000). For these reasons, analysis of the last portion of the cue is relatively common in Pavlovian anticipatory approach preparations (El-Amamy and Holland, 2007; Olshavsky et al., 2013; Esber et al., 2015; Holland, 2016a, 2016b; Schiffino and Holland, 2016; Gardner et al., 2017; Sharpe et al., 2021; Maes et al., 2020; Sharpe et al., 2020; Siemian et al., 2021; Kang et al., 2021). Reporting time in port during the same cue epoch facilitates comparisons between these studies.

      We have edited the text in the Method section to provide a brief justification for focusing our analyses on this cue epoch.

      Author response image 2.

      Outcome identity influences the topography of the conditioned response. A-C: Conditioned responding expressed as the number of port entries per trial (A) or time in port per trials (C) for rats trained in the simple discrimination task with a chocolate milk reward (n= 19) or a sucrose pellet (n = 16). Data show the average of the last three 3 sessions. Compared to chocolate milk, pellets tend to produce more port entries. Conversely, chocolate milk tend to produce more time in port. However the magnitude of this bias is smaller for the Time in port. C-D: discrimination ratio calculate from the number of port entries (C) or the time in port (D); the latter is not affected by the outcome identity. *P<0.05; **P<0.01; ***P<0.001 T tests.

      The inconsistent use of terms is distracting throughout the paper. Is it discriminated or context-gated? Please provide a definition of your terms and then use them consistently. Is it a discriminative stimulus, a context, or an occasion setter? These all imply slightly different things and it would help the reader if you just used one term throughout the paper.

      Thanks for pointing that out. We have added a definition for “context-gated” and edited the text to keep the terminology consistent when appropriate. The words “discrimination”/”discriminated” still appear in the manuscript but without implying a mechanism (all tasks are variations of Pavlovian discrimination; the rats discriminating between rewarded and non-rewarded trials).

      As mentioned by this reviewer, the terms “context” and “occasion setter” are not synonymous. Therefore these terms still appear in the manuscript to refer to different concepts (e.g. in our task the visual stimulus is a context for all rats; this context acts as an occasion setter only for some rats).

      Minor:

      Intro, 2nd PP: "autism". This is abbreviated in the abstract but spelled out here. I suggest not abbreviating in the abstract and introducing abbreviations here, as you do with PTSD.

      Fixed as suggested

      Have deficits in contextual modulation been distinguished from potential deficits in binary associative learning in autism, PTSD, and substance use disorders? This is implied, but there are no citations provided.

      We provide a list of references showing deficits in contextual modulation in these disorders.

      This does not mean that these disorders are reducible to deficits in contextual modulation and it does not exclude other forms of deficits in those disorders --including alterations in certain aspects of binary associative learning.

      "In positive occasion-setting, animals learn that a target cue (X) results in a reward outcome (+) only when that cue is accompanied by a contextual feature (A); the same cue presented in absence of this contextual feature remains without consequence (A:X+ / X-)." - there are words missing in this sentence.

      We apologize but we fail identify the missing word(s). Perhaps the reviewer could be more specific and we will be happy to edit the sentence as needed.

      What is a contextual feature, is this redundant or can you provide a specific definition?

      We use the terminology “feature” and “target” as these are the standard terms in the description of occasion setting preparations (one stimulus, “the feature”, sets the occasion for responding –or not responding- to the “target” cue). By contextual feature, we meant that in this specific example the context was the feature. We have clarified this in the text. We believe that these terms are not redundant. Indeed, the context is not always a feature, and a feature is not necessarily a context (phasic cues can serve as “features”).

      Can you provide some background on studies of sex differences in simple associative learning? You imply these have been much more thoroughly studied than conditional discriminations.

      We added a few references as suggested.

      What is the rationale for studying stress?

      Stressful life events exacerbate several mental illnesses, potentially by impacting cognitive functions.

      Although the (sex-dependent) effects of stress on some cognitive function are well established (e.g. working memory, selective attention, spatial navigation), the effect of stress on contextual modulation (a core dysfunction in certain mental illnesses) --and the possible sex-differences in this effect-- had not been formally tested. We added a few sentences in the results section (at the beginning of the stress section) to remind the reminder of why we tested the effect of stress in this task.

      Method/Results:

      Cues are not counterbalanced; the feature is visual and targets are auditory - this should be noted as a limitation in the discussion section.

      We now acknowledge this limitation in the discussion. Moreover we believe that the new terminology for the context —Light vs Dark— (instead of A vs. noA in the original version) makes it abundantly clear that the “context” is this study was always visual.

      Summation is invoked to describe the discrimination with different outcomes, how is summation happening? This is not described. Perhaps incorporate the literature on conditional discriminations with differential outcomes (the "differential outcomes effect").

      We have edited the Result + Discussion section to clarify how summation might contribute to discrimination with different outcomes. We have also added references for the DOE in this task.

      The stress effect is confounded with test order; comparing stress vs. baseline.

      Sorry we don’t understand this point. The “baseline” refers to the animal’s performance on the last training session before the acute stress manipulation (we have edited the text to make this clear). Animals are first trained in the task and then we examine how stress alters their performance in this learned task. We don’t see how this could induce a test order confound.

      Throughout the results section, it would be helpful to have the number of animals reported for each analysis.

      The number of animals for each part of the experiment is now reported in the text, as well as in the figures.

      Discussion:

      "For Ctx-dep. O1, context is an occasion-setter, i.e. a stimulus that hierarchically modulates the associative strength between a target cue and its outcome." This is inaccurate. Occasion setters do not change or modulate the associative strength of a target cue. They modulate whether excitation or inhibition is expressed.

      We reworded the sentence as suggested: “For Ctx-dep. O1, context is an occasion-setter, i.e. a stimulus that modulates the response to a target cue”.

      "Together, these results indicate that the sex differences observed here are not attributable to simple associative, motivational, working-memory, or attentional processes, but are specific to the neurocomputational operations required for the hierarchical, contextual control of behavior." It should be noted here that the difference is one of degree, a quantitative difference, but not a difference in the qualitative features of the process.

      "Regardless of the precise mechanism, our results indicate that, compared to male rats, females ultimately achieved more stable contextual control over cued reward-seeking; their behavior remained context-regulated under stress or after recent rewards." Again this is a matter of degree.

      We absolutely agree. All the sex-difference reported here are a matter of degree. In the framework of McCarthy et al. (2012) the reported effects are type 2 or type 3 sex differences, not type 1 sexual dimorphism. We made a few edits in the Discussion to clarify this point.

      Procedure:

      Please clarify the percentage of trials that were reinforced in the No Discrimination group.

      From session 1-32 (acquisition period), 50% of the trials were reinforced. Following this acquisition period, only 25% of the trials were reinforced to match all the other groups. We have edited the method section to clarify this point.

      Please provide the dimensions of the restraint tubes and the model number if available.

      This information is now included.

      References

      Bradfield LA, Balleine BW (2013) Hierarchical and binary associations compete for behavioral control during instrumental biconditional discrimination. J Exp Psychol Anim Behav Process 39:2–13.

      Delamater AR, Garr E, Lawrence S, Whitlow JW (2017) Elemental, configural, and occasion setting mechanisms in biconditional and patterning discriminations. Behav Processes 137:40–52.

      El-Amamy H, Holland PC (2007) Dissociable effects of disconnecting amygdala central nucleus from the ventral tegmental area or substantia nigra on learned orienting and incentive motivation. Eur J Neurosci 25:1557–1567.

      Esber GR, Torres-Tristani K, Holland PC (2015) Amygdalo-striatal interaction in the enhancement of stimulus salience in associative learning. Behav Neurosci 129:87–95.

      Gardner MPH, Conroy JS, Shaham MH, Styer CV, Schoenbaum G (2017) Lateral Orbitofrontal Inactivation Dissociates Devaluation-Sensitive Behavior and Economic Choice. Neuron 96:1192–1203.e4.

      Holland PC (1977) Conditioned stimulus as a determinant of the form of the Pavlovian conditioned response. J Exp Psychol Anim Behav Process 3:77–104.

      Holland PC (1980) CS-US interval as a determinant of the form of Pavlovian appetitive conditioned responses. J Exp Psychol Anim Behav Process 6:155–174.

      Holland PC (2000) Trial and intertrial durations in appetitive conditioning in rats. Anim Learn Behav 28:121–135.

      Holland PC (2016a) Enhancing second-order conditioning with lesions of the basolateral amygdala. Behav Neurosci 130:176–181.

      Holland PC (2016b) Effects of amygdala lesions on overexpectation phenomena in food cup approach and autoshaping procedures. Behav Neurosci 130:357–375.

      Kang M, Reverte I, Volz S, Kaufman K, Fevola S, Matarazzo A, Alhazmi FH, Marquez I, Iordanova MD, Esber GR (2021) Agency rescues competition for credit assignment among predictive cues from adverse learning conditions. Sci Rep 11:16187.

      Keiflin R, Pribut HJ, Shah NB, Janak PH (2019) Ventral tegmental dopamine neurons participate in reward identity predictions. Curr Biol 29:93–103.e3.

      Kuchibhotla KV, Hindmarsh Sten T, Papadoyannis ES, Elnozahy S, Fogelson KA, Kumar R, Boubenec Y, Holland PC, Ostojic S, Froemke RC (2019) Dissociating task acquisition from expression during learning reveals latent knowledge. Nat Commun 10:2151.

      Maes EJP, Sharpe MJ, Usypchuk AA, Lozzi M, Chang CY, Gardner MPH, Schoenbaum G, Iordanova MD (2020) Causal evidence supporting the proposal that dopamine transients function as temporal difference prediction errors. Nat Neurosci 23:176–178.

      McCarthy MM, Arnold AP, Ball GF, Blaustein JD, De Vries GJ (2012) Sex differences in the brain: the not so inconvenient truth. J Neurosci 32:2241–2247.

      Olshavsky ME, Song BJ, Powell DJ, Jones CE, Monfils M-H, Lee HJ (2013) Updating appetitive memory during reconsolidation window: critical role of cue-directed behavior and amygdala central nucleus. Front Behav Neurosci 7:186.

      Rescorla RA (2006) Deepened extinction from compound stimulus presentation. J Exp Psychol Anim Behav Process 32:135–144.

      Schiffino FL, Holland PC (2016) Secondary visual cortex is critical to the expression of surprise-induced enhancements in cue associability in rats. Eur J Neurosci 44:1870–1877.

      Sharpe MJ, Batchelor HM, Mueller LE, Gardner MPH, Schoenbaum G (2021) Past experience shapes the neural circuits recruited for future learning. Nat Neurosci 24:391–400.

      Sharpe MJ, Batchelor HM, Mueller LE, Yun Chang C, Maes EJP, Niv Y, Schoenbaum G (2020) Dopamine transients do not act as model-free prediction errors during associative learning. Nat Commun 11:106.

      Siemian JN, Arenivar MA, Sarsfield S, Borja CB, Russell CN, Aponte Y (2021) Lateral hypothalamic LEPR neurons drive appetitive but not consummatory behaviors. Cell Rep 36:109615.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study tests the hypothesis that a high autism quotient in neurotypical adults is strongly associated with suboptimal motor planning and visual updating after eye movements, which in turn, is related to a disrupted efference copy mechanism. The implication is that such abnormal behavior would be exaggerated in those with ASD and may contribute to sensory overload - a key symptom in this condition. The evidence presented is convincing, with significant effects in both visual and motor domains, adequate sample sizes, and consideration of alternatives. However, the study would be strengthened with minor but necessary corrections to methods and statistics, as well as a moderation of claims regarding direct application to ASD in the absence of testing such patients.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This study examines a hypothesized link between autism symptomatology and efference copy mechanisms. This is an important question for several reasons. Efference copy is both a critical brain mechanism that is key to rapid sensorimotor behaviors, and one that has important implications for autism given recent empirical and theoretical work implicating atypical prediction mechanisms and atypical reliance on priors in ASD.

      The authors test this relationship in two different experiments, both of which show larger errors/biases in spatial updating for those with heightened autistic traits (as measured by AQ in neurotypical (NT) individuals).

      Strengths:

      The empirical results are convincing - effects are strong, sample sizes are sufficient, and the authors also rule out alternative explanations (ruling out differences in motor behavior or perceptual processing per se).

      Weaknesses:

      My main concern is that the paper should be more transparent about both (1) that this study does not include individuals with autism, and (2) acknowledging the limitations of the AQ.

      On the first point, and I don't think this is intentional, there are several instances where the line between heightened autistic traits in the NT population and ASD is blurred or absent. For example, in the second sentence of the abstract, the authors state "Here, we examine the idea that sensory overload in ASD may be linked to issues with efference copy mechanisms". I would say this is not correct because the authors did not test individuals with ASD. I don't see a problem with using ASD to motivate and discuss this work, but it should be clear in key places that this was done using AQ in NT individuals.

      For the second issue, the AQ measure itself has some problems. For example, reference 38 in the paper (a key paper on AQ) also shows that those with high AQ skew more male than modern estimates of ASD, suggesting that the AQ may not fully capture the full spectrum of ASD symptomatology. Of course, this does not mean that the AQ is not a useful measure (the present data clearly show that it captures something important about spatial updating during eye movements), but it should not be confused with ASD, and its limitations need to be acknowledged. My recommendation would be to do this in the title as well - e.g. note impaired visuomotor updating in individuals with "heightened autistic traits".

      We thank the reviewer for the kind words. We now specify more carefully that our sample of participants consists of neurotypical adults scored for autistic traits and none of them was diagnosed with autism before participating in our experiment. Regarding the Autistic Quotient Questionnaire (AQ) on page 5 of the Introduction we now write:

      “The autistic traits of the whole population form a continuum, with ASD diagnosis usually situated on the high end 31-33. Moreover, autistic traits share a genetic and biological etiology with ASD 34. Thus, quantifying autistic-trait-related differences in healthy people can provide unique perspectives as well as a useful surrogate for understanding the symptoms of ASD 31,35.”

      In the Discussion (page 9) we now write:

      ”It is essential to note that our participant pool lacked pre-existing diagnoses before engaging in the experiments and we must address limitations associated with the AQ questionnaire. The AQ questionnaire demonstrates adequate test-retest reliability 36, normal distribution of sum scores in the general population 50, and cross-cultural equivalence has been established in Dutch and Japanese samples 51-53. The AQ effectively categorizes individuals into low, average, and high degrees of autistic traits, demonstrating sensitivity for both group and individual assessments 54.

      However, evolving research underscores many aspects that are not fully captured by the self-administered questionnaire: for example, gender differences in ASD trait manifestation 55. Autistic females may exhibit more socially typical interests, often overlooked by professionals 56. Camouflaging behaviors, employed by autistic women to blend in, pose challenges for accurate diagnosis 57. Late diagnoses are attributed to a lack of awareness, gendered traits, and outdated assessment tools 58. Moving forward, complementing AQ evaluations in the general population with other questionnaires, such as those assessing camouflaging abilities 59, or motor skills in everyday situation (MOSES-test 60) becomes crucial for a comprehensive understanding of autistic traits.”

      Suggestions for improvement:

      - Figure 5 is really interesting. I think it should be highlighted a bit more, perhaps even with a model that uses the results of both tasks to predict AQ scores.

      We thank the reviewer for the suggestion. However, the sample size is relatively small for building a robust and generalizable model to predict AQ scores. Statistical models built on small datasets can be prone to overfitting, meaning that they might not accurately predict the AQ for new individuals.

      - Some discussion of the memory demands of the tasks will be helpful. The authors argue that memory is not a factor, but some support for this is needed. 

      The reviewer raises an important point regarding the potential for memory demands to influence our results. We have now also investigated the accuracy of the second saccade separately for the x and y dimension. As also shown in figure 3 panel A, a motor bias was observed only in one dimension (x), weaking the argument of memory which would imply a bias in both directions (participants remembering the position of the target relative to both screen borders for example). We performed a t-test between our subsample of participants and indeed we found a difference in saccade accuracy for the x dimension (p = 0.03) but not in the y dimension (p = 0.88).

      We now add these analyses in Discussion on page 8.

      - With 3 sessions for each experiment, the authors also have data to look at learning. Did people with high AQ get better over time, or did the observed errors/biases persist throughout the experiment? 

      We thank the reviewer for pointing this out. On page 7 (Results) we now write:

      ” Understanding how these biases might change over time could provide further insights into this mechanism. Specifically, we investigated whether participants exhibited any learning effects throughout the experiments. For data of Experiment 1 – motor updating – we divided our data into 10 separate bins of 30 trials each. We conducted a repeated measure ANOVA with the within-subject factor “number of sessions” (two main sessions of 5 bins each, ~150 trials) and the between-subject factor “group” (lower vs upper quartile of the AQ distribution). We found no main effect of “number of sessions” (F(1,7) = 0.25, p = 0.66), a main effect of “group” (F(1,7) = 2.52, p = 0.015), and no interaction between the two subsample of participants and the sessions tested (F(1,7) = 0.51, p = 0.49). Data of Experiment 2 – visual updating– were separated into 3 sessions. For each session we extracted the PSE and we conducted a repeated measure ANOVA with within subject factor “sessions” and between subject factor “groups” (lower vs upper quartile of the AQ distribution). Also here we found no main effect of sessions (F(1,13) = 0.86, p = 0.39), a main effect of group (F(1,14) = 11.85, p = 0.004), and no interaction between the two subsample of participants and the sessions tested (F(1,13) = 0.20, p = 0.73). In conclusion, the current study found no evidence of learning effects across the experimental sessions. However, a significant main effect of group was observed in both Experiment 1 (motor updating) and Experiment 2 (visual updating). Participants in the group with higher autistic traits performed systematically differently on the task, regardless of the number of sessions completed compared to those in the group with lower autistic traits.”

      Reviewer #2 (Public Review):

      Summary:

      The idea that various clinical conditions may be associated, at least partially, with a disrupted corollary discharge mechanism has been present for a long time.

      In this paper, the authors draw a link between sensory overload, a characteristic of autism spectrum disorder, and a disturbance in the corollary discharge mechanism. The authors substantiate their hypothesis with strong evidence from both the motor and perceptual domains. As a result, they broaden the clinical relevance of the corollary discharge mechanism to encompass autism spectrum disorder.

      The authors write:

      "Imagine a scenario in which you're watching a video of a fast-moving car on a bumpy road. As the car hits a pothole, your eyes naturally make quick, involuntary saccades to keep the car in your visual field. Without a functional efference copy system, your brain would have difficulty accurately determining the current position of your eye in space, which in turn affects its ability to anticipate where the car should appear after each eye movement."

      I appreciate the use of examples to clarify the concept of efference copy. However, I believe this example is more related to a gain-field mechanism, informing the system about the position of the eye with respect to the head, rather than an example of efference copy per se.

      Without an efference copy mechanism, the brain would have trouble accurately determining where the eyes will be in space after an eye movement, and it will have trouble predicting the sensory consequences of the eye movement. However it can be argued that the gain-field mechanism would be sufficient to inform the brain about the current position of the eyes with respect to the head. 

      We now used a different example. And on page 3 of Introduction, we now write:

      “During a tennis game, rapid oculomotor saccades are employed to track the high-velocity ball across the visual display. In the absence of a functional efference copy mechanism, the brain would encounter difficulty in anticipating the precise retinal location of the ball following each saccade. This could result in a transient period of visual disruption as the visual system adjusts to the new eye position. The efference copy, by predicting the forthcoming sensory consequences of the saccade, would bridge this gap and facilitate the maintenance of a continuous and accurate representation of the ball's trajectory.”

      The authors write:

      "In the double-step paradigm, two consecutive saccades are made to briefly displayed targets 21, 22. The first saccade occurs without visual references, relying on internal updating to determine the eye's position."

      Maybe I have missed something, but in the double-step paradigm the first saccade can occur without the help of visual references if no visual feedback is present, that is, when saccades are performed in total darkness. Was this the case for this experiment? I could not find details about room conditions in the methods. Please provide further details.

      In case saccades were not performed in total darkness, then the first saccade can be based on the remembered location of the first target presented, which can be derived from the retinotopic trace of the first stimuli, as well as the contribution from the surroundings, that is: the remembered relative location of the first target with respect to the screen border along the horizontal meridian (i.e. allocentric cues).

      A similar logic could be applied to the second saccade. If the second saccade were based only on the retinotopic trace, without updating, then it would go up and 45 deg to the right, based on the example shown in Figure 1. With appropriate updating, the second saccade would go straight up. However, if saccades were not performed in total darkness, then the location of the second target could also be derived from its relationship with the surroundings (for example, the remembered distance from screen borders, i.e. allocentric cues).

      If saccades were not performed in total darkness, the results shown in Figures 2 and 3 could then be related to i) differences in motor updating between AQ score groups; ii) differences in the use of allocentric cues between AQ score groups; iii) a combination of i) and ii). I believe this is a point worth mentioning in the discussion." 

      Thank you for raising the important issue of visual references in the double-step saccade task. Participants performed saccades in a dimly lit room where visual references, i.e. the screen borders, were barely visible. At the time we collected the data a laboratory that allowed performing experiments in complete darkness was not at our disposal. We acknowledge the possibility that participants could have memorized the target locations relative to the screen borders. The bias of high AQ participants could then be attributed to differences in either encoding, memorization or decoding of the target location relative to the screen borders. However, the potentially abnormal use of visual references must reflect an altered remapping process since we did not find differences in saccade landing in the vertical dimension. A t-test between our group of participants revealed a difference in saccade accuracy for the x dimension (p = 0.03) but not in the y dimension (p = 0.88). We thus agree that in addition to an altered efference copy signal in high AQ participants, altered use of visual references might also affect their saccadic remapping.

      In Discussion we now write: “Our findings suggest that a general memory deficit is unlikely to fully explain the observed bias in high-AQ participants' second saccades. As highlighted in Figure 3A, the bias was specific to the horizontal dimension, weakening the argument for a global memory issue affecting both vertical and horizontal encoding of target location. However, it's important to acknowledge that even under non-darkness conditions, participants might rely on a combination of internal updating based on the initial target location and visual cues from the environment, such as screen borders. This potential use of visual references could contribute to the observed bias in the high-AQ group. If high-AQ participants differed in their reliance on visual cues compared to the low-AQ group, it could explain the specific pattern of altered remapping observed in the horizontal dimension. This possibility aligns with our argument for an abnormal remapping process underlying the results. While altered efference copy signals remain a strong candidate, the potential influence of visual cues on remapping in this population warrants further investigation. Future studies could incorporate a darkness condition to isolate the effects of internal updating on the first saccade, and systematically manipulate the availability of visual cues throughout the task. This would allow for a more nuanced understanding of how internal updating and visual reference use interact in the double-step paradigm, particularly for individuals with varying AQ scores “.

      The authors write:

      According to theories of saccadic suppression, an efference copy is necessary to predict the occurrence of a saccade."

      I would also refer to alternative accounts, where saccadic suppression appears to arise as early as the retina, due to the interaction between the visual shift introduced by the eye movement, and the retinal signal associated with the probe used to measure saccadic suppression. This could potentially account for the scaling of saccadic suppression magnitude with saccade amplitude.

      Idrees, S., Baumann, M.P., Franke, F., Münch, T.A. and Hafed, Z.M., 2020. Perceptual saccadic suppression starts in the retina. Nature communications, 11(1), p.1977. 

      We thank the reviewer. Now on page 4 of Introduction we write:

      “Some theories consider saccadic omission and saccadic suppression as resulting from an active mechanism. In this view an efference copy would signal the occurrence of a saccade, yielding a transient decrease in visual sensitivity20-22. Others however have pointed out the possibility that a purely passive mechanism suffices to induce saccadic omission23. A recent study has found evidence for saccadic suppression already in the retina. Idrees et al.24 demonstrated that retinal ganglion cells in isolated retinae of mice and pigs respond to saccade-like displacements, leading to the suppression of responses to additional flashed visual stimuli through visually triggered retinal-circuit mechanisms. Importantly, their findings suggest that perisaccadic modulations of contrast sensitivity may have a purely visual origin, challenging the need for an efference copy in the early stages of saccadic suppression. However, the suppression they measured lasted much longer than time-courses observed in behavioral data. An efference copy signal could thus be necessary to release perception from suppression.”

      Reviewer #3 (Public Review): 

      Summary:

      This work examined efference copy related to eye movements in healthy adults who have high autistic traits. Efference copies allow the brain to make predictions about sensory outcomes of self-generated actions, and thus serve important roles in motor planning and maintaining visual stability. Consequently, disrupted efference copies have been posited as a potential mechanism underlying motor and sensory symptoms in psychopathology such as Autism Spectrum Disorder (ASD), but so far very few studies have directly investigated this theory. Therefore, this study makes an important contribution as an attempt to fill in this knowledge gap. The authors conducted two eye-tracking experiments examining the accuracy of motor planning and visual perception following a saccade and found that participants with high autistic traits exhibited worse task performance (i.e., less accurate second saccade and biased perception of object displacement), consistent with their hypothesis of less impact of efference copies on motor and visual updating. Moreover, the motor and visual biases are positively correlated, indicative of a common underlying mechanism. These findings are promising and can have important implications for clinical intervention if they can be replicated in a clinical sample.

      Strengths:

      The authors utilized well-established and rigorously designed experiments and sound analytic methods. This enables easy translations between similar work in non-human primates and humans and readily points to potential candidates for underlying neural circuits that could be further examined in follow-up studies (e.g., superior colliculus, frontal eye fields, mediodorsal thalamus). The finding of no association between initial saccade accuracy and level of autistic trait in both experiments also serves as an important control analysis and increases one's confidence in the conclusion that the observed differences in task performance were indeed due to disrupted efference copies, not confounding factors such as basic visual/motor deficits or issues with working memory. The strong correlation between the observed motor and visual biases further strengthens the claim that the findings from both experiments may be explained by the same underlying mechanism - disrupted efference copies. Lastly, the authors also presented a thoughtful and detailed mechanistic theory of how efference copy impairment may lead to ASD symptomatology, which can serve as a nice framework for more research into the role of efference copies in ASD.

      Weaknesses:

      Although the paper has a lot of strengths, the main weakness of the paper is that a direct link with ASD symptoms (i.e., sensory overload and motor inflexibility as the authors suggested) cannot be established. First of all, the participants are all healthy adults who do not meet the clinical criteria for an ASD diagnosis. Although they could be considered a part of the broader autism phenotype, the results cannot be easily generalized to the clinical population without further research. Secondly, the measure used to quantify the level of autistic traits, Autistic Quotient (AQ), does not actually capture any sensory or motor symptoms of ASD. Therefore, it is unknown whether those who scored high on AQ in this study experienced high, or even any, sensory or motor difficulties. In other words, more evidence is needed to demonstrate a direct link between disrupted efference copies and sensory/motor symptoms in ASD.

      This is a valid point, and we thank the reviewer for raising it up. Moving forward, complementing AQ evaluations in the general population with other questionnaires, such as those assessing camouflaging abilities (Hull, L., Mandy, W., Lai, MC., et al., 2019), or motor skills in everyday situation (MOSES-test, Hillus J, Moseley R, Roepke S, Mohr B. 2019 ) becomes crucial for a comprehensive understanding of autistic traits.”

      We now address this point in Discussion page 9.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Minor comments

      - The pothole example in the introduction was really hard to follow. I wonder if there is a better example. 

      We now used a different example. And on page 3 of Introduction, we now write:

      “During a tennis game, rapid oculomotor saccades are employed to track the high-velocity ball across the visual display. In the absence of a functional efference copy mechanism, the brain would encounter difficulty in anticipating the precise retinal location of the ball following each saccade. This could result in a transient period of visual disruption as the visual system adjusts to the new eye position. The efference copy, by predicting the forthcoming sensory consequences of the saccade, would bridge this gap and facilitate the maintenance of a continuous and accurate representation of the ball's trajectory.”

      - This is really minor; I would say that saccades are not the most frequent movement that humans perform. Some of the balance-related adjustments and even heartbeats are faster. Maybe just add "voluntary". 

      We thank the reviewer for the suggestion, now added.

      - "Severe consequences" on page 4 is a bit strong. If that were true, there would be pretty severe impairments in eye movement behavior in ASD, which I don't think is the case.

      We agree with the reviewer. We now eliminated the term “severe”.

      - The results section would read better if each experiment had a short paragraph reiterating its overall goal and the specific approach each experiment took to achieve that goal. 

      Now on page 5, for the first experiment, we write:

      ”We investigated the influence of autistic traits on visual updating during saccadic eye movements using a classic double-step saccade task. This task relies on participants making two consecutive saccades to briefly presented targets. The accuracy of the second saccade serves as an indirect measure of how effectively the participant's brain integrated the execution of the first saccade into their internal representation of visual space. Participants were divided into quartiles based on the severity of their autistic traits, as assessed by the Autistic quotient questionnaire (cite). We hypothesized that individuals with higher autistic traits would exhibit greater difficulty in visual updating compared to those with lower autistic traits. This would be reflected in reduced accuracy of their second saccades in the double-step task. Figure 2C illustrates examples from participants at the extremes of the autistic trait distribution (Autistic quotient = 3, in orange and Autistic quotient = 31, in magenta). As shown, both participants were instructed to make saccades to the locations indicated by two brief target appearances (T1 and T2), as quickly and accurately as possible, following the order of presentation. However, successful execution of the second saccade requires accurate internal compensation for the first saccade, without any visual references or feedback available during the saccade itself.”

      On page 6, for experiment 2, we write:

      ”With a trans-saccadic localization task, we explored how autistic traits affect the integration of eye movements into visual perception. Participants were presented with stimuli before and after a single saccade, creating an illusion of apparent motion. We measured the perceived direction of this displacement, which is influenced by how well the participant's brain accounts for the saccadic eye movement. We predicted that individuals with higher autistic traits would show a stronger bias in the perceived displacement direction, suggesting a less accurate integration of the eye movement into their visual perception.”

      - On page 6, the text about "vertical displacement" is confusing. The spatial displacements in this experiment were horizontal? 

      Yes, they were. The spatial displacement is horizontal, but the perceived trajectory (due to the saccade) is vertical. We now changed “vertical displacement” to “vertical trajectory”.

      - Page 6, grammatical problems in "while we report a slightly slant of the dots trajectory". 

      Thank you. Now fixed.

      - It would be helpful to discuss the apparent motion part of Experiment 2 in the main text. This important part is not made clear. 

      We now in Introduction, page 4, write:

      “In this paradigm, one stimulus is shown before and another after saccade execution. Together these two stimuli produce the perception of “apparent motion”. If stimuli are placed such that the apparent motion path is orthogonal to the saccade path, then the orientation of the apparent motion path indicates how the saccade vector is integrated into vision. The apparent motion trajectory can only appear vertical if the movement of the eyes is perfectly accounted for, that is the retinotopic displacement is largely compensated, ensuring spatial stability. However, small biases of motion direction – implying under- (or over-) compensation of the eye movement – can indicate relative failures in this stabilization process. In a seminal study, Szinte and Cavanagh 27 found a slight over-compensation of the saccade vector leading to apparent motion slightly tilted against the direction of the saccade. More importantly, when efference copies are not available, i.e. localization occurring at the time of a second saccade in a double step task, a strong saccade under-compensation occurs 28.

      This phenomenon cannot be explained by perisaccadic mislocalization of flashed visual stimuli 29,30, but the two phenomena may be related in that they may both depend upon efference copy information.”

      - Figure 1 could be improved. For example, the text talks about the motor plan, but this is not clearly shown in the figure.

      We now added the motor plan into the model. Thank you.

      - Figure 2A, the scale is off (the pictures make it look like the horizontal movement was longer than the vertical). 

      Now fixed.

      - Figure 4, it would be helpful if the task was also described in the figure. 

      We thank the reviewer for the comment. We now tried to modify the figure by also adding the perceptual judgment task.

      - Figure 5A, the y-axis shows p(correct), but that is not what the y-axis shows (the legend makes the same mistake). 

      We apologize, it’s the proportion of time participants reported the second dot to be more to the right compared to the first one. We now changed the figure and the text accordingly.

      - A recent study on motion and eye movement prediction in ASD is very relevant to the work presented here.: Park et al. (2021). Atypical visual motion-prediction abilities in autism spectrum disorder. Clinical Psychological Science, 9(5), 944-960.

      Indeed. We now refer to the cited study in Discussion, on page 9.

      Reviewer #2 (Recommendations For The Authors):

      Statistics and plotting.

      I believe some of the reported statistics are not clear. For example, the authors write:

      "Saccade landing positions of participants in the lower quartile (mean degree {plus minus} SEM: 10.17{plus minus} 0.50) did not deviate significantly from those in the upper quartile (mean degree {plus minus} SEM: 9.65 {plus minus} 0.77). This result was also confirmed by a paired sample t-test (t(7) = 0.66; p = 0.66, BF10 = 0.40)"

      Maybe I am missing something, but why use a paired-sample t-test when the upper and lower quartiles constitute different groups of participants? Shouldn't a two-sample t-test be used in this case?

      We apologize for the confusion. It is indeed a two-sample t-test.

      Along the same lines, I do not understand the link between the number of degrees of freedom reported in the t-test (7) and the number of participants reported in the study (41).

      This is also evident when looking at the scatterplot in Figure 3C. How many participants formed the averages and standard errors reported in Figures 3B and 3D? Please clarify.

      I have the same comment(s) also for the visual updating task (and related figures), where 13 degrees of freedom are reported in the t-tests. Please clarify. 

      We thank the reviewer for pointing this out. The number of participants reported in the scatter plots were indeed 42.  However, we opted to compare the averages only in the lower and upper quartile of the AQ distribution to avoid dealing with a median split (which would imply a skewed distribution). Of our sample of participants in Exp1, 8 fell into the lower quartile of the AQ distribution and 8 in the upper quartile (14 deg of freedom); from Exp 2, 8 participants fell in the lower and 7 in the upper (13 deg of freedom).

      We now fixed the values accordingly.

      Reviewer #3 (Recommendations For The Authors):

      (1) The language can be a bit misleading (especially the title and abstract) as it wasn't always clear that the participants don't actually have clinical ASD. I'd suggest avoiding using words like "symptom" as that would indicate clinical severity, and using words like "traits/characteristics" instead for more precise language. 

      We apologize for the misleading terminology used. Now fixed.

      (2) In the Intro: "...perfect compensation results in a vertical trajectory, while small biases indicate stabilization issues23-25." This is a bit confusing without knowing the details of the paradigm. Consider clarifying or at least referring to Figure 4. 

      Thank you.

      (3) In the Results: "This result was also confirmed by a paired sample t-test (t(7) = 0.66;..." This is confusing as a two-sample t-test is the appropriate test here. Also, the degree of freedom seems very low - could the authors clarify how many participants are in each subgroup (i.e., low vs. high AQ quartile), for both experiments? 

      Of our sample of participants in Exp1 8 fell into the lower quartile of the AQ distribution and 8 in the upper quartile (14 deg of freedom); from Exp 2, 8 participants fell in the lower and 7 in the upper (13 deg of freedom).

      (4) In the Methods: Experiment 2: "The first dot could appear randomly above or below gaze level at a fixed horizontal location, halfway between the two fixations (x = 0, y = -5{degree sign} or +5{degree sign} depending on the trial). The second dot was then shown orthogonal to the first one at a variable horizontal location (x = 5{degree sign} {plus minus} 2.5{degree sign})." This would mean that the position of the 2nd dot relative to the 1st one would be 2.5{degree sign}- 7.5{degree sign}, but the task description in Results and Figure 5A would suggest the horizontal location of the second dot is x = 0{degree sign} {plus minus} 2.5{degree sign}. Which one is correct? 

      The second option is the correct one. We now fixed the typo in the Methods part.

      (5) There is another study that examined oculomotor efference copies in children with ASD using a similar trans-saccadic perception task (Yao et al., 2021, Journal of Vision). In that study, they found a correlation between task performance and an ASD motor symptom (repetitive behavior). This seems quite relevant to the authors' hypothesis and discussion. 

      We thank the reviewer for the suggestion. We now added the mentioned paper in the discussion.

      (6) Please proofread the entire paper carefully as there were multiple grammatical and spelling errors.

      Thank you.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their time and the thoughtful reviews on our manuscript. The reviewers brought good points regarding the sample size, and the low exposure in the South Asian cohort owing to their unique cultural and social practices. We recognize these as limitations of the paper and discussed these in the revised version. In the revised manuscript, we have taken the key suggestions by reviewers to 1) better illustrate the analytical flow and statistical methods, in particular, to show which datasets had been used in discovery, validation, and testing of the score – as a main figure in the manuscript and in the graphical abstract; 2) demonstrate there is no possibility of overfitting in our approach using statistical metrics of performance; 3) emphasize the goal was not for discovery (e.g. our own EWAS was not used for deriving the score), but to compare with existing EWASs and contrast the results from the white European and SA populations; 4) and supplement the analysis with previously derived maternal smoking, smoking and air pollution methylation score and to explore additional health outcomes in relation to lung health in newborns. Finally, we would also like to take this opportunity to re-iterate that it was not our objective to derive the most powerful methylation score of smoking nor to demonstrate the causal role of maternal smoking on birth weight via DNAm. We have restructure the manuscript as well as the discussion to clarify this. Please find below a point-by-point response to the comments below.

      Reviewer #1:

      The manuscript could benefit from a more detailed description of methods, especially those used to derive MRS for maternal smoking, which appears to involve overfitting. In particular, the addition of a flow chart would be very helpful to guide the reader through the data and analyses. The FDR correction in the EWAS corresponds to a fairly liberal p-value threshold. 

      We thank the reviewer for these good suggestions. In the revised manuscript, we have provided a flow chart as the new Figure 1, more detailed description of the method (added a subsection “Statistical analysis” under Materials and Methods) as well as metrics including measures of fit indices such as AUC and adjusted R2 for each validation and testing dataset to illustrate there is no danger of overfitting (in new Supplementary Table 5).

      The choice of use FDR was indeed arbitrary as there has been no consensus on what significance threshold, if any, should be used in the context of EWAS. Here we simply followed the convention in previous studies to contrast the top associated signals for their effects between different populations and with reported effect sizes. Throughout the manuscript, we have removed the notion of significant associations and used the phrase “top associated signals” or “top associations” when discussion EWAS results for individual CpGs.

      Reviewer #2:

      (1) The number of mothers who self-reported any smoking was very low, much lower than in the general population and practically non-existent in the South Asian population. As a result, all analyses appeared to have been underpowered. It is possibly for this reason that the authors chose to generate their DNA methylation model using previously published summary statistics. The resulting score is not of great value in itself due to the low-powered dataset used to estimate covariance between CpG sites. In fact, a score was generated for a much larger, better-powered dataset several years ago (Reese, EHP, 2017, PMID 27323799). 

      We thank the reviewer for pointing out the low exposure in the South Asian population, which we believe is complementary to the literature on maternal smoking that almost exclusively focused on white Europeans. However, the score was validating in the white European cohort (CHILD; current smoking 3.1%), which was reasonably similar to the trend that maternal cigarettes smoking is on the decline from 2016 to 2021, from 7.2% to 4.6% (Martin, Osterman, & Driscoll, 2023). This is also consistent with the fact that CHILD participants were recruited from major metropolitans of Canada with relatively high SES and education as compared to FAMILY.

      We do agree with the reviewers that a higher prevalence of maternal smoking in the validating sample could potential improve the power of the score. Our original analytical pipeline focused on CHILD as the validation dataset; FAMILY (see the new Figure 1) was used as the testing data. We alternatively provided an analytical scheme using FAMILY as the validation dataset, as it had a higher proportion of current smokers, however, this is limited by the number of CpGs available (128 in FAMILY vs. 2,619 in CHILD out of the 2,620 CpGs from (Joubert et al., 2016)). The results of all possible combinations of validation vs. testing and restriction of targeted array vs. HM450 are summarized in the new new Supplementary Table 5 and Supplementary Figure 5.

      To clarify, our choice to construct DNAm score using published summary statistics was not an ad-hoc decision due to the observed low power from CHILD EWAS. We agree with the reviewer that our study was indeed underpowered and was not originally intended for EWAS discovery. Thus, we specifically proposed to adopt a multivariate strategy from the literature of polygenic risk scores. This approach enabled us to leverage well-powered association signals without individual-level access to data with a sample size of n > 5,000 (Joubert et al., 2016). In comparison, the Reese maternal smoking score (Reese et al., 2017) had a discovery sample size of only n = 1,057. Our score was not out-performed, in fact, the AUC in both FAMILY (external validating dataset; n=411) and CHILD (external testing dataset; n=352) and was larger than that based on the Reese score as tabulated below (part of the new Supplementary Table 5).

      Author response table 1.

      Further, regarding the comment on the covariance matrix. Indeed, lassosum via elastic-net and summary data requires a reference covariance matrix that is consistent between the discovery data and external validation data. In fact, for moderately sized correlation/covariance values (r2 > 0.1), a sample size of >100 is sufficiently powered to detect it being different from 0 and thus used for estimation. Similar to the linkage disequilibrium of genotype data, the CpGs also exhibit a block-wise correlation structure and thus the theoretical framework of lassosum extends naturally to MRS.

      In the revised manuscript, we included the Reese score, as well as a few additional scores to compare their predictiveness of smoking phenotypes in white European cohorts. We note that the applicability was limited in the FAMILY cohort that was profiled using a targeted array and only 7 out of 28 of the CpGs in the Reese score were available. As a result, though the Reese score had similar performance than our derived score in CHILD (0.94 vs. 0.95), its performance in FAMILY was compromised (0.72 vs. 0.89).

      (2) The conclusion that "even minimal smoking exposure in South Asian mothers who were not active smokers showed a DNAm signature of small body size and low birthweight in newborns" is not warranted because no analyses were performed to show that the association between DNA methylation and birth size/weight was driven by maternal smoking. 

      We thank the reviewer for this subtle point – it was not our intention to suggest there was a causal relationship between DNA methylation and birth size that was mediated by maternal smoking. We meant to suggest that the maternal smoking methylation score was consistently associated with negative outcomes in newborns of both white European and South Asian mothers despite no maternal smoking was present in South Asian mothers. It is possible that maternal smoking MRS was capturing a lot more than just smoking and second-hand smoking, such as other environmental exposures that also lead to oxidative stress. These together are associated with reduced birth size/weight.

      In the revised manuscript, we have modified the conclusion above to:

      “Notably, these results indicate a consistent association between the DNAm signature of maternal smoking and a small body size and low birthweight in newborns, in both white European mothers who exhibited some amount of smoking and in South Asian mothers who themselves were not active smokers.”

      (3) Although it was likely that some mothers were exposed to second-hand smoke and/or pollution, data on this was either non-existent or not included in this study. Including this would have allowed a more novel investigation of the effects of smoke exposure on the pregnancies of non-smoking mothers.

      We agree with this comment – second-hand smoking was captured by self-reported weekly smoking exposure by the mothers. We reported the association with smoking exposure and found that it was not consistently associated with our methylation scores across the cohorts (cohort specific association p-values of 5.4×10-5, 3.4×10-5, and 0.58, for CHILD, FAMILY, and START; original Table 3), possibly due to the low exposure in South Asian population (max weekly exposure was 42 hrs in contrast to 168 hrs in FAMILY and 98 hrs in CHILD). Meanwhile, air pollution data are currently not available. Here we additionally performed the association between maternal smoking and air pollution methylation score, using key CpGs from the largest air pollution EWAS to-date (Gondalia et al., 2021). However, there was no association between the air pollution score and any maternal smoking phenotypes (ps > 0.4).

      (4) One of the European cohorts and half of the South Asian cohort had DNA methylation measured on only 2500 CpG sites. This set of sites included only 125 sites previously linked to prenatal smoking. The resulting model of prenatal smoking was small (only 11 CpG sites). It is possible that a large model may have been more powerful.

      That is correct – also see our response to R2 comment #1. In our previous analysis, we validated two scores (one based on CpGs on the < 3,000 CpGs array and the other one for the full HM450K). The score with more CpGs indeed had slightly better performance. We included this as one of the limitations of the paper. Nevertheless, it does not impact the conclusion that the scores (based on a larger or smaller model) are transferrable to diverse populations and can be used to comparatively study the DNAm influence of maternal smoking in newborns.

      The following was added in the discussion:

      “First, the customized array with a limited number of CpGs (<3,000) was designed in 2016 and many large EWASs on smoking and maternal smoking conducted more recently had not been included.”

      (5) The health outcomes investigated are potentially interesting but there are other possibly more important outcomes of interest such as birth complications, asthma, and intellectual impairment which are known to be associated with prenatal smoking.

      We thank the reviewer for bring up this point. One of the key health outcomes in the CHILD study was asthma, and data at later time points are available. However, we do not have similar outcomes collected in the other two studies (FAMILY and START), which focused on cardiometabolic health in young children. Thus, we did not initially include outcomes that were not available across all cohorts as the intention was to contrast the effects between populations.

      We recognize that this is an important question and decided to provide the association results for asthma and allergy at available time points in CHILD, FAMILY, and START. We also included mode of delivery via emergency C-section as an additional proxy outcome of birth complications. However, none of these were marginally (p < 0.05) associated with the DNAm smoking score. These are now included in the updated Supplementary Table 8.

      Reviewer #1 (Recommendations For The Authors):

      (1) The number of samples in the South Asian birth cohort given in the abstract (n = 887) does not match the sample size of the START cohort from the results section (results, page 7, line 139, n = 880). It is also different from the final analytical dataset size from the methods section (page 17, line 386, n = 890). Please clarify. 

      We thank the reviewer for pointing this out. In the abstract, it was the final sample sized used for EWAS (no missingness in smoking history). The 880 in result was a typo for 890, which contains three individuals with missing smoking data. These have been updated with the correct sample size for START cohort that had full epigenome-wide methylation data (n = 504, and 503 with non-missing smoking history).

      (2) Page 3, line 54: "consistent signal from the GFI1 gene (ps < 5×10-5)". Is ps a typo? If not then it might be clearer to state how many sites this included. 

      No, these summarized the six CpG sites in the GFI1 gene as outlined in Table 2. We have clarified in the abstract to show the number of CpG sites included.

      (3) Please report effect sizes together with information about the statistical significance (p values). 

      We have updated the manuscript with (standardized) effect sizes whenever possible along with p-values.

      (4) Page 4, line 80. This paragraph could be improved by adding a sentence explaining DNA methylation. 

      We thank the reviewer for this suggestion. A sentence was included to introduce DNAm at the beginning of the second paragraph:

      “DNA methylation is one of the most commonly studied epigenetic mechanisms by which cells regulate gene expression, and is increasingly recognized for its potential as a biomarker (13).”

      (5) Page 4, line 84. Sentence difficult to understand, please rephrase: "Our recent systematic review of 17 cord blood epigenome-wide association studies (EWAS) demonstrated that out of the 290 CpG sites reported, 19 sites were identified in more than one study; all of them associated with maternal smoking". 

      We have revised to clarify the review was on cord blood EWAS with five outcomes: maternal diabetes, pre-pregnancy body mass index, diet during pregnancy, smoking, and gestational age.

      “Our recent systematic review of 17 cord blood epigenome-wide association studies (EWAS) found that out of the 290 CpG sites reported to be associated with at least one of the following: maternal diabetes, pre-pregnancy body mass index (BMI), diet during pregnancy, smoking, and gestational age, 19 sites were identified in more than one study and all of them associated with maternal smoking.”

      (6) Page 5, line 93. The second part of the sentence is not necessary: "The majority of cohort studies have focused on participants of European ancestry, but few were designed to assess the influence of maternal exposures on DNA methylation changes in non-Europeans". 

      We have revised accordingly to:

      “Only a handful of cohort studies were designed to assess the influence of maternal exposures on DNA methylation changes in non-Europeans.”

      (7) Page 5, line 95. "It has been suggested that ancestral background could influence both systematic patterns of methylation (27), such as cell composition and smoking behaviours (28)". The sentence is slightly unclear. Could it be rephrased to say that cell composition differences may be present by ancestry, which can lead to differential DNAm patterns? 

      We have revised accordingly to:

      “It has been suggested that systematic patterns of methylation (Elliott et al., 2022), such as cell composition, could differ between individuals of different ancestral backgrounds, which could in turn confound the association between differential DNAm and smoking behaviours (Choquet et al., 2021).”

      (8) Page 5, line 108. How does reducing the number of predictors lead to more interpretable effect sizes? 

      This was meant as a general comment in the context of variable selection, whereby the fewer predictors there are, the effect size of each predictor becomes more interpretable. However, we recognize this comment might be irrelevant to the specific approaches we adopted. We have revised it to motivate methylation score as a powerful instrument for analysis:

      “Reducing the number of predictors and measurement noise in the data can lead to better statistical power and a more parsimonious instrument for subsequent analyses.”

      (9) Page 5, line 112. Health consequences seem a bit strong, given that the analysis describes correlations/associations. 

      We have revised it to “association with”:

      “In this paper, we investigated the epigenetic signature of maternal smoking on cord blood DNA methylation in newborns, as well as its influence on newborn and later life outcomes in one South Asian which refers to people who originate from the Indian subcontinent, and two predominantly European-origin birth cohorts.”

      Results

      (10) It would be very helpful to have a flow diagram to detail all of your analyses.

      We thank the reviewer for this suggestion. In the revised manuscript, we have provided a flow chart as the new Figure 1, updated the summary of analysis in . Table 3, and added a new Supplementary Table 5 for the DNAm score derivation, as well as more detailed description of the statistical analysis in the Materials and Methods under the subsection “Statistical analysis”.

      (11) Page 7, line 138. Please add a reference to the CHILD study. 

      We have added a reference of the CHILD study.

      (12) Tables in results and in supplemental data a) contain a mixture of fields describing the newborn and its mother (this is not true for Supplementary Table 2), b) lack column descriptions, c) lack descriptions of abbreviations and formatting used in tables, d) use different font types, e) lack descriptions of statistical tests that were used to obtain p-values, f) use inconsistent rounding. Please correct and add the missing information.

      We have consolidated the notation and nomenclature in all Tables and text. All numerical results are now rounded to 2 decimal places. The tests used were included in the Table headers as well as described in the Materials and Methods:

      “For continuous phenotypes, an analysis of variance (ANOVA) using the F-statistics or a two-sample t-test was used to compare the mean difference across the three cohorts or two groups, respectively. For categorical phenotypes, a chi-square test of independence was used to compare the difference in frequencies of observed categories. Note that three of the categories under smoking history in the START cohort had expected cell counts less than 5, and was thus excluded from the comparison, the reported p-value was for CHILD and FAMILY.”

      (13) Table 1. Sample sizes given in column descriptions do not add up to 1,650 (legend text).

      We thank the reviewer for pointing this out. The updated sample size is 1,267, based on the 352 CHILD samples, 411 FAMILY samples, and 352 START samples. Notice that we did not remove those without full smoking history data as Table 1 was intended for the epigenetic subsamples.

      (14) Page 7, line 156. Supplementary Tables are incorrectly numbered. In the text, Supplementary Table 4 comes after Supplementary Table 2.

      We thank the reviewer for catching this and have corrected the ordering of the Supplementary Tables and Figures. 

      (15) Page 7, line 158. "cell compositions" - do you mean estimated white cell proportions? 

      We have revised it to “estimated cord blood cell proportions” in the text throughout.

      (16) Smoking EWAS - do you see any overlap/directional consistency with the top findings from adult EWASs of smoking such as AHRR? 

      We annotated the top EWAS signals from the literature in the meta-analysis (new Figure 2; Supplementary Figures 1 and 3), but was only able to confirm associations in the GFI1 gene. The AHRR signals were also annotated, but below the FDR correction threshold as seen in new Figure 2 at the start of chromosome 5. We further added a new Supplementary Figure 3 to show the directional consistency with top findings (2,620 CpGs reported and 128 CpGs overlapped with our meta-analysis) from Joubert et al., 2016. The Pearson’s correlation coefficient with meta-analyzed effect for maternal smoking was 0.72 and for smoking exposure was 0.60.

      We added the following to Results:

      “Further, we observed consistency in the direction of association for the 128 CpGs that overlapped between our meta-analysis and the 2,620 CpGs with evidence of association for maternal smoking (19) (Supplementary Figure 3). Specifically, the Pearson’s correlation coefficient for maternal smoking and weekly smoking exposure was 0.72 and 0.60, respectively.”

      (17) Page 8, line 169. "also coincided with the GFI1 gene" this is a bit imprecise. Please report the correlation with the CpG from the maternal smoking analysis. 

      The CpG was inside the GFI1 gene, we have included the Pearson’s correlation with the top hit in the text below:

      “There were no CpGs associated with the ever-smoker status at an FDR of 0.05, though the top signal (cg09935388) was also mapped to the GFI1 gene (Pearson’s r2 correlation with cg12876356 = 0.75 and 0.68 in CHILD and FAMILY, respectively; Supplementary Figure 1).”

      (18) Page 8, line 171. Typo "ccg": "ccg01798813". 

      It has been corrected to “cpg01798813”.

      (19) Page 8, line 176. Please be clear about the phenotype used in these analyses. 

      The EWAS of weekly smoking exposure in START was removed in this version of the manuscript, in reflection of the results and the reviewer’s comments, as a result of this phenotyping being skewed and possibly leading to only spurious results (also see response to comment #20).

      We have clarified the phenotypes for these results under “Epigenetic Association of Maternal Smoking in White Europeans” below:

      “The maternal smoking and smoking exposure EWASs in CHILD did not yield any CpGs after FDR correction (Supplementary Figure 3).”

      (20) What was the genomic inflation for the EWASs? 474 loci in the South Asian EWAS seems like a lot of findings. Perhaps a more robust method (e.g., OSCA MOMENT) might help to control the false positive rate. 

      The genomic inflation factor was moderately across the cohorts for smoking exposure: 1.02 in CHILD, 0.94 in FAMILY, and 1.00 in START. However, there was more inflation in the tail of the distribution in START than the European cohorts. The empirical type I error rates at 0.01, 0.001, 0.00001, were high in START (x1.7, x5.7, and x165 times at each respective threshold), in contrast to CHILD (x1.06, x1.05, and x0.6) or FAMILY (x1.6, x1.9, and 0). The smoking exposure EWAS based on START was thus removed as these are likely false positives and there was very low smoking exposure to start with (11 reported weekly exposure between 2–42 hrs/week out of 462 with non-missing data). We have added the QQ-plots as well as the genomic inflation factor for the reported meta-analysis in the new Supplementary Figure 2. The following was added to the Results:

      “There was no noticeable inflation of empirical type I error in the association p-values from the meta-analysis, with the median of the observed association test statistic roughly equal to the expected median (Supplementary Figure 2).”

      (21) What is the targeted array? I don't think it has been introduced prior to this point. 

      We introduced it in the Materials and Methods under subsection “Methylation data processing and quality controls”. Considering this comment and previous comments on the ordering of Tables and Figures, we have decided to place Materials and Methods after Introduction and before Results.

      (22) The MRS section is described poorly in the results section. It is not clear where the 11 or 114 CpGs come from.

      We now include an analytical summary of all scores (derived or external from literature) in the new Supplementary Table 5. Further, we updated the description of scores in Materials and Methods under the subsection “Using DNA Methylation to Construct Predictive Models for Maternal Smoking” to clarify the source and types of MRSs derived:

      “To evaluate whether the targeted GMEL-EPIC array design has comparable performance as the epigenome-wide array to evaluate the epigenetic signature of maternal smoking, a total of three MRSs were constructed, two using the 128 CpGs available in all cohorts – across the HM450K and targeted GMEL-EPIC arrays – and with either CHILD (n = 347 with non-missing smoking history) or FAMILY (n = 397) as the validation cohort, and another using 2,107 CpGs that were only available in CHILD and START samples with CHILD as the validation cohort. Henceforth, we referred to these derived maternal smoking scores as the FAMILY targeted MRS, CHILD targeted MRS, and the HM450K MRS, respectively.”

      (23) Page 9, line 187. "There was no statistically significant difference between the two scores in all samples (p = 1.00) or among non-smokers (p = 0.24).". How was the significance assessed? Please describe the models (outcome, covariates, model type) used for comparing the two models. It would also be good to report the correlation between the scores.

      We have added a subsection “Statistical analysis” under Materials and Methods that described the tests. The correlation between scores is now summarized as a heatmap across all cohorts in the new Supplementary Figure 6.

      “For each cohort, we contrasted the three versions of the derived scores using an analysis of variance analysis (ANOVA) along with pairwise comparisons using a two-sample t-test to examine how much information might be lost due to the exclusion of more than 10-fold CpGs at the validation stage. We also examined the correlation structure between all derived and external MRSs using a heatmap summarizing their pairwise Pearson’s correlation coefficient.”

      (24) Please include the number of samples in the training/validation and in the test set in the methods and in the results.

      We thank the reviewer for this suggestion. In the revised manuscript, we have provided a flow chart as the new Figure 1 and more detailed description of the method in the Materials and Methods. Please also see response to comment #22. The training sample size is based on Joubert et al., (2016), which is 5,647. For our main analyses, the validation sample with non-missing phenotypes remained the CHILD cohort (n=347), while the FAMILY (n=397) and START (n=503) samples were the independent testing data. We alternatively provided another scenario, in which the FAMILY sample was the validation cohort, while CHILD and START were the testing cohorts. The exact sample size and performance metrics for each scenario and score are clearly summarized in the new Supplementary Table 5.

      (25) Table 3. Please clarify the type of information contained in the four last columns (p-value?).

      Yes – these are the individual cohort p-values. We have taken the suggestion from comment #12 to fully describe all columns and fields.

      (26) Page 10, line 215: "The meta-analysis revealed no heterogeneity in the direction nor the effect size of associations between populations". Please quote/refer to the results. 

      In the revision, the heterogeneity p-values were quoted and the relevant tables (Supplementary Table 8) were added to this sentence.

      (27) Figure 2 has issues with x labels. Due to the low number of ever smokers in START, the boxplot may not be the best visualisation method. It would also benefit from listing n's per group.

      We appreciate this comment to improve the figure presentation. We increased the font size for the X-labels. The sample size for each group in START was also labeled in the new Figure 3 (previously Figure 2).

      Discussion

      (28) Studying the association between maternal smoking and cord blood DNAm is interesting from a biological perspective as it allows for assessing the immediate and long-term effects of maternal smoking on newborn health. However, in terms of calculating the MRS, what are the benefits of using cord blood over the mother's blood? We know that blood-based DNAm smoking score is a powerful predictor of long-term smoking status. 

      The reviewer raises an interesting point – abundant literature supports that DNAm changes are tissue-specific. While mother’s blood DNAm smoking score reflect the long-term exposure to smoking in mothers, the cord blood DNAm captures the consequence of such long-term exposure for newborn health. One of the key results of our study is showing that established DNAm signatures of maternal smoking, which is known to mediate birth size and weight in white Europeans (these references were cited in the original manuscript), carries the same effect of reducing birth weight and size in the South Asian population. This is a critical finding from a DoHaD and public health perspective, as DNAm signatures of maternal smoking, irrespective of the smoking status of the mother, can influence the health trajectory of the newborns.

      We have expanded our discussion based on this suggestion to highlight the unique features of studying maternal smoking via different tissues and their implications. The following was added to the discussion:

      “There are several advantages of using a cord blood based biomarker from the DoHaD perspective. Firstly, cord blood provides a direct reflection of the in utero environment and fetal exposure to maternal smoking. Additionally, since cord blood is collected at birth, it eliminates potential confounding factors such as postnatal exposures that may affect maternal blood samples. Furthermore, studying cord blood DNAm allows for the assessment of epigenetic changes specifically relevant to the newborn, offering valuable information on the potential long-term health implications.”

      (29) Page 13, line 285: "Fourth" without "third".

      It has been revised accordingly.

      Methods 

      (30) The methods section does not contain all the details required to replicate the analysis. Whenever statistical analysis is conducted, this section should clearly describe the type of the analysis (linear regression, t-test, etc.) and name the dependent and independent variables. Sample sizes should also be given. 

      We added further details of test used and sample size for each analysis. We have also included a new “Statistical analysis” subsection under Materials and Methods.

      (31) Please describe MRS testing in the methods.

      We tested MRS with respect to binary and continuous smoking phenotypes using a logistic and linear regression, respectively. The predictive value was assessed using area under the roc curve for the binary outcome and an adjusted R2 for the continuous outcome. These were added to the new “Statistical analysis” subsection under Materials and Methods. See response to comments #22-24, and #30.

      (32) Please describe the methods used to compare the two versions of MRS for maternal

      smoking.

      It was a two-sample t-test, which was described in the Figure legends. We have now added this to the new “Statistical analysis” subsection under Materials and Methods.

      (33) Please describe testing the associations between MRS and Offspring Anthropometrics in more detail.

      We added further details on the regression model and the test for association in the methods. We have now added this to the new “Statistical analysis” subsection under Materials and Methods.

      (34) Meta analysing the 450k and GMEL arrays is going to substantially reduce the number of CpGs under investigation.

      We agree with the reviewer that this is not optimal for signal discovery. However, this is the only way we could synthesize evidence across the cohorts as FAMILY samples were only processed using the customized array. We added the following as a limitation of the study in the discussion.

      “First, the customized array with a limited number of CpGs (<3,000) was designed in 2016 and many large EWASs on smoking and maternal smoking conducted more recently had not been included.”

      (35) Page 16, line 364: GDM abbreviation was used in the results section (line 145), yet it is introduced in line 364. 

      Thank you for catching this, we have removed the duplicate.

      (36) Page 17, line 381: Given the stated importance of ancestry, why not restrict the sample to genetically confirmed groups?

      The reviewer has a valid point that ancestry, either perceived or genetic, can introduce additional heterogeneity due to potential differences in genetics, cultural and social practices, and lifestyles. Genetic data are indeed available for a subset of the individuals. In the original version of the manuscript, we used a stringent ancestry calling method by mapping all individuals with the 1000 Genomes samples from continental populations. The final definition was based on a combination of self-reported and genetically confirmed ancestry. However, if we restricted only to genetically confirmed groups, the sample size would be reduced to 312 (vs. 411), 268 (vs. 352), and 488 (vs. 504) in FAMILY, CHILD, and START, respectively.

      We compared the mean difference in the beta-values of the top associated CpGs and the derived MRS between those genetically confirmed vs. self-reported ancestral groups, and observed no material difference. These results are now included in the Supplementary Materials as part of the sensitivity analysis. Thus, given these considerations, we decided to use this complementary approach to retain the maximum number of samples while ensuring some aspect of ancestral homogeneity.

      “To maximize sample size in FAMILY and CHILD, we retained either self-identified or genetically confirmed Europeans based on available genetic data (Supplementary Table 1).”

      (37) Page 18, line 397: sensitivity analysis not sensitive analysis.

      Thank you for catching this, we have revised accordingly.

      (38) Page 18, line 409: smoking was rank transformed however, it would be good to see regression diagnostics for the lead loci in the EWAS to check that assumptions were met. 

      We thank the reviewer for this suggestion. Smoking exposure is indeed skewed and in fact very much zero-inflated across the cohorts. The raw phenotype violated several model assumptions in terms of variance heteroskedasticity, outlying values (influential points), and linearity. The diagnostics suggested improved deviation from model assumption, yet some aspects of the violation remained at a lesser degree. We included a comparison of results before and after transformation and model diagnostics for the lead CpG using CHILD and FAMILY data in the Supplementary Materials. The following was added to the results:

      “As a sensitivity analysis, we repeated the analysis for the continuous smoking exposure under rank transformation vs. raw phenotype for the associated CpG in GFI1 and examined the regression diagnostics (Supplementary Material), and found that the model under rank-transformation deviated less from assumptions.”

      (39) Page 19, line 418: FDR seems quite a lenient threshold, especially when genome-wide significance thresholds exist. I would be inclined to view the EWAS findings as null.

      The choice of use FDR to was indeed arbitrary as there has been no consensus on what significance threshold, if any, should be used in the context of EWAS. The significance threshold for GWAS (Pe’er et al., 2008) probably does not apply directly to EWAS as the number of effective tests will likely differ between genome-wide genetic variants and CpGs. The Bonferroni corrected p-value threshold in this context would be 0.05/200,050=2.5´10-7, which is still less stringent than the GWAS significance threshold. We originally decided to follow the convention of previous studies and use FDR to filter out a subset of plausible associations to contrast the top association signals for their effects between different populations and with reported effect sizes.

      We have revised the manuscript throughout by removing the notion of significant associations, and instead used the phrase “top associated signals” or “top associations” when discussion EWAS results for individual CpGs. The following was added to Materials and Methods to clarify the choice of our threshold:

      “For each EWAS or meta-analysis, the false discovery rate (FDR) adjustment was used to control multiple testing and we considered CpGs that passed an FDR-adjusted p-value < 0.05 to be relevant for maternal smoking.”

      (40) I do not understand Supplementary Figure 6 - how have the data been standardised? Why not plot the CpGs on the beta-value scale?

      The standardized values were plotted as the reported p-values for the mean and variance equality tests (i.e. ANOVA F-test, Levene’s test, Anderson-Darling test) were based on these transformed values to reduce inflation due to non-normality. We have since removed this comparison and kept only the comparison of the overall score as the number of CpGs in the HM450k score (143 CpGs) for comparison is too high to be visually interpretable.

      (41) It is my understanding, that the MRS for maternal smoking was constructed using external weights projected and regularised using elastic net (effectively trained) in CHILD cohort. The results section discusses associations between maternal smoking history and outcomes in CHILD, FAMILY, and START. Training and testing the score in the same sample (cohort) may result in overfitting and therefore should not be implemented.

      The original MRS was constructed using external weights from an independent discovery sample (Joubert et al., 2016; n > 5,000) and the LASSO validation was done in CHILD (n = 352), external testing was in FAMILY and START. This was the lassosum framework whereby we leverage larger sample size from external studies to select more plausible CpGs as candidates to include in the model. Thus, training, validation, and testing were not done in the same samples. We have included a Figure 1 to illustrate the updated analytical flow and a graphical abstract to summarize the methods.

      (42) Is it a concern that the findings don't seem to replicate Joubert's results, which came from a much larger study?

      Replication is usually done in samples much larger than the discovery samples, thus it is not a concern that we were unable to confirm all signals from Joubert et al., (2016). However, 6/7 of the top associations (FDR adjusted p-value < 0.05) in the meta-analysis were declared as significant in Joubert et al. (2016). In addition, the fact that using Joubert’s summary statistics, we were able to derive MRSs that were strongly associated with both smoking history and weekly exposure suggests shared signals. Also see response to  R1 comment #16 for a comparison of effect consistency.

      (43) Please check that all analysis scripts have been uploaded to Github and that the EWAS results are publicly available.

      We thank the reviewer for this suggestion. All updated scripts and EWAS results are available on Github. We are working to have the results also submitted to EWAS catalog.

      Reviewer #2 (Recommendations For The Authors):

      The impact of this study is reduced due to previous findings:

      (1) Previous studies have already shown that DNA methylation may mediate the effect of maternal smoking on birth size/weight (see e.g.https://doi.org/10.1098/rstb.2018.0120https://doi.org/10.1093/ije/dyv048).

      We thank the reviewer for this point and would like to take the opportunity to clarify that it was not our objective to examine whether there was a causal relationship, between DNA methylation and birth size that was mediated by maternal smoking. One of the key messages of our study is to evaluate whether epigenetic associations – at individual CpGs and aggregated as a score – are consistent between white European and South Asian populations. One way to examine this is through using established DNAm signatures of maternal smoking, which is known to mediate birth size and weight in white Europeans (these references were cited in the original manuscript), and confirm whether they also carry the same effect on birth outcomes in the South Asian population.

      Indeed, our results support that maternal smoking methylation score was consistently associated with negative outcomes in newborns of both white European and South Asian mothers despite no maternal smoking was present in South Asian mothers. These collective point to the possibility that the maternal smoking MRS was capturing a lot more than just smoking and second-hand smoking, but potentially other environmental exposures that also lead to oxidative stress. These together are associated with health consequences, including reduced birth size/weight. One of the candidates for such exposure is air pollution as some of the maternal smoking CpGs were previously linked to air pollution. However, we were unable to assess this hypothesis directly without the air pollution data, and the air pollution methylation score was not associated with smoking history (Supplementary Figure 5) nor smoking exposure (p > 0.4 in CHILD, FAMILY and START).

      The following was added to Materials and Methods under the subsection Using DNA Methylation to Construct Predictive Models for Maternal Smoking:

      “To benchmark and compare with existing maternal smoking MRSs, we calculated the Reese score using 28 CpGs (48,49),  Richmond score using 568 CpGs (49), Rauschert score using 204 CpGs (50), Joubert score using all 2,620 CpGs with evidence of association for maternal smoking (19), and finally a three-CpG score for air pollution (51). The details of these scores and score weight can be found in Supplementary Table 4.”

      The following was added to Results

      “Both produced methylation scores that were significantly associated with maternal smoking history (ANOVA F-test p-values =1.0×10-6 and 2.4×10-14 in CHILD and  6.9×10-16 and <2.2×10-16 in FAMILY), and the best among alternative scores for CHILD and FAMILY (Supplementary Table 5). With the exception of the air pollution MRS, all remaining scores were marginally associated with smoking history in both CHILD and FAMILY (Supplementary Figure 5).”

      (2) Due to the small study size and low levels of prenatal smoke exposure, the model derived here is of little value and is, in fact, superseded by a previously published model (PMID: 27323799). At the very least, the model should be evaluated here. A novel aspect of this study is the inclusion of a South Asian cohort. Unfortunately, smoke exposure is practically non-existent, so it is unclear how it can be used. The more interesting finding in this study is the possibility that environmental factors such as second-hand smoke or pollution may have similar effects on pregnancies as maternal smoking. Are these available? If so, they could be evaluated for associations with DNA methylation. This would be novel. 

      In the revised manuscript, we included the Reese score (Reese et al., 2017) and a few other maternal smoking scores for comparison. In the CHILD cohort, the performance was comparable to our derived score (AUC of 0.95 vs. 0.94 for Reese score), but its applicability was limited since the FAMILY dataset was profiled using a targeted array and only 7 out of 28 of the CpGs in the Reese score were available (AUC of 0.89 vs. 0.72 for Reese). As compared to the remaining scores from literature (see the new Supplementary Table 5 for complete results), Reese’s score has generally favorable performance.

      We did examine second-hand smoking in the original manuscript, showing a significant association with weekly maternal smoking exposure (original Table 3 and Supplementary Table 8). However, air pollution data is not available for assessment.

      (3) The other novel aspect is the evaluation of associations with outcomes later in life. Height and weight are interesting but impact could be gained by including other relevant outcomes such as birth complications, asthma, and intellectual impairment which are known to be associated with prenatal smoking. 

      We thank the reviewer for bring up this point. One of the key health outcomes in the CHILD study was asthma, and data at later time points are available. However, we do not have similar outcomes collected in the other two studies (FAMILY and START), which focused on cardiometabolic health in young children. Thus, we did not initially include outcomes that were not available across all cohorts as the intention was to contrast the effects between populations.

      We recognize that this is an important question and decided to provide the association results for mother reported asthma and allergy, but based on different definitions as these outcomes cannot be harmonized across the cohorts. We also included mode of delivery via emergency C-section as an additional proxy outcome of birth complication.

      The following was added to Materials and Methods:

      “Mode of delivery (emergency c-section vs. other) was collected at the time of delivery.”

      “Additional phenotypes included smoking exposures (hours per week) at home, potential allergy based on mother reporting any of: eczema, hay fever, wheeze, asthma, food allergy (egg, cow milk, soy, other) for her child in FAMILY and START, and asthma based on mother’s opinion in CHILD (“In your opinion, does the child have any of the following? Asthma”).”

      The following was added to Results:

      “The maternal smoking MRS was consistently associated with increasing weekly smoking exposure in children reported by mothers at the 1-year (0.51±0.15, FDR adjusted p= 0.0052) , 3-year (0.53±0.16, FDR adjusted p= 0.0052), and 5-year (0.40±0.15, FDR adjusted p= 0.021) visits with similar effects.”

      “We did not find any association with self-reported allergy or asthma in children at later visits (Supplementary Table 8). Further, there was no evidence of association between the MRS and any maternal outcomes (Supplementary Table 8).”

      REFERENCES:

      Gondalia, R., Baldassari, A., Holliday, K. M., Justice, A. E., Stewart, J. D., Liao, D., . . . Whitsel, E. A. (2021). Epigenetically mediated electrocardiographic manifestations of sub-chronic exposures to ambient particulate matter air pollution in the Women's Health Initiative and Atherosclerosis Risk in Communities Study. Environ Res, 198, 111211. doi:10.1016/j.envres.2021.111211

      Joubert, B. R., Felix, J. F., Yousefi, P., Bakulski, K. M., Just, A. C., Breton, C., . . . London, S. J. (2016). DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. Am J Hum Genet, 98(4), 680-696. doi:10.1016/j.ajhg.2016.02.019

      Martin, J. A., Osterman, M. J. K., & Driscoll, A. K. (2023). Declines in Cigarette Smoking During Pregnancy in the United States, 2016-2021. NCHS Data Brief(458), 1-8. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/36723453

      Reese, S. E., Zhao, S., Wu, M. C., Joubert, B. R., Parr, C. L., Haberg, S. E., . . . London, S. J. (2017). DNA Methylation Score as a Biomarker in Newborns for Sustained Maternal Smoking during Pregnancy. Environ Health Perspect, 125(4), 760-766. doi:10.1289/EHP333

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this study, Hoops et al. showed that Netrin-1 and UNC5c can guide dopaminergic innervation from nucleus accumbens to cortex during adolescence in rodent models. 

      We showed this with respect to Netrin-1 only. With respect to UNC5c, we showed that the timing of its expression suggests that it may be involved, but did not conduct the UNC5cmanipulation experiments necessary to prove it. We state this clearly in the manuscript.

      They found that these dopamine axons project to the prefrontal cortex in a Netrin-1 dependent manner and knocking down Netrin-1 disrupted motor and learning behaviors in mice. 

      We would like to clarify that we did not show that learning or motor behaviors are affected. We showed that inhibitory control, measured in the Go/No-Go task, is altered in adulthood.

      Furthermore, the authors used hamsters, a seasonal model that is affected by the length of daylight, to demonstrate that the guidance of dopamine axons is mediated by the environmental factor such as daytime length and in sex dependent manner. 

      We agree with this characterization of our hamster experiments, but want to emphasize that it is the timing of the adolescent dopamine axon input to the prefrontal cortex what is impacted by daytime length in a sex dependent manner.

      Regarding the cell type specificity of Netrin-1 expression, the authors began by stating "this question is not the focus of the study and we consider it irrelevant to the main issue we are addressing, which is where in the forebrain regions we examined Netrin-1+ cells are present." This statement contradicts the exact issue regarding the specificity issue I raised.

      We are not sure why the identities of the cell types expressing Netrin-1 are at issue. As a secreted protein, Netrin-1 can be attached to the extracellular cell surface or in the extracellular matrix, where it interacts with its receptors, which are embedded in the cell surfaces of growing axons (Finci et al., 2015; Rajasekharan & Kennedy, 2009). Netrin-1 is expressed by a wide variety of cell types, for example it is expressed in medium spiny neurons in the striatum of rodents as well as in cholinergic neurons (Shatzmiller et al., 2008). However, we cannot see why showing exactly what type(s) of cells have Netrin-1 on their surfaces, or have secreted them into the matrix, would be at issue for our study.

      They then went on to show the RNAscope data for Netrin-1 in Figure 2, which showed Netrin-1 mRNA was actually expressed quite ubiquitously in anterior cingulate cortex, dorsopeduncular cortex, infralimbic cortex, prelimbic cortex, etc. 

      Figure 2 - this is referring to Author response image 2 of our first response to reviewers.

      We agree that Netrin-1 mRNA is present throughout the forebrain. In particular, its presence in the regions mentioned by Reviewer #1 is a key component of our theory for how dopamine axons grow to the prefrontal cortex in adolescence.

      In addition, contrary to the authors' statement that Netrin-1 is a "secreted protein", the confocal images in Figure 1 in the rebuttal letter actually show Netrin-1 present in "granule-like" organelles inside the cytoplasm of neurons. 

      The rebuttal letter’s Figure 1 is not sufficient to determine the subcellular location of the Netrin-1, however we agree that it is likely that Netrin-1 is present in the cytoplasm of neurons. Indeed, its presence in vesicles in the cytoplasm is to be expected as this is a common mechanism for cells to secrete proteins into the extracellular space (Glasgow et al., 2018). We are not sure whether Reviewer #1’s “granule-like” organelles are in fact secretory vesicles or not, and we do not think our immunohistochemical images are an appropriate method by which to determine this kind of question. We find, however, that a detailed characterization of the subcellular distribution of Netrin-1 is beyond the scope of our study. 

      That Netrin-1 is a secreted protein is well-established in the literature (for example, see Glasgow et al., 2018). The confocal images we provide suggest, but do not prove, that it is likely Netrin-1 is present both extracellularly and intracellularly, which is entirely consistent with its synthesis, secretion, and function. It is also consistent with our methodology and findings. 

      Finally, the authors presented Figure 7 to indicate the location where virus expressing Netrin-1 shRNA might be located. Again, the brain region targeted was quite focal and most likely did not cover all the Netrin-1+ brain regions in Figure 2. 

      Figure 2 - this is referring to Author response image 2 of our first response to reviewers.

      Figure 7 - this is referring to Author response image 4 of our first response to reviewers.

      We agree with Reviewer #1’s characterization of our experiment. We intended to interrupt the Netrin-1 pathway to the prefrontal cortex, like removing a bridge along a road. The Netrin-1 signal remained intact along the dopamine axon’s route before and after the location of the viral injection, however it was lost at the site of the virus injection. This is like a road remaining intact on either side of a destroyed bridge, but becoming impassable at the location where the bridge was destroyed. We are glad that Reviewer 1 agrees our experimental design achieved the desired outcome (a focal reduction in Netrin-1 expression).

      Collectively, these results raised more questions regarding the specificity of Netrin-1 expression in brain regions that are behaviorally relevant to this study.

      We do not agree with this assessment. Our manipulation of Netrin-1 expression was highly localized and specific, as Reviewer #1 seems to acknowledge. We are not clear on what questions this might raise that would call into question our findings as described in our manuscript. We have now added the following paragraph to our manuscript:  

      “It remains unknown exactly what types of cells are expressing Netrin-1 along the dopamine axon route, and how this expression is regulated to produce the Netrin-1 gradients that guide the dopamine axons. It also remains unclear where the misrouted axons end up in adulthood. Future experiments aimed at addressing these questions will provide further valuable insight into the nature of the “Netrin-1 pathway”. Nonetheless, our results allow us to conclude that Netrin-1 expressing cells “pave the way” for dopamine axons growing to the medial prefrontal cortex.”

      With respect to the effectiveness of Netrin-1 knockdown in the animals in this study, the authors cited data in HEK293 cells (Cuesta et al., 2020. Figure 2a), which did not include any statistics, and previously published in vivo data in a separate, independent study (Cuesta et al., 2020. Figure 2c). They do not provide any data regarding the effectiveness of Netrin-1 knockdown in THIS study.

      Indeed, we understand the concerns of Reviewer 1 here. This issue was discussed at the time all the experiments (both in the current manuscript and in Cuesta et al., (2020)) were conducted, and we decided that it was sufficient to show the virus was capable of knocking down Netrin-1 in vitro and in vivo in the forebrain. These characterization experiments were published in the first manuscript to present results using the virus, which was Cuesta et al., 2020. However, all experiments from both manuscripts were conducted contemporaneously.

      We do not see how repeating the same characterization experiments again is useful. 

      Similar concerns regarding UNC5C knockdown (points #6, #7, and #8) were not adequately addressed.

      There is no UNC5c knockdown in this manuscript. Furthermore, points #6, #7 and #8 do not deal with UNC5c knockdown. Point #6 is regarding the Netrin-1 virus efficacy, which we discuss above. Points #7 and #8 are requesting numerous additional experiments that we feel are worthy of their own manuscripts, and we do not feel that they call into question the findings we present here. Rather, answering points #7 and #8 would further refine our understanding of how dopamine axons grow to the prefrontal cortex beyond our current manuscript.

      In brief, while this study provides a potential role of Netrin-1-UNC5C in target innervation of dopaminergic neurons and its behavioral output in risk-taking, the data lack sufficient evidence to firmly establish the cause-effect relationship.

      We do not claim a cause-effect relationship here or anywhere in the manuscript. Concrete establishment of a cause-effect relationship will require several more manuscripts worth of experiments.

      Reviewer #2 (Public Review):

      In this manuscript, Hoops et al., using two different model systems, identified key developmental changes in Netrin-1 and UNC5C signaling that correspond to behavioral changes and are sensitive to environmental factors that affect the timing of development. They found that Netrin-1 expression is highest in regions of the striatum and cortex where TH+ axons are travelling, and that knocking down Netrin-1 reduces TH+ varicosities in mPFC and reduces impulsive behaviors in a Go-No-Go test. 

      We want to point out that we examined the Netrin-1 expression in the septum rather than the striatum but otherwise feel the above description is accurate.

      Further, they show that the onset of Unc5 expression is sexually dimorphic in mice, and that in Siberian hamsters, environmental effects on development are also sexually dimorophic. This study addresses an important question using approaches that link molecular, circuit and behavioral changes. Understanding developmental trajectories of adolescence, and how they can be impacted by environmental factors, is an understudied area of neuroscience that is highly relevant to understanding the onset of mental health disorders. I appreciated the inclusion of replication cohorts within the study.

      We appreciate Reviewer #2’s comments, which we feel accurately describe our experimental approach and findings, including their limitations.

      Reviewer #3 (Public Review):

      This study from the Flores group aims at understanding neuronal circuit changes during adolescence which is an ill-defined, transitional period involving dramatic changes in behavior and anatomy. They focus on DA innervation of the prefrontal cortex, and their interaction with the guidance cue Netrin1. They propose DA axons in the PFC increase in the postnatal period, and their density is reduced in a Netrin 1 knockdown, suggesting that Netrin abets the development of this mesocortical pathway. 

      We feel it necessary to point out that we are not the first to propose that dopamine axons in the prefrontal cortex increase in the postnatal period.  This is well-established and was first documented in rodents in the 1980s (Kalsbeek et al., 1988). Otherwise we agree with Reviewer 3’s characterization.

      In such mice impulsivity gauged by a go-no go task is reduced. They then provide some evidence that Unc5c is developmentally regulated in DA axons. Finally they use an interesting hamster model, to study the effect of light hours on mesocortical innervation, and make some interesting observations about the timing of innervation and Unc5c expression, and the fact that females housed in winter day length conditions display an accelerated innervation of the prefrontal cortex.

      We agree with Reviewer #3’s characterization of our study and findings here.

      Comments on the revision. Several points were addressed; some remain to be addressed.

      (4) It's not clear to me that TH doesnt stain noradrenergic axons in the PFC. See Islam and Blaess, 2021, and references therein.

      Presuming that Reviewer #3 is referring to Islam et al. (2021), the review they cite supports our position that TH-stained axons in the forebrain are by-and-large dopamine axons.

      Nonetheless, Islam et al. do point out that it is important to keep in mind that TH-positive axons have a slight possibility of being noradrenaline axons. We are very conscious of this possibility and are careful to minimize this risk. As we state in the methods, we only examine axons that are morphologically consistent with dopamine axons and are localized to areas within the forebrain where dopamine axons are known to innervate, in addition to being THpositive. The localization and morphology of noradrenaline axons in the forebrain is different from that of dopamine axons. This is stated in our methods on lines 76-94, where we describe in detail the differentiation between dopamine and norepinephrine axons and include a full list of relevant citations.

      (6) The Netrin knockdown data provided is from a previous study/samples.

      Indeed, however the experiments for the two manuscripts were conducted contemporaneously. We believe two sets of validation experiments are not required.

      (8) While the authors make the argument that the behavior is linked to DA, they still haven't formally tested it, in my opinion.

      We agree that we have not formally tested this link. However, we disagree that we claim to have established a formal link in our manuscript.

      (1). Fig 3, UNc 5c  levels are not yet quantified. Furthermore, I agree with the previous reviewer that Unc5C knockdown would corroborate key aspects of the model.

      We present UNC5c quantities for mice in our first response to reviewers (Figure 11 therein) however we did not do so for the hamsters due to the time involved. We are planning further experiments with the hamsters and may include quantification of UNC5c in the nucleus accumbens at such time. However, we do not feel its absence from this manuscript calls into question our findings.

      With regards to the UNC5c knockdown, we agree it would be an informative extension of our findings here, but again we do not feel that it is necessary to corroborate our current findings.

      New - Developmental trajectory of prefrontal TH-positive axons from early adolescence to adulthood is similar in male and female rats, (Willing Juraska et al., 2017). This needs discussion.

      Willing et al. (2017) reported an increase in prefrontal dopamine density during adolescence in male and female rats, with a non-significant trend towards an earlier increase in females.

      This is in line with our current results in mice indicating that the timing of dopamine axon targeting and growth is sex specific. We are currently testing this idea directly using intersectional viral tracing methods. We now added the following sentence to the manuscript: 

      “Differences in the precise timing of dopamine innervation to the PFC in adolescence have been suggested by findings reported in male and female rats (Willing et al., 2017)”.

      References

      Brignani, S., Raj, D. D. A., Schmidt, E. R. E., Düdükcü, Ö., Adolfs, Y., Ruiter, A. A. D., Rybiczka-Tesulov, M., Verhagen, M. G., Meer, C. van der, Broekhoven, M. H., MorenoBravo, J. A., Grossouw, L. M., Dumontier, E., Cloutier, J.-F., Chédotal, A., & Pasterkamp, R. J. (2020). Remotely Produced and Axon-Derived Netrin-1 Instructs GABAergic Neuron Migration and Dopaminergic Substantia Nigra Development. Neuron, 107(4), 684-702.e9. https://doi.org/10.1016/j.neuron.2020.05.037

      Cuesta, S., Nouel, D., Reynolds, LM, Morgunova, A., Torres-Berrio, A., White, A., Hernandez, G., Cooper, HM, Flores, C. (2020). Dopamine axon targeting in the nucleus accumbnes in adolescence requires Netrin-1. Frontiers in Cell and Developmental Biology, 8,  doi:10.3389/fcell.2020.00487

      Finci, L., Zhang, Y., Meijers, R., & Wang, J. H. (2015). Signaling mechanism of the netrin-1 receptor DCC in axon guidance. Progress in Biophysics and Molecular Biology, 118(3), 153-160. https://doi.org/10.1016/j.pbiomolbio.2015.04.001

      Glasgow, S. D., Labrecque, S., Beamish, I. V., Aufmkolk, S., Gibon, J., Han, D., Harris, S. N., Dufresne, P., Wiseman, P. W., McKinney, R. A., Séguéla, P., Koninck, P. D., Ruthazer, E. S., & Kennedy, T. E. (2018). Activity-Dependent Netrin-1 Secretion Drives Synaptic Insertion of GluA1-Containing AMPA Receptors in the Hippocampus. Cell Reports, 25(1),

      168-182.e6. https://doi.org/10.1016/j.celrep.2018.09.028

      Islam, K. U. S., Meli, N., & Blaess, S. (2021). The Development of the Mesoprefrontal Dopaminergic System in Health and Disease. Frontiers in Neural Circuits, 15, 746582. https://doi.org/10.3389/fncir.2021.746582

      Kalsbeek, A., Voorn, P., Buijs, R. M., Pool, C. W., & Uylings, H. B. M. (1988). Development of the Dopaminergic Innervation in the Prefrontal Cortex of the Rat. The Journal of Comparative Neurology, 269(1), 58–72. https://doi.org/10.1002/cne.902690105

      Rajasekharan, S., & Kennedy, T. E. (2009). The netrin protein family. Genome Biology, 10(9), 239. https://doi.org/10.1186/gb-2009-10-9-239

      Shatzmiller, R. A., Goldman, J. S., Simard-Émond, L., Rymar, V., Manitt, C., Sadikot, A. F., & Kennedy, T. E. (2008). Graded expression of netrin-1 by specific neuronal subtypes in the adult mammalian striatum. Neuroscience, 157(3), 621–636. https://doi.org/10.1016/j.neuroscience.2008.09.031

      Willing, J., Cortes, L. R., Brodsky, J. M., Kim, T., & Juraska, J. M. (2017). Innervation of the medial prefrontal cortex by tyrosine hydroxylase immunoreactive fibers during adolescence in male and female rats. Developmental Psychobiology, 59(5), 583–589. https://doi.org/10.1002/dev.21525

    1. Author Response:

      We appreciate the constructive reviews. We have performed additional analysis to address reviewer concerns, and we will submit a full revision in the near future. Our new analysis confirms that the visual stimulus can account for about a third of the variance in population neural activity. Pupil dynamics only account for a small fraction of the trial-to-trial variability, less than six percent. Once we regress out the stimulus responses and the pupil dynamics, we can use the network activity to predict the trial-to-trial variability of single neuron responses, and about eight percent of the variance is explained. Thus it appears as though multiplicative gain cannot account for the results. As for the concerns about missing spikes, we would like to direct readers to the supplementary figure that addresses that concern. The analysis shows that the correlation measurements are robust to the imprecisions of spike inference from calcium imaging data. Finally, we would also like to take the opportunity to clarify that we make no claim as to the discreteness of tuning classes. The GMM analysis was performed to obtain a data-driven, granular categorization of neuron tuning, to support detailed statistical analysis. We take no position on the discreteness or lack thereof of these groups. We agree that it is an interesting question, and we are happy to provide additional analysis in the revision to address this question. Our main result on functional connectivity structure holds regardless of the discreteness of neuron tuning selectivity.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Major recommendations

      (1) In lines 42-44 (abstract), the authors state that "ASARs function as essential RNA scaffolds for the assembly of hnRNP complexes that help maintain the structural integrity of each mammalian chromosome". Similar conclusions are restated in lines 138-140. Based on the data presented, it is evident that ASARs localization on chromatin is dependent on hnRNPs. However, there is insufficient evidence to conclude that ASARs cause the assembly of hnRNP complexes or that these hnRNP complexes are directly responsible for the regulation of chromosome replication. Please revise your claims.

      We have modified the text as follows: “Our results further demonstrate the role that ASARs play during the temporal order of genome-wide replication, and we propose that ASARs function as essential RNA scaffolds for the assembly of hnRNP complexes that help maintain the structural integrity of each mammalian chromosome.”

      (2) In the analysis in Figure 1C- F, it is unclear why XIST is used as a comparison to ASAR6-141. A more meaningful control would be to show that hnRNPs preferentially bind ASAR6-141 relative to all expressed transcripts. Also, some panels are missing the y-axis label.

      We have genetically validated 8 different ASAR genes for their role in controlling chromosome-wide replication timing. The only other gene known to control chromosome-wide replication timing is XIST, which also encodes a chromosome-associated lncRNA. Our analysis of publicly available eCLIP data (and previous literature on XIST-binding proteins) showed substantial overlap between RBPs that associate with ASARs and XIST. Hence, we anticipated that at least some RBP knockdowns would affect both lncRNAs, despite their contrasting functions. In addition, we routinely use XIST RNA as a positive control in RNA FISH assays, as the XIST RNA FISH protocol represents a robust and well validated chromosomal RNA FISH procedure.

      y-axis labels have been added to Figure 1.

      (3) In Figure 2K&L, it would be beneficial to quantify and normalize the BrdU incorporation, as ectopic integration of the sense 7kb region appears to result in overall higher BrdU incorporation in all chromosomes, not just chromosome 5.

      There are two main aspects of the BrdU incorporation assay that we use: 1) The BrdU incorporation banding pattern on each chromosome is unique to that chromosome, and the banding pattern is also representative of the time during S phase when the BrdU incorporation occurred, i.e. we detect a different banding pattern if BrdU is incorporated in early S phase versus late S phase. 2) The amount of BrdU incorporation can be used to measure the synchrony between chromosome homologs, but only within the same cell. Thus, we generate a ratio of BrdU incorporation in chromosome homologs in individual cells, then compare the ratio of incorporation into each chromosome pair in multiple cells (see Figure 2B-E). The overall BrdU incorporation into the chromosomes of different cells is quite variable; however, the banding pattern and ratio of BrdU incorporation in chromosome homologs in individual cells is comparable, unless we have disrupted or ectopically integrated an ASAR. Given the variability in overall BrdU incorporation detected between different cells in the population this is not a useful readout for measuring synchronous versus asynchronous replication between chromosome homologs.

      (4) hnRNP protein can regulate multiple aspects of RNA processing other than chromatin retention. Hence, it would be beneficial to rule out an alternative hypothesis as to what the hnRNP knockdowns do to ASAR6-131? For example, assessing changes in RNA levels or splicing upon knockdown of hnRNPs using qPCR?

      We agree that direct roles for any of the hnRNP/RBPs that are critical for ASAR RNA localization and replication timing have not been established. However, our findings combined with the observation that cells depleted of HNRNPU show reduced origin licensing in G1, and show reduced origin activation frequency during S phase (PMID: 34888666), supports a role for HNRNPU, either directly or indirectly, in DNA replication. Furthermore, we also found that depletion of the DNA replication fork remodeler HLTF or the deubiquitinase UCHL5 also results in mis-localization of ASAR RNAs, and results in asynchronous replication of every autosome pair, indicating that ASAR RNA mis-localization and asynchronous replication are not simply a phenotype associated with hnRNP depletions. A full mechanistic understanding of the role that ASAR RNAs play in combination with this relatively large and diverse set of hnRNP/RBPs will require a better understanding of the direct roles that each protein, and any higher order complexes that contain these proteins, play in regulating DNA synthesis, splicing, transcription, chromatin structure and/or ASAR RNA localization.

      (5) Both the disruption and ectopic expression of the 7kb region result in delayed chromosome replication. Would one not expect there to be opposing effects on replication timing? Please discuss.

      One puzzling set of observations is that loss of function mutations and gain of function mutations of ASAR genes result in a similar delayed replication timing and delayed mitotic condensation phenotype. We have detected delayed replication timing in human cells following genetic knockouts (loss of function) of eight different ASAR genes located on 5 different autosomes. We have also detected delayed replication timing on mouse chromosomes expressing transgenes (gain of function) from three different ASAR genes (ASAR6, ASAR6-141, and ASAR15). The ASAR transgenes ranged in size from an ~180kb BAC, to an ~3kb PCR product. One possible explanation for these observations is that ectopic integration of ASAR transgenes function in a dominant negative manner by interfering with the endogenous “ASARs” on the integrated chromosomes. Consistent with this possibility is that we recently identified ASAR candidate genes on every human autosome (PMC9588035). Our favored model is that expression of ASAR transgenes integrated into mouse chromosomes disrupts the function of endogenous ASARs by "out-competing" them for shared RBPs. We also point out that a similar ectopic integration assay, using Xist transgenes, has been an informative assay for characterization of Xist functions, including the ability to delay replication timing and induce gene silencing on autosomes (reviewed in PMID:19898525). One intriguing observation (yet largely ignored by the X inactivation field) is that deletion of the Xist gene on either the active or inactive X chromosomes in somatic cells results in delayed replication timing of the X chromosomes (PMC1667074; PMC1456779). Thus, both loss of function and gain of function mutations of Xist result in a similar delayed replication timing phenotype. Given these parallels between Xist and ASAR gene mutation phenotypes we were curious to test the consequences of ASAR gain of function on the inactive X chromosome. In this manuscript, we integrated the ~7kb ASAR6-141 transgene into the inactive X chromosome, and detected a delayed replication timing phenotype on the integrated X chromosome. We also detected an association between Xist and ASAR RNAs using RNA FISH in interphase cells (Figure 4A and 4B), which supports the observations that ASAR RNAs and XIST RNA are bound by a partially overlapping set of hnRNP/RBPs (Figure 1D-F), and is consistent with the model that ASAR transgenes disrupt function by competition for shared RBPs. Dissecting the roles that the hnRNP/RBPs that interact with both ASAR and XIST RNAs will undoubtably give important insights into both XIST and ASAR function, and how these poorly understood chromosomal phenotypes are generated.

      Minor recommendations

      (1) In Figure 1G, it would be informative to show where the LINE-1 element within ASAR6-141 is located to get a sense of what hnRNP proteins bind to it.

      There are numerous LINE-1 elements within the ASAR6-141 gene. The ~7kb RBPD does not contain LINE-1 sequences. Therefore, we did not detect significant hnRNP/RBP eCLIP peaks within LINE-1 sequences.

      (2) The rationale for ectopic integration of the 7kb region into the inactive X-chromosome is unclear. Is there something unique about the replication of the inactive X or were you interested in seeing whether the 7kb region could escape X-inactivation?

      Given the parallels between Xist and ASAR gene mutation phenotypes, i.e. loss of function and gain of function result in delayed replication timing (see above), we were curious to test the consequences of ASAR gene gain of function on the inactive X chromosome. One possibility was reversal of X inactivation and a shift to earlier replication timing. However, we detected delayed replication timing on the inactive X, and an enhanced XIST RNA FISH signal that overlapped with the ASAR RNA. This speaks to the comment of Reviewer 2 questioning: "Is it possible that integration might alter Xist expression confounding this interpretation? ". The enhanced XIST RNA FISH signal suggests that the delayed replication of the inactive X is not due to reduced expression of XIST RNA.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      In this potentially useful study, the authors attempt to use comparative meta-analysis to advance our understanding of life history evolution. Unfortunately, both the meta-analysis and the theoretical model is inadequate and proper statistical and mechanistic descriptions of the simulations are lacking. Specifically, the interpretation overlooks the effect of well-characterised complexities in the relationship between clutch size and fitness in birds.

      Public Reviews:

      We would like to thank the reviewers for their helpful comments, which have been considered carefully and have been valuable in progressing our manuscript. The following bullet points summarise the key points and our responses, though our detailed responses to specific comments can be found below:<br /> - Two reviewers commented that our data was not made available. Our data was provided upon submission and during the review process, however was not made accessible to the reviewers. Our data and code are available at https://doi.org/10.5061/dryad.q83bk3jnk.

      - The reviewers have highlighted that some of our methodology was unclear and we have added all the requested detail to ensure our methods can be easily understood.

      - The reviewers highlight the importance of our conclusions, but also suggest some interpretations might be missing and/or are incomplete. To make clear how we objectively interpreted our data and the wider consequences for life-history theory we provide a decision tree (Figure 5). This figure makes clear where we think the boundaries are in our interpretation and how multiple lines of evidence converge to the same conclusions.

      Reviewer #1 (Public Review):

      This paper falls in a long tradition of studies on the costs of reproduction in birds and its contribution to understanding individual variation in life histories. Unfortunately, the meta-analyses only confirm what we know already, and the simulations based on the outcome of the meta-analysis have shortcomings that prevent the inferences on optimal clutch size, in contrast to the claims made in the paper.

      There was no information that I could find on the effect sizes used in the meta-analyses other than a figure listing the species included. In fact, there is more information on studies that were not included. This made it impossible to evaluate the data-set. This is a serious omission, because it is not uncommon for there to be serious errors in meta-analysis data sets. Moreover, in the long run the main contribution of a meta-analysis is to build a data set that can be included in further studies.

      It is disappointing that two referees comment on data availability, as we supplied a link to our full dataset and the code we used in Dryad with our submitted manuscript. We were also asked to supply our data during the review process and we again supplied a link to our dataset and code, along with a folder containing the data and code itself. We received confirmation that the reviewers had been given our data and code. We support open science and it was our intention that our dataset should be fully available to reviewers and readers. Our data and code are at https://doi.org/10.5061/dryad.q83bk3jnk.

      The main finding of the meta-analysis of the brood size manipulation studies is that the survival costs of enlarging brood size are modest, as previously reported by Santos & Nakagawa on what I suspect to be mostly the same data set.

      We disagree that the main finding of our paper is the small survival cost of manipulated brood size. The major finding of the paper, in our opinion, is that the effect sizes for experimental and observational studies are in opposite directions, therefore providing the first quantitative evidence to support the influential theoretical framework put forward by van Noordwijk and de Jong (1986), that individuals differ in their optimal clutch size and are constrained to reproducing at this level due to a trade-off with survival. We further show that while the manipulation experiments have been widely accepted to be informative, they are not in fact an effective test of whether within-species variation in clutch size is the result of a trade-off between reproduction and survival.

      The comment that we are reporting the same finding as Santos & Nakagawa (2012) is a misrepresentation of both that study and our own. Santos & Nakagawa found an effect of parental effort on survival only in males who had their clutch size increased – but no effect for males who had their clutch size reduced and no survival effect on females for either increasing or reducing parental effort. However, we found an overall reduction in survival for birds who had brood sizes manipulated to be larger than their original brood (for both sexes and mixed sex studies combined). In our supplementary information, we demonstrate that the overall survival effect of a change in reproductive effort is close to zero for males, negative (though non-significant) for females and significantly negative for mixed sexes (which are not included in the Santos & Nakagawa study). Please also note that the Santos & Nakagawa study was conducted over 10 years ago. This means we added additional data (L364-365). Furthermore, meta-analyses are an evolving practice and we also corrected and improved on the overall analysis approach (e.g. L358-359 and L 393-397, and see detailed SI).

      The paper does a very poor job of critically discussing whether we should take this at face value or whether instead there may be short-comings in the general experimental approach. A major reason why survival cost estimates are barely significantly different from zero may well be that parents do not fully adjust their parental effort to the manipulated brood size, either because of time/energy constraints, because it is too costly and therefore not optimal, or because parents do not register increased offspring needs. Whatever the reason, as a consequence, there is usually a strong effect of brood size manipulation on offspring growth and thereby presumably their fitness prospects. In the simulations (Fig.4), the consequences of the survival costs of reproduction for optimal clutch size were investigated without considering brood size manipulation effects on the offspring. Effects on offspring are briefly acknowledged in the discussion, but otherwise ignored. Assuming that the survival costs of reproduction are indeed difficult to discern because the offspring bear the brunt of the increase in brood size, a simulation that ignores the latter effect is unlikely to yield any insight in optimal clutch size. It is not clear therefore what we learn from these calculations.

      The reviewer’s comment is somewhat of a paradox. We take the best studied example of the trade-off between reproductive effort and parental survival – a key theme in life history and the biology of ageing – and subject this to a meta-analysis. The reviewer suggests we should interpret our finding as if there must be something wrong with the method or studies we included, rather than considering that the original hypothesis could be false or inflated in importance. We do not consider questioning the premise of the data over questioning a favoured hypothesis to necessarily be the best scientific approach here. In many places in our manuscript, we question and address, at length, the underlying data and their interpretation (L116-117, L165-167, 202-204 and L277-282). Moreover, we make it clear that we focus on the trade-off between current reproductive effort and subsequent parental survival, while being aware that other trade-offs could counter-balance or explain our findings (discussed on L208-210 & L301-316). Note that it is also problematic, when you do not find the expected response, to search for an alternative that has not been measured. In the case here, of potential trade-offs, there are endless possibilities of where a trade-off might operate between traits. We purposefully focus on the one well-studied and most commonly invoked trade-off. We clearly acknowledge, though, that when all possible trade-offs are taken into account a trade-off on the fitness level can occur and cite two famous studies (Daan et al., 1990 and Verhulst & Tinbergen 1991) that have shown just that (L314-316).

      So whilst we agree with the reviewer that the offspring may incur costs themselves, rather than costs being incurred by the parents, the aim of our study was to test for a general trend across species in the survival costs of reproductive effort. It is unrealistic to suggest that incorporating offspring growth into our simulations would add insight, as a change in offspring number rarely affects all offspring in the nest equally and there can even be quite stark differences; for example, this will be most evident in species that produce sacrificial offspring. This effect will be further confounded by catch-up growth, for example, and so it is likely that increased sibling competition from added chicks alters offspring growth trajectories, rather than absolute growth as the reviewer suggests. There are mixed results in the literature on the effect of altering clutch size on offspring survival, with an increased clutch size through manipulation often increasing the number of recruits from a nest.

      What we do appreciate from the reviewer’s comment is that the interpretation of our findings is complex. Even though our in-text explanation includes the caveats the reviewer refers to, and are discussed at length, their inter-relationships are hard to appreciate from a text format. To improve this presentation and for ease of the reader, we have added a decision tree (Figure 5) which represents the logical flow from the hypothesis being tested through to what overall conclusion can be drawn from our results. We believe this clarifies what conclusions can be drawn from our results. We emphasise again that the theory that trade-offs between reproductive effort and parental survival being the major driver of variation in offspring production was not supported though is the one that practitioners in the field would be most likely to invoke, and our result is important for this reason.

      There are other reasons why brood size manipulations may not reveal the costs of reproduction animals would incur when opting for a larger brood size than they produced spontaneously themselves. Firstly, the manipulations do not affect the effort incurred in laying eggs (which also biases your comparison with natural variation in clutch size). Secondly, the studies by Boonekamp et al on Jackdaws found that while there was no effect of brood size manipulation on parental survival after one year of manipulation, there was a strong effect when the same individuals were manipulated in the same direction in multiple years. This could be taken to mean that costs are not immediate but delayed, explaining why single year manipulations generally show little effect on survival. It would also mean that most estimates of the fitness costs of manipulated brood size are not fit for purpose, because typically restricted to survival over a single year.

      First, our results did show a survival cost of reproduction for brood manipulations (L107-123, Figure 1, Table 1). Note, however, that much theory is built on the immediate costs of reproduction and, as such, these costs are likely overinterpreted, meaning that our overall interpretation still holds, i.e. “parental survival trade-off is not the major determinative trade-off in life history within-species” (Figure 5).

      We agree with the reviewer that lifetime manipulations could be even more informative than single-year manipulations. Unfortunately, there are currently too few studies available to be able to draw generalisable conclusions across species for lifetime manipulations. This is, however, the reason we used lifetime change in clutch size in our fitness projections, which the reviewer seems to have missed – please see methods line 466-468, where we explicitly state that this is lifetime enlargement. Of course, such interpretations do not include an accumulation of costs that is greater than the annual cost, but currently there is no clear evidence that such an assumption is valid. Such a conclusion can also not be drawn from the study on jackdaws by Boonekamp et al (2014) as the treatments were life-long and, therefore, cannot separate annual from accrued (multiplicative) costs that are more than the sum of the annual costs incurred. Note that we have now included specific discussion of this study in response to the reviewer (L265-269).

      Details of how the analyses were carried out were opaque in places, but as I understood the analysis of the brood size manipulation studies, manipulation was coded as a covariate, with negative values for brood size reductions and positive values for brood size enlargements (and then variably scaled or not to control brood or clutch size). This approach implicitly assumes that the trade-off between current brood size (manipulation) and parental survival is linear, which contrasts with the general expectation that this trade-off is not linear. This assumption reduces the value of the analysis, and contrasts with the approach of Santos & Nakagawa.

      We thank the reviewer for highlighting a lack of clarity in places in our methods. We have added additional detail to the methodology section (see “Study sourcing & inclusion criteria” and “Extracting effect sizes”) in our revised manuscript. Note, that our data and code was not shared with the reviewers despite us supplying this upon submission and again during the review process, which would have explained a lot more of the detail required.

      For clarity in our response, each effect size was extracted by performing a logistic regression with survival as a binary response variable and clutch size was the absolute value of offspring in the nest (i.e., for a bird that laid a clutch size of 5 but was manipulated to have -1 egg, we used a clutch size value of 4). The clutch size was also standardised and, separately, expressed as a proportion of the species’ mean.

      We disagree that our approach reduces the value of our analysis. First, our approach allows a direct comparison between experimental and observational studies, which is the novelty of our study. Our approach does differ from Santos & Nakagawa but we disagree that it contrasts. Our approach allows us to take into consideration the severity of the change in clutch size, which Santos & Nakagawa do not. Therefore, we do not agree that our approach is worse at accounting for non-linearity of trade-offs than the approach used by Santos & Nakagawa. Arguably, the approach by Santos & Nakagawa is worse, as they dichotomise effort as increased or decreased, factorise their output and thereby inflate their number of outcomes, of which only 1 cell of 4 categories is significant (for males and females, increased and decreased brood size). The proof is in the pudding as well, as our results clearly demonstrate that the magnitude of the manipulation is a key factor driving the results, i.e. one offspring for a seabird is a larger proportion of care (and fitness) than one offspring for a passerine. Such insights were not achieved by Santos & Nakagawa’s method and, again, did not allow a direct quantitative comparison between quality (correlational) and experimental (brood size manipulation, i.e. “trade-off”) effects, which forms a central part of our argumentation (Figure 5). 

      Our analysis, alongside a plethora of other ecological studies, does assume that the response to our predictor variable is linear. However, it is common knowledge that there are very few (if any) truly linear relationships. We use linear relationships because they serve a good approximation of the trend and provide a more rigorous test for an underlying relationship than would fitting nonlinear models. For many datasets the range of added chicks required to estimate a non-linear relationship was not available. The question also remains of what the shape of such a non-linear relationship should be and is hard to determine a priori. There is also a real risk when fitting non-linear terms that they are spurious and overinterpreted, as they often present a better fit (denoting one df is not sufficient especially when slopes vary). We have added this detail to our discussion.

      The observational study selection is not complete and apparently no attempt was made to make it complete. This is a missed opportunity - it would be interesting to learn more about interspecific variation in the association between natural variation in clutch size and parental survival.

      We clearly state in our manuscript that we deliberately tailored the selection of studies to match the manipulation studies (L367-369). We paired species extracted for observational studies with those extracted in experimental studies to facilitate a direct comparison between observational and experimental studies, and to ensure that the respective datasets were comparable. The reviewer’s focus in this review seems to be solely on the experimental dataset. This comment dismisses the equally important observational component of our analysis and thereby fails to acknowledge one of the key questions being addressed in this study. Note that in our revised version we have edited the phylogenetic tree to indicate for which species we have both types of information, which highlights our approach to selecting observational data (Figure 3).

      Reviewer #2 (Public Review):

      I have read with great interest the manuscript entitled "The optimal clutch size revisited: separating individual quality from the costs of reproduction" by LA Winder and colleagues. The paper consists in a meta-analysis comparing survival rates from studies providing clutch sizes of species that are unmanipulated and from studies where the clutch sizes are manipulated, in order to better understand the effects of differences in individual quality and of the costs of reproduction. I find the idea of the manuscript very interesting. However, I am not sure the methodology used allows to reach the conclusions provided by the authors (mainly that there is no cost of reproduction, and that the entire variation in clutch size among individuals of a population is driven by "individual quality").

      We would like to highlight that we do not conclude that there is no cost of reproduction. Please see lines 336–339, where we state that our lack of evidence for trade-offs driving within-species variation in clutch size does not necessarily mean the costs of reproduction are non-existent. We conclude that individuals are constrained to their optima by the survival cost of reproduction. It is also an over-statement of our conclusion to say that we believe that variation in clutch size is only driven by quality. Our results show that unmanipulated birds that have larger clutch sizes also lived longer, and we suggest that this is evidence that some individuals are “better” than others, but we do not say, nor imply, that no other factors affect variation in clutch size. We have added Figure 5 to our manuscript to help the reader better understand what questions we can answer with our study and what conclusions we can draw from our results.

      I write that I am not sure, because in its current form, the manuscript does not contain a single equation, making it impossible to assess. It would need at least a set of mathematical descriptions for the statistical analysis and for the mechanistic model that the authors infer from it.

      We appreciate this comment, and have explained our methods in terms that are accessible to a wider audience. Note, however, that our meta-analysis is standard and based on logistic regression and standard meta-analytic practices. We have added the model formula to the model output tables.

      For the simulation, we simply simulated the resulting effects. We of course supplied our code for this along with our manuscript (https://doi.org/10.5061/dryad.q83bk3jnk), though as we mentioned above, we believe this was not shared with the reviewers despite us making this available for the review process. We therefore understand why the reviewer feels the simulations were not explained thoroughly. We have revised our methods section and added details which we believe make our methodology more clear without needing to consult the supplemental material. However, we have also added the equations used in the process of calculating our simulated data to the Supplementary Information for readers who wish to have this information in equation form.

      The texts mixes concepts of individual vs population statistics, of within individual vs among-individuals measures, of allocation trade-offs and fitness trade-offs, etc ....which means it would also require a glossary of the definitions the authors use for these various terms, in order to be evaluated.

      We would like to thank the reviewer for highlighting this lack of clarity in our text. Throughout the manuscript we have refined our terminology and indicated where we are referring to the individual level or the population level. The inclusion of our new Figure 5 (decision tree) should also help in this context, as it is clear on which level we base our interpretation and conclusions on.

      This problem is emphasised by the following sentence to be found in the discussion "The effect of birds having naturally larger clutches was significantly opposite to the result of increasing clutch size through brood manipulation". The "effect" is defined as the survival rate (see Fig 1). While it is relatively easy to intuitively understand what the "effect" is for the unmanipulated studies: the sensitivity of survival to clutch size at the population level, this should be mentioned and detailed in a formula. Moreover, the concept of effect size is not at all obvious for the manipulated ones (effect of the manipulation? or survival rate whatever the manipulation (then how could it measure a trade-off ?)? at the population level? at the individual level ?) despite a whole appendix dedicated to it. This absolutely needs to be described properly in the manuscript.

      Thank you for identifying this sentence for which the writing was ambiguous, our apologies. We have now rewritten this and included additional explanation. L282-290: ‘The effect on parental annual survival of having naturally larger clutches was significantly opposite to the result of increasing clutch size through brood manipulation, and quantitatively similar. Parents with naturally larger clutches are thus expected to live longer and this counterbalances the “cost of reproduction” when their brood size is experimentally manipulated. It is, therefore, possible that quality effects mask trade-offs. Furthermore, it could be possible that individuals that lay larger clutches have smaller costs of reproduction, i.e. would respond less in terms of annual survival to a brood size manipulation, but with our current dataset we cannot address this hypothesis (Figure 5).’

      We would also like to thank the reviewer for bringing to our attention the lack of clarity about the details of our methodology. We have added details to our methodology (see “Extracting effect sizes” section) to address this (see highlighted sections). For clarity, the effect size for both manipulated and unmanipulated nests was survival, given the brood size raised. We performed a logistic regression with survival as a binary response variable (i.e., number of individuals that survived and number of individuals that died after each breeding season), and clutch size was the absolute value of offspring in the nest (i.e., for a bird that laid a clutch size of 5 but was manipulated to have -1 egg, we used a clutch size value of 4). This allows for direct comparison of the effect size (survival given clutch size raised) between manipulated and unmanipulated birds.

      Despite the lack of information about the underlying mechanistic model tested and the statistical model used, my impression is still that the interpretation in the introduction and discussion is not granted by the outputs of the figures and tables. Let's use a model similar to that of (van Noordwijk and de Jong, 1986): imagine that the mechanism at the population level is

      a.c_(i,q)+b.s_(i,q)=E_q

      Where c_(i,q) are s_(i,q) are respectively the clutch size for individual i which is of quality q, and E_q is the level of "energy" that an individual of quality q has available during the given time-step (and a and b are constants turning the clutch size and survival rate into energy cost of reproduction and energy cost of survival, and there are both quite "high" so that an extra egg (c_(i,q) is increased by 1) at the current time-step, decreases s_(i,q) markedly (E_q is independent of the number of eggs produced), that is, we have strong individual costs of reproduction). Imagine now that the variance of c_(i,q) (when the population is not manipulated) among individuals of the same quality group, is very small (and therefore the variance of s_(i,q) is very small also) and that the expectation of both are proportional to E_q. Then, in the unmanipulated population, the variance in clutch size is mainly due to the variance in quality. And therefore, the larger the clutch size c_(i,q) the higher E_q, and the higher the survival s_(i,q).

      In the manipulated populations however, because of the large a and b, an artificial increase in clutch size, for a given E_q, will lead to a lower survival s_(i,q). And the "effect size" at the population level may vary according to a,b and the variances mentioned above. In other words, the costs of reproduction may be strong, but be hidden by the data, when there is variance in quality; however there are actually strong costs of reproduction (so strong actually that they are deterministic and that the probability to survive is a direct function of the number of eggs produced)

      We would like to thank the reviewer for these comments. We have added detail to our methodology section so our models and rationale are more clear. Please note that our simulations only take the experimental effect of brood size on parental survival into account. Our model does not incorporate quality effects. The reviewer is right that the relationship between quality and the effects exposed by manipulating brood size can take many forms and this is a very interesting topic, but not one we aimed to tackle in our manuscript. In terms of quality we make two points: (1) overall quality effects connecting reproduction and parental survival are present, (2) these effects are opposite in direction to the effects when reproduction is manipulated and similar in magnitude. We do not go further than that in interpreting our results. The reviewer is correct, however, that we do suggest and repeat suggestions by others that quality can also mask the trade-off in some individuals or circumstances (L74-76, L95-98 & L286-289), but we do not quantify this, as it is dependent on the unknown relationship between quality and the response to the manipulation. A focussed set of experiments in that context would be interesting and there are some data that could get at this, i.e. the relationship between produced clutch size and the relative effect of the manipulation (now included L287-290). Such information is, however, not available for all studies and, although we explored the possibility of analysing this, currently this is not possible with adequate confidence and there is the possible complexity of non-linear effects. We have added this rationale in our revision (L259-265).

      Moreover, it seems to me that the costs of reproduction are a concept closely related to generation time. Looking beyond the individual allocative (and other individual components of the trade-off) cost of reproduction and towards a populational negative relationship between survival and reproduction, we have to consider the intra-population slow fast continuum (some types of individuals survive more and reproduce less (are slower) than other (which are faster)). This continuum is associated with a metric: the generation time. Some individuals will produce more eggs and survive less in a given time-period because this time-period corresponds to a higher ratio of their generation time (Gaillard and Yoccoz, 2003; Gaillard et al., 2005). It seems therefore important to me, to control for generation time and in general to account for the time-step used for each population studied when analysing costs of reproduction. The data used in this manuscript is not just clutch size and survival rates, but clutch size per year (or another time step) and annual (or other) survival rates.

      The reviewer is right that this is interesting. There is a longstanding unexplained difference in temperate (seasonal) and tropical reproductive strategies. Most of our data come from seasonal breeders, however. Although there is some variation in second brooding and such, these species mostly only produce one brood. We do agree that a wider consideration here is relevant, but we are not trying to explain all of life history in our paper. It is clearly the case that other factors will operate and the opportunity for trade-offs will vary among species according to their respective life histories. However, our study focuses on the two most fundamental components of fitness – longevity and reproduction – to test a major hypothesis in the field, and we uncover new relationships that contrast with previous influential studies and cast doubt on previous conclusions. We question the assumed trade-off between reproduction and annual survival. We show that quality is important and that the effect we find in experimental studies is so small that it can only explain between-species patterns but is unlikely to be the selective force that constrains reproduction within species. We do agree that there is a lot more work that can be done in this area. We hope we are contributing to the field, by questioning this central trade-off. We have incorporated some of the reviewers suggestions in the revision (L309-315). We have added Figure 5 to make clear where we are able to reach solid conclusions and the evidence on which these are based as clearly as possible in an easily accessible format.

      Finally, it is important to relate any study of the costs of reproduction in a context of individual heterogeneity (in quality for instance), to the general problem of the detection of effects of individual differences on survival (see, e.g., Fay et al., 2021). Without an understanding of the very particular statistical behaviour of survival, associated to an event that by definition occurs only once per life history trajectory (by contrast to many other traits, even demographic, where the corresponding event (production of eggs for reproduction, for example) can be measured several times for a given individual during its life history trajectory).

      Thank you for raising this point. The reviewer is right that heterogeneity can dampen or augment selection. Note that by estimating the effect of quality here we give an example of how heterogeneity can possibly do exactly this. We thank the reviewer for raising that we should possibly link this to wider effects of heterogeneity and we have added to our discussion of how our results play into the importance of accounting for among-individual heterogeneity (L252-256).

      References:

      Fay, R. et al. (2021) 'Quantifying fixed individual heterogeneity in demographic parameters: Performance of correlated random effects for Bernoulli variables', Methods in Ecology and Evolution, 2021(August), pp. 1-14. doi: 10.1111/2041-210x.13728.

      Gaillard, J.-M. et al. (2005) 'Generation time: a reliable metric to measure life-history variation among mammalian populations.', The American naturalist, 166(1), pp. 119-123; discussion 124-128. doi: 10.1086/430330.

      Gaillard, J.-M. and Yoccoz, N. G. (2003) 'Temporal Variation in Survival of Mammals: a Case of Environmental Canalization?', Ecology, 84(12), pp. 3294-3306. doi: 10.1890/02-0409.

      van Noordwijk, A. J. and de Jong, G. (1986) 'Acquisition and Allocation of Resources: Their Influence on Variation in Life History Tactics', American Naturalist, p. 137. doi: 10.1086/284547.

      Reviewer #3 (Public Review):

      The authors present here a comparative meta-analysis analysis designed to detect evidence for a reproduction/ survival trade-off, central to expectations from life history theory. They present variation in clutch size within species as an observation in conflict with expectations of optimisation of clutch size and suggest that this may be accounted for from weak selection on clutch size. The results of their analyses support this explanation - they found little evidence of a reproduction - survival trade-off across birds. They extrapolated from this result to show in a mathematical model that the fitness consequences of enlarged clutch sizes would only be expected to have a significant effect on fitness in extreme cases, outside of normal species' clutch size ranges. Given the centrality of the reproduction-survival trade-off, the authors suggest that this result should encourage us to take a more cautious approach to applying concepts the trade-off in life history theory and optimisation in behavioural ecology more generally. While many of the findings are interesting, I don't think the argument for a major re-think of life history theory and the role of trade-offs in fitness maximisation is justified.

      The interest of the paper, for me, comes from highlighting the complexities of the link between clutch size and fitness, and the challenges facing biologists who want to detect evidence for life history trade-offs. Their results highlight apparently contradictory results from observational and experimental studies on the reproduction-survival trade-off and show that species with smaller clutch sizes are under stronger selection to limit clutch size.

      Unfortunately, the authors interpret the failure to detect a life history trade-off as evidence that there isn't one. The construction of a mathematical model based on this interpretation serves to give this possible conclusion perhaps more weight than is merited on the basis of the results, of this necessarily quite simple, meta-analysis. There are several potential complicating factors that could explain the lack of detection of a trade-off in these studies, which are mentioned and dismissed as unimportant (lines 248-250) without any helpful, rigorous discussion. I list below just a selection of complexities which perhaps deserve more careful consideration by the authors to help readers understand the implications of their results:

      We would like to thank the reviewer for their thoughtful response and summary of the findings that we also agree are central to our study. The reviewer also highlights areas where our manuscript could benefit from a deeper consideration and we have added detail accordingly to our revised discussion.

      We would like to highlight that we do not interpret the failure to detect a trade-off as evidence that there is not one. First, and importantly, we do find a trade-off but show this is only incurred when individuals produce a clutch beyond their optimal level. Second, we also state on lines 322-326 that the lack of evidence to support trade-offs being strong enough to drive variation in clutch size does not necessarily mean there are no costs of reproduction.

      The statement that we have constructed a mathematical model based on the interpretation that we have not found a trade-off is, again, factually incorrect. We ran these simulations because the opposite is true – we did find a trade-off. There is a significant effect of clutch size when manipulated on annual parental survival. We benefit from our unique analysis allowing for a quantitative fitness estimate from the effect size on annual survival (as this is expressed on a per-egg basis). This allowed us to ask whether this quantitative effect size can alone explain why reproduction is constrained, and we evaluate this using simulations. From these simulations we find that this effect size is too small to explain the constraint, so something else must be going on, and we do spend a considerable amount of text discussing the possible explanations (L202-215). Note that the possibly most parsimonious conclusion here is that costs of reproduction are not there, or simply small, so we also give that explanation some thought (L221-224 and L315-331).

      We are disappointed by the suggestion that we have dismissed complicating factors that could prevent detection of a trade-off, as this was not our intention. We were aiming to highlight that what we have demonstrated to be an apparent trade-off can be explained through other mechanisms, and that the trade-off between clutch size and survival is not as strong in driving within-species variation in clutch size as previously assumed. We have added further discussion to our revised manuscript to make this clear and give readers a better understanding of the complexity of factors associated with life-history theory, including the addition of a decision tree (Figure 5).

      • Reproductive output is optimised for lifetime reproductive success and so the consequences of being pushed off the optimum for one breeding attempt are not necessarily detectable in survival but in future reproductive success (and, therefore, lifetime reproductive success).

      We agree this is a valid point, which is mentioned in our manuscript in terms of alternative stages where the costs of reproduction might be manifested (L316-320). We would also like to highlight that , in our simulations, the change in clutch size (and subsequent survival cost) was assumed for the lifetime of the individual, for this very reason.

      • The analyses include some species that hatch broods simultaneously and some that hatch sequentially (although this information is not explicitly provided (see below)). This is potentially relevant because species which have been favoured by selection to set up a size asymmetry among their broods often don't even try to raise their whole broods but only feed the biggest chicks until they are sated; any added chicks face a high probability of starvation. The first point this observation raises is that the expectation of more chicks= more cost, doesn't hold for all species. The second more general point is that the very existence of the sequential hatching strategy to produce size asymmetry in a brood is very difficult to explain if you reject the notion of a trade-off.

      We agree with the reviewer that the costs of reproduction can be absorbed by the offspring themselves, and may not be equal across offspring (we also highlight this at L317-318 in the manuscript). However, we disagree that for some species the addition of more chicks does not equate to an increase in cost, though we do accept this might be less for some species. This is, however, difficult to incorporate into a sensible model as the impacts will vary among species and some species do also exhibit catch-up growth. So, without a priori knowledge on this, we kept our model simple to test whether the effect on parental survival (often assumed to be a strong cost) can explain the constraint on reproductive effort, and we conclude that it does not.

      We would also like to make clear that we are not rejecting the notion of a trade-off. Our study shows evidence that a trade-off between survival and reproductive effort probably does not drive within-species variation in clutch size. We do explicitly say this throughout our manuscript, and also provide suggestions of other areas where a trade-off may exist (L317-320). The point of our study is not whether trade-offs exist or not, it is whether there is a generalisable across-species trend for a trade-off between reproductive effort and survival – the most fundamental trade-off in our field but for which there is a lack of conclusive evidence within species. We believe the addition of Figure 5 to our reviewed manuscript also makes this more evident.

      • For your standard, pair-breeding passerine, there is an expectation that costs of raising chicks will increase linearly with clutch size. Each chick requires X feeding visits to reach the required fledge weight. But this is not the case for species which lay precocious chicks which are relatively independent and able to feed themselves straight after hatching - so again the relationship of care and survival is unlikely to be detectable by looking at the effect of clutch size but again, it doesn't mean there isn't a trade-off between breeding and survival.

      Precocial birds still provide a level of parental care, such as protection from predators. Though we agree that the level of parental care in provisioning food (and in some cases in all parental care given) is lower in precocial than altricial birds, this would only make our reported effect size for manipulated birds to be an underestimate. Again, we would like to draw the reviewer’s attention to the fact we did detect a trade-off in manipulated birds and we do not suggest that trade-offs do not exist. The argument the reviewer suggests here does not hold for unmanipulated birds, as we found that birds that naturally lay larger clutch sizes have higher survival.

      • The costs of raising a brood to adulthood for your standard pair-breeding passerine is bound to be extreme, simply by dint of the energy expenditure required. In fact, it was shown that the basal metabolic rate of breeding passerines was at the very edge of what is physiologically possible, the human equivalent being cycling the Tour de France (Nagy et al. 1990). If birds are at the very edge of what is physiologically possible, is it likely that clutch size is under weak selection?

      If birds are at the very edge of what is physiologically possible, then indeed it would necessarily follow that if they increase the resource allocated in one area then expenditure in another area must be reduced. In many studies, however, the overall brood mass is increased when chicks are added and cared for in an experimental setting, suggesting that birds are not operating at their limit all the time. Our simulations show that if individuals increase their clutch size, the survival cost of reproduction counterbalances the fitness gained by increasing clutch size and so there is no overall fitness gain to producing more offspring. Therefore, selection on clutch size is constrained to the within-species level. We do not say in our manuscript that clutch size is under weak selection – we only ask why variation in clutch size is maintained if selection always favours high-producing birds.

      • Variation in clutch size is presented by the authors as inconsistent with the assumption that birds are under selection to lay the Lack clutch. Of course, this is absurd and makes me think that I have misunderstood the authors' intended point here. At any rate, the paper would benefit from more clarity about how variable clutch size has to be before it becomes a problem for optimality in the authors' view (lines 84-85; line 246). See Perrins (1965) for an exquisite example of how beautifully great tits optimise clutch size on average, despite laying between 5-12 eggs.

      We thank the reviewer for highlighting that our manuscript may be misleading in places, however, we are unsure which part of our conclusions the author is referring to here. The question we pose is “Why don’t all birds produce a clutch size at the population optimum?”, and is central to the decades-long field of life-history theory. Why is variation maintained? As the reviewer outlines, there is extensive variability, with some birds laying half of what other birds lay.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Title: while the costs of reproduction are possibly important in shaping optimal clutch size, it is not clear what you can about it given that you do not consider clutch / brood size effects on fitness prospects of the offspring.

      We have expanded on our discussion of how some costs may be absorbed by the offspring themselves. However, a change in offspring number rarely affects all offspring in the nest equally and there can even be quite stark differences; for example this will be most evident in species that produce sacrificial offspring. This effect will be further confounded by catch-up growth. There are mixed results in the literature on the effect of altering clutch size on offspring survival, with an increased clutch size through manipulation often increasing the number of recruits from a nest. We have focussed on the relationship between reproductive effort and survival because it is given the most weight in the field in terms of driving intra-specific variation in clutch size. We have altered our title to show we focus on the survival costs specifically: “The optimal clutch size revisited: separating individual quality from the parental survival costs of reproduction”.

      (2) L.11-12: I agree that this is true for birds, but this is phrased more generally here. Are you sure that that is justified?

      The trade-off between survival and reproductive effort has largely been tested experimentally through brood manipulations in birds as this provides a good system in which to test the costs and benefits of increasing parental effort. The work in this area has provided theory beyond just passerine birds, which are the most commonly manipulated group, to across-taxa theories. We are unaware of any study/studies that provide evidence that the reproduction/survival trade-off is generalisable across multiple species in any taxa. As such, we do believe this sentence is justified. An example is the lack of a consistent negative genetic correlation in populations of fruitflies, for example, that has also been hailed as a lack-of-cost paradigm. Furthermore, some mutants that live longer do so without a cost on reproduction.

      (3) L.13-14: Not sure what you mean with this sentence - too much info lacking.

      We have added some detail to this sentence.

      (4) L.14: it is slightly awkward to say 'parental investment and survival' because it is the survival effect that is usually referred to as the 'investment'. Perhaps what you want to say is 'parental effort and survival'?

      We have replaced “parental investment” with “reproductive effort”

      (5) L.15: you can omit 'caused'. Compared to control treatment or to reduced broods? Why not mention effects or lack thereof of brood reduction? And it would be good to also mention here whether effects were similar in the sexes.

      Please see our methodology where we state that we use clutch size as a continuous variable (we do not compare to control or reduced but include the absolute value of offspring in a logistic regression). The effects of a brood reduction are drawn from the same regression and so are opposite. Though we appreciate the detail here is lacking to fully comprehend our study, we would like to highlight this is the abstract and details are provided in the main text.

      (6) L. 15: I am not sure why you write 'however', as the finding that experimental and natural variation have opposite effects is in complete agreement with what is generally reported in the literature and will therefore surprise no one that is aware of the literature.

      We use “however” to highlight the change in direction of the effect size from the results in the previous sentence. We also believe that ours ise the first study that provides a quantitative estimate of this effect and that previous work is largely theoretical. The reviewer states that this is what is generally reported but it is not reported in all cases, as some relationships between reproductive effort and survival are negative (for the quality measurement, in correlational space, see Figure 1).

      (7) L.16: saying 'opposite to the effect of phenotypic quality' seems difficult to justify, as clutch size cannot be equated with phenotypic quality. Perhaps simply say 'natural variation in clutch size'? If that is what you are referring to.

      Please note we are referring to effect sizes here –- that is, the survival effect of a change in clutch size. By phenotypic quality we are referring to the fact that we find higher parental survival when natural clutch sizes are higher. It is not the case that we refer to quality only as having a higher clutch size. This is explicitly stated in the sentence you refer to. We have changed “effect” to “effect size” to highlight this further.

      (8) L.18: why do you refer to 'parental care' here? Brood size is not equivalent to parental care.

      Brood size manipulations are used to manipulate parental care. The effect on parental survival is expected to be incurred because of the increase in parental care. We have changed “parental care” to “reproductive effort” to reduce the number of terms we use in our manuscript.

      (9) L.18-19: suggest to tone down this claim, as this is no more than a meta-analytic confirmation of a view that is (in my view) generally accepted in the field. That does not mean it is not useful, just that it does not constitute any new insight.

      We are unaware of any other study which provides generalisable across-species evidence for opposite effects of quality and costs of reproduction. The work in this area is also largely theoretical and is yet to be supported experimemtally, especially in a quantitative fashion. It is surprising to us that the reviewer considers there to be general acceptance in a field, rather than being influenced by rigorous testing of hypotheses, made possible by meta-analysis, the current gold standard in our field.

      (10) L.21: what does 'parental effort' mean here? You seem to use brood size, parental care, parental effort, and parental investment interchangeably but these are different concepts. Daan et al (1990, Behaviour), which you already cite, provide a useful graph separating these concepts. Please adjust this throughout the manuscript, i.e. replace 'reproductive effort' with wording that reflect the actual variable you use.

      We have not used the phrase “parental effort” in this sentence. We agree these are different concepts but in this context are intertwined. For example, brood size is used to manipulate parental care as a result of increased parental effort. We do agree the manuscript would benefit from keeping terminology consistent throughout the manuscript and have adjusted this throughout.

      (11) L.23: perhaps add 'in birds' somewhere in this sentence? Some reference to the assumptions underlying this inference would also be useful. Two major assumptions being that birds adjusted their effort to the manipulation as they would have done had they opted for a larger brood size themselves, and that the costs of laying and incubating extra eggs can be ignored. And then there is the effect that laying extra eggs will usually delay the hatch date, which in many species reduces reproductive success.

      Though our study does exclusively use birds, birds have been used to test the survival/reproduction trade-off because they present a convenient system in which to experimentally test this. The conclusions from these studies have a broader application than in birds alone. We believe that although these details are important, they are not appropriate in the abstract of our paper.

      (12) L.26: how is this an explanation? It just repeats the finding.

      We intend to refer to all interpretations from all results presented in our manuscript. We have made this more clear by adjusting our writing.

      (13) L.27: I do not see this point. And 'reproductive output' is yet another concept, that can be linked to the other concepts in the abstract in different ways, making it rather opaque.

      We have changed “reproductive output” to “reproductive effort”.

      (14) L.33: here you are jumping from 'resources' to 'energetically' - it is not clear that energy is the only or main limiting resource, so why narrow this down to energy?

      We do not say energy is the only or main limiting resource. We simply highlight that reproduction is energetically demanding and so, intuitively, a trade-off with a highly energetically demanding process would be the focal place to observe a trade off. We have, though, replaced “energetically” with “resource”.

      (15) L.35-36: this is new to me - I am not aware of any such claims, and effects on the residual reproductive value could also arise through effects on future reproduction. The authors you cite did not work on birds, or (in their own study systems) presented results that as far as I remember warrant such a general statement.

      The trade-off between reproduction and survival is seminal to the disposable soma theory, proposed by Kirkwood. Though Kirkwood’s work was largely not focussed on birds, it had fundamental implications for the field of evolutionary ecology because of the generalisable nature of his proposed framework. In particular, it has had wide-reaching influence on how the biology of aging is interpreted. The readership of the journal here is broad, and our results have implications for that field too. The work of Kirkwood (many of the papers on this topic have over 2000 citations each) has been perhaps overly influential in many areas, so a link to how that work should be interpreted is highly relevant. If the reviewer is interested in this topic the following papers by one of the co-authors and others could be of interest, some of which we could not cite in the main manuscript due to space considerations:

      https://www.science.org/doi/pdf/10.1126/sciadv.aay3047

      https://agingcelljournal.org/Archive/Volume3/stochasticity_explains_non_genetic_inheritance_of_lifespan/

      https://pubmed.ncbi.nlm.nih.gov/21558242/

      https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.13444

      https://www.nature.com/articles/362305a0

      https://www.cell.com/trends/ecology-evolution/fulltext/S0169-5347(12)00147-4

      https://www.cell.com/cell/pdf/S0092-8674(15)01488-9.pdf

      https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-018-0562-z

      (16) L.42: this could be preceded with mentioning the limitations of observational data.

      We have added detail as to why brood manipulations are a good test for trade-offs and so this is now inherently implied.

      (17) L.42-43: why?

      We have added detail to this sentence.

      (18) L.45: do any of the references cited here really support this statement? I am certain that several do not - in these this statement is an assumption rather than something that is demonstrated. It may be useful to look at Kate Lessell's review on this that appeared in Etologia, I think in the 1990's. Mind however that 'reproductive effort' is operationally poorly defined for reproducing birds - provisioning rate is not necessarily a good measure of effort in so far as there are fitness costs.

      We have updated the references to support the sentence.

      (19) L.47: Given that you make this statement with respect to brood size manipulations in birds, it seems to me that the paper by Santos & Nakagawa is the only paper you should cite here. Given that you go on to analyze the same data it deserves to be discussed in more detail, for example to clarify what you aim to add to their analysis. What warrants repeating their analysis?

      Please first note that our dataset includes Santos & Nakagawa and additional studies, so it is not accurate to say we analyse the same data. Furthermore, we believe our study has implications beyond birds alone and so believe it is appropriate to cite the papers that do support our statement. We have added details to the methods to explicitly state what data is gathered from Santos & Nakagawa (it is only used to find the appropriate literature and data was re-extracted and re-analysed in a more appropriate way) and, separately, how we gathered the observational studies (see L352-381).

      (20) L.48: There are more possible explanations to this, which deserve to be discussed. For example, brood size manipulations may not have been that effective in manipulating reproductive effort - for example, effects on energy expenditure tend to be not terribly convincing. Secondly, the manipulations do not affect the effort incurred in laying eggs (which also biases your comparison with natural variation in clutch size). Thirdly, the studies by Boonekamp et al on Jackdaws found that while there was no effect of brood size manipulation on parental survival after one year of manipulation, there was a strong effect when the same individuals were manipulated in the same direction in multiple years. This could be taken to mean that costs are not immediate but delayed, explaining why single year manipulations generally show little effect on survival. It would also mean that most estimates of the fitness costs of manipulated brood size are not fit for purpose, because typically restricted to survival over a single year.

      Please see our response to this comment in the public reviews.

      Out of interest and because the reviewer mentioned “energy expenditure” specifically: There are studies that show convincing effects of brood size manipulation on parental energy expenditure. We do agree that there are also studies that show ceilings in expenditure. We therefore disagree that they “tend to be not terribly convincing”. Just a few examples:

      https://academic.oup.com/beheco/article/10/5/598/222025 (Figure 2)

      https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.12321 (Figure 1)

      https://besjournals.onlinelibrary.wiley.com/doi/full/10.1046/j.1365-2656.2000.00395.x (but ceiling at enlarged brood).

      (21) L.48, "or, alternatively, that individuals may differ in quality": how do you see that happening when brood size is manipulated, and hence 'quality' of different experimental categories can be assumed to be approximately equal? This point does apply to observational studies, so I assume that that is what you had in mind, but that distinction should be clear (also on line 54).

      We have made it more clear that we determine if there are quality effects separate to the costs of reproduction found using brood manipulation studies.

      (22) L.50: Drent & Daan, in their seminal paper on "The prudent parent" (1980, Ardea) were among the earliest to make this point and deserve to be cited here.

      We have added this citation

      (23) L.51, "relative importance": relative to what? Please be more specific.

      We have adjusted this sentence.

      (24) L.54: Vedder & Bouwhuis (2018, Oikos) go some way towards this point and should be explicitly mentioned with reference to the role of 'quality' effects on the association between reproductive output and survival.

      We have added this reference.

      (25) L.55: can you be more specific on what you want to do exactly? What you write here could be interpreted differently.

      We have added an explicit aim after this sentence to be more clear.

      (26) L.57: Here also a more specific wording would be useful. What does it mean exactly when you say you will distinguish between 'quality' and 'costs'?

      We have added detail to this sentence.

      (27) L.62: it should be clearer from the introduction that this is already well known, which will indirectly emphasize what you are adding to what we know already.

      We would argue this is not well known and has only been theorised but not shown empirically, as we do here.

      (28) L.62: you equate clutch size with 'quality' here - that needs to be spelled out.

      We refer to quality as the positive effect size of survival for a given clutch size, not clutch size alone. We appreciate this is not clear in this sentence and have reworded.

      (29) L.64: this looks like a serious misunderstanding to me, but in any case, these inferences should perhaps be left to the discussion (this also applies to later parts of this paragraph), when you have hopefully convinced readers of the claims you make on lines 62-63.

      We are unsure of what the reviewer is referring to as a misunderstanding. We have chosen this format for the introduction to highlight our results. If this is a problem for the editors we will change as required.

      (30) L.66: quantitative comparison of what?

      Comparison of species. We have changed the wording of this sentence

      (31) L.67-69: this should be in the methods.

      We have used a modern format which highlights our result. We are happy to change the format should the editors wish us to.

      (32) L.74-88: suggest to (re)move this entire paragraph, presenting inferences in such an uncritical manner before presenting the evidence is inappropriate in my view. I have therefore refrained from commenting on this paragraph.

      We have chosen a modern format which highlights our result. We are happy to change the format should the editors wish us to.

      (33) L.271, "must detail variation in the number of raised young": it is not sufficiently clear what this means - what does 'detail' mean in this context? And what does 'number of raised young' mean? The number hatched or raised to fledging?

      We have now made this clear.

      (34) L271, "must detail variation in the number of raised young": looking at table S4, it seems that on the basis of this criterion also brood size manipulation studies where details on the number of young manipulated were missing are excluded. I see little justification for this - surely these manipulations can for example be coded as for example having the average manipulation size in the meta-analysis data set, thereby contributing to tests of manipulation effects, but not to variation within the manipulation groups?

      We have done in part what the reviewer describes. We are specifically interested in the manipulation size, so we required this to compare effect sizes across species and categories, a key advance of our study and outlined in many places in our manuscript. Note, however, that we only need comparative differences, and have used clutch size metrics more generally to obtain a mean clutch size for a species, as well as SD where required. Please also note that our supplement details exactly why studies were excluded from our analysis, as is the preferred practice in a meta-analysis.

      (35) L.271, "referred to as clutch size": the point of this simplification is not clear to me why it is clearly confusing - why not refer to 'brood size' instead?

      Brood size and clutch size can be used interchangeably here because, in the observational studies, the individuals vary in the number of eggs produced, whereas for brood manipulations this obviously happens after hatching and brood is perhaps a more appropriate term, but we wanted to simplify the terminology used. However, we use clutch size throughout as the aim of our study is to determine why individuals differ in the number of offspring they produce, and so clutch size is the most appropriate term for that.

      (36) L.280: according to the specified inclusion criteria (lines 271/272) these studies should already be in the data set, so what does this mean exactly?

      Selection criteria refers to whether a given study should be kept for analysis or not. It does not refer to how studies were found. Please see lines 361-378 for details on how we found studies (additional details are also in the Supplementary Methods).

      (37) L.281: the use of 'quality' here is misleading - natural variation in clutch or brood size will have multiple causes, variation in phenotypic quality of the individuals and their environment (territories) is only one of the causes. Why not simply refer to what you are actually investigating: natural and experimental variation in brood size.

      We disagree, our study aims to separate quality effects from the costs of reproduction and we use observational studies to test for quality differences, though we make no inference about the mechanisms. We do not imply that the environment causes differences in quality, but that to directly compare observation and experimental groups, they should contain similar species. So, to be clear again, quality refers to the positive covariation of clutch size with survival. We feel that we explain this clearly in our study’s rationale and have also improved our writing in several sections on this to avoid any confusion (see responses to earlier comments by the three reviewers).

      (38) L.283, "in most cases": please be exact and say in xx out xx cases.

      We have added the number of studies for each category here.

      (39) L.283-285: presumably readers can see this directly in a table with the extracted data?

      Our data and code can be accessed with the following link: https://doi.org/10.5061/dryad.q83bk3jnk. We believe the data are too large to include as a table in the main text and are not essential in understanding the paper. Though we do believe all readers should have access to this information if they wish and so is publicly available.

      (40) L.293: there does not seem to be a table that lists the included studies and effect sizes. It is not uncommon to find major errors in such tables when one is familiar with the literature, and absence of this information impedes a complete assessment of the manuscript.

      We supplied a link to our full dataset and the code we used in Dryad with our submitted manuscript. We were also asked to supply our data during the review process and we again supplied a link to our dataset and code, along with a folder containing the data and code itself. We received confirmation that the reviewers had been given our data and code. We support open science and it was our intention that our dataset should be fully available to reviewers and readers. We believe the data are too large to include as a table in the main text and are not essential in understanding the paper. Our data and code are at https://doi.org/10.5061/dryad.q83bk3jnk.

      (41) L.293: from how many species?

      We have added this detail.

      (42) L.296, "longevity": this is a tricky concept, not usually reported in the studies you used, so please describe in detail what data you used.

      We have removed longevity as we did not use this data in our current version of the manuscript.

      (43) L. 298: again: where can I see this information?

      Our data and code can be accessed with the following link: https://doi.org/10.5061/dryad.q83bk3jnk. We did supply this information when we submitted our manuscript and again during the review process but we believe this was not passed onto the reviewers.

      (44) L. 304, "we used raw data": I assume that for the majority of papers the raw data were not available, so please explain how you dealt with this. Or perhaps this applies to a selection of the studies only? Perhaps the experimental studies?

      By raw data, we mean the absolute value of offspring in the nest. We have changed the wording of this sentence and added detail about whether the absolute value of offspring was not present for brood manipulation studies (L393-397).

      (45) L.304: When I remember correctly, Santos and Nakagawa examined effects of reducing and enlarging brood size separately, which is of importance because trade-off curves are unlikely to be linear and whether they are or not has major effects on the optimization process. But perhaps you tackled this in another way? I will read on.....

      You are correct that Santos & Nakagawa compared brood increases and reductions to control separately. Note that this only partially accounts non-linearity and it does not take into account the severity of the change in brood size. By using a logistic regression of absolute clutch size, as we have done, we are able to directly compare brood manipulations with experimental studies. Please see Supplementary Methods lines 11-12, where we have added additional detail as to why our approach is beneficial in this analysis.

      (46) L.319: what are you referring to exactly with "for each clutch size transformation"?

      We refer to the raw, standardised and proportional clutch size transformations. We have added detail here to be more clear.

      (47) L.319: is there a cost of survival? Perhaps you mean 'survival cost'? This would be appropriate for the experimental data, but not for the observational data, where the survival variation may be causally unrelated to the brood size variation, even if there is a correlation.

      We have changed “cost of survival” to “effect of parental survival”. We only intend to imply causality for the experimental studies. For observational studies we do not suggest that increasing clutch size is causal for increasing survival, only correlative (and hence we use the phrase “quality”).

      (48) L.320: please replace "parental effort" with something like 'experimental change in brood size'.

      We have changed “parental effort” to “reproductive effort”

      (49) L.321: due to failure of one or more eggs to hatch, and mortality very early in life, before brood sizes are manipulated, it is not likely that say an enlargement of brood size by 1 chick can be equated to the mean clutch size +1 egg / check. For example, in the Wytham great tit study, as re-analysed by Richard Pettifor, a 'brood size manipulation' of unmanipulated birds is approximately -1, being the number of eggs / chicks lost between laying and the time of brood size manipulation. Would this affect your comparisons?

      Though we agree these are important factors in determining what a clutch/brood size actually is for a given individual/pair, as this can vary from egg laying to fledging. We do not believe that accounting for this (if it was possible to do so) would significantly affect our conclusions, as observational studies are comparable in the fact that these birds would also likely see early life mortality of their offspring. It is also possibly the case that parents already factor in this loss, and so a brood manipulation still changes the parental care effort an individual has to incur.

      (50) L.332: instead of "adjusted" perhaps say 'mean centred'?

      We have implemented this suggestion.

      (51) L.345: this statement surprised me, but is difficult to verify because I could not locate a list of the included studies. However, to my best knowledge, most studies reporting brood size manipulation effects on parental survival had this as their main focus, in contrast to your statement.

      Our data and code can be accessed with the following link: https://doi.org/10.5061/dryad.q83bk3jnk. We did supply this information when we submitted our manuscript and again during the review process but we believe this was not passed onto the reviewers by the journal, although supplied by us on several occasions. We regret that the reviewer was impeded by this unfortunate communication failure, but we did our best to make the data available to the reviewers during the initial review process.

      (52) L.361-362: this seems a realistic approach from an evolutionary perspective, but we know from the jackdaw study by Boonekamp that the survival effect of brood size manipulation in a single year is very different from the survival effect of manipulating as in your model, i.e. every year of an individual's life the same manipulation. For very short-lived species this possibly does not make much difference, but for somewhat longer-lived species this could perhaps strongly affect your results. This should be discussed, and perhaps also explored in your simulations?

      Note that the Boonekamp study does not separate whether the survival effects are additive or

      multiplicative. As such, we do not know whether the survival effects for a single year manipulation are just small and hard to detect, or whether the survival effects are multiplicative. Our simulations assumed that the brood enlargement occurred every year throughout their lives. We have added some text to the discussion on the point you raise.

      (53) L.360: what is "lifetime reproductive fitness"? Is this different from just "fitness"?

      We have changed “lifetime reproductive fitness” to “lifetime reproductive output”.

      (54) L.363: when you are interested in optimal clutch size, why not also explore effects of reducing clutch size?

      As we find that a reduction in clutch size leads to a reduction in survival (for experimental studies), we already know that these individuals would have a reduced fitness return compared to reproducing at their normal level, and so we would not learn anything from adding this into our simulations. The interest in using clutch size enlargements is to find out why an individual does not produce more offspring than it does, and the answer is that it would not have a fitness benefit (unless its clutch size and survival rate combination is out of the bounds of that observable in the wild).

      (55) Fig.1 - using 'parental effort' in the y-axis label is misleading, suggest to replace with e.g. "clutch or brood size". Using "clutch size" in the title is another issue, as the experimental studies typically changed the number of young rather than the number of eggs.

      We have updated the figure axes to say “clutch size” rather than “parental effort”. Please see response to comment 35 where we explain our use of the term “clutch size” throughout this manuscript.

      (56) L.93 - 108: I appreciate the analysis in Table 1, in particular the fact that you present different ways of expressing the manipulation. However, in addition, I would like to see the results of an analysis treating the manipulations as factor, i.e. without considering the scale of the manipulation. This serves two purposes. Firstly, I believe it is in the interest of the field that you include a detailed comparison with the results of Santos & Nakagawa's analysis of what I expect to be largely the same data (manipulation studies only - for this purpose I would also like to see a comparison of effect size between the sexes). Secondly, there are (at least) two levels of meta-analysis, namely quantifying an overall effect size, and testing variables that potentially explain variation in effect size. You are here sort of combining the two levels of analysis, but including the first level also would give much more insight in the data set.

      Our main intention here was to improve on how the same hypothesis was approached by Santos & Nakagawa. We did this by improving our analysis (on a by “egg” basis) and by adding additional studies (i.e. more data). In this process mistakes are corrected (as we re-extracted all data, and did not copy anything across from their dataset – which was used simply to ensure we found the same papers); more recent data were also added, including studies missed by Santos & Nakagawa. This means that the comparison with Santos & Nakagawa becomes somewhat irrelevant, apart from maybe technical reasons, i.e. pointing out mistakes or limitations in certain approaches. We would not be able to pinpoint these problems clearly without considering the whole dataset, yet Santos & Nakagawa only had a small subset of the data that were available to us. In short, meta-analysis is an iterative process and similar questions are inevitably analysed multiple times and updated. This follows basic meta-analytic concepts and Cochrane principles. Except where there is a huge flaw in a prior dataset or approach (like we sometimes found and highlighted in our own work, e.g. Simons, Koch, Verhulst 2013, Aging Cell), in itself a comparison of the kind the reviewer suggests distracts from the biology. With the dataset being made available others can make these comparisons, if required. On the sex difference, we provide a comparison of effect sizes separated between both sexes and mixed sex in Table S2 and Figure S1.

      (57) L.93 - 108: a thing that does not become clear from this section is whether experimentally reducing brood size affects parental survival similarly (in absolute terms) as enlarging brood size. Whether these effects are symmetric is biologically important, for example because of its effect on clutch size optimization. In the text you are specific about the effects of increasing brood size, but the effect you find could in theory be due entirely to brood size reduction.

      We have added detail to make it clear that a brood reduction is simply the opposite trend. We use linear relationships because they serve a good approximation of the trend and provide a more rigorous test for an underlying relationship than would fitting nonlinear models. For many datasets there is not a range of chicks added for which a non-linear relationship could be estimated. The question also remains of what the shape of this non-linear relationship should be and is hard to determine a priori.

      We have added some discussion on this to our manuscript (L278-282), in response to an earlier comment.

      (58) L.103-107: this is perhaps better deferred to the discussion, because other potential explanations should also be considered. For example, there have been studies suggesting that small birds were provisioning their brood full time already, and hence had no scope to increase provisioning effort when brood size was experimentally increased.

      We agree this is a discussion point but we believe it also provides an important context for why we ran our simulations, and so we believe this is best kept brief but in place. We agree the example you give is relevant but believe this argument is already contained in this section. See line 121-123 “...suggesting that costs to survival were only observed when a species was pushed beyond its natural limits”.

      (59) L.103-107: this discussion sort of assumes that the results in Table 1 differ between the different ways that the clutch/brood size variation is expressed. Is there any statistical support for this assumption?

      We are unsure of what the reviewer means here exactly. Note that in each of the clutch size transformations, experimental and observational effect sizes are significantly opposite. For the proportional clutch size transformation, experimental and observation studies are both separately significantly different from 0.

      (60) L.104: at this point, I would like to have better insight into the data set. Specifically, a scatter plot showing the manipulation magnitude (raw) plotted against control brood size would be useful.

      Our data and code can be accessed with the following link: https://doi.org/10.5061/dryad.q83bk3jnk. We did supply this information when we submitted our manuscript and again during the review process but we believe this was not passed onto the reviewers by the journal.

      Thank you for this suggestion: this is a useful suggestion also to illustrate how manipulations are relatively stronger for species with smaller clutches, in line with our interpretation of the result presented in Figure 2. We have added Figure S1 which shows the strength of manipulation compared to the species average.

      (61) L. 107: this seems a bold statement - surely you can test directly whether effect size becomes disproportionally stronger when manipulations are outside the natural range, for example by including this characterization as a factor in the models in Table 1.

      It is hard to define exactly what the natural range is here, so it is not easy to factorise objectively, which is why we chose not to do this. However, it is clear that for species with small clutches the manipulation itself is often outside the natural range. Thank you for your suggestion to include a figure for this as it is clear manipulations are stronger in species with smaller clutches. We attribute this to species being forced outside their natural range. We consider our wording makes it clear that this is our interpretation of our findings and we therefore do not think this is a bold statement, especially as it fits with how we interpret our later simulations.

      (62) Fig.3, legend: the term 'node support' does not mean much to me, please explain.

      Node support is a value given in phylogenetic trees to dictate the confidence of a branch. In this case, values are given as a percentage and so can translate to how many times out of 100 the estimate of the phylogeny gives the same branching. Our values are low, as we have relatively few species in our meta-analysis.

      (63) Fig.3: it would be informative when you indicate in this figure whether the species contributed to the experimental or the observational data set or both.

      We have added into Fig 3 whether the species was observational, experimental or both.

      (64) L.139: the p-value refers to the interaction between species clutch size and treatment (observational vs. experimental), but it appears that no evidence is presented for the correlation being significant in either observational or experimental studies.

      We agree that our reporting of the effect size could be misinterpreted and have added detail here. The statistic provided describes the slopes are significantly different between observational and experimental, implying there are differences between the slopes of small and large clutch-laying species.

      (65) L.140: I am wondering to what extent these correlations, which are potentially interesting, are driven by the fact that species average clutch size was also used when expressing the manipulation effect. In other words, to what extent is the estimate on the Y-axis independent from the clutch size on the X-axis? Showing that the result is the same when using survival effect sizes per manipulation category would considerably improve confidence in this finding.

      We are unsure what the reviewer means by “per manipulation category”. Please also note that we have used a logistic regression to calculate our effect sizes of survival, given a unit increase in reproductive effort. So, for example, if a population contained birds that lay 2,3 or 4 eggs, provided that the number of birds which survived and died in each category did not change, if we changed the number of eggs raised to 10,11 or 12, respectively, then our effect size would be the same. In this way, our effect sizes are independent of the species’ average clutch size.

      (66) L.145: when I remember correctly, Santos & Nakagawa considered brood size reduction and enlargement separately. Can this explain the contrasting result? Please discuss.

      You are correct, in that Santos & Nakagawa compared reductions and enlargements to controls separately. However, we found some mistakes in the data extracted by Santos & Nakagawa that we believe explain the differences in our results for sex-specific effect sizes. We do not feel that highlighting these mistakes in the main text is fair, useful or scientifically relevant, as our approach is to improve the test of the hypothesis.

      (67) L.158-159: looking at table S2 it seems to me you have a whole range of estimates. In any case, there is something to be said for taking the estimates for females because it is my impression (and experience) that clutch size variation in most species is a sex-linked trait, in that clutch size tends to be repeatable among females but not among males.

      We agree that, in many cases, the female is the one that ultimately decides on the number of chicks produced. We did also consider using female effect sizes only, however, we decided against this for the following reasons: (1) many of the species used in our meta-analysis exhibit biparental care, as is the case for many seabirds, and so using females only would bias our results towards species with lower male investment; in our case this would bias the results towards passerine species. (2) it has also been shown that, as females in some species are operating at their maximum of parental care investment, it is the males who are able to adjust their workload to care for extra offspring. (3) we are ultimately looking at how many offspring the breeding adults should produce, given the effort it costs to raise them, and so even if the female chooses a clutch size completely independently of the male, it is still the effort of both parents combined that determines whether the parents gain an overall fitness benefit from laying extra eggs. (4) some studies did not clearly specify male or female parental survival and we would not want to reduce our dataset further.

      (68) L.158-168: please explain how you incorporated brood size effects on the fitness prospects of offspring, given that it is a very robust finding of brood size manipulation studies that this affects offspring growth and survival.

      We would argue this is near-on impossible to incorporate into our simulations. It is unrealistic to suggest that incorporating offspring growth into our simulations would add insight, as a change in offspring number rarely affects all offspring in the nest equally and there can even be quite stark differences; for example, this will be most evident in species that produce sacrificial offspring. This effect will be further confounded by catch-up growth, for example, and so it is likely that increased sibling competition from added chicks alters offspring growth trajectories, rather than absolute growth as the reviewer suggests. There are mixed results in the literature on the effect of altering clutch size on offspring survival, with an increased clutch size through manipulation often increasing the number of recruits from a nest. It would be interesting, however, to explore this further using estimates from the literature, but this is beyond our current scope, and would in our initial intuition not be very accurate. It would be interesting to explore how big the effect on offspring should be to constrain effect size strongly. Such work would be more theoretical. The point of our simple fitness projections here is to aid interpretation of the quantitative effect size we estimated.

      (69) L.163: while I can understand that you select the estimate of -0.05 for computational reasons, it has enormous confidence intervals that also include zero. This seems problematic to me. However, in the simulations, you also examined the results of selecting -0.15, which is close to the lower end of the 95% C.I., which seems worth mentioning here already.

      Thank you for this suggestion. Yes, indeed, our range was chosen based on the CI, and we have now made this explicit in the manuscript.

      (70) L.210: defined in this way, in my world this is not what is generally taken to be a selection differential. Is what you show not simply scaled lifetime reproductive success?

      As far as we are aware, a selection differential is the relative change between a given group and the population mean, which is what we have done here. We appreciate this is a slightly unusual context in which to place this, but it is more logical to consider the individuals who produce more offspring as carrying a potential mutation for higher productivity. However, we believe that “selection differential” is the best terminology for the statistic we present. We also detail in our methodology how we calculate this. We have adjusted this sentence to be more explicit about what we mean by selection differential.

      (71) L.177-180: is this not so because these parameter values are closest to the data you based your estimates on, which yielded a low estimate and hence you see that here also?

      We are unsure of what exactly the reviewer means here. The effect sizes for our exemplar species were predicted from each combination of clutch size and survival rate. Note that we used a range of effect sizes, higher than that estimated in our meta-analysis, to explore a large parameter space and that these same conclusions still hold.

      (72) L.191-194: these statements are problematic, because based on the assumption that an increase in brood size does not impact the fitness prospects of the offspring, and we know this assumption to be false.

      Though we appreciate that some cost is often absorbed by the offspring themselves, we are unaware of any evidence that these costs are substantial and large enough to drive within-species variation in reproductive effort, though for some specific species this may be the case. However, in terms of explaining a generalisable, across-species trend, the fitness costs incurred by a reduction in offspring quality are unlikely to be significantly larger than the survival costs to reproduce. We also find it highly unlikely the cost to fitness incurred by a reduction in offspring quality is large enough to counter-balance the effect of parental quality that we find in our observational studies. We do also discuss other costs in our discussion.

      (73) L.205: here and in other places it would be useful to be more explicit on whether in your discussion you are referring to observational or experimental variation.

      We have added this detail to our manuscript. Do note that many of our conclusions are drawn by the combination of results of experimental and observational studies. We believe the addition of Figure 5 makes this more clear to the reader.

      (74) L.225: this may be true (at least, when we overlook the misuse of the word 'quality' here), but I would expect some nuance here to reflect that there is no surprise at all in this result as this pattern is generally recognized in the literature and has been the (empirical) basis for the often-repeated explanation of why experiments are required to demonstrate trade-offs. On a more quantitative level, it is worth mentioning the paper of Vedder & Bouwhuis (2017, Oikos) that essentially shows the same thing, i.e. a positive association between reproductive output and parental survival.

      We have added some discussion on this point, including adding the citation mentioned. However, we would like to highlight that our results demonstrate that brood manipulations are not necessarily a good test of trade-offs, as they fail to recognise that individuals differ in their underlying quality. Though we agree that this result should not necessarily be a surprising one, we have also not found it to be the case that differences in individual quality are accepted as the reason that intra-specific clutch size is maintained – in fact, we find that it is most commonly argued that when costs of reproduction are not identifiedit is concluded that the costs must be elsewhere – yet we cannot find conclusive evidence that the costs of reproduction (wherever they lie) are driving intra-specific variation in reproductive effort. Furthermore, some studies in our dataset have reported negative correlations between reproductive effort and survival (see observational studies, Figure 1).

      (75) L.225-226: perhaps present this definition when you first use the term.

      We have added more detail to where we first use and define this term to improve clarity (L57-58).

      (76) L.227-228, "currently unknown": this statement surprised me, given that there is a plethora of studies showing within-population variation in clutch size to depend on environmental conditions, in particular the rate at which food can be gathered.

      We mean to question that if an individual is “high quality”, why is it not selected for? We have rephrased, to improve clarity.

      (77) L.231: this seems no more than a special case of the environmental effect you mention above.

      We think this is a relevant special case, as it constitutes within-individual variation in reproduction that is mistaken for between-individual variation. This is a common problem in our field, that we feel needs adressing. We only have between-individual variation here in our study on quality, and by highlighting this we show that there might not be any variation between individuals, but this could come about fully (doubtful) or partly (perhaps likely) due to terminal effects.

      (78) L235-236: but apparently depending on how experimental and natural variation was expressed? Please specify here.

      We are not sure what results the reviewer is referring to here, as we found the same effect (smaller clutch laying species are more severely affected by a change in clutch size) for both clutch size expressed as raw clutch size and standardised clutch size.

      (79) L.237: the concept of 'limits' is not very productive here, and it conflicts with the optimality approach you apply elsewhere. What you are saying here can also be interpreted as there being a non-linear relationship between brood size manipulation and parental survival, but you do not actually test for that. A way to do this would be to treat brood size reduction and enlargement separately. Trade-off curves are not generally expected to be linear, so this would also make more sense biologically than your current approach.

      We have replaced “limits” with “optima”. We believe our current approach of treating clutch size as a continuous variable, regardless of manipulation direction, is the best approach, as it allows us to directly compare with observational studies and between species that use different manipulations (now nicely illustrated by the reviewer’s suggested Figure S1). Also note that transforming clutch size to a proportion of the mean allows us to account for the severity in change in clutch size. We also do not believe that treating reductions and enlargements separately accounts for non-linearity, as either we are separating this into two linear relationships (one for enlargements and one for reductions) or we compare all enlargements/reductions to the control, as in Santos & Nakagawa 2012, which does not take into account the severity of the increase, which we would argue is worse for accounting for non-linearity. Furthermore, in the cases where the manipulation involved one offspring only, we also cannot account for non-linearity.

      (80) L.239: assuming birds are on average able to optimize their clutch size, one could argue that any manipulation, large or small, on average forces birds to raise a number of offspring that deviates from their natural optimum. At this point, it would be interesting to discuss in some detail studies with manipulation designs that included different levels of brood size reduction/enlargement.

      We agree with the reviewer that any manipulation is changing an individual’sclutch size away from its own individual optima, which we have argued also means brood manipulations are not necessarily a good test of whether a trade-off occurs in the wild (naturally), as there could be interactions with quality – we have now edited to explicitly state this (L299-300).

      (81) L.242-244: when you choose to maintain this statement, please add something along the lines of "assuming there is no trade-off between number and quality of offspring".

      As explained above, though we agree that the offspring may incur some of the cost themselves, we are not aware of any evidence suggesting this trade-off is also large enough to drive intra-specific variation in clutch size across species. Furthermore, in the context here, the trade-off between number and quality of offspring would not change our conclusion – that the fitness benefit of raising more offspring is offset by the cost on survival. We have added detail on the costs incurred by offspring earlier in our discussion (L309-315). The addition of Figure 5 should help interpret these data.

      (82) L.253: instead of reference 30 the paper by Tinbergen et al in Behaviour (1990) seems more appropriate.

      We believe our current citation is relevant here but we have also added the Tinbergen et al (1990) citation.

      (83) L.253-254: such trade-offs may perfectly explain variation in reproductive effort within species if we were able to estimate cost-benefit relations for individuals. In fact, reference 29 goes some way to achieve this, by explaining seasonal variation in reproductive effort.

      We are unaware of any quantitative evidence that any combination of trade-offs explains intra-specific variation in reproductive effort, especially as a general across-species trend.

      (84) L.255: how does one demonstrate "between species life-history trade-offs"? The 'trade-off' between reproductive rate and survival we observe between species is not necessarily causal, and hence may not really be a trade-off but due to other factors - demonstrating causality requires some form of experimental manipulation.

      Between-species trade-offs are well established in the field, stemming from GC Williams’ seminal paper in 1966, and for example in r/K selection theory. It is possible to move from these correlations to testing for causation, and this is happening currently by introducing transgenes (genes from other species) that promote longevity into shorter-lived species (e.g., naked-mole rat genes into mice). As yet it is unclear what the effects on reproduction are.

      (85) L.256: it is quite a big claim that this is a novel suggestion. In fact, it is a general finding in evolutionary theory that fitness landscapes tend to be rather flat at equilibrium.

      It is important to note here that we simulate the effect size found, and hence this is the novel suggestion, that because the resulting fitness landscape is relatively flat there is no directional selection observed. We did not intend to suggest our interpretation of flat fitness landscapes is novel. We have changed the phrasing of this sentence to avoid misinterpretation.

      (86) L.259: why bring up physiological 'costs' here, given that you focus on fitness costs? Do you perhaps mean fitness costs instead of physiological costs? Furthermore, here and in the remainder of this paragraph it would be useful to be more specific on whether you are considering natural or experimental variation.

      The cost of survival is a physiological cost incurred by the reduction of self-maintenance as a result of lower resource allocation. This is one arm of fitness; we feel it would be confusing here to talk about costs to fitness, as we do not assess costs to future reproduction (which formed the large part of the critique offered by the reviewer). We would like to highlight that the aim of this manuscript was to separate costs of reproduction from the effects of quality, and this is why we have observational and experimental studies in one analysis, rather than separately. Our conclusion that we have found no evidence that the survival cost to reproduce drives within-species variation in clutch size comes both from the positive correlation found in the observational studies and our negligible fitness return estimates in our simulations. We therefore, do not believe it is helpful to separate observational and experimental conclusions throughout our manuscript, as the point is that they are inherently linked. We hope that with the addition of Figure 5 that this is more clear.

      (87) L.262: The finding that naturally more productive individuals tend to also survive better one could say is by definition explained by variation in 'quality', how else would you define quality?

      We agree, and hence we believe quality is a good term to describe individuals who perform highly in two different traits. Note that we also say the lack of evidence that trade-offs drive intra-specific variation in clutch size also potentially suggests an alternative theory, including intra-specific variation driven by differences in individual quality.

      Supplementary information

      (88) Table S1: please provide details on how the treatment was coded - this information is needed to derive the estimates of the clutch size effect for the treatments separately.

      We have added this detail.

      (89) Table S2: please report the number of effect sizes included in each of these models.

      We have added this detail.

      (90) Table S4: references are not given. Mentioning species here would be useful. For example, Ashcroft (1979) studied puffins, which lay a single egg, making me wonder what is meant when mentioning "No clutch or brood size given" as the reason for exclusion. A few more words to explain why specific studies were excluded would be useful. For example, what does "Clutch size groups too large" mean? It surprises me that studies are excluded because "No standard deviation reported for survival" - as the exact distribution is known when sample size and proportion of survivors is known.

      We have updated this table for more clarity.

      (91) Fig.S1: please plot different panels with the same scale (separately for observational and experimental studies). You could add the individual data points to these plots - or at least indicate the sample size for the different categories (female, male, mixed).

      We have scaled all panels to have the same y axis and added sample sizes to the figure legend.

      (92) Fig.S3: please provide separate plots for experimental and observational studies, as it seems entirely plausible that the risk of publication bias is larger for observational studies - in particular those that did not also include a brood size manipulation. At the same time, one can wonder what a potential publication bias among observational studies would represent, given that apparently you did not attempt to collect all studies that reported the relevant information.

      We have coloured the points for experimental and observational studies. Note that a study is an independent effect size and, therefore, does not indicate whether multiple data (i.e., both experimental and observational studies) came from the same paper. As we detail in the paper and above in our reviewer responses, we searched for observational studies from species used in the experimental studies to allow direct comparison between observational and experimental datasets.

      Reviewer #2 (Recommendations For The Authors):

      I strongly recommend improving the theoretical component of the analysis by providing a solid theoretical framework before, from it, drawing conclusions.

      This, at a minimum, requires a statistical model and most importantly a mechanistic model describing the assumed relationships.

      We thank the reviewer for highlighting that our aims and methodology are unclear in places. We have added detail to our model and simulation descriptions and have improved the description of our rationale. We also feel the failure of the journal to provide code and data to the reviewers has not helped their appreciation of our methodology and use of data.

      Because the field uses the same wording for different concepts and different wording for the same concept, a glossary is also necessary.

      We thank the reviewer for raising this issue. During the revision of this manuscript, we have simplified our terminology or given a definition, and we believe this is sufficient for readers to understand our terminology.

      Reviewer #3 (Recommendations For The Authors):

      • The files containing information of data extracted from each study were not available so it has not been possible to check how any of the points raised above apply to the species included in the study. The ms should include this file on the Supp. Info as is standard good practice for a comparative analysis.

      We supplied a link to our full dataset and the code we used in Dryad with our submitted manuscript. We were also asked to supply our data during the review process and we again supplied a link to our dataset and code, along with a folder containing the data and code itself. We received confirmation that the reviewers had been given our data and code. We support open science and it was our intention that our dataset should be fully available to reviewers and readers. We believe the data is too large to include as a table in the main text and is not essential in understanding the paper. Our data and code are at https://doi.org/10.5061/dryad.q83bk3jnk.

      • For clarity, refer to 'the effect size of clutch size on survival" rather than simply "effect size". Figures 1 and 2 require cross-referencing with the main text to understand the y-axis.

      We have added detail to the figure legend to increase the interpretability of the figures.

      • Silhouettes in Figure 3 (or photos) would help readers without ornithological expertise to understand the taxonomic range of the species included in the analyses.

      We have added silhouettes into Figure 3.

      • Throughout the discussion: superscripts shouldn't be treated as words in a sentence so please add authors' names where appropriate.

      We have added author names and dates where required.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This valuable paper presents a new protocol for quantifying tRNA aminoacylation levels by deep sequencing. The improved methods for discrimination of aminoacyl-tRNAs from non-acylated tRNAs, more efficient splint-assisted ligation to modify the tRNAs' ends for the following RT-PCR reaction, and the use of an error-tolerating mapping algorithm to map the tRNA sequencing reads provide new tools for anyone interested in tRNA concentrations and functional states in different cells and organisms. The results and conclusions are solid with well-designed tests to optimize the protocol under different conditions.

      Public Reviews:

      We thank both reviewers for suggestions, feedback and improvements. We address these pointwise below.

      Reviewer #1 (Public Review):

      Summary:

      The manuscript of Davidsen and Sullivan describes an improved tRNA-seq protocol to determine aminoacyl-tRNA levels. The improvements include: (i) optimizing the Whitfeld or oxidation reaction to select aminoacyl-tRNAs from oxidation-sensitive non-acylated tRNAs; (ii) using a splint-assisted ligation to modify the tRNAs' ends for the following RT-PCR reaction; (iii) using an error-tolerating mapping algorithm to map the tRNA sequencing reads that contain mismatches at modified nucleotides.

      Strengths:

      The two steps, the oxidation, and the splint-assisted ligation are yield-diminishing steps, thus the protocol of Davidsen and Sullivan is an important improvement of the current protocols to enhance the quantification of aminocyl-tRNAs.

      Weaknesses:

      The oxidation and the selection of aminoacyl-tRNA is the first step in all protocols. Thereafter they differ on whether blunt ligation, hairpin (DM-tRNA-seq, YAMAT-seq, QuantM-seq, mim tRNA-seq, LOTTE tRNA-seq), or splint ligation is used and finally what detection method is applied (i-tRAP, tRNA microarrays). What is the correlation to those alternative approaches (e.g. i-tRAP (PMID 36283829), tRNA microarrays (PMID: 31263264) etc.)? What is the correlation with other approaches with which this improved protocol shares some steps (DM-tRNA-seq, mim-tRNA-seq)?

      We appreciate the fair assessment and fully agree that our work would benefit from a large comparison between all known tRNA-seq methods. We did directly compare many elements of our method to those of other methods (e.g. ligation efficiency and barcode bias); however, as noted by the reviewer we did not perform a direct end-to-end comparison with all other methods. An ideal comparison would require running several different sample conditions and technical replicates through our protocol and repeating the process across a half dozen or so other methods as they are described. Unfortunately, this approach is unlikely to be feasible since each method uses different oligos, reagents and kits, and all would have to be acquired at substantial cost. Some methods also rely on other detection methods such as microarrays, qPCR, or Illumina sequencing, which would also make this goal all the more onerous. There are also different pipelines for data processing that, in some instances, make the final results hard to compare. In short, this would be a monumental and expensive task to do comprehensively. We also worry that, even if these experiments were conducted such that some variables were concluded to be superior, they could still be challengeable based on perceived or actual protocol differences from the prior art. In summary, we think that an overall comparison with each method would be ideal, but practical concerns limit us to optimizing and comparing the variables that we found to be most prone to introducing bias in the results.

      For methods that measure tRNA expression levels (DM-tRNA-seq, YAMAT-seq, QuantM-seq, mim-tRNA-seq, LOTTE tRNA-seq etc.) there are some fundamental problems regarding absolute quantification using NGS that preclude simple comparisons. These problems are well known in the field of microRNA (Fuchs et al. (2012) [PMID: 25942392]) and arise due to several factors introduced during processing steps such as purification, ligation, reverse transcription and amplification. With the lack a “true” quantitation benchmark it would be difficult to make quantitative claims from each.  Therefore, in our own work we benchmark tRNA expression levels for sample-to-sample reproducibility (i.e. precision) as further explained in the response to reviewer #2.

      For comparison to methods that measure tRNA charge we did have an opportunity to compare our results with those of another study. To this end, we have added a figure comparing the baseline charge found using our method and the one used in Evans et al. (Revised manuscript Figure 2—figure supplement 9). This comparison finds broadly similar results for tRNA charge, including similar trends for a subset of Glu, Ser and Pro codons that are notable for their lowered basal tRNA charge.

      Reviewer #2 (Public Review):

      Davidsen and Sullivan present an improved method for quantifying tRNA aminoacylation levels by deep sequencing. By combining recent advances in tRNA sequencing with lysine-based chemistry that is more gentle on RNA, splint oligo-based adapter ligation, and full alignment of tRNA reads, they generate an interesting new protocol. The lab protocol is complemented by a software tool that is openly available on Github. Many of the points highlighted in this protocol are not new but have been used in recent protocols such as Behrens et al. (2021) or McGlincy and Ingolia (2017). Nevertheless, a strength of this study is that the authors carefully test different conditions to optimize their protocol using a set of well-designed controls.

      The conclusions of the manuscript appear to be well supported by the data presented. However, there are a few points that need to be clarified.

      We appreciate the acknowledgement of the strength of our aminoacylation controls and agree that our method is relying on many aspects of the mentioned prior work.  

      (1) One point that remains unsatisfactory is a better benchmarking against the state of the art. It is currently impossible to estimate how much the results of this new protocol differ from alternative methods and in particular from Behrens et al. (2021). Here it will be helpful to perform experiments with samples similar to those used in the mim-tRNAseq study and not with H1299 cells.

      We fully agree that more rigorous benchmarking would be desirable. As also noted in the response to reviewer #1, a full end-to-end comparison of methods would be ideal but would be onerous and expensive in practice, so we focused on optimizing the steps we found to be most prone to introducing bias in the data.

      We agree that Behrens et al., (2021) has substantial methodological overlap with our work and was instrumental in our efforts; however, the focus of their manuscript was largely on quantification of tRNA abundance and modifications, rather than the tRNA charge. In fact, tRNA charge was only determined for yeast in that study. Quantifying the abundance of short RNAs using NGS is very difficult (Fuchs et al. (2012) [PMID: 25942392]) and will likely require the use of a mixture of tRNAs as spike-in references for normalization (Bissels et al. (2009) [PMID: 19861428]). In the case of Behrens et al. (2021), they did not use a spike-in tRNA reference, but instead correlated gene copy number with their measured tRNA abundance. They also compare to Northern blotting for two tRNA transcripts, showing a directionally similar result; however, no quantitative claims can be made measurement accuracy. Until a good method of normalizing tRNA quantification is found, we believe that sample-to-sample reproducibility (i.e. precision) is the most useful objective to optimize because this will allow detection of differential expression. Towards that end, we quantified the precision of our method (Figure 4 and its two supplementary figures) with associated statistics, which can be used to estimate the number of samples required to detect significance during differential expression analysis. For tRNA charge, quantification is easier, which is why we present statistics on both accuracy and precision. In this case we can better compare results across methods, and so we have added a comparison of our results to the charge quantification from Evans et al. (2017) (Figure 2—figure supplement 9).

      (2) While the protocol aims to implement an improved method for quantification of tRNA aminoacylation, it can also be used for tRNA quantification and analysis of tRNA modifications. It will increase the impact of this study if the authors benchmark the outcomes of their protocol with other tRNA sequencing protocols with samples similar to these papers, which will be important for certain research teams that are unlikely to implement two different tRNA sequencing methods. Are there any possible adaptations that would allow the analysis of tRNA fragments?

      The first part of this comment regarding comparison of methods is addressed in response to in the prior reviewer comment and in the response to reviewer 1. In the specific case of tRNA modifications, the issue is similar to abundance quantification in that a “true” reference of modified tRNA is likely necessary for proper quantification, alongside testing of each method simultaneously.

      Regarding tRNA fragments, our method is not suitable for this use case. This is because our adapter ligation step depends on an intact tRNA structure with either CCA or CC overhang on the 3’-end and thus we almost exclusively get reads with CCA/CC ends and no reads from fragments. This specificity is good for increasing charge quantification accuracy but not good for the methods versatility. For a more versatile method we recommend Watkins et al. (2022) [PMID: 35513407].

      (3) Like Behrens et al. (2021), Davidsen and Sullivan use TGIRT-III RT for their analyses. The enzyme is not currently available in a form suitable for tRNA-seq. It would be very helpful to test different new RT enzymes that are commercially available. The example of Maxima RT - Figure 2 Supp 6 - shows significantly lower performance than the presented TGIRT-III RT data. In lines 296-298, the authors mention improvements to the protocol by using ornithine. Why are these improvements not included?

      We share similar concerns that the TGIRT-III enzyme is no longer commercially available. It became unavailable while we were preparing this manuscript, reflected by the fact that almost all our figures are made using this enzyme. Others have discovered this too and Lucas et al. (2023) [PMID: 37024678] tested several RT polymerases using TapeStation as a readout for readthrough. As they reported that Maxima has good performance, we decided to test it on a full run with replicates. The results are outlined in Figure 2—figure supplement 6 and for resubmission we have added a table to the appendix that compares the alignment statistics. Unfortunately, the readthrough of the Maxima polymerase on cytoplasmic tRNAs is not as high as for TGIRT-III; however, interestingly it seems to have better performance for mitochondrial tRNAs (Figure 2 – Figure Supplement 6). Regardless, in the initial paper submission we failed to evaluate whether this readthrough difference affected charge measurements. We have now fixed this by adding Figure 2—figure supplement 7, which shows that there are no differences in charge measurements TGIRT-III vs. Maxima. Not surprisingly, there are substantial differences between polymerases when looking at relative tRNA abundance (which affirms the discussion above related to the difficulty of tRNA abundance quantification); however, the high sample-to-sample reproducibility remains intact with either polymerase. An exhaustive search for better polymerases is warranted but falls outside the scope of our work.

      Regarding the improvements suggested by us, using ornithine as a cleavage catalyst instead of lysine, we first learned about this possibility later and thus only want to make readers aware that other options exist. We have clarified the paragraph to make this clearer.

      (4) A technical concern: The samples are purified multiple times using a specific RNA purification kit. Did the authors test different methods to purify the RNA and does this influence the result of the method?

      In the past, we have relied exclusively on alcohol precipitation but during the development of this protocol we found it easier and more reproducible to use column-based purification when possible. However, as we have not made a direct comparison this remains anecdotal evidence. Nonetheless, to minimize any possible bias of column-based purification you will notice that we use columns with binding capacity 5x higher than the highest amount of RNA/DNA added to the column.

      (5) The study would benefit from an explicit step-by-step protocol, including the choice of adapters that are shown to work best in the protocol.

      This is a great point! We have included tables with all the oligos used (Supplementary file 1), a detailed step-by-step protocol with pictures of anticipated gel results (Supplementary file 2) and an overview of the RNA/DNA manipulations to make it clear where adapter sequences are located (Supplementary file 3). For the data processing we provide a comprehensive example in the Github repository. All this was included in our first submission of this manuscript (as well as on bioRxiv), but we suspect this was not readily accessible to the reviewers. We will make sure that these documents are going to be available through eLife and have emphasized their existence in the main text of the manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      To stratify this improvement a comparison to the most common methods should be made. For example, how do the results with the improved protocol with i-tRAP (PMID 36283829), tRNA microarrays (PMID: 31263264), or with the approaches the improved protocol shares with some other tRNA-seq approaches (DM-tRNA-seq, mim-tRNA-seq)?

      Once again, we thank the reviewer for the good recommendations. The points about direct comparisons were discussed above.

      Reviewer #2 (Recommendations For The Authors):

      These are all great points; we address them below.

      Minor points:

      - Please use chemical conventions, e.g. for mcm5s2U and NaIO4 with superscript or subscript.

      Fixed.

      - Figure 2F: Glu GAA is only 82% charged; can this be due to mcm5s2U (Figure 3 supp 2) leading to a misalignment? What happens to Ser-NNN? Why is mitochondrial tRNA so much less charged?

      Regarding the Glu-GAA charge at baseline, we do not think this is an artifact of the mcm5s2U modification as it would then also be expected for Gln-CAA and Lys-AAA. The same occurs in the charge data in Evans et al. (2017) and they use a very different alignment strategy. Lastly, the charge titration and half-life experiments show no evidence of inaccuracy/bias for Glu-GAA.

      But the question remains – why is the charge of Glu-GAA so low? At this point our best guess is speculative. It may have something to do with the strong enrichment of Glu-GAA codons in the A site found by ribosome profiling on mouse embryonic stem cells (Ingolia et al. (2011) [PMID: 22056041]).

      - Spell out "clvg" or "dphs" in the figure legend of Figure 2 and others. Similar for other abbreviations in figures. They are not always explained in the legends.

      Fixed.

      - Figure 3 supp 2: Please use U instead of T in the anticodons. The labels are a bit confusing. Please clearly align to the tick (also for Figure 3C).

      Fixed.

      - Line 220-223. Which RT enzyme was used for Figure 3 supp 2? Does it make a difference?

      TGIRT-III was used. Only Figure 2—figure supplement 6 and Figure 2—figure supplement 7 (added for resubmission) show data with the Maxima polymerase. To address the second part of the question we have added a comparison between TGIRT-III and Maxima for mcm5s2U modification detection (Figure 3—figure supplement 3). Interestingly, there is a polymerase specific signature for mcm5s2U modifications; however, more work would be required to determine which polymerase is best suited for detection of this and other modifications.

      - Figure 4 supp 1 and Figure 4 supp 2 change order.

      Fixed.

      Typos:

      - Figure 1 and Figure 1-figure supplement 1: In the periodate the "-" is in a small box (at least in my PDF viewer). Can this box be removed?

      - Line 175: duplicated verb.

      - Line 348: "moved".

      Thanks for catching these. They have now been fixed.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1) Measurement of secreted amylase could be seen as direct evidence of sweating, however, how to determine the causal relationship between climbing behavior and sweating? Friction force may also be reduced when there is too much fingertip moisture.

      As the reviewer notes, measurement of secreted amylase can provide direct evidence of sweating, and we performed an iodine and starch reaction. Upon observing the involvement of TRPV4 in mouse foot pad perspiration, we then considered which type of behavioral analysis would be suitable to evaluate this perspiration. We agree with the reviewer’s point that friction force in the climbing test may be reduced by excessive sweating. However, we did not observe severe sweating in the absence of acetylcholine treatment. Accordingly, we interpreted that the increase in the climbing test failure rate for TRPV4KO mice could reflect the reduced friction force associated with the lack of TRPV4 activity.

      (2) For the human skin immunostaining, did the author use the same TRPV4 antibody as used in the mouse staining? Did they validate the specificity of the antibody for the human TRPV4 channel? 

      We used different antibodies for human and mouse samples. Since commercially available anti-TRPV4 antibodies do not work well with mouse samples, we generated our own anti-TRPV4 antibody and validated its specificity.

      (3) In lines 116-117, the authors tried to determine "the functional interaction of TRPV4 and ANO1 is involved in temperature-dependent sweating", however, they only used the TRPV4 ko mice and did not show any evidence supporting the relationship between TRPV4 and ANO1. 

      As the reviewer pointed out, based on the data presented in the original submission we cannot conclude that an interaction between TRPV4 and ANO1 is involved in perspiration. However, we think that the data for TRPV4KO mice presented in Figure 3 of the original version does indicate that TRPV4 is involved in perspiration. The finding that menthol and its related compounds, which inhibit the function of both TRPV4 and ANO1 (see our publication in Scientific Reports 7: 43132, 2017), blocked perspiration in both wild-type and TRPV4KO mice (original Figure 3C, D) indicates involvement of either TRPV4 or ANO1 in perspiration. In the revised version, we present results for additional iodine and starch reaction experiments using Ani9, a potent and specific ANO1 inhibitor. Ani9 drastically inhibited perspiration from mouse food pads both at 25 °C and 35 °C. Based on these collective results, we concluded that both TRPV4 and ANO1, likely acting as a complex, are involved in perspiration. We present the new data with Ani9 in the revised Figure 3E, F.

      (4) Figure 3-4 is quite confusing. At 25˚C, no sweating difference was observed between TRPV4 and wt mice (Fig 3A-3D), suggesting both Ach-induced sweating and basal sweating are TRPV4-independent at 25˚C, however, the climbing test was done at 26-27 ˚C and the data showed a climbing deficit in TRPV4 ko mice. How to interpret the data is unclear. 

      Thank you for raising this point. In the iodine and starch reaction experiment, we observed no significant reduction in perspiration in the absence of acetylcholine at 25 °C, which is the same condition as in the climbing test, whereas we detected less perspiration for TRPV4KO mice. In a trial using additional mice, we detected significantly less perspiration under control conditions without acetylcholine at 25 °C, which is consistent with the results of the climbing test. We have added this new data to the revised Figure 3A, B.

      (5) Were there any gender differences associated with sweating in mice? In Figure 3, the mouse number for behavior tests should be at least 5. 

      The TRPV4KO mice reproduced poorly and we were unable to obtain sufficient numbers of male and female mice to determine whether there were gender differences in sweating. However, according to the reviewer’s suggestion, and as mentioned above, we increased the number of experiments to obtain the results shown in the revised Figure 3. We did not a observe a significant difference in sweating with the larger sample size, which supports our conclusions.

      (6) 8- to 21-week-old mice were used in the immunostaining, the time span is too long. 

      Given the difficulty in obtaining sufficient numbers of TRPV4KO mice, we used a somewhat wider age distribution to obtain samples for immunostaining. However, we did not observe age-dependent differences in immunostaining. We reference this point in the revised manuscript.

      (7) The authors used homozygous TRPV4 ko mice for all experiments. What are control mice? Are they littermates of the TRPV4 ko mice? 

      We did not use littermates for our in vivo experiments because the TRPV4KO mice reproduced poorly and the litter sizes were small. However, we did backcross the KO mice to the commercially available wild-type mice more than ten times. As such, we expect that the wild-type and TRPV4KO mice will have similar genetic backgrounds. In addition, we have published multiple studies that have successfully used this method, which we think supports the reliability of our results for experiments involving mice.

      Reviewer #2 (Public Review):

      (1) The coexpression data needs additional controls. In the TRPV4 KO mice, there appears to be staining with the TRPV4 Ab in TRPV4 KO mice below the epidermis. This pattern appears similar to that of the location of the secretory coils of the sweat glands (Fig 1A). Is the co-staining the authors note later in Figure 1 also seen in TRPV4 KOs? This control should be shown, since the KO staining is not convincing that the Ab doesn't have off-target binding. 

      We thank the reviewer for raising these concerns about immunostaining. As the reviewer notes, in the low power image the signals appeared to be weak and punctate signals were present in the basal region of glandular cells. Although we did not identify immunohistochemical conditions that produced no signal, tissue sections from WT mice stained with anti-TRPV4 antibody showed conspicuous apical signals for the glandular cells facing lumen. Meanwhile, TRPV4KO tissues showed no signals at the apical region of the glandular cells, where the TRPV4-ANO1 interaction is expected to occur. We confirmed no trace signals in the TRPV4KO tissues in the immunoblotting.

      (2) Are there any other markers besides CGRP for dark cells in mice to support the conclusion that mouse secretory cells have clear cell and dark cell properties? 

      We did not stain with other dark cell markers. Based on previous studies describing the differences between clear and dark cells in mouse eccrine glands, we think that dark and clear cells cannot be clearly discriminated, as we described in lines 93-96 of the Results. We identified secretory cells using CK8 and dark cells with CGRP, a marker of dark cells in human eccrine glands (Zancanaro et al. 1999 J Anat). Our result showed that CGRP immunostaining could not discriminate between clear and dark cells, which is consistent with a previous report showing that mouse secretory cells were assumed to be undifferentiated and primitive based on electron microscopic observation (Kurosumi et al. 1970 Arch Histol Jap).

      (3) The authors utilize menthol (as a cooling stimulus) in several experiments. In the discussion, they interpret the effect of menthol as potentially disrupting TRPV4-ANO1 interactions independent of TRPM8. Yet, the role of TRPM8, such as in TRPM8 KO mice, is not evaluated in this study.

      We performed the iodine and starch reaction experiments with TRPM8KO mice. In the TRPM8KO mice, the sweat spots did not differ from those seen for WT mice (p=0.63, t-test), and there was also a significant reduction in sweating with menthol treatment following acetylcholine stimulation that was similar to that seen for WT mice. These results would rule out the involvement of TRPM8 in a menthol-induced reduction in sweating. We have included this data in the revised Figure 3D.

      (4) Along those lines, the authors suggest that menthol inhibits eccrine function, which might lead to a cooling sensation. But isn't the cooling sensation of sweating from evaporative cooling? In which case, inhibiting eccrine function may actually impair cooling sensations.

      Menthol has a non-specific effect that activates TRPM8, TRPV3 and TRPA1, and inhibits TRPV1, TRPV4 and ANO1. Therefore, we did not carry out a climbing test with menthol in part because menthol-dependent TRPA1 activation decreased the propensity of the mice to climb. As the reviewer notes, TRPM8 activation following topical application of menthol may cause a cooling sensation elicited in sensory neurons beneath the skin. However, the comfortable cooling sensation could also be caused in part by decreased sweating. The relationship between a comfortable cooling sensation and less perspiration following menthol application may be difficult to determine, and we have mentioned this in the updated Discussion.

      (5) The climbing assay is interesting and compelling. The authors note performing this under certain temperature and humidity conditions. Presumably, there is an optimal level of skin moisture, where skin that is too dry has less traction, but skin that is too wet may also have less traction. It would bolster this section of the study to perform this assay under hot conditions (perhaps TRPV4 KO mice, with impaired perspiration, would outperform WT mice with too much sweating?), or with pharmacologic intervention using TRPV4 agonists or antagonists to more rigorously evaluate whether this model correlates to TRPV4 function in the setting of different levels of perspiration.

      We thank the reviewer for this suggestion. Upon detecting the involvement of TRPV4/ANO1 interaction in perspiration, we considered different behavioral analyses that can be performed to demonstrate whether the TRPV4/ANO1 interactions are involved in perspiration. As the reviewer suggested, there should be an optimal level of sweating. Therefore, we first set the room temperature at 26-27 ˚C and humidity at 35-50%. To our knowledge, this is the first demonstration of temperature-dependent sweating of mouse foot pads. In humans, palm sweating is often referred to as psychotic sweating that is known to be regulated by sympathetic nerve activity. Here we tested whether foot pad sweating might be related to friction force wherein sufficient amounts of sweating could increase the friction force and in turn increase the success rate for the climbing test using a vinyl-covered slippery slope that was selected based on several trials to determine the optimal surface material and slope angles. As the reviewer suggests, the success rates could be affected by multiple factors, and hot temperatures likely induce more sweating that could increase the success rates in the climbing test. We will need to carry out additional experiments that are beyond the scope of this study to examine these temperature-dependent effects. Generally, sweating is regulated by sympathetic nerve activity that occurs in response to increased brain neuron excitation. However, here we raise for the first time the possibility that sweating might be regulated by local temperature sensation mediated through TRPV4 that may be effective for fine-tuning of perspiration activity. We have updated the Discussion to reference this possibility.

      (6) There are other studies (PMID 33085914, PMID 31216445) that have examined the role of TRPV4 in regulating perspiration. The presence of TRPV4 in eccrine glands is not a novel finding. Moreover, these studies noted that TRPV4 was not critical in regulating sweating in human subjects. These prior studies are in contradiction to the mouse data and the correlation to human anhidrotic skin in the present study. Neither of these studies is cited or discussed by the authors, but they should be. 

      We thank the reviewer for referencing these other studies concerning the possible involvement of TRPV4 in perspiration in humans. These studies focused on the vasodilating effects of TRPV4 and drew the conclusion that TRPV4 is not involved in sweating in humans, which is in contrast to our data for mice and humans. Multiple factors could explain the apparent difference between the two studies. For example, the parameters they examined differed from ours in that we assessed patients with AIGA, whereas the previous studies involved healthy volunteers. We have updated the Discussion to note the difference in the results of our and previous studies.   

      Reviewer #3 (Public Review):

      (1) Figure 2: The calcium imaging-based approach shows average traces from 6 cells per genotype, but it was unclear if all acinar cells tested with this technique demonstrated TRPV4-mediated calcium influx, or if only a subset was presented.

      “n = 6” does not indicate the number of cells, but rather 6 independent experiments that each had over 20 ROIs of sweat glands. We have clarified this point in the updated figure legend.

      (2) Figure 4: The climbing behavioral test shows a significant reduction in climbing success rate in TRPV4-deficient mice. The authors ascribe this to a lack of hind paw 'traction' due to deficiencies in hind paw perspiration, but important controls and evidence that could rule out other potential confounds were not provided or cited. 

      As noted in our response to Comment 5 made by Reviewer #2, we spent considerable time identifying optimal conditions that would delineate success rates in the climbing experiments. We are confident that TRPV4KO mice had significantly lower success rates than WT mice, but there are various factors that could affect the experimental outcomes. We reference these factors in the updated Discussion.

      (3) In general, the results support the authors' claims that TRPV4 activity is a necessary component of sweat gland secretion, which may have important implications for controlling perspiration as well as secretion from other glands where TRPV4 may be expressed. 

      As described above, the results we obtained in the climbing test can be affected by various factors. However, based on the consistency of the results obtained for the climbing test and the iodine and starch reaction assay, we think that our interpretation is correct. In terms of the involvement of TRPV4/ANO1 interactions in fluid secretion, we previously reported that the TRPV4/ANO1 complex is involved in cerebrospinal fluid secretion in the mouse choroid plexus (FASEB J. 2014) and in saliva and tear secretion in mouse salivary and lacrimal glands (FASEB J. 2018). Together, these findings suggest that this mechanism is common to water efflux from exocrine glands.

      Reviewer #1 (Recommendations For The Authors):

      (1) An exocrine gland-specific trpv4 knockout mouse should be used, as TRPV4 is also expressed by muscles, global knockout TRPV4 may affect the TRPV4-dependent muscle strength and reduce the climbing ability in mice. 

      As the reviewer suggests, use of mice with TRPV4 knockout specific to exocrine glands would be preferable to mice having global TRPV4 knockout given that TRPV4 is expressed in multiple tissues. We agree with this suggestion, but we do not currently have such mice in hand. However, as mentioned above, we have reported the involvement of theTRPV4/ANO1 interaction in cerebrospinal fluid secretion from the choroid plexus in mice (FASEB J. 28: 2238-2248, 2014), as well as saliva and tear secretion in mouse salivary and lacrimal glands (FASEB J. 32: 1841-1854, 2018.), suggesting that the TRPV4/ANO1 interaction could be widely involved in exocrine gland functions that involve water movement. We have updated the Discussion to reference this point.  

      (2) The authors showed Calcium imaging data that Menthol inhibits TRPV4-dependent calcium influx. However, it is well known that menthol induces the sensation of cooling by activating TRPM8. More evidence, including patch clamp recordings, should be done to verify the inhibition effects of menthol on TRPV4 and ANO1. Moreover, Fig 3E-3F could only suggest that menthol-induced cooling sensation may affect sweating but not the inhibition effect of menthol on TRPV4 and ANO1 channels. 

      We agree that more evidence including patch-clamp recordings can verify the inhibitory effects of menthol on TRPV4 and ANO1. We did not include such experiments here since we previously showed that menthol and related agents indeed inhibit TRPV4- and ANO1-mediated currents (Sci. Rep. 7: 43132, 2017). We now cite this paper in the revised version.

      (3) Excepting the climbing test, are there any other better models to asses the sweating-related behaviors? 

      When we detected the involvement of TRPV4/ANO1 interactions in perspiration, we considered different types of behavioral analyses that could be used to demonstrate TRPV4/ANO1-dependent perspiration. We think that the climbing experiment is the best test, particularly since foot pads are one of the few regions on mice that is not covered by fur and thus amenable to evaluation of perspiration using an iodine and starch test.

      Reviewer #2 (Recommendations For The Authors):

      (1) I was confused by a section in the introduction on lines 59-60: How does Cl- efflux lead to the formation of a physical complex in cells with high intracellular Cl-? What is the physical complex? This seems like several disparate concepts combined together, which need to be clarified.

      We apologize for the incomplete descriptions of several of our previous works. We have amended the Introduction section in the revised manuscript.

      Reviewer #3 (Recommendations For The Authors):

      (1) TRPV4 is expressed by multiple other cell types in the skin (keratinocytes, macrophages etc.) which may have an impact on peripheral sensory function. Is there evidence that TRPV4-deficient animals have relatively normal sensory acuity and/or proprioception? Such evidence would lend more credibility to the reported findings in the climbing test. 

      As the reviewer points out, TRPV4 is expressed by multiple other cell types in the skin. To date we have found that TRPV4KO mice show no differences in sensory functions compared to WT mice. Whether TRPV4 is involved in proprioception is unclear, based on both our own observation and those that appear in the literature, although TRPV4 is clearly activated by mechanical stimuli. We previously compared the mechanical sensitivity of TRPV4 and Piezo1 in bladder epithelial cells, and found that Piezo 1 shows much higher sensitivity relative to TRPV4 (J. Biol. Chem. 289: 16565-16575, 2014), which is consistent with the involvement of Piezo1, rather than TRPV4, in proprioception. Although TRPV4 is reported to be expressed in sensory neurons, we did not detect TRPV4-mediated responses in isolated rat and mouse DRG neurons, suggesting that TRPV4-positive sensory neurons are relatively rare.

      (2) The methods section refers to loading entire sweat glands with Fura-2 dye for calcium imaging, but the figure legend refers to sweat gland acinar cells. Resolving this ambiguity would help readers to interpret the data. 

      We apologize for this error and have made an appropriate correction in the revised manuscript.

      (3) Alternatively, could acute intraplantar injection of a TRPV4 antagonist (e.g. GSK205) in wild-type mice phenocopy the TRPV4-knockout mouse deficits, or could normal climbing behavior be restored in the TRPV4 knockout by adding artificial perspiration to their hindpaws?

      We thank the reviewer for raising this interesting possibility and suggesting use of TRPV4 agonists or antagonists in the climbing tests. We agree that results of such an experiment would support the involvement of TRPV4 in sweating. We tried to do such experiments using injection of TRPV4 regulators into mouse hindpaws. However, the injections themselves appeared to impact climbing ability, perhaps in part due to painful sensations associated with the injection. Similarly, menthol injection appeared to reduce climbing activity, likely through pain sensations associated with TRPA1 activation. As such, we did not pursue these experiments.

    1. Author Response

      The following is the authors’ response to the current reviews.

      Reviewer #2 (Recommendations For The Authors):

      We sincerely appreciate the time and efforts of the Reviewer.

      In light of your data showing that the IgG response is similar with and without CIN, it would be good to drop "and induce abroad, vaccination-like anti-tumor IgG response". This suggests a direct connection between CIN and the IgG response.In my opinion, the shorter title is equally strong and more correct.

      We edited this phrase in the originally submitted title for accuracy:

      Chromosomal instability induced in cancer can enhance macrophage-initiated immune responses that include anti-tumor IgG

      I agree that inducing CIN through other means can be left for a different study but in that case the abstract should moredirectly mention MSP1 inhibition since that is how CIN is always induced. Perhaps line 18: CIN is induced by MSP-1inhibition in poorly immunogenic....

      Done as requested:

      “…Here, CIN is induced in poorly immunogenic B16F10 mouse melanoma cells using spindle assembly checkpoint MPS1 inhibitors…”


      The following is the authors’ response to the original reviews.

      eLife assessment

      This study highlights a valuable finding that chromosomal instability can change immunes responses, in particular macrophages behaviours. The convincing results showing that the use of CD47 targeting and anti-Tyrp1 IgG can overcome changes in immune landscape in tumors and prolong survival of tumor-bearing mice. These findings reveal a new exciting dimension on how chromosomal instability can influence immune responses against tumor.

      We thank the Editors for their enthusiasm and appreciation for this work. We also want to highlight our thanks for their careful reading, support, and patience while handling this manuscript. While this work provides useful insight into potential therapeutic implications of chromosomal instability in the macrophage immunotherapy field, we also hope it elucidates some novel basic science to further explore how chromosomal instability has such interesting effects on the immune system.

      Public Reviews:

      Reviewer #1 (Public Review):

      The manuscript by Hayes et al. explored the potential of combining chromosomal instability with macrophage phagocytosis to enhance tumor clearance of B16-F10 melanoma. However, the manuscript suffers from substandard experimental design, some contradictory conclusions, and a lack of viable therapeutic effects.

      The authors suggest that early-stage chromosomal instability (CIN) is a vulnerability for tumorigenesis, CD47-SIRPa interactions prevent effective phagocytosis, and opsonization combined with inhibition of the CD47-SIRPa axis can amplify tumor clearance. While these interactions are important, the experimental methodology used to address them is lacking.

      Reviewer #1 (Recommendations For The Authors):

      First, early stages of the tumor are essentially being defined as before implantation. In all cases, the tumor cells were pre-treated with MPS1i or had a genetic knockout of CD47. This makes it difficult to see how this would translate clinically.

      We greatly appreciate the Reviewer’s interest in the topic and its potential, but our manuscript makes no claims of immediate clinical translation. Chromosomal instability (CIN) studies have to date not yet discovered or described whether and how CIN can affect macrophage function. To our knowledge, this is the first study to begin such characterizations with various MPS1i drugs to induce CIN. Many variations of the approach can be envisioned for future studies.

      Our Results include some key studies of cancer cells with wildtype levels of CD47- including in vivo tumor elimination (Fig.3E). Nonetheless, we do conduct some of our studies in a CD47 knockout context to remove this “brake” that generally impedes phagocytosis, with our goal being to better understand how CIN affects phagocytosis. As cited to some extent in our Introduction, there are many efforts in clinical trials to disrupt this macrophage checkpoint and others focused on macrophage immunotherapy. Whether CIN can be induced by clinically translatable drugs and specifically in cancer cells is beyond the scope of our studies.

      I would like to see the amount of CIN that occurs in WT B16F10 over the course of tumorigenesis (ie longer than 5 days). This is because I would assume that CIN would eventually occur in the WT B16F10 regardless of whether MPS1i is being given. And if that's the case, then the initiation of CIN at day 10 after implantation (for example) would still be considered "early stage" CIN. If the therapy is then initiated at this point, does the effect remain? Or put differently, how would the authors propose to induce the appropriate level of CIN in an established tumor? Why is pretreatment necessary?

      Untreated B16F10 cells fail to produce micronuclei over 12 days compared to MPS1i treated cells – as shown in a newly added panel in Fig. S1:

      Author response image 1.

      This helps support our decision to pre-treat cells with MPS1i to stimulate genomic instability and is described in the first section of Results:

      “…we saw >10-fold increases of micronuclei over the cell line’s low basal level (~1% of cells), and two other MPS1i inhibitors AZ3146 and BAY12-17389 confirm such effects (Fig. S1A). Micronuclei-positive cells can persist up to 12 days after treatment (Fig. S1B), while control cells maintain the low basal levels. The results suggest pre-treatment with MPS1i can simulate CIN in an experimental context even for 1-2 weeks, which may not typically occur at the same frequency during early tumor growth.

      It is known that PD-1 expression inhibits tumor-associated macrophage phagocytosis (Nature, 2017). Does MSP1i (sic) treatment affect the population of PD-1+ tumor macrophages in vivo?

      We thank the Reviewer for bringing up an interesting point.

      Using the same tumor RNA-seq data that was used for Fig.1E, a heatmap of expression of PD-1 (gene Pdcd1) shows no consistent trend with MPS1i:

      Author response image 2.

      We also examined whether the secretome from CIN-afflicted cancer cells affect PD-1 expression in cultured macrophages, but we did not register any reads from our single-cell RNA-sequencing experiment for Pdcd1 in any of the macrophage clusters from Fig. 1H.

      Author response image 3.

      The Discussion section now includes a statement on this topic:

      “…B16F10 tumors are poorly immunogenic, do not respond to either anti-CD47 or anti-PD-1/PDL1 monotherapies, and show modest and variable cure rates (~20-40%; Dooling et al., 2023; Hayes et al., 2023) even when macrophages have been made maximally phagocytic according to notions above. We should note here that our whole-tumor RNA-seq data (Fig.1E) shows expression of PD-1 (gene Pdcd1) follows no consistent trend upon MPS1i treatment, and that Pdcd1 was not detected in our scRNA-seq data for macrophage cultures (Fig.1G) – motivating further study.”

      The authors must explain how the proposed therapy works since MPS1i increases tumor (cell) size, making it difficult for macrophages to phagocytose the tumor cells. It also reduces or suppresses Tyrp1 expression on the cancer cells, making it harder to opsonize. Since these were two main points for the rationale of this study, the authors need to reconcile them.

      We appreciate this comment and have re-organized this Results section to try to minimize confusion:

      CIN-afflicted, CD47-knockout tumoroids are eliminated by Macrophages

      To assess functional effects of macrophage polarization, we focused on a 3D “immuno-tumoroid” model in which macrophage activity can work (or not) over many days against a solid proliferating mass of cancer cells in non-adherent roundbottom wells (Fig. 2A) (Dooling et al., 2023). We used CD47 knockout (KO) B16F10 cells, which removes the inhibitory effect of CD47 on phagocytosis, noting that KO does not perturb surface levels of Tyrp1, which is targetable for opsonization with anti-Tyrp1 (Fig. S2A). BMDMs were added to pre-assembled tumoroids at a 3:1 ratio, and we first assessed surface protein expression of macrophage polarization markers. Consistent with our whole-tumor bulk RNA-sequencing and also single-cell RNA-sequencing of BMDM monocultures (Fig. 1E, 1I-J), BMDMs from immunotumoroids of MPS1i-treated B16F10 showed increased surface expression of M1-like markers MHCII and CD86 while showing decreased expression of M2-like markers CD163 and CD206 (Fig. 2B-C). Although these macrophages seemed poised for anticancer activity, the cancer cells showed decreased binding of anti-Tyrp1 (Fig. S2B) and ~20% larger size in flow cytometry (Fig. S2C). The latter likely reflects cytokinesis defects and poly-ploidy as acute effects of CIN induction (Chunduri & Storchová, 2019; Mallin et al., 2022). Such cancer cell changes might explain why standard 2D phagocytosis assays show BMDMs attached to rigid plastic engulf relatively few anti-Tyrp1 opsonized cancer cells pretreated with MPS1i versus DMSO (Fig. S2D). In such cultures, BMDMs use their cytoskeleton to attach and spread, competing with engulfment of large and poorly opsonized targets. Noting that tumors in vivo are not as rigid as plastic, our 3D immunotumoroids eliminate attachment to plastic, and large numbers of macrophages can cluster and cooperate in engulfing cancer cells in a cohesive mass (Dooling et al., 2023). We indeed find CIN-afflicted tumoroids are eliminated by BMDMs regardless of anti-Tyrp1 opsonization (Fig. 2D-E), whereas anti-Tyrp1 is required for clearance of DMSO control tumoroids (Fig. 2D, S3B). Imaging also suggests that cancer CIN stimulates macrophages to cluster (compare Day-4 in Fig. 2D), which favors cooperative phagocytosis of tumoroids (Dooling et al., 2023), and occurs despite the lack of cancer cell opsonization and their larger cell size. The 3D immunotumoroid results with induced CIN are thus consistent with a more pro-phagocytic M1-type polarization (Fig.1J and 2B,C).

      The authors used varying numbers of tumor cells for the in vivo portions of the study; the first half of the manuscript uses 500,000 cells, while the latter half uses 200,000 cells. Why?

      The reasons for the difference in numbers is now clarified in the Methods:

      For assessing immune infiltrates in early stages of tumor engraftment, when tumors are still small, we used a relatively high number of tumor cells (500,000 cells in Fig. 1D and Fig. 2F-G) to achieve sufficient cell numbers after dissociating the tumors, particularly for the slow-growing MPS1i-treated tumors. More specifically, with dissection, collagenase treatment, passage through a filter to remove clumps, we would lose many cells, and yet needed 100,000 viable cells or more for bulk RNA-seq suspensions and for flow cytometry measurements. For all other studies, 200,000 cancer cells were injected,

      The authors need to report the tumor volumes and the total number of cells isolated from the day five tumors to avoid grossly inflating the effect (i.e. Fig 2G and 4G).

      We have added relevant numbers in the Methods:

      For day 5 post-challenge measurements, 100,000 to 200,000 live cells were collected. For in vivo tumor infiltrate studies in re-challenged mice, 10 million live cells were collected.

      Also, regarding tumor sizes and cell numbers, we have previously published relevant measurements in assessments of tumor growth. Please see:

      Brandon H Hayes, Hui Zhu, Jason C Andrechak, Lawrence J Dooling, Dennis E Discher, Titrating CD47 by mismatch CRISPR-interference reveals incomplete repression can eliminate IgG-opsonized tumors but limits induction of antitumor IgG, PNAS Nexus, Volume 2, Issue 8, August 2023, pgad243, https://doi.org/10.1093/pnasnexus/pgad243

      Dooling, L.J., Andrechak, J.C., Hayes, B.H. et al. Cooperative phagocytosis of solid tumours by macrophages triggers durable anti-tumour responses. Nat. Biomed. Eng 7, 1081–1096 (2023). https://doi.org/10.1038/s41551-023-01031-3

      In the present study, similar tumor growth curves are provided for transparency, but the Kaplan-Meier curves as the key pieces of data in Fig. 3-4. Lastly, regarding reporting total cell number harvested, we based our experiments on previously accepted measurements that also reported numbers out of total harvested cells. See:

      Cerezo-Wallis, D., Contreras-Alcalde, M., … Soengas, M.S., 2020. Midkine rewires the melanoma microenvironment toward a tolerogenic and immune-resistant state. Nat Med 26, 1865–1877. https://doi.org/10.1038/s41591-020-1073-3

      The figure titles need to be revised. For example, the title of Figure 1 claims that "MPS1i-induced chromosomal instability causes proliferation deficits in B16F10 tumors." However, the evidence provided is weak. The authors only present GSEA analysis of proliferation and no functional evidence of impairment. The authors need to characterize this proliferation deficit using in vitro studies and functional studies of macrophage polarization. I would suggest proliferation assays (crystal violet, MTT, Incucyte, etc) to measure the B16 growth over time with MPS1i treatment.

      We thank the Reviewer for pointing this out. In Fig.1 we have minimized information regarding proliferation because it is later quantified in Figs.2D,E, S3, and 3D-i:

      Fig.1F legend: Top downregulated hallmark gene sets in tumors comprised of MPS1i-treated B16F10 cells, showing downregulated DNA repair, cell cycle, and growth-related pathways, consistent with observations of slowed growth in culture and in vivo – as subsequently quantified.

      Then the authors could collect the tumor supernatant to culture with macrophages and determine polarization in vitro. I would also like to see functional studies of macrophage polarization (suppression assays, cytokine production, etc). Currently, the authors provide no functional studies.

      Fig.2B,C provides functional surface marker measurements of in vitro polarization toward anti-cancer M1 macrophages by MPS1i-pretreated tumor cells, consistent with gene expression in Fig.1G-J. Function is further shown as ant-cancer activity in Fig.2D,E, as now stated explicitly in the text:

      “…In our 3D tumoroid in vitro assays, we found that macrophages can suppress the growth of chromosomally unstable tumoroids and clear them, surprisingly both with and without anti-Tyrp1 (Fig. 2D-E), regardless of MPS1i concentration used for treatment. Such a result is consistent with M1-type polarization (Fig.1J and 2B,C), which tends to be more pro-phagocytic. Such a result is consistent with M1-type polarization (Fig.1J and 2B,C), which tends to be more prophagocytic.”

      The authors claim that macrophages are the key effector cells, but they need to provide evidence for this claim.

      Other immune cells clearly contribute to the presented results because the IgG must eventually come from B cells. The text has been edited to indicate 'macrophages are key initiating-effector cells', and some evidence for this is the maximal survival of (WT B16 + Rev tumors) in Fig.3E upon treatment with Marrow Macrophages plus Macrophage-relevant SIRPa blockade and Macrophage-relevant IgG (via FcR). T cells do not have SIRPa or FcR.

      They can deplete macrophages and T and B cells to determine whether the effect remains or is ablated. This is the only definitive way to make this claim.

      To determine whether T and B cells might also be key initiating-effector cells, new experiments were done with mice depleted of T and B cells (per Fig.S9, below). We compared the growth of MPS1i vs DMSO treatments in these mice to results in mice with T and B cells (which should replicate our previous results in Fig.3D-i). We found that slower growth with Rev relative to DMSO was similar in mice without T and B cells compared to mice with T and B cells. We have added to the text our conclusion that: T and B cells are not key initiating-effector cells. Whereas B cells are effector cells at least in terms of eventually making anti-tumor IgG, our results show that macrophages are key initiating-effector cells because macrophages certainly affect the growth of (WT B16 + Rev tumors) when more are added (Fig.3E).

      Author response image 4.

      Growth of CIN-afflicted wild-type (WT) tumors in T- and B-cell deficient mice and T- and B-cell replete mice. Similar growth delays for MPS1i-pretreated B16F10 cells in T- and B-cell deficient NSG mice and immunocompetent C57BL/6 mice. Both types of mice have functional macrophages. Parallel studies in vivo were done with WT B16F10 ctrl cells cultured 24 h in 2.5 μM MPS1i (reversine or DMSO, then washed 3x in growth media for 5 min each and allowed to recover in growth media for 48 h. 200,000 cells in 100 uL PBS were injected subcutaneously into right flanks, and the standard size limit was used to determine survival curves. The C57BL/6 experiments were done independently here (by co-author L.J.D.) from the similar results (by B.H.H.) shown in Fig.3D-i, which provides evidence of reproducibility.

      The Results section final paragraph describes all of this:

      Macrophages seem to be the key initiating-effector cells, based in part on the following findings. First, macrophages with both SIRPα blockade and FcR-engaging, tumor-targeting IgG maximize survival of mice with WT B16 + Rev tumors (Fig. 3E) – noting that macrophages but not T cells express SIRPα and FcR’s. Despite the clear benefits of adding macrophages, to further assess whether T and B cells are key initiating-effector cells, new experiments were done with mice depleted of T and B cells. We compared the growth delay of MPS1i versus DMSO treatments in these mice to the delay in fully immunocompetent mice with T and B cells – with all studies done at the same time. We found that slower growth with Rev relative to DMSO was similar in mice without T and B cells when compared to immunocompetent C57 mice (Fig.S9). We conclude therefore that T and B cells are not key initiating-effector cells. At later times, B cells are likely effector cells at least in terms of making anti-tumor IgG, and T cells in tumor re-challenges are also increased in number (Fig. 4G-ii). We further note that in our earlier collaborative study (Harding et al., 2017) WT B16 cells were pre-treated by genome-damaging irradiation before engraftment in C57 mice, and these cells grew minimally – similar to MPS1i treatment – while untreated WT B16 cells grew normally at a contralateral site in the same mouse. Such results indicate that T and B cells in C57BL/6 mice are not sufficiently stimulated by genome-damaged B16 cells to generically impact the growth of undamaged B16 cells.

      Reviewer #2 (Public Review):

      Harnessing macrophages to attack cancer is an immunotherapy strategy that has been steadily gaining interest. Whether macrophages alone can be powerful enough to permanently eliminate a tumor is a high-priority question. In addition, the factors making different tumors more vulnerable to macrophage attack have not been completely defined. In this paper, the authors find that chromosomal instability (CIN) in cancer cells improves the effect of macrophage targeted immunotherapies. They demonstrate that CIN tumors secrete factors that polarize macrophages to a more tumoricidal fate through several methods. The most compelling experiment is transferring conditioned media from MSP1 inhibited and control cancer cells, then using RNAseq to demonstrate that the MSP1-inhibited conditioned media causes a shift towards a more tumoricidal macrophage phenotype. In mice with MSP1 inhibited (CIN) B16 melanoma tumors, a combination of CD47 knockdown and anti-Tyrp1 IgG is sufficient for long term survival in nearly all mice. This combination is a striking improvement from conditions without CIN.

      Like any interesting paper, this study leaves several unanswered questions. First, how do CIN tumors repolarize macrophages? The authors demonstrate that conditioned media is sufficient for this repolarization, implicating secreted factors, but the specific mechanism is unclear. In addition, the connection between the broad, vaccination-like IgG response and CIN is not completely delineated. The authors demonstrate that mice who successfully clear CIN tumors have a broad anti-tumor IgG response. This broad IgG response has previously been demonstrated for tumors that do not have CIN. It is not clear if CIN specifically enhances the anti-tumor IgG response or if the broad IgG response is similar to other tumors. Finally, CIN is always induced with MSP1 inhibition. To specifically attribute this phenotype to CIN it would be most compelling to demonstrate that tumors with CIN unrelated to MSP1 inhibition are also able to repolarize macrophages.

      Overall, this is a thought-provoking study that will be of broad interest to many different fields including cancer biology, immunology and cell biology.

      We thank the Reviewer for their enthusiastic and positive comments toward the manuscript.

      Our main purpose with this study has been discovery science oriented and mechanistic, with implications for improving macrophage immunotherapies. More experimentation needs to be done to further understand how this positive immune response emerges. However, we could address whether CIN enhances or not the anti-tumor IgG response by quantitative comparisons to our two other recent studies, and we conclude that it does not per new edits in the Abstract and the Results. See attached PPT for full details and comparison.

      Abstract:

      “CIN does not greatly affect the level of the induced response but does significantly increase survival.”

      “…these results demonstrate induction of a generally potent anti-cancer antibody response to CIN-afflicted B16F10 in a CD47 KO context. Importantly, comparing these sera results for CINafflicted tumors to our recent studies of the same tumor model without CIN (Dooling et al., 2022; Hayes et al., 2022), we find similar levels of IgG induction (e.g. ~100-fold above naive on average for IgG2a/c), similar increases in phagocytosis by sera opsonization (e.g. equivalent to antiTyrp1), and similar levels of suppressed tumoroid growth – including the variability.

      However, median survival increased (21 days) compared to their naïve counterparts (14 days), supporting the initial hypothesis of prolonged survival and consistent not only with past results indicating major benefits of a prime-&-boost approach with anti-Tyrp1 (Dooling et al., 2022) but also with the noted similarities in induced IgG levels.”

      Future studies could certainly focus on trying to identify what secreted factors might be inducing the M1-like polarization (using ELISA assays for cytokine detection, for example). This could be important because a main finding here is that we achieve nearly a 100% success rate in clearing tumors when we combine CD47 ablation and IgG opsonization with cancer cell CIN. Previous studies were only able to achieve about 40% cures in mice when working with CD47 disription and IgG opsonization alone, suggesting CIN in this experimental context does improve macrophage response.

      Lastly, we agree with the Reviewer that future studies should also address how CIN in general (not MPS1i-induced) affects tumor growth. The final paragraph of our Discussion at least cites support for consistent effects of M1-like polarization:

      “The effects of CIN and aneuploidy in macrophages certainly requires further investigation. We did publish recently that M1-like polarization of BMDMs with IFNg priming is sufficient to suppress growth of B16 tumoroids with anti-Tyrp1 opsonization more rapidly than unpolarized/unprimed macrophages and much more rapidly than M2-like polarization of BMDMs with IL4 (Extended Data Fig.5a in Dooling et al., 2023); hence, anti-cancer polarization contributes in this assay.

      While the secretome from MPS1i-treated cancer cells has been found to trigger…”

      Nonetheless, we can only speculate that there is a threshold of CIN reached by a certain timepoint in tumor engraftment and growth. Natural CIN might not be enough, so we pursued a pharmacological approach consistent with ongoing pre-clinical studies (https://doi.org/10.1158/1535-7163.MCT-15-0500). Future studies should consider trying knockdown models to gradually accrue CIN in tumors or using more relevant pharmacological drugs that are known to induce CIN not associated with the spindle. We believe, however, that these are larger questions on their own and are beyond the scope of the foundational discoveries in this manuscript.

      Reviewer #2 (Recommendations For The Authors):

      None

      We again thank the Reviewer for their support and enthusiasm for the manuscript. We made some additional changes and more data to address questions posed by the other Reviewer that we hope you find to help the manuscript further.

    1. Author Response:

      We sincerely value the insightful and constructive feedback provided by the reviewers, which has been instrumental in identifying areas of our manuscript that required further clarification or amendment. Below are our responses detailing each comment.

      Reviewer 1:

      (1) One major issue arises in Figure 4, the recording of VLPO Ca2+ activity. In Lines 211-215, they stated that they injected AAV2/9-DBH-GCaMP6m into the VLPO, while activating LC NE neurons. As they claimed in line 157, DBH is a specific promoter for NE neurons. This implies an attempt to label NE neurons in the VLPO, which is problematic because NE neurons are not present in the VLPO. This raises concerns about their viral infection strategy since Ca activity was observed in their photometry recording. This means that DBH promoter could randomly label some non-NE neurons. Is DBH promoter widely used? The authors should list references. Additionally, they should quantify the labeling efficiency of both DBH and TH-cre throughout the paper.

      (1) In Figure 5, we found that the VLPO received the noradrenergic projection from LC, indicating the recorded Ca2+ activity may come from the axon fibers corresponding to the projection. Similarly, Gunaydin et al. (2014) demonstrated that fiber photometry can be used to selectively record from neuronal projection.

      (2) Located in the inner membrane of noradrenergic and adrenergic neurons, DBH (Dopamine-beta-hydroxylase) is an enzyme that catalyzes the conversion of dopamine to norepinephrine, and therefore plays an important role in noradrenergic neurotransmission. DBH is a marker of noradrenergic neurons. Zhou et al. (2020) clarified the probe specifically labeled noradrenergic neurons by immunolabeling for DBH. Recently, DBH promoter have been used in several studies (e.g., Han et al., 2024; Lian et al., 2023). The DBH-Cre mice are widely used to specifically labeled noradrenergic neurons (e.g., Li et al., 2023; Breton-Provencher et al., 2022; Liu et al., 2024). As reviewer said, it is difficult to distinguish the role of NE or DA neurons when using the TH promoter in VLPO. Therefore, we used DBH promoter with more specific labeling. LC is the main noradrenergic nucleus of the central nervous system. In our study, we injected rAAV-DBH-GCaMP6m-WPRE (Figure 2 and 8) and rAAV-DBH-EGFP-S'miR-30a-shRNA GABAA receptor)-3’-miR30a-WPRES (Figure 9) into the LC. The results showed that DBH promoter could specifically label noradrenergic neurons in the LC, while non-specific markers outside the LC were almost absent. As suggested, we will quantify the labeling efficiency of both DBH and TH-cre throughout the revised manuscript. This updated figure will provide a more rigorous analysis.

      (2) A similar issue arises with chemogenetic activation in Fig. 5 L-R, the authors used TH-cre and DIO-Gq virus to label VLPO neurons. Were they labelling VLPO NE or DA neurons for recording? The authors have to clarify this.

      As previously addressed in response to Comment #1, we acknowledge that it is difficult to distinguish the role of NE or DA neurons when using the TH promoter in VLPO. In the revised manuscript, we are considering conducting more restricted AAV injections into the VLPO to verify terminal expressions in the LC.

      (3) Another related question pertains to the specificity of LC NE downstream neurons in the VLPO. For example, do they preferentially modulate GABAergic or glutamatergic neurons?

      As suggested, we will supplement the multi-label ISH of LC NE downstream neurons in the VLPO to reveal the types of neurons they modulate.  

      (4) In Figure 1A-D, in the measurement of the dosage-dependent effect of Mida in LORR, were they only performed one batch of testing? If more than one batch of mice were used, error bar should be presented in 1B. Also, the rationale of testing TH expression levels after Mid is not clear. Is TH expression level change related to NE activation specifically? If so, they should cite references.

      (1) As recommended, we will supplement error bar in the revised manuscript.

      (2) As reviewer suggested, the use of TH as a marker of NE activation is controversial, so in the revised manuscript, we will directly determine central norepinephrine content.

      (5) Regarding the photometry recording of LC NE neurons during the entire process of midazolam injection in Fig. 2 and Fig. 4, it is unclear what time=0 stands for. If I understand correctly, the authors were comparing spontaneous activity during the four phases. Additionally, they only show traces lasting for 20s in Fig. 2F and Fig. 4L. How did the authors select data for analysis, and what criteria were used? The authors should also quantify the average Ca2+ activity and Ca2+ transient frequency during each stage instead of only quantifying Ca2+ peaks. In line 919, the legend for Figure 2D, they stated that it is the signal at the BLA; were they also recorded from the BLA?

      (1) In this study, we used optical fiber calcium signal recording, which is a fluorescence imaging based on changes in calcium. The fluorescence signal is usually divided into different segments according to the behavior, and the corresponding segments are orderly according to the specific behavior event as the time=0. The mean calcium fluorescence signal in the time window 1.5s or 1s before the event behavior is taken as the baseline fluorescence intensity (F0), and the difference between the fluorescence intensity of the occurrence of the behavior and the baseline fluorescence intensity is divided by the difference between the baseline fluorescence intensity and the offset value. That is, the value ΔF/F0 represents the change of calcium fluorescence intensity when the event occurs. The results of the analysis are commonly represented by two kinds of graphs, namely heat map and event-related peri-event plot (e.g., Cheng et al., 2022; Gan-Or et al., 2023; Wei et al., 2018). In Fig. 2, the time points for awake, midazolam injection, LORR and RORR in mice were respectively selected as time=0, while in Fig. 4, RORR in mice was selected as time=0. The selected traces lasting for 20s was based on the length of a complete Ca2+ signal. We will explain the Ca2+ recording experiment more specifically in the revised manuscript.

      (2) To the BLA, we sincerely apologize for our carelessness, the signal we recorded were from the LC rather than the BLA. We will carefully check and correct similar problems in the revised manuscript.

      Reviewer 2:

      In figure legends, abbreviations in figure should be supplemented as much as possible. For example, "LORR" in Figure 1.

      As suggested, we will supplement abbreviations in figure as much as possible in the revised manuscript.

      References

      Gunaydin LA, Grosenick L, Finkelstein JC, et al. Natural neural projection dynamics underlying social behavior. Cell. 2014;157(7):1535-1551. doi:10.1016/j.cell.2014.05.017

      Zhou N, Huo F, Yue Y, Yin C. Specific Fluorescent Probe Based on "Protect-Deprotect" To Visualize the Norepinephrine Signaling Pathway and Drug Intervention Tracers. J Am Chem Soc. 2020;142(41):17751-17755. doi:10.1021/jacs.0c08956

      Han S, Jiang B, Ren J, et al. Impaired Lactate Release in Dorsal CA1 Astrocytes Contributed to Nociceptive Sensitization and Comorbid Memory Deficits in Rodents. Anesthesiology. 2024;140(3):538-557. doi:10.1097/ALN.0000000000004756

      Lian X, Xu Q, Wang Y, et al. Noradrenergic pathway from the locus coeruleus to heart is implicated in modulating SUDEP. iScience. 2023;26(4):106284. Published 2023 Feb 27. doi:10.1016/j.isci.2023.106284

      Li C, Sun T, Zhang Y, et al. A neural circuit for regulating a behavioral switch in response to prolonged uncontrollability in mice. Neuron. 2023;111(17):2727-2741.e7. doi:10.1016/j.neuron.2023.05.023

      Breton-Provencher V, Drummond GT, Feng J, Li Y, Sur M. Spatiotemporal dynamics of noradrenaline during learned behaviour. Nature. 2022;606(7915):732-738. doi:10.1038/s41586-022-04782-2

      Liu Q, Luo X, Liang Z, et al. Coordination between circadian neural circuit and intracellular molecular clock ensures rhythmic activation of adult neural stem cells. Proc Natl Acad Sci U S A. 2024;121(8):e2318030121. doi:10.1073/pnas.2318030121

      Cheng J, Ma X, Li C, et al. Diet-induced inflammation in the anterior paraventricular thalamus induces compulsive sucrose-seeking. Nat Neurosci. 2022;25(8):1009-1013. doi:10.1038/s41593-022-01129-y

      Gan-Or B, London M. Cortical circuits modulate mouse social vocalizations. Sci Adv. 2023;9(39):eade6992. doi:10.1126/sciadv.ade6992

      Wei YC, Wang SR, Jiao ZL, et al. Medial preoptic area in mice is capable of mediating sexually dimorphic behaviors regardless of gender. Nat Commun. 2018;9(1):279. Published 2018 Jan 18. doi:10.1038/s41467-017-02648-0

    1. Author response:

      Reviewer 1:

      A limit of the paper is that the biological mechanisms by which intracellular mechanics is modulated (e.g. among cell types) remains unexplored and only briefly discussed. Yet this limit is greatly offset by the rigor of the approach.

      We thank the reviewer for the valuable feedback. The question regarding the biological mechanisms responsible for the different mechanical properties is, indeed, a highly important and interesting issue. In line with the reviewer, we consider this so important that it requires an extra, dedicated research focus, which is far beyond the scope of this article. By introducing the concept of the mechanical fingerprint, we provide in this work the framework to systematically investigate biological mechanisms but also the functional relevance of the intracellular mechanical properties in future studies. In the revised manuscript, we’ll elaborate on the discussion.

      Reviewer 2:

      The most difficult part of the method is the part with actin polymerization inhibition with cytochalasin B. The data shows that viscoelastic parameters as well as active energy parameters are unaffected by cytochalasin B. It is reasonable to expect that elasticity will reduce and fluidity will increase upon application of such a drug. The stiffness-reducing effect was observed only when CB was used with nocodazole most likely because of phagocytosis of the bead, which is governed by microtubule. The use of other actin-depolymerizing drugs such as latrunculin A would be needed to test actin’s role in mechanical fingerprints. If actin’s role is only explained by accompanying microtubule inhibition, it is not a convenient system to directly test the mechano-adaptation process.

      We thank the reviewer for the time and the instructive feedback. Our finding that actin depolymerization has no effect on the intracellular mechanics may appear unfamiliar, as many rheological studies performed on the cell’s cortex highlight the importance of actin on the mechanical properties of the whole cell. However, as the actin network is reported to be very sparse away from the cortex it is not impossible that the mechanical properties may be dominated by other structures in the cytoplasm. Indeed, our findings are consisted with other studies that see no strong effect of actin depolymerization on the interphase intracellular mechanics (e.g. https://doi.org/10.1016/j.bpj.2023.04.011 or https://doi.org/10.1038/s41567-021-01368-z). Still, we fully agree with the reviewers that this is an important point. In a revised version we aim to investigate the effect of other actin-depolymerizing drugs and will try to perform immunostaining to visualize and further illuminate the potential compensation mechanism between actin and MT.

      Depolymerization of MT with nocodazole did not reduce the solid-like property A. Adding discussion and comparison with other papers in the literature using nocodazole will be helpful in understanding why.

      Again, we agree with the reviewer and propose to further study this point by performing additional immunostainings and by elaborating on the discussion, also including the results of other studies.

      Reviewer 3:

      The importance of the mechanical fingerprint is diluted due to some missing controls needed for biological relevance.

      We thank the reviewer for his valuable time and feedback. This comment is in line with the point already raised by reviewer 1 and highlights the important question of how the intracellular mechanical properties are related to the actual cell function. We fully agree with the reviewers that at this point we can only report on differences, but cannot claim a biological function that is depending on the fingerprint. Although we think the alignment between function and the mechanical fingerprints allows the hypothesis that the biological system is tuning its mechanical properties for a specific function, we do not want to make any claim in this direction at the current state of our research. Hence, to answer these intriguing questions, carefully designed control experiments are required, as pointed out by the reviewer. However, this direction is not the scope of this manuscript. Here, we establish the tools we’ll use in future studies to address these highly relevant questions. Therefore, we propose to discuss these important future directions in a revised manuscript.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this study, Kroll et al. conduct an in-depth behavioral analysis of F0 knockouts of 4 genes associated with late-onset Alzheimer's Disease (AD), together with 3 genes associated with early- onset AD. Kroll and colleagues developed a web application (ZOLTAR) to compare sleep-associated traits between genetic mutants with those obtained from a panel of small molecules to promote the identification of affected pathways and potential therapeutic interventions. The authors make a set of potentially important findings vis-à-vis the relationship between AD-associated genes and sleep. First, they find that loss-of-function in late-onset AD genes universally results in nighttime sleep loss, consistent with the well-supported hypothesis that sleep disruption contributes to Alzheimer's-related pathologies. psen-1, an early-onset associated AD gene, which the authors find is principally responsible for the generation of AB40 and AB42 in zebrafish, also shows a slight increase in activity at night and slight decreases in nighttime sleep. Conversely, psen-2 mutations increase daytime sleep, while appa/appb mutations have no impact on sleep. Finally, using ZOLTAR, the authors identify serotonin receptor activity as potentially disrupted in sorl1 mutants, while betamethasone is identified as a potential therapeutic to promote reversal of psen2 knockout-associated phenotypes.

      This is a highly innovative and thorough study, yet a handful of key questions remain. First, are nighttime sleep loss phenotypes observed in all knockouts for late-onset AD genes in the larval zebrafish a valid proxy for AD risk?

      We cannot say, but it is an interesting question. We selected the four late-onset Alzheimer’s risk genes (APOE, CD2AP, CLU, SORL1) based on human genetics data and brain expression in zebrafish larvae, not based on their likelihood to modify sleep behaviour, which we could have tried by searching for overlaps with GWAS of sleep phenotypes, for example. Consequently, we find it remarkable that all four of these genes caused a night-time sleep phenotype when mutated. We also find it reassuring that knockout of appa/appb and psen2 did not cause a night-time sleep phenotype, which largely excludes the possibility that the phenotype is a technical artefact (e.g. caused by the F0 knockout method) or a property of every gene expressed in the larval brain.

      Having said that, it could still be a coincidence, rather than a special property of genes associated with late-onset AD. In addition to testing additional late-onset Alzheimer’s risk genes, the ideal way to answer this question would be to test in parallel a random set of genes expressed in the brain at this stage of development. From this random set, one could estimate the proportion of genes that cause a night-time sleep phenotype when mutated. One could then use that information to test whether late-onset Alzheimer’s risk genes are indeed enriched for genes that cause a night-time sleep phenotype when mutated.

      For those mutants that cause nighttime sleep disturbances, do these phenotypes share a common underlying pathway? e.g. Do 5-HT reuptake inhibitors promote sleep across all 4 late-onset genes in addition to psen1? Can 5-HT reuptake inhibitors reverse other AD-related pathologies in zebrafish? Can compounds be identified that have a common behavioral fingerprint across all or multiple AD risk genes? Do these modify sleep phenotypes?

      To attempt to answer these questions, we used ZOLTAR to generate predictions for all the knockout behavioural fingerprints presented in the study, in the same way as for sorl1 in Fig. 5 and Fig. 5–suppl. 1. Here are the indications, targets, and KEGG pathways which are shared by the largest number of knockouts:

      – Four indications are shared by 4/7 knockouts: “mydriasis” (dilated pupils, significant for psen1, apoea/apoeb, cd2ap, clu); “fragile X syndrome” (psen1, apoea/apoeb, cd2ap, sorl1), “insomnia” (psen2, apoea/apoeb, cd2ap, sorl1); “malignant essential hypertension” (appa/appb, psen1, apoea/apoeb, cd2ap).

      – Two targets are shared by 5/7 knockouts: “glycogen synthase kinase−3 alpha” (psen1, apoeab, cd2ap, clu, sorl1) and “neuronal acetylcholine receptor beta−2” (appa/appb, psen1, apoeab, cd2ap, clu).

      – Two KEGG pathways are shared by 5/7 knockouts: “cholinergic synapse” (psen1, apoea/apoeb, cd2ap, clu, sorl1) and “nitrogen metabolism” (appa/appb, psen1, psen2, cd2ap, clu).

      As reminder, we hypothesised that loss of Sorl1 affected serotonin signalling based on the following annotations being significant: indication “depression”, target “serotonin transporter”, and KEGG pathway “serotonergic synapse”. All three are also significant for psen2 knockouts, but none others. ZOLTAR therefore does not predict serotonin signalling to be a major theme common to all mutants with a night-time sleep loss phenotype.

      While perhaps not surprising, we find reassuring that insomnia appears in the indications shared by the largest number of knockouts. apoea/apoeb, cd2ap, sorl1 also happen to be the knockouts with the largest loss in night-time sleep.

      Particularly interesting is cholinergic signalling appearing in the most common targets and KEGG pathways. Acetylcholine signalling is a major theme in research on Alzheimer’s disease. For example, the first four drugs ever approved by the FDA to treat Alzheimer’s disease were acetylcholinesterase inhibitors, which increase acetylcholine signalling by preventing its breakdown by acetylcholinesterase. These drugs are generally considered only to treat symptoms and not modify disease course, but this view has been called into question (Munoz-Torrero, 2008; Relkin, 2007). If, as ZOLTAR suggests, mutations in several Alzheimer’s risk genes affect cholinergic signalling early in development, this would point to a potential causal role of cholinergic disruption in Alzheimer’s disease.

      We see that literature also exists on the involvement of glycogen synthase kinase-3 in AD (Lauretti et al., 2020). We plan to explore further these predictions in a future study.

      Finally, the web- based platform presented could be expanded to facilitate comparison of other behavioral phenotypes, including stimulus-evoked behaviors.

      Yes, absolutely. The behavioural dataset we used (Rihel et al., 2010) did not measure other stimuli than day/night light transitions, but the “SauronX” platform and dataset (Myers-Turnbull et al., 2022) seems particularly well suited for this. To provide some context, we and collaborators have occasionally used the dataset by Rihel et al. (2010) to generate hypotheses or find candidate drugs that reverse a behavioural phenotype measured in the sleep/wake assay (Ashlin et al., 2018; Hoffman et al., 2016). The present work was the occasion to enable a wider and more intuitive use of this dataset through the ZOLTAR app, which has already proven successful. Future versions of ZOLTAR will seek to incorporate larger drug datasets using more types of measurements.

      Finally, the authors propose but do not test the hypothesis that sorl1 might regulate localization/surface expression of 5-HT2 receptors. This could provide exciting / more convincing mechanistic support for the assertion that serotonin signaling is disrupted upon loss of AD-associated genes.

      5-HT receptor type 4a is another candidate as it was shown to interact with sorting nexin 27, a subunit of retromer (Joubert et al., 2004). We see that antibodies against human 5-HT receptor type 2 and 4a exist; whether they would work in zebrafish remains to be tested, and in our experience, the availability of antibodies suitable for immunohistochemistry in the zebrafish is a serious experimental roadblock.

      Despite these important considerations, this study provides a valuable platform for high-throughput analysis of sleep phenotypes and correlation with small-molecule-induced sleep phenotypes.

      Strengths:

      - Provides a useful platform for comparison of sleep phenotypes across genotypes/drug manipulations.

      - Presents convincing evidence that nighttime sleep is disrupted in mutants for multiple late-onset AD-related genes.

      - Provides potential mechanistic insights for how AD-related genes might impact sleep and identifies a few drugs that modify their identified phenotypes

      Weaknesses:

      - Exploration of potential mechanisms for serotonin disruption in sorl1 mutants is limited.

      - The pipeline developed can only be used to examine sleep-related / spontaneous movement phenotypes and stimulus-evoked behaviors are not examined.

      - Comparisons between mutants/exploration of commonly affected pathways are limited.

      Thank you for these excellent suggestions, please see our answers above.

      Reviewer #2 (Public Review):

      Summary:

      This work delineates the larval zebrafish behavioral phenotypes caused by the F0 knockout of several important genes that increase the risk for Alzheimer's disease. Using behavioral pharmacology, comparing the behavioral fingerprint of previously assayed molecules to the newly generated knockout data, compounds were discovered that impacted larval movement in ways that suggest interaction with or recovery of disrupted mechanisms.

      Strengths:

      This is a well-written manuscript that uses newly developed analysis methods to present the findings in a clear, high-quality way. The addition of an extensive behavioral analysis pipeline is of value to the field of zebrafish neuroscience and will be particularly helpful for researchers who prefer the R programming language. Even the behavioral profiling of these AD risk genes, regardless of the pharmacology aspect, is an important contribution. The recovery of most behavioral parameters in the psen2 knockout with betamethasone, predicted by comparing fingerprints, is an exciting demonstration of the approach. The hypotheses generated by this work are important stepping stones to future studies uncovering the molecular basis of the proposed gene-drug interactions and discovering novel therapeutics to treat AD or co-occurring conditions such as sleep disturbance.

      Weaknesses:

      - The overarching concept of the work is that comparing behavioral fingerprints can align genes and molecules with similarly disrupted molecular pathways. While the recovery of the psen2 phenotypes by one molecule with the opposite phenotype is interesting, as are previous studies that show similar behaviorally-based recoveries, the underlying assumption that normalizing the larval movement normalizes the mechanism still lacks substantial support. There are many ways that a reduction in movement bouts could be returned to baseline that are unrelated to the root cause of the genetically driven phenotype. An ideal experiment would be to thoroughly characterize a mutant, such as by identifying a missing population of neurons, and use this approach to find a small molecule that rescues both behavior and the cellular phenotype. If the connection to serotonin in the sorl1 was more complete, for example, the overarching idea would be more compelling.

      Thank you for this cogent criticism.

      On the first point, we were careful not to claim that betamethasone normalises the molecular/cellular mechanism that causes the psen2 behavioural phenotype. Having said that, yes, to a certain extent that would be the hope of the approach. As you say, every compound which normalises the behavioural fingerprint will not normalise the underlying mechanism, but the opposite seems true: every compound that normalises the underlying mechanism should also normalise the behavioural fingerprint. We think this logic makes the “behaviour-first” approach innovative and interesting. The logic is to discover compounds that normalise the behavioural phenotype first, only subsequently test whether they also normalise the molecular mechanism, akin to testing first whether a drug resolves the symptoms before testing whether it actually modifies disease course. While in practice testing thousands of drugs in sufficient sample sizes and replicates on a mutant line is challenging, the dataset queried through ZOLTAR provides a potential shortcut by shortlisting in silico compounds that have the opposite effect on behaviour.

      You mention a “reduction in movement bouts” but note here that the number of behavioural parameters tested is key to our argument. To take the two extremes, say the only behavioural parameter we measured in psen2 knockout larvae was time active during the day, then, yes, any stimulant used at the right concentration could probably normalise the phenotype. In this situation, claiming that the stimulant is likely to also normalise the underlying mechanism, or even that it is a genuine “phenotypic rescue”, would not be convincing. Conversely, say we were measuring thousands of behavioural parameters under various stimuli, such as swimming speed, position in the well, bout usage, tail movements, and eye angles, it seems almost impossible for a compound to rescue most parameters without also normalising the underlying mechanism. The present approach is somewhere in-between: ZOLTAR uses six behavioural parameters for prediction (e.g. Fig 6a), but all 17 parameters calculated by FramebyFrame can be used to assess rescue during a subsequent experiment (Fig. 6c). For both, splitting each parameter in day and night increases the resolution of the approach, which partly answers your criticism. For example, betamethasone rescued the day-time hypoactivity without causing night-time hyperactivity, so we are not making the “straw man argument” explained above of using any broad stimulant to rescue the hypoactivity phenotype.

      Furthermore, for diseases where the behavioural defect is the primary concern, such as autism or bipolar disorder, perhaps this behaviour-first approach is all that is needed, and whether or not the compound precisely rescues the underlying mechanism is somewhat secondary. The use of lithium to prevent manic episodes in bipolar disorder is a good example. It was initially tested because mania was thought to be caused by excess uric acid and lithium can dissolve uric acid (Mitchell and Hadzi-Pavlovic, 2000). The theory is now discredited, but lithium continues to be used without a precise understanding of its mode of action. In this example, behavioural rescue alone, with tolerable secondary effects, is sufficient to be beneficial to patients, and whether it modulates the correct causal pathway is secondary.

      On the second point, we agree that testing first ZOLTAR on a mutant for which we have a fairly good understanding of the mechanism causing the behavioural phenotype could have been a productive approach. Note, however, that examples already exist in the literature. First, Hoffman et al. (2016) found that drugs generating behavioural fingerprints that positively correlate with the cntnap2a/cntnap2b double knockout fingerprint are enriched with NMDA and GABA receptor antagonists. In experiments analogous to our citalopram treatment (Fig. 5c,d), cntnap2a/cntnap2b knockout larvae were found to be overly sensitive to the NMDA receptor antagonist MK-801 and the GABAA receptor antagonist pentylenetetrazol (PTZ). Among other drugs tested, zolpidem, a GABAA receptor agonist, caused opposite effects on wild-type and cntnap2a/cntnap2b knockout larvae. Knockout larvae also had fewer GABAergic neurons in the forebrain. Second, Ashlin et al. (2018) found that the fingerprint of pitpnc1a knockout larvae clustered with anti-inflammatory compounds. Flumethasone, an anti-inflammatory corticosteroid, caused a lower increase in activity when added to knockout larvae compared to wild-type larvae. While these studies did not use precisely the same analysis that ZOLTAR runs, they used the same rationale and behavioural dataset to make these predictions (Rihel et al., 2010), which shows that approaches like ZOLTAR can point to causal processes.

      Related to your next point, we may reduce the discussion on sorl1 and serotonin and add some of the present arguments instead, depending on the results from  testing a second SSRI (see next point).

      - The behavioral difference between the sorl1 KO and scrambled at the higher dose of the citalopram is based on a small number of animals. The KO Euclidean distance measure is also more spread out than for the other datasets, and it looks like only five or so fish are driving the group difference. It also appears as though the numbers were also from two injection series. While there is nothing obviously wrong with the data, I would feel more comfortable if such a strong statement of a result from a relatively subtle phenotype were backed up by a higher N or a stable line. It is not impossible that the observed difference is an experimental fluke. If something obvious had emerged through the HCR, that would have also supported the conclusions. As it stands, if no more experiments are done to bolster the claim, the confidence in the strength of the link to serotonin should be reduced (possibly putting the entire section in the supplement and modifying the discussion). The discussion section about serotonin and AD is interesting, but I think that it is excessive without additional evidence.

      We mostly agree with this criticism. One could interpret the larger spread of the data for sorl1 larvae treated with 10 µM citalopram as evidence that the knockout larvae do indeed react differently to the drug at this dose. However, the result indeed does not survive removing the top 5 (p = 0.87) or top 3 (p = 0.18) sorl1 larvae.

      Given that the HCR did not reveal anything striking, we agree with you that too much of our argument relies on this result being robust. As you and reviewer #3 suggest, we plan on repeating this experiment with a different serotonin reuptake inhibitor (SSRI). If the other SSRI also shows a differential effect, this should strengthen the claim that ZOLTAR correctly predicted serotonin signalling as being affected by the loss of Sorl1, even if we did not discover the molecular mechanism.

      - The authors suggest two hypotheses for the behavioral difference between the sorl1 KO and scrambled at the higher dose of the citalopram. While the first is tested, and found to not be supported, the second is not tested at all ("Ruling out the first hypothesis, sorl1 knockouts may react excessively to a given spike in serotonin." and "Second, sorl1 knockouts may be overly sensitive to serotonin itself because post-synaptic neurons have higher levels of serotonin receptors."). Assuming that the finding is robust, there are probably other reasons why the mutants could have a different sensitivity to this molecule. However, if this particular one is going to be mentioned, it is surprising that it was not tested alongside the first hypothesis. This work could proceed without a complete explanation, but additional discussion of the possibilities would be helpful or why the second hypothesis was not tested.

      There are no strong scientific reasons why this hypothesis was not tested. The lead author (F Kroll) moved to a different lab and country so the project was finalised at that time. We do not plan on testing this hypothesis at this stage. However, we will adapt the wording to make it clear this is one possible alternative hypothesis which could be tested in the future, rather than the only alternative.

      - The authors claim that "all four genes produced a fairly consistent phenotype at night". While it is interesting that this result arose in the different lines, the second clutch for some genes did not replicate as well as others. I think the findings are compelling, regardless, but the sometimes missing replicability should be discussed. I wonder if the F0 strategy adds noise to the results and if clean null lines would yield stronger phenotypes. Please discuss this possibility, or others, in regard to the variability in some phenotypes.

      For the first part of this point, please see below our answer to Reviewer #3, point (2) c.

      Regarding the F0 strategy potentially adding variability, it is an interesting question which we tested in a larger dataset of behavioural recordings from F0 and stable knockouts for the same genes (unpublished). In summary, the F0 knockout method does not increase clutch-to-clutch or larva-to-larva variability in the assay. F0 knockout experiments found many more significant parameters and larger effect sizes than stable knockout experiments, but this difference could largely be explained by the larger sample sizes of F0 knockout experiments. In fact, larger sample sizes within individual clutches appears to be a major advantage of the F0 knockout approach over in-cross of heterozygous knockout animals as it increases sensitivity of the assay without causing substantial variability. We plan to report in more details on this analysis in a separate paper as we think it would dilute the focus of the present work.

      - In this work, the knockout of appa/appb is included. While APP is a well-known risk gene, there is no clear justification for making a knockout model. It is well known that the upregulation of app is the driver of Alzheimer's, not downregulation. The authors even indicate an expectation that it could be similar to the other knockouts ("Moreover, the behavioural phenotypes of appa/appb and psen1 knockout larvae had little overlap while they presumably both resulted in the loss of Aβ." and "Comparing with early-onset genes, psen1 knockouts had similar night-time phenotypes, but loss of psen2 or appa/appb had no effect on night-time sleep."). There is no reason to expect similarity between appa/appb and psen1/2. I understand that the app knockouts could unveil interesting early neurodevelopmental roles, but the manuscript needs to be clarified that any findings could be the opposite of expectation in AD.

      On “there is no reason to expect similarity […]”, we disagree. Knockout of appa/appb and knockout psen1 will both result in loss of Aβ (appa/appb encode Aβ and psen1 cleaves Appa/Appb to release Aβ, cf. Fig. 3e). Consequently, a phenotype caused by the loss of Aβ, or possibly other Appa/Appb cleavage products, should logically be found in both appa/appb and psen1 knockouts.

      On “it is well known that the upregulation of APP is the driver of Alzheimer’s, not downregulation”; we of course agree. Among others, the examples of Down syndrome, APP duplication (Sleegers et al., 2006), or mouse models overexpressing human APP show definitely that overexpression of APP is sufficient to cause AD. Having said that, we would not be so quick in dismissing APP knockout as potentially relevant to understanding of Alzheimer’s disease. Loss of soluble Aβ due to aggregation could contribute to pathology (Espay et al., 2023). Without getting too much into this intricate debate, links between levels of Aβ and risk of disease are often counter-intuitive too. For example, out of 138 PSEN1 mutations screened in vitro, 104 reduced total Aβ production and 11 even seemingly abolished the production of both Aβ40 and Aβ42 (Sun et al., 2017). In short, loss of soluble Aβ occurs in both AD and in our appa/appb knockout larvae, but the ideal approach would be to study zebrafish larvae with an in-frame deletion in the Aβ sequence within appa/appb.

      We will adapt the language to address your point. We would not want to imply, for example, that the absence of a night-time sleep phenotype for appa/appb is contradictory to the body of literature showing links between Aβ and sleep, including in zebrafish (Özcan et al., 2020). As you say, our experiment tested loss of App, including Aβ, while the literature typically reports on overexpression of APP, as in APP/PSEN1-overexpressing mice (Jagirdar et al., 2021).

      Reviewer #3 (Public Review):

      In this manuscript by Kroll and colleagues, the authors describe combining behavioral pharmacology with sleep profiling to predict disease and potential treatment pathways at play in AD. AD is used here as a case study, but the approaches detailed can be used for other genetic screens related to normal or pathological states for which sleep/arousal is relevant. The data are for the most part convincing, although generally the phenotypes are relatively small and there are no major new mechanistic insights. Nonetheless, the approaches are certainly of broad interest and the data are comprehensive and detailed.

      A notable weakness is the introduction, which overly generalizes numerous concepts and fails to provide the necessary background to set the stage for the data.

      Major points

      (1) The authors should spend more time explaining what they see as the meaning of the large number of behavioral parameters assayed and specifically what they tell readers about the biology of the animal. Many are hard to understand--e.g. a "slope" parameter.

      We agree that some parameters do not tell something intuitive about the biology of the animal. It would be easy to speculate. For example, the “activity slope” parameter may indicate how quickly the animal becomes tired over the course of the day. On the other hand, fractal dimension describes the “roughness/smoothness” of the larva’s activity trace (Fig. 2–suppl. 1a); but it is not obvious how to translate this into information about the physiology of the animal. We do not see this as an issue though. While some parameters do provide intuitive information about the animal’s behaviour (e.g. sleep duration or sunset startle as a measure of startle response), the benefit of having a large number of behavioural parameters is to compare behavioural fingerprints and assess rescue of the behavioural phenotype by small molecules (Fig. 6c). For this purpose, the more parameters the better. The “MoSeq” approach from Wiltschko et al., 2020 is a good example from literature that inspired our own Fig. 6c. While some of the “behavioural syllables” may be intuitive (e.g. running or grooming), it is probably pointless to try to explain the ‘meaning’ of the “small left turn in place with head motion” syllable (Wiltschko et al., 2020). Nonetheless, this syllable was useful to assess whether a drug specifically treats the behavioural phenotype under study without causing too many side effects. Unfortunately, ZOLTAR has to reduce the FramebyFrame fingerprint (17 parameters) to just six parameters to compare it to the behavioural dataset from Rihel et al., 2010, but here, more parameters would almost certainly translate into better predictions too, regardless of their intuitiveness.

      It is true however that we do not give much information on how some of the less intuitive parameters, such as activity slope or fractal dimension, are calculated or what they describe about the dataset (e.g. roughness/smoothness for fractal dimension). We will improve this in our revised version.

      (2) Because in the end the authors did not screen that many lines, it would increase confidence in the phenotypes to provide more validation of KO specificity. Some suggestions include:

      a. The authors cite a psen1 and psen2 germline mutant lines. Can these be tested in the FramebyFrame R analysis? Do they phenocopy F0 KO larvae?

      We unfortunately do not have those lines. We investigated the availability of importing a psen2 knockout line from abroad, but the process of shipping live animals is becoming more and more cost and time prohibitive. However, we observed the same pigmentation phenotype for psen2 knockouts as reported by Jiang et al., 2018, which is at least a partial confirmation of phenocopying a loss of function stable mutant. 

      b. psen2KO is one of the larger centerpieces of the paper. The authors should present more compelling evidence that animals are truly functionally null. Without this, how do we interpret their phenotypes?

      We disagree that there should be significant doubt about these mutants being truly functionally null,  given the high mutation rate and presence of the expected pigmentation phenotype (Jiang et al., 2018, Fig. 3f and Fig. 3–suppl. 2). The psen2 F0 knockouts were virtually 100% mutated at three exons across the gene (mutation rates were locus 1: 100 ± 0%; locus 2: 99.99 ± 0.06%; locus 3: 99.85 ± 0.24%). Additionally, two of the three mutated exons had particularly high rates of frameshift mutations (locus 1: 97 ± 5%; locus 2: 88 ± 17% frameshift mutation rate). It is virtually impossible that a functional protein is translated given this burden of frameshift mutations. Phenotypically, in addition to the pigmentation defect, double psen1/psen2 F0 knockout larvae had curved tails, the same phenotype as caused by a high dose of the γ-secretase inhibitor DAPT (Yang et al., 2008). These double F0 knockouts were lethal, while knockout of psen1 or psen2 alone did not cause obvious morphological defects. Evidently, most larvae must have been psen2 null mutants in this experiment, otherwise functional Psen2 would have prevented early lethality.

      Translation of zebrafish psen2 can start at downstream start codons if the first exon has a frameshift mutation, generating a seemingly functional Psen2 missing the N-terminus (Jiang et al., 2020). Zebrafish homozygous for this early frameshift mutation had normal pigmentation, showing it is a reliable marker of Psen2 function even when it is mutated. This mechanism is not a concern here as the alternative start codons are still upstream of two of the three mutated exons (the alternative start codons discovered by Jiang et al., 2020 are in exon 2 and 3, but we targeted exon 3, exon 4, and exon 6).

      We understand that the zebrafish community may be cautious about F0 phenotyping compared to stably generated mutants. As mentioned to Reviewer 2, we are planning to assemble a paper that expressly examines F0s vs. stable mutants to allay some of these concerns. We would also suggest that our current manuscript, which combines CRISPR-F0 rapid screening with in silico pharmacological predictions, ultimately represents a first step in characterizing the functions of genes.

      c. Related to the above, for cd2AP and sorl1 KO, some of the effect sizes seem to be driven by one clutch and not the other. In other words, great clutch-to-clutch variability. Should the authors increase the number of clutches assayed?

      Correct, there is great clutch-to-clutch variability in this behavioural assay. This is not specific to our experiments. Even within the same strain, wild-type larvae from different clutches (i.e. non-siblings) behave differently (Joo et al., 2021). This is why it is essential to compare behavioural phenotypes within individual clutches (i.e., from a single pair of parents, one male and one female), as we explain in Methods (section Behavioural video-tracking) and in the documentation of the FramebyFrame package. We often see two different experimental designs in literature: comparing non-sibling wild-type and mutant larvae, or pooling different clutches which include all genotypes (e.g., pooling multiple clutches from heterozygous in-crosses or pooling wild-type clutches before injecting them). The first experimental design causes false positive findings, as the clutch-to-clutch variability we and others (Joo et al., 2021) observe gets interpreted as a behavioural phenotype. The second experimental design should not cause false positives but will decrease the sensitivity of the assay by increasing the spread within genotypes. In both cases, the clutch-to-clutch variability is hidden, either by interpreting it as a phenotype (first case) or by adding it to animal-to-animal variability (second case). Our experimental design is technically more challenging as it requires obtaining large clutches from unique pairs of parents. However, this approach is better as it clearly separates the different sources of variability (clutch-to-clutch or animal-to-animal). As for every experiment, yes, a larger number of replicates would be better, but we do not plan to assay additional clutches at this time. Our work heavily focuses on the sorl1 and psen2 knockout behavioural phenotypes. The key aspects of these phenotypes were effectively tested in four clutches as sorl1 were also tested in the citalopram experiment (Fig. 5), and psen2 was also tested in the small molecule rescue experiment (Fig. 6 and Fig. 6–suppl. 1). In the citalopram experiment, one H2O-treated sorl1 knockout clutch (n = 10) replicates fairly well the baseline recordings in Fig. 4–suppl. 5, the other does not but had especially low sample size (n = 6).

      We also plan to test another SSRI on sorl1 knockouts, so this point will be addressed.

      (3) The authors make the point that most of the AD risk genes are expressed in fish during development. Is there public data to comment on whether the genes of interest are expressed in mature/old fish as well? Just because the genes are expressed early does not at all mean that early- life dysfunction is related to future AD (though this could be the case, of course). Genes with exclusive developmental expression would be strong candidates for such an early-life role, however. I presume the case is made because sleep studies are mainly done in juvenile fish, but I think it is really a pretty minor point and such a strong claim does not even need to be made.

      This is a fair criticism but we do not make this claim, at least not from expression. The reviewer is probably referring to the following quote:

      “[…] most of these were expressed in the brain of 5–6-dpf zebrafish larvae, suggesting they play a role in early brain development or function,”

      which does not mention future risk of Alzheimer’s disease. We do suggest that these genes have a function in development. After all, every gene that plays a role in brain development must be expressed during development, so this wording seems reasonable. As noted, the primary goal was to check that the genes we selected were indeed expressed in zebrafish larvae before performing knockout experiments. Our discussion does raise the hypothesis that mutations in Alzheimer’s risk genes impact brain development and sleep early in life, but this argument primarily relies on our observation that knockout of late-onset Alzheimer’s risk genes causes sleep phenotypes in 7-day old zebrafish larvae and from previous work showing brain structural differences in infants and children at high genetic risk of Alzheimer’s disease (Dean et al., 2014; Quiroz et al., 2015), not solely on gene expression early in life.

      (4) A common quandary with defining sleep behaviorally is how to rectify sleep and activity changes that influence one another. With psen2 KOs, the authors describe reduced activity and increased sleep during the day. But how do we know if the reduced activity drives increased behavioral quiescence that is incorrectly defined as sleep? In instances where sleep is increased but activity during periods during wake are normal or elevated, this is not an issue. But here, the animals might very well be unhealthy, and less active, so naturally they stop moving more for prolonged periods, but the main conclusion is not sleep per se. This is an area where more experiments should be added if the authors do not wish to change/temper the conclusions they draw. Are psen2 KOs responsive to startling stimuli like controls when awake? Do they respond normally when quiescent? Great care must be taken in all models using inactivity as a proxy for sleep, and it can harm the field when there is no acknowledgment that overall health/activity changes could be a confound. Particularly worrisome is the betamethasone data in Figure 6, where activity and sleep are once again coordinately modified by the drug.

      This is a fair criticism. We agree it is a concern, especially in the case of psen2 as we claim that day-time sleep is increased while zebrafish are diurnal. We do not rely heavily on the day-time inactivity being sleep (the ZOLTAR predictions or the small molecule rescue do not change whether the parameter is called sleep or inactivity), but  our choice of labelling may be misleading. We will try to test this claim by plotting the distribution of the inactive period durations. If psen2 knockout larvae indeed sleep more during the day compared to controls, we might predict that inactive periods longer than 1 minute to increase disproportionately compared to the increase in shorter inactive periods.

      To address, “are psen2 KO responsive to startling stimuli like controls when awake/when quiescent”, we can try to look at the behaviour of psen2 knockout larvae that were awake (i.e., moved in the preceding one minute) or ‘asleep’ (i.e., did not move in the preceding one minute) at the light transitions and count the proportion of psen2 knockout or control larvae which displayed a startle response. If most psen2 knockouts react to the light transition, it should at least exclude the concern that they are very unhealthy, as the reviewer suggests. This criticism seems challenging to definitely address experimentally though. A possible approach could be to use a closed-loop system which, after one minute of inactivity, triggers a stimulus which is sufficient to startle an awake larva but not an asleep larva. If psen2 knockout larvae indeed sleep more during the day, the stimulus should usually not be sufficient to startle them. Note, how to calibrate this stimulus is also not straightforward. We do not plan to test this, but our analysis of the light transitions may provide a decent proxy.

      (5) The conclusions for the serotonin section are overstated. Behavioural pharmacology purports to predict a signaling pathway disrupted with sorl1 KO. But is it not just possible that the drug acts in parallel to the true disrupted pathway in these fish? There is no direct evidence for serotonin dysfunction - that conclusion is based on response to the drug. Moreover, it is just 1 drug - is the same phenotype present with another SSRI? Likewise, language should be toned down in the discussion, as this hypothesis is not "confirmed" by the results (consider "supported"). The lack of measured serotonin differences further raises concern that this is not the true pathway. This is another major point that deserves further experimental evidence, because without it, the entire approach (behavioral pharm screen) seems more shaky as a way to identify mechanisms. There are any number of testable hypotheses to pursue such as a) Using transient transgenesis to visualize 5HT neuron morphology (is development perturbed: cell number, neurite morphology, synapse formation); b) Using transgenic Ca reporters to assay 5HT neuron activity.

      Regarding the comment, “is it not just possible that the drug acts in parallel to the true disrupted pathway”, we think no, assuming we understand correctly your question. Key to our argument is the fact that sorl1 knockout larvae react differently to the drug than control larvae. As an example, take night-time sleep bout length, which was not affected by knockout of sorl1 (Fig. 4–suppl. 5). For the sake of the argument, say only dopamine signalling (the “true disrupted pathway”) was affected in sorl1 knockouts but that serotonin signalling was intact. Assuming that citalopram specifically alters serotonin signalling, then treatment should cause the same increase in sleep bout length in both knockouts and controls as serotonin signalling is intact in both. This is not what we see, however. Citalopram caused a greater increase in sleep bout length in sorl1 knockouts than in scrambled-injected larvae. In other words, the effect is non-additive, in the sense that citalopram did not add the same number of Z-scores to sorl1 knockouts or controls. We think this shows that serotonin signalling is somehow different in sorl1 knockouts. Nonetheless, we would concede that the experiment does not necessarily says much about the importance of the serotonin disruption caused by loss of Sorl1. It could be, for example, that the most salient consequence of loss of Sorl1 is cholinergic disruption (see reply to Reviewer #1 above) and that serotonin signalling is a minor theme.

      Furthermore, we agree with you and Reviewer #2 that the conclusions are overly confident. We will repeat this experiment with another SSRI as you suggest. Your suggestions to further test the serotonin system in the sorl1 knockouts are excellent as well, however we do not plan to pursue them at this stage.

      References:

      Ashlin TG, Blunsom NJ, Ghosh M, Cockcroft S, Rihel J. 2018. Pitpnc1a Regulates Zebrafish Sleep and Wake Behavior through Modulation of Insulin-like Growth Factor Signaling. Cell Rep 24:1389–1396. doi:10.1016/j.celrep.2018.07.012

      Chen D, Wang X, Huang T, Jia J. 2022. Sleep and Late-Onset Alzheimer’s Disease: Shared Genetic Risk Factors, Drug Targets, Molecular Mechanisms, and Causal Effects. Front Genet 13. doi:10.3389/fgene.2022.794202

      Cirrito JR, Disabato BM, Restivo JL, Verges DK, Goebel WD, Sathyan A, Hayreh D, D’Angelo G, Benzinger T, Yoon H, Kim J, Morris JC, Mintun MA, Sheline YI. 2011. Serotonin signaling is associated with lower amyloid-β levels and plaques in transgenic mice and humans. Proc Natl Acad Sci U S A 108:14968–14973. doi:10.1073/pnas.1107411108

      Dean DC, Jerskey BA, Chen K, Protas H, Thiyyagura P, Roontiva A, O’Muircheartaigh J, Dirks H, Waskiewicz N, Lehman K, Siniard AL, Turk MN, Hua X, Madsen SK, Thompson PM, Fleisher AS, Huentelman MJ, Deoni SCL, Reiman EM. 2014. Brain Differences in Infants at Differential Genetic Risk for Late-Onset Alzheimer Disease A Cross-sectional Imaging Study. JAMA Neurol 71:11–22. doi:10.1001/jamaneurol.2013.4544

      Eriksen JL, Sagi SA, Smith TE, Weggen S, Das P, McLendon DC, Ozols VV, Jessing KW, Zavitz KH, Koo EH, Golde TE. 2003. NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Aβ42 in vivo. J Clin Invest 112:440–449. doi:10.1172/JCI18162

      Espay AJ, Herrup K, Kepp KP, Daly T. 2023. The proteinopenia hypothesis: Loss of Aβ42 and the onset of Alzheimer’s Disease. Ageing Res Rev 92:102112. doi:10.1016/j.arr.2023.102112

      Hoffman EJ, Turner KJ, Fernandez JM, Cifuentes D, Ghosh M, Ijaz S, Jain RA, Kubo F, Bill BR, Baier H, Granato M, Barresi MJF, Wilson SW, Rihel J, State MW, Giraldez AJ. 2016. Estrogens Suppress a Behavioral Phenotype in Zebrafish Mutants of the Autism Risk Gene, CNTNAP2. Neuron 89:725–733. doi:10.1016/j.neuron.2015.12.039

      in ’t Veld Bas A., Ruitenberg Annemieke, Hofman Albert, Launer Lenore J., van Duijn Cornelia M., Stijnen Theo, Breteler Monique M.B., Stricker Bruno H.C. 2001. Nonsteroidal Antiinflammatory Drugs and the Risk of Alzheimer’s Disease. N Engl J Med 345:1515–1521. doi:10.1056/NEJMoa010178

      Jagirdar R, Fu C-H, Park J, Corbett BF, Seibt FM, Beierlein M, Chin J. 2021. Restoring activity in the thalamic reticular nucleus improves sleep architecture and reduces Aβ accumulation in mice. Sci Transl Med 13:eabh4284. doi:10.1126/scitranslmed.abh4284

      Jiang H, Newman M, Lardelli M. 2018. The zebrafish orthologue of familial Alzheimer’s disease gene PRESENILIN 2 is required for normal adult melanotic skin pigmentation. PLOS ONE 13:e0206155. doi:10.1371/journal.pone.0206155

      Jiang H, Pederson SM, Newman M, Dong Y, Barthelson K, Lardelli M. 2020. Transcriptome analysis indicates dominant effects on ribosome and mitochondrial function of a premature termination codon mutation in the zebrafish gene psen2. PloS One 15:e0232559. doi:10.1371/journal.pone.0232559

      Joo W, Vivian MD, Graham BJ, Soucy ER, Thyme SB. 2021. A Customizable Low-Cost System for Massively Parallel Zebrafish Behavioral Phenotyping. Front Behav Neurosci 14.

      Joubert L, Hanson B, Barthet G, Sebben M, Claeysen S, Hong W, Marin P, Dumuis A, Bockaert J. 2004. New sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4a receptor splice variant: roles in receptor targeting. J Cell Sci 117:5367–5379. doi:10.1242/jcs.01379

      Lauretti E, Dincer O, Praticò D. 2020. Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochim Biophys Acta Mol Cell Res 1867:118664. doi:10.1016/j.bbamcr.2020.118664

      Leng Y, Ackley SF, Glymour MM, Yaffe K, Brenowitz WD. 2021. Genetic Risk of Alzheimer’s Disease and Sleep Duration in Non-Demented Elders. Ann Neurol 89:177–181. doi:10.1002/ana.25910

      Mitchell PB, Hadzi-Pavlovic D. 2000. Lithium treatment for bipolar disorder. Bull World Health Organ 78:515–517.

      Munoz-Torrero D. 2008. Acetylcholinesterase Inhibitors as Disease-Modifying Therapies for Alzheimer’s Disease. Curr Med Chem 15:2433–2455. doi:10.2174/092986708785909067

      Muto V, Koshmanova E, Ghaemmaghami P, Jaspar M, Meyer C, Elansary M, Van Egroo M, Chylinski D, Berthomier C, Brandewinder M, Mouraux C, Schmidt C, Hammad G, Coppieters W, Ahariz N, Degueldre C, Luxen A, Salmon E, Phillips C, Archer SN, Yengo L, Byrne E, Collette F, Georges M, Dijk D-J, Maquet P, Visscher PM, Vandewalle G. 2021. Alzheimer’s disease genetic risk and sleep phenotypes in healthy young men: association with more slow waves and daytime sleepiness. Sleep 44. doi:10.1093/sleep/zsaa137

      Myers-Turnbull D, Taylor JC, Helsell C, McCarroll MN, Ki CS, Tummino TA, Ravikumar S, Kinser R, Gendelev L, Alexander R, Keiser MJ, Kokel D. 2022. Simultaneous analysis of neuroactive compounds in zebrafish. doi:10.1101/2020.01.01.891432

      Özcan GG, Lim S, Leighton PL, Allison WT, Rihel J. 2020. Sleep is bi-directionally modified by amyloid beta oligomers. eLife 9:e53995. doi:10.7554/eLife.53995

      Quiroz YT, Schultz AP, Chen K, Protas HD, Brickhouse M, Fleisher AS, Langbaum JB, Thiyyagura P, Fagan AM, Shah AR, Muniz M, Arboleda-Velasquez JF, Munoz C, Garcia G, Acosta-Baena N, Giraldo M, Tirado V, Ramírez DL, Tariot PN, Dickerson BC, Sperling RA, Lopera F, Reiman EM. 2015. Brain Imaging and Blood Biomarker Abnormalities in Children With Autosomal Dominant Alzheimer Disease: A Cross-Sectional Study. JAMA Neurol 72:912–919. doi:10.1001/jamaneurol.2015.1099

      Relkin NR. 2007. Beyond symptomatic therapy: a re-examination of acetylcholinesterase inhibitors in Alzheimer’s disease. Expert Rev Neurother 7:735–748. doi:10.1586/14737175.7.6.735

      Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S, Haggarty SJ, Kokel D, Rubin LL, Peterson RT, Schier AF. 2010. Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation. Science 327:348–351. doi:10.1126/science.1183090

      Sleegers K, Brouwers N, Gijselinck I, Theuns J, Goossens D, Wauters J, Del-Favero J, Cruts M, van Duijn CM, Van Broeckhoven C. 2006. APP duplication is sufficient to cause early onset Alzheimer’s dementia with cerebral amyloid angiopathy. Brain J Neurol 129:2977–2983. doi:10.1093/brain/awl203

      Sun L, Zhou R, Yang G, Shi Y. 2017. Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase. Proc Natl Acad Sci 114:E476–E485. doi:10.1073/pnas.1618657114

      Weggen S, Rogers M, Eriksen J. 2007. NSAIDs: small molecules for prevention of Alzheimer’s disease or precursors for future drug development? Trends Pharmacol Sci 28:536–543. doi:10.1016/j.tips.2007.09.004

      Wiltschko AB, Tsukahara T, Zeine A, Anyoha R, Gillis WF, Markowitz JE, Peterson RE, Katon J, Johnson MJ, Datta SR. 2020. Revealing the structure of pharmacobehavioral space through motion sequencing. Nat Neurosci 23:1433–1443. doi:10.1038/s41593-020-00706-3

      Yang T, Arslanova D, Gu Y, Augelli-Szafran C, Xia W. 2008. Quantification of gamma-secretase modulation differentiates inhibitor compound selectivity between two substrates Notch and amyloid precursor protein. Mol Brain 1:15. doi:10.1186/1756-6606-1-15

    1. Author response:

      We thank the reviewers for their efforts. They have pointed out several shortcomings and made very helpful suggestions. Below, we shortly address the weak points that the reviewers brought up and outline what improvements we intend to make for the revised paper in response.

      Reviewer #1:

      The interpretation of CNN results, especially the number of layers in the final model and its relationship with the processing of visual words in the human brain, needs to be further strengthened.

      The results of our experimentation with the number of layers and the number of units in each layer can be found in the supplementary information. In the revised version, we will bring some of these results into the main text and discuss them more thoroughly.

      Reviewer #2:

      As has been shown over many decades, many potential computational algorithms, with varied model architectures, can perform the task of text recognition from an image. However, there is no evidence presented here that this particular algorithm has comparable performance to human behavior (i.e. similar accuracy with a comparable pattern of mistakes). This is a fundamental prerequisite before attempting to meaningfully correlate these layer activations to human neural activations. Therefore, it is unlikely that correlating these derived layer weights to neural activity provides meaningful novel insights into neural computation beyond what is seen using traditional experimental methods.

      We very much agree with the reviewer that a qualitative analysis of whether the model can explain experimental effects needs to happen before a quantitative analysis, such as evaluating model-brain correlation scores. In fact, this is one of the key points we wished to make.

      This starts with the observation that "traditional" models of reading (=those that do not rely on deep learning) cannot explain some very basic human behavioral results, such as humans being able to recognize a word regardless of exact letter shape, size, and (up to a point) rotation. This is not so much a failure on the part of traditional models as it is a difference in focus. There are models of vision that focus on these low-level things, currently dominated by deep learning, but these are rarely evaluated in the context of reading, which has its own literature and well-known experimental effects. We believe the current version of the manuscript makes insufficiently clear what the goals of our modeling effort are exactly, which is something we will attempt to correct in the revision.

      Since our model only covers the first phase of reading, with a special focus on letter shape detection, we sought to compare it with neuroimaging data that can provide "snapshots" of the state of the brain during these early phases, rather than comparing it with behavioral results that occur at the very end. However, we very much make this comparison in the spirit hinted at by the reviewer. The different MEG components have a distinct "behavior" to them in the way they respond to different experimental conditions (Figure 2), and the model needs to replicate this behavior (Figure 4). Only then do we move on to a quantitative analysis.

      One example of a substantial discrepancy between this model and neural activations is that, while incorporating frequency weighting into the training data is shown to slightly increase neural correlation with the model, Figure 7 shows that no layer of the model appears directly sensitive to word frequency. This is in stark contrast to the strong neural sensitivity to word frequency seen in EEG (e.g. Dambacher et al 2006 Brain Research), fMRI (e.g. Kronbichler et al 2004 NeuroImage), MEG (e.g. Huizeling et al 2021 Neurobio. Lang.), and intracranial (e.g. Woolnough et al 2022 J. Neurosci.) recordings. Figure 7 also demonstrates that the late stages of the model show a strong negative correlation with font size, whereas later stages of neural visual word processing are typically insensitive to differences in visual features, instead showing sensitivity to lexical factors.

      We are glad the reviewer brought up the topic of frequency balancing, as it is a good example of the importance of the qualitative analysis. As the reviewer points out, frequency balancing during training only had a moderate impact on correlation scores and from that point of view does not seem impactful. However, when we look at the qualitative evaluation, we see that with a large vocabulary, a model without frequency balancing fails to properly distinguish between consonant strings and (pseudo)words (Figure 4, 5th row). Hence, from the point of view of being able to reproduce experimental effects, frequency balancing had a large impact. It is true that the model, even with frequency balancing, only captures letter- and bigram-frequency effects and not word-frequency effects, as we know the N400 is sensitive to. This could mean that N400 word-frequency effects are driven by mechanics that our current model lacks, such as top-down effects from systems further up the processing pipeline.

      We agree with the reviewer that the late-stage sensitivity of the model to font size must be seen as a flaw. Of course, we say as much when we discuss this result in the paper. Important context for this flaw is that the main aim of the model is to reproduce the experimental effects of Vartiainen et al. (2011), which does not include manipulation of word length. The experimental contrasts in Figure 7 are meant to explore a bit beyond the boundaries of that particular study, but were never considered "failure points". When presenting a model, it's important to show its limitations too.

      Another example of the mismatch between this model and the visual cortex is the lack of feedback connections in the model. Within the visual cortex, there are extensive feedback connections, with later processing stages providing recursive feedback to earlier stages. This is especially evident in reading, where feedback from lexical-level processes feeds back to letter-level processes (e.g. Heilbron et al 2020 Nature Comms.). This feedback is especially relevant for the reading of words in noisy conditions, as tested in the current manuscript, as lexical knowledge enhances letter representation in the visual cortex (the word superiority effect). This results in neural activity in multiple cortical areas varying over time, changing selectivity within a region at different measured time points (e.g. Woolnough et al 2021 Nature Human Behav.), which in the current study is simplified down to three discrete time windows, each attributed to different spatial locations.

      In this study, we make a start in showing how deep learning techniques could be beneficial to enhance models of reading by showing how even a simple CNN, after a few enhancements, can account for several experimental MEG effects that we see in reading tasks, but are outside the focus of traditional models of reading. We never intended to claim that our model offers a complete view of all the processes involved. This is why we have dedicated a section in the Discussion to the various ways in which our simple CNN is incomplete as a model of reading. In this section we hint at the usage of recurrent connections, but the reviewer does an excellent job of highlighting the importance of top-down connections even in models focusing on early visual processes, which we are very happy to include in this section.

      The presented model needs substantial further development to be able to replicate, both behaviorally and neurally, many of the well-characterized phenomena seen in human behavior and neural recordings that are fundamental hallmarks of human visual word processing. Until that point, it is unclear what novel contributions can be gleaned from correlating low-dimensional model weights from these computational models with human neural data.

      The CNN model we present in this study is a small piece in a bigger effort to employ deep learning techniques to further enhance already existing models of reading. For our revision, we plan to expand on the question of where to go from here and outline our vision on how these techniques could help us better model the phenomena the reviewer speaks of. We agree with the reviewer that there is a long way to go, and we are excited to be a part of it.

      Reviewer #3:

      The paper is rather qualitative in nature. In particular, the authors show that some resemblance exists between the behavior of some layers and some parts of the brain, but it is hard to quantitively understand how strong the resemblances are in each layer, and the exact impact of experimental settings such as the frequency balancing (which seems to only have a very moderate effect according to Figure 5).

      The large focus on a qualitative evaluation of the model is intentional. The ability of the model to reproduce experimental effects (Figure 4) is a pre-requisite for any subsequent qualitative metrics (such as correlation) to be valid. The introduction of frequency balancing is a good example of this. As the reviewer points out, frequency balancing during training has only a moderate impact on correlation scores and from that point of view does not seem impactful. However, when we look at the qualitative evaluation, we see that with a large vocabulary, a model without frequency balancing fails to properly distinguish between consonant strings and (pseudo)words (Figure 4, 5th row). Hence, from the point of view of being able to reproduce experimental effects, frequency balancing has a large impact.

      That said, the reviewer is right to highlight the value of quantitative analysis. An important limitation of the "traditional" models of reading that do not employ deep learning is that they operate in unrealistically simplified environments (e.g. input as predefined line segments, words of a fixed length), which makes a quantitative comparison with brain data problematic. The main benefit that deep learning brings may very well be the increase in scale that makes more direct comparisons with brain data possible. In our revision we will attempt to capitalize on this benefit more. The reviewer has provided some helpful suggestions for doing so in their recommendations.

      The experiments only consider a rather outdated vision model (VGG).

      VGG was designed to use a minimal number of operations (convolution-and-pooling, fully-connected linear steps, ReLU activations, and batch normalization) and rely mostly on scale to solve the classification task. This makes VGG a good place to start our explorations and see how far a basic CNN can take us in terms of explaining experimental MEG effects in visual word recognition. However, we agree with the reviewer that it is easy to envision more advanced models that could potentially explain more. For our revision, we plan to expand on the question of where to go from here and outline our vision on what types of models would be worth investigating and how one may go about doing that in a way that provides insights beyond higher correlation values.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This structural and biochemical study of the mouse homolog of acidic mammalian chitinase (AMCase) enhances our understanding of the pH-dependent activity and catalytic properties of mouse AMCase and sheds light on its adaptation to different physiological pH environments. The methods and analysis of data are solid, providing several lines of evidence to support a development of mechanistic hypotheses. While the findings and interpretation will be valuable to those studying AMCase in mice, the broader significance, including extension of the results to other species including human, remain unclear.

      Public Reviews:

      Reviewer #1 (Public Review):

      General comments:

      This paper investigates the pH-specific enzymatic activity of mouse acidic mammalian chitinase (AMCase) and aims to elucidate its function's underlying mechanisms. The authors employ a comprehensive approach, including hydrolysis assays, X-ray crystallography, theoretical calculations of pKa values, and molecular dynamics simulations to observe the behavior of mouse AMCase and explore the structural features influencing its pH-dependent activity.

      The study's key findings include determining kinetic parameters (Kcat and Km) under a broad range of pH conditions, spanning from strong acid to neutral. The results reveal pH-dependent changes in enzymatic activity, suggesting that mouse AMCase employs different mechanisms for protonation of the catalytic glutamic acid residue and the neighboring two aspartic acids at the catalytic motif under distinct pH conditions.

      The novelty of this research lies in the observation of structural rearrangements and the identification of pH-dependent mechanisms in mouse AMCase, offering a unique perspective on its enzymatic activity compared to other enzymes. By investigating the distinct protonation mechanisms and their relationship to pH, the authors reveal the adaptive nature of mouse AMCase, highlighting its ability to adjust its catalytic behavior in response to varying pH conditions. These insights contribute to our understanding of the pH-specific enzymatic activity of mouse AMCase and provide valuable information about its adaptation to different physiological conditions.

      Overall, the study enhances our understanding of the pH-dependent activity and catalytic properties of mouse AMCase and sheds light on its adaptation to different physiological pH environments.

      Reviewer #2 (Public Review):

      Summary:

      In this study of the mouse homolog of acidic mammalian chitinase, the overall goal is to provide a mechanistic explanation for the unusual observation of two pH optima for the enzyme. The study includes biochemical assays to establish kinetic parameters at different solution pH, structural studies of enzyme/substrate complexes, and theoretical analysis of amino acid side chain pKas and molecular dynamics.

      Strengths:

      The biochemical assays are rigorous and nicely complemented by the structural and computational analysis. The mechanistic proposal that results from the study is well rationalized by the observations in the study.

      Weaknesses:

      The overall significance of the work could be made more clear. Additional details could be provided about the limitations of prior biochemical studies of mAMC that warranted the kinetic analysis. The mouse enzyme seems unique in terms of its behavior at high and low pH, so it remains unclear how the work will enhance broader understanding of this enzyme class. It was also not clear can the findings be used for therapeutic purposes, as detailed in the abstract, if the human enzyme works differently.

      We have edited the paper to address these concerns

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Major comments:

      (1) Regarding the pH profiles of mouse AMCase, previous studies have reported its activity at pH 2.0 and within the pH range of 3-7. In this paper, the authors conducted kinetic measurements and showed that pH 6.5 is optimal for kcat/Km. The authors emphasize the significance of mouse AMCase's activity in the neutral region, particularly at pH 6.5, for understanding its physiological relevance in humans. To provide a comprehensive overview, it would be valuable for the authors to summarize the findings from previous and current studies, discuss their implications for future pulmonary therapy in humans, and cite relevant literature. Additionally, the authors should highlight their research's specific contributions and novel findings, such as the determination of kinetic parameters (Kcat and Km) under different pH conditions. Emphasizing why previous studies may have required these observations and underscoring the importance of the present findings in addressing those knowledge gaps will help readers understand the significance of the study and its impact on the field of enzymology.

      We thank the reviewer for this comment. In keeping with the knowledge gaps addressed directly by this paper, we have not augmented the discussion of future pulmonary therapy in humans. We have summarized the present findings at the end of the introduction as follows:

      “We measured the mAMCase hydrolysis of chitin, which revealed significant activity increase under more acidic conditions compared to neutral or basic conditions. To understand the relationship between catalytic residue protonation state and pH-dependent enzyme activity, we calculated the theoretical pKa of the active site residues and performed molecular dynamics (MD) simulations of mAMCase at various pHs. We also directly observed conformational and chemical features of mAMCase between pH 4.74 to 5.60 by solving X-ray crystal structures of mAMCase in complex with oligomeric GlcNAcn across this range.”

      (2) Regarding the implications of the pKa values and Asp138 orientation for the pH optima, it would be valuable for the authors to discuss the variations in optimal activity by pH among GH-18 chitinases and investigate the underlying factors contributing to these differences. In particular, exploring the role of Asp138 orientation in chitotriosidase, another mammalian chitinase, would provide important insights. Chitotriosidase is known to be inactive at pH 2.0, and it would be interesting to investigate whether the observed orientation of Asp138 towards Glu140 in mouse AMCase for pH 2.0 activity is lacking in chitotriosidase.

      There are similar rotations of the two acidic residues in the literature on Chit1. The variety of crystal pH conditions and the lack of a straightforward mechanism for pKa shifts in AMCase make it difficult to draw a comparison to why Chit1 is inactive at low pH, but this is an interesting area for future study. See a more full discussion in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760363/

      Furthermore, considering the lower activity of human AMCase at pH 2.0, it would be worthwhile to examine whether the Asp138 orientation towards Glu140, as observed in mouse AMCase, is also absent in human AMCase. Exploring this aspect will help determine if the orientation of Asp138 plays a critical role in pH-dependent activity in human AMCase.

      The situation for hAMCase is similar to Chit1 as the rotations observed here for mAMCase are also present. It is not the whether Asp138 can rotate, but rather the relevant energetic penalties as we discuss in the manuscript.

      (3) In a previous study by Okawa et al.(Loss and gain of human acidic mammalian chitinase activity by nonsynonymous SNPs. Mol Biol Evol 33, 3183-3193, 2016), it was reported that specific amino acid substitutions (N45D, D47N, and R61M) encoded by nonsynonymous single nucleotide polymorphisms (nsSNPs) in the N-terminal region of human AMCase had distinct effects on its chitinolytic activity. Introducing these three residues (N45D, D47N, and R61M) could activate human AMCase. This activation significantly shifted the optimal pH from 4-5 to 2.0.

      Considering the significant impact of these amino acid substitutions on the pH-dependent activity of human AMCase, the authors should discuss this point in the manuscript's discussion section. Incorporating the findings and relating them to the current study's observations on pH optima and Asp138 orientation can provide a comprehensive understanding of the factors influencing pH-dependent activity in AMCase.

      We added a citation and dicuss how the mutations identified by this study could potentially shift the pKa of key catalytic residues:

      “Okawa et al identified how primate AMCase lost activity by integration of specific, potentially pKa-shifting, mutations relative to the mouse counterpart42b.”

      (4) To further strengthen the discussion, the authors could explore the ancestral insectivorous nature of placental mammals and the differences in chitinase activity between herbivorous and omnivorous species. Incorporating these aspects would add depth and relevance to the overall discussion of AMCase. AMCase is an enzyme known for its role in digesting insect chitin in the stomachs of various insectivorous and omnivorous animals, including bats, mice, chickens, pigs, pangolins, common marmosets, and crab-eating monkeys 1-7. However, in certain animals, such as dogs (carnivores) and cattle (herbivores), AMCase expression and activity are significantly low, leading to impaired chitin digestion 8. These observations suggest a connection between dietary habits and the expression and activity of the AMCase gene, ultimately influencing chitin digestibility across different animal species 8.

      (1) Strobelet al. (2013). Insectivorous bats digest chitin in the stomach using acidic mammalian chitinase. PloS one 8, e72770.

      (2) Ohno et al. (2016). Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system. Sci Rep 6, 37756.

      (3) Tabata et al. (2017). Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry. Sci Rep 7, 6662.

      (4) Tabata et al. (2017). Protease resistance of porcine acidic mammalian chitinase under gastrointestinal conditions implies that chitin-containing organisms can be sustainable dietary resources. Sci Rep 7, 12963.

      (5) Ma et al. (2018). Acidic mammalian chitinase gene is highly expressed in the special oxyntic glands of Manis javanica. FEBS Open Bio 8, 1247-1255.

      (6) Tabata et al. (2019). High expression of acidic chitinase and chitin digestibility in the stomach of common marmoset (Callithrix jacchus), an insectivorous nonhuman primate. Sci. Rep. 9. 159.

      (7) Uehara et al. (2021). Robust chitinolytic activity of crab-eating monkey (Macaca fascicularis) acidic chitinase under a broad pH and temperature range. Sci. Rep. 11, 15470.

      (8) Tabata et al. (2018). Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Sci Rep 8, 1461.

      This overall point is covered by our brief discussion on diet differences:

      “However, hAMCase is likely too destabilized at low pH to observe an increase in _k_cat. hAMCase may be under less pressure to maintain high activity at low pH due to humans’ noninsect-based diet, which contains less chitin compared to other mammals with primarily insect-based diets42. “

      (5) It is important for the authors to clearly state the limitations of their simulations and emphasize the need for experimental validation or additional supporting evidence. This will provide transparency and enable readers to understand the boundaries of the study's findings. A comprehensive discussion of limitations would contribute to a more robust interpretation of the results.

      We added a sentence to the discussion:

      “Our simulations have important limitations that could be overcome by quantum mechanical simulations that allow for changes in protonation state and improved consideration of polarizability.”

      Minor comments:

      (1) Regarding the naming of AMCase, it is important to accurately describe it based on its acidic isoelectric point rather than its enzymatic activity under acidic conditions based on the original paper (Reference #14 (Boot, R. G. et al. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J. Biol. Chem. 276, 6770-6778 (2001)).

      We have made this modification

      (2) In the introduction, providing more context regarding the terminology of acidic mammalian chitinase (AMCase) would be beneficial. While AMCase was initially discovered in mice and humans, subsequent research has revealed its presence in various vertebrates, including birds, fish, and other species. Therefore, it would be appropriate to include the alternative enzyme name, Chia (chitinase, acidic), in the introduction to reflect its broader distribution across different organisms. This clarification would enhance the readers' understanding of the enzyme's taxonomy and facilitate further exploration of its functional significance in diverse biological systems.

      We have made this modification

      (3) The authors mention that AMCase is active in tissues with neutral pHs, such as the lung. However, it is important to consider that the pH in the lung is lower, around 5, due to the presence of dissolved CO2 that forms carbonic acid. The lung microenvironment is known to vary, and specific regions or conditions within the lung may have slightly different pH levels. By addressing the pH conditions in the lungs and their relationship to AMCase's activity, the authors can enhance our understanding of the enzyme's function within its physiological context. A thorough discussion of the specific pH conditions in the lung and their implications for AMCase's activity would provide valuable insights into the enzyme's role in lung pathophysiology.

      To keep the focus on the insights we have made, we have elected not to expand this discussion.

      (4) It would be helpful for the authors to provide more information about the substrate or products of AMCase. The basic X-ray crystal structures used in this study are GlcNAc2 or GlcNAc3, known products of AMCase. Including details about the specific ligands involved in the enzymatic reactions would enhance the understanding of the study's focus.

      We are unclear about what this means - and since it is a minor comment, we have elected not to change the discussion of substrates here.

      (5) The authors should critically evaluate the inclusion of the term "chitin-binding" in the Abstract and Introduction. Suppose substantial evidence or discussion regarding the specific chitin-binding properties of the enzyme or its relevance to the immune response needs to be included. In that case, removing or modifying that statement might be appropriate.

      We are unclear about what this means - and since it is a minor comment, we have elected not to change the discussion of “chitin-binding” here.

      (6) The authors developed an endpoint assay to measure the activity of mouse AMCase across a broad pH range, allowing for direct measurement of kinetic parameters. The authors should provide a more detailed description of the methods used, including any specific modifications made to the previous assay, to ensure reproducibility and facilitate further research in the field. It is important to clearly show the novelty of their endpoint assay compared to previous methods employed in other reports. The authors should also explain how their modified endpoint assay differs from existing assays and highlight its advancements or improvements. This will help readers understand the unique features and contributions of the assay in the context of previous methods.

      We have included a detailed method description and figures already. See also our previous paper by Barad which includes other, related, assays.

      (7) The authors suggest that mouse AMCase may be subject to product inhibition, potentially due to its transglycosylation activity, which can affect the Michaelis-Menten model predictions at high substrate concentrations. However, the reviewer needed help understanding the specific impact of transglycosylation on the kinetic parameters. It would be helpful for the authors to provide a more appropriate and detailed explanation, clarifying how transglycosylation activity influences the kinetic behavior of AMCase and its implications for the observed results.

      The experiments to conclusively demonstrate this are beyond our current capabilities.

      (8) In the Abstract, the authors state, "We also solved high resolution crystal structures of mAMCase in complex with chitin, where we identified extensive conformational ligand heterogeneity." This reviewer suggests replacing "chitin" with "oligomeric GlcNAcn" throughout the text, specifically about biochemical experiments. It is important to accurately describe the experimental conditions and ligands used in the study.

      We have made these changes throughout the manuscript

      (9) In the introduction, the authors mention "a polymer of β(1-4)-linked N-acetyl-D-glucosamine (GlcNAc)". In this case, the letter "N" should be italicized to conform to the proper notation for the monosaccharide abbreviation.

      corrected (and hopefully would have been done so by the copy editor!)

      (10) In the introduction, the authors state, "In the absence of AMCase, chitin accumulates in the airways, leading to epithelial stress, chronic activation of type 2 immunity, and age-related pulmonary fibrosis5,6". It is recommended to clarify that "AMCase" refers to "acidic mammalian chitinase (AMCase)" in this context, as it is the first mention of the enzyme in the introduction.

      We moved that section so that it flows better and is introduced with the full name.

      (11) In the introduction, the authors state, "Mitigating the negative effects of high chitin levels is particularly important for mammalian lung and gastrointestinal health." This reviewer requests further clarification on the connection between chitin and gastrointestinal health. Please provide an explanation or reference to support this statement.

      We have modified this sentence to:

      “Chitin levels can be potentially important for mammalian lung and gastrointestinal health.”

      (12) In the introduction, the authors mention that "Acidic Mammalian Chitinase (AMCase) was originally discovered in the stomach and named for its high enzymatic activity under acidic conditions." It is recommended to include Reference #14 (Boot et al. J. Biol. Chem. 276, 6770-6778, 2001) as it provides the first report on mouse and human AMCase, contributing to the understanding of the enzyme.

      However, it is worth noting that while this paragraph primarily focuses on human tissues, Reference #14 primarily discusses mouse AMCase but also reports on human AMCase. Additionally, References #8 and #9 mainly discuss mouse AMCase. This creates confusion in the description of human and mouse AMCase within the paragraph.

      Considering that this paper aims to focus on the unique features of mouse AMCase, it is suggested that the authors provide a more specific and balanced description of both human and mouse AMCase throughout the main text..

      We have clarified the origin of the name AMCase and the results distinguish the two orthologs in the text with h or mAMCase.

      (13) Figure 1A in the Introduction section has been previously presented in several papers. The authors should consider moving this figure to the Results section and present an alternative figure based on their experimental results to enhance the novelty and impact of the study.

      We have considered this option, but prefer the original placement.

      (14) In the Results section, the authors mentioned, "Prior studies have focused on relative mAMCase activity at different pH18,20, limiting the ability to define its enzymological properties precisely and quantitatively across conditions of interest." It would be beneficial for the authors to include reference #14, the first report showing the pH profile of mouse AMCase, to support their statement.

      We have added this reference

      (15) Regarding the statement, "To overcome the pH-dependent fluorescent properties of 4MU-chitobioside, we reverted the assay into an endpoint assay, which allowed us to measure substrate breakdown across different pH (Supplemental Figure 1A)", the authors should provide a more detailed description of the improvements made to measure AMCase activity. Additionally, it would be helpful to include a thorough explanation of the figure legend for Supplementary Figure 1A to provide clarity to readers.

      We have included a detailed method description and figures already. See also our previous paper by Barad which includes other, related, assays.

      (16) Figure 1B shows that the authors used the AMCase catalytic domain. It would benefit the authors to explain the rationale behind this choice in the figure legend or the main text.

      This point is addressed in the text:

      “Previous structural studies on AMCase have focused on interactions between inhibitors like methylallosamidin and the catalytic domain of the protein.”

      (17) For Figures 1C-E, it is recommended that the authors include error bars in their results to represent the variability or uncertainty of the data. In Figure 1E, the authors should clarify the units of the Y-axis (e.g., sec-1 µM-1). Additionally, in Figure 1F, the authors should explain how the catalytic acidity is shown.

      We have added error bars and axis labels. Figure 1F is conceptual, so we are leaving it as is.

      (18) The authors stated, "These observations raise the possibility that mAMCase, unlike other AMCase homologs, may have evolved an unusual mechanism to accommodate multiple physiological conditions." It would be helpful for the authors to compare and discuss the pH-dependent AMCase activity of mouse AMCase with other AMCase homologs to support this statement.

      That is an excellent idea for future comparative studies, but beyond the scope of what we are examining in this paper.

      (19) The authors should explain Supplemental Figures 1B and C in the Results or Methods sections to provide context for these figures.

      We are unclear about what this means - and since it is a minor comment, we have elected not to change these sections.

      (20) Supplemental Figure 3 is missing any description. It would be important for the authors to include a mention of this figure in the main text before Supplemental Figure 4 to guide the readers.

      The full legend is in there now and the reference to Supplemental 4 was mislabeled.

      (21) For Supplemental Figure 4, the authors should explain the shape of the symbol used in the figure. Additionally, they should explain "apo" and "holoenzyme" in the context of this figure.

      Unclear what a shape means in this context - perhaps the confusion arises because these are violin plots showing distributions.

      (22) Table 1 requires a more detailed explanation of its contents. Additionally, Tables 2 and 3 need to be included. The authors should include these missing tables in the revised version and explain their contents appropriately.

      Table 1 is the standard crystallographic table - there isn’t much more detailed explanation that can be offered. Tables 2 and 3 were not transferred properly by BioRxiv but were included in the review packet as requested a day after submission.

      (23) In Figure 4, it would be beneficial to enlarge Panels A-C to improve the ease of comprehension for readers. Additionally, it is recommended to use D136, D138, and E140 instead of D1, D2, and E to label the respective parts. The authors should also explain the meaning of the symbol used in the figure.

      Since it is a minor comment, we have elected not to change these figures.

      (24) In Figure 5, it would be beneficial to enlarge Panels A-C to improve the ease of comprehension for readers.

      Since it is a minor comment, we have elected not to change these figures.

      (25) Similarly, in Figure 6, all panels should be enlarged to enhance the ease of comprehension for readers.

      Since it is a minor comment, we have elected not to change these figures.

      Reviewer #2 (Recommendations For The Authors):

      In general, I did not identify many detailed or technical concerns with the work. A few items for the authors to consider are listed below.

      (1) The interpretation of the crystallographic datasets seems complicated by the heterogeneity in the substrate component. It might be nice to see more critical analysis of the approach here. Are there other explanations or possible models that were considered? Do other structures of chitinases or other polysaccharide hydrolases exhibit the same phenomenon?

      We have tried in writing it to provide a very critical approach to this and it is quite likely that other structures contain unmodeled density containing similar heterogeneity (but it is just unmodeled).

      (2) It would be ideal to include more experimental validation of the proposed mechanism. Much of the manuscript includes theoretical validations (pKa estimation, dynamics, etc) - but it would be optimal to make an enzyme variant or do an experiment with a substrate analog.

      Yes - we agree that follow on experiments are needed to fully test the mechanism and that those will be the subject of future work.

      (3) For an uninitiated reviewer, I think the major issue with this study is that the broader significance of the work and how it fits into the context of other work on these enzymes is not clear. It would be helpful to be more specific about what we know of mechanism from work on other enzymes to help the reader understand the motivation for this study.

      We have added w few additional references, guided by reviewer 1 comments, that should help in this respect.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      In this manuscript by Wu et al., the authors present the high-resolution cryoEM structures of the WT Kv1.2 voltage-gated potassium channel. Along with this structure, the authors have solved several structures of mutants or experimental conditions relevant to the slow inactivation process that these channels undergo and which is not yet completely understood. 

      One of the main findings is the determination of the structure of a mutant (W366F) that is thought to correspond to the slow inactivated state. These experiments confirm results in similar mutants in different channels from Kv1.2 that indicate that inactivation is associated with an enlarged selectivity filter. 

      Another interesting structure is the complex of Kv1.2 with the pore-blocking toxin Dendrotoxin 1. The results show that the mechanism of the block is different from similar toxins, in which a lysine residue penetrates the pore deep enough to empty most external potassium binding sites. 

      The quality of the structural data presented in this manuscript is very high and allows for the unambiguous assignment of side chains. The conclusions are supported by the data. This is an important contribution that should further our understanding of voltagedependent potassium channel gating. Specific comments are appended below. 

      (1) In the mains text's reference to Figure 2d residues W18' and S22' are mentioned but are not labeled in the insets. 

      Now labeled in Fig. 2D

      (2) On page 8 there is a discussion of how the two remaining K+ ions in binding sites S3 and S4 prevent permeation K+ in molecular dynamics. However, in Shaker, inactivated W434F channels can sporadically allow K+ permeation with normal single-channel conductance but very reduced open times and open probability at not very high voltages. 

      Addressed in the Discussion, lines 480-490.

      (3) The structures of WT in the absence of K+ show a narrower selectivity filter, however, Figure 4 does not convey this finding. In fact, the structure in Figure 4B is constructed at such an angle that it looks as if the carbonyl distances are increased, perhaps this should be fixed. Also, it is not clear how the distances between carbonyls given in the text on page 12 are measured. Is it between adjacent or kitty-corner subunits? 

      We decided to remove mention of carbonyl distances, because at our resolutions the atoms are not resolved.

      (4) It would be really interesting to know the authors' opinions on the driving forces behind slow inactivation. For example, potassium flux seems to be necessary for channels to inactivate, which might indicate a local conformational change is the trigger for the main twisting events proposed here. 

      We cite Sauer et al. (2011) for the idea that the intact selectivity filter is a strained conformation, and its relaxation yields the wide vestibule seen in NaK2K and Kv channels.  Lines 434-439.

      Reviewer #2 (Public Review): 

      There are four Kv1.2 channel structures reported: the open state, the C-type inactivated state, a dendrotoxin-bound state, and a structure in Na+. 

      A high-resolution crystal structure of the open state for a chimeric Kv1.2 channel was reported in 2007 and there is no new information provided by the cryoEM structure reported in this study. 

      The cryo-EM structure of the C-type inactivated state of the Kv1.2 channel was determined for a channel with the W to F substitution in the pore helix. A cryo-EM structure of the Shaker channel and a crystal structure of a chimeric Kv1.2 channel with an equivalent W to F mutation were reported in 2022. Cryo-EM structures of the C-type inactivated Kv1.3 channel are also available. All these previous structures have provided a relatively consistent structural view of the C-type inactivated state and there is no significant new information that is provided by the structure reported in this study. 

      A structure of the Kv1.2 channel blocked by dendrotoxin is reported. A crystal structure of charybdotoxin and the chimeric Kv1.2 channel was reported in 2013. Density for dendrotoxin could not be clearly resolved due to symmetry issues and so the definitive information from the structure is that dendrotoxin binds, similarly to charybdotoxin, at the mouth of the pore. A potential new finding is that there is a deeper penetration of the blocking Lys residue in dendrotoxin compared to charybdotoxin. It will however be necessary to use approaches to break the symmetry and resolve the electron density for the dendrotoxin molecule to support this claim and to make this structure significant.  

      We have now succeeded in breaking the symmetry and present in Fig. 3 a C1 structure of the toxin-channel complex. In the improved map we now see that our previous conclusion was wrong: the penetration of Lys5 cannot be much deeper than that seen in CTx and ShK structures. However for some reason the pattern of ion-site occupancies in the blocked state is different in this structure than in the others. Fig. 3, Fig. 4E; text lines 559-568.

      The final structure reported is the structure of the Kv1.2 channel in K+ free conditions and with Na+ present. The structure of the KcsA channel by the MacKinnon group in 2001 showed a constricted filter and since then it has been falsely assumed by the K channel community that the lowering of K concentration leads to a construction of the selectivity filter. There have been structural studies on the MthK and the NaK2K channels showing a lack of constriction in the selectivity filter in the absence of K+. These results have been generally ignored and the misconception of filter constriction/collapse in the absence of K+ still persists. The structure of the Kv1.2 channel in Na+ provided a clear example that loss of K+ does not necessarily lead to filter constriction. 

      We are grateful to the reviewer for pointing out this serious omission. We now cite other work including from the Y. Jiang and C. Nichols labs showing examples of outer pore expansion and destabilization. Page p. 4, lines 90-104; lines 421-439.

      The structure in Na+ is significant while the other structures are either merely reproductions of previous reports or are not resolved well enough to make any substantial claims. 

      We now state more clearly the confirmatory nature of our Kv1.2 open structure (lines 71-74) and the similarities of the inactivated-channel structures (lines 193196).

      Reviewer #3 (Public Review): 

      Wu et al. present cryo-EM structures of the potassium channel Kv1.2 in open, C-type inactivated, toxin-blocked and presumably sodium-bound states at 3.2 Å, 2.5 Å, 2.8 Å, and 2.9 Å. The work builds on a large body of structural work on Kv1.2 and related voltage-gated potassium channels. The manuscript presents a large quantity of structural work on the Kv1.2 channel, and the authors should be commended on the breadth of the studies. The structural studies seem well-executed (this is hard to fully evaluate because the current manuscript is missing a data collection and refinement statistics table). The findings are mostly confirmatory, but they do add to the body of work on this and related channels. Notably, the authors present structures of DTXbound Kv1.2 and of Kv1.2 in a low concentration of potassium (with presumably sodium ions bound within the selectivity filter). These two structures add new information, but the studies seem somewhat underdeveloped - they would be strengthened by accompanying functional studies and further structural analyses. Overall, the manuscript is well-written and a nice addition to the field. 

      The data collection and refinement table has been added (Fig. 4 supplement 3.)

      We agree and regret the lack of functional studies. We have not been able to carry them out because work in our laboratory is winding down and the lab soon will be closing.

      Recommendations for the authors: 

      Reviewer #2 (Recommendations For The Authors): 

      (1) It is not obvious from the data shown how well the side chain positions in the inactivated state are defined by the electron density. These figures should be redone. Maybe the use of stereo would be useful. This will be particularly useful for the reader to decide if the small changes in, for example, the positioning of the carbonyl oxygens are believable. 

      Figure 2 – figure supplement 4 shows the stereo views.

      (2) The authors note the changes observed (though small) in the VSD which were not observed in other structures. The relevance of this observation is not described. Do these changes arise due to the different environments of detergents versus nanodisc etc. in the different structures?

      We’ve now inserted a note about variety of environments and how this might be a cause of the difference: lines 280-285.  

      Are there changes in the pore-VSD interface in the inactivated and the open channel structures and if yes, then do mutations at these residues affect inactivation?

      There is surprisingly little movement at the S4-S5 interface residues identified by Bassetto et al. (2022) as having effects on inactivation. Lines 262-267.

      (3) For the structures in Na+, it is important to provide analytical data showing the biochemical behavior of the channel. This is also true for the wild type and the W to F mutant channel. Size exclusion profiles should be included. 

      The SEC profile (noisy, but showing a clear peak) of the channel in Na+ is now shown in Fig. 4 supplement 1. Low expression of the W366F mutant produced even worse SEC results, but we include a representative micrograph of W366F in Na+ to show the monodispersed protein prep. In Figure 5 – figure supplement 1.

      Reviewer #3 (Recommendations For The Authors): 

      Portions of text from the manuscript are indicated by quotations. 

      Introduction: "One goal of the current study was to examine the structure of the native Kv1.2 channel." 

      Comment, minor points: The authors refer to the Kv1.2 construct used for the structural studies as "native Kv1.2". I found this somewhat confusing because the word "native" suggests derived from a native source. The phrasing above also gives the impression that the structure by Wu et al is the first structure of Kv1.2. The Kv1.2 construct is essentially identical to the one used by Long et al in 2005 to determine the initial structure of Kv1.2 (PDB 2A79). The authors discuss a subsequent paddle-chimera Kv1.2-2.1 structure from 2007 (PDB 2R9R) in the introduction, but it would be prudent to mention the 2005 one of Kv1.2 as well. The open structure determined by Wu et al. is an improvement on the 2A79 structure in that the 2A79 structure was modeled as a poly-alanine model within the voltage sensor domain. Nevertheless, the Kv1.2-2.1 structure (2R9R) is highly similar to the 2A79 structure of Kv1.2. The 2007 structure indicated that Kv1.2-2.1 recapitulates structural features of Kv1.2. It is therefore not surprising that the open structure presented here is highly similar to that of both PDB 2A79 (Kv1.2) and PDB 2R9R (Kv1.2-2.1).  

      We failed to point out the high quality of the original Long et al. 2005 structure and its comparisons with the chimeric structure in Long et al. 2007. We now have tried to correct this: lines 70-74.

      Comment: The cryo-EM analyses suggest that a large percentage (most?) of the particles are missing the beta subunit. This should be commented on somewhere.      

      Now noted on lines 120-132, we pooled particles with and without beta subunits. 

      Regarding ions in the selectivity filter, one-dimensional plots of the density would strengthen the analysis.

      Now included in Fig. 4.

      Also, one should mention caveats associated with identifying ions in cryo-EM maps and the added difficulty/uncertainty when the density is located along a symmetry axis (C4 axis, due to the possible build-up of noise). C1 reconstructions, showing density within the filter, if possible, would strengthen the analyses.

      You are correct. However local resolution is highest in the selectivity filter region. So I think that since the CTF-based filtering is constant over all the structure I think the SNR will be good on axis. 

      Comment: The section on channel inactivation could be simplified by stating that the structure is highly similar to W17'F structures of other Kv channels. (And then discussing possible differences).  

      We now note, “overall conformational difference is identical…” p. 7, lines 193-196.

      "Salt bridges involving the S4 Arg and Lys residues are shifted slightly (Figure 2-figure supplement 3A-D). Arg300 (R3) is in close proximity to Glu226 on the S2 helix for the open channel, while R3 is closer to Glu183 in the S2 helix. The Glu226 side chain adopts a visible interaction with R4 in the inactivated state." 

      Comment: The density for these acidic amino acids seems weak, especially in the inactivated state. It seems like a stretch to make much of their possible conformational changes. 

      We’ve included stereo pairs in Fig. 2 – figure supplement 4.

      "By adding 100 nM α-DTx to detergent solubilized Kv1.2 protein we obtained a cryo-EM structure at 2.8 Å resolution of the complex." 

      Comment: 100 nm. might be lower than the Kv concentration. The current methods are ambiguous on the concentration of Kv channel used for the DTx sample. From the methods, it seems possible that 100 nM DTX is a sub-stoichiometric amount relative to the channel. Regardless, the cryo-EM data seems to suggest that a large percentage of particles do not have DTx bound. This surely complicates the interpretation of density within the filter (which has partly been ascribed to a lysine side chain from DTx).

      The reviewer correctly points a potentially serious problem. It turns out that the 100nM figure we quoted was incorrect, and the actual concentration of toxin, >400 nM, was substantially greater than the protein concentration. This is confirmed by the small fraction (<1%) of 3D class particles that do not show the toxin density (lines 303-306).

      Comment: The methods on atomic structure building/refinement (Protein model building, refinement, and structural analysis) are sparse. A table is needed showing data collection and refinement statistics for each of the structures. This data should also provide average B factors for the ions in the filter. An example can be found in PMID 36224384. 

      Data collection and statistics are now in Fig. 4 – figure supplement 3.

      "In the selectivity filter of the toxin-bound channel (Figure 3E) a continuous density is seen to extend downward from the external site IS0 through to the boundary between IS1 and IS2. This density is well modeled by an extended Lys side chain from the bound toxin, with the terminal amine coordinated by the carbonyls of G27”.

      Comment: While there seems to be extra density in site IS0 from the figures, the density ascribed to lysine in the filter doesn't seem that distinct from those of ions in the open structure. 1-dimensional density plots and some degree of caution may be prudent. Could there, for example, be a mixture of toxin-bound and free channels in the dataset?

      Could the lysine penetrate to different depths? If the toxin binds with nM affinity, why are any channels missing the toxin? Have the authors modeled an atomic structure of the entire toxin bound to the channel to evaluate how plausible the proposed binding of the lysine is? Can the toxin be docked onto Kv1.2 with the deep positioning of the lysine and not clash with the extracellular surface of Kv1.2? 

      We also were concerned about these issues. We have been able to obtain a C1 reconstruction of the toxin-channel complex. In building the atomic model we found that indeed the Lys5 side chain could not penetrate as far as we had thought, and appears to be coordinated by the first carbonyl pair. Fig. 3; text lines 331-332. 

      "Toxin binding shrinks the distances between opposing carbonyl oxygens in the selectivity filter, forming a narrower tunnel into which the Lys side chain fits (Figure 3F). The second and fourth carbonyl oxygen distances are substantially reduced from 4.7 Å and 4.6 Å in an open state to 3.7 Å and 3.9 Å, respectively (Figure 4E). In a superposition of Kv1.2 open-state and α-DTX-bound P-loop structures, there is also an upward shift of the first three carbonyl groups by 0.7~1.0 Å (Figure 4F). " 

      Comment: I suspect the authors intend to refer to Figure 3F rather than 4. I would be cautious here. The refined positions of the carbonyl oxygens are almost certainly affected by the presence or absence of ions in the atomic model during refinement. The density and the resolution of the map may not be able to distinguish small changes to the positions of the carbonyl oxygens (and these differences/uncertainties are compounded by the C4 symmetry). 

      "On the other hand, the terminal amine of lysine in α-DTX is deeply wedged at the second set of carbonyls, narrowing both IS1 and IS2 while displacing ions from the sites (Figure 3-figure supplement 2A). CTX does not cause narrowing of the selectivity filter or displacements of the carbonyls (Figure 3-figure supplement 2B). "

      Comment: Again, caution would be prudent here.  

      We are very grateful to the reviewer for pointing out these problems. We have removed these statements that are weakly supported at our resolution level.

      "Shaker channels are able to conduct Na+ in the absence of K+ (Melishchuk et al., 1998)." 

      Comment: How about the Kv1.2 channel? Is Kv1.2 able to conduct Na+ in the absence of K+ ? This would certainly be relevant for interpreting the conformation of the filter and the density ascribed to Na+ for the structure in sodium.  

      We agree wholeheartedly, but unfortunately we are no longer capable of doing the measurements as our lab will soon close.

      "Ion densities are seen in the IS1, IS3, and IS4 ion binding sites, but the selectivity filter shows a general narrowing as would be expected for binding of sodium ions. The second, third, and fourth carbonyl oxygen distances are reduced from 4.7 Å, 4.7 Å, and 4.6 Å in the open state to 4.4 Å, 3.9 Å, and 4.5 Å, respectively. The rest of the channel structure is very little perturbed. " 

      Comment: The density for IS4 seems weak. To me, it looks like IS1 and IS3 are occupied, whereas IS2 and IS4 are much weaker. 1-dimensional density plots would be helpful. I would suggest caution in commenting too strongly on the "general narrowing" since the resolution of the maps, the local density, and the atomic structure refinement would be consistent with coordinate errors of 0.5 Å or more - and would be compounded (~ doubled) by measuring between symmetry-related atoms.  

      We present 1D plots in Fig. 4E. We no longer comment on “narrowing”

      "Finally, the snake toxin a-Dendrotoxin (DTx) studied here is seen to block Kv1.2 by insertion of a lysine residue into the pore." 

      Comment: Discussion (and references) should be given regarding what was known prior to this study on the mode of inhibition by DTx. 

      Discussion and references now added, lines 287-301.

      "On the other hand, a lengthy molecular-dynamics simulation of deactivation in the Kv1.2-2.1..." 

      Comment: I don't think mentioning this personal communication adds to the manuscript. 

      Actually the original “personal communication” reference was there because the situation is complicated. The movie S3 accompanying the Jensen et al. paper shows deactivation and dewetting of the channel during a 250 us simulation. In the movie there are ions visible in the selectivity filter for the first 50 us, but after that the SF appears empty. Puzzled by this we contacted Dr. Jensen who explained that the movie was in error, ions remain in the SF throughout the entire 250 us. We now cite Jensen (2012) along with the personal communication.

      "The difference between the open and inactivated Kv1.2 structures, like the difference in Kv1.2-2.1 (Reddi et al., 2022) and Shaker (Tan et al., 2022) can be imagined as resulting from a two-step process." 

      Comment: Confusing phrasing because the authors mean to compare their structure to inactivated structures of Kv1.2-2.1 and shaker. 

      Fixed, lines 220-222.

      "Molecular dynamics simulations by Tan et al. based on the Shaker-W17'F structure show that IS3 and IS4 are simultaneously occupied by K+ ions in the inactivated state." 

      Comment: I think that the word "show" is too strong. Perhaps "suggest" 

      The MD result seems to us to be unequivocal, that most of the time the two sites are occupied by ions.

      References are needed for the following statements:  

      -  "as well as the charge-transfer center phenylalanine"

      Now citing Tao et al. 2010, line 156.

      - "total gating charge movement in Shaker channels is larger, about 13 elementary charges per channel" 

      Now citing the review by Islas, 2015 (line 166-169).

      "The selectivity filter of potassium channels consists of an array of four copies of the extended loop (the P-loop) formed by a highly conserved sequence, in this case, TTVGYGD. Two residues anchor the outer half of the selectivity filter and are particularly important in inactivation mechanisms (Figure 2B, right panels). Normally, the tyrosine Y28' (Y377 in Kv1.2) is constrained by hydrogen bonds to residues in the pore helix and helix S6 and is key to the conformation of the selectivity filter. The final aspartate of the P-loop, D30' (D379 in Kv1.2) is normally located near the extracellular surface and has a side chain that also participates in H-bonds with W17' (W366 in Kv1.2) on the pore helix." 

      Citations added (Pless 2013, Sauer 2011) lines 211-214.

      - "During normal conduction, ion binding sites in the selectivity filter are usually occupied by K+ and water molecules in alternation." 

      Added Morais-Cabral et al. 2001, p. 17, lines 463-465.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      The authors present evidence suggesting that MDA5 can substitute as a sensor for triphosphate RNA in a species that naturally lacks RIG-I. The key findings are potentially important for our understanding of the evolution of innate immune responses, but the evidence is incomplete, as additional biochemical and functional experiments are needed to unambiguously assign MDA5 as a bona fide sensor of triphosphate RNA in this model. This also leaves the title as overstating its case.

      We would like to thank the editorial team for these positive comments on our manuscript and the constructive suggestions to improve our manuscript. According to the suggestions and valuable comments of the referees, we have added substantial amounts of new data and analysis to substantiate our claims, and the manuscript, including the title, has been carefully revised to better reflect our conclusions. We are now happy to send you our revised manuscript, we hope the modified manuscript addresses your and the reviewers’ concerns satisfactorily and is suitable for publication in eLife now.

      Reviewer #1 (Public Review):

      This study offers valuable insights into host-virus interactions, emphasizing the adaptability of the immune system. Readers should recognize the significance of MDA5 in potentially replacing RIG-I and the adversarial strategy employed by 5'ppp-RNA SCRV in degrading MDA5 mediated by m6A modification in different species, further indicating that m6A is a conservational process in the antiviral immune response.

      However, caution is warranted in extrapolating these findings universally, given the dynamic nature of host-virus dynamics. The study provides a snapshot into the complexity of these interactions, but further research is needed to validate and extend these insights, considering potential variations across viral species and environmental contexts.

      We concur with the viewpoint that virus-host coevolution complicates the derivation of universal conclusions. To address this challenge, incorporated additional experiments and data based on the suggestions of the reviewers. These experiments were carried out across diverse models, including two distinct vertebrate species (M. miiuy and G. gallus), two different viruses (SCRV and VSV), and the synthesis of corresponding 5’ppp-RNA probes. We believe that these supplementary data bolster the evidence supporting the immune replacement role of MDA5 in the recognition of 5'ppp-RNA in RIG-I deficient species (Figure 1C-1E, Figure 2O and 2P, Figure 4). Moreover, we have duly incorporated references in both the introduction and discussion sections to further support our conclusion that MDA5 in T. belangeri, a mammal lacking RIG-I, possesses the ability to detect RNA viruses posed as RIG-I agonists (doi: 10.1073/pnas.1604939113). Lastly, meticulous revisions have been undertaken in the manuscript, including adjustments to the title, to ensure harmonization with our research outcomes.

      Reviewer#2 (Public Review):

      This manuscript by Geng et al. aims to demonstrate that MDA5 compensates for the loss of RIG-I in certain species, such as teleost fish miiuy croaker. The authors use siniperca cheats rhabdovirus (SCRV) and poly(I:C) to demonstrate that these RNA ligands induce an IFN response in an MDA5-dependent manner in M. miiuy derived cells. Furthermore, they show that MDA5 requires its RD domain to directly bind to SCRV RNA and to induce an IFN response. They use in vitro synthesized RNA with a 5'triphosphate (or lacking a 5'triphosphate as a control) to demonstrate that MDA5 can directly bind to 5'-triphosphorylated RNA. The second part of the paper is devoted to m6A modification of MDA5 transcripts by SCRV as an immune evasion strategy. The authors demonstrate that the modification of MDA5 with m6A is increased upon infection and that this causes increased decay of MDA5 and consequently a decreased IFN response.

      The key message of this paper, i.e. MDA5 can sense 5'-triphosphorylated RNA and thereby compensate for the loss of RIG-I, is novel and interesting, yet there is insufficient evidence provided to prove this hypothesis. Most importantly, it is crucial to test the capacity of in vitro synthesized 5'-triphosphorylated RNA to induce an IFN response in MDA5-sufficient and -deficient cells. In addition, a number of important controls are missing, as detailed below.

      To further support the notion that MDA5 is capable of detecting 5'ppp-RNA in species lacking RIG-I, we conducted additional experiments. Initially, we isolated the RNA from SCRV and VSV viruses. Subsequently, we synthesized 5'ppp-RNA probes that corresponded to the genome termini of SCRV and VSV in vitro. Then, these RNAs were treated with Calf intestinal phosphatase (CIAP) to generate dephosphorylated derivatives. Next, we separately tested the activation ability of various RNAs on IRF3 dimer and IFN response in MKC (M. miiuy kidney cell line) and DF-1 (G. gallus fibroblast cell line) cells, and determined that the immune activation ability of SCRV/VSV viruses depends on their triphosphate structure (Figure 1C-1E, Figure 4C and 4J). In addition, the knockdown of MDA5 inhibited the immune response mediated by SCRV RNA (Figure 2P and 2Q). Finally, we incorporated essential experimental controls (Figure 4B and 4I). We think that the inclusion of these supplementary experimental data significantly enhances the credibility and further substantiates our hypothesis.

      The authors describe an interaction between MDA5 and STING which, if true, is very interesting. However, the functional implications of this interaction are not further investigated in the manuscript. Is STING required to relay signaling downstream of MDA5?

      To better explore the role of STING in MDA5 signal transduction, we constructed a STING expression plasmid and synthesized specific siRNA targeting STING. Next, we found that co-expression of STING and MDA5 significantly enhance MDA5-mediated IFN-1 response during SCRV virus infection (Figure 2N). Conversely, silencing of STING expression restored the MDA5-mediated IFN-1 response (Figure 2O). These findings provide important evidence for the critical involvement of STING in the immune signaling cascade mediated by MDA5 in response to 5'ppp-RNA viruses.

      The second part of the paper is quite distinct from the first part. The fact that MDA5 is an interferon-stimulated gene is not mentioned and complicates the analyses (i.e. is there truly more m6A modification of MDA5 on a per molecule basis, or is there simply more total MDA5 and therefore more total m6A modification of MDA5).

      For the experimental data analysis in Figure 5E and 5F, we first compared the m6A-IP group to the input group, and then normalized the control group (IgG group of 5E and Mock group of 5F) to a value of “1”. Given the observed variability in MDA5 expression levels within the input group of Mock and SCRV virus-infected cells, our analysis represents the actual m6A content of each MDA5 molecule. To enhance clarity, we have updated the label on the Y-axis in Figure 5E and 5F.

      Finally, it should be pointed out that several figures require additional labels, markings, or information in the figure itself or in the accompanying legend to increase the overall clarity of the manuscript. There are frequently details missing from figures that make them difficult to interpret and not self-explanatory. These details are sometimes not even found in the legend, only in the materials and methods section. The manuscript also requires extensive language editing by the editorial team or the authors.

      We acknowledge the valuable feedback from the reviewer and have made significant improvements to our manuscript based on the recommendations provided in the "Recommendation for the authors" section. Furthermore, we have conducted a thorough review of the entire article, resulting in substantial enhancements to the format, clarity, and overall readability of our manuscript.

      Reviewer#3 (Public Review):

      Summary: In this manuscript, the authors investigated the interaction between the pattern recognition receptor MDA5 and 5'ppp-RNA in a teleost fish called Miiuy croaker. They claimed that MDA5 can replace RIG-I in sensing 5'ppp-RNA of Siniperca cheats rhabdovirus (SCRV) in the absence of RIG-I in Miiuy croaker. The recognition of MDA5 to 5'ppp-RNA was also observed in the chicken (Gallus gallus), a bird species that lacks RIG-I. Additionally, they reported that the function of MDA5 can be impaired through m6A-mediated methylation and degradation of MDA5 mRNA by the METTL3/14-YTHDF2/3 regulatory network in Miiuy croaker under SCRV infection. This impairment weakens the innate antiviral immunity of fish and promotes the immune evasion of SCRV.

      Strengths:<br /> These findings provide insights into the adaptation and functional diversity of innate antiviral activity in vertebrates.

      Weaknesses:<br /> However, there are some major and minor concerns that need to be further addressed. Addressing these concerns will help the authors improve the quality of their manuscript.One significant issue with the manuscript is that the authors claim to be investigating the role of MDA5 as a substitute for RIG-I in recognizing 5'ppp-RNA, but their study extends beyond this specific scenario. Based on my understanding, it appears that sections 2.2, 2.3, 2.5, 2.6, and 2.7 do not strictly adhere to this particular scenario. Instead, these sections tend to investigate the functional involvement of Miiuy croaker MDA5 in the innate immune response to viral infection. Furthermore, the majority of the data is focused on Miiuy croaker MDA5, with only a limited and insufficient study on chicken MDA5. Consequently, the authors cannot make broad claims that their research represents events in all RIG-I deficient species, considering the limited scope of the species studied.

      We agree with the reviewer's perspective that functional analysis of MDA5 in M. miiuy may not adequately represent all species lacking RIG-I. To address this concern, we have incorporated additional experimental data utilizing different model systems, including two different vertebrate species (M. miiuy and G. gallus), two distinct viruses (SCRV and VSV), and the synthesis of two corresponding 5’ppp-RNA probes. While the functional characterization of G. gallus MDA5 remains relatively limited compared to M. miiuy, our current experimental findings provide support for two key observations. Firstly, the triphosphate structure of the VSV virus is pivotal in activating the innate immune response in G. gallus against the virus (Figure 1D and 4J). Secondly, G. gallus MDA5 can recognize 5’ppp-RNA (Figure 4I, 4K and 4L). Consequently, although we cannot definitively establish the immune surrogate function of MDA5 in all RIG-I-deficient species, our research data further substantiates this hypothesis. Moreover, we have adopted a more cautious attitude in summarizing our experimental conclusions, thereby enhancing the rigor of our manuscript language.

      The current title of the article does not align well with its actual content. It is recommended that the focus of the research be redirected to the recognition function and molecular mechanism of MDA5 in the absence of RIG-I concerning 5'ppp-RNA. This can be achieved through bolstering experimental analysis in the fields of biochemistry and molecular biology, as well as enhancing theoretical research on the molecular evolution of MDA5. It is advisable to decrease or eliminate content related to m6A modification.

      Following the reviewer's recommendations, we have revised the title to emphasize that our main research focus is a teleost fish devoid of RIG-I. Furthermore, we have conducted additional molecular experiments to further elucidate the 5'ppp-RNA recognition function of MDA5 in RIG-I-deficient species. In an attempt to analyze the potential molecular evolution of MDA5 resulting from RIG-I deficiency, we collected MDA5 coding sequences from diverse vertebrates. However, due to multiple independent loss events of RIG-I in fish, fish with or without RIG-I genes in the phylogenetic tree cannot be effectively clustered separately, making it extremely difficult to perform this aspect of analysis. Consequently, we have regrettably opted to forgo the molecular evolution analysis of MDA5.

      Our article topic is to reveal an antagonistic phenomenon between fish receptor and RNA viruses. The MDA5 of RIG-I-lost fish has evolved the ability to recognize 5’ppp-RNA virus and mediate IFN response to resist SCRV infection. Conversely, the m6A methylation mechanism endows the SCRV virus with a means to weaken the immune capacity of MDA5. Therefore, we believe that the latter part is an important part of the arms race between the virus and its host, and should be retained.

      Additionally, the main body of the writing contains several aspects that lack rigor and tend to exaggerate, necessitating significant improvement.

      We appreciate the reviewer’s comment and have improved the manuscript addressing the points raised in the “Recommendation for the authors”. We have added corresponding experiments to strengthen the verification of the conclusions, and in addition, we are more cautious in summarizing the language of the conclusions.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The evidential foundation within the Result 1 section appears somewhat tenuous.

      Firstly, the author derives conclusions regarding the phenomenon of RIG-I loss in lower vertebrates by referencing external literature and conducting bioinformatics analyses. It is pertinent to inquire whether the author considered fortifying these findings through additional WB/PCR experiments, particularly for evaluating RIG-I expression levels across diverse vertebrates, encompassing both lower and higher orders.

      Firstly, the species we analyzed are mostly model species with excellent genomic sequence information in the database. Secondly, the RIG-I protein sequences (at least some domain sequences) are relatively conserved in vertebrates. Therefore, the credibility of evaluating the existence of RIG-I in these species through homology comparison is high. Therefore, we do not intend to conduct additional PCR/WB experiments to confirm this.

      Additionally, following the identification of RIG-I loss, the author postulates MDA5 as a substitute of RIG-I, grounding this speculation in the analysis of MDA5 and LGP2 protein structures. It is imperative to address whether the author could enhance the manuscript by supplying expression data for MDA5 and LGP2 across different vertebrates and elucidating further why MDA5 is posited as the compensatory mechanism for RIGI loss.

      Like MDA5, LGP2 is also an interferon-stimulating gene, so they both likely exhibit high sensitivity to viral infections. Therefore, we think that comparing the expression data of these two genes is difficult to evaluate their function. In mammals, the regulatory mechanisms of LGP2 to RIG-I and MDA5 were complicated and ambiguous. To evaluate the potential function of LGP2 in M. miiuy, we further constructed LGP2 plasmid and synthesized siRNA targeting LGP2. Then, our results indicate that mmiLGP2 can enhance the antiviral immune response mediated by mmiMDA5 (Figure 1H and 1I), further indicating the regulatory role of mmiLGP2 in RLR signaling, rather than acting as a compensatory receptor for RIG-I.

      Also, is it conceivable that other receptors contribute to this compensatory effect in lower vertebrates?

      5’ triphosphate short blunt-end double-strand RNA is the ligand of RIG-I as contained in the panhandle of negative-strand viral genomes. We mainly focus on the immune recognition and compensatory effects of other receptors on RIG-I loss, and MDA5, as the protein with the most similar structure, first attracted our attention. In addition, IFIT proteins have been reported to recognize triphosphate single-stranded RNA (doi: 10.1038/nature11783). However, we used SCRV and VSV RNA as viral models, both of which have negative stranded genomes and meet the ligand standards of RIG-I, rather than IFIT. Therefore, we excluded the IFIT protein from our research scope.

      (2) The article exclusively employs a singular type of 5'PPP-RNA virus and one specific lower vertebrate species, thereby potentially compromising the robustness of the assertion that this phenomenon is prevalent in lower vertebrates. To bolster this claim, could the author consider incorporating data from an alternative 5'PPP-RNA virus and a different lower vertebrate species?

      To address this concern, we have incorporated additional experimental data utilizing different model systems, including two different vertebrate species (M. miiuy and G. gallus) and two distinct viruses (SCRV and VSV). While the functional characterization of G. gallus MDA5 remains relatively limited compared to M. miiuy, our current experimental findings provide support for two key observations. Firstly, the triphosphate structure of the VSV virus is pivotal in activating the innate immune response in G. gallus against the virus (Figure 1D and 4J). Secondly, G. gallus MDA5 can recognize 5’ppp-RNA (Figure 4I, 4K and 4L). Consequently, these experimental results further confirmed the conservatism of this immune compensation mechanism.

      (3) A nuanced consideration of the statement in Result 5 is warranted. Examination of the results under SCRV infection conditions suggests dynamic fluctuations in MDA5 expression levels, challenging the veracity of the statement implying "increased expression", which contradicts the proposed working model of this article.

      Because MDA5 acts as a receptor and plays a recognition immune role in the early stages of virus infection, the expression of MDA5 in the early stage of SCRV infection rapidly increases. In the later stage of infection, the expression of MDA5 may gradually decrease again due to the negative feedback mechanism in the host body to prevent excessive inflammation. However, compared to the uninfected group, the expression of MDA5 was significantly increased in the SCRV-infected group, so we believe that the term "increased expression" is not a problem. In addition, the m6A mechanism can weaken the function of MDA5, but it still cannot prevent the overall increase of MDA5 expression, which is not contradictory to the working model in this article.

      Additionally, the alterations in m6A levels in miiuy croaker under SCRV infection conditions warrant clarification. Could the author employ m6A dot blotting to supplement the findings related to total m6A levels?

      Our previous studies (doi: 10.4049/jimmunol.2200618) have suggested that the total m6A level is increased after SCRV infection in miiuy croaker. We cited this conclusion in the discussion of our manuscript.

      (4) It would be beneficial if the editors could assist the author in enhancing the language of the manuscript.

      We have carefully checked the full article and modified it with Grammarly tools, and we believe that the grammar, format, and readability of our articles have been greatly improved.

      Reviewer #2 (Recommendations For The Authors):

      Figure 1

      (1) Figure 1B - some clarification needs to be added about this figure in the text. It is unclear what the main point is that the authors would like to convey.

      What we want to emphasize is that some species with RIG-I, such as zebrafish, have also experienced RIG-I loss events, but have undergone whole genome replication events before the loss, thus preserving a copy of RIG-I. This indicates that loss events of RIG-I are very common in vertebrates and do not occur randomly. We have elaborated on this point in the results and discussion.

      (2) Figure 1C - is not very informative other than showing Mm MDA5 and LGP2 side-by-side. It would be more useful to show a comparison of human RIG-I/MDA5 alongside Mm and Gg MDA5. Are there any conserved/shared key residues between hRIG-I/hMDA5 versus mmMDA5?

      Homologous proteins are often known to adopt the same or similar structure and function. We have added human RIG-I domain information to this figure (Figure 1F). By comparing the domain information of human RIG-I with M. miiuy MDA5 and LGP2, M. miiuy MDA5 has a similar structure to human RIG-I, making it most likely to compensate for the missing RIG-I. While M. miiuy LGP2 lacks the CARD domain, which is crucial for signal transduction, so we will shift our focus to M. miiuy MDA5. In addition, we collected protein sequences of MDA5 and RIG-I from various vertebrates to identify key residues evolved in recognizing 5'ppp-RNA by M. miiuy MDA5. However, unfortunately, no potential residues were found during the comparison process.

      Figure 2

      (1) Figure 2B - It would be important to demonstrate MDA5-Flag expression by immunoblot and compare MDA5-Flag overexpression to endogenous MDA5 expression using the anti-MDA5 antibody from panel 2A. If IF is used, more cells need to be visible in the field.

      After transfecting the MDA5 plasmid into MKC, endogenous MDA5 expression was detected using MDA5 antibodies. The results showed a significant increase in MDA5 protein levels, indicating that MDA5 antibodies can specifically recognize MDA5 protein. In addition, we retained the original immunofluorescence images to better demonstrate the subcellular localization of MDA5.

      (2) Figure 2C - The 1:1 stoichiometry of MDA5:MAVS (in the absence of any stimulus) is quite surprising. How does the interaction between MDA5 and MAVS change upon stimulation with an RNA ligand (SCRV, poly(I:C))?

      We do not believe that the actual stoichiometry between MDA5 and MAVS is what you described as 1:1. In fact, the proportion of proteins in the complex depends on many factors in the experimental results with Co-IP. Firstly, the MDA5 plasmid in this study has a 3 × Flag tag, while the MAVS only has a 1x Myc tag, which makes the antibody more sensitive for detecting MDA5-Flag. In addition, the Co-IP results are also affected by multiple factors such as the type of antibody and the number of recoveries, making it difficult to estimate the actual ratio of MDA5 to MAVS. Based on the above reasons and the fact that the detection of the interaction strength between MDA5 and MAVS after infection seems to be off-topic, we did not continue to explore this point.

      (3) Figure 2D - The interaction between MDA5 and STING is a very interesting finding but is not elaborated on in the paper (even though the interaction between MDA5 and STING is mentioned in the abstract). The manuscript would be strengthened if the interaction between MDA5 and STING is further investigated. For example, does the IFN response that is reported in panels 2E to 2H require the presence of STING? Does mmMDA5 signal via STING in response to a DNA ligand?

      We appreciate the referee's suggestion to study the mutual influence between MDA5 and STING. We found that co-expression of STING and MDA5 can enhance MDA5-mediated IFN-1 response during SCRV virus infection, while knocking down STING can restore MDA5-mediated IFN-1 (Figure 2N and 2O). This indicates that STING plays an important signaling role in the immune response of MDA5 to RNA viruses. We understand the importance of cGAS/STING pathways in identifying exogenous DNA, so exploring the MDA5 pathway for DNA ligand recognition is an interesting and meaningful perspective. But this seems to be detached from the theme of our article, so we didn't continue to explore this point.

      (4) Figures 2F and 2H - the authors demonstrate that SCRV induces a type I IFN response in an MDA5-dependent manner. While SCRV is a single-stranded negative-sense RNA virus that contains 5'ppp-RNA, it cannot be excluded that MDA5 is activated here in response to a double-stranded RNA intermediate of viral origin or even a host-derived RNA whose expression or modification is altered during infection. To demonstrate in an unambiguous manner that MDA5 senses 5'ppp-RNA, it is crucial to use the in vitro synthesized 5'ppp-RNA (and its dephosphorylated derivative as a control) from Fig. 4 in these experiments.

      We transfected 5 'ppp SCRV and 5' ppp VSV (and their dephosphorylated derivatives) synthesized in vitro into MKC cells and DF-1 cells, respectively. The results showed that 5’ppp-RNAs significantly promoted the formation of IRF3 dimers, while their dephosphorylated derivatives did not (Figure 4C and 4J). In addition, we extracted virus RNA from the SCRV and VSV viruses and dephosphorylated them with Calf intestinal phosphatase (CIAP). These RNAs were transfected into MKC and DF-1 cells and found that the immune response mediated by virus RNAs was much higher than the dephosphorylated form (Figure 1C-1E). The above results indicate that the immune response activated by SCRV and VSV is indeed dependent on their triphosphate structure. Finally, the IRF3 dimer and IFN induction activated by SCRV RNA can be inhibited by si-MDA5 (Figure 2P and 2Q), further demonstrating the involvement of MDA5 in the immune response mediated by 5’ppp-RNA ligands.

      (5) In mice and humans, MDA5 is known to collaborate with LGP2 to jointly induce an IFN response. Does M.miiuy express LGP2? If so, it would be informative to include a siRNA targeting LGP2 in the experiments in panel F. In mammals, LGP2 potentiates the response via MDA5 while it may inhibit RIG-I activation.

      M.miiuy express LGP2. We constructed an LGP2 plasmid and synthesized si-LGP2 to investigate the impact of LGP2 on MDA5-mediated immune processes (Figure 1G-1I). The results showed that LGP2 can enhance the IFN response mediated by MDA5 during SCRV virus infection, similar to that in mammals.

      (6) Minor comment - Is the poly(I:C) used in this figure high or low molecular weight poly(I:C)? HMW poly(I:C) preferentially stimulates MDA5, while LMW poly(I:C) preferentially stimulates RIG-I.

      We used poly(I:C)-HMW as a positive control for activating MDA5. We have modified the relevant information in Figure 2 and its legend.

      Figure 3

      (1) Figure 3F/G - The normalization in this Figure is difficult to interpret. It would be better to split Figure 3G into 4 separate graphs and include the mock-infected cells alongside the infected samples (as done in Figure 2).

      To better demonstrate the function of the RD domain of MDA5 in M. miiuy, we have changed the experimental plan, as shown in figure 3F. We detected the induction of antiviral factors by overexpression of MDA5 and MDA5-△RD under poly (I:C)-HMW stimulation. This can indicate that the RD domain of MDA5 has a conserved function in the recognition of poly(I:C)-HMW in M. miiuy, and can serve as a positive control for the recognition of SCRV virus by the RD domain.

      Figure 4

      (1) Figure 4B - A number of important controls are missing. Was the immunoprecipitation of RNA successful? This could be shown by running a fraction of the immunoprecipitated material on an RNA gel and/or by showing that the input RNA was depleted after IP. In addition, a control IP (Streptavidin beads without biotinylated RNA) is missing to ensure that MDA5 does not stick non-specifically to the Streptavidin resin.

      We appreciate the referee's suggestions. We rerun this experiment and added a non-biomarker RNA IP control group, and the results showed that MDA5 did not adsorb non-specific onto the beads (Figure 4B). In addition, based on the referee's suggestion, we tested the consumption of RNA before and after immunoprecipitation, and the results showed that biotin-labeled RNA, rather than non-biotin-labeled RNA, could be adsorbed by beads, indicating the success of RNA precipitation. However, we think that this is not necessary for the final presentation of the experimental results, so we did not show this in the figure.

      (2) Figure 4B - It is unclear why there is such a large molecular weight difference between endogenous MDA5 and MDA5-Flag (110 kDa versus 130/140 kDa). Why is there less MDA5-Flag retrieved than endogenous MDA5?

      After careful analysis, we believe that the significant difference in molecular weight between endogenous MDA5 and MDA5 Flag may be due to three reasons. Firstly, MDA5 flag has a 3× Flag tag. Secondly, as shown in the primer table, we constructed MDA5 between the NotI and XbaI cleavage sites in the pcDNA3.1 vector, which are located at the posterior position in the vector. This means that the Flag tag has a certain distance from the starting codon of MDA5, and these sequences on the vector can also be translated and increase the molecular weight of the exogenous MDA5 protein. Finally, in order to facilitate the amplification of the primers, the F-terminal primers of MDA5 contain a small portion of the 3'UTR sequence (excluding the stop codon). These above reasons may have led to significant differences in molecular weight. In addition, in order to supplement important experimental controls, we have conducted a new RNA pull-down experiment as shown in Figure 4B.

      (3) Minor point: Figure 4B - please clarify in the figure whether RNA or protein is immunoprecipitated and via which tags.

      We have conducted a new RNA pull-down experiment as shown in Fig 4B, and we have clearly labeled the relevant information in the figure.

      (4) Figure 4E - the fraction of MDA5 that binds 5'ppp-RNA seems incredibly minor. And why is this experiment done using 5'OH-RNA as a competitor, rather than simply incubating MDA5 and 5'OH-RNA together and demonstrating that these do not form a complex?

      The proportion of MDA5 combined with 5’ppp-RNA is influenced by many conditions, including the concentration and purity of the probe and purified protein. In addition, the dosage ratio between the RNA probe and MDA5 protein in the EMSA experiment can also have a significant impact on the results. Therefore, it is not possible to accurately determine the actual binding force between MDA5 and RNA. In the EMSA experimental program, both cold probes (5’ppp-RNA) and mutated cold probes (5’OH-RNA and 5’pppGG-RNA) are crucial for demonstrating the specific binding between MDA5 and 5’ppp-RNA, as they can exclude false positive errors caused by factors such as the presence of biotin in the purified MDA5 protein itself.

      (5) Figure 4B/4C/4F - These experiments would be strengthened by including an MDA5 mutant that cannot bind to RNA. These mutants are well-described in mammals. If these residues are conserved, it is straightforward to generate this mutant.

      As shown in Figure 3, the MDA5 of M. miiuy has an RD domain that can recognize the SCRV virus. We constructed MDA5-△RD mutant plasmids with 6x His-tags and purified them for EMSA experiments (Figure 4E). The experimental results further indicate that MDA5, rather than MDA5-△RD, can bind to 5’ppp-SCRV (Figure 4G). This further confirms the crucial role of the RD domain in recognizing the 5'ppp-RNA virus.

      (6) Minor point: Figure 4E: please clarify in which lanes MDA5 has been added.

      Thank you for the referee's suggestion. We have synthesized new 5'ppp-RNA probes (5’ppp-SCRV and their dephosphate derivatives) and rerun this experiment, and relevant information has been added in the Figure (Figure 4F).

      Figure 5

      (1) Figure 5C - As MDA5 is an interferon-stimulated gene (as shown in panel G/H/I)) the increased MDA5 expression could simply explain the increase in the amount of m6A-MDA5 that is immunoprecipitated after infection. Could this figure be improved by doing a fold change between input vs m6A-IP OR uninfected vs SCRV-infected conditions? This would reveal whether the modification of MDA5 with m6A is really increased after infection.

      As shown in Figure 5F below, our data indicates that the proportion of m6A-modified MDA5 does indeed increase after SCRV infection, rather than solely due to the increased expression of MDA5 itself.

      (2) Figure. 5E/F - The y-axis is unclear: relative MDA5 m6A levels. Relative to what? Input? Mock infected?

      For experiments in Figure 5E/F, we first compared the m6A-IP group with the input group, and then normalized the control group (IgG group of 5E and Mock group of 5F) to “1”. We have replaced the Y-axis name with a clearer one (Figure 5E and 5F).

      (3) General comment - It is not mentioned in the text that MDA5 is an interferon-stimulated gene. This would account for the increase in expression (qPCR) after viral infection or poly(I:C) transfection, hence there is no novelty in this finding. In addition, the authors suggest that MDA5 increases at the protein level (by immunoblot) but the increase on these blots is not convincing (figure 5H/5I).

      We understand that the increase in expression of MDA5 as an interferon-stimulated gene after viral infection is a common phenomenon. We present this to further validate the m6A sequencing transcriptome data, and to demonstrate that although m6A modification interferes with MDA5 expression during viral infection, it cannot prevent the increase of mRNA level of MDA5. In addition, we rerun the experiment and the results showed that the expression of MDA5 protein can indeed be specifically activated by the SCRV virus and poly(I:C)-HMW.

      Figure 6

      (1) Figure 6E - What was the MOI of the virus used in this experiment? It is not mentioned in the figure legend.

      MOI=5, we have added this point in the figure legend.

      Figure 7

      (1) Figure 7J - This graphic is somewhat misleading and should be altered to better reflect the conclusions that are drawn in the manuscript. The graphic suggests that MAVS and STING interact, but this is not demonstrated in the paper. In addition, the paper does not demonstrate whether MAVS or STING (or both) are needed downstream of MDA5 to relay signalling. Finally, please draw an arrow from type I IFNs to increased expression of MDA5 to illustrate that MDA5 is an ISG.

      Thank you for the referee's suggestion. We have revised the images to more accurately match the conclusions of the manuscript (Figure 7J). Firstly, we have separated the STING protein from the MAVS protein. Secondly, arrows have been used to indicate that MDA5 is an IFN-stimulated gene. Finally, as we have added relevant experiments to demonstrate the importance of MITA protein in the signaling process of MDA5-activated IFN response. In addition, the function of MAVS binding to MDA5 protein and promoting its signal transduction is very conserved, and there is a good research background even in fish with RIG-I deficiency (10.1016/j.dci.2021.104235). Therefore, in Figure 7J, we still chose to bind MAVS to MDA5 protein and use it as a downstream signal transducer of MDA5.

      Discussion<br /> (1) There is very little discussion about METTL and YTHDF proteins in the discussion despite the fact that the last 2 figures are entirely devoted to these proteins.

      Based on the referee's suggestion, we have added relevant content about METTL and YTHDF proteins in the discussion. In addition, the basic mechanism and function of METTL and YTHDF proteins were briefly described in the introduction.

      Reviewer #3 (Recommendations For The Authors):

      Please refer to the specific suggestions and recommendations. They include proposals for experimental additions, improved methodologies, and suggestions to resolve writing-related concerns.

      Major concerns

      (1) I suggest changing the article title to "Functional Replacement of RIG-I with MDA5 in Fish Miiuy Croaker", or a similar title, to make it more focused and closely aligned with the content of the article.

      Following the reviewer's recommendations, we have revised the title to emphasize our primary research subject is a teleost fish that lacks RIG-I. In addition, we have changed “5’ppp-RNA” to “5’ppp-RNA virus” to emphasize the interaction between the virus and the receptor. We believe that the revised title is more in line with the content of the article.

      (2) Due to the inherent limitations in genome sequencing, assembly, and annotation for the Miiuy croaker, comprehensive annotation of immune-related genes remains incomplete. To address this critical gap, it is recommended that authors establish experimental protocols, such as Fluorescence In Situ Hybridization (FISH), to confirm the absence of RIG-I in the Miiuy croaker. They should simultaneously employ MDA5 probes as a positive control for validation purposes.

      The miiuy croaker has good genomic information at the chromosomal level (doi: 10.1016/j.aaf.2021.06.001). In addition, studies have shown that RIG-I is absent in the orders of Perciformes (doi: 10.1016/j.fsirep.2021.100012), while miiuy croaker belongs to the order Perciformes, so it does indeed lose the RIG-I gene. Therefore, we do not intend to use FISH technology to prove this.

      (3) Similarly, it is recommended that the authors first provide evidence of the presence of 5'ppp at the 5' terminus of the genome RNA of SCRV, as demonstrated in the study by Goubau et al. (doi: 10.1038/nature13590, Supplementary figure 1). This evidence is crucial before drawing conclusions about the compensatory role of MDA5 in recognizing 5'ppp RNA viruses, using SCRV as the viral model.

      As suggested by the referee, we extracted SCRV RNA from SCRV virus particles and assessed the 5’-phosphate-dependence of stimulation by SCRV RNA. Calf intestinal phosphatase (CIAP) treatment substantially reduced the stimulatory activity of SCRV RNA in MKC cells of M. miiuy (Figure 1C and 1E). In addition, similar results were obtained by transfecting VSV-RNA isolated from VSV virus into DF-1 cells of G. gallus (Figure 1D). The above evidences confirm the presence of triphosphate molecular features between SCRV and VSV viruses, and indicating that birds and fish lacking RIG-I have other receptors that can recognize 5’ppp-RNA.

      (4) The 62-nucleotide (nt) 5'ppp-RNA utilized in this study was obtained from Vesicular Stomatitis Virus (VSV). In order to provide direct evidence, it is necessary to include a 62-nt 5'ppp-RNA that is directly derived from SCRV itself.

      We adopted this suggestion and synthesized a 67-nucleotide 5’ppp-SCRV RNA probe. We found that 5’ppp-SCRV activates dimerization of IRF3 and binds to MDA5 of M. miiuy in a 5’-triphosphate-dependent manner (Figure 4A-4F).

      (5) Given that RNAs with uncapped diphosphate (PP) groups at the 5′ end also activate RIG-I, similar to RNAs with 5′-PPP moieties, and the 5′-terminal nucleotide must remain unmethylated at its 2′-O position to allow RNA recognition by RIG-I, it is necessary for the authors to conduct additional experiments to supplement and validate these two distinguishing features of RIG-I in RNA recognition. This will provide more reliable evidence for the replacement of RIG-I by MDA5 in RNA recognition.

      Thank you for the reviewer's professional suggestions. We understand that exploring the combination of 5’pp-RNA and 2′-O-methylated RNA with MDA5 can further demonstrate the alternative function of MDA5. But we think that the use of 5’ppp-RNA and their dephosphorylation derivatives can fully demonstrate that the MDA5 of M. miiuy and G. gallus have evolved to recognize 5’triphosphate structure like human RIG-I. Therefore, we do not intend to conduct any additional experiments

      (6) In section 2.3, the authors assert that Miiuy croaker recognizes SCRV through its RD domain. This claim is supported by their data showing that cells overexpressed with the MDA5 ΔRD mutant lost the ability to inhibit SCRV replication. As a result, the authors draw the conclusion that "these findings provide evidence that MDA5 may recognize 5'-triphosphate-dependent RNA (5'ppp-RNA) through its RD domain." However, to strengthen their argument, the authors should first demonstrate that during SCRV infection, MDA5-mediated antiviral immune response is indeed initiated by recognizing the 5'ppp part of the SCRV RNA, rather than the double-strand part (which can exist in ssRNA virus) of the viral RNA, as this is naturally a ligand for MDA5. Additionally, the authors should treat the isolated SCRV RNA with CIP to remove the phosphate group and examine the binding of MDA5 with SCRV RNA before and after treatment. They should also transfect CIP-treated or untreated SCRV RNA into MDA5 knockdown and wild-type MKC cells to investigate the induction of antiviral signaling and levels of viral replication. Finally, the authors should verify the binding ability of the mutants with isolated SCRV RNA, with or without CIP treatment, to determine which domain of MDA5 is responsible for SCRV 5'ppp-RNA recognition.

      We understand the reviewer's concern that MDA5 may be identified by binding to dsRNA in the SCRV virus. Based on the reviewer's suggestion, we extracted SCRV RNA and obtained its dephosphorylated RNA using Calf intestinal phosphatase (CIAP). Next, we transfected them into MDA5-knockdown and wild-type MKC cells, and detected the dimerization of IRF3 and IFN reaction. The results indicate that SCRV RNA does indeed activate immunity in a triphosphate-dependent manner, and knockdown of MDA5 prevents immune activation of SCRV RNA (Figure 1C and 1E, Figure 2P and 2Q). Finally, we synthesized a 5'ppp-SCRV RNA probe and demonstrated that MDA5 binds to 5'ppp-SCRV through the RD domain (Figure 4E-4G). We believe that these results can better demonstrate that MDA5 recognizes 5’ppp-RNA through its RD domain and addresses the concerns of the reviewers.

      (7) Similarly, merely presenting Co-IP data demonstrating the interaction between Miiuy croaker MDA5 and STING in overexpressed EPC cells does not justify the claim that "in vertebrates lacking RIG-I, MDA5 can utilize STING to facilitate signal transduction in the antiviral response". This is because interactions observed through overexpression may not accurately reflect the events occurring during viral infection or their actual antiviral functions. To provide more robust evidence, it is essential to conduct functional experiments after STING knockout (or at least knockdown). Furthermore, it is important to note that Miiuy Croaker alone cannot adequately represent all "vertebrates lacking RIG-I".

      We found that co-expression of STING and MDA5 can enhance MDA5-mediated IFN-1 response during SCRV virus infection, while knocking down STING can restore MDA5-mediated IFN-1 response (Figure 2N and 2O). This indicates that STING plays an important signaling role in the immune response of MDA5 to RNA viruses. In addition, loss of RIG-I is a common phenomenon in vertebrates, and STING of birds such as chickens (doi: 10.4049/jimmunol.1500638) and mammalian tree shrews (doi: 10.1073/pnas.1604939113) can also bind to MDA5, indicating that STING can indeed play a crucial role in MDA5 signaling in species with RIG-I deficiency. We have added this section to our discussion and elaborated on our observations in more cautious language.

      (8) In the manuscript, a series of experiments were conducted using an antibody (Beyotime Cat# AF7164) against endogenous MDA5. The corresponding immunogen for this MDA5 antibody is a recombinant fusion protein containing amino acids 1-205 of human IFIH1/MDA5 (NP_071451.2). However, the amino acid sequences of IFIH1/MDA5 differ substantially between humans and Miiuy croaker, which could introduce errors in the results. Therefore, it is essential to employ antibodies specifically designed for targeting Miiuy croaker's own MDA5 in the experiments.

      As shown in Figure 2B, endogenous MDA5 antibodies can detect the MDA5 portion that is forcibly overexpressed by plasmids, suggesting that the MDA5 antibody can indeed specifically recognize the MDA5 protein of M. miiuy.

      (9) It is recommended to investigate the phosphorylation of IRF3 in order to confirm the downstream signaling pathway during viral infection when MDA5 is knocked down or overexpressed.

      Due to the lack of available phosphorylation antibodies for fish IRF3, we used IRF3 dimer experiments to detect downstream signaling (Figure 1C and 1D, Figure 2P, Figure 4C and 4J).

      (10) The use of poly I:C as a mimic for dsRNA to investigate MDA5's recognition of 5'ppp-RNA in hosts lacking RIG-I, as well as the examination of the regulatory role of MDA5 m6A methylation upon activation by 5'ppp-RNA, may be inappropriate. Poly I:C does not possess 5'ppp, and while it has been identified as a ligand for MDA5 in various studies, MDA5 cannot serve as a substitute for RIG-I in recognizing poly (I:C). Therefore, the authors should utilize 5'ppp-dsRNA as the mimic and include the corresponding 5'ppp-dsRNA control without a 5'triphosphate as the negative control (both available from InvivoGen). This approach will specifically elucidate the mechanisms involved when MDA5 functions similarly to RIG-I in the recognition of 5'ppp-RNA.

      In our study, we used poly(I:C)-HMW, a known dsRNA mimetic that can be preferentially recognized by MDA5 rather than RIG-I, as a positive control for activating MDA5. What we want to demonstrate is that, like poly(I:C)-HMW (positive control), SCRV can also promote MDA5-mediated IFN immunity, further indicating the important role of MDA5 in 5’ppp-RNA virus invasion. We have clearly labeled the type of poly(I:C) in the figures and legends to avoid misunderstandings for readers.

      (11) In Figure 2, Figure 3, and Figure 6, the appearance of virus plaques is not readily apparent, and it is necessary to replace these images with clearer photographs. It appears that MKC or MPC cells are not appropriate for conducting plaque assays. To accurately assess viral proliferation, the authors should measure key indicators throughout the process, such as the production of positive-strand RNAs (+RNAs), replication intermediates (RF), and transcription of subgenomic RNAs. This approach is preferable to solely measuring the M and G protein genes from the virus genome as positive results can still be observed in contaminated cells.

      As pointed out by the reviewer, we also think that the virus plaque images in Figure 2K and Figure 3D are not clear enough, so we have replaced them with new clear images (Figure 2J and Figure 3D). But we think that other images can clearly display the proliferation of the SCRV virus, so we did not replace them. In addition, the primers we currently use do measure +RNA, so the replication level of the SCRV virus can be accurately evaluated without being affected by virus contamination. Because the regions where the two pairs of primers are located belong to the SCRV-M and SCRV-G protein genes, we label them as SCRV-M and SCRV-G to distinguish between the two pairs of genes. To avoid reader misunderstanding, we have modified the Y-axis label in the figures (Figure 2I and 2K, Figure 3E, Figure 6E and 6O).

      (12) There is a substantial disparity in the molecular size of M. miiuy MDA5 between endogenous and exogenously expressed proteins, as shown in Figure 2A and 2C-D. Please provide clarification.

      Please refer to the response to Reviewer 2's question regarding Figure 4B above.

      (13) The manuscript incorporates the evolutionary perspective, but lacks specific evolutionary analysis. Thus, it is essential to include relevant analysis to comprehend the evolutionary dynamics and positive selection on MDA5 and LGP2 in the absence of RIG-I in Miiuy croaker. This can be achieved through theoretical calculations using appropriate algorithms, such as the branch models and branch-site models based on the maximum-likelihood method implemented in the phylogenetic analysis by maximum likelihood (PAML) package.

      In fact, we have analyzed the molecular evolution of MDA5 and LGP2. Unfortunately, even when analyzing only the MDA5/LGP2 CDS sequences in fish, we found that the topologies of gene trees of MDA5/LGP2 were largely consistent with the species tree. Thus, species with or without RIG-I in the gene trees cannot effectively separate clusters, making it extremely difficult to analyze the molecular evolution of MDA5/LGP2 caused by RIG-I deficiency. Consequently, we gave up this aspect of analysis.

      (14) If the narrative regarding m6A methylation goes beyond the activation of MDA5 through recognition of 5'ppp-RNA and represents a regulatory mechanism for all MDA5 activation events, it is not relevant to the theme of "An arms race under RIG-I loss: 5'ppp-RNA and its alternative recognition receptor MDA5." Therefore, all investigations in this paper should focus solely on events when MDA5 recognizes 5'ppp-RNA. Any data associated with the broader regulatory mechanisms and m6A methylation of MDA5 should be excluded from this manuscript and instead be included in a separate study dedicated to exploring this specific topic.

      Our theme aims to showcase RNA viruses, rather than an interaction between 5'ppp-RNA and host virus receptors, which our current topic cannot accurately express. Therefore, we made two main changes: firstly, we limited the study species to M. miiuy, although some studies on the functional substitution of MDA5 for RIG-I involved birds. Secondly, change “5’ppp-RNA” to “5’ppp-RNA virus”. We believe that the revised title is more in line with our current research contents.

      (15) The running title appears to be hastily done.

      We modified it to “MDA5 recognizes 5’ppp-RNA virus in species lacking RIG-I”.

      (16) There are many descriptions that are not strongly related to the main theme of the article in the introduction section, making it lengthy and fragmented. Please focus on the research background of RIG-I and MDA5, including their structures, functions, and regulatory mechanisms, as well as the research progress on the compensatory effect of MDA5 in the absence of RIG-I and its evolutionary adaptation mechanism in other species.

      Based on the suggestions of the reviewers, we have removed some of the less relevant content in the introduction and added research progress on the compensatory effect of MDA5 in the evolutionary adaptation mechanism of tree shrews in the absence of RIG-I.

      (17) Lines 149-156 in the "Results" section include content that resembles an "Introduction" It is important to avoid duplicating information in the results section. Therefore, the authors are encouraged to revise this paragraph to ensure conciseness in the article.

      We have streamlined this section to enhance the article's conciseness and clarity.

      (18) In the "Results" section, at line 177, the authors assert, "As depicted in Figure 1F-1H," which should be corrected to Figure 2F-2H. Furthermore, the y-axis of the two figures on the right-hand side of Figure 2H represents the ISG15 genes. At line 182, "as demonstrated in Figure 1I-1L," should be revised as "as illustrated in Figure 2I-2L". The authors demonstrated a lack of attention to detail.

      Thank you to the reviewer for pointing out our errors, and we have made the necessary corrections.

      (19) In lines 197-198, the authors stated that "MDA5-ΔRD showed an inability to interact with SCRV." However, Figure 3D did not reveal any significant difference, thus it is advisable to repeat this experiment at least once.

      We have replaced this virus spot image with a new one (Figure 3D).

      (20) In lines 200-201 of the "2.3 RD domain is required for MDA5 to recognize SCRV" section, the authors report that the expression of antiviral genes was induced by the overexpression of both MDA5 and MDA5-ΔRD, even in the absence of infection (Figure 3F). Why does the expression of antiviral genes increase in the absence of viral RNA stimulation? Please provide a reasonable explanation.

      In the absence of viral infection, overexpression of viral receptor proteins may still transmit erroneous signaling, affecting the body's immunity. We speculate that due to the preservation of the CARD domain by MDA5 and MDA5-ΔRD, they can still induce the expression of antiviral factors without ligands, although this induction effect is much smaller than that of viral infection. However, in order to better demonstrate the function of the RD domain of MDA5 in M. miiuy, we have changed the experimental plan, as shown in the figure 3F. We detected the induction of antiviral factors by overexpression of MDA5 and MDA5-△RD under poly (I:C)-HMW stimulation. This can indicate that the RD domain has a conserved function in the recognition of poly(I:C)-HMW in M. miiuy, and can serve as a positive control for the recognition of SCRV virus invasion by the RD domain of MDA5.

      (21) Please provide the GeneBank accession number of M. miiuy MDA5.

      The GeneBank accession number of M. miiuy MDA5 was added in the section 4.5 plasmids construction.

      (22) The content of lines 228-233 in the "Results" section bears resemblance to that of the "Introduction." To ensure the avoidance of information duplication, it is recommended to remove this paragraph from the results section.

      This section has been streamlined.

      (23) The bands of mmiMDA5 in the 5'ppp-RNA and dsRNA lanes in Figure 4B are weak and almost unobservable. Please replace them with clear images.

      We have rerun this experiment and replaced the images (Figure 4B).

      (24) In Figure 5G and at line 253, there are only results presented for the SCRV infection group, while no results are shown for the control group. This raises the question of why the control group results are missing. It is necessary to provide a reasonable explanation or correction for this issue.

      The "0 h" infection time point of the SCRV virus is the control group, and we have replaced it with a more intuitive image (Figure 5G).

      (25) In Figure 7C, it would be necessary to include the western blot result of YTHDF protein expression in order to verify the efficiency of YTHDF siRNA.

      In fact, we have attempted to detect the endogenous expression of YTHDF protein using available commercial antibodies. Unfortunately, only the YTHDF2 antibody can specifically recognize the endogenous protein expression of YTHDF2 in M. miiuy. In addition, the knockdown effect of si-YTHDF2 has been validated by YTHDF2 antibody (doi: 10.4049/jimmunol.2200618).

      (26) In line 422 of the "4.3 Cell culture and treatment" section, the paragraph raises a question regarding the nature of Miiuy croaker kidney cells (MKCs) and spleen cells (MPCs) - whether they are cell lines or freshly isolated cells (or primary cultures) derived from kidney and spleen tissues. If these cells are indeed cell lines, it is requested to provide detailed information about the sources and properties of the cells (such as whether they are epithelial cells or other mixed cell types) and the generations of propagation. Alternatively, if the cells were freshly isolated or primary cultures obtained from fish, the method for cell isolation should be provided. The source and stability of cells are extremely important for ensuring the repeatability and reliability of experimental outcomes.

      M. miiuy kidney cells (MKCs) and spleen cells (MPCs) are cell lines derived from the kidney and spleen tissues of M. miiuy, with passages ranging from 20 to 40 times. These details have been incorporated into section 4.3.

      (27) There are many inaccurate descriptions in the text, which employ concepts that are too broad. These descriptions need to be narrowed down to specific species or objects. Here are a few examples, along with the necessary revisions. Other similar instances should also be revised accordingly. For instance, in line 119, "fish MDA5" should be changed to "Miiuy croaker MDA5." Similarly, in line 166, "fish MDA5-mediated signaling pathway" should be changed to "Miiuy croaker MDA5-mediated signaling pathway." In line 174, "fish MDA5" should be revised to "Miiuy croaker MDA5." Additionally, in line 185, "antiviral responses of teleost" should be changed to "antiviral responses of Miiuy croaker." In line 197, "interact with SCRV" should be revised to "interact with 5'ppp-RNA of SCRV." In line 337, "loss of RIG-I in the vertebrate" should be modified to "loss of RIG-I in Miiuy croaker and chicken." Similarly, in line 338, "MDA5 of fish" should be changed to "MDA5 of Miiuy croaker." Lastly, in line 348, "RIG-I deficient vertebrates" should be revised to "RIG-I deficient Miichthys miiuy and Gallus gallus."

      Thank you for the reviewer's suggestions. We have made revisions to these inaccurate descriptions and reviewed the entire manuscript to address similar statements with broad concepts.

      (28) Finally, it should be noted that a similar discovery has already been reported in tree shrews (Ling Xu, et al., Proc Natl Acad Sci., 2016, 113(39):10950-10955). This article shares similarities with that research report, therefore it is necessary to discuss in detail the relationship between the two in the discussion and compare and analyze the evolutionary patterns of MDA5 from it.

      Based on the reviewer's suggestions, we have compared the similarities and differences between these two reports during the discussion and analyzed the evolutionary dynamics of MDA5 in these vertebrates lacking RIG-I.

      Minor concerns:

      Thank you to the reviewer for their meticulous examination to our manuscript, we have made revisions to the following suggestions.

      (1) At line 120, the sentence "SCRV(one 5'ppp-RNA virus)" should have a space between "SCRV" and "(one 5'ppp-RNA virus)". Please make this correction.

      Corrected.

      (2) At lines 147-148, the sentence "However, the downstream gene of TOPORSa is missing a RIG-I" is not accurate and needs modification.

      We have modified this sentence.

      (3) At line 184, "findings indicate" should be corrected to "findings indicated".

      Corrected.

      (4) At line 189, "a 5'ppp-RNA virus" should be deleted and the text seems redundant.

      Deleted.

      (5) At line 198, "replication. (Figure 3C-3E)", please remove the punctuation between "replication" and "(Figure 3C-3E)".

      Corrected.

      (6) At line 416 in "Materials and methods" section, "4.2 Sample and challenge" should be corrected to "4.2 Fish and challenge".

      Corrected.

      (7) At line 419, the authors state that "The experimental procedure for SCRV infection was performed as described", please briefly describe the SCRV infection method and the infectious dose.

      Based on the reviewer's suggestions, we have added relevant descriptions of SCRV infection in section 4.2.

      (8) There are several formatting issues in the "Materials and Methods" section. For instance, in line 424, there is no space between the number and letter in "100 μg/ml" and "26 ℃" should be corrected to "26℃". Additionally, in line 430, "Cells" should be corrected to "cells".

      Corrected.

      (9) At line 446, "50 ng/ul" and "100 mU/ul" should be corrected to "50 ng/μl" and "100 mU/μl".

      Corrected.

      (10) At line 459, "primers 1)" should be corrected to "primers".

      Corrected.

      (11) At lines 461-464, the description "For protein purification, MDA5 plasmids with 6× His tag was constructed based on pcDNA3" seems to be no direct logical connection between protein purification and the plasmid construction. Please make the necessary corrections.

      Corrected.

      (12) At line 548, "cytoplasmic" should be corrected to "Cytoplasmic".

      Corrected.

      (13) At line 549, "5× 107" should be corrected to "5 × 107".

      Corrected.

      (14) At line 557, "MgCl2" should be corrected to "MgCl2".

      Corrected.

      (15) At line 558, "6 %" should be corrected to "6%".

      Corrected.

      (16) At line 565, "50μg" should be corrected to "50 μg".

      Corrected.

      (17) At line 571, "300{plus minus}50 bp." should be corrected to "300 {plus minus} 50 bp."

      Corrected.

      (18) At lines 592-593, the sentence "After several incubations, the m6A level was quantified colorimetrically at a wavelength of 450 nm" does not read smoothly, please improve it.

      Revised.

      (19) At line 786, "MDA5 recognize" should be corrected to "MDA5 recognized".

      Corrected.

      (20) At lines 788 and 798, "Pulldown" should be corrected to "Pull-down".

      Corrected.

      (21) At lines 790 and 796, "bluestaining" should be corrected to "blue staining".

      Deleted.

      (22) At line 825, "SCRV and infection" should be corrected to "SCRV infection".

      Corrected.

      (23) At lines 826-827, "SCRV (H) and poly(I:C) (I) infection" should be corrected to "SCRV infection (H) and poly(I:C) stimulation (I)".

      Corrected.

    1. Author response:

      We thank the reviewers for their help and their suggestions to make this manuscript more rigorous. We would like to post provisional author responses when eLife publish the reviewed preprint, and the more detailed responses will be supplemented with the revised manuscript.

      • There are questions about choices made in the computational approach (architecture and type of generative model, training set).

      We will train a new generator model based on the current GAN architecture, but with ‘hybrid’ AMP/AVP training sets (Reviewer 1 and 3). Hence, we can directly compare the performances of two generators. Based on our preliminary data, providing GAN with more AVP sequences during training helped the designed peptides pass the AVP filter, at the cost of reducing the average AMPredicgtor scores. The new generator also elevated the diversity of designed sequences.

      We also perturbed the detailed architecture of our deep learning models, including fully-connected graph edge encodings and different versions of ESM (e.g. esm1b_t33_650M_UR50S, esm2_t48_15B_UR50D, Reviewer 2). In the revised manuscript, we will report the effects of these modifications and suggest the overall construct of GCN and GAN are suitable for a light-weight sequence label model, as demonstrated in Author response table 1 and 2. For the generator, we suggest that using our approach, we may have reached a plateau for the GAN sampling (Author response table 3).

      Author response table 1.

      Results of AMPredictor with different graph edge encodings

      Author response table 2.

      Results of AMPredictor with different ESM versions

      Author response table 3.

      Evaluation of generated sequences with different sampling numbers

      • There is an important concern about the small number of antimicrobial peptides tested, compared to other studies, and the origin of antiviral activities.

      We will address this concern by increasing the number of peptides tested in anti-microbial and anti-viral experiments. As reported in current version of our manuscript, the first generation of GAN generated 128 unique designs and the top 2% (3 designs) was tested experimentally. The second generation of GAN will produce ~1024 designs (1-2 weeks) and the top 2% (~ 20 new sequences) will be tested. We are in the process of synthesize (2-3 weeks) and MIC measurement (1 week). The overall size of tested sample will reach 20-30 sequences. We will focus on sequences with low similarity (< 30%) to any known AMPs, thus expanding the universe functional peptides. We estimated the collection of these new data in 6 weeks.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      This work shows, based on basic laboratory investigations of invitro-grown bacteria as well as human bone samples, that conventional bacterial culture can substantially underrepresent the quantity of bacteria in infected tissues. This has often been mentioned in the literature, however, relatively limited data has been provided to date. This manuscript compares culture to a digital droplet PCR approach, which consistently showed greater levels of bacteria across the experiments (and for two different strains).

      Strengths:

      Consistency of findings across in vitro experiments and clinical biopsies. There are real-world clinical implications for the findings of this study.

      Weaknesses:

      No major weaknesses. Only three human samples were analyzed, although the results are compelling.

      We only put in three examples of clinical diagnosis to showcase the application of this method particularly to osteomyelitis. For further validation, larger cohort studies are required, which are currently underway.

      Reviewer #2 (Public Review):

      In this study, the authors address discrepancies in determining the local bacterial burden in osteomyelitis between that determined by culture and enumeration by DNA-directed assay. Discrepancies between culture and other means of bacterial enumeration are long established and highlighted by Staley and Konopka's classic, "The great plate count anomaly" (1985). Here, the authors first present data demonstrating the emergence of discrepancies between CFU counts and genome copy numbers detected by PCR in S. aureus strains infecting osteocyte-like cells. They go on to demonstrate PCR evidence that S. aureus can be detected in bone samples from sites meeting a widely accepted clinicopathological definition of osteomyelitis. They conclude their approach offers advantages in quantifying intracellular bacterial load in their in vitro "co-culture" system.

      The publication related to “The great plate count anomaly (1985)” has been added to revised version as new reference #2.

      Weaknesses

      - My main concern here is the significance of these results outside the model osteocyte system used by this group. Although they carefully avoid over-interpreting their results, there is a strong undercurrent suggesting their approach could enhance aetiologic diagnosis in osteomyelitis and that enumeration of the infecting pathogen might have clinical value. In the first place, molecular diagnostics such as 16S rDNA-directed PCR are well established in identifying pathogens that don't grow. Secondly, it is hard to see how enumeration could have value beyond in vitro and animal model studies since serial samples will rarely be available from clinical cases.

      Indeed, we initiated this study for the purpose of trying to improve the diagnostic outcomes for osteomyelitis, in particular that associated with prosthetic joint infection (PJI) but also all other forms, as the current gold-standard diagnostic approaches for this type of infection, either bacterial culture or whole genome sequencing, are very time consuming and costly, and yet are not necessarily accurate. Our method has the benefits (not limited to) of achieving absolute quantification of bacterial load in a shortened time period (in the order of hours) in clinical bone specimens from infected patients. Many of the identified bacterial species in patients were not able to be diagnosed by standard bacterial culturing. Moreover, one of the problematic features of treating bone infection is that repetitive surgeries are usually needed, particularly in PJI, hence, serial clinical bone specimens from the same patient are in fact often available. Therefore, our method of being able to quantify bacterial load offers the advantage of monitoring the infected status throughout the treatment journey. In this study, we chose the tuf gene as the targeting sequence to amplify the bacterial signal instead of the well-established 16S PCR for the reason that tuf provides much better sequence discrimination between bacterial species. Therefore, the short PCR amplicon of just 271 bp used in our study, is able to give us a highly accurate taxonomic readout. By this approach, we again shorten the time required for diagnosis. In the last paragraph of the Discussion in the revised manuscript, extra text, a figure demonstrating the strong sequence diversity in tuf (Supplementary Figure 2) and an additional reference have been added to address the Reviewer’s concerns.

      - I have further concerns regarding the interpretation of the combined bacterial and host cell-directed PCRs against the CFU results. Significance is attached to the relatively sustained genome counts against CFU declines. On the one hand, it must be clearly recognised that the detection of bacterial genomes does not equate to viable bacterial cells with the potential for further replication or production of pathogenic factors. Of equal importance is the potential contribution of extracellular DNA from lysed bacteria and host cells to these results. The authors must clarify what steps, if any, they have taken to eliminate such contributions for both bacteria and host cells. Even the treatment with lysotaphin may have coated their osteocyte cultures with bacterial DNA, contributing downstream to the ddPCR results presented.

      We agree that concerns around the interpretation of any molecular readout need to be taken into account. We have yet to find a method that can definitively identify bacterial viability in a clinical setting in the absence of culture. However, PJI and osteomyelitis in general is characterised by a high percentage of culture-negative infection cases, calling for such molecular approaches. Commercially available, so called “live/dead” bacterial PCR reagents exist that act as PCR signal inhibitors by penetrating the cell wall of compromised cells to prevent the PCR signal being generated from those cells. In our experience, while these can provide a certain level of added scrutiny in an experimental setting, they are not definitive because the reaction is often incomplete in an idealised situation and also the reagent may cancel signal from viable bacteria growing under conditions of stress, such as during antimicrobial treatment and host-derived stress imparted in intracellular or intra-tissue environments. Indeed, such stresses are likely contributors to clinical non-culturability. Whole genome sequencing would provide more certainty of bacterial viability to demonstrate genomic intactness but as we discuss herein, this a lengthy and costly process, and one which may prove difficult from host tissue with a low pathogen load. It should be noted that the significance of any diagnostic readout, including from culture, WGS or our method reported here would need to be interpreted by the treating clinical team. We would argue that a rapid, practical molecular diagnostic method in the absence or even presence of culture would provide treating clinicians with an improved rationale for tailoring antimicrobial treatments. 

      Strengths

      - On the positive side, the authors provide clear evidence for the value of the direct buffer extraction system they used as well as confirming the utility of ddPCR for quantification. In addition, the successful application of MinION technology to sequence the EF-Tu amplicons from clinical samples is of interest.

      - Moreover, the phenomenology of the infection studies indicating greater DNA than CFU persistence and differences between the strains and the different MOI inoculations are interesting and well-described, although I have concerns regarding interpretation.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      This manuscript by Vuong and colleagues reports a study that pooled data from 3 separate longitudinal studies that collectively spanned an observation period of over 15 years. The authors examined for correlation between viraemia measured at various days from illness onset with thrombocytopaenia and severe dengue, according to the WHO 2009 classification scheme. The motivation for this study is both to support the use of viraemia measurement as a prognostic indicator of dengue and also when an antiviral drug becomes licensed for use, to guide the selection of patients for antiviral therapy. They found that the four DENVs show differences in peak and duration of viraemia and that viraemia levels before day 5 but not those after from illness onset correlated with platelet count and plasma leakage at day 7 onwards. They concluded that the viraemia kinetics call for early measurement of viraemia levels in the early febrile phase of illness.

      Strengths:

      This is a unique study due to the large sample size and longitudinal viraemia measurements in the study subjects. The data addresses a gap in information in the literature, where although it has been widely indicated that viraemia levels are useful when collected early in the course of illness, this is the first time anyone has systematically examined this notion.

      Weaknesses:

      The study only analysed data from dengue patients in Vietnam. Moreover, the majority of these patients had DENV-1 infection; few had DENV-4 infection. The data could thus be skewed by the imbalance in the prevalence of the different types of DENV during the period of observation. The use of patient-reported time of symptom onset as a reference point for viraemia measurement is pragmatic although there is subjectivity and thus noise in the data.

      We acknowledge and appreciate your comments regarding the limitations of our study, including the pooled data from Vietnam and the use of symptom onset as a reference point for viremia kinetics. These points have been incorporated into the “Limitations” section.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript highlights very important findings in the field, especially in designing clinical trials for the evaluation of antivirals.

      Strengths:

      The study shows significant differences between the kinetics of viral loads between serotypes, which is very interesting and should be taken into account when designing trials for antivirals.

      Weaknesses:

      The kinetics of the viral loads based on disease severity throughout the illness are not described, and it would be important if this could be analyzed.

      In response to your suggestion, we have expanded our analysis to investigate the relationship between the rate of viremia decline and clinical outcomes. Our findings demonstrate that a faster rate of viremia decline is associated with a reduced risk of severe clinical outcomes. We have incorporated this new analysis into the revised manuscript, providing further details in the “Statistical Analysis” section (page 7) and presenting the results on pages 15 and in Figure 6.

      Reviewer #1 (Recommendations For The Authors):

      Several areas require additional attention. I have limited my comments on the findings as I am not a mathematician and cannot knowledgeably comment on the statistical modelling methods.

      Comment #1: Lines 83-84. Although viraemia level shows declining trends from illness onset and thus lessens its prognostic value, it remains unknown if a more rapid rate of decline in viraemia is associated with a reduced risk of severe dengue. This is the fundamental premise of antiviral drug development for the treatment of dengue. The authors are uniquely poised to show if this logic that underpins antiviral development is likely correct and perhaps even estimate the extent to which a decline in viraemia needs to occur for a measurable reduction in the risk of severe dengue. Could the authors consider such an analysis?

      We appreciate your valuable suggestion. In response, we have expanded our analysis to investigate the relationship between the rate of viremia decline and clinical outcomes Utilizing a model of viremia kinetics with the assumption of a linear log-10 viremia decrease over time, we calculated the rate of decline for each patient. Our findings demonstrate that a faster rate of viremia decline is associated with a significantly reduced risk of severe clinical outcomes. We have incorporated this new analysis into the revised manuscript, providing further details in the “Statistical Analysis” section (page 7) and presenting the results on pages 15 and in Figure 6.

      Comment #2: Lines 101-102. Studies A and B were conducted in parallel, and several patients enrolled in study A from primary healthcare clinics were eventually also enrolled in study B upon hospitalization. It would be helpful to know how many patients from study A were included in study B. It would also be useful for the authors to indicate if such inclusion would constitute double-counting at any point in their analyses.

      To address potential confusion regarding patient overlap between studies A and B, we have provided further clarification in the revised manuscript’s Legend of Figure 1. Among confirmed dengue patients, 31 individuals enrolled in study A were later included in study B upon hospitalization. Of these, 9 had viremia measurements available in both studies and were consequently analysed in study A only. The remaining 22 lacked viremia data in study A but had measurements in study B, leading to their inclusion in study B in the analysis. We have taken meticulous care to ensure no patient data is double-counted.

      Comment #3: Lines 126-127. The definition of probable primary and secondary dengue from IgG measurements needs more detail. How was the anti-DENV IgG ELISA data from paired sera interpreted?

      To ensure clarity, we have moved the definitions of probable primary and secondary infections from the supplementary file (Appendix 2) to the main text of the revised manuscript (Methods section – Plasma viremia measurement, dengue diagnostics, and clinical endpoints – page 6): “A probable primary infection was defined by two negative/equivocal IgG results on separate samples taken at least two days apart within the first ten days of symptom onset, with at least one sample during the convalescent phase (days 6-10). A probable secondary infection was defined by at least one positive IgG result during the first ten days. Cases without time-appropriate IgG results were classified as indeterminate.”

      Comment #4: Lines 230-232 and Figure 4. The findings reported in Figure 4 are curious. Why is the platelet count highest (significantly?) for DENV-1 compared to other DENV-type infections at low viraemia levels on LM days 1-3? Does that also mean that DENV-3 and -4 infections have a greater impact on platelet counts at days 7-10 than DENV-1 and -2?

      In our analyses, we allowed the relation between viremia and platelet count to differ by serotype. Figure 4 shows the highest platelet counts for DENV-1 compared to other serotypes, especially at low viremia levels. Apparently, while DENV-1 on average has higher viremia (Figure 3), the same viremia level in DENV-1 compared to other serotypes is associated with a less severe disease course and higher platelet count. This does not necessarily imply that platelet count overall, uncorrected for viremia level, differs by genotype. Indeed, our unpublished analysis (shown below) indicates a modest influence of serotype on platelet count.

      Author response image 1.

      Comment #5: Figure 5. In a recent paper (Vuong et al, Clin Infect Dis 2021), the authors show elegantly that the viraemia levels on admission correlated with severe dengue. However, these correlations were different for each of the four DENV types and whether the infection was primary or secondary. Why wasn't the analysis in Figure 5 further stratified by their probable primary or secondary dengue status?

      We appreciate your feedback and have stratified Figure 5 by serotype and immune status as suggested. Please note that due to the limited number of severe dengue in primary infections (only 1 case in DENV-1) and plasma leakage in primary DENV-4 (see Appendix 4-table 1), the estimated probability of having these outcomes is nearly zero across all viremia levels within these subgroups.

      Comment #6: Line 279. The description in this line is at odds with the data in Figure 3A, which shows that DENV-2 could be detected over a longer period than DENV-1 as the one-step RT-qPCR assay has a lower detection limit than DENV-1.

      In response to your feedback, we have revised the description to clarify that DENV-1 exhibits higher viremia levels compared to DENV-2 and DENV-3 in the revised manuscript (page 18).

      Reviewer #2 (Recommendations For The Authors):

      Introduction

      Comment #1: Line 56: the authors state that viraemia is associated with dengue disease severity and cite their previous results. They then summarize the results of this study and others. The highlights of this paper should be described in more detail. It is important that the authors state the conclusions of their own paper, including that the association was not very strong and that the viral loads were lowest with DENV2, but DENV2 was associated with more severe disease.

      Thank you for your comment. To improve the introduction’s flow, we have removed that sentence in line 56 of the manuscript and have added the weak association in the next paragraph (pages 3-4).

      Comment #2: It would be important to cite smaller studies that show a delay in clearance of the virus being associated with more severe disease outcomes.

      Thanks for your suggestion. We have added information to the introduction (page 4), highlighting a study which found a slower rate of viral clearance to be associated with more severe outcomes (Wang et al., 2008). However, other studies have shown no association (Vaughn et al., 2000; Fox et al., 2011). This lack of conclusive evidence underscores the need for further research.

      Methods

      Comment #3: The authors highlight the possible discrepancies in comparing viral kinetics of two RT-PCR methods. Although it is not ideal to combine such results, the authors have analyzed them separately, providing valuable data.

      We appreciate your comment.

      Comment #4: Which tests were used to define the immune status as primary and secondary? What were the definitions?

      We have moved the definitions of probable primary and secondary infections from the supplementary file (Appendix 2) to the main text of the revised manuscript (Methods section – Plasma viremia measurement, dengue diagnostics, and clinical endpoints – page 6): “A probable primary infection was defined by two negative/equivocal IgG results on separate samples taken at least two days apart within the first ten days of symptom onset, with at least one sample during the convalescent phase (days 6-10). A probable secondary infection was defined by at least one positive IgG result during the first ten days. Cases without time-appropriate IgG results were classified as indeterminate.”

      Results

      Comment #5: It is interesting that DENV2 showed the slowest decline, but yet associated with overall lower viral loads during early illness and more severe disease outcomes. Could delayed clearance of the virus be associated with disease severity?

      We have expanded our analysis to investigate the relationship between the rate of viremia decline and clinical outcomes Utilizing a model of viremia kinetics with the assumption of a linear log-10 viremia decrease over time, we calculated the rate of decline for each patient. Our findings demonstrate that a faster rate of viremia decline is associated with a significantly reduced risk of severe clinical outcomes. We have incorporated this new analysis into the revised manuscript, providing further details in the “Statistical Analysis” section (page 7) and presenting the results on pages 15 and in Figure 6.

      Comment #6: Were there any differences in the kinetics of viral loads in children vs adults? I.e. children, young adults and older adults (>60 or 50?). Or were there insufficient numbers for this comparison?

      To address this point, we have modified the reported results of Figure 3-D by ages of 5, 10, 15, 25, and 50 years, represented children, adolescents, young adults, and older adults. Our analysis shows that viremia kinetics are largely similar across ages.

      Comment #7: Did any patients have comorbidities such as diabetes, obesity etc... if so, were there any differences in the viral loads?

      We appreciate your interest in the potential impact of comorbidities on viral loads. However, due to data limitations, we were unable to analyze this association. Only 6 patients had documented diabetes in the pooled dataset. In study C, 39 patients had obesity, whereas body mass index data is not available for studies A and B, although reports suggest a lower prevalence of obesity compared to study C.

      Comment #8: Were there any differences in the kinetics of the overall viral loads between DF/DHF/DSS or dengue with warning signs, without warning signs and severe dengue? Especially related to the time for viral clearance?

      Thank you for your suggestion. Such analysis reverses time and the causal direction, while we are more interested in looking forward. Therefore, instead of analyzing viremia kinetics based on disease severity, we have added an analysis to investigate the relationship between the rate of decline in viremia and clinical outcomes, as shown in the response to your comment #5. Results show that a more rapid rate of viremia decline is associated with a reduced risk of more severe clinical outcomes. In addition, in this study, we selected two clinical outcomes severe dengue and plasma leakage. The definitions are based on the WHO 2009 guidelines and standard endpoint definitions for dengue trials (Tomashek et al., 2018).

    1. Author response:

      The following is the authors’ response to the original reviews.

      We are thankful for the comments and suggestions from the Editor and Reviewers about our manuscript submitted to the eLife Journal. We have addressed all the comments, and we think these modifications will help bring clarity to our message and be helpful to your readership. Here we include an outline of the corrections performed, as well as a detailed response to each of the reviewer’s comments.

      As per the Editor and Reviewers suggestions, outline of corrections:

      ·        The title of the manuscript has been changed to reflect a more conservative conclusion.

      ·        Changes in the main manuscript text were made to enhance clarity, including the use genetic terminology and naming.

      ·        Specific responses to some comments from the reviewers are included in this document. We combined some comments that would be better addressed together.

      Accompanied to this letter is an updated version of our manuscript with the track changes feature enabled. Again, we are thankful of the comments and suggestions we received, and we hope this revised version of our manuscript will be accompanied by an updated assessment and public reviews and a final eLife Version of Record.

      Response to the public review and minor recommendations.

      From Reviewer #1:

      The major inference of the work is that SIV infection of gorillas drove the observed diversity in gorilla CD4. This is supported by the majority of SNPs being localized to the CD4 D1, which directly interacts with the envelope, and the demonstrated functional consequences of that diversity for viral entry. However, SIVgor (to the best of my knowledge) only infects Western lowland gorillas (Gorilla gorilla gorilla), and one Gorilla gorilla diehli and three Gorilla beringei graueri individuals were included in the haplotype and allele frequency analyses. The presence of these haplotypes or the presence of similar allele frequencies in Eastern lowland and mountain gorillas would impact this conclusion. It would be helpful for the authors to clarify this point.

      From Reviewer #1 (minor comment):

      Which subspecies of gorilla are the nsSNPs coming from? Gorilla gorilla diehli [n =1]; Gorilla beringei graueri [n = 3]) are not extant reservoirs of SIV and to my knowledge are not thought to have been, and so it's important to point out where the diversity is coming from if the authors are asserting that SIVgor drove this population-level diversity in gorilla CD4.

      We initially included genomic data from all the gorilla individuals available to maximize sensitivity to identify allelic variants. Although evidence points to eastern gorillas not being currently infected with SIV, our results show that all allelic variants identified have differential susceptibility to the HIV-1 and SIVcpz strains tested. The allelic variants we identified with this genomic data set match the variants identified by Russell et al (doi.org/10.1073/pnas.2025914118), including the ones found in eastern gorillas, and recapitulate that those variants have differential susceptibility to lentiviral entry, similar to the variants of western populations. Whether eastern gorillas have been exposed to lentiviruses in the past remains unknown.

      From Reviewer #1:

      The authors appear to use a somewhat atypical approach to assess intra-population selection to compensate for relatively small numbers of NHP sequences (Fig. 6). However, they do not cite precedence for the robustness of the approach or the practice of grouping sequences from multiple species for the endemic vs other comparison. They also state in the methods that some genes encoded in the locus were removed from the analysis "because they have previously been shown to directly interact with a viral protein." This seems to undercut the analysis and prevents alternative explanations for the observed diversity in CD4 (e.g., passenger mutations from selection at a neighboring locus).

      Given the nature of our samples, to detect any influence of natural selection acting on CD4, we chose to compare patterns of molecular evolution of CD4 to its neighboring loci. Comparisons of molecular evolution signatures across genomic regions are the basis of methods to detect positive selection (e.g., Sabeti DOI: 10.1038/nature01140). For our comparison, the neighboring loci represent our neutral standard for the genomic region CD4 resides. Our rationale is that demographic and neutral influences on the number and frequency of polymorphic sites in a region would equally affect all loci in a genomic region. Because these neighboring loci are our neutral benchmark, we excluded before analysis other genes in this genomic region that interact with viruses. The logic is that these loci may be evolving under the influence of positive selection and would decrease the power of our comparison. None of the excluded loci are direct neighbors to CD4. This, and given that the CD4 genomic region in humans is of average recombination rate, dampens the possibility that what we are observing at CD4 is due to selection acting at a neighboring locus. In addition, the classic population genetic method to detect positive selection, the McDonald-Kreitman test (McDonald DOI: 10.1038/351652a0), was originally presented combining polymorphism data across species. We assume that any effect on levels of diversity created by combining variability between species would equally affect all loci included in the study, not just CD4.

      From Reviewer #1:

      Data in Figure 5 is graphed as % infected cells instead of virus titer (TDU/mL). It's unclear why this is the case, and prevents a comparison to data in Figure 2 and Figure 4.

      From Reviewer #1 (minor comment):

      Figure 5: the data presentation is now shown as % infected cells instead of viral titer. This makes it difficult to compare data from Figure 5 to other figures. Can the authors please either justify this change, display data consistently or provide matched data displays as a Supplemental Figure?

      For the experiments presented in figures 2 and 4 we used different volumes of infecting pseudoviruses, which allowed us to identify the linear range of infection. Then, based on the number of cells plated per experimental replicate, we calculated a virus titer. In follow-up experiments (Fig. 5), we used fixed volumes of virus that would infect ~10-20% of control (wild-type; wt) CD4-expressing cells. Comparisons were then made between wt and mutated CD4s, and these data are best presented in their raw forms as percent cells infected.  Although this change in method prevents direct comparison between the figures, we focused on the differences observed between the experimental conditions per experimental panel.

      From Reviewer #1:

      The lack of pseudotyping with SIVgor envelope is a surprising omission from this study, that would help to contextualize the findings.

      From Reviewer #2 (minor comment):

      The inclusion of HIV-1 but not SIVgor strains in Figures 2D/E is somewhat conspicuous since chimpanzee alleles certainly differ in susceptibility to SIVcpz (and SIVgor) strains per Russell et al. 2021. The authors should either test some SIVgor infections, cite published data on at least extant human/chimpanzee/gorilla CD4 susceptibility to SIVgor, or address why they did not include it.

      We agree the data of host susceptibility to SIVgor strains would have been an interesting question to explore. However, we opted to focus on the transmission of SIVcpz strains into gorilla populations for this study. It is worth mentioning that we have cloned SIVgor envelope genes from some strains into our expression system, but we were unable to recover infectious pseudoviruses using an HIV-1DEnv-GFP backbone. This suggests that HIV-1 may be incompatible with incorporating SIVgor Env into virus particles. Recently, Russell et al (DOI: 10.1073/pnas.2025914118) managed to generate SIVgor Env pseudotyped virions using a different backbone (SIVcpzDEnv-GFP) that was unavailable to us at the time of this study.

      From Reviewer #1:

      Similarly, building gorilla CD4 haplotype SNPs onto the hominin ancestor (as opposed to extant human CD4) may provide additional insights that are meaningful toward understanding the evolutionary trajectory of gorilla CD4.

      We decided to use the extant human CD4 as a backbone to test the effects on the individual amino acid variants found in the allelic diversity of the gorilla population since the human protein is highly susceptible to all the HIV-1 and SIV strains tested, and the expected phenotype is a loss-of-function. Since the D1 of the human and ancestral sequences for CD4 are almost identical (except for a change that is fixed in gorillas), and they showed similar levels of susceptibility to lentivirus entry, we expect that the phenotypes found would be the same if the gorilla SNPs were built into the ancestral CD4 backbone.

      From Reviewer #2:

      To bolster the argument that lentiviruses are indeed the causative driver of this diversification, which seems likely from a logical perspective but is difficult to prove, Warren et al. pursue two novel lines of evidence. First, the authors reconstruct ancestral CD4 genes that predate lentiviral infection of hominid populations. They then demonstrate that resistance to lentiviral infection is a derived trait in chimpanzees and gorillas, which have been co-evolving with endemic lentiviruses, but not in humans, which only recently acquired HIV. Nevertheless, the derived resistance could be stochastic or due to drift. This argument would be strengthened by demonstrating that bonobo and orangutan CD4, which also do not have endemic lentiviruses, resemble the ancestral and human susceptibility to great-ape-infecting lentiviruses.

      From Reviewer #2 (minor comment):

      The data presented in Figure 2, showing that chimp and gorilla (but not human) CD4 resistance to lentiviral infection is a derived trait, is very intriguing for suggesting that endemic lentiviruses are the causative driver of CD4 evolution. Nevertheless, this could be stochastic or due to genetic drift. Given the later emphasis on several other non-endemically infected species, the authors should at the very least include the sequences for bonobo and orangutan CD4 in the presented alignment (Fig 2B). Ideally, they would also test these orthologs to demonstrate that they are not resistant to lentiviruses infecting great apes (SIVcpz / HIV-1 / SIVgor). If they have also derived resistance, this would suggest a possible other evolutionary driver or genetic drift.

      Based on our analysis on polymorphic sites using available data from populations of apes, we strongly believe the accumulation of resistant polymorphisms in CD4 did not arise in a stochastic manner. The frequency and accumulation of these changes strongly correlate with the function of CD4 as a receptor for lentivirus entry. We agree that experimentally testing the CD4 protein from bonobo and orangutan would strengthen our conclusions; however, based on our genomic analyses, we decided to focus on the species that would present a higher level of variability of susceptibility to the lentivirus tested, namely gorillas and chimpanzees.

      From Reviewer #2:

      Warren et al. provide a population genetic argument that only endemically infected primates exhibit diversifying selection, again arguing for endemic lentiviruses being the evolutionary driver. The authors compare SNP occurrence in CD4 to neighboring genes, demonstrating that non-synonymous SNP frequency is only elevated in endemically infected species. Moreover, these amino-acid-coding changes are significantly concentrated in the CD4 domain that binds the lentiviral envelope. This is a creative analysis to overcome the problem of very small sample sizes, with very few great ape individuals sequenced. The additional small number of species compared (2-3 in each group) also limits the power of the analysis; the authors could consider expanding their analysis to Old World Monkey species that do or do not have endemic lentiviruses, as well as great apes.

      The scope of this project was to evaluate the differential phenotype of the accumulated polymorphisms found in the ape branch of the primates. Although evaluating the accumulation of polymorphisms in a broader range of primates would generate interesting observations, this would likely require increasing the total number of primate species to include sampling along the speciation tree, many of which lack population level data.

      From Reviewer #1 (minor comment):

      Ancestral reconstruction methods and associated data tables should be included to indicate statistical support for assigned codons. A comment on ambiguity at relevant positions is needed. Similarly, given the polymorphic nature of gorilla and chimpanzee CD4, how confident are the authors in their ancestral reconstructions based on a single representative genome per species? Does this change when you include the broader panel of gorilla sequences? Is the ancestral reconstruction robust to other methods besides PAML?

      We used the PAML software package to reconstruct the ancestral hominin and hominid sequence of CD4 because it is a standard and well recognized method for this purpose. For this analysis, we used the set of primate sequences selected for positive selection analyses (see methods), namely the longest isoform sequences for each of the available species that best aligned with human CD4. We feel that the best way to perform to the ancestral state reconstruction was to use only these curated sequences instead of the population level sequences, removing potential biases introduced by having different numbers of variants per species. 

      From Reviewer #1 (minor comment):

      Page 10: "It seems that allele 2, which doesn't have this glycan, would be at a fitness disadvantage. In support of this, allele 2 is one of the least frequent alleles in the gorilla population that we surveyed (Figure 3B)." - this inference depends on the gorilla species that encode allele 2 and allele frequencies. There are statistical tests to address this inference.

      Population genetic statistics that test for skews in sample allele frequencies are not appropriate here due to the nature of the samples in this study. However, the reviewer is correct that our inference in allele frequency is dependent on the gorilla species that we find this allele in. Allele 2 is found in the Gorilla beringei graueri subspecies of gorilla included in this study.  We only have data for three individuals (six alleles) from this subspecies compared to 51 individual (102 alleles) from Gorilla gorilla gorilla. As such, genetic subdivision between the gorilla subspecies could also produce the low frequency of allele 2 observed in our sample.

      From Reviewer #1 (minor comment):

      Page 11: "These results imply that the resistance to SIVcpz found in gorilla individuals is not dependent on single amino acids, but rather the cumulative effect of multiple SNPs." Would it be more relevant (or relevant in other ways) to test this statement by putting those mutations into the hominid ancestor? Testing individual residues in the context of human CD4 may be subject to epistasis or several other factors.

      We agree that constructing multiple of the resistant SNPs in the susceptible human background would have strengthened our hypothesis, as all these amino acid changes are associated with increased resistance to at least one of the lentiviruses tested. However, the number of CD4 variants to test would increase significantly and we feel that this approach was out of the scope of this manuscript.

      From Reviewer #1 (minor comment):

      Figure 6: If you perform this analysis on chimpanzee CD4 alone do you get the same result? Just gorillas? If you remove eastern/mountain gorillas? The very small numbers of non-human non-SIV-reservoir great apes may preclude a strong conclusion.

      We agree that our study is limited by the small number of available sequences from individuals of the studied species. If we remove a whole species or subspecies the statistical power would be greatly reduced. Removing all chimpanzees or gorillas (or a subspecies) would still show that only each of those species accumulate SNPs in the D1 region of CD4, although with less statistical significance.

      From Reviewer #2 (minor comment):

      Related to Figure 2: It would strengthen the argument that resistance is a derived trait if the authors mapped the causative mutations from gorilla CD4 onto the ancestral hominin CD4. However, this experiment is not particularly critical, merely a suggestion.

      We appreciate this suggestion. We decided to use the human CD4 backbone as it is widely susceptible to lentiviral entry. The hominid and hominin ancestral sequences are almost identical to the human sequence in domain 1, except for a fixed mutation shared with the gorilla CD4. We expect that the SNPs observed in the gorilla population would also reduce susceptibility to lentivirus entry in the ancestral CD4 reconstructions.

      From Reviewer #2 (minor comment):

      Related to Figure 3B: It is difficult to make much of the allele frequency for 8 alleles in 32 individuals. Can the authors collate this with allele frequency for the referenced 100 individuals from Russell et al. 2021, to give a better sense of population frequency? This may allow the authors to better correlate allele frequency with SIVcpz resistance patterns in Figure 4, strengthening their argument that more resistant alleles should be over-represented in the population.

      At the time of our analysis the data from Russell (DOI: 10.1073/pnas.2025914118) was not available to collate or compare. When that data became available, we immediately compared the existence of the alleles found and confirmed that the ones we found were also detected in the samples used in that study.

      From Reviewer #2 (minor comment):

      Related to Figure 6: As written, several methodological details should be clarified. How were human genomes selected to limit the sample size to 50?

      We selected a total of 50 human individuals in order to size-match the sample size of the largest group in Fig 6B (chimpanzee, n=50). We randomly selected 10 individuals for each of the 5 superpopulations [Africans (AFR), Admixed Americans (AMR), East Asians (EAS), Europeans (EUR) and South Asians (SAS)] defined by the 1000 Genome Project.

      From Reviewer #2 (minor comment):

      Related to Figure 6: What comparison is being reported for the Mann-Whitney U test (CD4 vs. which gene)? Are the means shown in A an average of 2 (endemic) or 3 (non-endemic) species - if so, the authors should show the individual data points to give a clearer depiction of the data spread. In addition, it is not clear that a statistical test with sample sizes of 2 is meaningful, since Mann Whitney typically assumes n > 5. To strengthen this statistical argument, it may be necessary to include additional species that have (a) multiple genomes (or at least this locus) sequenced, and (b) have or lack lentiviral sequences. This may necessitate expanding the analysis to include Old World Monkeys (e.g. Rhesus Macaque Genome Project).

      In the Figure 6 we use the Mann-Whitney U test to compare variation between CD4 and the neighboring loci. The average and SEM are for two endemic and four non-endemic species (two orangutan datasets are from two distinct species vs the gorilla subspecies). It is true our sample size is small for any statistical testing. For the Mann-Whitney U-test it is generally preferred to have n > 5 in each group. So, we do run into problems with the endemically infected comparisons as we only have two data points (chimpanzee and gorilla) for the CD4 group. For the uninfected species, CD4 has four data points.

      From Reviewer #1 (minor comment):

      Page 6. "This suggests that the ancestral versions of CD4 in apes were susceptible to primate lentivirus entry" - The data show that tested virus pseudotyped with SIV/HIV envs can engage ancestral CD4 in the context of a canine cell line expressing human CCR5, but not necessarily that this interaction was sufficient for the process of entry per se, especially in the context of a gorilla (or hominid) cell. Some additional context would be useful for a broad readership.

      From Reviewer #1 (minor comment):

      Page 6: "but that selective pressures exerted by SIVs in the chimpanzee and gorilla lineages have led to the retention of mutations that confer resistance to primate lentivirus infection. This has not happened in humans where selective pressure by HIV-1 is too new" - this cannot be concluded from the data in Figure 1. It would be more appropriate as a Discussion point.

      From Reviewer #1 (minor comment):

      Page 14: "Natural tolerance is often required before a virus can establish itself long term in a host reservoir, and thus understanding it is key to understanding virus reservoirs in nature" - please provide a reference. This is one among several theories of long-term host-virus evolution dynamics/outcomes, and further discussion may benefit the broad readership of eLife.

      From Reviewer #1 (minor comment):

      Page 15: "There is a surprising outcome of virus-driven host evolution in that the divergence and diversity of these host genes ultimately comes at a detriment to the very viruses that drove this evolution." - it is not clear to this reviewer why this is surprising.

      From Reviewer #2 (minor comment):

      Related to Figure 5A: The authors suggest that the gorilla glycosylation site provides resistance to SIVcpz, based on TAN1.910, but in fact the glycosylated allele is no more resistant than the un-glycosylated allele to most SIVcpz strains (in Figure 4). The authors should acknowledge this more clearly in the text.

      From Reviewer #2 (minor comment):

      The title of this article (that infection "has driven selection") is somewhat overstated - though it seems very likely that lentiviruses are driving CD4 diversification, this is difficult to prove. The arguments presented here rely on very few data points: modern chimp and gorilla compared to ancestral CD4, and a population genetic analysis relying on 2 or 3 species with 10-50 individuals each. The authors should either bolster these arguments (see the above suggestions) and/or soften the claim in the title.

      Modifications to the main text of the manuscript have been made to enhance clarity on the subjects stated above.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We provide below a point-by-point reply to the Reviewers, and hope that our new manuscript will now meet the Reviewers’ concerns and the requirements for publication in eLife. 

      In summary, we have performed a new set of mouse humanization experiments using a new cohort of 4 additional HLA-DRB1*15-typed MS patients as donors, all presenting with highly active disease and under treatment with natalizumab. The new experiments aim to strengthen and further extend the findings of the original paper that HLA restriction rather than disease status plays an important role in the development of CNS inflammation. Additionally, we performed EAE using a revised protocol using lower amounts of peptide antigens to reduce the possibility of immune tolerance. Indeed, our original observations were further enriched with the finding that immunization increases infiltration of the CNS by human CD4 T cells, a finding consistent with EAE pathology, and that these human CD4 T cells co-localize with human CD8 T cells in the brain lesions. Further, we provide more detailed information concerning the EBV infection status of the PBMC donors used for humanization and find some first indications of relationships between the B cell engraftment in humanized mice, EBV status  of the donors and the development of brain lesions that might stimulate further investigation in future studies.   

      Point-by-point reply to reviewers:

      Reviewer 1:

      We thank Reviewer 1 for their valuable comments, and for their support of the overall approach as a model system. We have addressed the comments by providing additional requested information, as well as performing a EAE with a revised protocol, as suggested. We believe the new results significantly upgrades the information gained from this study.

      (1) Throughout their paper, the authors never quantify the difference in CD4 vs CD8 T cell infiltration into the CNS. While repeatedly claiming that there are fewer CD4 T cells present than CD8 T cells within the CNS, this data is not included. Further, spinal cord numbers of CD4 and CD8 are not provided in lieu of CD3 T cell characterization.

      Reply: We have now included quantitative data for the differences in CD4 vs CD8 T cells in the brain and spinal cord of non-immunized and EAE immunized mice. Thus, in brain (Fig. 2E) and spinal cord (Fig. 3D) of non-immunized mice, and brain (Fig. 4D, E, L) and spinal cord (Fig. 5D) of immunized mice we show data for numbers of hCD8 and hCD4 T cells, and ratios of CD4 to CD8 in at borders and parenchyma. Notably, using a revised EAE protocol in the second set of experiments, we observed a marked increase in hCD4 T cell infiltration at the CNS borders and parenchyma, an observation consistent with successful EAE immunization.

      B cells don't make up any significant component of the cells transferred from HLA-DR15 donors. While the cells transferred from the HLA-DR13 donor are composed of a considerable number of B cells, the mice that received these cells didn't develop any signs of neurologic disease.

      In the second experiment using new DR15 MS donors, we observed significant B cell engraftment also in several groups of DR15 MS mice. With the additional groups of mice, we were able to see a relationship between B cell engraftment in DR13 and DR15 MS mice with indicators of recent or ongoing reactivation of EBV. This is an interesting preliminary observation that might be tested in future larger studies. 

      (2) Incomplete exploration of potential experimental autoimmune encephalomyelitis (EAE) modeling. Comparison of the susceptibility of B2m-NOG mice to EAE dependent on various peptide doses would be highly informative. Given that the number of hCD45+ in the periphery of NOG mice decreases following this immunization it would be prudent for the authors to determine if such a high peptide dose is truly ideal for EAE development in this mouse model.

      Reply: We thank the reviewer for this critical comment. In the second group of experiments (DR15 MS2-5), we revised the EAE protocol to use lower amounts of peptides in a single immunization, thereby greatly reducing the exposure of human T cells to antigen and risk of tolerance/anergy. This resulted in (i), by-pass of the reduction in proportions of peripheral hCD45 cells following immunization in the peripheral blood (Fig. 1A), and (ii), increased numbers of hCD4 T cells and hCD4/hCD8 T cell ratios at the borders and infiltrating the parenchyma of brain (Fig. 4D,E) and spinal cord (Fig. 5D). 

      (3) The degree of myelin injury is not presented. The statement is repeatedly made that "demyelination was not observed in the brain or spinal cord" but no quantification of myelin staining is shown.  

      Reply: The reviewer refers to a pivotal feature (and limitation) of this particular humanized model. Despite significant T cell infiltration of white and grey matter regions of brain and spinal cord, there is no detectable demyelination. This has also been reported by in independent study using a similar humanized system (Zayoud et al., 2013). We have supplemented the figures with photomicrographs showing the presence of unperturbed myelin in the corpus callosum white T cell lesions (Fig. 4F, inset stained with Luxol fast blue), and a confocal micrograph in the same region double-immunostained for hCD45 immune cells and MBP (Fig. 4G). 

      Minor points:

      Method of quantification (e.g. cells per brain slice in figures 2E; 4E) is not very quantitative and should be justified or more appropriately updated to be more rigorous in methodology.

      Reply: In the new figures, we have changed the method of quantification of brain parenchyma infiltrating cells from per brain slice, to cells per tissue area mm2 (Fig. 2D, Fig. 4D).

      Fig. 4 data should be shown from un-immunized DR15 MS and DR15 HI mice.

      Reply: We now include the quantitative data from un-immunized mice compared to immunized mice in all groups (Fig. 4 C-E). 

      Reviewer 2:

      We thank Reviewer 2 for their very pertinent comments and overall for highlighting the importance of humanized mice as an approach for further understanding the pathobiology of MS. We also thank this reviewer for their positive comments concerning the study design, specifically the use of fresh PBMC isolated from HLADRB1-typed MS individuals and healthy control. The reviewer highlights 4 major weaknesses of the study that we have tried to address in order to increase the value of the study.

      (i) Lack of sufficient sample size (n=1 in each group) to make any conclusion.

      Reply: We have increased the sample size for the DR15 MS group from n=1 to n=5 by generating new humanized mice using PBMC freshly isolated from additional MS donors, all HLA-DRB1*5 with active RRMS and under treatment with natalizumab. Here we were able to maximize on our excellent collaboration with neurologists at the neighboring University Hospital, which runs a large organized MS outpatient clinic, with HLADRB1-typed MS individuals that are closely monitored over the course of their disease and therapy. In this way, we were able to address the engraftment success of human immune cells and variability in CNS lesion development across mice generated from 5 different DR15 MS patients. We also monitored markers for EBV activation status in all the patients used for mouse humanization in this study. 

      (ii) Lack of phenotype in mice.

      Reply: As already described in the results and address in the discussion, the B2m-NOG immunodeficient mouse strain used here is a state-of-the-art experimental tool for humanization studies, but unfortunately fails to support engraftment by human monocytes. We and previous groups (Zayoud et al., 2013) show that CNS lesions in humanized mice contain high numbers of hCD4 and CD8 T cells, accompanied by locally activated murine microglia and astrocytes, but lack human monocytes. The humanized mice contain large proportions of immature mouse CD11b+Ly6Chi monocytes in the periphery (Suppl. Table 4) but these cells are not recruited into the CNS in non-immunized or immunized humanized mice, potentially due to incompatible chemokine signals across mouse/human. The absence of human monocyte engraftment in this model is the most likely reason that lesions do not demyelinate and this limitation of the currently available host mouse strains is one that needs to be addressed before full modelling of CNS demyelination by human immune cells can be achieved.

      (iii) No disease phenotype even in humanized mice immunized for disease using standard disease induction protocol employed in an animal model of MS.

      Reply: As described above, following the suggestion of reviewer 1 (point 2) we revised the EAE protocol to use lower amounts of peptides given as a single immunization. This resulted in increased numbers of hCD4 T cells and the hCD4/hCD8 T cell ratios at the borders and infiltrating the parenchyma of brain ((Fig. 1E, Fig. 2D) and spinal cord (Fig. 5D), all indicative of a successful EAE immunization. Although immunized mice showed lesions with mixed populations of hCD4 and hCD8 T cells, demyelination and therefore clinical symptoms were again not observed. As outlined in (ii) above, successful human monocyte engraftment would be fundamental for the development of demyelination and clinical symptoms in PBMC humanized mice, and new immunodeficient animal strains should be developed to achieve this.  

      (iv) Mechanistic data on why CD8 T cells are more enriched than CD4+ T cells.

      Reply: The question of why hCD8 T cells are more enriched in the CNS than hCD4 cells is answered at least in part by the results from our new EAE experiments, which clearly show that immunization increases CNS infiltration by hCD4 T cells versus hCD8 T cells. In general, EAE protocols are designed to activate antigen-specific CD4 T cells and this is verified in the CNS of immunized humanized mice, where hCD4 T cells infiltrate to join hCD8T cells in lesion areas. The predilection of hCD8 T cells for CNS is obvious in non-immunized humanized mice, especially in the parenchyma (see Fig. 2E) and MS patients, while hCD4 infiltration becomes important after EAE immunization. The humanized model system might therefore represent a unique tool for studying mechanisms underlying preferential hCD8 T cell involvement in MS neuroinflammaton, a system that is not accurately modelled in current EAE models. As this reviewer correctly points out, this is very important point as postmortem MS patients’ brains have more CD8 T cells than CD4 T cells.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents a valuable insight into a computational mechanism of pain perception. The evidence supporting the authors’ claims is solid, although the inclusion of 1) more diverse candidate computational models, 2) more systematic analysis of the temporal regularity effects on the model fit, and 3) tests on clinical samples would have strengthened the study. The work will be of interest to pain researchers working on computational models and cognitive mechanisms of pain in a Bayesian framework.

      Thank you very much again for considering the manuscript and judging it as a valuable contribution to understanding mechanisms of pain perception. We recognise the above-mentioned points of improvement and elaborate on them in the initial response to the reviewers.

      Response to the reviewers

      Reviewer 1:

      Reviewer Comment 1.1 — Selection of candidate computational models: While the paper juxtaposes the simple model-free RL model against a Kalman Filter model in the context of pain perception, the rationale behind this choice remains ambiguous. It prompts the question: could other RL-based models, such as model-based RL or hierarchical RL, offer additional insights? A more detailed explanation of their computational model selection would provide greater clarity and depth to the study.

      Initial reply: Thank you for this point. Our models were selected a-priori, following the modelling strategy from Jepma et al. (2018) and hence considered the same set of core models for clear extension of the analysis to our non-cue paradigm. The key question for us was whether expectations were used to weight the behavioural estimates, so our main interest was to compare expectation vs non-expectation weighted models.

      Model-based and hierarchical RL are very broad terms that can be used to refer to many different models, and we are not clear about which specific models the reviewer is referring to. Our Bayesian models are generative models, i.e. they learn the generative statistics of the environment (which is characterised by inherent stochasticity and volatility) and hence operate model-based analyses of the stimulus dynamics. In our case, this happened hierarchically and it was combined with a simple RL rule.

      Revised reply: We clarified our modelling choices in the ”Modelling strategy” subsection of the results section.

      Reviewer Comment 1.2 — Effects of varying levels of volatility and stochasticity: The study commendably integrates varying levels of volatility and stochasticity into its experimental design. However, the depth of analysis concerning the effects of these variables on model fit appears shallow. A looming concern is whether the superior performance of the expectation-weighted Kalman Filter model might be a natural outcome of the experimental design. While the non-significant difference between eKF and eRL for the high stochasticity condition somewhat alleviates this concern, it raises another query: Would a more granular analysis of volatility and stochasticity effects reveal fine-grained model fit patterns?

      Initial reply: We are sorry that the reviewer finds shallow ”the depth of analysis concerning the effects of these variables on model fit”. We are not sure which analysis the reviewer has in mind when suggesting a ”more granular analysis of volatility and stochasticity effects” to ”reveal fine-grained model fit patterns”. Therefore, we find it difficult to improve our manuscript in this regard. We are happy to add analyses to our paper but we would be greatful for some specific pointers. We have already provided:

      •    Analysis of model-naive performance across different levels of stochasticity and volatility (section 2.3, figure 3, supplementary information section 1.1 and tables S1-2)

      •    Model fitting for each stochasticity/volatility condition (section 2.4.1, figure 4, supplementary table S5)

      •    Group-level and individual-level differences of each model parameter across stochasticity/volatility conditions (supplementary information section 7, figures S4-S5).

      •    Effect of confidence on scaling factor for each stochasticity/volatility condition (figure 5)

      Reviewer Comment 1.3 — Rating instruction: According to Fig. 1A, participants were prompted to rate their responses to the question, ”How much pain DID you just feel?” and to specify their confidence level regarding their pain. It is difficult for me to understand the meaning of confidence in this context, given that they were asked to report their *subjective* feelings. It might have been better to query participants about perceived stimulus intensity levels. This perspective is seemingly echoed in lines 100-101, ”the primary aim of the experiment was to determine whether the expectations participants hold about the sequence inform their perceptual beliefs about the intensity of the stimuli.”

      Initial reply: Thank you for raising this question, which allows us to clarify our paradigm. On half of the trials, participants were asked to report the perceived intensity of the previous stimulus; on the remaining trials, participants were requested to predict the intensity of the next stimulus. Therefore, we did query ”participants about perceived stimulus intensity levels”, as described at lines 49-55, 296-303, and depicted in figure 1.

      The confidence refers to the level of confidence that participants have regarding their rating - how sure they are. This is done in addition to their perceived stimulus intensity and it has been used in a large body of previous studies in any sensory modality.

      Reviewer Comment 1.4 — Relevance to clinical pain: While the authors underscore the relevance of their findings to chronic pain, they did not include data pertaining to clinical pain. Notably, their initial preprint seemed to encompass data from a clinical sample (https://www.medrxiv.org /content/10.1101/2023.03.23.23287656v1), which, for reasons unexplained, has been omitted in the current version. Clarification on this discrepancy would be instrumental in discerning the true relevance of the study’s findings to clinical pain scenarios.

      Initial reply: The preprint that the Reviewer is referring to was an older version of the manuscript in which we combined two different experiments, which were initially born as separate studies: the one that we submitted to eLife (done in the lab, with noxious stimuli in healthy participants) and an online study with a different statistical learning paradigm (without noxious stimuli, in chronic back pain participants). Unfortunately, the paradigms were different and not directly comparable. Indeed, following submission to a different journal, the manuscript was criticised for this reason. We therefore split the paper in two, and submitted the first study to eLife. We are now planning to perform the same lab-based experiment with noxious stimuli on chronic back pain participants. Progress on this front has been slowed down by the fact that I (Flavia Mancini) am on maternity leave, but it remains top priority once back to work.

      Reviewer Comment 1.5 — Paper organization: The paper’s organization appears a little bit weird, possibly due to the removal of significant content from their initial preprint. Sections 2.12.2 and 2.4 seem more suitable for the Methods section, while 2.3 and 2.4.1 are the only parts that present results. In addition, enhancing clarity through graphical diagrams, especially for the experimental design and computational models, would be quite beneficial. A reference point could be Fig. 1 and Fig. 5 from Jepma et al. (2018), which similarly explored RL and KF models.

      Initial reply: Thank you for these suggestions. We will consider restructuring the paper in the revised version.

      Revised reply: We restructured introduction, results and parts of the methods. We followed the reviewer’s suggestion regarding enhancing clarity through graphical diagrams. We have visualised the experimental design in Figure 1D. Furthemore, we have visualised the two main computational models (eRL and eKF) in Figure 2, following from Jepma et al. (2018). As a result, we have updated the notation in Section 4.4 to be clearer and consistent with the graphical representation (rename the variable referring to observed thermal input from Ot to Nt).

      Reviewer Comment 1.6 — In lines 99-100, the statement ”following the work by [23]” would be more helpful if it included a concise summary of the main concepts from the referenced work.

      - It would be helpful to have descriptions of the conditions that Figure 1C is elaborating on.

      - In line 364, the ”N {t}” in the sentence ”The observation on trial t, N {t}”, should be O {t}.

      Initial reply: Thank you for spotting these and for providing the suggestions. We will include the correction in the revised version.

      Revised reply: We have added the following regarding the lines 99-100:

      ”We build on the work by [23], who show that pain perception is strongly influenced by expectations as defined by a cue that predicts high or low pain. In contrast to the cue-paradigm from [23], the primary aim of our experiment was to determine whether the expectations participants hold about the sequence itself inform their perceptual beliefs about the intensity of the stimuli.”

      See comment in the previous reply, regarding the notation change from Ot to Nt.

      Reviewer 2:

      Reviewer Comment 2.1 — This is a highly interesting and novel finding with potential implications for the understanding and treatment of chronic pain where pain regulation is deficient. The paradigm is clear, the analysis is state-of-the-art, the results are convincing, and the interpretation is adequate.

      Initial reply: Thank you very much for these positive comments.

      Reviewer 3:

      Summary:

      I am pleased to have had the opportunity to review this manuscript, which investigated the role of statistical learning in the modulation of pain perception. In short, the study showed that statistical aspects of temperature sequences, with respect to specific manipulations of stochasticity (i.e., randomness of a sequence) and volatility (i.e., speed at which a sequence unfolded) influenced pain perception. Computational modelling of perceptual variables (i.e., multi-dimensional ratings of perceived or predicted stimuli) indicated that models of perception weighted by expectations were the best explanation for the data. My comments below are not intended to undermine or question the quality of this research. Rather, they are offered with the intention of enhancing what is already a significant contribution to the pain neuroscience field. Below, I highlight the strengths and weaknesses of the manuscript and offer suggestions for incorporating additional methodological details.

      Strengths:

      The manuscript is articulate, coherent, and skilfully written, making it accessible and engaging.

      - The innovative stimulation paradigm enables the exploration of expectancy effects on perception without depending on external cues, lending a unique angle to the research.

      - By including participants’ ratings of both perceptual aspects and their confidence in what they perceived or predicted, the study provides an additional layer of information to the understanding of perceptual decision-making. This information was thoughtfully incorporated into the modelling, enabling the investigation of how confidence influences learning.

      - The computational modelling techniques utilised here are methodologically robust. I commend the authors for their attention to model and parameter recovery, a facet often neglected in previous computational neuroscience studies.

      - The well-chosen citations not only reflect a clear grasp of the current research landscape but also contribute thoughtfully to ongoing discussions within the field of pain neuroscience.

      Initial reply: We are really grateful for reviewer’s insightful comments and for providing useful guidance regarding our methodology. We are also thankful for highlighting the strengths of our manuscript. Below we respond to individual weakness mentioned in the reviews report.

      Reviewer Comment 3.1 — In Figure 1, panel C, the authors illustrate the stimulation intensity, perceived intensity, and prediction intensity on the same scale, facilitating a more direct comparison. It appears that the stimulation intensity has been mathematically transformed to fit a scale from 0 to 100, aligning it with the intensity ratings corresponding to either past or future stimuli. Given that the pain threshold is specifically marked at 50 on this scale, one could logically infer that all ratings falling below this value should be deemed non-painful. However, I find myself uncertain about this interpretation, especially in relation to the term ”arbitrary units” used in the figure. I would greatly appreciate clarification on how to accurately interpret these units, as well as an explanation of the relationship between these values and the definition of pain threshold in this experiment.

      Initial reply: Indeed, as detailed in the Methods section 4.3, the stimulation intensity was originally transformed from the 1-13 scale to 0-100 scale to match the scales in the participant response screens.

      Following the method used to establish the pain threshold, we set the stimulus intensity of 7 as the threshold on the original 1-13 scale. However, during the rating part of the experiment, several of the participants never or very rarely selected a value above 50 (their individually defined pain threshold), despite previously indicating a moment during pain threshold procedure when a stimulus becomes painful. This then results in the re-scaled intensity values as well the perception rating, both on the same 0-100 scale of arbitrary units, to never go above the pain threshold. Please see all participant ratings and inputs in the Figure below. We see that it would be more illustrative to re-plot Figure 1 with a different exemplary participant, whose ratings go above the pain threshold, perhaps with an input intensity on the 1-13 scale on the additional right-hand-side y-axis. We will add this in the revised version as well as highlight the fact above.

      Importantly, while values below 50 are deemed non-painful by participants, the thermal stimulation still activates C-fibres involved in nociception, and we would argue that the modelling framework and analysis still applies in this case.

      Revised reply: We re-plotted Figure 1E-F with a different exemplary participant, whose rating go above the pain threshold. We also included all participant pain perception and prediction ratings, noxious input sequences and confidence ratings in the supplement in Figures S1-S3.

      Reviewer Comment 3.2 — The method of generating fluctuations in stimulation temperatures, along with the handling of perceptual uncertainty in modelling, requires further elucidation. The current models appear to presume that participants perceive each stimulus accurately, introducing noise only at the response stage. This assumption may fail to capture the inherent uncertainty in the perception of each stimulus intensity, especially when differences in consecutive temperatures are as minimal as 1°C.

      Initial reply: We agree with the reviewer that there are multiple sources of uncertainty involved in the process of rating the intensity of thermal stimuli - including the perception uncertainty. In order to include an account of inaccurate perception, one would have to consider different sources that contribute to this, which there may be many. In our approach, we consider one, which is captured in the expectation weighted model, more clearly exemplified in the expectation-weighted Kalman-Filter model (eKF). The model assumes participants perception of input as an imperfect indicator of the true level of pain. In this case, it turns out that perception is corrupted as a result of the expectation participants hold about the upcoming stimuli. The extent of this effect is partly governed by a subjective level of noise ϵ, which may also subsume other sources of uncertainty beyond the expectation effect. Moreover, the response noise ξ, could also subsume any other unexplained sources of noise.

      Author response image 1.

      Stimulis intensity transformation

      Revised reply: We clarified our modelling choices in the ”2.2 Modelling strategy” subsection.

      Reviewer Comment 3.3 — A key conclusion drawn is that eKF is a better model than eRL. However, a closer examination of the results reveals that the two models behave very similarly, and it is not clear that they can be readily distinguished based on model recovery and model comparison results.

      Initial reply: While, the eKF appears to rank higher than the eRL in terms of LOOIC and sigma effects, we don’t wish to make make sweeping statements regarding significance of differences between eRL and eKF, but merely point to the trend in the data. We shall make this clearer in the revised version of the manuscript. However, the most important result is that the models involving expectation-weighing are arguably better capturing the data.

      Revised reply: We elaborated on the significance statements in the ”Modelling Results” subsection:

      • We considered at least a 2 sigma effect as indication of a significant difference. In each condition, the expectation weighted models (eKF and eRL) provided better fit than models without this element (KF and RL; approx. 2-4 sigma difference, as reported in Figure 5A-D). This suggests that regardless of the levels of volatility and stochasticity, participants still weigh perception of the stimuli with their expectation.

      and in the first paragraph of the Discussion:

      • When varying different levels of inherent uncertainty in the sequences of stimuli (stochasticity and volatility), the expectation and confidence weighted models fitted the data better than models weighted for confidence but not for expectations (Figure 5A-D). The expectation-weighted bayesian (KF) model offered a better fit than the expectation-weighted, model-free RL model, although in conditions of high stochasticity this difference was short of significance. Overall, this suggests that participants’ expectations play a significant role in the perception of sequences of noxious stimuli.

      We are aware of the limitations and lack of clear guidance regarding using sigma effects to establish significance (as per reviewer’s suggestion: https://discourse.mc-stan.org/t/loo-comparison-in-referenceto-standard-error/4009). Here we decided to use the above-mentioned threshold of 2-sigma as an indication of significance, but note the potential limitations of the inferences - especially when distinguishing between eRL/eKF models.

      Reviewer Comment 3.4 — Regarding model recovery, the distinction between the eKF and eRL models seems blurred. When the simulation is based on the eKF, there is no ability to distinguish whether either eKF or eRL is better. When the simulation is based on the eRL, the eRL appears to be the best model, but the difference with eKF is small. This raises a few more questions. What is the range of the parameters used for the simulations?

      Initial reply: We agree that the distinction between eKF and eRL in the model recovery is not that clean-cut, which may in turn point to the similarity between the two models. To simulate the data for the model and parameter recovery analysis, we used the group means and variances estimated on the participant data to sample individual parameter values.

      Reviewer Comment 3.5 — Is it possible that either eRL or eKF are best when different parameters are simulated? Additionally, increasing the number of simulations to at least 100 could provide more convincing model recovery results.

      Initial reply: It could be a possibility, but would require further investigation and comparison of fits for different bins/ranges of parameters to see if there is any consistent advantage of one model over another is each bin. We will consider adding this analysis, and provide an additional 50 simulations to paint a more convincing picture.

      Revised reply: We increased the number of simulations per model pair to ≈ 100 (after rejecting fits based on diagnostics criteria - E-BFMI and divergent transitions) and updated the confusion matrix (Table S4). Although the confusion between eRL and eKF remains, the model recovery shows good distinction between expectation weighted vs non-expectation weighted (and Random) models, which supports our main conclusion in the paper.

      Reviewer Comment 3.6 — Regarding model comparison, the authors reported that ”the expectation-weighted KF model offered a better fit than the eRL, although in conditions of high stochasticity, this difference was short of significance against the eRL model.” This interpretation is based on a significance test that hinges on the ratio between the ELPD and the surrounding standard error (SE). Unfortunately, there’s no agreed-upon threshold of SEs that determines significance, but a general guideline is to consider ”several SEs,” with a higher number typically viewed as more robust. However, the text lacks clarity regarding the specific number of SEs applied in this test. At a cursory glance, it appears that the authors may have employed 2 SEs in their interpretation, while only depicting 1 SE in Figure 4.

      Initial reply: Indeed, we considered 2 sigma effect as a threshold, however we recognise that there is no agreed-upon threshold, and shall make this and our interpretation clearer regarding the trend in the data, in the revision.

      Revised reply: We clarify this further, as per our revised response to Comment 3.3 above. We have also added the following statement in section 4.5.1 (Methods, Model comparison): ”There’s no agreed-upon threshold of SEs that determines significance, but the higher the sigma difference, the more robust is the effect.”

      Reviewer Comment 3.7 — With respect to parameter recovery, a few additional details could be included for completeness. Specifically, while the range of the learning rate is understandably confined between 0 and 1, the range of other simulated parameters, particularly those without clear boundaries, remains ambiguous. Including scatter plots with the simulated parameters on the xaxis and the recovered parameters on the y-axis would effectively convey this missing information.

      Furthermore, it would be beneficial for the authors to clarify whether the same priors were used for both the modelling results presented in the main paper and the parameter recovery presented in the supplementary material.

      Initial reply: Thanks for this comment and for the suggestions. To simulate the data for the model and parameter recovery analysis, we used the group means and variances estimated on the participant data to sample individual parameter values. The priors on the group and individual-level parameters in the recovery analysis where the same as in the fitting procedure. We will include the requested scatter plots in the next iteration of the manuscript.

      Revised reply: We included parameter recovery scatter plots for each model and parameter in the Supplement Figures S7-S11.

      Reviewer Comment 3.8 — While the reliance on R-hat values for convergence in model fitting is standard, a more comprehensive assessment could include estimates of the effective sample size (bulk ESS and/or tail ESS) and the Estimated Bayesian Fraction of Missing Information (EBFMI), to show efficient sampling across the distribution. Consideration of divergences, if any, would further enhance the reliability of the results.

      Initial reply: Thank you very much for this suggestion, we will aim to include these measures in the revised version.

      Revised reply: We have considered the suggested diagnostics and include bulk and tail ESS values for each condition, model, parameter in the Supplement Tables S6-S9. We also report number of chain with low E-BFMI (0), number of divergent transitions (0) and the E-BFMI values per chain in Table S10.

      Reviewer Comment 3.9 — The authors write: ”Going beyond conditioning paradigms based in cuing of pain outcomes, our findings offer a more accurate description of endogenous pain regulation.” Unfortunately, this statement isn’t substantiated by the results. The authors did not engage in a direct comparison between conditioning and sequence-based paradigms. Moreover, even if such a comparison had been made, it remains unclear what would constitute the gold standard for quantifying ”endogenous pain regulation.”

      Initial reply: This is valid point, indeed we do not compare paradigms in our study, and will remove this statement in the future version.

      Revised reply: We have removed this statement from the revised version.

      Reviewer Comment 3.10 — In relation to the comment on model comparison in my public review, I believe the following link may provide further insight and clarify the basis for my observation. It discusses the use of standard error in model comparison and may be useful for the authors in addressing this particular point: https://discourse.mc-stan.org/t/loo-comparison-in-referenceto-standard-error/4009

      Initial reply: Thank you for this suggestion, we will consider the forum discussion in our manuscript.

    1. Author response:

      eLife assessment

      This useful study reports how neuronal activity in the prefrontal cortex maps time intervals during which animals have to wait until reaching a reward and how this mapping is preserved across days. However, the evidence supporting the claims is incomplete as these sequential neuronal patterns do not necessarily represent time but instead may be correlated with stereotypical behavior and restraint from impulsive decision, which would require further controls (e.g. behavioral analysis) to clarify the main message. The study will be of interest to neuroscientists interested in decision making and motor control. 

      We thank the editors and reviewers for the constructive comments. In light of the questions mentioned by the reviewers, we plan to perform additional analyses in our revision, particularly aiming to address issues related to single-cell scalability, and effects of motivation and movement. We believe these additional data will greatly improve the rigor and clarity of our study. We are grateful for the review process of eLife.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This paper investigates the neural population activity patterns of the medial frontal cortex in rats performing a nose poking timing task using in vivo calcium imaging. The results showed neurons that were active at the beginning and end of the nose poking and neurons that formed sequential patterns of activation that covaried with the timed interval during nose poking on a trial-by-trial basis. The former were not stable across sessions, while the latter tended to remain stable over weeks. The analysis on incorrect trials suggests the shorter non-rewarded intervals were due to errors in the scaling of the sequential pattern of activity. 

      Strengths:

      This study measured stable signals using in vivo calcium imaging during experimental sessions that were separated by many days in animals performing a nose poking timing task. The correlation analysis on the activation profile to separate the cells in the three groups was effective and the functional dissociation between beginning and end, and duration cells was revealing. The analysis on the stability of decoding of both the nose poking state and poking time was very informative. Hence, this study dissected a neural population that formed sequential patterns of activation that encoded timed intervals. 

      We thank the reviewer for the positive comments.

      Weaknesses: 

      It is not clear whether animals had enough simultaneously recorded cells to perform the analyzes of Figures 2-4. In fact, rat 3 had 18 responsive neurons which probably is not enough to get robust neural sequences for the trial-by-trial analysis and the correct and incorrect trial analysis. 

      We thank the reviewer for the comment. We would like to mention that the 18 cells plotted in Supplementary figure 1 were only from the duration cell category. To improve the clarity of our results, we are going to provide information regarding the number of cells from each rat in our revision. In general, we imaged more than 50 cells from each rat. We would also like to point to the data from individual trials in Supplementary figure 1B showing robust sequentiality.

      In addition, the analysis of behavioral errors could be improved. The analysis in Figure 4A could be replaced by a detailed analysis on the speed, and the geometry of neural population trajectories for correct and incorrect trials.

      We thank the reviewer for the suggestions. We are going to conduct the analysis as the reviewer recommended. We agree with the reviewer that better presentation of the neural activity will be helpful for the readers.

      In the case of Figure 4G is not clear why the density of errors formed two clusters instead of having a linear relation with the produce duration. I would be recommendable to compute the scaling factor on neuronal population trajectories and single cell activity or the computation of the center of mass to test the type III errors. 

      We would like to mention that the prediction errors plotted in this graph were calculated from two types of trials. The correct trials tended to show positive time estimation errors while the incorrect trials showed negative time estimation errors. We believe that the polarity switch between these two types suggested a possible use of this neural mechanism to time the action of the rats.

      In addition, we are going to perform the analysis suggested by the reviewer in our revision. We agree that different ways of analyzing the data would provide better characterization of the scaling effect.

      Due to the slow time resolution of calcium imaging, it is difficult to perform robust analysis on ramping activity. Therefore, I recommend downplaying the conclusion that: "Together, our data suggest that sequential activity might be a more relevant coding regime than the ramping activity in representing time under physiological conditions." 

      We agree with the reviewer and we have mentioned this caveat in our original manuscript. We are going to rephrase the sentence as the reviewer suggested during our revision.

      Reviewer #2 (Public Review):

      In this manuscript, Li and collaborators set out to investigate the neuronal mechanisms underlying "subjective time estimation" in rats. For this purpose, they conducted calcium imaging in the prefrontal cortex of water-restricted rats that were required to perform an action (nosepoking) for a short duration to obtain drops of water. The authors provided evidence that animals progressively improved in performing their task. They subsequently analyzed the calcium imaging activity of neurons and identify start, duration, and stop cells associated with the nose poke. Specifically, they focused on duration cells and demonstrated that these cells served as a good proxy for timing on a trial-by-trial basis, scaling their pattern of actvity in accordance with changes in behavioral performance. In summary, as stated in the title, the authors claim to provide mechanistic insights into subjective time estimation in rats, a function they deem important for various cognitive conditions. 

      This study aligns with a wide range of studies in system neuroscience that presume that rodents solve timing tasks through an explicit internal estimation of duration, underpinned by neuronal representations of time. Within this framework, the authors performed complex and challenging experiments, along with advanced data analysis, which undoubtedly merits acknowledgement. However, the question of time perception is a challenging one, and caution should be exercised when applying abstract ideas derived from human cognition to animals. Studying so-called time perception in rats has significant shortcomings because, whether acknowledged or not, rats do not passively estimate time in their heads. They are constantly in motion. Moreover, rats do not perform the task for the sake of estimating time but to obtain their rewards are they water restricted. Their behavior will therefore reflects their motivation and urgency to obtain rewards. Unfortunately, it appears that the authors are not aware of these shortcomings. These alternative processes (motivation, sensorimotor dynamics) that occur during task performance are likely to influence neuronal activity. Consequently, my review will be rather critical. It is not however intended to be dismissive. I acknowledge that the authors may have been influenced by numerous published studies that already draw similar conclusions. Unfortunately, all the data presented in this study can be explained without invoking the concept of time estimation. Therefore, I hope the authors will find my comments constructive and understand that as scientists, we cannot ignore alternative interpretations, even if they conflict with our a priori philosophical stance (e.g., duration can be explicitly estimated by reading neuronal representation of time) and anthropomorphic assumptions (e.g., rats estimate time as humans do). While space is limited in a review, if the authors are interested, they can refer to a lengthy review I recently published on this topic, which demonstrates that my criticism is supported by a wide range of timing experiments across species (Robbe, 2023). In addition to this major conceptual issue that cast doubt on most of the conclusions of the study, there are also several major statistical issues. 

      Main Concerns 

      (1) The authors used a task in which rats must poke for a minimal amount of time (300 ms and then 1500 ms) to be able to obtain a drop of water delivered a few centimeters right below the nosepoke. They claim that their task is a time estimation task. However, they forget that they work with thirsty rats that are eager to get water sooner than later (there is a reason why they start by a short duration!). This task is mainly probing the animals ability to wait (that is impulse control) rather than time estimation per se. Second, the task does not require to estimate precisely time because there appear to be no penalties when the nosepokes are too short or when they exceed. So it will be unclear if the variation in nosepoke reflects motivational changes rather than time estimation changes. The fact that this behavioral task is a poor assay for time estimation and rather reflects impulse control is shown by the tendency of animals to perform nose-pokes that are too short, the very slow improvement in their performance (Figure 1, with most of the mice making short responses), and the huge variability. Not only do the behavioral data not support the claim of the authors in terms of what the animals are actually doing (estimating time), but this also completely annhilates the interpretation of the Ca++ imaging data, which can be explained by motivational factors (changes in neuronal activity occurring while the animals nose poke may reflect a growing sens of urgency to check if water is available). 

      We would like to respond to the reviewer’s comments 1, 2 and 4 together since they all focus on the same issue. We thank the reviewer for the very thoughtful comments and for sharing his detailed reasoning from a recently published review (Robbe, 2023). A lot of the discussion goes beyond the scope of this study and we agree that whether there is an explicit representation of time (an internal clock) in the brain is a difficult question to answer, particularly by using animal behaviors. In fact, even with fully conscious humans and elaborated task design, we think it is still questionable to clearly dissociate the neural substrate of “timing” from “motor”. In the end, it may as well be that as the reviewer cited from Bergson’s article, the experience of time cannot be measured.

      Studying the neural representation of any internal state may suffer from the same ambiguity. With all due respect, however, we would like to limit our response in the scope of our results. According to the reviewer, two alternative interpretations of the task-related sequential activity exist: 1, duration cells may represent fidgeting or orofacial movements and 2, duration cells may represent motivation or motion plan of the rats. To test the first alternative interpretation, we will perform a more comprehensive analysis of the behavior data at all the limbs and visible body parts of the rat during nose poke and analyze its periodicity among different trials, although the orofacial movements may not be visible to us.

      Regarding the second alternative interpretation, we think our data in the original Figure 4G argues against it. In this graph, we plotted the decoding error of time using the duration cells’ activity against the actual duration of the trials. If the sequential activity of durations cells only represents motivation, then the errors should distribute evenly across different trial times, or linearly modulated by trial durations. The unimodal distribution we observed (Figure 4G and see Author response image 1 below for a re-plot without signs) suggests that the scaling factor of the sequential activity represents information related to time. And the fact that this unimodal distribution centered at the time threshold of the task provides strong evidence for the active use of scaling factor for time estimation. In order to further test the relationship to motivation, we will measure the time interval between exiting nose poke to the start of licking water reward as an independent measurement of motivation for each trial. We will analyze and report whether this measurement correlates with the nose poking durations in our data in the revision.

      Author response image 1.

      Furthermore, whether the scaling sequential activity we report represents behavioral timing or true time estimation, the reviewer would agree that these activities correlate with the animal’s nose poking durations, and a previous study has showed that PFC silencing led to disruption of the mouse’s timing behavior (PMID: 24367075). The main surprising finding of the paper is that these duration cells are different from the start and end cells in terms of their coding stability. Thus, future studies dissecting the anatomical microcircuit of these duration cells may provide further clue regarding whether they receive inputs from thirst or reward-related brain regions. This may help partially resolve the “time” vs. “motor” debate the reviewer mentioned.

      (2) A second issue is that the authors seem to assume that rats are perfectly immobile and perform like some kind of robots that would initiate nose pokes, maintain them, and remove them in a very discretized manner. However, in this kind of task, rats are constantly moving from the reward magazine to the nose poke. They also move while nose-poking (either their body or their mouth), and when they come out of the nose poke, they immediately move toward the reward spout. Thus, there is a continuous stream of movements, including fidgeting, that will covary with timing. Numerous studies have shown that sensorimotor dynamics influence neural activity, even in the prefrontal cortex. Therefore, the authors cannot rule out that what the records reflect are movements (and the scaling of movement) rather than underlying processes of time estimation (some kind of timer). Concretely, start cells could represent the ending of the movement going from the water spout to the nosepoke, and end cells could be neurons that initiate (if one can really isolate any initiation, which I doubt) the movement from the nosepoke to the water spout. Duration cells could reflect fidgeting or orofacial movements combined with an increasing urgency to leave the nose pokes.

      (3)The statistics should be rethought for both the behavioral and neuronal data. They should be conducted separately for all the rats, as there is likely interindividual variability in the impulsivity of the animals.

      We thank the reviewer for the comment, yet we are not quite sure what specifically was asked by the reviewer. There is undoubtedly variance among individual animals. One of the core reasons for statistical comparison is to compare the group difference with the variance due to sampling. It appears that the reviewer would like to require we conduct our analysis using each rat individually. We will conduct and report analysis with individual rat in Figure 1C, Figure 2C, G, K, Figure 4F in our revised manuscript.

      (4) The fact that neuronal activity reflects an integration of movement and motivational factors rather than some abstract timing appears to be well compatible with the analysis conducted on the error trials (Figure 4), considering that the sensorimotor and motivational dynamics will rescale with the durations of the nose poke. 

      (5) The authors should mention upfront in the main text (result section) the temporal resolution allowed by their Ca+ probe and discuss whether it is fast enough in regard of behavioral dynamics occurring in the task. 

      We thank the reviewer for the suggestion. We have originally mentioned the caveat of calcium imaging in the interpretation of our results. We will incorporate more texts for this purpose during our revision. In terms of behavioral dynamics (start and end of nose poke in this case), we think calcium imaging could provide sufficient kinetics. However, the more refined dynamics related to the reproducibility of the sequential activity or the precise representation of individual cells on the scaled duration may be benefited from improved time resolution.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Please refer explicitly to the three types of cells in the abstract. 

      We will modify the abstract as suggested during revision.

      (2) Please refer to the work of Betancourt et al., 2023 Cell Reports, where a trial-by-trail analysis on the correlation between neural trajectory dynamics in MPC and timing behavior is reported. In that same paper the stability of neural sequences across task parameters is reported. 

      We will cite and discuss this study in our revised paper.

      (3) Please state the number of studied animals at the beginning of the results section. 

      We will provide this information as requested. The number of animals were also plotted in Figure 1D for each analysis.

      (4) Why do the middle and right panels of Figure 2E show duration cells. 

      Figure 2E was intended to show examples of duration cells’ activity. We included different examples of cells that peak at different points in the scaled duration. We believe these multiple examples would give the readers a straight forward impression of these cells’ activity patterns.

      (5) Which behavioral sessions of Figure 1B were analyzed further. 

      We will label the analyzed sessions in Figure 1B during our revision.

      (6) In Figure 3A-C please increase the time before the beginning of the trial in order to visualize properly the activation patterns of the start cells. 

      We thank the reviewer for the suggestion and will modify the figure accordingly during revision.

      (7) Please state what could be the behavioral and functional effect of the ablation of the cortical tissue on top of mPFC. 

      We thank the reviewer for the question. In our experience, mice with lens implanted in mPFC did not show observable different to mice without surgery regarding the acquisition of the task and the distribution of the nose-poke durations. Although we could not rule out the effect on other cognitive process, the mice appeared to be intact in the scope of our task. We will provide these behavior data during our revision.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Lines 40-42: The sentence "The coupling of structural connectome (SC) and functional connectome (FC) varies greatly across different cortical regions reflecting anatomical and functional hierarchies as well as individual differences in cognitive function, and is regulated by genes" is a misstatement. Regional variations of structure-function coupling do not really reflect differences in cognitive function among individuals, but inter-subject variations do.

      Thank you for your comment. We have made revisions to the sentence to correct its misstatement. Please see lines 40-43: “The coupling of structural connectome (SC) and functional connectome (FC) varies greatly across different cortical regions reflecting anatomical and functional hierarchies[1, 6-9] and is regulated by genes[6, 8], as well as its individual differences relates to cognitive function[8, 9].”

      (2) In Figure 1, the graph showing the relation between intensity and cortical depth needs explanation.

      Thank you for your comment. We have added necessary explanation, please see lines 133-134: “The MPC was used to map similarity networks of intracortical microstructure (voxel intensity sampled in different cortical depth) for each cortical node.”

      (3) Line 167: Change "increased" to "increase".

      We have corrected it, please see lines 173-174: “…networks significantly increased with age and exhibited greater increase.”

      (4) Line 195: Remove "were".

      We have corrected it, please see line 204: “…default mode networks significantly contributed to the prediction…”

      (5) Lines 233-240, Reproducibility analyses: Comparisons of parcellation templates were not made with respect to gene weights. Is there any particular reason?

      Thank you for your comment. We have quantified the gene weights based on HCPMMP using the same procedures. We identified a correlation (r \= 0.25, p<0.001) between the gene weights in HCPMMP and BNA. Given that this is a relatively weak correlation, we need to clarify the following points.

      Based on HCPMMP, we produced an averaged gene expression profile for 10,027 genes covering 176 left cortical regions[1]. The excluding 4 cortical regions that had an insufficient number of assigned samples may lead to different templates having a relatively weak correlation of gene associations. Moreover, the effect of different template resolutions on the results of human connectome-transcriptome association is still unclear.

      In brain connectome analysis, the choice of parcellation templates can indeed influence the subsequent findings to some extent. A methodological study[2] provided referenced correlations about 0.4~0.6 for white matter connectivity and 0.2~0.4 for white matter nodal property between two templates (refer to Figure 4 and 5 in [2]). Therefore, the age-related coupling changes as a downstream analysis was calculated using multimodal connectome and correlated with gene expression profiles, which may be influenced by the choice of templates. 

      We have further supplemented gene weights results obtained from HCPMMP to explicitly clarify the dependency of parcellation templates.

      Please see lines 251-252: “The gene weights of HCPMMP was consistent with that of BNA (r = 0.25, p < 0.001).”

      Author response image 1.

      The consistency of gene weights between HCPMMP and BNA.

      Please see lines 601-604: “Finally, we produced an averaged gene expression profile for 10,027 genes covering 176 left cortical regions based on HCPMMP and obtained the gene weights by PLS analysis. We performed Pearson's correlation analyses to assess the consistency of gene weights between HCPMMP and BNA.”

      Reviewer #2 (Recommendations For The Authors):

      Your paper is interesting to read and I found your efforts to evaluate the robustness of the results of different parcellation strategies and tractography methods very valuable. The work is globally easy to navigate and well written with informative good-quality figures, although I think some additional clarifications will be useful to improve readability. My suggestions and questions are detailed below (I aimed to group them by topic which did not always succeed so apologies if the comments are difficult to navigate, but I hope they will be useful for reflection and to incorporate in your work).

      * L34: 'developmental disorder'

      ** As far as I understand, the subjects in HCP-D are mostly healthy (L87). Thus, while your study provides interesting insights into typical brain development, I wonder if references to 'disorder' might be premature. In the future, it would be interesting to extend your approach to the atypical populations. In any case, it would be extremely helpful and appreciated if you included a figure visualising the distribution of behavioural scores within your population and in relationship to age at scan for your subjects (and to include a more detailed description of the assessment in the methods section) given that large part of your paper focuses on their prediction using coupling inputs (especially given a large drop of predictive performance after age correction). Such figures would allow the reader to better understand the cognitive variability within your data, but also potential age relationships, and generally give a better overview of your cohort.

      We agree with your comment that references to 'disorder' is premature. We have made revisions in abstract and conclusion. 

      Please see lines 33-34: “This study offers insight into the maturational principles of SC-FC coupling in typical development.”

      Please see lines 395-396: “Further investigations are needed to fully explore the clinical implications of SC-FC coupling for a range of developmental disorders.”

      In addition, we have included a more detailed description of the cognitive scores in the methods section and provided a figure to visualize the distributions of cognitive scores and in relationship to age for subjects. Please see lines 407-413: “Cognitive scores. We included 11 cognitive scores which were assessed with the National Institutes of Health (NIH) Toolbox Cognition Battery (https://www.healthmeasures.net/exploremeasurement-systems/nih-toolbox), including episodic memory, executive function/cognitive flexibility, executive function/inhibition, language/reading decoding, processing speed, language/vocabulary comprehension, working memory, fluid intelligence composite score, crystal intelligence composite score, early child intelligence composite score and total intelligence composite score. Distributions of these cognitive scores and their relationship with age are illustrated in Figure S12.”

      Author response image 2.

      Cognitive scores and age distributions of scans.

      * SC-FC coupling

      ** L162: 'Regarding functional subnetworks, SC-FC coupling increased disproportionately with age (Figure 3C)'.

      *** As far as I understand, in Figure 3C, the points are the correlation with age for a given ROI within the subnetwork. Is this correct? If yes, I am not sure how this shows a disproportionate increase in coupling. It seems that there is great variability of SC-FC correlation with age across regions within subnetworks, more so than the differences between networks. This would suggest that the coupling with age is regionally dependent rather than network-dependent? Maybe you could clarify?

      The points are the correlation with age for a given ROI within the subnetwork in Figure 3C. We have revised the description, please see lines 168-174: “Age correlation coefficients distributed within functional subnetworks were shown in Figure 3C. Regarding mean SC-FC coupling within functional subnetworks, the somatomotor (𝛽𝑎𝑔𝑒\=2.39E-03, F=4.73, p\=3.10E-06, r\=0.25, p\=1.67E07, Figure 3E), dorsal attention (𝛽𝑎𝑔𝑒\=1.40E-03, F=4.63, p\=4.86E-06, r\=0.24, p\=2.91E-07, Figure 3F), frontoparietal (𝛽𝑎𝑔𝑒 =2.11E-03, F=6.46, p\=2.80E-10, r\=0.33, p\=1.64E-12, Figure 3I) and default mode (𝛽𝑎𝑔𝑒 =9.71E-04, F=2.90, p\=3.94E-03, r\=0.15, p\=1.19E-03, Figure 3J) networks significantly increased with age and exhibited greater increase.” In addition, we agree with your comment that the coupling with age is more likely region-dependent than network-dependent. We have added the description, please see lines 329-332: “We also found the SC-FC coupling with age across regions within subnetworks has more variability than the differences between networks, suggesting that the coupling with age is more likely region-dependent than network-dependent.” This is why our subsequent analysis focused on regional coupling.  

      *** Additionally, we see from Figure 3C that regions within networks have very different changes with age. Given this variability (especially in the subnetworks where you show both positive and negative correlations with age for specific ROIs (i.e. all of them)), does it make sense then to show mean coupling over regions within the subnetworks which erases the differences in coupling with age relationships across regions (Figures 3D-J)?

      Considering the interest and interpretation for SC-FC coupling, showing the mean coupling at subnetwork scales with age correlation is needed, although this eliminates variability at regional scale. These results at different scales confirmed that coupling changes with age at this age group are mainly increased.

      *** Also, I think it would be interesting to show correlation coefficients across all regions, not only the significant ones (3B). Is there a spatially related tendency of increases/decreases (rather than a 'network' relationship)? Would it be interesting to show a similar figure to Figure S7 instead of only the significant regions?

      As your comment, we have supplemented the graph which shows correlation coefficients across all regions into Figure 3B. Similarly, we supplemented to the other figures (Figure S3-S6).

      Author response image 3.

      Aged-related changes in SC-FC coupling. (A) Increases in whole-brain coupling with age. (B) Correlation of age with SC-FC coupling across all regions and significant regions (p<0.05, FDR corrected). (C) Comparisons of age-related changes in SC-FC coupling among functional networks. The boxes show the median and interquartile range (IQR; 25–75%), and the whiskers depict 1.5× IQR from the first or third quartile. (D-J) Correlation of age with SC-FC coupling across the VIS, SM, DA, VA, LIM, FP and DM. VIS, visual network; SM, somatomotor network; DA, dorsal attention network; VA, ventral attention network; LIM, limbic network; FP, frontoparietal network; DM, default mode network.

      *** For the quantification of MPC.

      **** L421: you reconstructed 14 cortical surfaces from the wm to pial surface. If we take the max thickness of the cortex to be 4.5mm (Fischl & Dale, 2000), the sampling is above the resolution of your anatomical images (0.8mm). Could you expand on what the interest is in sampling such a higher number of surfaces given that the resolution is not enough to provide additional information?

      The surface reconstruction was based on state-of-the-art equivolumetric surface construction techniques[3] which provides a simplified recapitulation of cellular changes across the putative laminar structure of the cortex. By referencing a 100-μm resolution Merkerstained 3D histological reconstruction of an entire post mortem human brain (BigBrain: https://bigbrain.loris.ca/main.php), a methodological study[4] systematically evaluated MPC stability with four to 30 intracortical surfaces when the resolution of anatomical image was 0.7 mm, and selected 14 surfaces as the most stable solution. Importantly, it has been proved the in vivo approach can serve as a lower resolution yet biologically meaningful extension of the histological work[4]. 

      **** L424: did you aggregate intensities over regions using mean/median or other statistics?

      It might be useful to specify.

      Thank you for your careful comment. We have revised the description in lines 446-447: “We averaged the intensity profiles of vertices over 210 cortical regions according to the BNA”.

      **** L426: personal curiosity, why did you decide to remove the negative correlation of the intensity profiles from the MPC? Although this is a common practice in functional analyses (where the interpretation of negatives is debated), within the context of cortical correlations, the negative values might be interesting and informative on the level of microstructural relationships across regions (if you want to remove negative signs it might be worth taking their absolute values instead).

      We agree with your comment that the interpretation of negative correlation is debated in MPC. Considering that MPC is a nascent approach to network modeling, we adopted a more conservative strategy that removing negative correlation by referring to the study [4] that proposed the approach. As your comment, the negative correlation might be informative. We will also continue to explore the intrinsic information on the negative correlation reflecting microstructural relationships.

      **** L465: could you please expand on the notion of self-connections, it is not completely evident what this refers to.

      We have revised the description in lines 493-494: “𝑁𝑐 is the number of connection (𝑁𝑐 = 245 for BNA)”.

      **** Paragraph starting on L467: did you evaluate the multicollinearities between communication models? It is possibly rather high (especially for the same models with similar parameters (listed on L440-444)). Such dependence between variables might affect the estimates of feature importance (given the predictive models only care to minimize error, highly correlated features can be selected as a strong predictor while the impact of other features with similarly strong relationships with the target is minimized thus impacting the identification of reliable 'predictors').

      We agree with your comment. The covariance structure (multicollinearities) among the communication models have a high probability to lead to unreliable predictor weights. In our study, we applied Haufe's inversion transform[5] which resolves this issue by computing the covariance between the predicted FC and each communication models in the training set. More details for Haufe's inversion transform please see [5]. We further clarified in the manuscript, please see in lines 497-499: “And covariance structure among the predictors may lead to unreliable predictor weights. Thus, we applied Haufe's inversion transform[38] to address these issues and identify reliable communication mechanisms.”

      **** L474: I am not completely familiar with spin tests but to my understanding, this is a spatial permutation test. I am not sure how this applies to the evaluation of the robustness of feature weight estimates per region (if this was performed per region), it would be useful to provide a bit more detail to make it clearer.

      As your comment, we have supplemented the detail, please see lines 503-507: “Next, we generated 1,000 FC permutations through a spin test[86] for each nodal prediction in each subject and obtained random distributions of model weights. These weights were averaged over the group and were investigated the enrichment of the highest weights per region to assess whether the number of highest weights across communication models was significantly larger than that in a random discovery.”

      **** L477: 'significant communication models were used to represent WMC...', but in L103 you mention you select 3 models: communicability, mean first passage, and flow graphs. Do you want to say that only 3 models were 'significant' and these were exactly the same across all regions (and data splits/ parcellation strategies/ tractography methods)? In the methods, you describe a lot of analysis and testing but it is not completely clear how you come to the selection of the final 3, it would be beneficial to clarify. Also, the final 3 were selected on the whole dataset first and then the pipeline of SC-FC coupling/age assessment/behaviour predictions was run for every (WD, S1, S2) for both parcellations schemes and tractography methods or did you end up with different sets each time? It would be good to make the pipeline and design choices, including the validation bit clearer (a figure detailing all the steps which extend Figure 1 would be very useful to understand the design/choices and how they relate to different runs of the validation).

      Thank you for your comment. In all reproducibility analyses, we used the same 3 models which was selected on the main pipeline (probabilistic tractography and BNA parcellation). According to your comment, we produced a figure that included the pipeline of model selection as the extend of Figure 1. And the description please see lines 106-108: “We used these three models to represent the extracortical connectivity properties in subsequent discovery and reproducibility analyses (Figure S1).” 

      Author response image 4.

      Pipeline of model selection and reproducibility analyses.

      **** Might the imbalance of features between structural connectivity and MPC affect the revealed SC-FC relationships (3 vs 1)? Why did you decide on this ratio rather than for example best WM structural descriptor + MPC?

      We understand your concern. The WMC communication models represent diverse geometric, topological, or dynamic factors. In order to describe the properties of WMC as best as possible, we selected three communication models after controlling covariance structure that can significantly predict FC from the 27 models. Compared to MPC, this does present a potential feature imbalance problem. However, this still supports the conclusion that coupling models that incorporate microarchitectural properties yield more accurate predictions of FC from SC[6, 7]. The relevant experiments are shown in Figure S2 below. If only the best WM structural descriptor is used, this may lose some communication properties of WMC.

      **** L515: were intracranial volume and in-scanner head motion related to behavioural measures? These variables likely impact the inputs, do you expect them to influence the outcome assessments? Or is there a mistake on L518 and you actually corrected the input features rather than the behaviour measures?

      The in-scanner head motion and intracranial volume are related to some age-adjusted behavioural measures, as shown in the following table. The process of regression of covariates from cognitive measures was based on these two cognitive prediction studies [8, 9]. Please see lines 549-554: “Prior to applying the nested fivefold cross-validation framework to each behaviour measure, we regressed out covariates including sex, intracranial volume, and in-scanner head motion from the behaviour measure[59, 69]. Specifically, we estimated the regression coefficients of the covariates using the training set and applied them to the testing set. This regression procedure was repeated for each fold.”

      Author response table 1.

      ** Additionally, in the paper, you propose that the incorporation of cortical microstructural (myelin-related) descriptors with white-matter connectivity to explain FC provides for 'a more comprehensive perspective for characterizing the development of SC-FC coupling' (L60). This combination of cortical and white-matter structure is indeed interesting, however the benefits of incorporating different descriptors could be studied further. For example, comparing results of using only the white matter connectivity (assessed through selected communication models) ~ FC vs (white matter + MPC) ~ FC vs MPC ~ FC. Which descriptors better explain FC? Are the 'coupling trends' similar (or the same)? If yes, what is the additional benefit of using the more complex combination? This would also add strength to your statement at L317: 'These discrepancies likely arise from differences in coupling methods, highlighting the complementarity of our methods with existing findings'. Yes, discrepancies might be explained by the use of different SC inputs. However, it is difficult to see how discrepancies highlight complementarity - does MCP (and combination with wm) provide additional information to using wm structural alone?~

      According to your comment, we have added the analyses based on different models using only the myelin-related predictor or WM connectivity to predict FC, and further compared the results among different models. please see lines 519-521: “In addition, we have constructed the models using only MPC or SCs to predict FC, respectively. Spearman’s correlation was used to assess the consistency between spatial patterns based on different models.” 

      Please see lines 128-130: “In addition, the coupling pattern based on other models (using only MPC or only SCs to predict FC) and the comparison between the models were shown in Figure S2A-C.” Please see lines 178-179: “The age-related patterns of SC-FC coupling based other coupling models were shown in Figure S2D-F.”

      Although we found that there were spatial consistencies in the coupling patterns between different models, the incorporation of MPC with SC connectivity can improve the prediction of FC than the models based on only MPC or SC. For age-related changes in coupling, the differences between the models was further amplified. We agree with you that the complementarity cannot be explicitly quantified and we have revised the description, please see line 329: “These discrepancies likely arise from differences in coupling methods.”

      Author response image 5.

      Comparison results between different models. Spatial pattern of mean SC-FC coupling based on MPC ~ FC (A), SCs ~ FC (B), and MPC + SCs ~ FC (C). Correlation of age with SC-FC coupling across cortex based on MPC ~ FC (D), SCs ~ FC (E), and MPC + SCs ~ FC (F).

      ** For the interpretation of results: L31 'SC-FC coupling is positively associated with genes in oligodendrocyte-related pathways and negatively associated with astrocyte-related gene'; L124: positive myelin content with SC-FC coupling...and similarly on L81, L219, L299, L342, and L490:

      ***You use a T1/T2 ratio which is (in large part) a measure of myelin to estimate the coupling between SC and FC. Evaluation with SC-FC coupling with myeline described in Figure 2E is possibly biased by the choice of this feature. Similarly, it is possible that reported positive associations with oligodendrocyte-related pathways and SC-FC coupling in your work could in part result from a bias introduced by the 'myelin descriptor' (conversely, picking up the oligodendrocyte-related genes is a nice corroboration for the T1/T2 ration being a myelin descriptor, so that's nice). However, it is possible that if you used a different descriptor of the cortical microstructure, you might find different expression patterns associated with the SCFC coupling (for example using neurite density index might pick up neuronal-related genes?). As mentioned in my previous suggestions, I think it would be of interest to first use only the white matter structural connectivity feature to assess coupling to FC and assess the gene expression in the cortical regions to see if the same genes are related, and subsequently incorporate MPC to dissociate potential bias of using a myelin measure from genetic findings.

      Thank you for your insightful comments. In this paper, however, the core method of measuring coupling is to predict functional connections using multimodal structural connections, which may yield more information than a single modal. We agree with your comment that separating SCs and MPC to look at the genes involved in both separately could lead to interesting discoveries. We will continue to explore this in the future.

      ** Generally, I find it difficult to understand the interpretation of SC-FC coupling measures and would be interested to hear your thinking about this. As you mention on L290-294, how well SC predicts FC depends on which input features are used for the coupling assessment (more complex communication models, incorporating additional microstructural information etc 'yield more accurate predictions of FC' L291) - thus, calculated coupling can be interpreted as a measure of how well a particular set of input features explain FC (different sets will explain FC more or less well) ~ coupling is related to a measure of 'missing' information on the SC-FC relationship which is not contained within the particular set of structural descriptors - with this approach, the goal might be to determine the set that best, i.e. completely, explains FC to understand the link between structure and function. When you use the coupling measures for comparisons with age, cognition prediction etc, the 'status' of the SC-FC changes, it is no longer the amount of FC explained by the given SC descriptor set, but it's considered a descriptor in itself (rather than an effect of feature selection / SC-FC information overlap) - how do you interpret/argue for this shift of use?

      Thank you for your comment. In this paper, we obtain reasonable SC-FC coupling by determining the optimal set of structural features to explain the function. The coupling essentially measures the direct correspondence between structure and function. To study the relationship between coupling and age and cognition is actually to study the age correlation and cognitive correlation of this direct correspondence between structure and function. 

      ** In a similar vein to the above comment, I am interested to hear what you think: on L305 you mention that 'perfect SC-FC coupling may be unlikely'. Would this reasoning suggest that functional activity takes place through other means than (and is therefore somehow independent of) biological (structural) substrates? For now, I think one can only say that we have imperfect descriptors of the structure so there is always information missing to explain function, this however does not mean the SC and FC are not perfectly coupled (only that we look at insufficient structural descriptors - limitations of what imaging can assess, what we measure etc). This is in line with L305 where you mention that 'Moreover, our results suggested that regional preferential contributions across different SCs lead to variations in the underlying communication process'. This suggests that locally different areas might use different communication models which are not reflected in the measures of SC-FC coupling that was employed, not that the 'coupling' is lower or higher (or coupling is not perfect). This is also a change in approach to L293: 'This configuration effectively releases the association cortex from strong structural constraints' - the 'release' might only be in light of the particular structural descriptors you use - is it conceivable that a different communication model would be more appropriate (and show high coupling) in these areas.

      Thank you for your insightful comments. We have changed the description, please see lines 315317: “SC-FC coupling is dynamic and changes throughout the lifespan[7], particularly during adolescence[6,9], suggesting that perfect SC-FC coupling may require sufficient structural descriptors.” 

      *Cognitive predictions:

      ** From a practical stand-point, do you think SC-FC coupling is a better (more accurate) indicator of cognitive outcomes (for example for future prediction studies) than each modality alone (which is practically easier to obtain and process)? It would be useful to check the behavioural outcome predictions for each modality separately (as suggested above for coupling estimates). In case SC-FC coupling does not outperform each modality separately, what is the benefit of using their coupling? Similarly, it would be useful to compare to using only cortical myelin for the prediction (which you showed to increase in importance for the coupling). In the case of myelin->coupling-> intelligence, if you are able to predict outcomes with the same performance from myelin without the need for coupling measures, what is the benefit of coupling?

      From a predictive performance point of view, we do not believe that SC-FC coupling is a better indicator than a single mode (voxel, network or other indicator). Our starting point is to assess whether SC-FC coupling is related to the individual differences of cognitive performances rather than to prove its predictive power over other measures. As you suggest, it's a very interesting perspective on the predictive power of cognition by separating the various modalities and comparing them. We will continue to explore this issue in the future study.

      ** The statement on L187 'suggesting that increased SC-FC coupling during development is associated with higher intelligence' might not be completely appropriate before age corrections (especially given the large drop in performance that suggests confounding effects of age).

      According to your comment, we have removed the statement.

      ** L188: it might be useful to report the range of R across the outer cross-validation folds as from Figure 4A it is not completely clear that the predictive performance is above the random (0) threshold. (For the sake of clarity, on L180 it might be useful for the reader if you directly report that other outcomes were not above the random threshold).

      According to your comment, we have added the range of R and revised the description, please see lines 195-198: “Furthermore, even after controlling for age, SC-FC coupling remained a significant predictor of general intelligence better than at chance (Pearson’s r\=0.11±0.04, p\=0.01, FDR corrected, Figure 4A). For fluid intelligence and crystal intelligence, the predictive performances of SC-FC coupling were not better than at chance (Figure 4A).”

      In a similar vein, in the text, you report Pearson's R for the predictive results but Figure 4A shows predictive accuracy - accuracy is a different (categorical) metric. It would be good to homogenise to clarify predictive results.

      We have made the corresponding changes in Figure 4.

      Author response image 6.

      Encoding individual differences in intelligence using regional SC-FC coupling. (A) Predictive accuracy of fluid, crystallized, and general intelligence composite scores. (B) Regional distribution of predictive weight. (C) Predictive contribution of functional networks. The boxes show the median and interquartile range (IQR; 25–75%), and the whiskers depict the 1.5× IQR from the first or third quartile.

      *Methods and QC:

      -Parcellations

      ** It would be useful to mention briefly how the BNA was applied to the data and if any quality checks were performed for the resulting parcellations, especially for the youngest subjects which might be most dissimilar to the population used to derive the atlas (healthy adults HCP subjects) ~ question of parcellation quality.

      We have added the description, please see lines 434-436: “The BNA[31] was projected on native space according to the official scripts (http://www.brainnetome.org/resource/) and the native BNA was checked by visual inspection.” 

      ** Additionally, the appropriateness of structurally defined regions for the functional analysis is also a topic of important debate. It might be useful to mention the above as limitations (which apply to most studies with similar focus).

      We have added your comment to the methodological issues, please see lines 378-379: “Third, the appropriateness of structurally defined regions for the functional analysis is also a topic of important debate.”

      - Tractography

      ** L432: it might be useful to name the method you used (probtrackx).

      We have added this name to the description, please see lines 455-456: “probabilistic tractography (probtrackx)[78, 79] was implemented in the FDT toolbox …”

      ** L434: 'dividing the total fibres number in source region' - dividing by what?

      We have revised the description, please see line 458: “dividing by the total fibres number in source region.”

      ** L436: 'connections in subcortical areas were removed' - why did you trace connections to subcortical areas in the first place if you then removed them (to match with cortical MPC areas I suspect)? Or do you mean there were spurious streamlines through subcortical regions that you filtered?

      On the one hand we need to match the MPC, and on the other hand, as we stated in methodological issues, the challenge of accurately resolving the connections of small structures within subcortical regions using whole-brain diffusion imaging and tractography techniques[10, 11]. 

      ** Following on the above, did you use any exclusion masks during the tracing? In general, more information about quality checks for the tractography would be useful. For example, L437: did you do any quality evaluations based on the removed spurious streamlines? For example, were there any trends between spurious streamlines and the age of the subject? Distance between regions/size of the regions?

      We did not use any exclusion masks. We performed visual inspection for the tractography quality and did not assess the relationship between spurious streamlines and age or distance between regions/size of the regions.

      ** L439: 'weighted probabilistic network' - this was weighted by the filtered connectivity densities or something else?

      The probabilistic network is weighted by the filtered connectivity densities.

      ** I appreciate the short description of the communication models in Text S1, it is very useful.

      Thank you for your comment.

      ** In addition to limitations mentioned in L368 - during reconstruction, have you noticed problems resolving short inter-hemispheric connections?

      We have not considered this issue, we have added it to the limitation, please see lines 383-384: “In addition, the reconstruction of short connections between hemispheres is a notable challenge.”

      - Functional analysis:

      ** There is a difference in acquisition times between participants below and above 8 years (21 vs 26 min), does the different length of acquisition affect the quality of the processed data?

      We have made relatively strict quality control to ensure the quality of the processed data.  

      ** L446 'regressed out nuisance variables' - it would be informative to describe in more detail what you used to perform this.

      We have provided more detail about the regression of nuisance variables, please see lines 476-477: “The nuisance variables were removed from time series based on general linear model.”

      ** L450-452: it would be useful to add the number of excluded participants to get an intuition for the overall quality of the functional data. Have you checked if the quality is associated with the age of the participant (which might be related to motion etc). Adding a distribution of remaining frames across participants (vs age) would be useful to see in the supplementary methods to better understand the data you are using.

      We have supplemented the exclusion information of the subjects during the data processing, and the distribution and aged correlation of motion and remaining frames. Please see lines 481-485: “Quality control. The exclusion of participants in the whole multimodal data processing pipeline was depicted in Figure S13. In the context of fMRI data, we computed Pearson’s correlation between motion and age, as well as between the number of remaining frames and age, for the included participants aged 5 to 22 years and 8 to 22 years, respectively. These correlations were presented in Figure S14.”

      Author response image 7.

      Exclusion of participants in the whole multimodal data processing pipeline.  

      Author response image 8.

      Figure S14. Correlations between motion and age and number of remaining frames and age.

      ** L454: 'Pearson's correlation's... ' In contrast to MPC you did not remove negative correlations in the functional matrices. Why this choice?

      Whether the negative correlation connection of functional signal is removed or not has always been a controversial issue. Referring to previous studies of SC-FC coupling[12-14], we find that the practice of retaining negative correlation connections has been widely used. In order to retain more information, we chose this strategy. Considering that MPC is a nascent approach to network modeling, we adopted a more conservative strategy that removing negative correlation by referring to the study [4] that proposed the approach.

      - Gene expression:

      ** L635, you focus on the left cortex, is this common? Do you expect the gene expression to be fully symmetric (given reported functional hemispheric asymmetries)? It might be good to expand on the reasoning.

      An important consideration regarding sample assignment arises from the fact that only two out of six brains were sampled from both hemispheres and four brains have samples collected only in the left. This sparse sampling should be carefully considered when combining data across donors[1]. We have supplemented the description, please see lines 569-571: “Restricting analyses to the left hemisphere will minimize variability across regions (and hemispheres) in terms of the number of samples available[40].”

      ** Paragraph of L537: you use evolution of coupling with age (correlation) and compare to gene expression with adults (cohort of Allen Human Brain Atlas - no temporal evolution to the gene expressions) and on L369 you mention that 'relative spatial patterns of gene expressions remain stable after birth'. Of course this is not a place to question previous studies, but would you really expect the gene expression associated with the temporary processes to remain stable throughout the development? For example, myelination would follow different spatiotemporal gradient across brain regions, is it reasonable to expect that the expression patterns remain the same? How do you then interpret a changing measure of coupling (correlation with age) with a gene expression assessed statically?

      We agree with your comment that the spatial expression patterns is expected to vary at different periods. We have revised the previous description, please see lines 383-386: “Fifth, it is important to acknowledge that changes in gene expression levels during development may introduce bias in the results.”

      - Reproducibility analyses:

      ** Paragraph L576: are we to understand that you performed the entire pipeline 3 times (WD, S1, S2) for both parcellations schemes and tractography methods (~12 times) including the selection of communication models and you always got the same best three communication models and gene expression etc? Or did you make some design choices (i.e. selection of communication models) only on a specific set-up and transfer to other settings?

      The choice of communication model is established at the beginning, which we have clarified in the article, please see lines 106-108: “We used these three models to represent the extracortical connectivity properties in subsequent discovery and reproducibility analyses (Figure S1).” For reproducibility analyses (parcellation, tractography, and split-half validation), we fixed other settings and only assessed the impact of a single factor.

      ** Paragraph of L241: I really appreciate you evaluated the robustness of your results to different tractography strategies. It is reassuring to see the similarity in results for the two approaches. Did you notice any age-related effects on tractography quality for the two methods given the wide age range (did you check?)

      In our study, the tractography quality was checked by visual inspection. Using quantifiable tools to tractography quality in future studies could answer this question objectively.

      ** Additionally, I wonder how much of that overlap is driven by the changes in MPC which is the same between the two methods... especially given its high weight in the SC-FC coupling you reported earlier in the paper. It might be informative to directly compare the connectivity matrices derived from the two tracto methods directly. Generally, as mentioned in the previous comments, I think it would be interesting to assess coupling using different input settings (with WM structural and MPC separate and then combined).

      As your previous comment, we have examined the coupling patterns, coupling differences, coupling age correlation, and spatial correlations between the patterns based on different models, as shown in Figure S2. Please see our response to the previous comment for details.

      ** L251 - I also wonder if the random splitting is best adapted to validation in your case given you study relationships with age. Would it make more sense to make stratified splits to ensure a 'similar age coverage' across splits?

      In our study, we adopt the random splitting process which repeated 1,000 times to minimize bias due to data partitioning. The stratification you mentioned is a reasonable method, and keeping the age distribution even will lead to higher verification similarity than our validation method. However, from the validation results of our method, the similarity is sufficient to explain the generalization of our findings.

      Minor comments

      L42: 'is regulated by genes'

      ** Coupling (if having a functional role and being regulated at all) is possibly resulting from a complex interplay of different factors in addition to genes, for example, learning/environment, it might be more cautious to use 'regulated in part by genes' or similar.

      We have corrected it, please see line 42.

      L43 (and also L377): 'development of SC-FC coupling'

      ** I know this is very nitpicky and depends on your opinion about the nature of SC-FC coupling, but 'development of SC-FC coupling' gives an impression of something maturing that has a role 'in itself' (for example development of eye from neuroepithelium to mature organ etc.). For now, I am not sure it is fully certain that SC-FC coupling is more than a byproduct of the comparison between SC and FC, using 'changes in SC-FC coupling with development' might be more apt.

      We have corrected it, please see lines 43-44.

      L261 'SC-FC coupling was stronger ... [] ... and followed fundamental properties of cortical organization.' vs L168 'No significant correlations were found between developmental changes in SC-FC coupling and the fundamental properties of cortical organization'.

      **Which one is it? I think in the first you refer to mean coupling over all infants and in the second about correlation with age. How do you interpret the difference?

      Between the ages of 5 and 22 years, we found that the mean SC-FC coupling pattern has become similar to that of adults, consistent with the fundamental properties of cortical organization. However, the developmental changes in SC-FC coupling are heterogeneous and sequential and do not follow the mean coupling pattern to change in the same magnitude.

      L277: 'temporal and spatial complexity'

      ** Additionally, communication models have different assumptions about the flow within the structural network and will have different biological plausibility (they will be more or less

      'realistic').

      Here temporal and spatial complexity is from a computational point of view.

      L283: 'We excluded a centralized model (shortest paths), which was not biologically plausible' ** But in Text S1 and Table S1 you specify the shortest paths models. Does this mean you computed them but did not incorporate them in the final coupling computations even if they were predictive?

      ** Generally, I find the selection of the final 3 communication models confusing. It would be very useful if you could clarify this further, for example in the methods section.

      We used all twenty-seven communication models (including shortest paths) to predict FC at the node level for each participant. Then we identified three communication models that can significantly predict FC. For the shortest path, he was excluded because he did not meet the significance criteria. We have further added methodological details to this section, please see lines 503-507.

      L332 'As we observed increasing coupling in these [frontoparietal network and default mode network] networks, this may have contributed to the improvements in general intelligence, highlighting the flexible and integrated role of these networks' vs L293 'SC-FC coupling in association areas, which have lower structural connectivity, was lower than that in sensory areas. This configuration effectively releases the association cortex from strong structural constraints imposed by early activity cascades, promoting higher cognitive functions that transcend simple sensori-motor exchanges'

      ** I am not sure I follow the reasoning. Could you expand on why it would be the decoupling promoting the cognitive function in one case (association areas generally), but on the reverse the increased coupling in frontoparietal promoting the cognition in the other (specifically frontoparietal)?

      We tried to explain the problem, for general intelligence, increased coupling in frontoparietal could allow more effective information integration enable efficient collaboration between different cognitive processes.

      * Formatting errors etc.

      L52: maybe rephrase?

      We have rephrased, please see lines 51-53: “The T1- to T2-weighted (T1w/T2w) ratio of MRI has been proposed as a means of quantifying microstructure profile covariance (MPC), which reflects a simplified recapitulation in cellular changes across intracortical laminar structure[6, 1215].”

      L68: specialization1,[20].

      We have corrected it.

      L167: 'networks significantly increased with age and exhibited greater increased' - needs rephrasing.

      We have corrected it.

      L194: 'networks were significantly predicted the general intelligence' - needs rephrasing.

      We have corrected it, please see lines 204-205: “we found that the weights of frontoparietal and default mode networks significantly contributed to the prediction of the general intelligence.”

      L447: 'and temporal bandpass filtering' - there is a verb missing.

      We have corrected it, please see line 471: “executed temporal bandpass filtering.”

      L448: 'greater than 0.15' - unit missing.

      We have corrected it, please see line 472: “greater than 0.15 mm”.

      L452: 'After censoring, regression of nuisance variables, and temporal bandpass filtering,' - no need to repeat the steps as you mentioned them 3 sentences earlier.

      We have removed it.

      L458-459: sorry I find this description slightly confusing. What do you mean by 'modal'? Connectional -> connectivity profile. The whole thing could be simplified, if I understand correctly your vector of independent variables is a set of wm and microstructural 'connectivity' of the given node... if this is not the case, please make it clearer.

      We have corrected it, please see line 488: “where 𝒔𝑖 is the 𝑖th SC profiles, 𝑛 is the number of SC profiles”.

      L479: 'values and system-specific of 480 coupling'.

      We have corrected it.

      L500: 'regular' - regularisation.

      We have changed it to “regularization”.

      L567: Do you mean that in contrast to probabilistic with FSL you use deterministic methods within Camino? For L570, you introduce communication models through 'such as': did you fit all models like before? If not, it might be clearer to just list the ones you estimated rather than introduce through 'such as'.

      We have changed the description to avoid ambiguity, please see lines 608-609: “We then calculated the communication properties of the WMC including communicability, mean first passage times of random walkers, and flow graphs (timescales=1).”

      Citation [12], it is unusual to include competing interests in the citation, moreover, Dr. Bullmore mentioned is not in the authors' list - this is most likely an error with citation import, it would be good to double-check.

      We have corrected it.

      L590: Python scripts used to perform PLS regression can 591 be found at https://scikitlearn.org/. The link leads to general documentation for sklearn.

      We have corrected it, please see lines 627-630: “Python scripts used to perform PLS regression can be found at https://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html#sklearn.cro ss_decomposition.PLSRegression.”

      P26 and 27 - there are two related sections: Data and code availability and Code availability - it might be worth merging into one section if possible.

      We have corrected it, please see lines 623-633.

      References

      (1) Arnatkeviciute A, Fulcher BD, Fornito A. A practical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage. 2019;189:353-67. Epub 2019/01/17. doi: 10.1016/j.neuroimage.2019.01.011. PubMed PMID: 30648605.

      (2) Zhong S, He Y, Gong G. Convergence and divergence across construction methods for human brain white matter networks: an assessment based on individual differences. Hum Brain Mapp. 2015;36(5):1995-2013. Epub 2015/02/03. doi: 10.1002/hbm.22751. PubMed PMID: 25641208; PubMed Central PMCID: PMCPMC6869604.

      (3) Waehnert MD, Dinse J, Weiss M, Streicher MN, Waehnert P, Geyer S, et al. Anatomically motivated modeling of cortical laminae. Neuroimage. 2014;93 Pt 2:210-20. Epub 2013/04/23. doi: 10.1016/j.neuroimage.2013.03.078. PubMed PMID: 23603284.

      (4) Paquola C, Vos De Wael R, Wagstyl K, Bethlehem RAI, Hong SJ, Seidlitz J, et al. Microstructural and functional gradients are increasingly dissociated in transmodal cortices. PLoS Biol. 2019;17(5):e3000284. Epub 2019/05/21. doi: 10.1371/journal.pbio.3000284. PubMed PMID: 31107870.

      (5) Haufe S, Meinecke F, Gorgen K, Dahne S, Haynes JD, Blankertz B, et al. On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage. 2014;87:96-110. Epub 2013/11/19. doi: 10.1016/j.neuroimage.2013.10.067. PubMed PMID: 24239590.

      (6) Demirtas M, Burt JB, Helmer M, Ji JL, Adkinson BD, Glasser MF, et al. Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics. Neuron. 2019;101(6):1181-94 e13. Epub 2019/02/13. doi: 10.1016/j.neuron.2019.01.017. PubMed PMID: 30744986; PubMed Central PMCID: PMCPMC6447428.

      (7) Deco G, Kringelbach ML, Arnatkeviciute A, Oldham S, Sabaroedin K, Rogasch NC, et al. Dynamical consequences of regional heterogeneity in the brain's transcriptional landscape. Sci Adv. 2021;7(29). Epub 2021/07/16. doi: 10.1126/sciadv.abf4752. PubMed PMID: 34261652; PubMed Central PMCID: PMCPMC8279501.

      (8) Chen J, Tam A, Kebets V, Orban C, Ooi LQR, Asplund CL, et al. Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study. Nat Commun. 2022;13(1):2217. Epub 2022/04/27. doi: 10.1038/s41467-022-29766-8. PubMed PMID: 35468875; PubMed Central PMCID: PMCPMC9038754.

      (9) Li J, Bzdok D, Chen J, Tam A, Ooi LQR, Holmes AJ, et al. Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectivity. Sci Adv. 2022;8(11):eabj1812. Epub 2022/03/17. doi: 10.1126/sciadv.abj1812. PubMed PMID: 35294251; PubMed Central PMCID: PMCPMC8926333.

      (10) Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, et al. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci U S A. 2014;111(46):16574-9. Epub 2014/11/05. doi: 10.1073/pnas.1405672111. PubMed PMID: 25368179; PubMed Central PMCID: PMCPMC4246325.

      (11) Reveley C, Seth AK, Pierpaoli C, Silva AC, Yu D, Saunders RC, et al. Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proc Natl Acad Sci U S A. 2015;112(21):E2820-8. Epub 2015/05/13. doi: 10.1073/pnas.1418198112. PubMed PMID: 25964365; PubMed Central PMCID: PMCPMC4450402.

      (12) Gu Z, Jamison KW, Sabuncu MR, Kuceyeski A. Heritability and interindividual variability of regional structure-function coupling. Nat Commun. 2021;12(1):4894. Epub 2021/08/14. doi: 10.1038/s41467-021-25184-4. PubMed PMID: 34385454; PubMed Central PMCID: PMCPMC8361191.

      (13) Liu ZQ, Vazquez-Rodriguez B, Spreng RN, Bernhardt BC, Betzel RF, Misic B. Time-resolved structure-function coupling in brain networks. Commun Biol. 2022;5(1):532. Epub 2022/06/03. doi: 10.1038/s42003-022-03466-x. PubMed PMID: 35654886; PubMed Central PMCID: PMCPMC9163085.

      (14) Zamani Esfahlani F, Faskowitz J, Slack J, Misic B, Betzel RF. Local structure-function relationships in human brain networks across the lifespan. Nat Commun. 2022;13(1):2053. Epub 2022/04/21. doi: 10.1038/s41467-022-29770-y. PubMed PMID: 35440659; PubMed Central PMCID: PMCPMC9018911.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      In this study, the authors provide a new computational platform called Vermouth to automate topology generation, a crucial step that any biomolecular simulation starts with. Given a wide arrange of chemical structures that need to be simulated, varying qualities of structural models as inputs obtained from various sources, and diverse force fields and molecular dynamics engines employed for simulations, automation of this fundamental step is challenging, especially for complex systems and in case that there is a need to conduct high-throughput simulations in the application of computer-aided drug design (CADD). To overcome this challenge, the authors develop a programming library composed of components that carry out various types of fundamental functionalities that are commonly encountered in topological generation. These components are intended to be general for any type of molecules and not to depend on any specific force field and MD engines. To demonstrate the applicability of this library, the authors employ those components to re-assemble a pipeline called Martinize2 used in topology generation for simulations with a widely used coarse-grained model (CG) MARTINI. This pipeline can fully recapitulate the functionality of its original version Martinize but exhibit greatly enhanced generality, as confirmed by the ability of the pipeline to faithfully generate topologies for two high-complexity benchmarking sets of proteins.

      Strengths:

      The main strength of this work is the use of concepts and algorithms associated with induced subgraph in graph theory to automate several key but non-trivial steps of topology generation such as the identification of monomer residue units (MRU), the repair of input structures with missing atoms, the mapping of topologies between different resolutions, and the generation of parameters needed for describing interactions between MRUs.

      Weaknesses:

      Although the Vermouth library appears promising as a general tool for topology generation, there is insufficient information in the current manuscript and a lack of documentation that may allow users to easily apply this library. More detailed explanation of various classes such as Processor, Molecule, Mapping, ForceField etc. that are mentioned is still needed, including inputs, output and associated operations of these classes. Some simple demonstration of application of these classes would be of great help to users. The formats of internal databases used to describe reference structures and force fields may also need to be clarified. This is particularly important when the Vermouth needs to be adapted for other AA/CG force fields and other MD engines.

      We thank the reviewer for pointing out the strengths of the presented work and agree that one of the current limitations is the lack of documentation about the library. In the revision, we point more clearly to the documentation page of the Vermouth library, which contains more detailed information on the various processors. The format of the internal databases has also been added to the documentation page. Providing a simple demonstration of applications of these classes is a great suggestion, however, we believe that it is more convenient to provide those in the form of code examples in the documentation or for instance jupyter notebooks rather than in the paper itself.  

      The successful automation of the Vermouth relies on the reference structures that need to be pre-determined. In case of the study of 43 small ligands, the reference structures and corresponding mapping to MARTINIcompatible representations for all these ligands have been already defined in the M3 force field and added into the Vermouth library. However, the authors need to comment on the scenario where significantly more ligands need to be considered and other force fields need to be used as CG representations with a lack of reference structures and mapping schemes.

      We acknowledge that vermouth/martinize2 is not capable of automatically generating Martini mappings or parameters on the fly for unknown structures that are not part of the database. However, this capability is not the purpose of the program, which is rather to distribute and manage existing parameters. Unlike atomistic force fields, which frequently have automated topology builders, Martini parameters are usually obtained for a set of specific molecules at a time and benchmarked accordingly. As more parameters are obtained by researchers, they can be added to the vermouth library via the GitHub interface in a controlled manner. This process allows the database to grow and in our opinion will quickly grow beyond the currently implemented parameters. Furthermore, the API of Vermouth is set up in a way that it can easily interface with automated topology builders which are currently being developed. Hence this limitation in our view does not diminish the applicability of vermouth to high-throughput applications with many ligands. The framework is existing and works, now only more parameters have to be added.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript by Kroon, Grunewald, Marrink and coworkers present the development of Vermouth library for coarse grain assignment and parameterization and an updated version of python script, the Martinize2 program, to build Martini coarse grained (CG) models, primarily for protein systems.

      Strengths:

      In contrast to many mature and widely used tools to build all-atom (AA) models, there are few well-accepted programs for CG model constructions and parameterization. The research reported in this manuscript is among the ongoing efforts to build such tools for Martini CG modeling, with a clear goal of high-throughput simulations of complex biomolecular systems and, ultimately, whole-cell simulations. Thus, this manuscript targets a practical problem in computational biophysics. The authors see such an effort to unify operations like CG mapping, parameterization, etc. as a vital step from the software engineering perspective.

      Weaknesses:

      However, the manuscript in this shape is unclear in the scientific novelty and appears incremental upon existing methods and tools. The only "validation" (more like an example application) is to create Martini models with two protein structure sets (I-TASSER and AlphaFold). The success rate in building the models was only 73%, while the significant failure is due to incomplete AA coordinates. This suggests a dependence on the input AA models, which makes the results less attractive for high-throughput applications (for example, preparation/creation of the AA models can become the bottleneck). There seems to be an improvement in considering the protonation state and chemical modification, but convincing validation is still needed. Besides, limitations in the existing Martini models remain (like the restricted dynamics due to the elastic network, the electrostatic interactions or polarizability).

      We thank the reviewer for pointing out the strengths of the presented work, but respectfully disagree with the criticism that the presented work is only incremental upon existing methods and tools. All MD simulations of structured proteins regardless of the force field or resolution rely on a decent initial structure to produce valid results. Therefore, failure upon detection of malformed protein input structures is an essential feature for any high-throughput pipeline working with proteins, especially considering the computational cost of MD simulations. We note that programs such as the first version of Martinize generate reasonable-looking input parameters that lead to unphysical simulations and wasted CPU hours.

      The alpha-fold database for which we surveyed 200,000 structures only contained 7 problematic structures, which means that the success rate was 99% for this database. This example simply shows that users potentially have to add the step of fixing atomistic protein input structures, if they seek to run a high-throughput pipeline.

      But at least they can be assured that martinize2 will make sure to check that no issues persist.

      Furthermore, we note that the manuscript does not aim to validate or improve the existing Martini (protein) models. All example cases presented in the paper are subject to the limitations of the protein models for the reason that martinize2 is only the program to generate those parameters. Future improvements in the protein model, which are currently underway, will immediately be available through the program to the broader community.  

      Reviewer #3 (Public Review):

      Summary:

      The manuscript Kroon et al. described two algorithms, which when combined achieve high throughput automation of "martinizing" protein structures with selected protonation states and post-translational modifications.

      Strengths:

      A large scale protein simulation was attempted, showing strong evidence that authors' algorithms work smoothly.

      The authors described the algorithms in detail and shared the open-source code under Apache 2.0 license on GitHub. This allows both reproducibility of extended usefulness within the field. These algorithms are potentially impactful if the authors can address some of the issues listed below.

      We thank the reviewer for pointing out the strengths.  

      Weaknesses:

      One major caveat of the manuscript is that the authors claim their algorithms aim to "process any type of molecule or polymer, be it linear, cyclic, branched, or dendrimeric, and mixtures thereof" and "enable researchers to prepare simulation input files for arbitrary (bio)polymers". However, the examples provided by the manuscript only support one type of biopolymer, i.e. proteins. Despite the authors' recommendation of using polyply along with martinize2/vermouth, no concrete evidence has been provided to support the authors' claim. Therefore, the manuscript must be modified to either remove these claims or include new evidence.

      We acknowledge that the current manuscript is largely protein-centric. To some extent this results from the legacy of martinize version 1, which was also only used for proteins. However, to show that martinize2 also works for cyclic as well as branched molecules we implemented two additional test cases and updated formerly Figure 6 and now Figure 7. Crown ether is used as an example of a cyclic molecule whereas a small branched polyethylene molecule is a test case for branching. Needless to say both molecules are neither proteins nor biomolecules. 

      Method descriptions on Martinize2 and graph algorithms in SI should be core content of the manuscript. I argue that Figure S1 and Figure S2 are more important than Figure 3 (protonation state). I recommend the authors can make a workflow chart combining Figure S1 and S2 to explain Martinize2 and graph algorithms in main text.

      The reviewer's critique is fair. Given the already rather large manuscript, we tried to strike a balance between describing benchmark test cases, some practical usage information (e.g. the Histidine modification), and the algorithmic library side of the program. In particular, we chose to add the figure on protonation state, because how to deal with protonation states—in particular, Histidines—was amongst the top three raised issues by users on our GitHub page. Due to this large community interest, we consider the figure equally important. However, we moved Figure S1 from the Supporting Information into the manuscript and annotated the already mentioned text with the corresponding panels to more clearly illustrate the underlying procedure. 

      In Figure 3 (protonation state), the figure itself and the captions are ambiguous about whether at the end the residue is simply renamed from HIS to HIP, or if hydrogen is removed from HIP to recover HIS.

      Using either of the two routes yields the same parameters in the end, which are for the protonated Histidine. In the second route, the extra hydrogen on Histidine is detected as an additional atom and therefore a different logic flow is triggered. Atoms are never removed, but only compounded to a base block plus modification atoms. We adjusted the figure caption to point this out more clearly.  

      In "Incorporating a Ligand small-molecule Database", the authors are calling for a community effort to build a small-molecule database. Some guidance on when the current database/algorithm combination does or does not work will help the community in contributing.

      Any small molecule not part of the database will not work. However, martinize2 will quickly identify if there are missing components of the system and alert the users. At that point, the users can decide to make their files, guided by the new documentation pages. 

      A speed comparison is needed to compare Martinize2 and Martinize.

      We respectfully disagree that a speed comparison is needed. We already alerted in the manuscript discussion that martinize2 is slower, since it does more checks, is more general, and does not only implement a single protein model.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary: 

      This study investigated the role of CD47 and TSP1 in extramedullary erythropoiesis by utilization of both global CD47-/- mice and TSP1-/- mice. 

      Strengths:  

      Flow cytometry combined with spleen bulk and single-cell transcriptomics were employed. The authors found that stress-induced erythropoiesis markers were increased in CD47-/- spleen cells, particularly genes that are required for terminal erythroid differentiation. Moreover, CD47 dependent erythroid precursors population was identified by spleen scRNA sequencing. In contrast, the same cells were not detected in TSP1-/- spleen. These findings provide strong evidence to support the conclusion that the differential role of CD47 and TSP1 in extramedullary erythropoiesis in mouse spleen. 

      Weaknesses: 

      Methods and data analysis are appropriate. However, some clarifications are required. The discussion section needs to be expanded.  

      (1) The sex of mice that were used in the study is unknown.  

      (2) In the method of Single-cell RNA sequencing (page 10), it mentioned that single cell suspensions from mouse spleens were depleted of all mature hematopoietic cell lineages by passing through CD8a microbeads and CD8a+ T cell isolation Kit. As described, it is confusing what cell types are obtained for performing scRNAseq. More information is required for clarity.  

      (3) The constitutive CD47 knockout mouse model is utilized in this study. The observed accumulation of erythroid precursors in the spleens of CD47-/- mice suggests a chronic effect of CD47 on spleen function. Can the current findings be extrapolated to acute scenarios involving CD47 knockdown or loss, as this may have more direct relevance to the potential side effects associated with an-CD47-mediated cancer therapy? Please expand on this topic in the discussion section.  

      (1) The missing mouse gender information is incorporated into the revised manuscript. For flow cytometry, two male and two female mice of each genotype were used. For single cell RNA sequencing, two female and one male mouse of each genotype were used. For the bulk RNA sequencing four male cd47−/− mice and four male wildtype mice were used.

      (2) We apologize for the confusing presentation, which has been corrected. The bulk RNA sequencing analysis identified elevated expression of erythropoietic genes in CD8+ spleen cells from cd47−/− versus wildtype mice that were obtained using magnetic bead depletion of all other lineages. Therefore, we used the same Miltenyi negative selection kit as the first step to prepare the cells for single cell RNA sequencing. These untouched cells were then depleted of most mature CD8 T cells using a Miltenyi CD8a(Ly2) antibody positive selection kit. An important consideration underlying this approach was recognizing that the commercial magnetic bead depletion kits used for preparing specific immune cell types are optimized to give relatively pure populations of the intended immune cells using wildtype mice. Our previous experience studying NK cell development in the cd47−/− mice taught us that NK precursors, which are rare in wildtype mouse spleens, accumulate in cd47−/− spleens and were not removed by the antibody cocktail optimized for wildtype spleen cells (Nath et al Front Immunol 2018). The present data indicate that erythroid precursors behave similarly.

      (3) The Discussion was edited as recommended. Anemia is a prevalent side effect of several CD47 therapeutic antibodies being developed for cancer therapy. This anemia would be expected to induce erythropoiesis in bone marrow and possibly at extramedullary sites. Human spleen cells are not accessible to directly evaluate extramedullary erythropoiesis in cancer patients, but analysis of circulating erythroid precursors or liquid biopsy methods could be useful to detect induction of extramedullary erythropoiesis by these therapeutics. We are currently investigating the ability of CD47 antibodies to directly induce erythropoiesis using a human in vitro model.

      Reviewer #2 (Public Review):

      Summary: 

      The authors used existing mouse models to compare the effects of ablating the CD47 receptor and its signaling ligand Thrombospondin. The CD47-KO model used in this study was generated by Kim et al, 2018, where hemolytic anemia and splenomegaly was reported. This study analyzes the cell composition of the spleens from CD47-KO and Thsp-KO, focusing on early hematopoietic and erythroid populations. The data broadly shows that splenomegaly in the CD47-KO is largely due to an increase in committed erythroid progenitors as seen by Flow Cytometry and single-cell sequencing, whereas the Thsp-KO shows a slight depletion of committed erythroid progenitors but is otherwise similar to WT in splenic cell composition.  

      Strengths:

      The techniques used are appropriate for the study and the data support the main conclusions of the study. This study provides novel insights into a putative role of Thsp-CD47 signaling in triggering definitive erythropoiesis in the mouse spleen in response to anemic stress and constitutes a good resource for researchers seeking to understand extramedullary erythropoiesis.  

      Weaknesses:

      The Flow cytometry data alone supports the authors' main conclusion and single-cell sequencing confirms them but does not add further information, other than those already observed in the Flow data. The single-cell sequencing analysis and presentation could be improved by using alternate clustering methods as well as separating the data by genotype and displaying them in order for readers to fully grasp the nuanced differences in marker expression between the genotypes. Further, it is not clear from the authors' description of their results whether the increased splenic erythropoiesis is a direct consequence of CD47-KO or a response to the anemic stress in this mouse model. The enrichment of cKit+ Ter119+ Sca1- cells in CD47-KO indicates that these are likely stress erythroid progenitors. Another CD47-KO mouse model (Lindberg et al 1996) has no reported erythroid defects and was also not examined in this study.  

      (1) The reviewer asked, “whether the increased splenic erythropoiesis is a direct consequence of CD47-KO or a response to the anemic stress in this mouse model.” Our data supports both a direct role for CD47 and an indirect role resulting from the response to anemic stress. We cited our previous publications describing increased Sox2+ stem cells in spleens of Cd47 and Thbs1 knockout mice, but we neglected to emphasize another study where we found that bone marrow from cd47−/− mice subjected to the stress of ionizing radiation exhibited more colony forming units for erythroid (CFU-E) and burst-forming unit-erythroid (BFU-E) progenitors compared to bone marrow from irradiated wildtype mice (Maxhimer Sci Transl Med 2009). Taken together, our published data demonstrates that loss of CD47 results in an intrinsic protection of hematopoietic stem cells from genotoxic stress. This function of CD47 is thrombospondin-1-dependent and is consistent with the up-regulation of early erythroid precursors in the spleens of both knockout mice but cannot explain why the Thbs1−/−  mice have fewer committed erythroid precursors than wildtype. We cited studies that documented increased red cell turnover in cd47−/− mice but less red cell turnover in Thbs1−/−  mice compared to wildtype mice. Increased red cell clearance in cd47−/− mice is mediated by loss of the “don’t eat me” function of CD47 on red cells. In wildtype mice, clearance is augmented by thrombospondin-1 binding to the clustered CD47 on aging red cells (Wang, Aging Cell 2020). Thus, anemic stress in the mouse strains studied here decreases in the order cd47−/− > WT > Thbs−/−. This is consistent with the increased committed erythroid progenitors reported here in cd47−/− spleens and decreased committed progenitors in the Thbs1−/− spleens. 

      (2) Based on the reviewer’s question regarding alternative mechanisms and the publication of Yang et al 2022 identifying a role for CD47 in stress erythropoiesis though transfer of mitochondria to erythroblasts, we asked whether cd47-/- erythroid precursors  would show decreased mRNA expression for mitochondrial chromosome genes (new Figure 4−figure supplement 3C). Some of these mRNAs were more abundant in cd47-/- and thbs1-/- erythroid cells, which is the opposite of what we expected based on Yang 2022 but consistent with our previous publications identifying thrombospondin-1 and CD47 as negative regulators of mitochondrial homeostasis in muscle cells and T cells.

      (3) The cd47−/− mice used for the current study are the same strain as those reported by Lindberg et al in 1996, with additional backcrossing onto a C57BL/6 background.

      Recommendations For The Authors:

      Reviewer #2 (Recommendations For The Authors):

      Suggestions for improved or additional experiments, data, or analyses.  

      Significant efforts went into analyzing the type of erythroid progenitors by marker expression, but typical Flow cytometry strategies using Ter119 and CD44 combined with forward scatter can be used to stage the committed erythroid progenitors precisely.  

      We appreciate this suggestion to extend the flow data. However, the upcoming retirement of the PI required closing our breeding colony, and the mice are no longer available.  

      How can the difference between the erythroid phenotypes of the Lindberg et al 1996 CD47-KO (exon2 Neo knock-in) and Kim et al 2018 CD47-ko (exon1 26bp indel) be explained?  

      We are not convinced that the erythroid phenotypes of the Lindberg and Kim CD47-KO mice differ at the age used in our studies. Kim et al. focused on progressive hemolytic anemia and changes in T cells in spleen that emerge at 26 weeks age, whereas the mice used here were younger. The Lindberg and Kim mice have similar spleen enlargement at the age we used.

      Another manuscript under review from our lab suggests that cis-regulation of an adjacent colinear gene could contribute to some phenotypes observed when perturbing the Cd47 gene. The Lindberg mouse exhibits minimal perturbation of that adjacent gene, but we have no data regarding the Kim et al mouse. The reviewer’s question brought to our attention that we neglected to state in the Methods that the mice used here are the Lindberg mice, not the Kim mice. This omission is now corrected.

      The authors used Lindberg mouse for 2018 study on NK cells and observed splenomegaly. Did they check for extramedullary erythropoiesis there?  

      Retrospective examination of the RNAseq data for the spleen cells enriched in NK precursors used in our 2018 publication (Nath, 2018) reveals significantly elevated expression for a majority of the extramedullary erythroid markers listed in Table 1, but they were generally less abundant than observed for the lineage-depleted spleen cells used in the present manuscript.   

      Author response table 1.

      To clarify the stress erythropoiesis issue, it might be helpful to examine the sc-seq data for the expression of specific stress erythropoiesis markers in CD47-KO. Targets of BMP4 and Hedgehog signaling can also be examined. Further colony assays can help determine if stress BFU-Es are prevalent in the CD47-KO spleens and depleted in Thsp-KO  

      As noted in Table 1, twelve of the genes we studied are established markers of stress-induced extramedullary erythropoiesis, and most of these were included in the scRNA seq data presented. Our previous publication demonstrated that bone marrow from cd47−/− mice subjected to the stress of ionizing radiation exhibited more colony forming units for erythroid (CFU-E) and burst-forming unit-erythroid (BFU-E) progenitors compared to bone marrow from irradiated wildtype mice (Maxhimer Sci Transl Med 2009). We have not performed colony formation assays using spleen.

      To address the reviewer’s question regarding BMP4 and hedgehog signaling we performed gene set enrichment analysis for known BMP4 and hedgehog signaling signatures. Using GSE26351_UNSTIM_VS_BMP_PATHWAY_STIM_HEMATOPOIETIC_PROGENITORS, cd47-/- cells in cluster 12 or their CD34+ orCD34- subsets did not show significant enrichment for BMP4 targets compared to WT. Thbs1-/- cells in clusters 12 and 14 showed marginally significant depletion of the BMP4 signature (p=0.04 and p=0.023, respectively). Using the KEGG_HEDGEHOG_SIGNALING_PATHWAY, we did not find any significant enrichment. However, only a few genes in this pathway were detectable in the scRNAseq data. These data suggest that the BMP4 signaling may be regulated by thrombospondin-1, but properly testing this hypothesis would require achieving greater sequencing depth combined with a cell isolation method that better enriches the early hematopoietic progenitors that are known to utilize the BMP4 pathway.

      In the reclustering of erythroid progenitors in Figure 5, inclusion of Gata1 as a selection marker may help capture more of the early erythroid progenitors from the dataset and provide a more complete picture of the erythroid populations. 

      We thank the reviewer for suggesting inclusion of Gata1. We repeated the reclustering including Gata1 and found the selected cell count increased from 876 cells to 1007 cells. However, most of the increase was not in the erythroid cluster, which increased from 413 cells to 419 cells. Most of the increase represented Gata1+ T cells (548 cells including Gata1 versus 463 cells without). The revised manuscript presents genotype-dependent differential gene expression based on including Gata1 selection, but none of the specific conclusions were changed from the initial submission. The new Table 4 and Figure 7−figure supplement 1 enabled us to compare differential expression of erythropoietic genes obtained using supervised and unsupervised clustering and show that both methods yield comparable results.

      Just out of curiosity, was there an attempt to make a CD47 Thsp double KO? . Is it viable?  

      Cd47 KO mice are somewhat difficult breeders, and several previous attempts to cross with other transgenics have produced viable homozygous offspring that could not be propagated.

      Recommendations for improving the wring and presentation.  

      Perhaps readers would find it more intriguing if the paper led with the single-cell sequencing showing enrichment of erythroid populations in CD47-KO, and later confirmed with Flow Cytometry (even if this was not necessarily the order in which the experiments were done). 

      We considered this suggestion but believe that some of the flow cytometry data is needed to understand why we focused on CD34+ and CD34- subsets and proliferation markers when analyzing the scRNAseq data

      The single-cell sequencing data in Figure 3 might benefit from UMAP clustering as well. In addition, it would greatly help readers if the data points were separated by genotype and displayed after clustering. A similar analysis has been done in this paper: doi:10.1038/s41556-022-00898-9 by clustering different conditions together but displaying them separately by condition. 

      We initially explored tSNE and UMAP clustering and obtained similar results. We have added violin plots separated by genotype in Figure 4-figure supplement 2. We also included improved clusters separated by genotype in the revised Figure 3 panels C and D and for the reclustering in Figure 6D. UMAP plots provided better presentation for the reclustering (revised Figure 7). All data have been updated to the latest pipeline as noted in the Methods.

      Minor corrections to the text and figures.  

      Figure 4: Labels and plot legends are illegible in general, please relabel manually and if possible, redo plots with bigger font size and legends (relatively easy using ggplot2) 

      All figure panels were relabeled using larger fonts

      Figure 5D: Individual plots are stacked randomly atop each other and in many cases, gene names are not visible. Please restack the layers and ensure that the gene names are visible 

      Panel D was made a separate figure with enlarged labels (now Figure 7).

      Supp Fig 2: Layout can be organized a little better. Consider splitting into two figures for better organization  

      The figure was split as recommended. Now Figure 1-figure supplement 2 and Figure 2-figure supplement

      1.

      Abstract Line 10: "...mRNA expression of Kit, Ermap, and Tfrc, Induction of committed erythroid precursors is...". Replace comma after "Tfrc" with period   

      Done.

      Discussion Page 9 Line 8: "...WT spleens, s. mRNAs for some markers of committed erythroid cells including Nr3c1 mRNA...". Remove ", s" after spleens.   

      Done.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents a valuable finding on the mechanism to promote distant metastasis in breast cancer. The evidence supporting the claims of the authors is convincing. The work will be of interest to medical biologists working on breast cancer.

      Public Reviews:

      Reviewer #1 (Public Review):

      Strengths

      The paper has shown the expression of RGS10 is related to the molecular subtype, distant metastasis, and survival status of breast cancer. The study utilizes bioinformatic analyses, human tissue samples, and in vitro and in vivo experiments which strengthen the data. RGS10 was validated to inhibit EMT through a novel mechanism dependent on LCN2 and miR-539-5p, thereby reducing cancer cell proliferation, colony formation, invasion, and migration. The study elaborated the function of RGS10 in influencing the prognosis and biological behavior which could be considered as a potential drug target in breast cancer.

      Weakness

      The mechanism by which the miR-539-5p/RGS10/LCN2 axis may be related to the prognosis of cancer patients still needs to be elucidated. In addition, the sample size used is relatively limited. Especially, if further exploration of the related pathways and mechanisms of LCN2 can be carried out by using organoid models, as well as the potential of RGS10 as a biomarker for further clinical translation to verify its therapeutic target effect, which will make the data more convincing.

      Answer: Thank you for your comments and suggestions. In future research, we will utilize large clinical cohorts and organoid models to further explore relevant research mechanisms.

      Reviewer #2 (Public Review):

      Liu et al., by focusing on the regulation of G protein-signaling 10 (RGS10), reported that RGS10 expression was significantly lower in patients with breast cancer, compared with normal adjacent tissue. Genetic inhibition of RGS10 caused epithelial-mesenchymal transition, and enhanced cell proliferation, migration, and invasion, respectively. These results suggest an inhibitory role of RGS10 in tumor metastasis. Furthermore, bioinformatic analyses determined signaling cascades for RGS10-mediated breast cancer distant metastasis. More importantly, both in vitro and in vivo studies evidenced that alteration of RGS10 expression by modulating its upstream regulator miR-539-5p affects breast cancer metastasis. Altogether, these findings provide insight into the pathogenesis of breast tumors and hence identify potential therapeutic targets in breast cancer.

      The conclusions of this study are mostly well supported by data. However, there is a weakness in the study that needs to be clarified.

      In Figure 2A, although some references supported that SKBR3 and MCF-7 possess poorly aggressive and less invasive abilities, examining only RGS10 expression in those cells, it could not be concluded that 'RGS10 acts as a tumor suppressor in breast cancer'. It would be better to introduce a horizontal comparison of the invasive ability of these 3 types of cells using an invasion assay.

      Answer: Thank you for your comments and suggestions. MDA-MB-231, SKBR3, and MCF-7 originate from triple-negative breast cancer (high invasiveness), Her-2 receptor overexpression (relatively weak invasiveness), and luminal type breast cancer (relatively weak invasiveness) separately. Previous studies have demonstrated the invasive ability of these 3 types of cells. (PMID: 34390568)

      Reviewer #3 (Public Review):

      Distant metastasis is the major cause of death in patients with breast cancer. In this manuscript, Liu et al. show that RGS10 deficiency elicits distant metastasis via epithelial-mesenchymal transition in breast cancer. As a prognostic indicator of breast cancer, RGS10 regulates the progress of breast cancer and affects tumor phenotypes such as epithelial-mesenchymal transformation, invasion, and migration. The conclusions of this paper are mostly well supported by data, but some analyses need to be clarified.

      (1) Because diverse biomarkers have been identified for EMT, it is recommended to declare the advantages of using RGS10 as an EMT marker.

      Answer: Thank you for your comments. The dysregulation of RGS protein expression has been observed to be associated with various types of cancer. (PMID: 26293348). Previous studies have shown that RGS10 knocking down can lead to chemotherapy resistance of ovarian cancer cells to paclitaxel, cisplatin, and vincristine. In colorectal tumors, the transcription of RGS10 is regulated by DNA methylation and histone deacetylation. As a key regulatory factor in the G protein signaling pathway, RGS 10 is involved in tumor development including survival, polarization, adhesion, chemotaxis, and differentiation, these hints suggest RGS10 might be a marker for EMT in breast cancer.

      (2) The authors utilized databases to study the upstream regulatory mechanisms of RSG10. It is recommended to clarify why the authors focused on miRNAs rather than other epigenetic modifications.

      Answer: Thank you for your comments. miRNAs are short-chain non-coding RNA molecules that bind to the target mRNA's 3 'untranslated region (3'UTR) to cause mRNA degradation or translation inhibition, thus regulating gene expression in cells. These small molecules play a crucial role in regulating the expression of cancer-related genes and can act as tumor promoters or tumor suppressors. To further improve the molecular mechanism of malignant biological behavior of breast cancer cells with RGS10, we verified that miR-539-5p might be the upstream regulation target of RGS10 through bioinformatics prediction and in-vitro experiments.

      (3) The role of miR-539-5p in breast cancer has been described in previous studies. Hence, it is recommended to provide detailed elaboration on how miR-539-5p regulates the expression of RSG10.

      Answer: Thank you for your comments. To verify the effect of miRNA-539-5p regulating the expression of RSG10, we transfected miR-539-5p mimic, miR-539-5p mimic NC, miR-539-5p inhibitor, miR-539-5p inhibitor NC in SKBR3 cells and MDA-MB-231 cells respectively, and verified the expression of RGS10 through RT-qPCR and Western blot experiments. The results showed that compared with the transfected miR-539-5p mimic NC or wild-type SKBR3 cells, RGS10 m RNA and protein levels were significantly reduced. On the contrary, after MDA-MB-231 cells were transfected with miR-539-5p inhibitor to inhibit the expression of miR-539-5p, RGS10 mRNA and protein levels in MDA-MB-231 cells were significantly increased (Fig. 3.4A-C, Fig. 3.5A-C). This indicates that miR-539-5p can target and regulate RGS10.

      (4) To enhance the clarity and interpretability of the Western blot results, it would be advisable to mark the specific kilodalton (kDa) values of the proteins.

      Answer: Thank you for your comments and suggestions. We have corrected to mark the specific kilodalton (kDa) values of the proteins in WB.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      The function of RGS10 in breast cancer was identified in the paper. However, some major issues in this paper need to be specified:

      (1) From reading the introduction section and its references, RGS proteins participate in multiple essential cellular processes and may be tumor initiators or suppressors (Li et al., 2023). This article focuses on the significance of RGS10 in breast cancer, it is recommended to show how the function of RGS10 exhibits therapeutic significance in other types of cancer.

      Answer: Thanks for your comments and suggestions on our findings. The dysregulation of RGS protein expression has been observed to be associated with various types of cancer. Especially in ovarian cancer cells. (PMID: 26293348). It has been found that the RGS10 expression is lower than that of normal ovarian cells. (PMID: 21044322). In addition, it has been found that knocking down RGS10 can enhance the vitality of ovarian cancer cells and promote chemoresistance by activating the Rheb GTP/mTOR signaling pathway. (PMID: 26319900). A study suggests that RGS10 mediates inflammation signaling regulation in SKOV-3 ovarian cancer cells with high expression of TNF and COX-2 after RGS10 knockdown. In colorectal tumors, RGS10 transcription is regulated by DNA methylation and histone deacetylation. (PMID: 35810565). RGS10 expression also are associated with poor prognosis in laryngeal cancer, hepatocellular carcinoma, and pediatric acute myeloid leukemia. (PMID: 32776811, PMID: 26516143, PMID: 30538250)

      (2) The authors characterize RGS10 protein expression in the breast cancer cell lines MDA-MB-231, MCF7, and SKBR3 in vitro Figure 2A. However, more information would strengthen the data - e.g. information on the expression of RGS10 protein and the survival in public databases, as well as the correlation between RGS10 and Her-2 expression.

      Answer: Thanks for your comments. we have checked the correlation of RGS10 expression and survival rate of Her-2 positive breast cancer patients in a public database. Although there is no significant difference in the “p” value, however, RGS10 high-expression patients have a favorable prognosis tendency than RGS10 low-expression patients after the 100th month.

      Author response image 1.

      (3) Regarding the current situation of clinical trials in the RGS family, the potential to develop RGS 10 for clinic translation is a driving factor for EMT.

      Answer: Thank you for your comments. The RGS (G protein signal transduction regulator) gene family provides an important "braking" function for the cell receptor family of G-protein coupled receptors (GPCR). GPCR controls hundreds of important functions in systemic cells and is the largest class of drug targets, with over one-third of FDA approved drugs treating diseases by binding to GPCR and altering its activity. When GPCRs are activated by hormones or neurotransmitters, they initiate signaling cascades within host cells through signal-carrying proteins called G proteins. The function of the RGS protein is to inactivate the G protein, thereby shutting down this signaling cascade reaction, which limits G protein signal transduction and allows cells to reset and receive new incoming signals. If it were not for it, the signals triggered by GPCR would inappropriately remain on, and the signal transduction would experience dysfunction (PMID: 33007266). The potential to develop RGS10 as a driving factor of EMT is meaningful for clinic translation.

      (4) In Figure 3A, the paper showed that differential gene expression revealed 70 genes were significantly upregulated in RGS10-depleted SKBR3 cells, The authors didn't show any data on the expression of other EMT-related proteins in pathway analysis.

      Answer: Thank you for your comments. The enrichment analysis of RNA sequencing in RGS10-depleted SKBR3 cells suggests that high correlation factors that are associated with EMT, such as TAGLN, TNFSF10, NDUFA4L2, CCN5, PHGDH, ST3GAL5, ANG, and LCN2.

      (5) In Figure 3B, the paper focuses on LCN2 in pathway analysis, however, the author did not elaborate on the significance of LCN2-related pathways in EMT.

      Answer: Thank you for your comments. Some studies have the significance of LCN2-related pathways in EMT. It was confirmed that LCN2 upregulation triggered by PTEN insufficiency induces EMT to promote migration and invasion in MCF7 cells (PMID: 27466505). The activation of STAT3 contributes to an increase in LCN2 expression, which activates ERK pathway-dependent EMT, thus promoting lung metastasis in MDA-MB-231 cells in breast cancer (PMID: 33473115). The silencing of LCN2 reduced the ability of migration and invasion of SUM149 cells and the proportion of tumor stem cells, suggesting that LCN2 may mediate the invasion and metastasis of cancer cells by regulating the stemness of breast cancer cells. The biological effects of LCN2 small molecule inhibitors ZINC00640089 and ZINC00784494 targeting IBC cells have been confirmed. The siRNA-mediated silencing of LCN2 in IBC cells significantly reduces cell proliferation, viability, migration, and invasion. (PMID: 34445288).

      (6) Minor: the author did not conduct a semi-quantitative analysis of the immunohistochemical results of RGS10.

      Answer: Thank you for your suggestion. We would like to demonstrate the qualitative analysis of RGS10 immunohistochemistry. The semi-quantitative analysis is not required in the paper.

      Reviewer #2 (Recommendations For The Authors):

      The role of RGS10 was well-characterized in this study, However, some minor points need to be modified.

      (1) Page 15 line 296, description of cell proliferation was missing, please modify.

      Answer: Thank you for your comments. We have corrected the description of cell proliferation on Page 15 highlighted in red.

      (2) In Figure 2C, the title of the Y-axis was missing.

      Answer: Thank you for your comments. We have corrected the description of the Y-axis title in Figure 2C.

      (3) Describe the transfection reagent that was used in this study, and incorporated into the methods section.

      Answer: Thank you for your comments. We have added the description of the transfection reagent to the methods section.

      (4) The manuscript needs proofreading.

      Answer: Thank you for your comments. We have proofread the manuscript.

    1. Author response:

      We would like to thank the reviewers for their constructive feedback. We have thoroughly considered their concerns and comments and we aim to include some additional results in an updated version of this manuscript. In addition, we would like to address some of the comments, with which we respectfully disagree. Below is our point-by-point reply.

      Reviewer 1:

      Summary:

      This paper is focused on the role of Cadherin Flamingo (Fmi) - also called Starry night (stan) - in cell competition in developing Drosophila tissues. A primary genetic tool is monitoring tissue overgrowths caused by making clones in the eye disc that express activated Ras (RasV12) and that are depleted for the polarity gene scribble (scrib). The main system that they use is ey-flp, which makes continuous clones in the developing eye-antennal disc beginning at the earliest stages of disc development. It should be noted that RasV12, scrib-i (or lgl-i) clones only lead to tumors/overgrowths when generated by continuous clones, which presumably creates a privileged environment that insulates them from competition. Discrete (hs-flp) RasV12, lgl-i clones are in fact out-competed (PMID: 20679206), which is something to bear in mind. 

      We think it is unlikely that the outcome of RasV12, scrib (or lgl) competition depends on discrete vs. continuous clones or on creation of a privileged environment. As shown in the same reference mentioned by the reviewer, the outcome of RasV12, scrib (or lgl) tumors greatly depends on the clone being able to grow to a certain size. The authors show instances of discrete clones where larger RasV12, lgl clones outcompete the surrounding tissue and eliminate WT cells by apoptosis, whereas smaller clones behave more like losers. It is not clear what aspect of the environment determines the ability of some clones to grow larger than others, but in neither case are the clones prevented from competition. Other studies show that in mammalian cells, RasV12, scrib clones are capable of outcompeting the surrounding tissue, such as in Kohashi et al (2021), where cells carrying both mutations actively eliminate their neighbors.

      The authors show that clonal loss of Fmi by an allele or by RNAi in the RasV12, scrib-i tumors suppresses their growth in both the eye disc (continuous clones) and wing disc (discrete clones). The authors attributed this result to less killing of WT neighbors when Myc over-expressing clones lacking Fmi, but another interpretation (that Fmi regulates clonal growth) is equally as plausible with the current results.

      See point (1) for a discussion on this.

      Next, the authors show that scrib-RNAi clones that are normally out-competed by WT cells prior to adult stages are present in higher numbers when WT cells are depleted for Fmi. They then examine death in RasV12, scrib-i ey-FLP clones, or in discrete hs-FLP UAS-Myc clones. They state that they see death in WT cells neighboring RasV12, scrib-i clones in the eye disc (Figures 4A-C). Next, they write that RasV12, scrib-I cells become losers (i.e., have apoptosis markers) when Fmi is removed. Neither of these results are quantified and thus are not compelling. They state that a similar result is observed for Myc over-expression clones that lack Fmi, but the image was not compelling, the results are not quantified and the controls are missing (Myc over-expressing clones alone and Fmi clones alone).

      We assayed apoptosis in UAS-Myc clones in eye discs but neglected to include the results in Figure 4. We will include them in the updated manuscript. Regarding Fmi clones alone, we direct the reviewer’s attention to Fig. 2 Supplement 1 where we showed that fminull clones cause no competition. Dcp-1 staining showed low levels of apoptosis unrelated to the fminull clones or twin-spots, and we will comment on this in the revised manuscript.

      Regarding the quantification of apoptosis, we did not provide a quantification, in part because we observe a very clear visual difference between groups (Fig. 4A-K), and in part because it is challenging to come up with a rigorous quantification method. For example, how far from a winner clone can an apoptotic cell be and still be considered responsive to the clone? For UAS-Myc winner clones, we observe a modest amount of cell death both inside and outside the clones, consistent with prior observations. For fminull UAS-Myc clones, we observe vastly more cell death within the fminull UAS-Myc clones and modest death in nearby wildtype cells, and consequently a much higher ratio of cell death inside vs outside the clone. Because of the somewhat arbitrary nature of quantification, and the dramatic difference, we initially chose not to provide a quantification. However, given the request, we chose an arbitrary distance from the clone boundary in which to consider dying cells and counted the numbers for each condition. We view this as a very soft quantification, but will report it in a way that captures the phenomenon in the revised manuscript.

      They then want to test whether Myc over-expressing clones have more proliferation. They show an image of a wing disc that has many small Myc overexpressing clones with and without Fmi. The pHH3 results support their conclusion that Myc overexpressing clones have more pHH3, but I have reservations about the many clones in these panels (Figures 5L-N).

      As the reviewer’s reservations are not specified, we have no specific response.

      They show that the cell competition roles of Fmi are not shared by another PCP component and are not due to the Cadherin domain of Fmi. The authors appear to interpret their results as Fmi is required for winner status. Overall, some of these results are potentially interesting and at least partially supported by the data, but others are not supported by the data.

      Strengths: 

      Fmi has been studied for its role in planar cell polarity, and its potential role in competition is interesting.

      Weaknesses:

      (1) In the Myc over-expression experiments, the increased size of the Myc clones could be because they divide faster (but don't outcompete WT neighbors). If the authors want to conclude that the bigger size of the Myc clones is due to out-competition of WT neighbors, they should measure cell death across many discs of with these clones. They should also assess if reducing apoptosis (like using one copy of the H99 deficiency that removes hid, rpr, and grim) suppresses winner clone size. If cell death is not addressed experimentally and quantified rigorously, then their results could be explained by faster division of Myc over-expressing clones (and not death of neighbors). This could also apply to the RasV12, scrib-i results.

      Indeed, Myc clones have been shown to divide faster than WT neighbors, but that is not the only reason clones are bigger. As shown in (de la Cova et al, 2004), Myc-overexpressing cells induce apoptosis in WT neighbors, and blocking this apoptosis results in larger wings due to increased presence of WT cells. Also, (Moreno and Basler, 2004) showed that Myc-overexpressing clones cause a reduction in WT clone size, as WT twin spots adjacent to 4xMyc clones are significantly smaller than WT twin spots adjacent to WT clones. In the same work, they show complete elimination of WT clones generated in a tub-Myc background. Since then, multiple papers have shown these same results. It is well established then that increased cell proliferation transforms Myc clones into supercompetitors and that in the absence of cell competition, Myc-overexpressing discs produce instead wings larger than usual.

      In (de la Cova et al, 2004) the authors already showed that blocking apoptosis with H99 hinders competition and causes wings with Myc clones to be larger than those where apoptosis wasn’t blocked. As these results are well established from prior literature, there is no need to repeat them here.

      (2) This same comment about Fmi affecting clone growth should be considered in the scrib RNAi clones in Figure 3.

      In later stages, scrib RNAi clones in the eye are eliminated by WT cells. While scrib RNAi clones are not substantially smaller in third instar when competing against fmi cells (Fig 3M), by adulthood we see that WT clones lacking Fmi have failed to remove scrib clones, unlike WT clones that have completely eliminated the scrib RNAi clones by this time. We therefore disagree that the only effect of Fmi could be related to rate of cell division.

      (3) I don't understand why the quantifications of clone areas in Figures 2D, 2H, 6D are log values. The simple ratio of GFP/RFP should be shown. Additionally, in some of the samples (e.g., fmiE59 >> Myc, only 5 discs and fmiE59 vs >Myc only 4 discs are quantified but other samples have more than 10 discs). I suggest that the authors increase the number of discs that they count in each genotype to at least 20 and then standardize this number.

      Log(ratio) values are easier to interpret than a linear scale. If represented linearly, 1 means equal ratios of A and B, while 2A/B is 2 and A/2B is 0.5. And the higher the ratio difference between A and B, the starker this effect becomes, making a linear scale deceiving to the eye, especially when decreased ratios are shown. Using log(ratios), a value of 0 means equal ratios, and increased and decreased ratios deviate equally from 0.

      Statistically, either analyzing a standardized number of discs for all conditions or a variable number not determined beforehand has no effect on the p-value, as long as the variable n number is not manipulated by p-hacking techniques, such as increasing the n of samples until a significant p-value has been obtained. While some of our groups have lower numbers, all statistical analyses were performed after all samples were collected. For all results obtained by cell counts, all samples had a minimum of 10 discs due to the inherent though modest variability of our automated cell counts, and we analyzed all the discs that we obtained from a given experiment, never “cherry-picking” examples. For the sake of transparency, all our graphs show individual values in addition to the distributions so that the reader knows the n values at a glance.

      (5) Figure 4 - shows examples of cell death. Cas3 is written on the figure but Dcp-1 is written in the results. Which antibody was used? The authors need to quantify these results. They also need to show that the death of cells is part of the phenotype, like an H99 deficiency, etc (see above).

      Thank you for flagging this error. We used cleaved Dcp-1 staining to detect cell death, not Cas3 (Drice in Drosophila). We will update all panels replacing Cas3 by Dcp-1.

      As described above, cell death is a well established consequence of myc overexpression induced cell death and we feel there is no need to repeat that result. To what extent loss of Fmi induces excess cell death or reduces proliferation in “would-be” winners, and to what extent it reduces “would-be” winners’ ability to eliminate competitors are interesting mechanistic questions that are beyond the scope of the current manuscript.

      (6) It is well established that clones overexpressing Myc have increased cell death. The authors should consider this when interpreting their results.

      We are aware that Myc-overexpressing clones have increased cell death, but it has also been demonstrated that despite that fact, they behave as winners and eliminate WT neighboring cells. And as mentioned in comment (1), WT clones generated in a 3x and 4x Myc background are eliminated and removed from the tissue, and blocking cell death increases the size of WT “losers” clones adjacent to Myc overexpressing clones.

      (7) A better characterization of discrete Fmi clones would also be helpful. I suggest inducing hs-flp clones in the eye or wing disc and then determining clone size vs twin spot size and also examining cell death etc. If such experiments have already been done and published, the authors should include a description of such work in the preprint.

      We have already analyzed the size of discrete Fmi clones and showed that they did not cause any competition, with fmi-null clones having the same size as WT clones in both eye and wing discs. We direct the reviewer’s attention to Figure 2 Supplement 1.

      (8) We need more information about the expression pattern of Fmi. Is it expressed in all cells in imaginal discs? Are there any patterns of expression during larval and pupal development?

      Fmi is equally expressed by all cells in all imaginal discs in Drosophila larva and pupa. We will include this information in the updated manuscript.

      (9) Overall, the paper is written for specialists who work in cell competition and is fairly difficult to follow, and I suggest re-writing the results to make it accessible to a broader audience.

      We have endeavored to both provide an accessible narrative and also describe in sufficient detail the data from multiple models of competition and complex genetic systems. We hope that most readers will be able, at a minimum, to follow our interpretations and the key takeaways, while those wishing to examine the nuts and bolts of the argument will find what they need presented as simply as possible.

      Reviewer 2:

      Summary:

      In this manuscript, Bosch et al. reveal Flamingo (Fmi), a planar cell polarity (PCP) protein, is essential for maintaining 'winner' cells in cell competition, using Drosophila imaginal epithelia as a model. They argue that tumor growth induced by scrib-RNAi and RasV12 competition is slowed by Fmi depletion. This effect is unique to Fmi, not seen with other PCP proteins. Additional cell competition models are applied to further confirm Fmi's role in 'winner' cells. The authors also show that Fmi's role in cell competition is separate from its function in PCP formation.

      We would like to thank the reviewer for their thoughtful and positive review.

      Strengths:

      (1) The identification of Fmi as a potential regulator of cell competition under various conditions is interesting.

      (2) The authors demonstrate that the involvement of Fmi in cell competition is distinct from its role in planar cell polarity (PCP) development.

      Weaknesses:

      (1) The authors provide a superficial description of the related phenotypes, lacking a comprehensive mechanistic understanding. Induction of apoptosis and JNK activation are general outcomes, but it is important to determine how they are specifically induced in Fmi-depleted clones. The authors should take advantage of the power of fly genetics and conduct a series of genetic epistasis analyses.

      We appreciate that this manuscript does not address the mechanism by which Fmi participates in cell competition. Our intent here is to demonstrate that Fmi is a key contributor to competition. We indeed aim to delve into mechanism, are currently directing our efforts to exploring how Fmi regulates competition, but the size of the project and required experiments are outside of the scope of this manuscript. We feel that our current findings are sufficiently valuable to merit sharing while we continue to investigate the mechanism linking Fmi to competition.

      (2) The depletion of Fmi may not have had a significant impact on cell competition; instead, it is more likely to have solely facilitated the induction of apoptosis.

      We respectfully disagree for several reasons. First, loss of Fmi is specific to winners; loss of Fmi has no effect on its own or in losers when confronting winners in competition. And in the Ras V12 tumor model, loss of Fmi did not perturb whole eye tumors – it only impaired tumor growth when tumors were confronted with competitors. We agree that induction of apoptosis is affected, but so too is proliferation, and only when in winners in competition.

      (3) To make a solid conclusion for Figure 1, the authors should investigate whether complete removal of Fmi by a mutant allele affects tumor growth induced by expressing RasV12 and scrib RNAi throughout the eye.

      We agree with the reviewer that this is a worthwhile experiment, given that RNAi has its limitations. However, as fmi is homozygous lethal at the embryo stage, one cannot create whole disc tumors mutant for fmi. As an approximation to this condition, we have introduced the GMR-Hid, cell-lethal combination to eliminate non-tumor tissue in the eye disc. Following elimination of non-tumor cells, there remains essentially a whole disc harboring fminull tumor. Indeed, this shows that whole fminull tumors overgrow similar to control tumors, confirming that the lack of Fmi only affects clonal tumors. We will provide those results in the updated manuscript.

      (4) The authors should test whether the expression level of Fmi (both mRNA and protein) changes during tumorigenesis and cell competition.

      This is an intriguing point that we would like to validate. We are currently performing immunostaining for Fmi in clones to confirm whether its levels change during competition. We will provide these results in the updated manuscript.

      Reviewer 3:

      Summary: <br /> In this manuscript, Bosch and colleagues describe an unexpected function of Flamingo, a core component of the planar cell polarity pathway, in cell competition in the Drosophila wing and eye disc. While Flamingo depletion has no impact on tumour growth (upon induction of Ras and depletion of Scribble throughout the eye disc), and no impact when depleted in WT cells, it specifically tunes down winner clone expansion in various genetic contexts, including the overexpression of Myc, the combination of Scribble depletion with activation of Ras in clones or the early clonal depletion of Scribble in eye disc. Flamingo depletion reduces the proliferation rate and increases the rate of apoptosis in the winner clones, hence reducing their competitiveness up to forcing their full elimination (hence becoming now "loser"). This function of Flamingo in cell competition is specific to Flamingo as it cannot be recapitulated with other components of the PCP pathway, and does not rely on the interaction of Flamingo in trans, nor on the presence of its cadherin domain. Thus, this function is likely to rely on a non-canonical function of Flamingo which may rely on downstream GPCR signaling.

      This unexpected function of Flamingo is by itself very interesting. In the framework of cell competition, these results are also important as they describe, to my knowledge, one of the only genetic conditions that specifically affect the winner cells without any impact when depleted in the loser cells. Moreover, Flamingo does not just suppress the competitive advantage of winner clones, but even turns them into putative losers. This specificity, while not clearly understood at this stage, opens a lot of exciting mechanistic questions, but also a very interesting long-term avenue for therapeutic purposes as targeting Flamingo should then affect very specifically the putative winner/oncogenic clones without any impact in WT cells.

      The data and the demonstration are very clean and compelling, with all the appropriate controls, proper quantification, and backed-up by observations in various tissues and genetic backgrounds. I don't see any weakness in the demonstration and all the points raised and claimed by the authors are all very well substantiated by the data. As such, I don't have any suggestions to reinforce the demonstration.

      While not necessary for the demonstration, documenting the subcellular localisation and levels of Flamingo in these different competition scenarios may have been relevant and provided some hints on the putative mechanism (specifically by comparing its localisation in winner and loser cells). 

      Also, on a more interpretative note, the absence of the impact of Flamingo depletion on JNK activation does not exclude some interesting genetic interactions. JNK output can be very contextual (for instance depending on Hippo pathway status), and it would be interesting in the future to check if Flamingo depletion could somehow alter the effect of JNK in the winner cells and promote downstream activation of apoptosis (which might normally be suppressed). It would be interesting to check if Flamingo depletion could have an impact in other contexts involving JNK activation or upon mild activation of JNK in clones.

      We would like to thank the reviewer for their thorough and positive review.

      Strengths: 

      - A clean and compelling demonstration of the function of Flamingo in winner cells during cell competition.

      - One of the rare genetic conditions that affects very specifically winner cells without any impact on losers, and then can completely switch the outcome of competition (which opens an interesting therapeutic perspective in the long term)

      Weaknesses: 

      - The mechanistic understanding obviously remains quite limited at this stage especially since the signaling does not go through the PCP pathway.

      Reviewer 2 made the same comment in their weakness (1), and we refer to that response. In future work, we are excited to better understand the pathways linking Fmi and competition.

    1. Author response:

      Reviewer #1 (Public Review):

      We thank Reviewer #1 for the professional evaluation and raising important points. We will address those comments in the updated manuscript and especially improve the discussion in respect to the two points of concern.

      (1) How can GlnA1 activity further be stimulated with further increasing 2-OG after the dodecamer is already fully assembled at 5 mM 2-OG.

      We assume a two-step requirement for 2-OG, the dodecameric assembly and the priming of the active sites. The assembly step is based on cooperative effects of 2-OG and does not require the presence of 2-OG in all 2-OG-binding pockets: 2-OG-binding to one binding pocket also causes a domino effect of conformational changes in the adjacent 2-OG-unbound subunit, as also described for Methanothermococcus thermolithotrophicus GS in Müller et al. 2023. Due to the introduction of these conformational changes, the dodecameric form becomes more favourable even without all 2-OG binding sites being occupied. With higher 2-OG concentrations present (> 5mM), the activity increased further until finally all 2-OG-binding pockets were occupied, resulting in the priming of all active sites (all subunits) and thereby reaching the maximal activity.

      (2) The contradictory results with previously published data on the structure of M. mazei by Schumacher et al. 2023.

      We certainly agree that it is confusing that Schumacher et al. 2023 obtained a dodecameric structure without the addition of 2-OG, which we claim to be essential for the dodecameric form. 2-OG is a cellular metabolite that is naturally present in E. coli, the heterologous expression host both groups used. Since our main question focused on analysing the 2-OG effect on GS, we have performed thorough dialysis of the purified protein to remove all 2-OG before performing MP experiments. In the absence of 2-OG we never observed significant enzyme activity and always detected a fast disassembly after incubation on ice. We thus assume that a dodecamer without 2-OG in Schuhmacher et al. 2023 is an inactive oligomer of a once 2-OG-bound form, stabilized e.g. by the presence of 5 mM MgCl2.

      The GlnA1-GlnK1-structure (crystallography) by Schumacher et al. 2023 is in stark contrast to our findings that GlnK1 and GlnA1 do not interact as shown by mass photometry with purified proteins. A possible reason for this discrepancy might be that at the high protein concentrations used in the crystallization assay, complexes are formed based on hydrophobic or ionic protein interactions, which would not form under physiological concentrations.

      Reviewer #2 (Public Review):

      We thank Reviewer #2 for the detailed assessment and valuable input. We will address those comments in the updated manuscript and clarify the message.

      (1) The discrepancy of the dodecamer formation (max. at 5 mM 2-OG) and the enzyme activity (max. at 12.5 mM 2-OG).

      We assume that there are two effects caused by 2-OG: 1. cooperativity of binding (less 2-OG needed to facilitate dodecamer formation) and 2. priming of each active site. See also Reviewer #1 R.1). We assume this is the reason why the activity of dodecameric GlnA1 can be further enhanced by increased 2-OG concentration until all catalytic sites are primed.

      (2) The lack of the structure of a 2-OG and ATP-bound GlnA1.

      Although we strongly agree that this would be a highly interesting structure, it seems out of the scope of a typical revision to request new cryo-EM structures. We evaluate the findings of our present study concerning the 2-OG effects as important insights into the strongly discussed field of glutamine synthetase regulation, even without the requested additional structures.

      (3) The observed GlnA1-filaments are an interesting finding.

      We certainly agree with the referee on that point, that the stacked polymers are potentially induced by 2-OG or ions. However, it is out of the main focus of this manuscript to further explore those filaments. Nevertheless, this observation could serve as an interesting starting point for future experiments.

      Reviewer #3 (Public Review):

      We thank Reviewer #3 for the expert evaluation and inspiring criticism.

      (1) Encouragement to examine ligand-bound states of GlnK1.

      We agree and plan to perform the suggested experiments exploring the conditions under which GlnA1 and GlnK1 might interact. We will perform the MP experiments in the presence of ATP. In GlnA1 activity test assays when evaluating the presence/effects of GlnK1 on GlnA1 activity, however, ATP was always present in high concentrations and still we did not observe a significant effect of GlnK1 on the GlnA1 activity.

      (2) The exact role of 2-OG could have been dissected much better.

      We agree on that point and will improve the clarity of the manuscript. See also Reviewer #1 R.1.

      (3) The lack of studies on dimers.

      This is actually an interesting point, which we did not consider during writing the manuscript. Now, re-analysing all our MP data in this respect, GlnA1 is likely a dimer as smallest species. Consequently, we will add more supplementary data which supports this observation and change the text accordingly.

      (4) Previous studies und structures did not show the 2-OG.

      We assume that for other structures, no additional 2-OG was added, and the groups did not specifically analyse for this metabolite either. All methanoarchaea perform methanogenesis and contain the oxidative part of the TCA cycle exclusively for the generation of glutamate (anabolism) but not a closed TCA cycle enabling them to use internal 2-OG concentration as internal signal for nitrogen availability. In the case of bacterial GS from organisms with a closed TCA cycle used for energy metabolism (oxidation of acetyl CoA) like e.g. E. coli, the formation of an active dodecameric GS form underlies another mechanism independent of 2-OG. In case of the recent M. mazei GS structures published by Schumacher et al. 2023, the dodecameric structure is probably a result from the heterologous expression and purification from E. coli. (See also Reviewer #1 R.2). One example of methanoarchaeal glutamine synthetases that do in fact contain the 2-OG in the structure, is Müller et al. 2023.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (public review and recommendations for the authors):

      Major points:

      (1) The identification of RAMP4 is a pivotal discovery in this paper. The sophisticated AlphaFold prediction, de novo model building of RAMP4's RBD domain, and sequence analyses provide strong evidence supporting the inclusion of RAMP4 in the ribosome-translocon complex structure.

      However, it is crucial to ensure the presence of RAMP4 in the purified sample. Particularly, a validation step such as western blotting for RAMP4 in the purified samples would strengthen the assertion that the ribosome-translocon complex indeed contains RAMP4. This is especially important given the purification steps involving stringent membrane solubilization and affinity column pull-down.

      As suggested, we have added Western blots showing that RAMP4 is retained at secretory translocons (and not multipass translocons) after solubilisation, affinity purification, and recovery of ribosome-translocon complexes (Fig. 3F). This data supports both our assignment of RAMP4 in ribosome-translocon complexes, and also the structure-based proposition that its occupancy is mutually exclusive with the multipass translocon (in particular, the PAT complex).  

      (2) Despite the comprehensive analyses conducted by the authors, it is challenging to accept the assertion that the extra density observed in TRAP class 1 corresponds to calnexin. The additional density in TRAP class 1 appears to be less well-resolved, and the evidence for assigning it as calnexin is insufficient. The extra density there can be any proteins that bind to TRAP. It is recommended that the authors examine the density on the ER lumen side. An investigation into whether calnexin's N-globular domain and P-domain are present in the ER lumen in TRAP class 1 would provide a clearer understanding.

      We agree that the Calnexin assignment is less confident than the other assignments in this manuscript, and that further support would be ideal. We have exhaustively searched our maps for any unexplained density connected with the putative Calnexin TMD, and have found none. This is consistent with Calnexin's lumenal domain being flexibly linked to its TMD, and thus would not be resolved in a ribosome-aligned reconstruction.

      Our assignment of this TMD to Calnexin was based on existing biochemical data (referenced in the paper) favouring this as the best working hypothesis by far: Calnexin is TRAP’s only abundant co-purifying factor, and their interaction is sensitive to point mutations in the Calnexin TMD. Recognising that this is not conclusive, we have ensured that the text and figures consistently describe this assignment as provisional or putative.

      (3) In the section titled 'TRAP competes and cooperates with different translocon subunits,' the authors present a compelling explanation for why TRAP delta defects can lead to congenital disorders of glycosylation. To enhance this explanation, it would be valuable if the authors could provide additional analyses based on mutations mentioned in the references. Specifically, examining whether these mutations align with the TRAP delta-OSTA structure models would strengthen the link between TRAP delta defects and the observed congenital disorders of glycosylation.

      We agree that mapping disease-causing point mutants to the TRAP delta structure could be potentially informative. Unfortunately, the referenced TRAP delta disease mutants act by simply impairing TRAP delta expression, and thus admit no such fine-grained analyses. However, sequence conservation is our next best guide to mutant function. We note in the text that the contact site charges on TRAP delta and RPN2 are conserved, and that the closest-juxtaposed interaction pair (K117 on TRAPδ and D386 on RPN2) is also the most conserved.

      Here are some minor points:

      (1) In the introduction, when the EMC, PAT, and BOS complexes were initially mentioned, it would be beneficial for the authors to provide more context or cite relevant references. This additional information will aid readers in better understanding these complexes, ensuring a smoother comprehension of their significance in the context of the study.

      The Introduction has been edited to provide more context with relevant references. 

      (2) In Figure 7, it would be valuable for the authors to include details on how they sampled the sequence alignments. 

      To clarify this methodological point, we have revised the Figure 7 caption to include these sentences: “The logo plots in panels A and D represent an HMM generated by jackHMMER upon convergence after querying UniProtKB’s metazoan sequences with the human TRAPα sequence. Only signal above background is shown, as rendered by Skylign.org.”

      Reviewer #2 (public review and recommendations for the authors):

      Strengths:

      The manuscript contains numerous novel new structural analyses and their potential functional implications. While all findings are exciting, the highlight is the discovery of RAMP4/SERP1 near the Sec61 lateral gate. Overall, the strength is the thorough and extensive structural analysis of the different high-resolution RTC classes as well as the expert bioinformatic evolutionary analysis.

      Weaknesses:

      A minor downside of the manuscript is the sheer volume of analyses and mechanistic hypotheses, which makes it sometimes difficult to follow. The authors might consider offloading some analyses based on weaker evidence to the supplement to maximize impact.

      We agree that the manuscript is long, but we have retained what we feel are the most important findings in the main text because the supplement is often undiscoverable via literature searches. Indeed, we chose eLife for its flexibility regarding article length and suitability for extended and detailed analyses. 

      Major:

      - Figure S1 does not capture the fact that a PAT-free subset of particles is analyzed. The PAT classification step should be added.

      We apologise for having caused some confusion on this point: we do not show a PAT classification step because there was none. Instead we reanalysed the whole dataset with a focus on Sec61 and TRAP. The very little PAT present (9% of particles, per Smalinskaitė et al. 2022) appeared as a very weak density in some of the closed-Sec and weak-TRAP classes.

      - The assignment of calnexin appears highly speculative. As the authors acknowledge the EM density is clearly of insufficient resolution for identification, and also AF2 does not render orthogonal support for the interpretation. The binding to TRAPg also does not explain complex formation in lower eukaryotes that do not have TRAPg. The authors may consider moving the calnexin assignment and interpretation to the supplement as it appears highly speculative. In any case, it should not be referred to as a hypothesis and not a structure.

      We agree that the Calnexin assignment is less confident than the other assignments in this manuscript, and that further support would be ideal. Our assignment of this TMD to Calnexin was based on existing biochemical data (referenced in the paper) favouring this as the best working hypothesis by far: Calnexin is TRAP’s only abundant co-purifying factor, and their interaction is sensitive to point mutations in the Calnexin TMD. Recognising that this is not conclusive, we have ensured that the text and figures consistently describe this assignment as provisional or putative.

      - P. 8: "This extensive competition explains why prior studies found TRAP in only 40% of MPT complexes, but at high occupancy at all other RTCs29". The interpretation is at odds with a recent re-analysis of the same dataset (preprint: Gemmer et al 2023, https://doi.org/10.1101/2023.11.28.569136), which finds TRAP occupancy to negatively correlate with PAT, not BOS.

      The reviewer is correct that the Gemmer study demonstrates a negative correlation between PAT and TRAP occupancy, but it does not, as the reviewer claims, argue against a negative correlation between BOS and TRAP. In fact it agrees that Sec61•BOS•PAT complex would clash with TRAP, and that therefore “BOS could trigger release of TRAP from the multipass translocon.” Thus, there is no conflict between the two studies. The revised text in this passage now cites the Gemmer et al. preprint and clarifies that TRAP is partially displaced by competition with BOS, but retained at the translocon via its ribosome-binding domain.  

      - P. 7/8: the authors suggest that TRAPd may be important for OSTA recruitment and hence TRAPd deletion may cause glycosylation defects in patients by failure to recruit OSTA. However, cryo-ET studies (Pfeffer et al, Nat. Comms 2017) showed that OSTA still binds in patient-derived microsomes (and the OSTA-TRAPd interaction). The author should discuss their model in the light of these data.

      As explained in the text, our hypothesis predicts that TRAPδ is more important for OSTA’s recruitment to the RTC than for its RTC affinity: “OSTA’s attraction to TRAPδ is weak compared to its binding to the ribosome, but TRAPδ may nonetheless help recruit OSTA, since TRAPδ would attract OSTA from most possible angles of approach, whereas OSTA’s ribosome contacts are stereospecific.” Therefore the fact that Pfeffer et al. 2017 found OSTA at some TRAPδ-negative RTCs is not surprising. For confirmation we would look for TRAPδ-dependent glycosylation sites in fast-folding domains or otherwise kinetically sensitive loci, and indeed TRAP-dependence screens return complex profiles that could be consistent with such a mechanism (Phoomak et al. 2021).

      - Some confidence measure for the assignment of SERP1/RAMP4 should be provided adding support for the claim "The resolution of the RBD density was sufficient for de novo modelling". Indeed, the N-terminal ribosome-bound segment appears well resolved and programs like Modelangelo or FindMySequence should provide a confidence measure for the assignment of the density to SERP1. The TM part appears less well resolved, but the connectivity to the Nterminus may justify the assignment, which should be elaborated on.

      Although we appreciate the value of tools like Modelangelo or FindMySequence, and would have used them if we were resting our assignment of RAMP4 on its RBD alone, we feel that such analyses would be superfluous here. They would quantify only the buildability of RAMP4’s

      RBD, whereas the real question of RAMP4’s assignability is independently supported by AlphaFold’s confirmation of RAMP4’s TMD as the Sec61-binding density, and further biochemical data provided or cited in the paper.

      - P. 3: "Because PAT complex recruitment and MPT assembly are just beginning, ..." the implicit kinetic model seems to be that the MPT subcomplexes assemble on ribosome and Sec61. What is the evidence for this model and later recruitment of PAT (as opposed to GEL, BOS, and PAT binding pre-assembled)?

      The work of Sundaram et al. (PMID 36261522) established that PAT, GEL and BOS do not coassociate appreciably in the absence of the ribosome-Sec61 complex. This is consistent with the structural data in Smalinskaite et al. (PMID 36261528), which shows that PAT, GEL, and BOS each contact the ribosome (and Sec61 in the case of PAT and BOS), but have few if any specific contacts among themselves. Finally, data in both of these studies show that recruitment of each complex to the RNC is not lost when any of them is missing, arguing that each is capable of independent recruitment to ribosome-Sec61 complexes. 

      - p. 4: the meaning of the sentence "Stabilising interactions with this widely conserved motif may help Sec61 respond to its diverse substrates with a consistent open state." is not entirely clear. Published single-particle cryo-EM structures of RTC appear to have resulted in various degrees of openness.

      Here we were referring not to RTC structures in general, but to substrate-engaged RTCs in particular.  The two substrate-engaged RTC structures under discussion in this paragraph are nearly identical (Figure 2c) despite large differences in substrate sequence (RhoTM2 vs preprolactin’s SP). We were surprised to find that this engaged structure creates noncovalent bonds between the Sec61 N-half and the ribosome. This bonding would tend to stabilise this particular engaged structure, and this stabilisation helps explain why the newly observed TMengaged structure is so similar to the previously observed SP-engaged structure. Without this stabilising N-half interaction, one might instead expect to see more variability, such as the reviewer suggests.

      - A recent analysis of heimdallarchaea already hypothesized TRAP in these organisms and should be cited: Eme et al, Nature 618:992-999 (2023). The novel findings of this manuscript compared to Eme et al should be discussed.

      We thank the reviewer for bringing this relevant contemporaneous work to our attention. Reviewing the putative TRAP homologs identified by Eme et al, we find that most do not in fact appear to be TRAP homologs at all, judged by the measures used in our work (reciprocal HHpred queries against the human proteome and predicted structural similarity). This is not surprising since Eme et al. relied on low-threshold sequence similarity searches rather than structural measures. To acknowledge this work, we have added a sentence as follows (italics): “To test whether these candidates are also similar to TRAPαβγ in sequence, we used them to perform reciprocal HHpred queries of the human proteome, and in each case the corresponding human TRAP protein was the top hit (E = 0.031 for TRAPα, 9.4×10-14 for TRAP β, and 110 for

      TRAPγ). A contemporaneous study has also claimed to find TRAP homologs in

      Heimdallarchaeota (Eme et al. 2023), although some caution is warranted in these assignments because they do not seem to share predicted structural similarity to TRAP subunits and do not find human homologs in reciprocal HHpred queries.”

      - Given that the authors expand the evolutionary analysis of TRAP to archaea it would be helpful if sampling for RAMP4 were consistent (i.e., is TRAP present in the early eukaryotes that do not feature RAMP4? Is RAMP4 absent from heimdallarchaea?).

      As stated in the text, RAMP4’s absence from early-branching eukaryotic taxa indicates that it was also absent from their archaeal ancestors. We did of course run such queries for completeness and indeed find no archaeal RAMP4. TRAP, for its part, is generally present in early-branching eukaryotic taxa, as stated in the text, and this necessarily includes those from which RAMP4 is absent.

      - The authors may consider discussing (Gemmer et al 2023, https://doi.org/10.1101/2023.11.28.569136), which comes to similar conclusions for NEMO integration into the MPT.

      We thank the reviewer for bringing this relevant work to our attention. We have added the following sentence to the section on NOMO: “Contemporaneous work has arrived at a similar model for PLD10-12 but did not model PLD1 (Gemmer et al. 2023).”

      - The abundance approximation of RAMP4 in the native translocon by OccuPy should probably be taken with a grain of salt. The '80%' mentioned in the conclusion may stick around and could eventually turn out to be closer to 100%.

      It is certainly possible that the occupancy of RAMP4 is higher than OccuPy estimates.

      Unfortunately no available method can provide occupancy estimates with confidence intervals. The Western blots we have added to the revised manuscript are consistent with high occupancy, but cannot discriminate between 80 or 100%.

      Minor

      - p. 5: The following sentence is incomplete: "Together, these factors explain why RAMP4's occupancy in prior cryo-EM maps was low enough to be overlooked, although in hindsight seems to be visible in several7,68,69"

      Thank you for catching this typo. We have revised the sentence as follows: “Together, these factors explain why RAMP4's occupancy in prior cryo-EM maps was low enough to be overlooked, although in hindsight it is visible in several of them.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Weaknesses:

      The authors demonstrate that ASGR1 is degraded in response to RSPO2RA-antibody treatment through both the proteasomal and the lysosomal pathway, suggesting that this is due to the RSPO2RA-mediated recruitment of ZNRF3/RNF43, which have E3 ubiquitin ligase activity. The paper doesn't show, however, if ASGR1 is indeed ubiquitinated.

      We thank the reviewer for this comment. We have now conducted ASGR1 ubiquitination assays by immunoprecipitation (IP) of ubiquitin in the membrane protein extract, and immunoblotting (IB) ASGR1 after treating HepG2 cells with our SWEETS molecules or controls. The new data demonstrated ubiquitination of ASGR1 with SWEETS treatment (new Fig. S3A and S3B). Additionally, we blocked the potential ubiquitination of ASGR1 by mutating the two lysine residues in the cytoplasmic domain and compared the ASGR1 degradation after SWEETS treatment. The new data show that removing the potential ubiquitylation Lys sites prevented ASGR1 degradation post SWEETS treatment (new Fig. S3C). These new results provide direct evidence that ASGR1 is ubiquitinated to undergo lysosome or proteasome degradation.

      The authors conclude that the RSPO2A-Ab fusions can act as a targeted protein degredation platform, because they can degrade ASGR. While I agree with this statement, I would argue that the goal of these Abs would not be to degrade ASGR per se. The argumentation is a bit confusing here. This holds for both the results and the discussion section: The authors focus on the dual role of their agents, i.e. on promoting both WNT signaling AND on degrading ASGR1. They might want to reconsider how they present their data (e.g. it may be interesting to target ASGR1, but one would presumably then like to do this without also increasing WNT responsiveness?).

      We thank the reviewer for this comment. As the reviewer states, the initial goal of the RSPO2RA-ab fusions was to generate tissue-specific RSPO mimetics that focus on elimination of E3. As an unintended consequence, we observed enhanced elimination of ASGR as well. While this was unintended, the results did provide POC that when an E3 ligase is brought into proximity of another protein, ubiquitination and degradation of this protein may occur. Additionally, our results highlight that one needs to be careful in fully assessing the impact of bispecific molecules on the intended target as well as unintended targets to understand the potential side effects of such bispecific molecules. We have revised the manuscript to make this more clear, both in the Results and Discussion sections.

      Lines 326-331: The authors use a lot of abbreviations for all of the different protein targeting technologies, but since they are hinting at specific mechanisms, it would be better to actually describe the biological activity of LYTAC versus AbTAC/PROTAB/REULR so non-experts can follow.

      We thank the reviewer for this suggestion. We have added more details in the Discussion to highlight the different mechanisms of the various systems described.

      Can the authors comment on how 8M24 and 8G8 compare to 4F3? The latter seems a bit more specific (ie. lower background activity in the absence of ASGR1 in 5C)? Are there any differences/advances between 8M24 and 8G8 over 4F3? This remains unclear.

      These three antibodies bind different regions/epitopes on ASGR. 8M24 and 8G8 bind non-overlapping epitopes on the carbohydrate recognition domain (CRD), while 4F3 binds the stalk region outside of the CRD. This information is in the Results section of the manuscript. We do not believe that the difference in the ASGR binding epitopes contributes to the slight differences in the background activity. The slight differences may be due to differences in the conformation of the antibodies resulting from the differences in their primary sequences, and these differences may not be significant. We have now repeated the experiments in Fig. 5C and 5D to address the reviewer’s next comment on the axis. These new data (new Fig. 5C and 5D) show less background differences between the molecules.

      Can the authors ensure that the axes are labelled/numbered similarly for Fig 5B-D? This will make it easier to compare 5C and 5D.

      We thank the reviewer for this suggestion. The y-axes in Fig. 5B–D now have the same scale and number format. For Figs. 5C and 5D, we focus on the potency increases of the SWEETS molecules post ASGR1 overexpression.

      Reviewer #2 (Public Review):

      Weaknesses:

      The authors show crystal structures for binding of these antibodies to ASGR1/2, and hypothesize about why specificity is mediated through specific residues. They do not test these hypotheses.

      We thank the reviewer for this comment. We did not further test the residue contributions to binding and specificity as this is not the main focus of the current manuscript. We have revised the section and tuned down the claims for specificity.

      The authors demonstrate in hepatocyte cell lines that these function as mimetics, and that they do not function in HEK cells, which do not express ASGR1. They do not perform an exhaustive screen of all non-hepatocyte cells, nor do they test these molecules in vivo.

      We agree with the reviewer. For the 4F3-based SWEETS molecule, additional in vitro and in vivo specificity characterized were performed and described in Zhang et al., Sci Rep, 2020. Since 8M24 is human specific and 8G8 only weakly interacts with mouse receptors, in vivo experiments in mouse were not performed. While we did not extensively test the 8M24- and 8G8-based SWEETS on additional cell lines or in vivo, we do believe the data presented strongly support the hepatocyte-specific effects of these molecules.

      Surprisingly, these molecules also induced loss of ASGR1, which the authors hypothesize is due to ubiquitination and degradation, initiated by the E3 ligases recruited to ASGR1. They demonstrate that inhibition of either the proteasome or lysosome abrogates this effect and that it is dependent on E1 ubiquitin ligases. They do not demonstrate direct ubiquitination of ASGR1 by ZNRF3/RNF43.

      We thank the reviewer for this comment. We have now conducted ASGR1 ubiquitination assays by immunoprecipitation (IP) of ubiquitin in the membrane protein extract, and immunoblotting (IB) ASGR1 after treating HepG2 cells with our SWEETS molecules or controls. The new data demonstrate ubiquitination of ASGR1 with SWEETS treatment (new Figs. S3A and S3B). Additionally, we blocked the potential ubiquitination of ASGR1 by mutating the two lysine residues in the cytoplasmic domain and compared the ASGR1 degradation after SWEETS treatment. The new data show that removing the potential ubiquitylation Lys sites prevented ASGR1 degradation post SWEETS treatment (new Fig. S3C). These new results provide direct evidence that ASGR1 is ubiquitinated to undergo lysosome or proteasome degradation.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      There are multiple instances where articles (i.e. the use of "the") are missing.

      We thank the reviewer for this comment. Following the suggestion, the manuscript has gone through a detailed review by an editorial service, and these and other grammatical errors have been corrected.

      Reviewer #2 (Recommendations For The Authors):

      The best I can think of is to inject these into Wnt reporter mice (or maybe humanized mice) and see if the liver lights up while other tissues do not.

      We thank the reviewer for this suggestion. The liver specificity was demonstrated in vivo in our earlier publication (SciRep, 10:13951, 2020) with the 4F3-RSPO2RA molecule. Unfortunately, as the results in this manuscript show, the new ASGR binders 8M24 and 8G8 either do not bind or only weakly interact with mouse receptors. Therefore, the in vivo experiments were not performed here.

      You could also consider addressing some of the statements in the manuscript that are currently hypothetical experimentally.

      We thank the reviewer for this comment. We did not further test the residues’ contribution to binding and specificity as this is not the main focus of the current manuscript. We have revised the section and tuned down the claims for specificity.

      It would be easier to compare the graphs in 5B-D if all Y-axes were the same scale, with the same scientific notation.

      We thank the reviewer for this suggestion. The y-axes in Fig. 5B-D now have the same scale and number format. For Figs. 5C and 5D, we focus on the potency increases of the SWEETS molecules post ASGR1 overexpression.

      Some of the western blots in Figure 6 do not have antibody/target labels, making them harder to interpret.

      All the Western blots antibody/target labels are on the right side of the blots for each panel, we have now made the text bold and thus easier to identify.

      Figure 6 and Supplementary Figure 2 are the same I think.

      Figure 6 and Supplementary Figure 2 show the same experimental set-up performed on two different cell lines, Fig. 6 is on Huh7 cells and Supplementary Fig. 2 is on HepG2 cells. The results from these two cell lines are quite consistent, making their appearance very similar.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Response to Reviews

      All reviewers were positive about the rigor and impact of our work and offered a number of very helpful suggestions. We have done a number of suggested experiments, whose results have been added to the revision. We have also used their suggestions to improve the clarity and precision with which we describe and interpret our results.

      Reviewer 1 found the paper to be clearly written, with novel results, and the conclusions relevant and solid. This review offered many insights and thoughtful suggestions, which we have adopted to greatly improve the manuscript. The referee’s points are listed below with our responses.

      The study chooses to examine growth only in the prospective wing blade (the "pouch") rather than the wing disc as a whole. This can create biases, as fat and ds manipulations often cause stronger effects on growth, and on Hippo signaling targets, in the adjacent hinge regions of the disc. So I am curious about this choice. 

      Actually, several experiments described in the manuscript measured growth in regions of the wing disc that did not include the pouch (Fig 1 supplement 4). We found that in the second phase of allometric growth, growth of the pouch was greater than growth of the hinge-notum (Fig.1G and Fig 1 supplement 4).  We also looked at the effect of Ds and Fat on growth of the hinge-notum (Fig 4 supplement 1 and Fig 5 supplement 2). Loss of Ds or Fat also affected allometric growth of the pouch differently from their effects on allometric growth of the hinge-notum. We therefore treated analysis of each region independently. Greater focus was given to wing pouch growth because it was in this region that we detected the interesting gradient properties in Fat and Ds expression.

      The limitation to the wing region also creates some problems for the measurements themselves. The division between wing and pouch is not a strict lineage boundary, and thus cells can join or leave this region, creating two different reasons for changes in wing pouch size; growth of cells already in the region, or recruitment of cells into or out of the region. The authors do not discuss the second mechanism.

      We agree with this assessment that pouch growth can occur via lineage-restricted growth or by recruitment of cells into the region. This has now been clarified in the Introduction and the Discussion with discussion of the second mechanism.

      It is not at all clear that the markers for the pouch used by the authors are stable during development. One of these is Vg expression, or the Vg quadrant enhancer. But the Vgexpressing region is thought to increase by recruitment over late second and third instar through a feed-forward mechanism by which Vg-expressing cells induce Vg expression in adjacent cells. In fact, this process is thought to be driven in part by Fat and Ds (Zecca et al 2010). So when the authors manipulate Fat and Ds are they increasing growth or simply increasing Vg recruitment? I would prefer that this limitation be addressed. 

      There is the possibility that the feedforward recruitment of disc cells to express Vg leads to some expansion of the measured pouch domain. However, we argue that the recruitment mechanism may not be contributing significantly to the phenomena we measured in this study. 1) We limited our analysis of pouch growth to the third instar stage. In Fig.2, Zecca and Struhl (2007 doi 10.1242/dev.006411) found that recruitment was much stronger in clones induced at first instar rather than third instar, and so they limited their clonal analysis throughout the paper to first instar induced clones. Thus, it is unclear how much the feedforward recruitment mechanism contributes to pouch growth in the mid-to-late third instar. 2) We detected an effect of Ds and Fat on how rapidly the cell cycle slows down over time in pouch cells. The effect is entirely consistent with it having a causal effect on wing pouch growth. For example, nub>Ds(RNAi) causes the average third instar pouch cell to divide ~25% more rapidly than normal, when comparing the slopes in Figure 6. Note that at the beginning of the third instar, the average pouch cell has a similar doubling time whether lacking Ds or not (Figure 6). When we measured the final size of the wing pouch at the end of the third instar, nub>Ds(RNAi) caused the pouch to be ~30% larger than normal (Figure 5). This effect is quite comparable to the effect of Ds RNAi on cell doubling.

      To provide more rigorous evidence that the effect of Fat and Ds on cell cycle dynamics is primarily responsible for their effects on wing growth that we measured, we have adapted the simple growth modeling framework from Wartlick et al (2011) and fit our cell cycle measurements made for different genotypes. These fits give us estimates for instantaneous cell growth rates over time, and using these estimates, we simulated the theoretical growth trajectory of the entire wing pouch for wildtype and ds / fat RNAi animals. When we compare these model predictions of wing growth to our pouch volume measurements over time, they agree very well with one another. These

      analyses and results are now discussed in the Results and presented in Fig. 6 supplement 2. Overall, it supports a model that Fat and Ds regulate cell cycle dynamics in the wing pouch during third instar and this effect is primarily responsible for Fat and Ds’s effect on overall wing pouch growth in that timeframe. It does not rule out that Fat and Ds might also affect Vg recruitment at third instar, but such effects must be small relative to the primary effect on the cell cycle. It is feasible that Fat and Ds work via the feedforward mechanism at earlier larval stages. We have now discussed all this in detail in the Discussion considering the limitation of recruitment. 

      The second pouch marker the authors use is epithelial folding, but this also has problems, as Fat and Ds manipulations change folding. Even in wild type, the folding patterns are complex. For instance, to make folding fit the Vg-QE pattern at late third the authors appear to be jumping in the dorsal pouch between two different sets of folds (Fig 1S2A). The authors also do not show how they use folding patterns in younger, less folded discs, nor provide evidence that the location of the folds are the same and do not shift relative to the cells. They also do not explain how they use folds and measure at later wpp and bpp stages, as the discs unfold and evert, exposing cells that were previously hidden in the folds.

      The primary marker we used for the pouch boundary were the folds. We agree with the reviewer that our original description of how we defined the pouch boundary using the folds was inadequate. We now have substantially expanded the Methods section describing how we defined the boundary at all stages using the folds, including a supplementary figure (Fig 1 supplement 2). Importantly, in our measurements, we did not exclude the pouch regions within the folds but included them (see also the next point). Our microscopy detected fluorescence in the folds, and surface rendering allowed us to visualize fold structure and its contents. In younger discs with less folding, we defined the boundary by the location of the Wg inner ring. The folds were more prominent in older L3 larval discs and in the WPP and later stages since the wings had not fully everted yet. Therefore, we used accepted morphological definitions of the pouch boundary from the literature to define the boundaries. We were able to do so even though, as the reviewer notes, the fold architecture evolves as the larvae age. We agree with the reviewer that defining a boundary based on morphology could be error prone, especially prone to systematic error based on age. It is the main reason we directly compared the morphologically defined boundaries to boundaries defined by the Vg quadrant expression domain for many wing discs across all ages. As seen in Fig 1 supplement 3C, the two methods are in strong agreement with one another for discs of all ages. There is a slight overestimate of the pouch boundary using the morphological method, but the error is small (2.5%) and independent of disc size.  

      Finally, the authors limit their measurements to cells with exposed apical faces and thus a measurable area but apparently ignore the cells inside the folds. At late third, however, a substantial amount of the prospective wing blade is found within the folds, especially where they are deepest near the A/P compartment boundary. Using the third vein sensory organ precursors as markers, the L3-2 sensillum is found just distal to the fold, the L3-1 and the ACV sensilla are within the fold, and the GSR of the distal hinge is found just proximal to the fold. That puts the proximal half of the central wing blade in the fold, and apparently uncounted in their assays. These cells will however be exposed at wpp and especially bpp stages. How are the authors adjusting for this? 

      We apologize for not describing the methods of measurement thoroughly in the original submission. In fact, we did make measurements of cells located within the folds of the wing pouch at all stages. Z stacks of optical sections were collected that transversed the disc, including the folds. Using surface detection algorithms, we could make spatial measurements (xyz distances and areas) of the material within the folds enveloping the apical pouch. Therefore, we could measure the surface area and volume of the wing pouch that included the folds. This was indeed what we did and reported in the original submission. A much more complete description of the process has now been added to the Methods.

      On the other hand, we could not reliably measure Fat-GFP or Ds-GFP fluorescence intensity in cells deep in the folds due to light scattering. Therefore, we did not assay the entire gradient across the pouch. Of the cells we did measure, we know their relative distance to the center of the pouch, defined as the intersection of the AP and DV boundaries. Therefore, fluorescence intensities could be directly compared across stages since they were calibrated by the centerpoint of the pouch. We have added text to the Methods to clarify this.

      Stabilizing and destabilizing interactions between Fat and Ds- The authors describe a distal accumulation of Fat protein in the wing, and show that this is unlikely to be through Fat transcription. They further try to test whether the distal accumulation depends on destabilization of proximal Fat by proximal Ds by looking at Fat in ds mutant discs. However, the authors do not describe how they take into account the stabilizing effects of heterophilic binding between the extracellular domains (ECDs) of Fat and Ds; without one, the junctional levels and stability of the other is reduced (Ma et al., 2003; Hale et al. 2015). So when they show that the A-P gradient of Fat is reduced in a ds mutant, is this because of the loss of a destabilizing effect of Ds on Fat, as they assume, or is it because all junctional Fat has been destabilized by loss of extracelluarlar binding to Ds? The description of the Fat gradient in Ds mutants is also confusing (see note 6 below), making this section difficult for the reader to follow. 

      We did not intend to imply that Ds actively inhibits Fat. We now describe the implications of the result more clearly in the Results and Discussion with reference to the prior Hale and Ma study of heterophilic stabilization. It is worth noting that Ma et al 2003 saw elevated junctional Fat in ds mutant cells if they were surrounded by other ds mutant cells. This is consistent with our results. We also apologize for the confusion in describing the Fat gradient and have reworded the section in the Results to make it more clear.

      The authors do not propose or test a mechanism for the proposed destabilization. Fat and Ds bind not only through their ECDs, but binding has now also been demonstrated through their ICDs (Fulford et al. 2023)

      We now discuss possible mechanisms in the Discussion and include the Fulford reference in the Results.

      Ds gradient scales by volume, rather than cell number - This is an intriguing result, but the authors do not discuss possible mechanisms.

      We have now added discussion of possible mechanisms in the Discussion.

      Fat and Ds are already known to have autonomous effects on growth and Hippo signaling from clonal analyses and localized knockdowns. One novelty here is showing that localized knockdown does not delay pupariation in the way that whole animal knockdown does, although the mechanism is not investigated. Another novelty is that the authors find stronger wing pouch overgrowth after localized ds RNAi or whole disc loss of fat than after localized fat RNAi, the latter being only 11% larger. The fat RNAi result would have been strengthened by testing different fat RNAi stocks, which vary in their strength and are commonly weaker than null mutations, or stronger drivers such as the ap-gal4 they used for some of their ds-RNAi experiments or use of UAS-dcr2. Another reason for caution is that Garoia (2005) found much stronger overgrowth in fat mutant clones, which were about 75% larger than control clones.

      We thank the reviewer for this suggestion. Indeed, the weak effect of Fat RNAi had been due to the specific RNAi driver. We followed the reviewer’s suggestion and tested other RNAi stocks. We had in hand an RNAi driver against GFP that we had found in unrelated studies to be a very potent repressor of GFP expression. Since we had been using a knock-in allele of GFP inserted in frame to Fat throughout this study, we applied nub>Gal4 UAS-GFP RNAi to knock down homozygous Fat-GFP. The effect of the knockdown was very strong, as measured by residual 488nm fluorescence above background autofluorescence after knockdown. Correcting for background autofluorescence, we estimate that only 4.5% of Fat-GFP remained under RNAi conditions (Figure 5 - figure supplement 3). 

      Using the more potent RNAi reagent, we repeated the various experiments related to

      Fat. We observed a 42% increase in wing pouch growth, which is similar to that of Ds RNAi. We also observed an effect of Fat RNAi on the average cell cycle time of wing pouch cells. There was still a linear coupling between the cell cycle duration and wing pouch size, but the slope of the coupling was smaller with Fat RNAi. This was very similar to what Ds RNAi does to the cell cycle. Therefore, we have replaced the data from the original Fat RNAi experiments with the new data and modified the text throughout the manuscript to describe the new results.

      Flattening of Ds gradient does not slow growth. One model suggests that the flattening of the Ds gradient, and thus polarized Ds-Fat binding, account for slowed growth in older discs. The difficulty in the past has been that two ways of flattening the Ds gradient, either removing Ds or overexpressing Ds uniformly, give opposite results; the first increases growth, while the latter slows it. Both experiments have the problem of not just flattening the gradient, but also altering overall levels of Ds-Fat binding, which will likely alter growth independent of the gradients. Here, the authors instead use overexpression to create a strong Ds gradient (albeit a reversely oriented one) that does not flatten, and show that this does not prevent growth from slowing and arresting.

      To make sure that this is not some effect caused by using a reverse gradient, one might instead induce a more permanent normally oriented Ds gradient and see if this also does not alter growth; there is a ds Trojan gal4 line available that might work for this, and several other proximal drivers.

      Again, we thank the reviewer for this suggestion. We followed the reviewer’s suggestion and generated Trojan-Gal4 mediated overexpression of Ds. The Ds protein gradient was strongly amplified by Trojan-Gal4 but remained normally oriented. However, it only caused a modest (12%) increase in wing pouch volume. It did not significantly alter Fat expression dynamics nor the dynamics of cell cycle duration. This new data has been added to the Results (Fig. 7 and Fig 7 supplement 2) and discussed at length in the text.

      Another possible problem is that, unlike previous studies, the authors have not blocked the Four-jointed gradient; Fj alters Fat-Ds binding and might regulate polarity independently of Ds expression. A definitive test would be to perform the tests above in four-joined mutant discs.

      We examined a fj null mutant (fjp1/d1) and found that it did not alter final wing pouch size (Fig. 2 - figure supplement 3E). Moreover, neither Fat nor Ds expression were altered in the fj mutant (Fig. 2- figure supplement 3C,D). 

      The Discussion of these data should be improved. The authors state in the Discussion "The significance of these dynamics is unclear, but the flattening of the Fat gradient is not a trigger for growth cessation." While the Discussion mentions the effects of Ds on Fat distribution in some detail, this is the only phrase that discusses growth, which is surprising given how often the gradient model of growth control is mentioned elsewhere. The reader would be helped if details are given about what experiment supports this conclusion, the effect on not only growth cessation but cell cycle time, and why the result differs from those of Rogjula 2008 and Willecke 2008 using Ds and Fj overexpression.

      We have rewritten the Discussion to better reflect the results and incorporate the reviewer’s criticisms.

      The authors spend much of the discussion speculating on the possibility that Fat and Ds control growth by changing the wing's sensitivity to the BMP Dpp. As the manuscript contains no new data on Dpp, this is somewhat surprising. The discussion also ignores Schwank (2011), who argues that Fat and Dpp are relatively independent. There have also been studies showing genetic interactions between Fat and signaling pathways such as Wg (Cho and Irvine 2004) and EGF (Garoia 2005).

      We have modified the discussion to be more inclusive of mechanisms connecting Fat and other signaling pathways, and we deleted some of the speculation about Dpp. However, since Dpp is the only known growth factor whose local concentration linearly scales with average cell doubling time (the process we found Ds/Fat regulates), there is a logical connection that readers deserve to know about. Therefore, we have retained some discussion of the hypothesis that the two might be linked through cell cycle duration. It is for future studies to test that hypothesis as it is beyond the scope of this paper.

      That said, there are studies that discount the work of Wartlick’s Dpp model, eg. Schwank et al 2012, arguing that Dpp regulates growth permissively by limiting an antigrowth factor, Brinker. We have added this reference and the others in the Discussion to discuss alternative models where Fat/Ds act in parallel to Dpp. 

      Wpp and Bpp- First, the charts treat wpp as if it is a fixed number of hours after 5 day larvae, but this will not be true in fat and ds mutants with extended larval life. This should be mentioned.

      We have clarified this distinction in the figure legends.

      How are the authors limiting bpp to 1 hr from wpp? Prepupa are brown and lack air bubbles, but that spans 5 hours of disc changes from barely everted to fully wing-like.

      We deliberately chose 1 hour post WPP because we wanted to measure final wing volume with minimal eversion. We agree with the reviewer’s concerns with calling this BPP and we now call it WPP+1  

      "However, growth of the wing pouch ceased at the larva-pupa molt and its size remained constant".

      The transition from late third to wpp shown in the figure is not the pupal molt. Unlike in most insects, in Drosophila the larval cuticle is not molted away, it is remodeled during pupariation into the prepupal case. The pupal cuticle is not formed until 6 hr APF, which is why the initial stages are termed pre-pupal. Also, there is at least one more set of cell divisions that occur in later pupal stages (for instance, see recent work from the Buttitta lab).

      We have changed the reference of pupal molt to larva-prepupal transition throughout the manuscript.

      "In contrast, the notum-hinge exhibited simpler linear-like positive allometric growth (Fig. 1 - figure supplement 3C) 

      This oversimplifies, as there is still a strong inflection after the third time point, albeit not as large as with the wing because there is less notal growth.

      We have reworded the text as suggested. 

      "whereas at the WPP stage, dividing cells were only found in a narrow zone where sensory organ precursor cells undergo two divisions to generate future sensory organs (Fig. 1 - figure supplement 4C-E)."

      While there are more dividing cells at the anterior D/V, which will form sensory bristles, there are also dividing cells elsewhere, including in the posterior and scattered through the pouch, where there are no sensory precursors. Sensory organs are limited to the wing margin and the very few campaniform sensilla found on the prospective third vein. The Sens-GFP shown here, meant to identify sensory precursors, does not look much like the Sens expression in Nolo et al 2000. Anterior is on the left in 1S4A-D, but on the right in E.

      We thank the reviewer for this observation. Indeed, the Sens-GFP signal in the figure is too broad. This was owing to bleed-through of the PHH3 signal. Since the pattern of dividing cells at the WPP stage has been so well characterized in the literature, as has the pattern of Sens+ cells at that stage (ie, Nolo et al 2000), we have removed these panels and now simply cite the relevant literature.  

      "The gradient was asymmetric along the AP axis, being lower at the A margin than the P margin."

      The use of "margin" here is a bit confusing, as the term is usually used to describe the wing margin; that is, the D/V compartment boundary in the disc that forms the edge of the wing. Can the authors use a different term? It would also be helpful to point out that the A and P extremes are also, because of the geometry of the disc, the prospective proximal portions of the wing margin, and the hinge, especially since the authors are including the regions proximal to the most distal fold.

      We have reworded it as suggested.   

      The graphed loss of the Fat A-P gradient between day 5 third and wpp is dramatic. Given that the changes in folding at wpp might alter which cells are being graphed, can the authors show a photo?

      We have now included a photo of Fat-GFP at WPP in Fig 2 - figure supplement 2E.

      "Since Ds levels are highest and most steep near the margins, perhaps Ds inhibits Fat expression in a dose- or gradient-dependent manner. We also followed Fat-GFP dynamics in the ds mutant. We did not observe the progressive flattening of the FatGFP profile to the WPP wing (Fig. 2 - figure supplement 3A). Instead, the Fat-GFP profile was graded at the WPP stage and flattened somewhat more by the BPP stage (Fig. 2 - figure supplement 3B)."

      This description does not tell the reader if there is any less grading of Fat in the ds mutant compared with wild type; instead, it sounds like it is more graded, as gradation continues at wpp. This would then contradict the hypothesis that proximal Ds is required to create the distal Fat gradient.

      The Fat signals for the two genotypes are directly comparable as the samples were imaged together with the same microscope settings.  Fig 2M shows that the Fat gradient is less graded compared to the wildtype. We have reworded the text to make this more clear. But this graded expression persists longer into WPP, not the level of gradation. The reason for this is not understood.

      The figure, on the other hand, looks like Fat is less graded, although as noted above this could instead be caused by loss of the stable Ds-bound Fat normally found at junctions. 

      Fig 2M shows an increase in Fat levels at the proximal regions of the ds mutant pouch, where Ds is normally most concentrated. This makes the overall profile look less graded. 

      Confusingly, in the Discussion the authors state: "Loss of Ds affects the Fat gradient such that distribution of Fat is uniformly upregulated to peak levels." There is no mention of "peak levels" in the Results, and no mention of "graded" expression in the Discussion. I am unclear on how the absolute levels are being determined and would be surprised if there were peak levels after loss of Ds-bound Fat from junctions.

      The absolute levels between the genotypes were determined by carefully calibrated fluorescence of Fat-GFP from samples imaged at the same time with the same settings. We used the word peak to refer to the highest level of Fat-GFP within a given gradient profile. Clearly, the description is confusing and so we have deleted the word and modified the text to clarify the meaning.

      "Interestingly, the reversed Ds gradient caused a change in the Fat gradient (Fig. 7E). Its peak also became skewed to the anterior and did not normally flatten at the WPP stage."

      This result contradicts the author's earlier model that proximal Ds destabilizes Fat. Instead, the result fits the stabilization of Fat caused by binding to endogenous or overexpressed Ds or Ds ECD (Ma et al. 2003; Matakatsu and Blair, 2004; 2006; Hale et al. 2015).

      We agree that the reversed Ds affects Fat differently than the loss-of-function ds phenotype. We were not intending to propose a model based on the ds mutant, but a simple interpretation of the result. The reversed Ds experiment generates on its own a simple interpretation that is not consistent with the other. This speaks to the complexity of the system. We have changed the text in the Results to make this less confusing.

      Reviewer 2 found the paper to provide insights into normal growth of the wing and useful tools for measurement of growth features. This review offered many insights and thoughtful suggestions, which we have adopted to greatly improve the manuscript. The referee’s points are listed below with our responses.

      Although the approach used to measure volume is new to this study, the basic finding that imaginal disc growth slows at the mid-third instar stage has been known for some time from studies that counted disc cell number during larval development (Fain and Stevens, 1982; Graves and Schubiger, 1982). Although these studies did not directly measure disc volume, because cell size in the disc is not known to change during larval development, cell number is an accurate measure of tissue volume. However, it is worth noting that the approach used here does potentially allow for differential growth of different regions of the disc.

      We had cited the older literature in reference to our results. We have now noted the approach’s usefulness in measuring different disc regions such as the pouch.

      Related to point 1, a main conclusion of this study, that cell cycle length scales with growth of the wing, is based on a developmentally limited analysis that is restricted to the mid-third instar larval stage and later (early third instar begins at 72 hr - the authors' analysis started at 84 hr). The previous studies cited above made measurements from the beginning of the 3rd instar and combined them with previous histological analyses of cell numbers starting at the beginning of the 2nd instar. Interestingly, both studies found that cell number increases exponentially from the start of the 2nd instar until mid-third instar, and only after that point does the cell cycle slow resulting in the linear growth reported here. The current study states that growth is linear due to scaling of cell cycle with disc size as though this is a general principle, but from the earlier studies, this is not the case earlier in disc development and instead applies only to the last day of larval life.

      We apologize for not making this distinction clearer in the original manuscript. Indeed, growth is initially exponential and shifts to a more linear-like regime in the mid third instar. Our focus in the manuscript is primarily this latter phase. We have now rewritten the text in the Introduction, Results and Discussion to make this very clear. 

      While cell number and pouch volume increase exponentially from the start of the 2nd instar, the cell cycle already begins to slow down during the 2nd instar, as found with mitotic index measurements done by Wartlick et al 2011. Using their data to model cell cycle duration as a function of pouch area, we find that during the 2nd instar, cell cycle duration also increases as the size of the wing pouch increases. This is shown in the figure (panel C) below. Note that this relationship appears nonlinear and is quantitatively distinct from the relationship for third instar wing growth.

      Author response image 1.

      The analysis of the roles of Fat and Dachsous presented here has weaknesses that should be addressed. It is very curious that the authors found that depletion of Fat by RNAi in the wing blade had essentially no effect on growth while depletion of Dachsous did, given that the loss of function overgrowth phenotype of null mutations in fat is more severe than that of null mutations in dachsous (Matakatsu and Blair, 2006). An obvious possibility is that the Fat RNAi transgene employed in these experiments is not very efficient. The authors tried to address this by doubling the dose of the transgene, but it is not clear to me that this approach is known to be effective. The authors should test other RNAi transgenes and additionally include an analysis of growth of discs from animals homozygous for null alleles, which as they note survive to the late larval stages.

      We thank the reviewer for this suggestion. Indeed, the weak effect of Fat RNAi had been due to the specific RNAi driver. We followed the reviewer’s suggestion and tested other RNAi stocks. We had in hand an RNAi driver against GFP that we had found in unrelated studies to be a very potent repressor of GFP expression. Since we had been using a knock-in allele of GFP inserted in frame to Fat throughout this study, we applied nub>Gal4 UAS-GFP RNAi to knock down homozygous Fat-GFP. The effect of the knockdown was very strong, as measured by remaining 488nm fluorescence above background fluorescence after knockdown. Correcting for background fluorescence, we estimated that only 4.5% of Fat-GFP remained under RNAi conditions (Figure 5 - figure supplement 3). 

      Using the more potent RNAi reagent, we repeated the various experiments related to Fat. We observed a 42% increase in wing pouch growth, which is similar to that of Ds RNAi. We also observed an effect of Fat RNAi on the average cell cycle time of wing pouch cells. There was still a linear coupling between the cell cycle duration and wing pouch size, but the slope of the coupling was smaller with Fat RNAi. This was very similar to what Ds RNAi does to the cell cycle. Therefore, we have replaced the data from the original Fat RNAi experiments with the new data and modified the text throughout the manuscript to describe the new results.

      It is surprising that the authors detect a gradient of Fat expression that has not been seen previously given that this protein has been extensively studied. It is also surprising that they find that expression of Nubbin Gal4 is graded across the wing blade given that previous studies indicate that it is uniform (ie. Martín et al. 2004). These two surprising findings raise the possibility that the quantification of fluorescence could be inaccurate. The curvature of the wing blade makes it a challenging tissue to image, particularly for quantitative measurements.

      Fat protein expression not being uniform has been observed before but not carefully quantified (see Mao et al., 2009, Strutt and Strutt 2002).  Martin et al. 2004 (doi 10.1242/dev.013) claimed that Nub-Gal4 is uniform without actually measuring it. Please consult Fig 1A and 2A in their paper, which clearly shows stronger expression in the center/distal region of the pouch. 

      Regarding systematic errors in quantification, we took great pains to minimize them. We carefully divided the complex folded disc’s z stack into an apical region of interest (ROI) that included the distal domain of the wing pouch and a basal ROI that included the folds encompassing the pouch. We then used a published and widely used surface detection algorithm (ImSAnE) that captures a 3D region of interest (ROI) that can be curved and complex in shape (in z space) because the user creates a surface spline of the ROI. The resulting output treats the ROI as a virtual 2D object. This obviates the need to perform max projections of confocal stacks, which often create artifacts that the reviewer speaks of. Instead, ImSAnE eliminates such artifacts, and it is the gold standard for image processing of ROIs with 3D curvature. 

      Moreover, our pipeline does detect uniform expression if it is there. We used a da-Gal4 driver in Fig. 2K,L - this driver is widely acknowledged to be uniformly expressed in tissues of the fly. When it drives a control fluorescent marker (Bazooka-mCherry), our analysis pipeline detects a uniform expression pattern across the wing pouch (Fig. 2L). When the same Gal4 transgene drives Fat-HA in the same tissue, our pipeline detects a graded expression pattern of Fat-HA (Fig. 2L). In fact, this experiment co-expressed both Fat-HA and the control marker in the same disc. Thus, we feel confident that our analysis is not inaccurate.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife assessment

      This is a valuable study that develops a new model of the way muscle responds to perturbations, synthesizing models of how it responds to small and large perturbations, both of which are used to predict how muscles function for stability but also how they can be injured, and which tend to be predicted poorly by classic Hill-type models. The evidence presented to support the model is solid, since it outperforms Hill-type models in a variety of conditions. Although the combination of phenomenological and mechanistic aspects of the model may sometimes make it challenging to interpret the output, the work will be of interest to those developing realistic models of the stability and control of movement in humans or other animals.

      Reviewer #1 (Public Review):

      Muscle models are important tools in the fields of biomechanics and physiology. Muscle models serve a wide variety of functions, including validating existing theories, testing new hypotheses, and predicting forces produced by humans and animals in health and disease. This paper attempts to provide an alternative to Hill-type muscle models that includes contributions of titin to force enhancement over multiple time scales. Due to the significant limitations of Hill-type models, alternative models are needed and therefore the work is important and timely.

      The effort to include a role for titin in muscle models is a major strength of the methods and results. The results clearly demonstrate the weaknesses of Hill models and the advantages of incorporating titin into theoretical treatments of muscle mechanics. Another strength is to address muscle mechanics over a large range of time scales.

      The authors succeed in demonstrating the need to incorporate titin in muscle models, and further show that the model accurately predicts in situ force of cat soleus (Kirsch et al. 1994; Herzog & Leonard, 2002) and rabbit posts myofibrils (Leonard et al. 2010). However, it remains unclear whether the model will be practical for use with data from different muscles or preparations. Several ad hoc modifications were described in the paper, and the degree to which the model requires parameter optimization for different muscles, preparations and experiment types remains unclear.

      I think the authors should state how many parameters require fitting to the data vs the total number of model parameters. It would also be interesting for the authors to discuss challenges associated with modeling ex vivo and in vivo data sets, due to differences in means of stimulation vs. model inputs.

      (1) I think the authors should state how many parameters require fitting to the data vs the total number of model parameters.

      The total number of model parameters are listed in Table 1. Each parameter has, in addition, references listed for the source of data (if one exists) along with how the data were used (’C’ calculate, ’F’ fit, ’E’ estimated, or ’S’ for scaled) for the specific simulations that appear in this paper. While this is a daunting number of parameters, only a few of these parameters must be updated when modeling a new musculotendon.

      Similar to a Hill-type muscle model, at least 5 parameters are needed to fit the VEXAT model to a specific musculotendon: maximum isometric force (fiso), optimal contractile element (CE) length, pennation angle, maximum shortening velocity, and tendon slack length. However, similar to a Hill model, it is only possible to use this minimal set of parameters by making use of default values for the remaining set of parameters. The defaults we have used have been extracted from mammalian muscle (see Table 1) and may not be appropriate for modeling muscle tissue that differs widely in terms of the ratio of fast/slow twitch fibers, titin isoform, temperature, and scale.

      Even when these defaults are appropriate, variation is the rule for biological data rather than the exception. It will always be the case that the best fit can only be obtained by fitting more of the model’s parameters to additional data. Standard measurements of the active force-length relation, passive forcelength relation, and force-velocity relations are quite helpful to improve the accuracy of the model to a specific muscle. It is challenging to improve the fit of the model’s cross-bridge (XE) and titin models because the data required are so rare. The experiments of Kirsch et al., Prado et al, and Trombitas et´ al. are unique to our knowledge. However, if more data become available, it is relatively straight forward to update the model’s parameters using the methods described in Appendix B or the code that appears online (https://github.com/mjhmilla/Millard2023VexatMuscle).

      We have modified the manuscript to make it clear that, in some circumstances, the burden of parameter identification for the VEXAT model can be as low as a Hill model:

      - Section 3: last two sentences of the 2nd paragraph, found at: Page 10, column 2, lines 1-12 of MillardFranklinHerzog v3.pdf and 05 MillardFranklinHerzog v2 v3 diff.pdf

      - Table 1: last two sentences of the caption, found at: Page 11 of MillardFranklinHerzog v3.pdf and 05 MillardFranklinHerzog v2 v3 diff.pdf

      (2) It would also be interesting for the authors to discuss challenges associated with modeling ex vivo and in vivo data sets, due to differences in means of stimulation vs. model inputs.

      All of the experiments simulated in this work are in-situ or ex-vivo. So far the main challenges of simulating any experiment have been quite consistent across both in-situ and ex-vivo datasets: there are insufficient data to fit most model parameters to a specific specimen and, instead, defaults from the literature must be used. In an ideal case, a specimen would have roughly ten extra trials collected so that the maximum isometric force, optimal fiber length, active force-length relation, passive force-length relation (upto ≈ 0_._6_f_oM), and the force-velocity relations could be identified from measurements rather than relying on literature values. Since most lab specimens are viable for a small number of trials (with the exception of cat soleus), we don’t expect this situation to change in future.

      However, if data are available the fitting process is pretty straight forward for either in-situ or ex-vivo data: use a standard numerical method (for example non-linear least squares, or the bisection method) to adjust the model parameters to reduce the errors between simulation and experiment. The main difficulty, as described in the previous paragraph, is the availability of data to fit as many parameters as possible for a specific specimen. As such, the fitting process really varies from experiment to experiment and depends mainly on the richness of measurements taken from a specific specimen, and from the literature in general.

      Working from in-vivo data presents an entirely different set of challenges. When working with human data, for example, it’s just not possible to directly measure muscle force with tendon buckles, and so it is never completely clear how force is distributed across the many muscles that typically actuate a joint. Further, there is also uncertainty in the boundary condition of the muscle because optical motion capture markers will move with respect to the skeleton. Video fluoroscopy offers a method of improving the accuracy of measured boundary conditions, though only for a few labs due to its great expense. A final boundary condition remains impossible to measure in any case: the geometry and forces that act at the boundaries as muscle wraps over other muscles and bones. Fitting to in-vivo data are very difficult.

      While this is an interesting topic, it is tangent to our already lengthy manuscript. Since these reviews are public, we’ll leave it to the motivated reader to find this text here.

      Reviewer #2 (Public Review):

      This model of skeletal muscle includes springs and dampers which aim to capture the effect of crossbridge and titin stiffness during the stretch of active muscle. While both crossbridge and titin stiffness have previously been incorporated, in some form, into models, this model is the first to simultaneously include both. The authors suggest that this will allow for the prediction of muscle force in response to short-, mid- and long-range stretches. All these types of stretch are likely to be experienced by muscle during in vivo perturbations, and are known to elicit different muscle responses. Hence, it is valuable to have a single model which can predict muscle force under all these physiologically relevant conditions. In addition, this model dramatically simplifies sarcomere structure to enable this muscle model to be used in multi-muscle simulations of whole-body movement.

      In order to test this model, its force predictions are compared to 3 sets of experimental data which focus on short-, mid- and long-range perturbations, and to the predictions of a Hill-type muscle model. The choice of data sets is excellent and provide a robust test of the model’s ability to predict forces over a range of length perturbations. However, I find the comparison to a Hill-type muscle model to be somewhat limiting. It is well established that Hill-type models do not have any mechanism by which they can predict the effect of active muscle stretch. Hence, that the model proposed here represents an improvement over such a model is not a surprise. Many other models, some of which are also simple enough to be incorporated into whole-body simulations, have incorporated mechanistic elements which allow for the prediction of force responses to muscle stretch. And it is not clear from the results presented here that this model would outperform such models.

      The paper begins by outlining the phenomenological vs mechanistic approaches taken to muscle modelling, historically. It appears, although is not directly specified, that this model combines these approaches. A somewhat mechanistic model of the response of the crossbridges and titin to active stretch is combined with a phenomenological implementation of force-length and force-velocity relationships. This combination of approaches may be useful improving the accuracy of predictions of muscle models and whole-body simulations, which is certainly a worthy goal. However, it also may limit the insight that can be gained. For example, it does not seem that this model could reflect any effect of active titin properties on muscle shortening. In addition, it is not clear to me, either physiologically or in the model, what drives the shift from the high stiffness in short-range perturbations to the somewhat lower stiffness in mid-range perturbations.

      (1) It is well established that Hill-type models do not have any mechanism by which they can predict the effect of active muscle stretch.

      While many muscle physiologists are aware of the limitations of the Hill model, these limitations are not so well known among computational biomechanists. There are at least two reasons for this gap: there are few comprehensive evaluations of Hill models against several experiments, and some of the differences are quite nuanced. For example, active lengthening experiments can be replicated reasonably well using a Hill model if the lengthening is done on the ascending limb of the force length curve. Clearly the story is quite different on the descending limb as shown in Figure 9. Similarly, as Figure 8 shows, by choosing the right combination of tendon model and perturbation bandwidth it is possible to get reasonably accurate responses from the Hill model to stochastic length changes. Yet when a wide variety of perturbation bandwidths, magnitudes, and tendon models are tested it is clear that the Hill model cannot, in general, replicate the response of muscle to stochastic perturbations. For these reasons we think many of the Hill model’s drawbacks have not been clearly understood by computational biomechanists for many years now.

      (2) Many other models, some of which are also simple enough to be incorporated into whole-body simulations, have incorporated mechanistic elements which allow for the prediction of force responses to muscle stretch. And it is not clear from the results presented here that this model would outperform such models.

      We agree that it will be valuable to benchmark other models in the literature using the same set of experiments. Hopefully we, or perhaps others, will have the good fortune to secure research funding to continue this benchmarking work. This will, however, be quite challenging: few muscle models are accompanied by a professional-quality open-source implementation. Without such an implementation it is often impossible to reproduce published results let alone provide a fair and objective evaluation of a model.

      (3) For example, it does not seem that this model could reflect any effect of active titin properties on muscle shortening.

      The titin model described in the paper will provide an enhancement of force during a stretch-shortening cycle. This certainly would be an interesting next experiment to simulate in a future paper.

      (4) In addition, it is not clear to me, either physiologically or in the model, what drives the shift from the high stiffness in short-range perturbations to the somewhat lower stiffness in mid-range perturbations.

      We can only respond to what drives the frequency dependent stiffness in the model, though we’re quite interested in what happens physiologically. Hopefully that there are some new experiments done to examine this phenomena in the future. In the case of the model, the reasons are pretty straight forward: the formulation of Eqn. 16 is responsible for this shift.

      Equation 16 has been formulated so that the acceleration of the attachment point of the XE is driven by the force difference between the XE and a reference Hill model (numerator of the first term in Eqn. 16) which is then low pass filtered (denominator of the first term in Eqn. 16). Due to this formulation the attachment point moves less when the numerator is small, or when the differences in the numerator change rapidly and effectively become filtered out. When the attachment point moves less, more of the CE’s force output is determined by variations in the length of the XE and its stiffness.

      On the other hand, the attachment point will move when the numerator of the first term in Eqn. 16 is large, or when those differences are not short lived. When the attachment point moves to reduce the strain in the XE, the force produced by the XE’s spring-damper is reduced. As a result, the CE’s force output is less influenced by variations of the length of the XE and its stiffness.

      Reviewer #2 (Recommendations for the Authors):

      I find the clarity of the manuscript to be much improved following revision. While I still find the combination of phenomenological and mechanistic approaches to be a little limiting with regards to our understanding of muscle contraction, the revised description of small length changes makes the interpretation much less confusing.

      Similarly, while I agree that Hill-type models are widely used their limitations have been addressed extensively and are very well established. Hence, moving forward I think it would be much more valuable to start to compare these newer models to one another rather than just showing an improvement over a Hill model under (very biologically important) conditions which that model has no capacity to predict forces.

      (1) While I still find the combination of phenomenological and mechanistic approaches to be a little limiting with regards to our understanding of muscle contraction ...

      We have had to abstract some of the details of reality to have a model that can be used to simulate hundreds of muscles. In contrast, FiberSim produced by Kenneth Campbell’s group uses much less abstraction and might be of greater interest to you. FiberSim’s models include individual cross-bridges, titin molecules, and an explicit representation of the spatial geometry of a sarcomere. While this model is a great tool for testing muscle physiology questions through simulation, it is computationally expensive to use this model to simulate hundreds of muscles simultaneously.

      Kosta S, Colli D, Ye Q, Campbell KS. FiberSim: A flexible open-source model of myofilament-level contraction. Biophysical journal. 2022 Jan 18;121(2):175-82.https://campbell-muscle-lab.github.io/FiberSim/

      (2) Similarly, while I agree that Hill-type models are widely used their limitations have been addressed extensively and are very well established.

      Please see our response 1 to Reviewer # 1.

      (3) Hence, moving forward I think it would be much more valuable to start to compare these newer models to one another rather than just showing an improvement over a Hill model under (very biologically important) conditions which that model has no capacity to predict forces.

      Please see our response to 2 to Reviewer #1.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary: 

      In the paper by Choi et al., the authors aimed to develop base editing strategies to convert CAG repeats to CAA repeats in the huntingtin gene (HTT), which causes Huntington's disease (HD). They hypothesized that this conversion would delay disease onset by shortening the uninterrupted CAG repeat. Using HEK-293T cells as a model, the researchers employed cytosine base editors and guide RNAs (gRNAs) to efficiently convert CAG to CAA at various sites within the CAG repeat. No significant indels, off-target edits, transcriptome alterations, or changes in HTT protein levels were detected. Interestingly, somatic CAG repeat expansion was completely abolished in HD knock-in mice carrying CAA-interrupted repeats. 

      Correction of factual errors

      We analyzed HEK293 cells, not "HEK-293T".

      Strengths: 

      This study represents the first proof-of-concept exploration of the cytosine base editing technique as a potential treatment for HD and other repeat expansion disorders with similar mechanisms. 

      Weaknesses: 

      Given that HD is a neurodegenerative disorder, it is crucial to determine the efficiency of the base editing strategies tested in this manuscript and their feasibility in relevant cells affected by HD and the brain, which needed to be improved in this manuscript. 

      We appreciate the reviewer's constructive recommendations. Our genetic investigation focused on understanding observations in HD patients to develop genetic-based treatment strategies and test their feasibility. We agree with the reviewer regarding the importance of data from relevant cell types. Unfortunately, the levels of CAG-to-CAA conversion in the patient-derived neurons were modest, as described in our manuscript (approximately 2%). In addition, AAV did not produce detectable conversions in the brain of HD knock-in mice (data not shown), which was somewhat expected from the literature (PMID: 31937940). We believe some technical hurdles can be overcome by developing efficient delivery methods. Nonetheless, it will be an important follow-up study to perform preclinical studies employing optimized base editing strategies and efficient brain delivery methods to fully demonstrate the therapeutic potential of BE strategies. 

      Reviewer #2 (Public Review):

      Summary: 

      In a proof-of-concept study with the aspiration of developing a treatment to delay HD onset, Choi et al. design and test an A>G DNA base editing strategy to exploit the recently established inverse relationship between the number of uninterrupted CAG repeats in polyglutamine repeat expansions and the age-of-onset of Huntington's Disease (HD). Most of the study is devoted to optimizing a base editing strategy typified by BE4max and gRNA2. The base editing is performed in human HEK293 cells engineered with a 51 CAG canonical repeat and in HD knock-in mice harboring 105+ CAG repeats. 

      Correction of factual errors

      We tested base editing strategies aimed at C > T conversion, not A > G DNA base editing. In addition to HEK293 and knock-in mice, we tested base editing strategies in patient-derived iPSC and neurons.

      Weaknesses: 

      Genotypic data on DNA editing are not portrayed in a clear manner consistent with the study's goal, namely reducing the number of uninterrupted CAG repeats by a clinically relevant amount according to the authors' least square approximated mean age-at-onset. No phenotypic data are presented to show that editing performed in either model would lead to reduced hallmarks of HD onset. 

      More evidence is needed to support the central claims and therapeutic potential needs to be more adequate. 

      Our strategies for converting CAG to CAA in model systems resulted in quantitative DNA modification in a population of cells. Consequently, individual cells may carry different genotypes, some harboring CAA and others CAG at the same genomic location. Therefore, using a standard genotype format for DNA to present base editing outcomes may not be ideal. Instead, we presented the resulting genotype data in a quantitative fashion to provide the percentage of conversion at each site. This approach allows for an intuitive interpretation of both the extent of repeat length reduction and the proportion of such modifications.

      Currently, genetically precise HD mouse models with robust motor and behavioral phenotypes are unavailable. While some HD mouse models, such as the BAC and YAC models, feature pronounced behavioral phenotypes, they consist of interrupted CAG repeat sequences, making them unsuitable for base conversion studies due to their inherently short uninterrupted repeats. Although genetically precise HD knockin mouse models exist, they do not manifest motor symptom-like phenotypes. Given that CAG repeat expansion is the primary driver of the disease and knock-in mice recapitulate such phenomenon, our genetic investigation focused on assessing the effects of base conversion on CAG repeat instability in knock-in mice. However, as emphasized by the reviewer, subsequent preclinical studies to evaluate the therapeutic efficacy of CAG-to-CAA conversion strategies using mouse models harboring uninterrupted adult-onset CAG repeats and robust HD-like phenotypes remain crucial.

      Reviewer #3 (Public Review):

      Summary: 

      In human patients with Huntington's disease (HD), caused by a CAG repeat expansion mutation, the number of uninterrupted CAG repeats at the genomic level influences age-at-onset of clinical signs independent of the number of polyglutamine repeats at the protein level. In most patients, the CAG repeat terminates with a CAACAG doublet. However, CAG repeat variants exist that either do not have that doublet or have two doublets. These variants consequently differ in their number of uninterrupted CAG repeats, while the number of glutamine repeats is the same as both CAA and CAG codes for glutamine. The authors first confirm that a shorter uninterrupted CAG repeat number in human HD patients is associated with developing the first clinical signs of HD later. They predict that introducing a further CAA-CAG doublet will result in years of delay of clinical onset. Based on this observation, the authors tested the hypothesis that turning CAG to CAA within a CAG repeat sequence using base editing techniques will benefit HD biology. They show that, indeed, in HD cell models (HEK293 cells expressing 16/17 CAG repeats; a single human stem cell line carrying a CAG repeat expansion in the fully penetrant range with 42 CAG repeats), their base editing strategies do induce the desired CAG-CAA conversion. The efficiency of conversion differed depending on the strategy used. In stem cells, delivery posed a problem, so to test allele specificity, the authors then used a HEK 293 cell line with 51 CAG repeats on the expanded allele. Conversion occurred in both alleles with huntingtin protein and mRNA levels; transcriptomics data was unchanged. In knock-in mice carrying 110 CAG repeats, however, base editing did not work as well for different, mainly technical, reasons. 

      Correction of factual errors

      "HD cell models (HEK293 cells expressing 16/17 CAG repeats" is an incorrect description. It should be "HD cell models (HEK293 cells expressing 51/17 CAG repeats".

      Strengths: 

      The authors use state-of-the-art methods and carefully and thoroughly designed experiments. The data support the conclusions drawn. This work is a very valuable translation from the insight gained from large GWAS studies into HD pathogenesis. It rightly emphasises the potential this has as a causal treatment in HD, while the authors also acknowledge important limitations. 

      Weaknesses: 

      They could dedicate a little more to discussing several of the mentioned challenges. The reader will better understand where base editing is in HD currently and what needs to be done before it can be considered a treatment option. For instance, 

      - It is important to clarify what can be gained by examining again the relationship between uninterrupted CAG repeat length and age-at-onset. Could the authors clarify why they do this and what it adds to their already published GWAS findings? What is the n of datasets? 

      Published HD GWAS (PMID: 31398342) compared the onset age of duplicated interruption and loss of interruption to that of canonical repeats to determine whether uninterrupted CAG repeat or polyglutamine determines age at onset. However, GWAS findings did not quantify the magnitude of the unexplained remaining variance in age at onset in duplicated interruption and loss of interruption. Our study further investigated to gain insights into the amount of additional impact of duplicated interruption to estimate the maximum clinical benefits of base editing strategies for CAG-to-CAA conversion. Since the purpose of this genetic analysis is described in the result section already, we added the following sentence in the introduction section to bring up what is unknown. 

      "Still, age at onset of loss of interruption and duplicated interruption was not fully accounted for by uninterrupted CAG repeat, suggesting additional effects of non-canonical repeats."

      We added sample size for the least square approximation analysis in the text and corresponding figure legend. Sample sizes for molecular and animal experiments can be found in the corresponding figure legend.

      - What do they think an ideal conversion rate would be, and how that could be achieved? 

      It is a very important question. However, speculating the ideal conversion levels is out of the scope of this genetic investigation. A series of preclinical studies using relevant models may generate data that may shed light on the conversion rate levels that are required to produce meaningful clinical benefits. In the discussion section, we added the following sentence. 

      "Currently, the ideal levels of CAG-to-CAA conversion that produce significant clinical benefits are unknown. A series of preclinical studies using relevant model systems may generate data that may shed light on the optimal conversion rate levels that are required to produce significant clinical benefits."

      - Is there a dose-effect relationship for base editing, and would it be realistic to achieve the ideal conversion rate in target cells, given the difficulties described by the authors in differentiated neurons from stem cells? 

      We observed a clear dose-response relationship between the amount of BE reagents and the levels of conversion in non-neuronal cells. Unfortunately, the conversion rate was low in neuronal cells, potentially due to limited delivery, as speculated in the result section. As described in the discussion sections, we predict that efficient delivery methods will be crucial to produce significant CAG-to-CAA conversion to achieve therapeutic benefits.

      - The liver is a good tool for in-vivo experiments examining repeat instability in mouse models. However, the authors could comment on why they did not examine the brain.

      We focused on liver instability because of 1) the expectation that delivery/targeting efficiency is significantly lower in the brain (PMID: 31937940) and 2) shared underlying mechanisms between the brain and liver (described in the result section). The following sentence was added in the method section to provide a rationale for liver analysis. 

      "Since significantly lower delivery/targeting efficiency was expected in the brain 34, we focused on analyzing liver instability."

      - Is there a limit to judging the effects of base editing on somatic instability with longer repeats, given the difficulties in measuring long CAG repeat expansions? 

      Determining the levels of base conversion using sequencing technologies gets harder as repeats become longer. Fragment analysis can overcome such technical difficulty if conversion efficiency is high. As pointed out, the repeat expansion measure is also challenging because amplification is biased toward shorter alleles. However, if repeat sizes are relatively similar, the levels of repeat expansion as a function of base conversion can be determined relatively precisely without a significant bias by a standard fragment analysis approach. 

      - Given the methodological challenges for assessing HTT fragments, are there other ways to measure the downstream effects of base editing rather than extrapolate what it will likely be?

      Our CAG-to-CAA conversion strategies are not expected to directly generate fragments of huntingtin DNA, RNA, or protein. In contrast, immediate downstream effects of CAG-to-CAA conversion include sequence changes (DNA and RNA) and alteration of repeat instability, which are presented in the manuscript. If repeat instability is associated with HTT exon 1A fragment, base conversion strategies may indirectly alter the levels of such putative toxic species, which remains to be determined.  

      - Sequencing errors could mask low-level, but biologically still relevant, off-target effects (such as gRNAdependent and gRNA-independent DNA, Off-targets, RNA off-targets, bystander editing). How likely is that? 

      We agree with the reviewer that increased editing efficiency is expected to increase the levels of off-target editing. However, the field is actively developing base editors with minimal off-target effect (PMID: 35941130), which will increase the safety aspects of this technology for clinical use. We added the following sentence.  "In addition, developing base editors with high level on-target gene specificity and minimal off-target effects is a critical aspect to address 100."

      - How worried are the authors about immune responses following base editing? How could this be assessed? 

      We added the following sentence in the discussion section as the reviewer raised an important safety issue.  

      "Thorough assessments of immune responses against base editing strategies (e.g., development of antibody, B cell, and T cell-specific immune responses) and subsequent modification (e.g., immunosilencing) 101 will be critical to address immune response-associated safety issues of BE strategies."

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      The following points could be considered to improve the overall quality of the manuscript: 

      (1) The authors mentioned that the reason for checking repeat instability in the nonneuronal cells was due to the availability of specific types of AAV; there are other subtypes of AAVs available to infect neurons and iPSCs. 

      Our pilot experiments testing several AAV serotypes in patient-derived iPSC and HD knock-in mice showed that only AAV9 converted CAG to CAA at detectable levels in the liver, not in the brain or neurons. We also speculate that difficulties in targeting the CAG repeat region due to GC-rich sequence contributed to low conversion efficiency. Therefore, subsequent optimization of base editor and delivery may improve BE strategies for HD, permitting robust conversion at the challenging locus. 

      (2) Despite its bold nature, minimal data in the manuscript demonstrate that this gene editing strategy is disease-modifying.

      Resources required to demonstrate the therapeutic benefits of CAG-to-CAA conversion strategies are not fully available. Especially, relevant HD mouse models that carry uninterrupted adult onset CAG repeat and that permit measuring the levels of disease-modifying are lacking, as described in our response to the second reviewer. Given that CAG repeat expansion is the primary driver of the disease, this genetic investigation focused on determining the impacts of base editing strategies on CAG repeat expansion. Still, as indicated by the reviewer, follow-up preclinical studies to evaluate the levels of disease-modifying of CAG-to-CAA conversion strategies using relevant mouse models represent important next steps.

      (3) Off-target analysis at the DNA level was limited to "predicted" off-target sites. What about possible translocations that can result from co-nicking on different chromosomes, as a large number of potential targets exist? 

      Among gRNAs we tested, we focused on gRNAs 1 and 2, which predicted small numbers of off-target. Therefore, our off-target analysis at the DNA level was focused on validating those predicted off-targets. As pointed out, thoroughly evaluating off-target effects will be necessary when candidate BE strategies take the next steps for therapeutic development.

      Genomic translocation caused by double-strand breaks can produce negative consequences, such as cancer. Importantly, although paired nicks efficiently induced translocations, translocations were not detected when a single nick was introduced on each chromosome (PMID: 25201414). Therefore, it is predicted that BE strategies using nickase confers little risk of translocation.

      (4) For in vivo work, somatic repeat expansion was analyzed only in peripheral tissue samples. Since the main affected cellular population in HD is the brain, the outcome of this treatment on a disease-relevant organ still needs to be determined. 

      Challenges in delivery to the brain made us determine instability in the liver since many mechanistic components of somatic CAG repeat instability are shared between the liver and striatum, as rationalized in the manuscript. However, we agree with the reviewer regarding the importance of determining the effects of base conversion on brain instability. We added the following sentence in the method section to provide a rationale. "Since significantly lower delivery/targeting efficiency was expected in brain 34, we focused on analyzing liver instability."

      Reviewer #2 (Recommendations For The Authors):

      Throughout the manuscript, the authors apologize for techniques that do not work when workarounds seem readily apparent to an expert in the field. In its current form, the manuscript reads verbose, speculative, apologetic, and preliminary. 

      Drug development programs that are supported by human genetics data show increased success rates in clinical trials (PMID: 26121088, 31827124, 31830040). This is why this genetic study focused on 1) investigating observations in HD subjects and 2) subsequently developing treatment strategies that are supported by patient genetics. As the first illustration of base editing in HD, the main scope of our manuscript is to justify the genetic rationale of CAG-to-CAA conversion and demonstrate the feasibility of therapeutic strategies rooted in patient genetics. As our study was not aimed at entirely demonstrating the clinical benefits of base editing strategies in HD, some of our data were based on tools and approaches that were not fully optimal. We agree with the reviewer that it will be an important next step to employ optimized approaches to evaluate the efficacy of base editing strategies in model systems. Nevertheless, our novel base conversion strategies derived from HD patient genetics represent a significant advancement as they may contribute to developing effective treatments for this devastating disorder. 

      Reviewer#3 (Recommendations For The Authors):

      It would make for an easier read if abbreviations were kept to a minimum. 

      As recommended, we decreased the use of abbreviations. The following has been spelled out throughout the manuscript: CR (canonical repeat), LI (loss of interruption), DI (duplicated interruption), and CBE (cytosine base editor). Other abbreviations with infrequent usage (e.g., ABE, SS, QC) were also spelled out in the text.

    1. Author response:

      Reviewer #1: 

      Summary:

      In this study, the authors used a multi-alternative decision task and a multidimensional signal-detection model to gain further insight into the cause of perceptual impairments during the attentional blink. The model-based analyses of behavioural and EEG data show that such perceptual failures can be unpacked into distinct deficits in visual detection and discrimination, with visual detection being linked to the amplitude of late ERP components (N2P and P3) and discrimination being linked to the coherence of fronto-parietal brain activity.

      Strengths:

      The main strength of this paper lies in the fact that it presents a novel perspective on the cause of perceptual failures during the attentional blink. The multidimensional signaldetection modelling approach is explained clearly, and the results of the study show that this approach offers a powerful method to unpack behavioural and EEG data into distinct processes of detection and discrimination.

      Weaknesses:

      (1.1) While the model-based analyses are compelling, the paper also features some analyses that seem misguided, or, at least, insufficiently motivated and explained. Specifically, in the introduction, the authors raise the suggestion that the attentional blink could be due to a reduction in sensitivity or a response bias. The suggestion that a response bias could play a role seems misguided, as any response bias would be expected to be constant across lags, while the attentional blink effect is only observed at short lags. Thus, it is difficult to understand why the authors would think that a response bias could explain the attentional blink.

      A deficit in T2 identification accuracy could arise from either sensitivity or criterion effects; the criterion effect may manifest as a choice bias. For example, in short T1-T2 lag trials, when T2 closely follows T1, participants may adopt a more conservative choice criterion for reporting the presence of T2. Moreover, criterion effects need not be uniform across lags: A participant could infer the T1-T2 lag interval based on various factors, including trial length, thereby permitting them to adjust their choice criterion variably across different lags. We will provide a more detailed illustration of this claim in the revision.

      (1.2) A second point of concern regards the way in which the measures for detection and discrimination accuracy were computed. If I understand the paper correctly, a correct detection was defined as either correctly identifying T2 (i.e., reporting CW or CCW if T2 was CW or CCW, respectively, see Figure 2B), or correctly reporting T2's absence (a correct rejection). Here, it seems that one should also count a misidentification (i.e., incorrect choice of CW or CCW when T2 was present) as a correct detection, because participants apparently did detect T2, but failed to judge/remember its orientation properly in case of a misidentification. Conversely, the manner in which discrimination performance is computed also raises questions. Here, the authors appear to compute accuracy as the average proportion of T2-present trials on which participants selected the correct response option for T2, thus including trials in which participants missed T2 entirely. Thus, a failure to detect T2 is now counted as a failure to discriminate T2. Wouldn't a more proper measure of discrimination accuracy be to compute the proportion of correct discriminations for trials in which participants detected T2?

      Detection and discrimination accuracies were computed with precisely the same procedure, and under the same conditions, as described by the Reviewer (underlined text, above). We regret our poor description; we will improve upon it in the revised manuscript.

      (1.3) My last point of critique is that the paper offers little if any guidance on how the inferred distinction between detection and discrimination can be linked to existing theories of the attentional blink. The discussion mostly focuses on comparisons to previous EEG studies, but it would be interesting to know how the authors connect their findings to extant, mechanistic accounts of the attentional blink. A key question here is whether the finding of dissociable processes of detection and discrimination would also hold with more meaningful stimuli in an identification task (e.g., the canonical AB task of identifying two letters shown amongst digits). There is evidence to suggest that meaningful stimuli are categorized just as quickly as they are detected (Grill-Spector & Kanwisher, 2005; Grill-Spector K, Kanwisher N. Visual recognition: as soon as you know it is there, you know what it is. Psychol Sci. 2005 Feb;16(2):152-60. doi: 10.1111/j.0956-7976.2005.00796.x. PMID: 15686582.). Does that mean that the observed distinction between detection and discrimination would only apply to tasks in which the targets consist of otherwise meaningless visual elements, such as lines of different orientations?

      Our results are consistent with previous literature suggested by the Reviewer. Specifically, we do not claim that detection and discrimination are sequential processes; in fact, we modeled them as concurrent computations (Figs. 3A-B). Yet, our results suggest that these processes possess distinct neural bases. We have discussed this idea briefly in the Discussion section (e.g., “Yet, we found no evidence for these two computations being sequential…”). We will discuss this further in the revised manuscript in the context of previous literature.

      Reviewer #2:

      Summary:

      The authors had two aims: First, to decompose the attentional blink (AB) deficit into the two components of signal detection theory; sensitivity and bias. Second, the authors aimed to assess the two subcomponents of sensitivity; detection and discrimination. They observed that the AB is only expressed in sensitivity. Furthermore, detection and discrimination were doubly dissociated. Detection modulated N2p and P3 ERP amplitude, but not frontoparietal beta-band coherence, whereas this pattern was reversed for discrimination.

      Strengths:

      The experiment is elegantly designed, and the data - both behavioral and electrophysiological - are aptly analyzed. The outcomes, in particular the dissociation between detection and discrimination blinks, are consistently and clearly supported by the results. The discussion of the results is also appropriately balanced.

      Weaknesses:

      (2.1) The lack of an effect of stimulus contrast does not seem very surprising from what we know of the nature of AB already. Low-level perceptual factors are not thought to cause AB. This is fine, as there are also other, novel findings reported, but perhaps the authors could bolster the importance of these (null) findings by referring to AB-specific papers, if there are indeed any, that would have predicted different outcomes in this regard.

      While there is consensus that the low-level perceptual factors are not affected by the attentional blink, other studies may suggest evidence to the contrary (e.g., Chua et al, Percept. Psychophys., 2005). We will highlight the significance of our findings in the context of such conflicting evidence in literature, in the revised manuscript.

      (2.2) On an analytical note, the ERP analysis could be finetuned a little more. The task design does not allow measurement of the N2pc or N400 components, which are also relevant to the AB, but the N1 component could additionally be analyzed. In doing so, I would furthermore recommend selecting more lateral electrode sites for both the N1, as well as the P1. Both P1 and N1 are likely not maximal near the midline, where the authors currently focused their P1 analysis.

      We will incorporate these additional analyses in the revised manuscript.

      (2.3) Impact & Context:

      The results of this study will likely influence how we think about selective attention in the context of the AB phenomenon. However, I think its impact could be further improved by extending its theoretical framing. In particular, there has been some recent work on the nature of the AB deficit, showing that it can be discrete (all-or-none) and gradual (Sy et al., 2021; Karabay et al., 2022, both in JEP: General). These different faces of target awareness in the AB may be linked directly to the detection and discrimination subcomponents that are analyzed in the present paper. I would encourage the authors to discuss this potential link and comment on the bearing of the present work on these behavioural findings.

      Thank you. We will discuss our findings in the context of these recent studies.

      Reviewer #3:

      Summary:

      In the present study, the authors aimed to achieve a better understanding of the mechanisms underlying the attentional blink, that is, a deficit in processing the second of two target stimuli when they appear in rapid succession. Specifically, they used a concurrent detection and identification task in- and outside of the attentional blink and decoupled effects of perceptual sensitivity and response bias using a novel signal detection model. They conclude that the attentional blink selectively impairs perceptual sensitivity but not response bias, and link established EEG markers of the attentional blink to deficits in stimulus detection (N2p, P3) and discrimination (fronto-parietal high-beta coherence), respectively. Taken together, their study suggests distinct mechanisms mediating detection and discrimination deficits in the attentional blink.

      Strengths:

      Major strengths of the present study include its innovative approach to investigating the mechanisms underlying the attentional blink, an elegant, carefully calibrated experimental paradigm, a novel signal detection model, and multifaceted data analyses using state-of-theart model comparisons and robust statistical tests. The study appears to have been carefully conducted and the overall conclusions seem warranted given the results. In my opinion, the manuscript is a valuable contribution to the current literature on the attentional blink. Moreover, the novel paradigm and signal detection model are likely to stimulate future research.

      Weaknesses:

      Weaknesses of the present manuscript mainly concern the negligence of some relevant literature, unclear hypotheses, potentially data-driven analyses, relatively low statistical power, potential flaws in the EEG methods, and the absence of a discussion of limitations. In the following, I will list some major and minor concerns in detail.

      Major points

      (3.1) Hypotheses:

      I appreciate the multifaceted, in-depth analysis of the given dataset including its high amount of different statistical tests. However, neither the Introduction nor the Methods contain specific statistical hypotheses. Moreover, many of the tests (e.g., correlations) rely on selected results of previous tests. It is unclear how many of the tests were planned a priori, how many more were performed, and how exactly corrections for multiple tests were implemented. Thus, I find it difficult to assess the robustness of the results.

      As outlined in the Introduction, we hypothesized that neural computations associated with target detection would be characterized by regional neuronal markers (e.g., parietal or occipital ERPs), whereas computations linked to feature discrimination may involve neural coordination across multiple brain regions (e.g. fronto-parietal coherence). We planned and conducted our statistical tests based on this hypothesis. All multiple comparison corrections (e.g., Bonferroni-Holm correction, see Methods) were performed separately for each class of analyses. We will clarify these hypotheses and provide further details in the revised manuscript.

      (3.2) Power:

      Some important null findings may result from the rather small sample sizes of N = 24 for behavioral and N = 18 for ERP analyses. For example, the correlation between detection and discrimination d' deficits across participants (r=0.39, p=0.059) (p. 12, l. 263) and the attentional blink effect on the P1 component (p=0.050, no test statistic) (p. 14, 301) could each have been significant with one more participant. In my opinion, such results should not be interpreted as evidence for the absence of effects.

      We agree and will revise the manuscript accordingly. We will also report Bayes factor (BF) values, where relevant, to further evaluate these claims.

      (3.3) Neural basis of the attentional blink:

      The introduction (e.g., p. 4, l. 56-76) and discussion (e.g., p. 19, 427-447) do not incorporate the insights from the highly relevant recent review by Zivony & Lamy (2022), which is only cited once (p. 19, l. 428). Moreover, the sections do not mention some relevant ERP studies of the attentional blink (e.g., Batterink et al., 2012; Craston et al., 2009; Dell'Acqua et al., 2015; Dellert et al., 2022; Eiserbeck et al., 2022; Meijs et al., 2018).

      We will motivate and discuss our study in the context of these previous studies. 

      (3.4) Detection versus discrimination:

      Concerning the neural basis of detection versus discrimination (e.g., p. 6, l. 98-110; p. 18, l. 399-412), relevant existing literature (e.g., Broadbent & Broadbent, 1987; Hillis & Brainard, 2007; Koivisto et al., 2017; Straube & Fahle, 2011; Wiens et al., 2023) is not included.

      Thank you for these suggestions. We will include these important studies in our discussion.

      (3.5) Pooling of lags and lags 1 sparing:

      I wonder why the authors chose to include 5 different lags when they later pooled early (100, 300 ms) and late (700, 900 ms) lags, and whether this pooling is justified. This is important because T2 at lag 1 (100 ms) is typically "spared" (high accuracy) while T2 at lag 3 (300 ms) shows the maximum AB (for reviews, see, e.g., Dux & Marois, 2009; Martens & Wyble, 2010). Interestingly, this sparing was not observed here (p. 43, Figure 2). Nevertheless, considering the literature and the research questions at hand, it is questionable whether lag 1 and 3 should be pooled.

      Lag-1 sparing is not always observed in attentional blink studies; there are notable exceptions that do not report such sparing (Hommel et al., Q. J. Exp. Psychol., 2005; Livesay et al., Attention, Percept. Psychophys., 2011). Our statistical tests revealed no significant difference in accuracies between short lag (100 and 300 ms) trials or between long lag (700 and 900 ms) trials but did reveal significant differences between the short and long lag trials (ANOVA, followed by post-hoc tests). To simplify the presentation of the findings, we pooled together the short lag (100 and 300 ms) and, separately, the long lag (700 and 900 ms) trials. We will present these analyses, and clarify the motivation for pooling in the revised manuscript. 

      (3.6) Discrimination in the attentional blink

      Concerning the claims that previous attentional blink studies conflated detection and discrimination (p. 6, l. 111-114; p. 18, l. 416), there is a recent ERP study (Dellert et al., 2022) in which participants did not perform a discrimination task for the T2 stimuli. Moreover, since the relevance of all stimuli except T1 was uncertain in this study, irrelevant distractors could not be filtered out (cf. p. 19, l. 437). Under these conditions, the attentional blink was still associated with reduced negativities in the N2 range (cf. p. 19, l. 427-437) but not with a reduced P3 (cf. p. 19, l 439-447).

      We will address the difference between our findings and those of Dellert et al (2022) in the revised manuscript.

      (3.7) General EEG methods:

      While most of the description of the EEG preprocessing and analysis (p. 31/32) is appropriate, it also lacks some important information (see, e.g., Keil et al., 2014). For example, it does not include the length of the segments, the type and proportion of artifacts rejected, the number of trials used for averaging in each condition, specific hypotheses, and the test statistics (in addition to p-values).

      We regret the oversight. We will include these details in the revised Methods.

      (3.8) EEG filters:

      P. 31, l. 728: "The data were (...) bandpass filtered between 0.5 to 18 Hz (...). Next, a bandstop filter from 9-11 Hz was applied to remove the 10 Hz oscillations evoked by the RSVP presentation." These filter settings do not follow common recommendations and could potentially induce filter distortions (e.g., Luck, 2014; Zhang et al., 2024). For example, the 0.5 high-pass filter could distort the slow P3 wave. Mostly, I am concerned about the bandstop filter. Since the authors commendably corrected for RSVP-evoked responses by subtracting T2-absent from T2-present ERPs (p. 31, l. 746), I wonder why the additional filter was necessary, and whether it might have removed relevant peaks in the ERPs of interest.

      Thank you for this suggestion. We will repeat this analysis by removing these additional filters.

      (3.9) Coherence analysis:

      P. 33, l. 786: "For subsequent, partial correlation analyses of coherence with behavioral metrics and neural distances (...), we focused on a 300 ms time period (0-300 ms following T2 onset) and high-beta frequency band (20-30 Hz) identified by the cluster-based permutation test (Fig. 5A-C)." I wonder whether there were any a priori criteria for the definition and selection of such successive analyses. Given the many factors (frequency bands, hemispheres) in the analyses and the particular shape of the cluster (p. 49, Fig 5C), this focus seems largely data-driven. It remains unclear how many such tests were performed and whether the results (e.g., the resulting weak correlation of r = 0.22 in one frequency band and one hemisphere in one part of a complexly shaped cluster; p. 15, l. 327) can be considered robust.

      Please see responses to comments #3.1 and #3.2 (above). In addition to reporting further details regarding statistical tests and multiple comparisons corrections, we will compute and report Bayes factors to quantify the strength of the evidence for correlations, as appropriate.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary: 

      The current manuscript provides an extensive in vivo analysis of two guidance pathways identifying multiple mechanisms that shape the bifurcation of DRG axons when forming the dorsal funiculus in the DREZ. 

      Strengths: 

      Multiple mouse mutant lines were used, together with complementary techniques; the results are very clear and compelling. 

      The findings are very significant and clearly move forward our understanding of the regulation of axonal development at the DREZ. 

      Weaknesses: 

      No major weaknesses were found. As it is I have no recommendations that would increase the clarity or quality of the manuscript. 

      Reviewer #2 (Public Review):

      Summary: 

      In this manuscript, the authors conduct a detailed analysis of the molecular cues that control the guidance of bifurcated dorsal root ganglion axons in a key region of the spinal cord called the dorsal funiculus. This is a specific case of axon guidance that occurs in a precise way. The authors knew that Slit was important but many axons still target correctly in Slit knockouts, suggesting a role for other guidance factors. Netrin1 is also expressed in this region, so they looked at netrin mutants. The authors found axons outside the DREZ in the Ntn1 mutants, and they show by single-neuron genetic labeling that many of these come from DRG neurons. Quantified axonal tracing studies in Slit1/2, Ntn1, or triple mutant embryos support the idea that Slit and Ntr1 have distinct functions in guidance and that the effect of their loss is additive. Interestingly none of these knockouts affect bifurcation itself but rather the guidance of one or both of the bifurcated axon terminals. Knockout of the Slit receptors (Robo1/2) or the Netrin 1 receptor (DCC) in embryos causes similar guidance defects to loss of the ligands, providing additional confirmation of the requirement for both guidance pathways. 

      Strengths: 

      This study expands understanding of the role of the axon guidance factors Ntr1/DCC and Slit/Robo in a specific axon guidance decision. The strength of the study is the careful axonal labeling and quantification, which allows the authors to establish precise consequences of the loss of each guidance factor or receptor. 

      Weaknesses: 

      There are some places in the text where the discussion of these data is compared with other studies and models, but additional details would help clarify the arguments. 

      The details were added to the first section of Discussion in the revision to address this weakness.  Also see the response to the recommendations below.

      Reviewer #3 (Public Review):

      Summary: 

      In this paper, Curran et al investigate the role of Ntn, Slit1, and Slit 2 in the axon patterning of DRG neurons. The paper uses mouse genetics to perturb each guidance molecule and its corresponding receptor. Cre-based approaches and immunostaining of DRG neurons are used to assess the phenotypes. Overall, the study uses the strength of mouse genetics and imaging to reveal new genetic modifiers of DRG axons. The conclusions of the experiments match the presented results. The paper is an important contribution to the field, as evidence that dorsal funiculus formation is impacted by Ntn and Slit signaling. However, there are some potential areas of the manuscript that should be edited to better match the results with the conclusions of the work. 

      Strengths: 

      The manuscript uses the advantage of mouse genetics to investigate the axon patterning of DRG neurons. The work does a great job of assessing individual phenotypes in single and double mutants. This reveals an intriguing cooperative and independent function of Ntn, Slit1, and Slit2 in DRG axon patterning. The sophisticated triple mutant analysis is lauded and provides important insight. 

      Weaknesses: 

      Overall, the manuscript is sound in technique and analysis. However, the majority of the manuscript is about the dorsal funiculus and not the bifurcation of the axons, as the title would make a reader believe. Further, the manuscript would provide a more scholarly discussion of the current knowledge of DRG axon patterning and how their work fits into that knowledge. 

      We revised the title as suggested.  Additional discussion of DRG axon growth at the DREZ is added to the last section of the Discussion in the revision.  Also see the response to the recommendations below.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Given the reasons stated above, I have no specific recommendations for the authors. 

      There is a typo in the Abstract (... mice with triple deletion of Ntn1, Slit2, and Slit2....). 

      Corrected in the revision.

      Reviewer #2 (Recommendations For The Authors):

      (1) The authors twice repeated that their data on DRG guidance defects in the Ntn1 mutants differ from studies previously published in references 19 and 26. However it is unclear to me, without having read those other studies, what is actually different between this study and those, and why there would be differences between the results from two groups. If the authors think this is an important point to make they need to more clearly say what the other group saw and offer an explanation of why the data may be different. 

      We added detailed comparison of the defects from different studies to the first section of the Discussion and suggested multiple roles of Ntn1 in controlling sensory axon growth at the DREZ in the revision.

      (2) In the final section of the discussion it says, "The guidance regulation of DRG axon bifurcation by Slit and Ntn1 may be similar to but overshadowed by their function in midline guidance [43]." The meaning of this sentence was unclear to me. I had been thinking that since there are total knockout embryos (not conditional) there could be patterning effects that happen before the DRG branching that influence the formation of the DREZ. Is this what the authors mean to say here? How can the authors show that the guidance factors they have knocked out are actually functioning in the DRG neurons? 

      We agree with the reviewer that the first sentence is vague, so we edited the paragraph and included the discussion of the regulation of DRG axons at the DREZ, which was the main theme of this last section.  In addition, we agree with the reviewer’s suggestion of the possible indirect role of Ntn1 on DRG axons via the control of interneuron migration.  This possibility was included in the last paragraph of the Discussion.

      (3) In several of the figures (3T, 5I, 5J) there are distance measurements that are presumably averages of multiple axons in 3 or 4 embryos because 3-4 points are shown per graph. However, the figure and methods do not say how many axons were measured per embryo and I could not find if it says these numbers are averages. Clarifying the details of these panels would be useful. 

      The n is the number of animals analyzed and is now added to the figure legends.  From each animal, multiple sections (2-4) were analyzed for various parameters in Fig. 3 and 5.  This information was added to the Method section of the revision.

      Reviewer #3 (Recommendations For The Authors):

      Overall the data matches the conclusions in the paper. However, to this reviewer, the title suggests that Ntn and Slit will have defects in bifurcation. This is not the presented phenotype. I recommend the authors change the title to better reflect the findings of the work. 

      We edited the title of the revised manuscript to reflect the control of growth direction in the context of bifurcation.  

      The introduction of the work clearly outlines what is known about DREZ formation in mice but could extend its discussion to other systems like chick and zebrafish (Jaeda Coutinho-Budd et al. 2008, Wang and Scott 2000, Golding et al 1997, Nichols and Smith 2019, Kikel-Coury et al 2021). These studies are particularly important given that pioneer events, including bifurcation, can be visualized. Acknowledging the contribution of other model systems to the understanding of DRG axon patterning is important to improve the scholarly discussion of the paper. 

      We added more detailed discussion of the current knowledge of DRG axon growth at the DREZ from several relevant studies of the rodent and zebrafish models in the last section of Discussion.

      In the data presented, the authors see defects in the axon patterning of DRG neurons and conclude it is a defect in the dorsal funiculus formation. Another interpretation is that a subset of axons cannot invade the spinal cord boundary properly. This phenotype was observed in zebrafish with timelapse imaging (Kikel-Coury et al 2021). It may not be necessary to specifically test the axons' ability to enter the spinal cord in this paper, but the possibility that this could drive the presented phenotypes should be more clearly stated in the results. Entry is not thoroughly addressed in this paper and would need to be confirmed by labeling the edge of the spinal cord with a second reporter. No entry would obviously impact axon targeting. However, delayed entry could place the axon in a navigation environment that is atypical, causing it to navigate aberrantly and present as a funiculus phenotype. 

      We thank the reviewer for raising this very interesting point.  In our present view, dorsal funiculus formation is related to DRG axon patterning, which involves growth, guidance, and bifurcation of the incoming afferents at the dorsal spinal cord.  We believe that these events are highly coordinated by various environmental cues to generate the DREZ and the dorsal funiculus.  The defects we observed could result from the disruption of such coordination that leads to misregulation of DRG axon entry at the dorsal spinal cord, as suggested by the reviewer.  We propose that further analysis by time-lapse imaging as done in zebrafish would provide better understanding of such coordination.  This discussion was included in the last section of Discussion. 

      The authors should clarify that their approach does not knock out molecules in a cell-specific way. This would specifically impact the interpretation of the Dcc phenotypes. It is possible that UNC-40/DCC is guiding cells that are not labeled. The non-autonomous role of UNC-40/DCC should be clearly stated as a possibility. 

      This discussion was added to the last paragraph of the Discussion section.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We are thankful to all reviewers and to you for your careful analysis of our work and for the feedback you all provided. The reviews were fundamentally positive with very minor modifications suggested, which we have addressed in this new version as follows.

      (1) We changed Figure 1 to include a high resolution image of the 3D structure of the low affinity complex between the RBD and the GM1 tetrasaccharide (GM1os), see panel d. We predicted this structure through extensive sampling through MD simulations as part of earlier work aimed at guiding the resolution of a crystal structure. Due to insurmountable difficulties in the crystallization of such complex the work was only published as an extended abstract(Garozzo, Nicotra, and Sonnino 2022). Following one of the reviewer’s suggestions we added all the details on the computational approach we used as Supplementary Material.

      (2) We added the comment and corresponding references to the Discussion section in relation to earlier work flagged by one of the Reviewers (Rochman et al. 2022) “Further to this, our results show that taking into consideration the effects on _N-_glycosylation on protein structural stability and dynamics in the context of specific protein sequences may be key to understanding epistatic interactions among RBD residues, which would be otherwise very difficult, where not impossible, to decipher.”

      References

      Garozzo, Domenico, Francesco Nicotra, and Sandro Sonnino. 2022. “‘Glycans and Glycosylation in SARS-COV2 Infection’ Session at the XVII Advanced School in Carbohydrate Chemistry, Italian Chemical Society. July 4th -7th 2021, Pontignano (Si), Italy.” Glycoconjugate Journal 39 (3): 327–34.

      Rochman, Nash D., Guilhem Faure, Yuri I. Wolf, Peter L. Freddolino, Feng Zhang, and Eugene V. Koonin. 2022. “Epistasis at the SARS-CoV-2 Receptor-Binding Domain Interface and the Propitiously Boring Implications for Vaccine Escape.” MBio 13 (2): e0013522.

    1. Author response:

      eLife assessment

      This study presents potentially valuable insights into the role of climbing fibers in cerebellar learning. The main claim is that climbing fiber activity is necessary for optokinetic reflex adaptation, but is dispensable for its long-term consolidation. There is evidence to support the first part of this claim, though it requires a clearer demonstration of the penetrance and selectivity of the manipulation. However, support for the latter part of the claim is incomplete owing to methodological concerns, including unclear efficacy of longer-duration climbing fiber activity suppression.

      We sincerely appreciate the thoughtful feedback provided by the reviewer regarding our study on the role of climbing fibers in cerebellar learning. Each point raised has been carefully considered, and we are committed to addressing them comprehensively. We acknowledge the importance of addressing methodological concerns, particularly regarding the efficacy of long-term suppression of CF activity, as well as ensuring clarity regarding penetrance and selectivity of our manipulation. To this end, we have outlined plans for substantial revisions to the manuscript to adequately address these issues.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The study by Seo et al highlights knowledge gaps regarding the role of cerebellar complex spike (CS) activity during different phases of learning related to optokinetic reflex (OKR) in mice. The novelty of the approach is twofold: first, specifically perturbing the activity of climbing fibers (CFs) in the flocculus (as opposed to disrupting communication between the inferior olive (IO) and its cerebellar targets globally); and second, examining whether disruption of the CS activity during the putative "consolidation phase" following training affects OKR performance.

      The first part of the results provides adequate evidence supporting the notion that optogenetic disruption of normal CF-Purkinje neuron (PN) signaling results in the degradation of OKR performance. As no effects are seen in OKR performance in animals subjected to optogenetic irradiation during the memory consolidation or retrieval phases, the authors conclude that CF function is not essential beyond memory acquisition. However, the manuscript does not provide a sufficiently solid demonstration that their long-term activity manipulation of CF activity is effective, thus undermining the confidence of the conclusions.

      Strengths:

      The main strength of the work is the aim to examine the specific involvement of the CF activity in the flocculus during distinct phases of learning. This is a challenging goal, due to the technical challenges related to the anatomical location of the flocculus as well as the IO. These obstacles are counterbalanced by the use of a well-established and easy-to-analyse behavioral model (OKR), that can lead to fundamental insights regarding the long-term cerebellar learning process.

      Weaknesses:

      The impact of the work is diminshed by several methodological shortcomings.

      Most importantly, the key finding that prolonged optogenetic inhibition of CFs (for 30 min to 6 hours after the training period) must be complemented by the demonstration that the manipulation maintains its efficacy. In its current form, the authors only show inhibition by short-term optogenetic irradiation in the context of electrical-stimulation-evoked CSs in an ex vivo preparation. As the inhibitory effect of even the eNpHR3.0 is greatly diminished during seconds-long stimulations (especially when using the yellow laser as is done in this work (see Zhang, Chuanqiang, et al. "Optimized photo-stimulation of halorhodopsin for long-term neuronal inhibition." BMC biology 17.1 (2019): 1-17. ), we remain skeptical of the extent of inhibition during the long manipulations. In short, without a demonstration of effective inhibition throughout the putative consolidation phase (for example by showing a significant decrease in CS frequency throughout the irradiation period), the main claim of the manuscript of phase-specific involvement of CF activity in OKR learning can not be considered to be based on evidence.

      Second, the choice of viral targeting strategy leaves gaps in the argument for CF-specific mechanisms. CaMKII promoters are not selective for the IO neurons, and even the most precise viral injections always lead to the transfection of neurons in the surrounding brainstem, many of which project to the cerebellar cortex in the form of mossy fibers (MF). Figure 1Bii shows sparsely-labelled CFs in the flocculus, but possibly also MFs. While obtaining homogenous and strong labeling in all floccular CFs might be impossible, at the very least the authors should demonstrate that their optogenetic manipulation does not affect simple spiking in PNs.

      Finally, while the paper explicitly focuses on the effects of CF-evoked complex spikes in the PNs and not, for example, on those mediated by molecular layer interneurons or via direct interaction of the CF with vestibular nuclear neurons, it would be best if these other dimensions of CF involvement in cerebellar learning were candidly discussed.

      We appreciate the thorough review and recognize both the strengths and weaknesses highlighted.

      We concur with the reviewer’s assessment of the novelty of our approach, particularly in specifically perturbing the activity of CF in the flocculus and examining the effects during different phases of learning. Also the usage of OKR behavior paradigm adds strength to our study by providing a well-established model for investigating cerebellar learning processes.

      Regarding concerns about the efficacy of long-term optogenetic inhibition and the specificity of viral targeting, we are committed to addressing these issues through additional experiments. Specifically, we aim to demonstrate sustained inhibition of CF transmission by verifying the maintenance of inhibition throughout the putative consolidation phase. This may involve monitoring CF activity during the irradiation period in vivo. Furthermore, we plan to provide further characterization of viral targeting to ensure specificity of our approach.  

      Additionally, we recognize the importance of discussing alternative mechanisms of CF involvement in cerebellar learning. Hence, we will expand the manuscript to provide more comprehensive discussion of these dimensions of CF function to provide a clearer understanding of the broader implications of our findings.

      Reviewer #2 (Public Review):

      Summary:

      The authors aimed to explore the role of climbing fibers (CFs) in cerebellar learning, with a focus on optokinetic reflex (OKR) adaptation. Their goal was to understand how CF activity influences memory acquisition, memory consolidation, and memory retrieval by optogenetically suppressing CF inputs at various stages of the learning process.

      Strengths:

      The study addresses a significant question in the cerebellar field by focusing on the specific role of CFs in adaptive learning. The authors use optogenetic tools to manipulate CF activity. This provides a direct method to test the causal relationship between CF activity and learning outcomes.

      Weaknesses:

      Despite shedding light on the potential role of CFs in cerebellar learning, the study is hampered by significant methodological issues that question the validity of its conclusions. The absence of detailed evidence on the effectiveness of CF suppression and concerns over tissue damage from optogenetic stimulation weakens the argument that CFs are not essential for memory consolidation. These challenges make it difficult to confirm whether the study's objectives were fully met or if the findings conclusively support the authors' claims. The research commendably attempts to unravel the temporal involvement of CFs in learning but also underscores the difficulties in pinpointing specific neural mechanisms that underlie the phases of learning. Addressing these methodological issues, investigating other signals that might instruct consolidation, and understanding CFs' broader impact on various learning behaviors are crucial steps for future studies.

      We appreciate the reviewer’s recognition of the significance of our study in addressing the fundamental question of the role of CF in adaptive learning within the cerebellar field. The use of optogenetic tools indeed provides a direct means to investigate the causal relationship between CF activity and learning outcomes.

      To address concerns regarding the effectiveness of CF suppression during consolidation, we plan to conduct further in-vivo recordings. These will demonstrate how reliably CF transmission can be suppressed through optogenetic manipulation over an extended period.

      In response to the concern about potential tissue damage from laser stimulation, we believe that our optogenetic manipulation was not strong enough to induce significant heat-induced tissue damage in the flocculus. According to Cardin et al. (2010), light applied through an optic fiber may cause critical damage if the intensity exceeds 100 mW, which is eight times stronger than the intensity we used in our OKR experiment. Furthermore, if there had been tissue damage from chronic laser stimulation, we would expect to see impaired long-term memory reflected in abnormal gain retrieval results tested the following day. However, as shown in Figures 2 and 3, there were no significant abnormalities in consolidation percentages even after the optogenetic manipulation.

      Finally, we appreciate the reviewer’s recognition of the challenges involved in pinpointing specific neural mechanisms. We plan to expand the discussion to address these complexities and outline future research directions.

    1. Author Response:

      eLife assessment

      We thank the Editors for identifying qualified reviewers. We agree that the “evidence supporting this claim (that ‘many breast cancer mutations are mildly deleterious’) is incomplete”. Much more detail is needed to state this decisively and we do not claim completeness here. As far as validation, we carried out synthetic testing of the models as suggested by Reviewer #1 and the results seem good.

      Reviewer #1:

      We thank the Reviewer for a very thorough examination of not only the current paper but also our previous paper. We agree that the illustration material can be overwhelming and we plan to use the Reviewer’s advice in that matter. In addition, we originally put some textbook material in the Appendix, and arguably some of it may be considered superfluous.

      Most of the references the Reviewer provides are known to us, although it is likely we should cite and discuss more. All of the above will be included in the revision we are planning.

      The Reviewer is certainly correct that population growth and spatial effects play a major role in cancer. However, the effects of constraining environment are quite strong and the reality lies somewhere between the Moran and branching process models; exactly what we attempt to clarify. As for spatial effects, most tumors extracted in clinic are dissected in bulk and sub-sampling is rare, so the spatial information is rarely accessible.

      The subsequent point of importance concerns the weak specificity of the site frequency spectra (SFS) with respect to the underlying genetic and demographic forces. This cannot be denied. However, we just meant to state that our SFS are consistent with a model involving slightly deleterious passengers.

      Regarding the validation of the estimation procedures which is a point well-taken, we carried out synthetic testing of the models as suggested by Reviewer #1 and the results seem good. This will be discussed in full in the revision.

      In our view, the most important remark is the one concerning scaling of the models. The Reviewer is certainly correct that 100 stem cells are insufficient to drive a realistic tumor. However, what we had in mind but not explained sufficiently, is that a sample of 100 cells corresponds to average-depth coverage in bulk sequencing. Therefore, the strict interpretation is that the model mirrors what is observed in the sample. A more accurate approach would be to up-scale the model and then sample 100 cells from it. The Moran-type model can be up-scaled using diffusion approximation, and we hope to include these computations in the revision. The associated criticism concerning tumor growth seems less relevant, since we experimented with less or more stringent constraints in our models.

      Reviewer #2:

      We thank Reviewer #2 for studying our paper and some very positive comments. Among others, the Reviewer underscores the fact that the Moran-type model generates SFS concordant with the data (with all necessary reservations). The Reviewer concurs with us that conditioning on non-extinction is not very common in the literature, while it should be.

      Similarly as the Reviewer, we are somewhat puzzled by the differences in behavior between models A and B. Model B seems more parsimonious, but Model A looks more similar to the critical or slightly supercritical branching process. We will work to clarify these observations.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript "Self-inhibiting percolation and viral spreading in epithelial tissue" describes a model based on 5-state cellular automata of development of an infection. The model is motivated and qualitatively justified by time-resolved measurements of expression levels of viral, interferon-producing, and antiviral genes. The model is set up in such a way that the crucial difference in outcomes (infection spreading vs. confinement) depends on the initial fraction of special virus-sensing cells. Those cells (denoted as 'type a') cannot be infected and do not support the propagation of infection, but rather inhibit it in a somewhat autocatalytic way. Presumably, such feedback makes the transition between two outcomes very sharp: a minor variation in concentration of ``a' cells results in qualitative change from one outcome to another. As in any percolation-like system, the transition between propagation and inhibition of infection goes through a critical state with all its attributes. A power-law distribution of the cluster size (corresponding to the fraction of infected cells) with a fairly universal exponent and a cutoff at the upper limit of this distribution.

      Strengths:

      The proposed model suggests an explanation for the apparent diversity of outcomes of viral infections such as COVID.

      Author response: We thank the referee for the concise and accurate summary of our work.

      Weaknesses:

      Those are not real points of weakness, though I think addressing them would substantially improve the manuscript.

      Author response: Below we will address these point by point.

      The key point in the manuscript is the reduction of actual biochemical processes to the NOVAa rules. I think more could be said about it, be it referring to a set of well-known connections between expression states of cells and their reaction to infection or justifying it as an educated guess.

      Author response: We have now improved this part in the model section. We have added a few sentences explaining how the cell state transitions are motivated by the UMAP results:

      “The cell state transitions triggered by IFN signaling or viral replication are known in viral infection, but how exactly the transitions are orchestrated for specific infections is poorly understood. The UMAP cell state distribution hints at possible preferred transitions between states. The closer two cell states are on the UMAP, the more likely transitions between them are, all else being equal. For instance, the antiviral state (𝐴) is easily established from a susceptible cell (𝑂), but not from the fully virus-hijacked cell (𝑉 ). The IFN-secreting cell state (𝑁) requires the co-presence of the viral and antiviral genes and thus the cell cluster is located between the antiviral state (𝐴) and virus-infected state (𝑉 ) but distant from the susceptible cells (𝑂).

      Inspired by the UMAP data visualization (Fig. 1a), we propose the following transitions between five main discrete cell states”

      Another aspect where the manuscript could be improved would be to look a little beyond the strange and 'not-so-relevant for a biomedical audience' focus on the percolation critical state. While the presented calculation of the precise percolation threshold and the critical exponent confirm the numerical skills of the authors, the probability that an actual infected tissue is right at the threshold is negligible. So in addition to the critical properties, it would be interesting to learn about the system not exactly at the threshold: For example, how the speed of propagation of infection depends on subcritical p_a and what is the cluster size distribution for supercritical p_a.

      Author response: We agree that further exploring the model away from the critical threshold is worthwhile. While our main focus has been on explaining the large degree of heterogeneity in outcomes – readily explained as a consequence of the sharp threshold-like behavior – we now include plots of the time-evolution of the infection (as well as the remaining states) over time for subcritical values of pa. The plots can be found in Figure S4 of the supplement.

      Reviewer #2 (Public Review):

      Xu et al. introduce a cellular automaton model to investigate the spatiotemporal spreading of viral infection. In this study, the author first analyzes the single-cell RNA sequencing data from experiments and identifies four clusters of cells at 48 hours post-viral infection, including susceptible cells (O), infected cells (V), IFN-secreting cells (N), and antiviral cells (A). Next, a cellular automaton model (NOVAa model) is introduced by assuming the existence of a transient pre-antiviral state (a). The model consists of an LxL lattice; each site represents one cell. The cells change their state following the rules depending on the interaction of neighboring cells. The model introduces a key parameter, p_a, representing the fraction of pre-antiviral state cells. Cell apoptosis is omitted in the model. Model simulations show a threshold-like behavior of the final attack rate of the virus when p_a changes continuously. There is a critical value p_c, so that when p_a < p_c, infections typically spread to the entire system, while at a higher p_a > p_c, the propagation of the infected state is inhibited. Moreover, the radius R that quantifies the diffusion range of N cells may affect the critical value p_c; a larger R yields a smaller value of the critical value p_c. The structure of clusters is different for different values of R; greater R leads to a different microscopic structure with fewer A and N cells in the final state. Compared with the single-cell RNA seq data, which implies a low fraction of IFN-positive cells - around 1.7% - the model simulation suggests R=5. The authors also explored a simplified version of the model, the OVA model, with only three states. The OVA model also has an outbreak size. The OVA model shows dynamics similar to the NOVAa model. However, the change in microstructure as a function of the IFN range R observed in the NOVAa model is not observed in the OVA model.

      Author response: We thank the referee for the comprehensive summary of our work.

      Data and model simulation mainly support the conclusions of this paper, but some weaknesses should be considered or clarified.

      Author response: Thank you - we will address these point by point below.

      (1) In the automaton model, the authors introduce a parameter p_a, representing the fraction of pre-antiviral state cells. The authors wrote: ``The parameter p_a can also be understood as the probability that an O cell will switch to the N or A state when exposed to the virus of IFNs, respectively.' Nevertheless, biologically, the fraction of pre-antiviral state cells does not mean the same value as the probability that an O cell switches to the N or A state. Moreover, in the numerical scheme, the cell state changes according to the deterministic role N(O)=a and N(a)=A. Hence, the probability p_a did not apply to the model simulation. It may need to clarify the exact meaning of the parameter p_a.

      Author response: We acknowledge that this was an imprecise formulation, and have now changed it.

      What we tried to convey with that comment was that, alternatively to having a certain fraction of cells be in the a state initially, one could instead have devised a model in which We should note that even the current model has a level of stochasticity, since we choose the cells to be updated with a constant probability rate - we choose N cells to update in each timestep, with replacement.

      However, based on your suggestion, we simulated a version of the dynamics which included stochastic conversion, i.e. each action of a cell on a nearby cell happens only with a probability p_conv (and the original model is recovered as the p_conv=1 scenario). Of course, this slows down the dynamics (or effectively rescales time by a factor p_conv), but crucially we find that it does not appreciably affect the location of the threshold p_c. Below we include a parameter scan across p_a values for R=1 and p_conv=0.5, which shows that the threshold continues to appear at around p_a=27%. each O-state cell simply had a probability to act as an a-state cell upon exposure to the virus or to interferons, i.e. to switch to an N state (if exposed to virus) or to the A state (if exposed to interferons). In this simplified model, there would be no functional difference, since it would simply amount to whether each cell had a probability to be designated an a-cell initially (as in our model), or upon exposure. So our remark mainly served to explain that the role of the p_a parameter is simply to encode that a certain fraction of virus-naive cells behave this way (whether predetermined or not).

      (2) The current model is deterministic. However, biologically, considering the probabilistic model may be more realistic. Are the results valid when the probability update strategy is considered? By the probability model, the cells change their state randomly to the state of the neighbor cells. The probability of cell state changes may be relevant for the threshold of p_a. It is interesting to know how the random response of cells may affect the main results and the critical value of p_a.

      Author response: This is a good point - we are firm believers in the importance of stochasticity. We should note that even the current model has a level of stochasticity, since we choose the cells to be updated with a constant probability rate - we choose N cells to update in each timestep, with replacement.

      However, based on your suggestion, we simulated a version of the dynamics which included stochastic conversion, i.e. each action of a cell on a nearby cell happens only with a probability p_conv (and the original model is recovered as the p_conv=1 scenario). Of course, this slows down the dynamics (or effectively rescales time by a factor p_conv), but crucially we find that it does not appreciably affect the location of the threshold p_c. Below we include a parameter scan across p_a values for R=1 and p_conv=0.5, which shows that the threshold continues to appear at around p_a=27%.

      We now discuss these findings in the supplement and include the figure below as Fig. S5.

      Author response image 1.

      (3) Figure 2 shows a critical value p_c = 27.8% following a simulation on a lattice with dimension L = 1000. However, it is unclear if dimension changes may affect the critical value.

      Author response: Re-running the simulations on a lattice 4x as large (i.e. L=2000) yields a similar critical value of 27-28% for R=1, so we are confident that finite size effects do not play a major role at L=1000 and beyond. For R=5, however, we find that a minimum lattice size greater than L=1000 is necessary to determine the critical threshold. Concretely, we find that the threshold value pc for R=5 changes somewhat when the lattice size is increased from 1000 to 2000, but is invariant under a change from 2000 to 3000, so we conclude that L=2000 is sufficient for R=5. The pc value for R=5 cited in the manuscript (~0.4%) was determined from simulations at L=2000.

      Reviewer #3 (Public Review):

      Summary:

      This study considers how to model distinct host cell states that correspond to different stages of a viral infection: from naïve and susceptible cells to infected cells and a minority of important interferon-secreting cells that are the first line of defense against viral spread. The study first considers the distinct host cell states by analyzing previously published single-cell RNAseq data. Then an agent-based model on a square lattice is used to probe the dependence of the system on various parameters. Finally, a simplified version of the model is explored, and shown to have some similarity with the more complex model, yet lacks the dependence on the interferon range. By exploring these models one gains an intuitive understanding of the system, and the model may be used to generate hypotheses that could be tested experimentally, telling us "when to be surprised" if the biological system deviates from the model predictions.

      Author response: Thank you for the summary! We agree with the role that you describe for a model such as this one.

      Strengths:

      -  Clear presentation of the experimental findings and a clear logical progression from these experimental findings to the modeling.

      -  The modeling results are easy to understand, revealing interesting behavior and percolation-like features.

      -  The scaling results presented span several decades and are therefore compelling. - The results presented suggest several interesting directions for theoretical follow-up work, as well as possible experiments to probe the system (e.g. by stimulating or blocking IFN secretion).

      Weaknesses:

      -  Since the "range" of IFN is an important parameter, it makes sense to consider lattice geometries other than the square lattice, which is somewhat pathological. Perhaps a hexagonal lattice would generalize better.

      -  Tissues are typically three-dimensional, not two-dimensional. (Epithelium is an exception). It would be interesting to see how the modeling translates to the three-dimensional case. Percolation transitions are known to be very sensitive to the dimensionality of the system.

      Author response: We agree that probing different lattice geometries (2- and 3-dimensional alike) would be interesting and worthwhile. However, for this manuscript, we prefer to confine the analysis to the current, simple case. We do agree, however, that an extensive exploration of the role of geometry is an interesting future possibility.

      -  The fixed time-step of the agent-based modeling may introduce biases. I would consider simulating the system with Gillespie dynamics where the reaction rates depend on the ambient system parameters.

      -  Single-cell RNAseq data typically involves data imputation due to the high sparsity of the measured gene expression. More information could be provided on this crucial data processing step since it may significantly alter the experimental findings.

      Justification of claims and conclusions:

      The claims and conclusions are well justified.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      It is necessary to explain what UMAP does. Is clustering done in the space of twenty-something original dimensions or 2D? How UMAP1 and UMAP2 are selected and are those the same in all plots?

      Author response: We have now added a few sentences to clarify the point raised above - the second snippet explains how clustering is performed:

      “As a dimension reduction algorithm, UMAP is a manifold learning technique that favors the preservation of local distances over global distances (McInnes et al., 2018; Becht et al., 2019). It constructs a weighted graph from the data points and optimizes the graph layout in the low-dimensional space.”

      “We cluster the cells with the principal components analysis (PCA) results from their gene expression. With the first 16 principal components, we calculate k-nearest neighbors and construct the shared nearest neighbor graph of the cells then optimize the modularity function to determine clusters. We present the cluster information on the UMAP plane and use the same UMAP coordinates for all the plots in this paper hereafter.”

      Figure 1, what do bars in the upper right corners of panels d,e,f, and g indicate? ``Averaged' refers to time average? Something is missing in ``Cell proportions are labeled with corresponding colors in a)' .

      Author response: Thank you - we have now modified the figure caption. The bars in the upper right corners of panels d, e, f are color keys for gene expression, the brighter the color is, the higher the gene expression is.

      “Averaged” gene expression refers to the mean expression of that particular gene across the cells within each indicated cluster.

      The lines in c) correspond to cell proportions in different states at different time points. The same state in 1) and c) is shown in the same color.

      Line 46, ``However' does not sound right in this context. Would ``Also' be better?

      Author response: We agree and have corrected it in the revised manuscript.

      Line 96``The viral genes are also partially expressed in these cells, but different from the 𝑁 cluster, the antiviral genes are fully expressed (Fig. S1 and S2).' The sentence needs to be rephrased.

      Author response: We have rephrased the sentence: “As in the N cluster, the viral gene E is barely detected in these cells, indicating incomplete viral replication. However, in contrast to the N cluster, the antiviral genes are expressed to their full extent (Fig. S1 and S2).”

      Line 126, missing "be", ``large' -> ``larger'.

      Author response: Thank you, we have now corrected these typos.

      Line 139-140 The logical link between ignoring apoptosis and the diffusion of IFN is unclear.

      Author response: We modified the sentence as “Here, we assume that the secretion of IFNs by the 𝑁 cells is a faster process than possible apoptosis (Wen et al., 1997; Tesfaigzi, 2006) of these cells and that the diffusion of IFNs to the neighborhood is not significantly affected by apoptosis.”

      Fig. 2a Do the yellow arrows show the effect of IFN and the purple arrows the propagation of viral infection?

      Author response: That is correct. We have added this information to the figure caption: “The straight black arrows indicate transitions between cell states. The curved yellow arrows indicate the effects of IFNs on activating antiviral states. The curved purple arrows indicate viral spread to cells with 𝑂 and 𝑎 states.”

      Fig. 3, n(s) as the axis label vs P(s) in the text? How do the curves in panel a) look when the p_a is well above or below p_c?

      Author response: Thank you. We have edited the labels in the figure to reflect the symbols used in the text.

      Boundary conditions? From Fig. 4, apparently periodic?

      Author response: Yes, we use periodic boundary conditions in the model. We clarify it in the model section now (last sentence).

      It will be good to see a plot with time dependences of all cell types for a couple of values of p_a, illustrating propagation and cessation of the infection.

      Author response: We agree, and have added a Figure S4 in the supplement which explores exactly that. Thank you for the suggestion.

      A verbal qualitative description of why p_a has such importance and how the infection is terminated for large p_a would help.

      Reviewer #2 (Recommendations For The Authors):

      Below are two minor comments:

      (1) In the single-cell RNA sequencing data analysis, the authors describe the cell clusters O, V, A, and N. However, showing how the clusters are identified from the data might be more straightforward.

      Author response: Technically, we cluster the cells using principal components analysis (PCA) results of their gene expression. With the first 16 principal components, we calculate k-nearest neighbors and construct the shared nearest neighbor graph of the cells and then optimize the modularity function to determine clusters. We manually annotate the clusters with O, V, A, and N based on the detected abundance of viral genes, antiviral genes, and IFNs.

      (2) In Figure 3, what does n(s) mean in Figure 3a? And what is the meaning of the distribution P(s) of infection clusters? It may be stated clearly.

      Author response: The use of n(s) was inconsistent, and we have now edited the figure to instead say P(s), to harmonize it with the text. P(s) is the distribution of cluster sizes, s, expressed as a fraction of the whole system. In other words, once a cluster has reached its final size, we record s=(N+V)/L^2 where N and V are the number of N and V state cells in the cluster (note that, by design, each simulation leads to a single cluster, since we seed the infection in one lattice point). We now indicate more clearly in the caption and the main text what exactly P(s) and s refer to.

      Reviewer #3 (Recommendations For The Authors):

      - Would the authors kindly share the simulation code with the community? Also, the data analysis code should be shared to follow current best practices. This needs to be standard practice in all publications. I would go as far as to say that in 2024 publishing a data analysis / simulation study without sharing the relevant code should be ostracized by the community.

      Author response: We absolutely agree and have created a GitHub repository in which we share the C++ source code for the simulations and a Python notebook for plotting. The public repository can be found at https://github.com/BjarkeFN/ViralPercolation. We add this information in supplement under section “Code availability”.

      ­

      - I would avoid the use of the wording "critical" threshold since this is almost guaranteed to infuriate a certain type of reader.

      ­

      - Line 265 has a curious use of " ... " which should be replaced with something more appropriate.

      Author response: Thank you for pointing it out! We have checked the typos.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors set out to develop genetic tools that can specifically and comprehensively label Axo-Axonic Cells (AACs), also known as Chandelier cells. These AACs possess unique morphological and connectivity features, making them an ideal subject for studying various aspects of cell types across different experimental methods. To achieve both specificity and comprehensiveness in AAC labeling, the authors employ an intersectional strategy that combines lineage origin and molecular markers. This approach successfully targets AACs across the mouse brain and reveals their widespread distribution in various brain structures beyond the previously known regions. Additionally, the authors utilize rabies transneuronal labeling to provide a comprehensive overview of AACs, their variations, and input sources throughout the brain. This experimental approach offers a powerful model system for investigating the role of AACs in circuit development and function across diverse brain regions.

      Strengths:

      Genetic Tools and Specificity: The authors' genetic tools show qualitative evidence of specificity for AACs, opening new avenues for targeted research on these cells. The use of intersectional strategies enhances the precision of AAC labeling.

      Widespread Distribution: The study significantly broadens our understanding of AAC distribution, revealing their presence in brain regions beyond what was previously documented. This expanded knowledge is a valuable contribution to the field.

      Transneuronal Labeling: The inclusion of rabies transneuronal labeling provides a comprehensive view of AACs, their variations, and input sources, allowing for a more holistic understanding of their role in neural circuits.

      Weaknesses:

      Quantitative Analysis: While the claim of specificity appears qualitatively convincing, the manuscript could be improved with more quantitative analysis.

      We are glad that the reviewers appreciated our multimodal and brain-wide characterizations of the AAC population. We include many qualitative AAC examples and would like to highlight the quantitative nature of our whole brain cell body and cartridge analyses, made possible by transgenic targeting and our serial two-photon tomography imaging platform (STP). In addition to providing this brain wide AAC atlas, we also propose AACs as perhaps one of the best case examples for a bona fide cell type, which may inspire further in-depth anatomical and functional studies of AACs, and efforts to capture other ground truth cell types.

      Comprehensiveness Claim: The assertion of comprehensiveness, implying labeling "almost all" AACs in all brain regions, is challenging to substantiate conclusively. Acknowledging the limitations of proving complete comprehensiveness and discussing them in the discussion section would be more appropriate than asserting it in the results section.

      We thank the reviewer for this suggestion and have revised the results and discussion sections accordingly. The issue of how to access comprehensiveness in AAC labeling is a fair and important point, as dense brain-wide AAC labeling has not been achieved and assessed before. Previous studies had used less efficient and specific methods for capturing AACs, primarily in select areas of cortex, hippocampus, and amygdala. These AAC populations are recapitulated by our genetic strategies with higher density and specificity. It does not seem that we have missed any previously-reported AAC populations; in fact, we discovered multiple previously unreported populations. Another evidence supporting our “comprehensive” labeling of AACs is that two independent Unc5b and Pthlh transgenic strategies showed very similar AAC distribution patterns (Fig. 1 Suppl. 3). However, we recognize that probably the only way to fully assess “completeness” of labeling may be to compare with anatomical ground truth, such as by dense EM reconstruction of all AACs across the brain volume. This is currently not technically possible but may become feasible in the future. 

      Local Inputs: While the manuscript focuses on inter-areal inputs to AACs, it would benefit from exploring local inputs as well. Identifying the local neurons that target AACs and analyzing their patterns could provide valuable insights into AAC function within specific brain regions.

      This is a good suggestion. However, our serial two-photon tomography imaging platform does not have the capability for reliably preserving tissue sections for immunohistochemical processing afterward. Additionally, though our starter AAV injections were limited to 100-150nL, there were far too many input cells labelled at the injection side to resolve individual input cells and correlate with their synaptic partners (e.g. a rabies-labelled pyramidal cell within the injection site may still project to starter cell few hundred microns away). Thus, our rabies input mapping was best suited for characterizing long-range inputs and was the focus here. For studying local inputs to AACs, future studies could combine very dilute starter AAV injections with multi-marker characterization of cell types by immunohistochemistry or FISH.  

      Discussion Focus: The discussion section should delve deeper into the biological implications of the findings, moving beyond technical significance. Exploring similarities and differences in input patterns between AACs and other cell types, and linking them to the locations of starter cells or specific connectivity patterns in the brain, would enrich the discussion. For instance, investigating whether input patterns can be predicted based on the locations of starter cells or connectivity specificity could provide valuable insights.

      We thank the reviewer for this suggestion. We have expanded the discussion to include more on the relevance and implications of our input mapping results to different starter populations of AACs.

      Reviewer #2 (Public Review):

      Summary:

      The goals of this study were to develop a genetic approach that would specifically and comprehensively target axo-axonic cells (AACs) throughout the brain and then to describe the patterns and characteristics of the targeted AACs in multiple, selected brain regions. The investigators have been successful in providing the most complete description of the regional distribution of putative (pAACs) throughout the brain to date. The supporting evidence is convincing, even though incomplete in some brain regions. The findings should serve as a guide for more detailed studies of AACs within each brain region and lead to new insights into the connectivity and functional organization of this important group of GABAergic interneurons.

      Strengths:

      The study has numerous strengths. A major strength is the development of a unique intersectional genetic strategy that uses cell lineage (Nkx2.1) and molecular (Unc5b or Pthlh) markers to identify axo-axonic AACs specifically and, apparently, nearly completely throughout the mouse brain. While AACs have been described previously in the cerebral cortex, hippocampus, and amygdala, there has been no specific genetic marker that selectively identifies all AACs in these regions.

      The current genetic strategy has labeled pAACs in a large number of additional brain regions, including the claustrum-insular complex, extended amygdala, and several olfactory centers. In general, the findings provide support for the specificity of the methods for targeting AACs, and include some examples of labeling near markers of axon initial segments. However, the Investigators are careful to refer to labeled neurons as "putative AACs" as they have not been fully characterized and their identity verified.

      The descriptions and numerous low-magnification images of the brain provide a roadmap for subsequent, detailed studies of AACs in numerous brain regions. The overview and summaries of the findings in the Abstract, Introduction, and Discussion are particularly clear and helpful in placing the extensive regional descriptions of AACs in context.

      Weaknesses:

      One weakness of the study is the lack of an illustration of the high-resolution cell labeling that can be achieved with the methods, including labeling of numerous rows of axon terminals in contact with axon initial segments. The initial images of the brain-wide distribution of putative AACs are necessarily presented at low magnification. Although the authors indicate that the cells have "highly characteristic AAC labeling patterns throughout the neocortex, hippocampus and BLA", these morphological details cannot be visualized by the reader at the current magnification, even when the images are enlarged on the computer screen. Some of the details become evident in later Figures, but an initial illustration of single cell labeling with confocal microscopy, or tracing of their characteristic axonal arbors, would support the specificity of the labeling in the low magnification images.

      We thank the reviewer for the suggestion. We have now added high-resolution images showing the colocalization of AAC axon boutons (cartridges) along AnkG positive postsynaptic axon initial segments in Fig. 2 Suppl. 1, Figure 1 panels a, d, e, and Fig. 4 panels b, c. These images unequivocally demonstrate AAC identity and specificity.

      Table 1 indicates that the AAC identity of the cells has been validated in many brain regions but not in all. The methods used for validation have not been described and should be included for completeness. The authors are careful to acknowledge that labeled cells in some regions have not been validated and refer to such cells as pAACs.

      Validation was defined by colocalization of RFP-labelled AAC cartridges and AnkryinG or Phospho-IκBα-labelled axon initial segments, imaged by confocal microscopy. We provide high-magnification examples throughout figures 2-6 and supplements. We have also tried to clarify this better in the methods section entitled “Immunohistochemistry.” Putative AAC (pAACs) refers to populations in which relatively few single cell examples of AACs exhibiting co-localized cartridges were found, largely due to the sparsity of the low tamoxifen dosage used (see response above).

      The intersectional genetic methods included the use of the lineage marker Nkx2.1 with either Unc5b or Pthlh as the molecular marker. As described, the mice with intersectional targeting of Nkx2.1 and Unc5b appear to show the most specific brain-wide labeling for AACs, and the majority of the descriptions are from these mice. The targeting with Nkx2.1 and Pthlh is less convincing. The title for Figure 1 Supplemental Figure 3 suggests a similar AAC distribution in the Pthlh;Nkx2.1 mouse compared to the Unc5b;Nkx2.1 mouse. However, the descriptions of the individual panels suggest a number of inconsistencies and non-AAC labeling. The heavy labeling in the caudate and cells in layer 4 is particularly problematic. Based on the data presented, it appears that heavy labeling achieved in these mice could not be relied on for specific labeling of all AACs, although specific labeling could be achieved under some conditions, such as following tamoxifen administration at select ages.

      The reviewer is correct about Pthlh being less specific for AACs than Unc5b when crossed to a constitutive Nkx2.1 recombinase driver line. Pthlh/Nkx2.1 intersection labeled a set of layer 4 cells in somatosensory cortex and dense cells in striatum, which are clearly not AACs. But these are the only main difference compared to Unc5b/Nkx2.1 intersection. As the reviewer points out, it is only when Pthlh is crossed to an inducible Nkx2.1-CreER line and induced embryonically with tamoxifen that there is more specific AAC labeling (at least in cortex). We included this data as well as the intersection with VIP-Cre in case either of these are useful to researchers studying fate-mapping of AACs or bipolar cell interneurons. We have also revised the title of Fig. 1 Suppl. 3 to better convey this.

      The methods described for dense labeling and single-cell labeling are described briefly in the methods. Some discussion of the development of the methods would be useful, including how it was determined that methods for heavy labeling identified AACs specifically and completely.

      We have added a description on the development of these to the methods section entitled “Animals.”

      Reviewer #3 (Public Review):

      Summary:

      Raudales et al. aimed at providing an insight into the brain-wide distribution and synaptic connectivity of bona fide GABAergic inhibitory interneuron subtypes focusing on the axo-axonic cell (AAC), one of the most distinctive interneuron subtypes, which innervates the axon initial segments of glutamatergic projection neurons. They establish intersectional genetic strategies that enable them to specifically and comprehensively capture AACs based on their lineage (Nkx2.1) and marker expression (Unc5b, Pthlh). They find that AACs are deployed across essentially all the pallium-derived brain structures as well as the anterior olfactory nucleus, taenia tecta, and lateral septum. They show that AACs in distinct areas and layers of the neocortex as well as different subregions of the hippocampal formation display unique soma and synaptic density and morphological variations. Rabies virus-based retrograde monosynaptic input tracing reveals that AACs in the neocortex, the hippocampus, and the basolateral amygdala receive synaptic inputs from common as well as specific brain regions and supports the utility of this novel genetic approach. This study elucidates brain-wide neuroanatomical features and morphological variations of AACs with solid techniques and analysis. Their novel AAC-targeting strategies will facilitate the study of their development and function in different brain regions. The conclusions in this paper are well supported by the data. However, there are a few comments to strengthen this study.

      (1) The definition of putative AAC (pAAC) is unclear and Table 1 may not be accurate. Although the authors find synaptic cartridges of RFP-labeled cells in the claustro-insular complex and the dorsal endopiriform nuclei, they still consider these cells as pAACs (not validated). The authors claim that without examining the presence of synaptic cartridges, RFP-labeled cells in the hypothalamus and the bed nuclei of the stria terminalis (BNST) are pAACs while those in the L4 of the somatosensory cortex in Pthlh;Nkx2.1;Ai65 mice are non-AACs. In Table 1, the BNST is supposed to contain AACs (validated), but in the text, the authors claim that RFP-labeled cells in the BNST are pAACs. Could the authors clarify how AACs, pAACs, and non-AACs are defined?

      We thank the reviewer for their interest and comments on our work. Please see our response to reviewer 2 for clarification on putative pAACs. Additionally, we have clarified in the methods under “Immunohistochemistry” how we defined AACs, pAAC, and non-AACs. For BNST we did not positively identify more than a few exhibiting overlap with AnkryinG/IκBα, so we currently leave them as pAACs—Table 1 has been corrected to reflect this.

      (2) The intersectional strategies presented in this study could also specifically capture developing AACs. If so, how early are AACs labeled in the brain? It would also be nice if the authors could add a simple schematic like Fig. 1a showing the time course of Pthlh expression.

      We thank the reviewer for suggesting the application of our method in studying AAC development. As the onset of Unc5b is in early postnatal time, tamoxifen induction of Unc5b-CreER in early postnatal days can enable studies of AAC neurite and synapse development, maturation, and plasticity. Similarly, Pthlh expression in the brain is relatively low/absent at P4 and present at P14 and later timepoints. Pthlh-Flp;Nkx2.1-Cre intersection can be used to study postnatal AAC development and plasticity.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      While the claim of specificity appears qualitatively convincing, additional quantitative analysis would make the authors' claim much stronger. For example in Figure 4 (f-h), where the authors show an overlap of AAC axons with AnkG labeling, there also appears to be a region of AAC axon lacking adjacent AnkG labeling. The author could quantify the fraction of cartridges that overlap with AnkG labeling in different brain regions, potentially stringing their claim that pAACs are AACs as well as providing important documentation of the diversity or homogeneity of compartment targeting across the brain.

      As mentioned previously, we only performed AnkG co-labeling analysis on low-dose tamoxifen/sparsely labelled samples in which we could readily differentiate individual cells. This was performed on samples with the Ai65 cytoplasmic reporter—for validation purposes we could positively identify co-labelled cartridges, but it would be more difficult to accurately identify any cartridges not co-labeled (since the entire axon was labelled with RFP). For precisely identifying and mapping AAC cartridge locations we found the intersectional synaptophysin-EGFP reporter (Fig. 2k-n) to be a more precise method for specifically labeling the “cartridge” segment of AAC axons. However, we did not try AnkG staining on samples from this reporter line, as they were set aside for STP imaging.

      Regarding the claim of comprehensiveness, labeling "almost all" AACs in all brain regions is a high standard and challenging to demonstrate conclusively. The study already significantly expands our understanding of AAC distribution, and the authors might consider discussing the limitations of proving complete comprehensiveness in the discussion rather than claiming it in the results section.

      We again thank the reviewer for this critique. As mentioned above, we have revised the results and discussion sections to better convey this point across.

      Furthermore, the manuscript connectivity section primarily focuses on inter-areal inputs to AACs, but it could benefit from exploring local inputs as well. By identifying the local neurons that target AACs, the authors could ask if there is any general property or rule of the local projections to AACs across the brain, or at least within the cortex. Moreover, a clear indication of the injection site would be helpful, particularly in Figure 7, where there seems to be some discrepancy between the histograms and fluorescent images regarding local projections. The histograms of Figure 7, seem to indicate that the local projection to AACs is a small fraction of all the presynaptic neurons, however, the fluorescent image for the SSp seems to suggest otherwise with many fluorescent cells in the injected area.

      We thank the reviewer for these comments. Regarding the local inputs in the rabies tracing datasets, it is a limitation (as mentioned above) of our STP platform’s inability to preserve tissue for immunohistochemistry labeling as well as our relatively dense starter cell labeling. Instead, our focus here was on long-range inputs (i.e. outside the ipsilateral ARA area of injection), which was simply not known for these AAC populations. We have revised the Figure 7 legend and added a description in the methods section to more clearly indicate that we only included long-range input projections in the Figure 7 histograms.

      In the discussion, the authors should delve more into the biological implications of their findings rather than solely emphasizing the technical significance. They could explore the similarities and differences in input patterns between AACs and other cell types, potentially linking them to the locations of their starter cells or specific connectivity patterns in the brain. For example, the authors could check if the input patterns could be predicted from the projections to the layers where their starter cells are located (either from an Atlas like the Allen Connectivity Atlas, or from retrograde rabies injections in the same locations). Can the differences between the input patterns to PVC and AAC be predicted for their location versus some specificity of connections?

      Thank you for the extensive comment. We address this point above, and have revised our discussion accordingly.

      Reviewer #2 (Recommendations For The Authors):

      The Figure legends vary in completeness and quality.

      (1) The legend for Figure 1 is very informative, and section e-g serves as a useful guide, as the legend includes the names of the brain regions related to the abbreviations and also indicates the specific panels that show the identified structures. Because of the large number of structures and the number of panels in each Figure, it would be ideal to follow the same pattern in the remaining figures.

      (2) Several edits are needed in the legend for Figure 1 Supplement Figure 1. The descriptions of a-f could be improved by providing general terms to describe the brain regions associated with the latter list of abbreviations (as has been done with the identification of the cerebral cortex, hippocampus, and olfactory centers and their related panels). One suggestion would be to write out insula, claustrum, and endopiriform prior to listing the abbreviations (AI, CLA, EP) (b-c) and adding amygdaloid complex and extended amygdala before the abbreviations (COA, BLA, MeA) (d-f) and (BST) (d).

      We thank the reviewer, as the suggestion of further expanding the abbreviations is a good one. As such, we have revised/reorganized the anatomical abbreviations in the figure legends for Figure 1 Supplement Figures 1, 2, and 3.

      Descriptions for Panels g-j require editing to link the appropriate panels and the descriptions. Panels for BSTpr appear to be g-h (rather than f-g) and i,j (rather than h-i.

      We have fixed this typo in the legend for Figure 1 Supplement Figure 1.

      Descriptions for Panels k-n could be edited to include abbreviations for the identified brain regions. For example, include the abbreviation ARHP after arcuate nuclei and indicate panels m-n (rather than j-l); include PVP after paraventricular and indicate panel n (rather than m); include DMPH after dorsomedial nuclei and indicate k-m (rather than j-l).

      Thank you for the suggestion. We have expanded the abbreviations in Figure 1 Supplement 1 accordingly.

      Reviewer #3 (Recommendations For The Authors):

      (1) Please clarify if tdTomato, EGFP (from helper AAVs), and RFP (from rabies virus) are native signals or IHC signals in legends.

      We have added the descriptors “native” or “stained” to all figure legends containing fluorescent images.

      (2) Fig. 4b and c: Please add insets of high-magnification images showing AAC boutons along AnkG-labeled AISs.

      We have added these insets to Fig. 4b and c.

      (3) Fig. 7S1: It appears that d and e are reversed. Judging from the positions of starter cells, d is for PV-Cre? Please make sure. It is also better to draw the laminar border in d and e.

      The original genotype labels are correct for Fig. 7S1 d and e. We have added the laminar borders as suggested.

      (4) Fig. 9b: Just for consistency, please label with the name of the helper AAV.

      Added.

      (5) Line 617: intragranular>>>infragranular?

      Corrected, thank you.

      (6) It may be unclear to some readers if the images in the figures are from confocal or STP. The authors may want to clarify that all images in the figures are generated by confocal microscopy in the method section.

      We have clarified this better in the methods section, “Microcopy and image analysis.”

      (7) The authors should clarify that STP was used to map input cells to the brain in the result section.

      We have added this description in the results section.

    1. Author response:

      We thank the reviewers and editors for their review and assessment of our manuscript and comprehensive feedback. The manuscript will be revised to address all the reviewers’ comments. Specifically, to address the comment of Reviewer 1 and the editor regarding the lack of quantitative comparison between the classical and fractal cycle approaches and identification of the source of the discrepancies between classical and fractal cycles, we plan to perform and report the following analyses and comparisons:

      (1) Intra-method reliability

      a) Classical cycles. An additional scorer will independently define onsets and offsets of all classical sleep cycles for all datasets and mark sleep cycles with skipped REM sleep. Likewise, we will perform automatic sleep cycle detection. We will add a new Supplementary table showing the averaged cycle durations obtained by the two scorers and automatic algorithm as well as the inter-scorer rate agreement and update the Supplemental Excel file with corresponding information for each cycle for each participant for each dataset.

      b) Fractal cycles. We will correlate the durations of fractal cycles calculated using the parameters defined in the Main text with those calculated using different parameters, namely, the longer and shorter smoothing window lengths, higher and lower minimum peak prominence. Likewise, we will correlate the durations of fractal cycles calculated using frontal vs other available electrodes.

      (2) Origin of method differences

      In the current version of our Manuscript, we describe a few possible sources of discrepancies between classical and fractal cycle durations and numbers. Following the suggestion of one of the reviewers, in the revised Manuscript, we will quantify the sources of discrepancies between the two methods in order to identify the “criteria for recordings in which fractal cycles will produce similar results to the classical method”. Specifically, we will calculate the correlation between the difference in classical vs fractal sleep cycle durations on one side, and either the amplitudes of fractal descend/ascend, relative durations of cycles with skipped REM sleep and wake after sleep onset, or peak flatness on the other side.    

      In addition, we will include a new figure, illustrating the goodness of fit of the data as assessed by the IRASA method. Likewise, we will update Supplementary File 1 (that shows classical and fractal sleep cycles for each participant) with marks that highlight the onsets and offsets of sleep cycles as well as the cycles with skipped REM sleep.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife assessment

      In this important study, the authors report a novel measurement of the Escherichia coli chemotactic response and demonstrate that these bacteria display an attractant response to potassium, which is connected to intracellular pH level. Whilst the experiments are mostly convincing, there are some confounders regards pH changes and fluorescent proteins that remain to be addressed.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This paper shows that E. coli exhibits a chemotactic response to potassium by measuring both the motor response (using a bead assay) and the intracellular signaling response (CheY phosporylation level via FRET) to step changes in potassium concentration. They find increase in potassium concentration induces a considerable attractant response, with amplitude comparable to aspartate, and cells can quickly adapt (and generally over-adapt). The authors propose that the mechanism for potassium response is through modifying intracellular pH; they find both that potassium modifies pH and other pH modifiers induce similar attractant responses. It is also shown, using Tar- and Tsr-only mutants, that these two chemoreceptors respond to potassium differently. Tsr has a standard attractant response, while Tar has a biphasic response (repellent-like then attractant-like). Finally, the authors use computer simulations to study the swimming response of cells to a periodic potassium signal secreted from a biofilm and find a phase delay that depends on the period of oscillation.

      Strengths:

      The finding that E. coli can sense and adapt to potassium signals and the connection to intracellular pH is quite interesting and this work should stimulate future experimental and theoretical studies regarding the microscopic mechanisms governing this response. The evidence (from both the bead assay and FRET) that potassium induces an attractant response is convincing, as is the proposed mechanism involving modification of intracellular pH. The updated manuscript controls for the impact of pH on the fluorescent protein brightness that can bias the measured FRET signal. After correction the response amplitude and sharpness (hill coefficient) are comparable to conventional chemoattractants (e.g. aspartate), indicating the general mechanisms underlying the response may be similar. The authors suggest that the biphasic response of Tar mutants may be due to pH influencing the activity of other enzymes (CheA, CheR or CheB), which will be an interesting direction for future study.

      Weaknesses:

      The measured response may be biased by adaptation, especially for weak potassium signals. For other attractant stimuli, the response typically shows a low plateau before it recovers (adapts). In the case of potassium, the FRET signal does not have an obvious plateau following the stimuli of small potassium concentrations, perhaps due to the faster adaptation compared to other chemoattractants. It is possible cells have already partially adapted when the response reaches its minimum, so the measured response may be a slight underestimate of the true response. Mutants without adaptation enzymes appear to be sensitive to potassium only at much larger concentrations, where the pH significantly disrupts the FRET signal; more accurate measurements would require development of new mutants and/or measurement techniques.

      We acknowledge and appreciate the reviewer's concerns regarding the potential impact of adaptation on the measured response magnitude. We have estimated the effect of adaptation on the measured response magnitude. The half-time of adaptation at 30 mM KCl was measured to be approximately 80 s, corresponding to a time constant of t = 80/ln(2) = 115.4 s, which is significantly longer than the time required for medium exchange in the flow chamber (less than 10 s). Consequently, the relative effect of adaptation on the measured response magnitude should be less than 1-exp(-10/t) = 8.3%. Even for the fastest adaptation (at the lowest KCl concentration) we measured, the effect should be less than 20%, which is within experimental uncertainties. Nevertheless, we agree that developing new techniques to measure the dose-response curve more precisely would be beneficial.

      Reviewer #2 (Public Review):

      Zhang et al investigated the biophysical mechanism of potassium-mediated chemotactic behavior in E coli. Previously, it was reported by Humphries et al that the potassium waves from oscillating B subtilis biofilm attract P aeruginosa through chemotactic behavior of motile P aeruginosa cells. It was proposed that K+ waves alter PMF of P aeruginosa. However, the mechanism was this behaviour was not elusive. In this study, Zhang et al demonstrated that motile E coli cells accumulate in regions of high potassium levels. They found that this behavior is likely resulting from the chemotaxis signalling pathway, mediated by an elevation of intracellular pH. Overall, a solid body of evidence is provided to support the claims. However, the impacts of pH on the fluorescence proteins need to be better evaluated. In its current form, the evidence is insufficient to say that the fluoresce intensity ratio results from FRET. It may well be an artefact of pH change.

      The authors now carefully evaluated the impact of pH on their FRET sensor by examining the YFP and CFP fluorescence with no-receptor mutant. The authors used this data to correct the impact of pH on their FRET sensor. This is an improvement, but the mathematical operation of this correction needs clarification. This is particularly important because, looking at the data, it is not fully convincing if the correction was done properly. For instance, 3mM KCl gives 0.98 FRET signal both in Fig3 and FigS4, but there is almost no difference between blue and red lines in Fig 3. FigS4 is very informative, but it does not address the concern raised by both reviewers that FRET reporter may not be a reliable tool here due to pH change.

      We apologize for not making the correction process clear. We corrected the impact of pH on the original signals for both CFP and YFP channels by

      where and represent the pH-corrected and original PMT signal (CFP or YFP channel) from the moment of addition of L mM KCl to the moment of its removal, respectively, and  is the correction factor, which is the ratio of PMT signal post- to pre-KCl addition for the no-receptor mutant at L mM KCl, for CFP or YFP channel as shown Fig. S5. The pH-corrected FRET response is then calculated as the ratio of the pH-corrected YFP to the pH-corrected CFP signals, normalized by the pre-stimulus ratio.

      As shown in Author response image1, which represents the same data as Fig. 3A and Fig. S5A, the original normalized FRET responses to 3 mM KCl are 0.967 for the wild-type strain (Fig. 3) and 0.981 for the no-receptor strain (Fig. S5). The standard deviation of the FRET values under steady-state conditions is 0.003. Thus, the difference in responses between the wild-type and no-receptor strains is significant and clearly exceeds the standard deviation. The pH correction factors CpH at 3 mM KCl are 1.004 for the YFP signal and 1.016 for the CFP signal. Consequently, the pH-corrected FRET responses are 0.967´1.016/1.004=0.979 for the wild-type and 0.981´1.016/1.004=0.993 for the no-receptor strain. The reason the pH-corrected FRET response for the no-receptor strain is 0.993 instead of the expected 1.000 is that this value represents the lowest observed response rather than the average value for the FRET response.

      The detailed mathematical operation for correcting the pH impact has now been included in the “FRET assay” section of Materials and Methods.

      Author response image 1.

      Chemotactic response of the wild-type strain (A, HCB1288-pVS88) and the no-receptor strain (B, HCB1414-pVS88) to stepwise addition and removal of KCl. The blue solid line denotes the original normalized signal. Downward and upward arrows indicate the time points of addition and removal of 3 mM KCl, respectively. The horizontal red dashed line denotes the original normalized FRET response value to 3 mM KCl.

      The authors show the FRET data with both KCl and K2SO4, concluding that the chemotactic response mainly resulted from potassium ions. However, this was only measured by FRET. It would be more convincing if the motility assay in Fig1 is also performed with K2SO4. The authors did not address this point. In light of complications associated with the use of the FRET sensor, this experiment is more important.

      We thank the reviewer for the suggestion. We agree that additional confirmation with a motility assay is important. To address this, we have now measured the response of the motor rotational signal to 15 mM K2SO4 using the bead assay and compared it with the response to 30 mM KCl. The results are shown in Fig. S2. The response of motor CW bias to 15 mM K2SO4 exhibited an attractant response, characterized by a decreased CW bias upon the addition of K2SO4, followed by an over-adaptation that is qualitatively similar to the response to 30 mM KCl. However, there were notable differences in the adaptation time and the presence of an overshoot. Specifically, the adaptation time to K2SO4 was shorter compared to that for KCl, and there was a notable overshoot in the CW bias during the adaptation phase. These differences may have resulted from the weaker response to K2SO4 (Fig. S1B) and additional modifications due to CysZ-mediated cellular uptake of sulfate (Zhang et al., Biochimica et Biophysica Acta 1838,1809–1816 (2014)). The faster adaptation and overshoot complicated the chemotactic drift in the microfluidic assay as in Fig. 1, such that we were unable to observe a noticeable drift in a K2SO4 gradient under the same experimental conditions used for the KCl gradient.

      The response of motor rotational signal to 15 mM K2SO4 has been added to Fig. S2.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The response curve and adaptation level/time in the main text (Fig. 4) should be replaced by the corrected counterparts (currently in Fig. S5). The current version is especially confusing because Fig. 6 shows the corrected response, but the difference from Fig. 4 is not mentioned.

      We thank the reviewer for the suggestion. We have now merged the results of the original Fig. S5 into Fig. 4.

      a. The discussion of the uncorrected response with small hill coefficient and potentially negative cooperativity was left in the text (lines 223-234), but the new measurements show this is not true for the actual response. This should be removed or significantly rephrased.

      We thank the reviewer for the suggestion. We have now removed the statement about potentially negative cooperativity and added the corrected results for the actual response.

      (2) It may be helpful to restate the definition of f_m in the methods (near Eq. 3-4).

      Thank you for the suggestion. We have now restated the definition of fm and fL below Eq. 3-4: “In the denominator on the right-hand side of Eq. 3, the two terms within the parentheses of exponential expression represent the methylation-dependent (fm) and ligand-dependent (fL) free energy, respectively.”

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review):

      In this paper, the authors evaluate the utility of brain age derived metrics for predicting cognitive decline by performing a 'commonality' analysis in a downstream regression that enables the different contribution of different predictors to be assessed. The main conclusion is that brain age derived metrics do not explain much additional variation in cognition over and above what is already explained by age. The authors propose to use a regression model trained to predict cognition ('brain cognition') as an alternative suited to applications of cognitive decline. While this is less accurate overall than brain age, it explains more unique variance in the downstream regression.  

      Importantly, in this revision, we clarified that we did not intend to use Brain Cognition as an alternative approach. This is because, by design, the variation in fluid cognition explained by Brain Cognition should be higher or equal to that explained by Brain Age. Here we made this point more explicit and further stated that the relationship between Brain Cognition and fluid cognition indicates the upper limit of Brain Age’s capability in capturing fluid cognition. By examining what was captured by Brain Cognition, over and above Brain Age and chronological age via the unique effects of Brain Cognition, we were able to quantify the amount of co-variation between brain MRI and fluid cognition that was missed by Brain Age. 

      REVISED VERSION: while the authors have partially addressed my concerns, I do not feel they have addressed them all. I do not feel they have addressed the weight instability and concerns about the stacked regression models satisfactorily.

      Please see our responses to Reviewer #1 Public Review #3 below

      I also must say that I agree with Reviewer 3 about the limitations of the brain age and brain cognition methods conceptually. In particular that the regression model used to predict fluid cognition will by construction explain more variance in cognition than a brain age model that is trained to predict age. This suffers from the same problem the authors raise with brain age and would indeed disappear if the authors had a separate measure of cognition against which to validate and were then to regress this out as they do for age correction. I am aware that these conceptual problems are more widespread than this paper alone (in fact throughout the brain age literature), so I do not believe the authors should be penalised for that. However, I do think they can make these concerns more explicit and further tone down the comments they make about the utility of brain cognition. I have indicated the main considerations about these points in the recommendations section below. 

      Thank you so much for raising this point. We now have the following statement in the introduction and discussion to address this concern (see below). 

      Briefly, we made it explicit that, by design, the variation in fluid cognition explained by Brain Cognition should be higher or equal to that explained by Brain Age. That is, the relationship between Brain Cognition and fluid cognition indicates the upper limit of Brain Age’s capability in capturing fluid cognition. More importantly, by examining what was captured by Brain Cognition, over and above Brain Age and chronological age via the unique effects of Brain Cognition, we were able to quantify the amount of co-variation between brain MRI and fluid cognition that was missed by Brain Age. And this is the third goal of this present study. 

      From Introduction:

      “Third and finally, certain variation in fluid cognition is related to brain MRI, but to what extent does Brain Age not capture this variation? To estimate the variation in fluid cognition that is related to the brain MRI, we could build prediction models that directly predict fluid cognition (i.e., as opposed to chronological age) from brain MRI data. Previous studies found reasonable predictive performances of these cognition-prediction models, built from certain MRI modalities (Dubois et al., 2018; Pat, Wang, Anney, et al., 2022; Rasero et al., 2021; Sripada et al., 2020; Tetereva et al., 2022; for review, see Vieira et al., 2022). Analogous to Brain Age, we called the predicted values from these cognition-prediction models, Brain Cognition. The strength of an out-of-sample relationship between Brain Cognition and fluid cognition reflects variation in fluid cognition that is related to the brain MRI and, therefore, indicates the upper limit of Brain Age’s capability in capturing fluid cognition. This is, by design, the variation in fluid cognition explained by Brain Cognition should be higher or equal to that explained by Brain Age. Consequently, if we included Brain Cognition, Brain Age and chronological age in the same model to explain fluid cognition, we would be able to examine the unique effects of Brain Cognition that explain fluid cognition beyond Brain Age and chronological age. These unique effects of Brain Cognition, in turn, would indicate the amount of co-variation between brain MRI and fluid cognition that is missed by Brain Age.”

      From Discussion:

      “Third, by introducing Brain Cognition,  we showed the extent to which Brain Age indices were not able to capture the variation in fluid cognition that is related to brain MRI. More specifically, using Brain Cognition allowed us to gauge the variation in fluid cognition that is related to the brain MRI, and thereby, to estimate the upper limit of what Brain Age can do. Moreover, by examining what was captured by Brain Cognition, over and above Brain Age and chronological age via the unique effects of Brain Cognition, we were able to quantify the amount of co-variation between brain MRI and fluid cognition that was missed by Brain Age.

      From our results, Brain Cognition, especially from certain cognition-prediction models such as the stacked models, has relatively good predictive performance, consistent with previous studies (Dubois et al., 2018; Pat, Wang, Anney, et al., 2022; Rasero et al., 2021; Sripada et al., 2020; Tetereva et al., 2022; for review, see Vieira et al., 2022). We then examined Brain Cognition using commonality analyses (Nimon et al., 2008) in multiple regression models having a Brain Age index, chronological age and Brain Cognition as regressors to explain fluid cognition. Similar to Brain Age indices, Brain Cognition exhibited large common effects with chronological age. But more importantly, unlike Brain Age indices, Brain Cognition showed large unique effects, up to around 11%. As explained above, the unique effects of Brain Cognition indicated the amount of co-variation between brain MRI and fluid cognition that was missed by a Brain Age index and chronological age. This missing amount was relatively high, considering that Brain Age and chronological age together explained around 32% of the total variation in fluid cognition. Accordingly, if a Brain Age index was used as a biomarker along with chronological age, we would have missed an opportunity to improve the performance of the model by around one-third of the variation explained.” 

      This is a reasonably good paper and the use of a commonality analysis is a nice contribution to understanding variance partitioning across different covariates. I have some comments that I believe the authors ought to address, which mostly relate to clarity and interpretation 

      Reviewer #1 Public Review #1

      First, from a conceptual point of view, the authors focus exclusively on cognition as a downstream outcome. I would suggest the authors nuance their discussion to provide broader considerations of the utility of their method and on the limits of interpretation of brain age models more generally. 

      Thank you for your comments on this issue. 

      We now discussed the broader consideration in detail:

      (1) the consistency between our findings on fluid cognition and other recent works on brain disorders, 

      (2) the difference between studies investigating the utility of Brain Age in explaining cognitive functioning, including ours and others (e.g., Butler et al., 2021; Cole, 2020, 2020; Jirsaraie, Kaufmann, et al., 2023) and those explaining neurological/psychological disorders (e.g., Bashyam et al., 2020; Rokicki et al., 2021)

      and 

      (3) suggested solutions we and others made to optimise the utility of Brain Age for both cognitive functioning and brain disorders.

      From Discussion:

      “This discrepancy between the predictive performance of age-prediction models and the utility of Brain Age indices as a biomarker is consistent with recent findings (for review, see Jirsaraie, Gorelik, et al., 2023), both in the context of cognitive functioning (Jirsaraie, Kaufmann, et al., 2023) and neurological/psychological disorders (Bashyam et al., 2020; Rokicki et al., 2021). For instance,  combining different MRI modalities into the prediction models, similar to our stacked models, ocen leads to the highest performance of age prediction models, but does not likely explain the highest variance across different phenotypes, including cognitive functioning and beyond (Jirsaraie, Gorelik, et al., 2023).”

      “There is a notable difference between studies investigating the utility of Brain Age in explaining cognitive functioning, including ours and others (e.g., Butler et al., 2021; Cole, 2020, 2020; Jirsaraie, Kaufmann, et al., 2023) and those explaining neurological/psychological disorders (e.g., Bashyam et al., 2020; Rokicki et al., 2021). We consider the former as a normative type of study and the lader as a case-control type of study (Insel et al., 2010; Marquand et al., 2016). Those case-control Brain Age studies focusing on neurological/psychological disorders often build age-prediction models from MRI data of largely healthy participants (e.g., controls in a case-control design or large samples in a population-based design), apply the built age-prediction models to participants without vs. with neurological/psychological disorders and compare Brain Age indices between the two groups. On the one hand, this means that case-control studies treat Brain Age as a method to detect anomalies in the neurological/psychological group (Hahn et al., 2021). On the other hand, this also means that case-control studies have to ignore underfided models when applied prediction models built from largely healthy participants to participants with neurological/psychological disorders (i.e., Brain Age may predict chronological age well for the controls, but not for those with a disorder). On the contrary, our study and other normative studies focusing on cognitive functioning often build age prediction models from MRI data of largely healthy participants and apply the built age prediction models to participants who are also largely healthy. Accordingly, the age prediction models for explaining cognitive functioning in normative studies, while not allowing us to detect group-level anomalies, do not suffer from being under-fided. This unfortunately might limit the generalisability of our study into just the normative type of study. Future work is still needed to test the utility of brain age in the case-control case.”

      “Next, researchers should not select age-prediction models based solely on age-prediction performance. Instead, researchers could select age-prediction models that explained phenotypes of interest the best. Here we selected age-prediction models based on a set of features (i.e., modalities) of brain MRI. This strategy was found effective not only for fluid cognition as we demonstrated here, but also for neurological and psychological disorders as shown elsewhere (Jirsaraie, Gorelik, et al., 2023; Rokicki et al., 2021). Rokicki and colleagues (2021), for instance, found that, while integrating across MRI modalities led to age prediction models with the highest age-prediction performance, using only T1 structural MRI gave age-prediction models that were better at classifying Alzheimer’s disease. Similarly, using only cerebral blood flow gave age-prediction models that were better at classifying mild/subjective cognitive impairment, schizophrenia and bipolar disorder. 

      As opposed to selecting age-prediction models based on a set of features, researchers could also select age-prediction models based on modelling methods. For instance, Jirsaraie and colleagues (2023) compared gradient tree boosting (GTB) and deep-learning brain network (DBN) algorithms in building age-prediction models. They found GTB to have higher age prediction performance but DBN to have better utility in explaining cognitive functioning. In this case, an algorithm with better utility (e.g., DBN) should be used for explaining a phenotype of interest. Similarly, Bashyam and colleagues (2020) built different DBN-based age-prediction models, varying in age-prediction performance. The DBN models with a higher number of epochs corresponded to higher age-prediction performance. However, DBN-based age-prediction models with a moderate (as opposed to higher or lower) number of epochs were better at classifying Alzheimer’s disease, mild cognitive impairment and schizophrenia. In this case, a model from the same algorithm with better utility (e.g., those DBN with a moderate epoch number) should be used for explaining a phenotype of interest.

      Accordingly, this calls for a change in research practice, as recently pointed out by Jirasarie and colleagues (2023, p7), “Despite mounting evidence, there is a persisting assumption across several studies that the most accurate brain age models will have the most potential for detecting differences in a given phenotype of interest”. Future neuroimaging research should aim to build age-prediction models that are not necessarily good at predicting age, but at capturing phenotypes of interest.”

      Reviewer #1 Public Review #2

      Second, from a methods perspective, there is not a sufficient explanation of the methodological procedures in the current manuscript to fully understand how the stacked regression models were constructed. I would request that the authors provide more information to enable the reader to beUer understand the stacked regression models used to ensure that these models are not overfit. 

      Thank you for allowing us an opportunity to clarify our stacked model. We made additional clarification to make this clearer (see below). We wanted to confirm that we did not use test sets to build a stacked model in both lower and higher levels of the Elastic Net models. Test sets were there just for testing the performance of the models.  

      From Methods:

      “We used nested cross-validation (CV) to build these prediction models (see Figure 7). We first split the data into five outer folds, leaving each outer fold with around 100 participants. This number of participants in each fold is to ensure the stability of the test performance across folds. In each outer-fold CV loop, one of the outer folds was treated as an outer-fold test set, and the rest was treated as an outer-fold training set. Ultimately, looping through the nested CV resulted in a) prediction models from each of the 18 sets of features as well as b) prediction models that drew information across different combinations of the 18 separate sets, known as “stacked models.” We specified eight stacked models: “All” (i.e., including all 18 sets of features),  “All excluding Task FC”, “All excluding Task Contrast”, “Non-Task” (i.e., including only Rest FC and sMRI), “Resting and Task FC”, “Task Contrast and FC”, “Task Contrast” and “Task FC”. Accordingly, there were 26 prediction models in total for both Brain Age and Brain Cognition.

      To create these 26 prediction models, we applied three steps for each outer-fold loop. The first step aimed at tuning prediction models for each of 18 sets of features. This step only involved the outer-fold training set and did not involve the outer-fold test set. Here, we divided the outer-fold training set into five inner folds and applied inner-fold CV to tune hyperparameters with grid search. Specifically, in each inner-fold CV, one of the inner folds was treated as an inner-fold validation set, and the rest was treated as an inner-fold training set. Within each inner-fold CV loop, we used the inner-fold training set to estimate parameters of the prediction model with a particular set of hyperparameters and applied the estimated model to the inner-fold validation set. Acer looping through the inner-fold CV, we, then, chose the prediction models that led to the highest performance, reflected by coefficient of determination (R2), on average across the inner-fold validation sets. This led to 18 tuned models, one for each of the 18 sets of features, for each outer fold.

      The second step aimed at tuning stacked models. Same as the first step, the second step only involved the outer-fold training set and did not involve the outer-fold test set. Here, using the same outer-fold training set as the first step, we applied tuned models, created from the first step, one from each of the 18 sets of features, resulting in 18 predicted values for each participant. We, then, re-divided this outer-fold training set into new five inner folds. In each inner fold, we treated different combinations of the 18 predicted values from separate sets of features as features to predict the targets in separate “stacked” models. Same as the first step, in each inner-fold CV loop, we treated one out of five inner folds as an inner-fold validation set, and the rest as an inner-fold training set. Also as in the first step, we used the inner-fold training set to estimate parameters of the prediction model with a particular set of hyperparameters from our grid. We tuned the hyperparameters of stacked models using grid search by selecting the models with the highest R2 on average across the inner-fold validation sets. This led to eight tuned stacked models.

      The third step aimed at testing the predictive performance of the 18 tuned prediction models from each of the set of features, built from the first step, and eight tuned stacked models, built from the second step. Unlike the first two steps, here we applied the already tuned models to the outer-fold test set. We started by applying the 18 tuned prediction models from each of the sets of features to each observation in the outer-fold test set, resulting in 18 predicted values. We then applied the tuned stacked models to these predicted values from separate sets of features, resulting in eight predicted values. 

      To demonstrate the predictive performance, we assessed the similarity between the observed values and the predicted values of each model across outer-fold test sets, using Pearson’s r, coefficient of determination (R2) and mean absolute error (MAE). Note that for R2, we used the sum of squares definition (i.e., R2 \= 1 – (sum of squares residuals/total sum of squares)) per a previous recommendation (Poldrack et al., 2020). We considered the predicted values from the outer-fold test sets of models predicting age or fluid cognition, as Brain Age and Brain Cognition, respectively.”

      Author response image 1.

      Diagram of the nested cross-validation used for creating predictions for models of each set of features as well as predictions for stacked models. 

      Note some previous research, including ours (Tetereva et al., 2022), splits the observations in the outer-fold training set into layer 1 and layer 2 and applies the first and second steps to layers 1 and 2, respectively. Here we decided against this approach and used the same outer-fold training set for both first and second steps in order to avoid potential bias toward the stacked models. This is because, when the data are split into two layers, predictive models built for each separate set of features only use the data from layer 1, while the stacked models use the data from both layers 1 and 2. In practice with large enough data, these two approaches might not differ much, as we demonstrated previously (Tetereva et al., 2022).

      Reviewer #1 Public Review #3

      Please also provide an indication of the different regression strengths that were estimated across the different models and cross-validation splits. Also, how stable were the weights across splits? 

      The focus of this article is on the predictions. Still, it is informative for readers to understand how stable the feature importance (i.e., Elastic Net coefficients) is. To demonstrate the stability of feature importance, we now examined the rank stability of feature importance using Spearman’s ρ (see Figure 4). Specifically, we correlated the feature importance between two prediction models of the same features, used in two different outer-fold test sets. Given that there were five outer-fold test sets, we computed 10 Spearman’s ρ for each prediction model of the same features.  We found Spearman’s ρ to be varied dramatically in both age-prediction (range\=.31-.94) and fluid cognition-prediction (range\=.16-.84) models. This means that some prediction models were much more stable in their feature importance than others. This is probably due to various factors such as a) the collinearity of features in the model, b) the number of features (e.g., 71,631 features in functional connectivity, which were further reduced to 75 PCAs, as compared to 19 features in subcortical volume based on the ASEG atlas), c) the penalisation of coefficients either with ‘Ridge’ or ‘Lasso’ methods, which resulted in reduction as a group of features or selection of a feature among correlated features, respectively, and d) the predictive performance of the models. Understanding the stability of feature importance is beyond the scope of the current article. As mentioned by Reviewer 1, “The predictions can be stable when the coefficients are not,” and we chose to focus on the prediction in the current article.   

      Author response image 2.

      Stability of feature importance (i.e., Elastic Net Coefficients) of prediction models. Each dot represents rank stability (reflected by Spearman’s ρ) in the feature importance between two prediction models of the same features, used in two different outer-fold test sets. Given that there were five outer-fold test sets, there were 10 Spearman’s ρs for each prediction model.  The numbers to the right of the plots indicate the mean of Spearman’s ρ for each prediction model.  

      Reviewer #1 Public Review #4

      Please provide more details about the task designs, MRI processing procedures that were employed on this sample in addition to the regression methods and bias correction methods used. For example, there are several different parameterisations of the elastic net, please provide equations to describe the method used here so that readers can easily determine how the regularisation parameters should be interpreted.  

      Thank you for the opportunity for us to provide more methodical details.

      First, for the task design, we included the following statements:

      From Methods:

      “HCP-A collected fMRI data from three tasks: Face Name (Sperling et al., 2001), Conditioned Approach Response Inhibition Task (CARIT) (Somerville et al., 2018) and VISual MOTOR (VISMOTOR) (Ances et al., 2009). 

      First, the Face Name task (Sperling et al., 2001) taps into episodic memory. The task had three blocks. In the encoding block [Encoding], participants were asked to memorise the names of faces shown. These faces were then shown again in the recall block [Recall] when the participants were asked if they could remember the names of the previously shown faces. There was also the distractor block [Distractor] occurring between the encoding and recall blocks. Here participants were distracted by a Go/NoGo task. We computed six contrasts for this Face Name task: [Encode], [Recall], [Distractor], [Encode vs. Distractor], [Recall vs. Distractor] and [Encode vs. Recall].

      Second, the CARIT task (Somerville et al., 2018) was adapted from the classic Go/NoGo task and taps into inhibitory control. Participants were asked to press a budon to all [Go] but not to two [NoGo] shapes. We computed three contrasts for the CARIT task: [NoGo], [Go] and [NoGo vs. Go]. 

      Third, the VISMOTOR task (Ances et al., 2009) was designed to test simple activation of the motor and visual cortices. Participants saw a checkerboard with a red square either on the lec or right. They needed to press a corresponding key to indicate the location of the red square. We computed just one contrast for the VISMOTOR task: [Vismotor], which indicates the presence of the checkerboard vs. baseline.” 

      Second, for MRI processing procedures, we included the following statements.

      From Methods:

      “HCP-A provides details of parameters for brain MRI elsewhere (Bookheimer et al., 2019; Harms et al., 2018). Here we used MRI data that were pre-processed by the HCP-A with recommended methods, including the MSMALL alignment (Glasser et al., 2016; Robinson et al., 2018) and ICA-FIX (Glasser et al., 2016) for functional MRI. We used multiple brain MRI modalities, covering task functional MRI (task fMRI), resting-state functional MRI (rsfMRI) and structural MRI (sMRI), and organised them into 19 sets of features.”

      “Sets of Features 1-10: Task fMRI contrast (Task Contrast)

      Task contrasts reflect fMRI activation relevant to events in each task. Bookheimer and colleagues (2019) provided detailed information about the fMRI in HCP-A. Here we focused on the pre-processed task fMRI Connectivity Informatics Technology Initiative (CIFTI) files with a suffix, “_PA_Atlas_MSMAll_hp0_clean.dtseries.nii.” These CIFTI files encompassed both the cortical mesh surface and subcortical volume (Glasser et al., 2013). Collected using the posterior-to-anterior (PA) phase, these files were aligned using MSMALL (Glasser et al., 2016; Robinson et al., 2018), linear detrended (see hdps://groups.google.com/a/humanconnectome.org/g/hcp-users/c/ZLJc092h980/m/GiihzQAUAwAJ) and cleaned from potential artifacts using ICA-FIX (Glasser et al., 2016). 

      To extract Task Contrasts, we regressed the fMRI time series on the convolved task events using a double-gamma canonical hemodynamic response function via FMRIB Software Library (FSL)’s FMRI Expert Analysis Tool (FEAT) (Woolrich et al., 2001). We kept FSL’s default high pass cutoff at 200s (i.e., .005 Hz). We then parcellated the contrast ‘cope’ files, using the Glasser atlas (Gordon et al., 2016) for cortical surface regions and the Freesurfer’s automatic segmentation (aseg) (Fischl et al., 2002) for subcortical regions. This resulted in 379 regions, whose number was, in turn, the number of features for each Task Contrast set of features. “ 

      “Sets of Features 11-13: Task fMRI functional connectivity (Task FC)

      Task FC reflects functional connectivity (FC ) among the brain regions during each task, which is considered an important source of individual differences (Elliod et al., 2019; Fair et al., 2007; Gradon et al., 2018). We used the same CIFTI file “_PA_Atlas_MSMAll_hp0_clean.dtseries.nii.” as the task contrasts. Unlike Task Contrasts, here we treated the double-gamma, convolved task events as regressors of no interest and focused on the residuals of the regression from each task (Fair et al., 2007). We computed these regressors on FSL, and regressed them in nilearn (Abraham et al., 2014). Following previous work on task FC (Elliod et al., 2019), we applied a highpass at .008 Hz. For parcellation, we used the same atlases as Task Contrast (Fischl et al., 2002; Glasser et al., 2016). We computed Pearson’s correlations of each pair of 379 regions, resulting in a table of 71,631 non-overlapping FC indices for each task. We then applied r-to-z transformation and principal component analysis (PCA) of 75 components (Rasero et al., 2021; Sripada et al., 2019, 2020). Note to avoid data leakage, we conducted the PCA on each training set and applied its definition to the corresponding test set. Accordingly, there were three sets of 75 features for Task FC, one for each task. 

      Set of Features 14: Resting-state functional MRI functional connectivity (Rest FC) Similar to Task FC, Rest FC reflects functional connectivity (FC ) among the brain regions, except that Rest FC occurred during the resting (as opposed to task-performing) period. HCPA collected Rest FC from four 6.42-min (488 frames) runs across two days, leading to 26-min long data (Harms et al., 2018). On each day, the study scanned two runs of Rest FC, starting with anterior-to-posterior (AP) and then with posterior-to-anterior (PA) phase encoding polarity. We used the “rfMRI_REST_Atlas_MSMAll_hp0_clean.dscalar.nii” file that was preprocessed and concatenated across the four runs.  We applied the same computations (i.e., highpass filter, parcellation, Pearson’s correlations, r-to-z transformation and PCA) with the Task FC. 

      Sets of Features 15-18: Structural MRI (sMRI)

      sMRI reflects individual differences in brain anatomy. The HCP-A used an established preprocessing pipeline for sMRI (Glasser et al., 2013). We focused on four sets of features: cortical thickness, cortical surface area, subcortical volume and total brain volume. For cortical thickness and cortical surface area, we used Destrieux’s atlas (Destrieux et al., 2010; Fischl, 2012) from FreeSurfer’s “aparc.stats” file, resulting in 148 regions for each set of features. For subcortical volume, we used the aseg atlas (Fischl et al., 2002) from FreeSurfer’s “aseg.stats” file, resulting in 19 regions. For total brain volume, we had five FreeSurfer-based features: “FS_IntraCranial_Vol” or estimated intra-cranial volume, “FS_TotCort_GM_Vol” or total cortical grey mader volume, “FS_Tot_WM_Vol” or total cortical white mader volume, “FS_SubCort_GM_Vol” or total subcortical grey mader volume and “FS_BrainSegVol_eTIV_Ratio” or ratio of brain segmentation volume to estimated total intracranial volume.”

      Third, for regression methods and bias correction methods used, we included the following statements:

      From Methods:

      “For the machine learning algorithm, we used Elastic Net (Zou & Hastie, 2005). Elastic Net is a general form of penalised regressions (including Lasso and Ridge regression), allowing us to simultaneously draw information across different brain indices to predict one target variable. Penalised regressions are commonly used for building age-prediction models (Jirsaraie, Gorelik, et al., 2023). Previously we showed that the performance of Elastic Net in predicting cognitive abilities is on par, if not better than, many non-linear and morecomplicated algorithms (Pat, Wang, Bartonicek, et al., 2022; Tetereva et al., 2022). Moreover, Elastic Net coefficients are readily explainable, allowing us the ability to explain how our age-prediction and cognition-prediction models made the prediction from each brain feature (Molnar, 2019; Pat, Wang, Bartonicek, et al., 2022) (see below). 

      Elastic Net simultaneously minimises the weighted sum of the features’ coefficients. The degree of penalty to the sum of the feature’s coefficients is determined by a shrinkage hyperparameter ‘a’: the greater the a, the more the coefficients shrink, and the more regularised the model becomes. Elastic Net also includes another hyperparameter, ‘ℓ! ratio’, which determines the degree to which the sum of either the squared (known as ‘Ridge’; ℓ! ratio=0) or absolute (known as ‘Lasso’; ℓ! ratio=1) coefficients is penalised (Zou & Hastie, 2005). The objective function of Elastic Net as implemented by sklearn (Pedregosa et al., 2011) is defined as:

      where X is the features, y is the target, and b is the coefficient. In our grid search, we tuned two Elastic Net hyperparameters: a using 70 numbers in log space, ranging from .1 and 100, and ℓ!-ratio using 25 numbers in linear space, ranging from 0 and 1.

      To understand how Elastic Net made a prediction based on different brain features, we examined the coefficients of the tuned model. Elastic Net coefficients can be considered as feature importance, such that more positive Elastic Net coefficients lead to more positive predicted values and, similarly, more negative Elastic Net coefficients lead to more negative predicted values (Molnar, 2019; Pat, Wang, Bartonicek, et al., 2022). While the magnitude of Elastic Net coefficients is regularised (thus making it difficult for us to interpret the magnitude itself directly), we could still indicate that a brain feature with a higher magnitude weights relatively stronger in making a prediction. Another benefit of Elastic Net as a penalised regression is that the coefficients are less susceptible to collinearity among features as they have already been regularised (Dormann et al., 2013; Pat, Wang, Bartonicek, et al., 2022).

      Given that we used five-fold nested cross validation, different outer folds may have different degrees of ‘a’ and ‘ℓ! ratio’, making the final coefficients from different folds to be different. For instance, for certain sets of features, penalisation may not play a big part (i.e., higher or lower ‘a’ leads to similar predictive performance), resulting in different ‘a’ for different folds. To remedy this in the visualisation of Elastic Net feature importance, we refitted the Elastic Net model to the full dataset without spli{ng them into five folds and visualised the coefficients on brain images using Brainspace (Vos De Wael et al., 2020) and Nilern (Abraham et al., 2014) packages. Note, unlike other sets of features, Task FC and Rest FC were modelled acer data reduction via PCA. Thus, for Task FC and Rest FC, we, first, multiplied the absolute PCA scores (extracted from the ‘components_’ attribute of ‘sklearn.decomposition.PCA’) with Elastic Net coefficients and, then, summed the multiplied values across the 75 components, leaving 71,631 ROI-pair indices.

      References

      Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gramfort, A., Thirion, B., & Varoquaux, G. (2014). Machine learning for neuroimaging with scikitlearn. Frontiers in Neuroinformatics, 8, 14. hdps://doi.org/10.3389/fninf.2014.00014

      Ances, B. M., Liang, C. L., Leontiev, O., Perthen, J. E., Fleisher, A. S., Lansing, A. E., & Buxton, R. B. (2009). Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation. Human Brain Mapping, 30(4), 1120–1132. hdps://doi.org/10.1002/hbm.20574

      Bashyam, V. M., Erus, G., Doshi, J., Habes, M., Nasrallah, I. M., Truelove-Hill, M., Srinivasan, D., Mamourian, L., Pomponio, R., Fan, Y., Launer, L. J., Masters, C. L., Maruff, P., Zhuo, C., Völzke, H., Johnson, S. C., Fripp, J., Koutsouleris, N., Saderthwaite, T. D., … on behalf of the ISTAGING Consortium,  the P. A. disease C., ADNI, and CARDIA studies. (2020). MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide. Brain, 143(7), 2312–2324. hdps://doi.org/10.1093/brain/awaa160

      Bookheimer, S. Y., Salat, D. H., Terpstra, M., Ances, B. M., Barch, D. M., Buckner, R. L., Burgess, G. C., Curtiss, S. W., Diaz-Santos, M., Elam, J. S., Fischl, B., Greve, D. N., Hagy, H. A., Harms, M. P., Hatch, O. M., Hedden, T., Hodge, C., Japardi, K. C., Kuhn, T. P., … Yacoub, E. (2019). The Lifespan Human Connectome Project in Aging: An overview. NeuroImage, 185, 335–348. hdps://doi.org/10.1016/j.neuroimage.2018.10.009

      Butler, E. R., Chen, A., Ramadan, R., Le, T. T., Ruparel, K., Moore, T. M., Saderthwaite, T. D., Zhang, F., Shou, H., Gur, R. C., Nichols, T. E., & Shinohara, R. T. (2021). Pi alls in brain age analyses. Human Brain Mapping, 42(13), 4092–4101. hdps://doi.org/10.1002/hbm.25533

      Cole, J. H. (2020). Multimodality neuroimaging brain-age in UK biobank: Relationship to biomedical, lifestyle, and cognitive factors. Neurobiology of Aging, 92, 34–42. hdps://doi.org/10.1016/j.neurobiolaging.2020.03.014

      Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53(1), 1–15. hdps://doi.org/10.1016/j.neuroimage.2010.06.010

      Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46. hdps://doi.org/10.1111/j.16000587.2012.07348.x

      Dubois, J., Galdi, P., Paul, L. K., & Adolphs, R. (2018). A distributed brain network predicts general intelligence from resting-state human neuroimaging data. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1756), 20170284. hdps://doi.org/10.1098/rstb.2017.0284

      Elliod, M. L., Knodt, A. R., Cooke, M., Kim, M. J., Melzer, T. R., Keenan, R., Ireland, D., Ramrakha, S., Poulton, R., Caspi, A., Moffid, T. E., & Hariri, A. R. (2019). General functional connectivity: Shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks. NeuroImage, 189, 516–532. hdps://doi.org/10.1016/j.neuroimage.2019.01.068

      Fair, D. A., Schlaggar, B. L., Cohen, A. L., Miezin, F. M., Dosenbach, N. U. F., Wenger, K. K., Fox, M. D., Snyder, A. Z., Raichle, M. E., & Petersen, S. E. (2007). A method for using blocked and event-related fMRI data to study “resting state” functional connectivity. NeuroImage, 35(1), 396–405. hdps://doi.org/10.1016/j.neuroimage.2006.11.051

      Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774–781. hdps://doi.org/10.1016/j.neuroimage.2012.01.021

      Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., & Dale, A. M. (2002). Whole Brain Segmentation. Neuron, 33(3), 341–355. hdps://doi.org/10.1016/S0896-6273(02)00569-X

      Glasser, M. F., Smith, S. M., Marcus, D. S., Andersson, J. L. R., Auerbach, E. J., Behrens, T. E. J., Coalson, T. S., Harms, M. P., Jenkinson, M., Moeller, S., Robinson, E. C., Sotiropoulos, S. N., Xu, J., Yacoub, E., Ugurbil, K., & Van Essen, D. C. (2016). The Human Connectome Project’s neuroimaging approach. Nature Neuroscience, 19(9), 1175– 1187. hdps://doi.org/10.1038/nn.4361

      Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R., Van Essen, D. C., & Jenkinson, M. (2013). The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage, 80, 105–124. hdps://doi.org/10.1016/j.neuroimage.2013.04.127

      Gordon, E. M., Laumann, T. O., Adeyemo, B., Huckins, J. F., Kelley, W. M., & Petersen, S. E. (2016). Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations. Cerebral Cortex, 26(1), 288–303. hdps://doi.org/10.1093/cercor/bhu239

      Gradon, C., Laumann, T. O., Nielsen, A. N., Greene, D. J., Gordon, E. M., Gilmore, A. W., Nelson, S. M., Coalson, R. S., Snyder, A. Z., Schlaggar, B. L., Dosenbach, N. U. F., & Petersen, S. E. (2018). Functional Brain Networks Are Dominated by Stable Group and Individual Factors, Not Cognitive or Daily Variation. Neuron, 98(2), 439-452.e5. hdps://doi.org/10.1016/j.neuron.2018.03.035

      Hahn, T., Fisch, L., Ernsting, J., Winter, N. R., Leenings, R., Sarink, K., Emden, D., Kircher, T., Berger, K., & Dannlowski, U. (2021). From ‘loose fi{ng’ to high-performance, uncertainty-aware brain-age modelling. Brain, 144(3), e31–e31. hdps://doi.org/10.1093/brain/awaa454

      Harms, M. P., Somerville, L. H., Ances, B. M., Andersson, J., Barch, D. M., Bastiani, M., Bookheimer, S. Y., Brown, T. B., Buckner, R. L., Burgess, G. C., Coalson, T. S., Chappell, M. A., Dapredo, M., Douaud, G., Fischl, B., Glasser, M. F., Greve, D. N., Hodge, C., Jamison, K. W., … Yacoub, E. (2018). Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects. NeuroImage, 183, 972–984. hdps://doi.org/10.1016/j.neuroimage.2018.09.060

      Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., Sanislow, C., & Wang, P. (2010). Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. American Journal of Psychiatry, 167(7), 748–751. hdps://doi.org/10.1176/appi.ajp.2010.09091379

      Jirsaraie, R. J., Gorelik, A. J., Gatavins, M. M., Engemann, D. A., Bogdan, R., Barch, D. M., & Sotiras, A. (2023). A systematic review of multimodal brain age studies: Uncovering a divergence between model accuracy and utility. PaUerns, 4(4), 100712. hdps://doi.org/10.1016/j.pader.2023.100712

      Jirsaraie, R. J., Kaufmann, T., Bashyam, V., Erus, G., Luby, J. L., Westlye, L. T., Davatzikos, C., Barch, D. M., & Sotiras, A. (2023). Benchmarking the generalizability of brain age models: Challenges posed by scanner variance and prediction bias. Human Brain Mapping, 44(3), 1118–1128. hdps://doi.org/10.1002/hbm.26144

      Marquand, A. F., Rezek, I., Buitelaar, J., & Beckmann, C. F. (2016). Understanding Heterogeneity in Clinical Cohorts Using Normative Models: Beyond Case-Control Studies. Biological Psychiatry, 80(7), 552–561. hdps://doi.org/10.1016/j.biopsych.2015.12.023

      Molnar, C. (2019). Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. hdps://christophm.github.io/interpretable-ml-book/

      Nimon, K., Lewis, M., Kane, R., & Haynes, R. M. (2008). An R package to compute commonality coefficients in the multiple regression case: An introduction to the package and a practical example. Behavior Research Methods, 40(2), 457–466. hdps://doi.org/10.3758/BRM.40.2.457

      Pat, N., Wang, Y., Anney, R., Riglin, L., Thapar, A., & Stringaris, A. (2022). Longitudinally stable, brain-based predictive models mediate the relationships between childhood cognition and socio-demographic, psychological and genetic factors. Human Brain Mapping, hbm.26027. hdps://doi.org/10.1002/hbm.26027

      Pat, N., Wang, Y., Bartonicek, A., Candia, J., & Stringaris, A. (2022). Explainable machine learning approach to predict and explain the relationship between task-based fMRI and individual differences in cognition. Cerebral Cortex, bhac235. hdps://doi.org/10.1093/cercor/bhac235

      Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Predenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830.

      Poldrack, R. A., Huckins, G., & Varoquaux, G. (2020). Establishment of Best Practices for Evidence for Prediction: A Review. JAMA Psychiatry, 77(5), 534–540. hdps://doi.org/10.1001/jamapsychiatry.2019.3671

      Rasero, J., Sentis, A. I., Yeh, F.-C., & Verstynen, T. (2021). Integrating across neuroimaging modalities boosts prediction accuracy of cognitive ability. PLOS Computational Biology, 17(3), e1008347. hdps://doi.org/10.1371/journal.pcbi.1008347

      Robinson, E. C., Garcia, K., Glasser, M. F., Chen, Z., Coalson, T. S., Makropoulos, A., Bozek, J., Wright, R., Schuh, A., Webster, M., Huder, J., Price, A., Cordero Grande, L., Hughes, E., Tusor, N., Bayly, P. V., Van Essen, D. C., Smith, S. M., Edwards, A. D., … Rueckert, D. (2018). Multimodal surface matching with higher-order smoothness constraints. NeuroImage, 167, 453–465. hdps://doi.org/10.1016/j.neuroimage.2017.10.037

      Rokicki, J., Wolfers, T., Nordhøy, W., Tesli, N., Quintana, D. S., Alnæs, D., Richard, G., de Lange, A.-M. G., Lund, M. J., Norbom, L., Agartz, I., Melle, I., Nærland, T., Selbæk, G., Persson, K., Nordvik, J. E., Schwarz, E., Andreassen, O. A., Kaufmann, T., & Westlye, L. T. (2021). Multimodal imaging improves brain age prediction and reveals distinct abnormalities in patients with psychiatric and neurological disorders. Human Brain Mapping, 42(6), 1714–1726. hdps://doi.org/10.1002/hbm.25323

      Somerville, L. H., Bookheimer, S. Y., Buckner, R. L., Burgess, G. C., Curtiss, S. W., Dapredo, M., Elam, J. S., Gaffrey, M. S., Harms, M. P., Hodge, C., Kandala, S., Kastman, E. K., Nichols, T. E., Schlaggar, B. L., Smith, S. M., Thomas, K. M., Yacoub, E., Van Essen, D. C., & Barch, D. M. (2018). The Lifespan Human Connectome Project in Development: A large-scale study of brain connectivity development in 5–21 year olds. NeuroImage, 183, 456–468. hdps://doi.org/10.1016/j.neuroimage.2018.08.050

      Sperling, R. A., Bates, J. F., Cocchiarella, A. J., Schacter, D. L., Rosen, B. R., & Albert, M. S. (2001). Encoding novel face-name associations: A functional MRI study. Human Brain Mapping, 14(3), 129–139. hdps://doi.org/10.1002/hbm.1047

      Sripada, C., Angstadt, M., Rutherford, S., Kessler, D., Kim, Y., Yee, M., & Levina, E. (2019). Basic Units of Inter-Individual Variation in Resting State Connectomes. Scientific Reports, 9(1), Article 1. hdps://doi.org/10.1038/s41598-018-38406-5

      Sripada, C., Angstadt, M., Rutherford, S., Taxali, A., & Shedden, K. (2020). Toward a “treadmill test” for cognition: Improved prediction of general cognitive ability from the task activated brain. Human Brain Mapping, 41(12), 3186–3197. hdps://doi.org/10.1002/hbm.25007

      Tetereva, A., Li, J., Deng, J. D., Stringaris, A., & Pat, N. (2022). Capturing brain-cognition relationship: Integrating task-based fMRI across tasks markedly boosts prediction and test-retest reliability. NeuroImage, 263, 119588. hdps://doi.org/10.1016/j.neuroimage.2022.119588

      Vieira, B. H., Pamplona, G. S. P., Fachinello, K., Silva, A. K., Foss, M. P., & Salmon, C. E. G. (2022). On the prediction of human intelligence from neuroimaging: A systematic review of methods and reporting. Intelligence, 93, 101654. hdps://doi.org/10.1016/j.intell.2022.101654

      Vos De Wael, R., Benkarim, O., Paquola, C., Lariviere, S., Royer, J., Tavakol, S., Xu, T., Hong, S.J., Langs, G., Valk, S., Misic, B., Milham, M., Margulies, D., Smallwood, J., & Bernhardt, B. C. (2020). BrainSpace: A toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets. Communications Biology, 3(1), 103. hdps://doi.org/10.1038/s42003-020-0794-7

      Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data. NeuroImage, 14(6), 1370–1386. hdps://doi.org/10.1006/nimg.2001.0931

      Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320. hdps://doi.org/10.1111/j.1467-9868.2005.00503.x

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife assessment 

      This study explores the role of one the most abundant circRNAs, circHIPK3, in bladder cancer cells, providing convincing data that circHIPK3 depletion affects thousands of genes and that those downregulated (including STAT3) share an 11-mer motif with circHIPK3, corresponding to a binding site for IGF2BP2. The experiments demonstrate that circHIPK3 can compete with the downregulated mRNAs targets for IGF2BP2 binding and that IGF2BP2 depletion antagonizes the effect of circHIPK3 depletion by upregulating the genes containing the 11mer motif. These valuable findings contribute to the growing recognition of the complexity of cancer signaling regulation and highlight the intricate interplay between circRNAs and protein-coding genes in tumorigenesis. 

      Public Reviews: 

      Reviewer #1 (Public Review): 

      In this work the authors propose a new regulatory role for one the most abundant circRNAs, circHIPK3. They demonstrate that circHIPK3 interacts with an RNA binding protein (IGF2BP2), sequestering it away from its target mRNAs. This interaction is shown to regulates the expression of hundreds of genes that share a specific sequence motif (11-mer motif) in their untranslated regions (3'-UTR), identical to one present in circHIPK3 where IGF2BP2 binds. The study further focuses on the specific case of STAT3 gene, whose mRNA product is found to be downregulated upon circHIPK3 depletion. This suggests that circHIPK3 sequesters IGF2BP2, preventing it from binding to and destabilizing STAT3 mRNA. The study presents evidence supporting this mechanism and discusses its potential role in tumor cell progression. These findings contribute to the growing complexity of understanding cancer regulation and highlight the intricate interplay between circRNAs and protein-coding genes in tumorigenesis.

      Strengths:

      The authors show mechanistic insight into a proposed novel "sponging" function of

      circHIPK3 which is not mediated by sequestering miRNAs but rather a specific RNA binding protein (IGF2BP2). They address the stoichiometry of the molecules involved in the interaction, which is a critical aspect that is frequently overlooked in this type of studies. They provide both genome-wide analysis and a specific case (STAT3) which is relevant for cancer progression. Overall, the authors have significantly improved their manuscript in their revised version.

      Weaknesses:

      While the authors have performed northern blots to measure circRNA levels, an estimation of the circRNA overexpression efficiency, namely the circular-to-linear expression ratio, would be desired. The seemingly contradictory effects of circHIPK3 and STAT3 depletion in cancer progression, are now addressed by the authors in their revised manuscript, incorporating potential reasons that might explain such complexity.

      We have now included a full version of the northern blot, where no discernible linear precursor can be detected, supporting efficient circHIPK3 WT and circHIPK3 MUT production (please see the detailed description in the specific comments below). We agree that the observations about STAT3 homeostasis and cancer progression, is not a straightforward extrapolation as discussed. 

      Reviewer #2 (Public Review):

      Summary: 

      The authors have diligently addressed most of the points raised during the review process (except the important point of "additional in vitro experiments [...] needed to investigate the implication of circHIPK3 in bladder cancer cell phenotype" for which no additional experiments were performed), resulting in an improvement in the study. The data are now described with clarity and conciseness, enhancing the overall quality of the manuscript. 

      Strengths: 

      New, well-defined molecular mechanism of circRNAs involvement in bladder cancer. 

      Weaknesses: 

      Lack of solid translational significance data. 

      The focus of this study has been to disclose molecular mechanisms of action by circHIPK3, with implications for cancer. We agree that further studies are needed to fully understand the impact of circHIPK3 in bladder cancer.  

      Reviewer #3 (Public Review):

      In Okholm et al., the authors evaluate the functional impact of circHIPK3 in bladder cancer cells. By knocking down circHIPK3 and performing an RNA-seq analysis, the authors found thousands of deregulated genes which look unaffected by miRNAs sponging function and that are, instead, enriched for a 11-mer motif. Further investigations showed that the 11mer motif is shared with the circHIPK3 and able to bind the IGF2BP2 protein. The authors validated the binding of IGF2BP2 and demonstrated that IGF2BP2 KD antagonizes the effect of circHIPK3 KD and leads to the upregulation of genes containing the 11-mer. Among the genes affected by circHIPK3 KD and IGF2BP2 KD, resulting in downregulation and upregulation respectively, the authors found the STAT3 gene, which also consistently has concomitant upregulation of one of its targets TP53. The authors propose a mechanism of competition between circHIPK3 and IGF2BP2 triggered by IGF2BP2 nucleation, potentially via phase separation. 

      Strengths: 

      Although the number of circRNAs continues to grow, this field lacks many instances of detailed molecular investigations. The presented work critically addresses some of the major piaalls in the field of circRNAs, and there has been a careful analysis of aspects frequently poorly investigated. Experiments involving use of time-point knockdown followed by RNAseq, investigation of miRNA-sponge function of circHIPK3, identification of 11-mer motif, identification and validation of IGF2BP2, and the analysis of copy number ratio between circHIPK3 and IGF2BP2 in assessing the potential ceRNA mode of action are thorough and convincing. 

      Weaknesses: 

      It is unclear why the authors used certain bladder cancer cells versus non-bladder cells in some experiments. The efficacy of certain experiments (specifically rescue experiments) and some control conditions is still questionable. Overall, the presented study adds some further knowledge in describing circHIPK3 function, its capability to regulate some downstream genes, and its interaction and competition for IGF2BP2. 

      We have provided a discussion and argumentation of how certain bladder cancer cells (and non-bladder cancer cells) have been used in this study in our previous rebuttal letter and also clarified this further in the materials and methods section in the first revision. Regarding control conditions for experiments, we believe we have included all necessary controls and explanations for these in the revised version (please see the detailed description in the specific comments below). 

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Major points about revised manuscript

      (1) In Supplementary Figure S5H, the membrane may have been trimmed too closely to the circRNA band, potentially resulting in the absence of the linear RNA band. Could the authors provide a full image of the membrane that includes the loading points? Having access to the complete image would allow for a more comprehensive evaluation of the results, including the presence or absence of expected linear and circular RNA bands.

      I have taken the liberty to move this “major point” from the public review section, as I believe it would be too detailed for this section. We have included the full section of the northern blot, according to the reviewers recommendations. 

      As described in the previous rebuttal letter our northern blots suffered from heavy background signal arising from the rRNA bands, which was the reason for cuttng the northern blot in the previous version of Supplementary figure S5H. We have now shown the entire blot as suggested by the reviewer, so that the reader can more clearly inspect any potential linear precursor band. We previously stated that we could not assess the circular-to-linear ratio due to background signal, since a potential linear HIPK3 precursor RNA could be masked by the rRNA signal. However, the theoretical size of a linear precursor is ~2.9 kb – a region where we do not detect any distinct bands (just above the 18S band), making a rather efficient circularization very likely. In support of this claim, we are using the Laccase2 vector described in Kramer et al, 2015 (Genes dev), which is proven to produce high levels of circHIPK3 compared to negligable amounts of linear precursor (although in a different cell line). We have also included a 5.8S rRNA probe to control for loading and RNase R activity (can also be ascertained by the disappearence of 18S/28S bands). Since we do not have the option to use another probe (limited by the BSJ-specific probe) and it is not practical to deplete for rRNA from 20 µg samples of total RNA, prior to running the northern blot, we find that this data sufficiently proves that our vector constructs produce a decent amount of RNase R-resistant circHIPK3, with no visible/discernible linear precursor.    

      Minor points about revised manuscript

      (1) In Supplementary Figure S3B, the authors offer no explanation as to why genes that become upregulated upon circHIPK3 knockdown generally contain more circHIPK3-RBP binding sites other than for IGF2BP2. A clarification would be of help.

      Again, this issue has been addressed in the previous rebuttal letter. Our response is repeated below:

      We do not have any evidence to explain this observation. One possibility is that other RBPs elicit mRNA-stabilizing effects on average, whereas abundant IGF2BP2 (~ 120.000200.000 copies per cell) now able to bind more target mRNAs and elicit destabilization. This remains highly speculative though.

      (2) In Supplementary Figure S3D, the authors' claim that the 11-mer motif is found more bound to IGF2BP2 than for other circHIPK3-RBPs should referred to the corresponding dataset/reference.

      Again, this issue has been addressed in the previous rebuttal letter. Our response is repeated below:

      This information is stated in the figure legend (K562) and we have now included it in the main text as well: “We evaluated how often binding sites of circHIPK3-RBPs overlap the 11-mer motif and found that this is more often the case for IGF2BP2 binding sites than binding sites of the other circHIPK3-RBPs when scrutinizing K562 datasets (Supplementary Figure S3D)”.

      (3) In the rescue experiment where both circHIPK3 and IGF2BP2 are downregulated, using the term "normalization" to mean reestablishing normal levels of gene expression can lead to confusion with the concept of normalization as it is commonly understood in the context of data processing (i.e. the mathematical process of adjusting data to account for various factors that might affect measurements). I would recommend the authors to use a term that more specifically describes the biological process they are referring to, such as "restoration of normal expression levels" or simply "return to normal levels".

      We agree that this term could be misunderstood. This has now been changed as recommended.

      (4) The figure legend of Supplementary Figure 5F is wrongly labeled. The legend for panel F actually corresponds to panel G and vice versa. 

      This has now been corrected.  

      Reviewer #2 (Recommendations For The Authors): 

      The authors have diligently addressed most of the points raised during the review process (except the important point of "additional in vitro experiments [...] needed to investigate the implication of circHIPK3 in bladder cancer cell phenotype" for which no additional experiments were performed), resulting in an improvement in the study. The data are now described with clarity and conciseness, enhancing the overall quality of the manuscript. Therefore, I support the publication of this work. 

      We thank the reviewer for the positive comments.

      Reviewer #3 (Recommendations For The Authors): 

      Please ensure that when the changes are made (especially for major points) by addressing the reviewer's comments, these are all appropriately incorporated in the text (for example the use of Act B as a low affinity positive control (now in Fig 4A), is not explained in the text neither the legends/methods) 

      This has now been included.

      Please ensure that all the legends correspond to the right figures (eg: Supplementary Figure with rescue experiment is 5F, but the corresponding legend in the manuscript is the S5G). 

      This has now been corrected.

      Please for future reviewing processes ensure the new parts are properly highlighted or coloured differently in the manuscript

      This has now been done more thoroughly.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Below, we provide a detailed account of the changes we made. For clarity and ease of review:

      •        Original reviewers' comments are included and highlighted in grey

      •        Our responses to each comment are written in black text

      •        Print screens illustrating the specific changes made to the manuscript are enclosed within black squares

      eLife assessment

      The authors aim to develop a CRISPR system that can be activated upon sensing an RNA. As an initial step to this goal, they describe RNA-sensing guide RNAs for controlled activation of CRISPR modification. Many of the data look convincing and while several steps remain to achieve the stated goal in an in vivo setting and for robust activation by endogenous RNAs, the current work will be important for many in the field.  

      The eLife assessment summarises our ambition to create a CRISPR system controlled by RNA sensing. The synopsis provided encapsulates the essence of our research, emphasising both the progress we have made and the challenges that lie ahead. This assessment fully resonates with our views.

      Public Reviews:

      Reviewer #1 (Public Review):

      This paper describes RNA-sensing guide RNAs for controlled activation of CRISPR modification. This works by having an extended guide RNA with a sequence that folds back onto the targeting sequence such that the guide RNA cannot hybridise to its genomic target. The CRISPR is "activated" by the introduction of another RNA, referred to as a trigger, that competes with this "back folding" to make the guide RNA available for genome targeting. The authors first confirm the efficacy of the approach using several RNA triggers and a GFP reporter that is activated by dCas9 fused to transcriptional activators. A major potential application of this technique is the activation of CRISPR in response to endogenous biomarkers. As these will typically be longer than the first generation triggers employed by the authors they test some extended triggers, which also work though not always to the same extent. They then introduce MODesign which may enable the design of bespoke or improved triggers. After that, they determine that the mode of activation by the RNA trigger involves cleavage of the RNA complexes. Finally, they test the potential for their system to work in a developmental setting - specifically zebrafish embryos. There is some encouraging evidence, though the effects appear more subtle than those originally obtained in cell culture. 

      Overall, the potential of a CRISPR system that can be activated upon sensing an RNA is high and there are a myriad of opportunities and applications for it. This paper represents a reasonable starting point having developed such a system in principle. 

      The weakness of the study is that it does not demonstrate that the system can be used in a completely natural setting. This would require an endogenous transcript as the RNA trigger with a clear readout. Such an experiment would clearly strengthen the paper and provide strong confidence that the method could be employed for one of the major applications discussed by the authors. The zebrafish data relied on exogenous RNA triggers whereas the major applications (as I understood them) would use endogenous triggers. 

      Related, most endogenous RNAs are longer than the various triggers tested and may require extensive modification of the system to be detected or utilised effectively. 

      While additional data would clearly be beneficial, there should nevertheless be a more detailed discussion of these caveats and/or the strengths and applications of the system as it is presented (i.e. utility with synthetic triggers).  

      We agree with the observation regarding the subtler effects in the zebrafish embryos and the reliance on exogenous RNA triggers. Indeed, the utilisation of endogenous transcripts as triggers in a natural setting is a logical next step. We further acknowledge the need to delve deeper into the complexities and challenges of our system, particularly concerning the detection of endogenous RNA, thus offering valuable insights for researchers looking to adapt our system for various applications. In order to clarify these limitations, we made some changes in the final version of our paper. The following paragraphs have been therefore included in the manuscript discussion:

      “In their current iteration, iSBH-sgRNAs show considerable promise for mammalian synthetic biology applications. Specifically, their ability to detect synthetic triggers could be pivotal in the development of complex synthetic RNA circuits and logic gates, thereby advancing the field of cellular reprogramming. However, further work is required to achieve better ON/OFF activation ratios in vivo and more homogeneous activity across tissues in the presence of RNA triggers. Additional chemical modifications could improve iSBH-sgRNA properties, and we believe that chemical modification strategies adopted for siRNA drugs or antisense oligos (Khvorova and Watts (2017)) could also be essential for further iSBH-sgRNA technology development. As iSBH-sgRNAs might be targeted by endogenous nucleases, leading to their degradation, a strategy for preventing this could involve additional chemical modifications. When inserted at certain key positions, such modifications could prevent interaction between iSBH-sgRNAs and cellular enzymes by introducing steric clashes or inhibiting RNA hydrolysis.

      Once achieving superior dynamic ranges of iSBH-sgRNA activation in vivo, the next steps would involve understanding the classes of endogenous RNAs that could act as triggers. The chances that an iSBH-sgRNA encounters an endogenous RNA trigger inside a cell would depend on the relative concentrations of the two RNA species. Therefore, a first step towards determining potential endogenous RNA triggers will involve identifying RNA species with comparable expression levels as iSBH-sgRNAs. Then, iSBH-sgRNAs could be designed against these RNA species, followed by experimental validation. It is important to note that eukaryotic cells express a wide range of transcripts of varying sizes, expression levels, and subcellular localisations, all of which could greatly affect iSBH-sgRNA activation levels. Based on the data presented here, we speculate that RNA species up to 300nt that are also highly expressed might act as good triggers. Furthermore, as sgRNAs are involved in targeting Cas9 to genomic DNA in the nucleus, attempting to detect transcripts that are sequestered in the nucleus might also provide additional benefit.”

      Reviewer #3 (Public Review):

      In this work, the authors describe engineering of sgRNAs that render Cas9 DNA binding controllable by a second RNA trigger. The authors introduce several iterations of their engineered sgRNAs, as well as a computational pipeline to identify designs for user-specified RNA triggers which offers a helpful alternative to purely rational design. Also included is an investigation of the fate of the engineered sgRNAs when introduced into cells, and the use of this information to inform installation of modified nucleotides to improve engineered sgRNA stability. Engineered sgRNAs are demonstrated to be activated by trigger RNAs in both cultured mammalian cells and zebrafish. 

      The conclusions made by the authors in this work are predominantly supported by the data provided. However, some claims are not consistent with the data shown and some of the figures would benefit from revision or further clarification. 

      Strengths: 

      - The sgRNA engineering in this paper is performed and presented in a systematic and logical fashion.

      - Inclusion of a computational method to predict iSBH-sgRNAs adds to the strength of the engineering. 

      - Investigation into the cellular fate of the engineered sgRNAs and the use of this information to guide inclusion of chemically modified nucleotides is also a strength. 

      - Demonstration of activity in both cultured mammalian cells and in zebrafish embryos increases the impact and utility of the technology reported in this work. 

      Weaknesses: 

      - While the methods here represent an important step forward in advancing the technology, they still fall short of the dynamic range and selectivity likely required for robust activation by endogenous RNA.

      - While the iSBH-sgRNAs where the RNA trigger overlaps with the spacer appear to function robustly, the modular iSBH-sgRNAs seem to perform quite a bit less well. The authors state that modular iSBHsgRNAs show better activity without increasing background when the SAM system is added, but this is not supported by the data shown in Figure 3D, where in 3 out of 4 cases CRISPR activation in the absence of the RNA trigger is substantially increased.

      - There is very little discussion of how the performance of the technology reported in this work compares to previous iterations of RNA-triggered CRISPR systems, of which there are many examples.  

      Concerning the methods falling short of the dynamic range and selectivity required for robust activation by endogenous RNA, we acknowledge this limitation and recognise the need for improvement in this area. In the resubmitted version of the manuscript, we provided a detailed discussion on how the selection of appropriate triggers might partially improve dynamic ranges and selectivity. This includes an exploration of various strategies and considerations that may enhance the robustness of our system (print screen above, also used for addressing Reviewer #1 comments). 

      Regarding the inconsistent performance of the modular iSBH-sgRNAs, we acknowledge that modular iSBH-sgRNAs seem to perform slightly less well than first- and second-generation designs. In order to illustrate this, we modified corresponding bar graphs to include fold turn-on iSBH-sgRNA activation in addition to significance (Figures 1, 2 and 3 of the manuscript). We also acknowledge this fact in the text, as well as we recognise this discrepancy in the Figure 3.D and provide further clarifications. To help conveying this message even further, we introduced a new figure (Figure 3- figure supplement 2) to accompany the heat map shown in the Figure 3.D. with corresponding bar graphs. These changes are documented below:

      “…promoters. We ran 11 MODesign simulations for each trigger, incrementally extending the loop size while keeping the sgRNA 2 spacer input constant. HEK293T validation experiments showed that choosing modular iSBH-sgRNAs that detect the 4 U6-expressed triggers is possible (Figure 3.D, Figure 3- figure supplement 1.C). Despite not performing quite as well as second-generation designs (Figure 2.A.,Figure 3.D),modular iSBH-sgRNA still enable efficient RNA detection, especially for smaller RNAs such as triggers A and D. For highly efficient designs such asmodular iSBH-sgRNA (D), addition of the SAM effector system (Konermann et al. (2015)) boosted ON-state activation with only a negligible increase in the the OFF-state non-specific activation. Orthogonality tests suggested that activation of modular iSBH-sgRNA designs was specifically conditioned by complementary RNA triggers (Figure 3.E, Figure 3 - figure supplement 2), showing the exquisite specificity of the system.”

      Author response image 1.

      This supplementary figure reinterprets the data presented in Figure 3.E. using bar plots for enhanced clarity and comparison. It depicts the results of cotransfecting HEK293T cells with four modular iSBH-sgRNAs (A, B, C, and D) and examines all combinations of iSBH-sgRNA: RNA trigger pairings. The bar plots provide a visual representation of mean values with error bars indicating the standard deviation, based on three biological replicates.

      Regarding the concern about the lack of comparison with previous iterations of RNA-triggered CRISPR systems, we also acknowledged other similar technologies within the discussion. We also point readers to a literature review we recently published (doi/full/10.1089/crispr.2022.0052) where we describe other similar technologies in more detail.

      “To date, a variety of RNA-inducible gRNA designs have been developed (Hanewich-Hollatz et al. (2019); Hochrein et al. (2021); Jakimo et al. (2018); Jiao et al. (2021); Jin et al. (2019); Li et al. (2019); Liu et al. (2022); Lin et al. (2020); Siu and Chen (2019); Galizi et al. (2020); Hunt and Chen (2022b,a); Ying et al. (2020); Choi et al. (2023)). Nevertheless, there is a lack of direct, head-to-head comparisons of these designs under standardised experimental conditions. Some designs were evaluated in vitro, others in bacterial systems, and some in mammalian cells. Consequently, it is challenging to conclusively determine which design exhibits superior properties (Pelea et al. (2022)). Notably, to the best of our knowledge, the iSBH-sgRNA systemis the first RNA-inducible gRNA design tested in vivo and characterising the iSBH-sgRNA activation mechanism was essential for implementing iSBH-sgRNA technology in zebrafish embryos. In vivo, chemical modifications in the spacer sequence were vital for iSBH-sgRNA stability and function.”

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Recommendations for the authors:

      We sincerely value the insightful and constructive feedback (italicized) provided by the reviewers, which has been instrumental in identifying areas of our manuscript that required further clarification or amendment. In response to these valuable comments, we have significantly revised the manuscript to enhance clarity and accuracy. Specifically, we have corrected an oversight related to the robot’s velocity and secondary antibody ratios, and addressed previously missing values in Figs. 3E and 4E. Importantly, these corrections did not alter the outcomes of our results. Additionally, we have enriched our manuscript with new data analyses, as reflected in Figures 1B, 1F, 2H-J, 4D, 4F-H, S1A, S1C-E, S3H, S5, and Table 1, ensuring a more comprehensive presentation of our findings. Below are our responses detailing each comment and explaining the modifications integrated into the revised manuscript.

      Reviewer 1:

      (1) To address the question of whether PAG photostimulation biases the cells that respond to the robot, a counterbalanced experiment, in which the BLA activity is initially recorded during the foraging vs. robot test and the PAG stimulation happens at the end of the session, should have been performed.

      In our study, we investigated fear behavior and BLA cell responses to intrinsic dPAG photostimulation (320 pulses) in naïve animals, followed by their reactions to an extrinsic predatory robot. We recognize the reviewer's concern regarding the potential  influence of initial dPAG photostimulation on BLA neuron responses to the robot. We address this issue in our discussion (pg. 13) as follows: “However, it is crucial to consider the recent discovery that optogenetic stimulation of CA3 neurons (3000 pulses) leads to gain-of-function changes in CA3-CA3 recurrent (monosynaptic) excitatory synapses (Oishi et al., 2019). Although there is no direct connection between dPAG neurons and the BLA (Vianna and Brandao 2003, McNally, Johansen, and Blair 2011, Cameron et al. 1995), and no studies have yet demonstrated gain-of-function changes in polysynaptic pathways to our knowledge, the potential for our dPAG photostimulation (320 pulses) to induce similar changes in amygdalar neurons, thereby enhancing their sensitivity to predatory threats, cannot be dismissed.”

      (2) In Figure 3, it is unclear which criteria (e.g. response latency, minimum Z score, spike fidelity) was used to identify the BLA neurons that were indirectly activated by PAG stimulation. A graphic containing at least the distribution of the response latencies for each BLA neuron after PAG laser activation is needed.

      We have specified the criteria for determining the responsiveness of BLA neurons to dPAG stimulation on page 22. This involves analyzing the first 500-ms post-stimulation across five 0.1-s bins. Units were classified as ‘stim cells’ if they showed z-scores greater than 3 (z > 3) in any of the bins during the initial 500-ms period post-stimulation. Neurons activated by both pellet procurement and dPAG stimulation were not included in the 'stim cell' category. Additionally, we have included a graphic in the revised manuscript (Fig. S3C) that presents the distribution of response latencies of BLA neurons to dPAG stimulation.

      (3) To strengthen the claim that it is a BLA-PVT-PAG circuit that carries information about predatory threat, a new experiment using CTB and cFos could be used to demonstrate that PAG neurons that project to PVT are recruited during the robot exposure.

      Our study primarily aimed to explore the transmission of threat signals between the dPAG and BLA. We acknowledge that our evidence for the PVT’s intermediary role, derived from CTB injections in the BLA and subsequent CTB+cFos co-labeling analysis in the PVT (Fig. 4G and 4H), is limited. Accordingly, we have moderated the emphasis on the PVT’s involvement in both the abstract and introduction. We now present the PVT’s role as a promising direction for future research in the discussion section of our revised manuscript.

      (4) In Fig 2, the authors' interpretation is that photostimulation of PAG neurons elicits fleeing responses in the rats. However, there is a vast literature demonstrating that the PAG is also involved in nociception. Although this is recognized by the authors in the first part of the introduction and briefly described in the discussion, the authors should more explicitly explain that PAG stimulation produces analgesia and thus is unlikely to underlie the escaping responses observed. This may not be intuitive for a broader audience.

      We appreciate the reviewer's insightful suggestion to elaborate on the PAG involvement in nociception and analgesia, as supported by the literature. While our initial manuscript acknowledged these functions, we have now expanded our discussion to address the PAG’s multifaceted roles (pg. 12): “As mentioned in the introduction, the dPAG is recognized as part of the ascending nociceptive pathway to the BLA (De Oca et al. 1998, Gross and Canteras 2012, Herry and Johansen 2014, Kim, Rison, and Fanselow 1993, Ressler and Maren 2019, Walker and Davis 1997). The dPAG is also implicated in non-opioid analgesia (e.g., Bagley and Ingram 2020, Cannon et al. 1982, Fields 2000). However, it is essential to emphasize that, despite its roles in pain modulation, the primary behavior observed in dPAG-stimulated, naive rats foraging for food in an open arena was goal-directed escape to the safe nest, underscoring the dPAG’s critical function in survival behaviors.” Note that this aligns with human studies on PAG stimulation (e.g., Carrive and Morgan 2012, Magierek et al. 2003), particularly those by Amano et al. (Amano et al. 1982), which reported patients feeling an urge to escape, similar to being chased, upon PAG stimulation.

      (5) To truly demonstrate the functional links between the PAG and BLA, more experiments are needed. For example, one could record from BLA neurons during the robot surge while performing optogenetic inhibition of the PAG neurons. There is also no evidence that activity in the indirect pathway that connects the PAG to the BLA is indispensable for the expression of defensive responses towards the robot (e.g., causality tests using chemogenetic or optogenetic inactivation).

      We agree that incorporating optogenetic inhibition of PAG neurons while simultaneously recording from BLA neurons during a robot surge would strengthen the evidence for the functional connectivity between the PAG and BLA. Such an experiment would necessitate the transfection and photoinhibition of a wide array of dPAG neurons responsive to predatory threats. This procedure is technically more viable in transgenic mouse models, given their suitability for genetic manipulation. In light of this, and in response to the suggestions in the Joint Public Review, we have revised the abstract, introduction, and discussion to offer a more cautious interpretation of our findings. This revision reflects a careful consideration of both the evidence and the limitations inherent in our study (pg. 13): “While our findings demonstrate that opto-stimulation of the dPAG is sufficient to trigger both fleeing behavior and increased BLA activity, we have not established that the dPAG is necessary for the BLA’s response to predatory threats. To establish causality, it is essential to conduct experiments such as optogenetic inhibition to determine whether the dPAG is indispensable for activating BLA neurons and initiating escape behavior in the face of threats. The complexity of targeting the dPAG, which includes its dorsomedial, dorsolateral, lateral, and ventrolateral subdivisions (e.g., Bandler, Carrive, and Zhang 1991, Bandler and Keay 1996, Carrive 1993), suggests the need for future studies using transgenic mouse models. Should inactivation of the dPAG negate the BLA's response to predatory threats, it would underscore the dPAG's central role in this defensive mechanism. Conversely, if BLA responses remain unaffected by dPAG inactivation, this could indicate the existence of multiple pathways for antipredatory defense mechanisms.”

      (6) The manuscript lacks information about the number of rats and trials that were used across the experiments (e.g. Fig 2G-J). In some occasions, the authors start the experiments with a specific number of animals and then reduce the N by half without providing a rationale (e.g. Fig. 3). Equally confusing is the experimental timeline. For example: a) Were the pre-robot, robot, and post-robot sessions always performed within the same day? b) It was described that microdrivable arrays were used, but did the same rats experienced the robot test more than one time? c) How many bins were used for normalization during the Z-score calculation and when were the data binned at 100 ms versus 1 s? d) How many trials were used for each analysis? For example, to identify robot cells, did the authors establish a minimum number of trials per animal to calculate the peristimulus time histograms? Having a significant number of trials is critical to make sure that the observed neuronal responses are replicable across the trials. e) How was the neuronal activity related to "pellet retrieval" aligned during robot sessions? Was the activity aligned with the moment in which the rat touches the pellet or when the animal returns to the nest with the pellet? f) How did the authors control for trials in which the rat consumed the pellets in the same local vs. those in which they returned to the nest to eat it? All these points are extremely important for future replicability.

      We apologize for any confusion caused by the initial lack of detail in our experimental procedures. The revised manuscript has been updated with comprehensive methodological details:  

      (i) The study involved thirteen rats (ChR2, n = 9; EYFP, n = 4), subjected to dPAG stimulation using fixed light parameters (473 nm, 20 Hz, 10-ms pulse width, 2 s duration) during Long and Short pellet distance trials (refer to Fig. 2E-G). The stimulation intensity was adjusted to each animal's response (fleeing behavior), ranging from 1-3 mW. Additional testing occurred over multiple days, with incremental adjustments to stimulation parameters (intensity, frequency, duration) after confirming normal baseline foraging behavior (Fig. 2H-J, at x = 0). These details are now clearly depicted in the manuscript.

      (ii) The primary objective was to investigate BLA neuron responses to dPAG opto-stimulation. Six rats were initially tested, with three later assessed for their reactions to dPAG stimulation in the presence of an actual predator, to gauge behavioral effects.

      (iii) Regarding the experimental timeline:

      a) Pre-robot, robot, and post-robot sessions were conducted successively on the same day.

      b) Sessions with the robot predator were repeated until habituation occurred or when unit recordings were deemed invalid due to microdrive limitations or the absence of unit detection. Throughout these sessions, the success rate for pellet retrieval remained consistently low. Specifically, the mean success rate for the dPAG recordings was 2.803% + 1.311. For the BLA recordings, animals did not succeed in retrieving pellets during any of the robot trials. To provide a more detailed account of the methodology, the manuscript has been updated to include the number of recording days and the units recorded in the "Behavioral Procedures" section.

      c) As described in Materials and Methods, unit recording data were binned at 0.1-s intervals and normalized against a 5-s pre-event baseline (50 bins). For statistical analyses in Figure 1F’s rightmost column, 1-s bins were used to simplify post-hoc analysis corrections.

      d) Each recording session consisted of 5-15 trials. Trials were excluded if rats attempted to procure the pellet within 10 s post-dPAG stimulation or robot activation, ensuring accurate characterization of unit responsiveness. Consequently, the number of trials varied among subjects.

      e) Pellet retrieval was indicated by the animal entering a designated zone 19 cm from the pellet, driven by hunger.

      f) Animals were trained to retrieve pellets and return to their nest for consumption prior to robot testing sessions, as elaborated in the “Baseline foraging” section.

      (7) In the abstract, the authors mention that predictive cues are ambiguous during naturalistic predatory threats, but it is not clear what do they mean by ambiguous. In addition, in the introduction section, the authors describe that the present study will investigate how the dPAG and BLA communicate threat signals. However, the author should clarify right in the beginning that these two regions are not monosynaptically connected with each other and cite the proper references.

      The abstract’s original sentence, “…where predictive cues are ambiguous and do not afford reiterative trial-and-error learning…” has been refined to “…characterized by less explicit cues and the absence of reiterative trial-and-error learning events …” This adjustment more accurately reflects that cues in natural settings often lack the clear and consistent quality of those in controlled experimental settings, which is necessary for the straightforward process of trial-and-error learning.

      Regarding the dPAG and BLA connectivity, the revised introduction (pg. 5) now states: “Considering the lack of direct monosynaptic projections between dPAG and BLA neurons (Vianna and Brandao 2003, McNally, Johansen, and Blair 2011, Cameron et al. 1995), we utilized anterograde and retrograde tracers in the dPAG and BLA, respectively. This was complemented by c-Fos expression analysis following exposure to predatory threats. Our anatomical findings suggest that the paraventricular nucleus of the thalamus (PVT) may be part of a network that conveys predatory threat information from the dPAG to the BLA.”

      (8) In the introduction section, the authors should clarify that the US information is conveyed from the PAG to BLA via the lateral thalamus (posterior intralaminar nucleus, medial geniculate nucleus) or dorsal midline thalamus (paraventricular nucleus of the thalamus). The statement regarding how "the PAG functions as part of the ascending pain transmission pathway, providing footshock US information to the BLA" is misleading because the PAG does not send monosynaptic projections directly to the BLA.

      The revised text (pg. 3) now reads: “…suggest that the dPAG is part of the ascending US pain transmission pathway to the BLA, the presumed site for CS-US association formation (De Oca et al. 1998, Gross and Canteras 2012, Herry and Johansen 2014, Kim, Rison, and Fanselow 1993, Ressler and Maren 2019, Walker and Davis 1997). This pathway is thought to be mediated through the lateral and dorsal-midline thalamus regions, including the posterior intralaminar nucleus and paraventricular nucleus of the thalamus (Krout and Loewy, 2000; McNally, Johansen, and Blair, 2011; Yeh, Ozawa, and Johansen, 2021; but see Brunzell and Kim, 2001).”

      (9) The author's assumption that threat information flows from the PAG to the BLA, rather than BLA to PAG, based on electrical stimulation and lesion experiments performed in previous studies is problematic for at least three reasons: a) Electrical stimulation can activate fibers of passage as well as presynaptic neurons antidromically. b) The lesion approach may not have targeted 100% of the neurons in PAG, which extends anatomically along the antero-posterior axis of the midbrain for several millimeters in rats. This observation also disagrees with more recent studies using optogenetics and imaging tools demonstrating that the PAG is the downstream target of the BLA-CeA pathway. c) The authors cited prior reports describing the role of the amygdala-PAG pathway in dampening the US response and providing a negative signal to the PAG. However, a series of previous studies demonstrating that the PAG serves as the downstream target of the central nucleus of the amygdala for the expression of defensive response are completely ignored by the authors. Here are just some examples: Massi et al, 2023, PMID: 36652513; Tovote et al 2016, PMID: 27279213; Penzo et al, 2014 PMID: 24523533).

      We recognize the complexities in interpreting findings from electrical stimulation and lesion studies. Our prior work (Kim et al. 2013) supports the conclusion that predatory threat information directionally flows from the dPAG to the BLA, as evidenced by distinct behavioral outcomes from experimental manipulations of dPAG and BLA. Specifically, dPAG stimulation-induced fleeing behavior was blocked by BLA lesions (as well as muscimol inactivation), whereas BLA stimulation-induced fleeing was unaffected by dPAG or combined dPAG+vPAG lesions (refer to Fig. 5A), suggesting a flow from dPAG to BLA. Our manuscript further clarifies that dPAG optostimulation results confirmed that escape behavior in foraging rats, induce by dPAG electrical stimulation (Kim et al. 2013), was activated by intrinsic dPAG neurons rather than by fibers of passage or current spread to other brain regions.  

      Furthermore, the PAG’s anatomical and functional diversity, with distinct segments along its longitudinal axis associated with different defensive behaviors, reinforces our conclusions. The dPAG is implicated in flight responses, while the vPAG is associated with freezing behavior (e.g., Bandler and Shipley 1994, Kim, Rison, and Fanselow 1993, Lefler, Campagner, and Branco 2020, Morgan, Whitney, and Gold 1998). The critiques' referenced studies primarily focus on the BLA-CeA-vPAG circuit's role in freezing during Pavlovian fear conditioning, contrasting with our emphasis on the dPAG-PVT-BLA circuit and its mediation in escape behavior in response to naturalistic predatory threats.

      We also note that different invasive procedures can yield varying behavioral outcomes. For example, both acute (e.g., optogenetic and muscimol inactivation) and chronic (e.g., surgical ablation) manipulations within the same brain circuit have shown diverse effects across species (Otchy et al. 2015). Moreover, optogenetics comes with its own set of conceptual and technical challenges (Adamantidis et al. 2015), including the difficulty of targeting, quantifying and photo-inhibiting 100% of PAG neurons. Despite the limitations of each technique, our collective evidence from lesions, inactivation, electrical stimulation (Kim et al. 2013), optostimulation, and single-unit recordings (the present study) supports the premise that the dPAG acts upstream of the BLA in processing predatory threat information.

      (10) In the discussion, the authors suggest that the PVT may be the interface between the PAG and the BLA for the expression of antipredatory defensive behavior during their foraging vs. robot test, but previous studies looking at the role of PVT in antipredator defensive behavior and/or approach-avoidance conflict tasks are not cited and discussed in the manuscript (Engelke et al, 2021, PMID: 33947849; Choi et al 2019, PMID: 30979815; Choi and McNally 2017, PMID: 28193686).

      We thank the reviewer for pointing out these pivotal studies, which we have carefully reviewed and integrated into the revised manuscript (pg. 14): “These results, in conjunction with previous research on the roles of the dPAG, PVT, and BLA in producing flight behaviors in naïve rats (Choi and Kim 2010, Daviu et al. 2020, Deng, Xiao, and Wang 2016, Kim et al. 2013, Kim et al. 2018, Kong et al. 2021, Ma et al. 2021, Reis et al. 2021), the anterior PVT’s involvement in cat odor-induced avoidance behavior (Engelke et al. 2021), and the PVT’s regulation of behaviors motivated by both appetitive and aversive stimuli (Choi and McNally 2017, Choi et al. 2019), suggest the involvement of the dPAGàPVTàBLA pathways in antipredatory defensive mechanisms, particularly as rats leave the safety of the nest to forage in an open arena (Figure 4I) (Reis et al. 2023).”  

      (11) The authors use the expression "looming robot predator" in many cases throughout the manuscript. However, it is unclear whether the defensive responses observed in the rats are elicited by the looming stimulus produced by the movement of the robot towards the rats. The authors describe that rats do not respond to a stationary robot, but would the sound produced by the movement of the robot elicit defensive responses? Would non-approaching lateral or dorsoventral movements (not associated with looming) be sufficient to induce defensive behavior in the rats? There is a vast literature in the field about defensive behaviors induced by looming stimuli. The authors should empirically demonstrate that the escaping responses induced by the robot are mediated by looming or refrain to use the looming terminology to avoid confusion.

      Our use of "looming robot predator" is based on empirical evidence from a prior parametric study, which identified the forward, or 'looming,' motion of the Robogator as the key stimulus eliciting a flight response in rats (Kim, Choi, and Lee 2016). This reaction significantly decreased when the robot moved backward from the same starting position, producing a similar sound, and was absent when the robot remained stationary. This suggests that neither sound alone nor the mere presence of a novel object provokes goal-directed escape behavior (Kong et al. 2021). This aligns with studies indicating that simulated looming stimuli, like an expanding disk, induce flight or freezing responses in mice (De Franceschi et al. 2016, Yilmaz and Meister 2013).

      It should be noted that the 2013 study by Yilmaz & Meister (Yilmaz and Meister 2013) on the looming disk paradigm showed that not all mice responded to the stimuli (e.g., Figs. 2A and 3A), with those that did exhibiting rapid habituation by the second exposure. This contrasts with our predatory robot paradigm (Choi and Kim 2010), where all rats consistently fled from the looming robotic predator across multiple trials, underscoring the critical role of looming motion in simulating predator attacks that trigger flight behavior in rats.

      Thus, the term "looming" accurately captures the nature of the robot's movement and its effect on eliciting defensive responses in rats. Nonetheless, should the editors agree with the reviewer's suggestion to minimize potential confusion, we are willing to substitute "looming" with "approaching," although we consider the terms to be synonymous in the context of our study.

      (12) If the authors are citing the Rescorla-Wagner model, they should include at least one additional sentence to explain it, as many people in the field are not familiar with this model.

      In response to the request for clarification on the Rescorla-Wagner model, we have added an explanatory sentence (pg. 4): “Fundamentally, the negative feedback circuit between the amygdala and the dPAG serves as a biological implementation of the Rescorla–Wagner (1972) model, a foundational theory of associative learning that emphasizes the importance of prediction errors in reinforcement (i.e., US), as applied to FC (Fanselow 1998).”

      (13) The authors need to include the normality test used to determine whether a parametric or non-parametric statistical analysis was the most appropriate test for each experiment.

      We have included the outcomes of the normality tests, detailed in Table S1.

      (14) In Fig. 1F, the authors show a representative PAG neuron with peristimulus-time histogram and rasters reaching frequencies higher than 100 Hz and sustained firing rates of >50 Hz following robot activation. The authors should include a firing rate analysis (e.g., average firing rate and maximum firing rate before and after robot activation) of the 22 robot-responsive PAG neurons recorded during the session to clarify whether this high firing rate, which is atypical in other brain regions, is commonly observed in the PAG. Showing the isolated waveforms of some representative neurons would help to clarify whether the activity is being recorded from a single-isolated unit instead of multiple units within the same channel.

      In response to the critique, we have expanded our analysis to include both average and maximum firing rates before and after robot activation for the 22 robot-responsive PAG neurons. This detailed firing rate analysis, illustrating their distribution, has been incorporated into the revised manuscript (refer to Figure S1C and S1D). Furthermore, to alleviate concerns regarding the identification of single-unit activity versus potential multi-unit recordings, we have included peri-event raster plots and waveforms for two additional representative neurons in Figure 1F.

      (15) In Figure 2, the authors should indicate when the recordings are performed on anesthetized vs. freely-moving awake animals.

      In the original manuscript, we specified that the optrode recordings depicted in Figure 2B were conducted on anesthetized rats. To enhance clarity and directly address the critique, we have now clearly indicated this condition in Figure 2A as well.

      (16) The optogenetic stimulation parameters used in Fig 2H indicate that 0.5 mW was sufficient to induce behavioral changes. This is surprising because most optogenetic experiments in the field use much higher intensities (> 5mW). If much lower intensities are sufficient to drive PAG-mediated behaviors, this may be a very important observation that should be conveyed to the field. I recommend the reviewers clarify if they in fact used 0.5 mW and then discuss that the laser intensity used in the experiments was 10X lower than that required for other brain regions

      In our study, we indeed observed that 0.5 mW of dPAG stimulation increased the latency to procure the pellet without completely preventing the action. Notably, at 1 mW, more than half of the animals (n = 5/9 rats; Fig. 2H) and at 3 mW, all rats (9/9) failed to procure the pellet and fled from the foraging area to the nest (Fig. 2G). These results indicate that even lower intensities were sufficient to elicit behavioral changes through dPAG stimulation in a large foraging arena, highlighting the dPAG's sensitivity to optogenetic manipulation. This finding is consistent with our earlier research on dPAG electrical stimulation, which required significantly lower intensities to provoke defensive behaviors compared to the BLA. Specifically, the stimulation intensity needed for aversive behavior in the dPAG was substantially lower (dPAG: 65.0 ± 6.85 µA) than for the BLA (BLA: 275.0 ± 24.44 µA) (Kim et al. 2013). Furthermore, Deng et al. (Deng, Xiao, and Wang 2016) showed that 1 mW of blue light could elicit a 60% freezing response, with 2 mW triggering flight behavior within a latency of 0.6 seconds.

      (17) In Fig 2 G-J, how many animals are being used per group and how was the sequence of the experiments performed? This is very important for replicability.

      A total of three rats were utilized for the robot testing experiments depicted in Fig. 2 G-J. The experimental sequence for these animals consisted of successive pre-stimulation, stimulation, post-stimulation, and robot sessions. We have updated the manuscript to include this information.

      (18) For the photostimulation of PAG neurons in Figs. 2 and 3, the authors need to clarify if the same parameters of laser stimulation used during the anesthetized recordings were also used during the behavioral tests. Also, the wavelength corresponding to the blue laser should be 473 nm instead of 437 nm.

      We thank the reviewer for identifying the error. We confirm that the opto-stimulation parameters (473 nm, 10-ms pulse width, 2 s duration) were consistently applied across both anesthetized recordings and behavioral tests. This consistency has been explicitly stated in the revised manuscript to ensure clarity regarding our experimental approach.

      (19) In Fig. 3I, how was the representative trials selected? Instead of picking up the most representative trials, the authors should demonstrate the response of the cell during the entire session.

      In response to the critique, we clarify that the color-coded PETH shown in Fig. 3I represents averaged BLA activity across a comprehensive set of trials. This includes 8 pre-stimulation, 10 stimulation, and 8 post-stimulation trials for the robot-activated sessions, with a similar distribution for non-stimulated sessions. This approach was chosen to provide a representative overview of the cell's response throughout the entire session. To address the request for more detailed data, we have added traditional PETHs to the revised manuscript (see Fig. S3H), which depict the cell's response across all trials.

      (20) Fig 4 D should demonstrate a colabeling between the anterograde PAG fibers in the PVT and the retrogradely labeled neurons from BLA instead of PAG fibers only.

      We wish to clarify that Fig. 4D is intended to show the distribution of dPAG terminals within the midline thalamic nuclei, as noted in prior research (Krout and Loewy 2000). Although dPAG terminals are distributed throughout the midline thalamus, our observations have specifically highlighted a notable increase in c-Fos expression within the paraventricular nucleus of the thalamus (PVT) in rats subjected to the robotic predator stimulus, in contrast to those in the foraging-only control condition (Fig. 4E). Addressing the reviewer's point, we direct attention to Fig. 4G, which includes images labeled "Robot-experienced" and "Merge." This figure demonstrates a subset of PVT neurons that were retrogradely labeled with CTB injected into the BLA, anterogradely labeled with AAV injected into the dPAG, and activated (as indicated by c-Fos expression) in response to the robotic predator. This provides specific colabeling evidence between anterograde PAG fibers in the PVT and retrogradely labeled neurons from the BLA, directly addressing the critique.

      (21) The resolution of the cFos images is very low and makes it hard to appreciate.

      We have updated Figs. 4F and 4G with high-resolution versions to ensure the details are more clearly visible. Furthermore, should there be a need for even greater clarity, we are prepared to supply the images as TIFF files, which are known for preserving high image quality.

      Reviewer 2:

      (1) The text is clearly written, and I appreciated the inclusion of interesting citations, such as the one about paintings by cavemen. The authors also do a good job of discussing the underlying theoretical framework and the figures are easy to understand. Although the topic is very interesting, the amount of novel work is somewhat low. Figure 1 shows that dPAG cells are activated by the predator, and this has been shown by many prior reports. Similarly, Figure 2 shows that dPAG activation creates defensive responses, and this too has been shown by many prior reports.

      We appreciate the reviewer’s positive remarks. We acknowledge the rich body of research documenting dPAG neuronal activation by various predator cues such as odors (e.g., fox urine) (Lu et al. 2023), and scenarios involving anesthetized or spontaneously moving rat/cat predators, either physically partitioned or harness-restrained (Bindi et al. 2022, Deng, Xiao, and Wang 2016, Esteban Masferrer et al. 2020). Nevertheless, our study distinguishes itself by examining dPAG neuronal responses to a robotic predator, uniquely designed to replicate consistent looming motions across multiple trials and subjects within an environment that simulates natural foraging conditions, inclusive of a safe nest (cf. Choi and Kim, 2010). This approach allowed us to not only reveal the immediate activation of dPAG neurons in response to a rapidly approaching predator but also to explore the consequent fleeing behavior towards safety, thereby providing new insights into the dPAG's role in mediating goal-directed defensive responses in a more ecologically-relevant setting. Furthermore, our investigation extends beyond these findings to assess the impact of dPAG activation on BLA neuronal responses and their functional connectivity during predator-prey interactions, offering a fresh perspective on the neural circuits that support survival behaviors in animals when confronted with naturalistic threats.

      (2) The results in Figure 3 are novel and interesting, but the characterization of BLA activity is incomplete. For example, what are the percentages of BLA cells that are inhibited or activated by all major behaviors observed? These behaviors include approach to pellet, escape from robot, freezing, stretch-attend postures, etc. These same analyses should also be added to dPAG activity in Figure 1. How does BLA single cell encoding of these behaviors relate to their responsivity to dPAG stimulation? And, finally, it is unclear what is the significance of BLA correlated synchronous firing. Is the animal more or less likely to be performing certain behaviors when correlated BLA firing occurs?

      Our analysis, as presented in Figs. 3I, 3K, and S3D-F, selectively focused on BLA cell responses during distinct behaviors such as approaching a pellet and escaping from the robot. These behaviors were selected because their precise temporal markers allow for accurate correlation with BLA cell activity, building on the findings of our previous research (Kim et al. 2018, Kong et al. 2021).

      The robot's motion, programmed to advance a fixed distance before retreating to its starting position, is designed to repeatedly elicit foraging, thus facilitating analysis of neural changes during conflict situations involving food approach and predator avoidance. However, this also leads to the rapid diminution of freezing and stretch-attend postures inside the nest as animals quickly adapt to the robot's movement pattern, rendering a time-stamped analysis of these behaviors unfeasible under our experimental conditions. While the inclusion of these behaviors in our analysis would be insightful, especially in extended interaction scenarios where the robot advances to the nest opening and remains before returning in a less predictable manner, such conditions would likely reduce foraging behavior due to increased fear, deviating from our study's primary objective of elucidating the interactions between the dorsal periaqueductal gray (dPAG) and the basolateral amygdala (BLA) functions.

      Regarding the significance of BLA correlated synchronous firing, our findings, particularly in Figures 3M-O and S4, demonstrate significant synchronous activity among BLA neuronal pairs during encounters with the robot, as opposed to pre-stim, stim, and post-stim sessions. This synchrony is notably prominent among neurons responsive to dPAG stimulation, indicating that BLA neurons involved in processing dPAG signals may play a crucial role in enhancing BLA network coherence to effectively manage predatory threat information (pg. 13).

      (3) In Figure 4, the authors identify the PVT as a potential region that can mediate dPAG to BLA communication via anatomical tracing. However, functional assays are missing. For example, if the PVT is inhibited chemogenetically, does this result in a smaller number of BLA cells that are activated by dPAG stimulation? Does activation of the dPAG-PVT or the PVT-BLA projections cause defensive behaviors? Functionally showing that the dPAG-PVT-BLA circuit controls defensive actions would be a major advance in the field and would greatly enhance the significance of this paper. It would also provide an anatomical substrate to support the view that the BLA is downstream of the dPAG, which was first demonstrated by the authors in their elegant 2013 PNAS paper.

      We appreciate the reviewer’s constructive critique and valuable suggestions on the necessity for functional validation of the dPAG-PVT-BLA circuit's involvement in mediating defensive behaviors. In light of these comments, we have carefully considered and included a discussion on the importance of these proposed experiments as a direction for future research in our manuscript revision (also see response to Reviewer 1’s critique #5).

      Our initial work in 2013 (Kim et al. 2013) laid the groundwork for identifying BLA neurons responsive to dPAG stimulation and suggested the PVT as a potential relay in this neural circuit. Recognizing the limitations of our current study, which does not include direct functional assays, we have adjusted our manuscript to convey the speculative aspect of the dPAG-PVT-BLA circuit’s role more accurately. Moreover, we have enriched our discussion by citing relevant studies that lend support to our proposed circuit mechanism. These references serve to place our findings within the broader context of existing research and highlight the imperative for subsequent studies to empirically confirm the functional significance of the dPAG-PVT-BLA pathway in driving defensive behaviors.

      Reviewer 3:

      (1) The Introduction refers to a negative feedback amygdala-dPAG from a study of the Johansen group, but in this case, the authors were referring to the ventrolateral and not the dorsal PAG.

      We thank the reviewer for pointing out the need to distinguish between the dPAG and vPAG regions in our introduction. While Johansen et al. (2010) investigated the roles of PAG (including both dPAG and vPAG regions; see their Supplementary Figs. 4, 5, and 10), the differentiation between their specific contributions to the amygdala's negative feedback mechanism was not explicitly detailed in their initial publication. This distinction was further elaborated upon in later work by the same group (Yeh, Ozawa, and Johansen 2021), which specifically illuminated the dPAG's role in conditioned fear memory formation and its neural pathways to the PVT that influence fear learning. To reflect this nuanced understanding, we have revised our introduction (pg. 3): “In parallel, Johansen et al. (2010) found that pharmacological inhibition of the PAG, encompassing both dPAG and vPAG regions, diminishes the behavioral and neural responses in the amygdala elicited by periorbital shock US, thereby impairing the acquisition of auditory FC.”

      (2) In the experiments recording dPAG in response to the predator threat, the authors mentioned cells activated by the predator threat, referred to as "robot cells." Were these cells inhibited in response to threat?

      In the Result and Materials and Methods sections, we report that 23.4% (22 out of 94) of dPAG neurons, termed “robot cells,” showed a significant increase in firing rates (z > 3) within a latency of less than 500 ms during exposure to the looming robot threat, but not during the pre- and post-robot sessions. These cells are highlighted in Figures 1E-G. In contrast, we identified only a single unit exhibiting a decrease in activity (z-score < -3) in response to the robot threat. Given the overwhelming prevalence of cells with excitatory responses to the threat, our discussions and analyses have primarily centered on these excited cells. Nevertheless, to ensure a full depiction of our observations, we have included data on the inhibited unit in the revised manuscript, specifically in Figure S1E.

      (3) The authors claim that tetrodes were implanted in the dorsal PAG; however, the electrodes' tips shown in the figures are positioned more ventrally in the lateral PAG (see Figures 1B, S5A).

      The PAG is anatomically organized into dorsomedial (dmPAG), dorsolateral (dlPAG), lateral (lPAG), and ventrolateral (vlPAG) columns along the rostro-caudal axis of the aqueduct. The designation "dorsal PAG" (dPAG) traditionally encompasses the dmPAG, dlPAG, and lPAG regions, a classification supported by extensive track-tracing, neurochemical, and immunohistochemical evidence (e.g., (Bandler, Carrive, and Zhang 1991, Bandler and Keay 1996, Carrive 1993)). As Bandler and Shipley (Bandler and Shipley 1994) summarized, “These findings suggest that what has been traditionally called the 'dorsal PAG' (a collective term for regions dorsal and lateral to the aqueduct), consists of three anatomically distinct longitudinal columns: dorsomedial and lateral columns…and a dorsolateral column…" Similarly, Schenberg et al. (Schenberg et al. 2005) clarified in their review that, “According to this parcellation...the defensive behaviors (freezing, flight or fight) and aversion-related responses (switch-off behavior) were ascribed to the DMPAG, DLPAG, and LPAG (usually named the ‘dorsal’ PAG).” In our study, electrode placements were strictly within these specified dPAG regions. The electrode tip locations depicted in Figures 1B and S5A correspond with the -6.04 mm template (left panel below) from Paxinos & Watson’s atlas (Paxinos and Watson 1998), situated anteriorly to the emergence of the  vlPAG (right panel below). To enhance clarification in our manuscript, we provide a detailed definition of the dPAG that includes the dmPAG, dlPAG,  and lPAG, and support our electrode placement rationale with references to established literature (pg. 5).

      Author response image 1.

      (4) It would be nice to include a series of observations applying inhibitory tools (i.e., optogenetic photo inhibition) in the dPAG and BLA and see how they affect the behavioral responses in the 'approach food-avoid predator' paradigm. Moreover, it would be interesting to explore how inhibiting the dPAG to PVT pathway influences the flee response during the robot surge.

      We appreciate the suggestion to explore the effects of optogenetic inhibition in the dPAG and BLA on behavioral responses within the 'approach food-avoid predator' paradigm, as well as the potential impact of inhibiting the dPAG to PVT pathway on flee responses during robot surge incidents. As mentioned in our response to Reviewer 1’s critique #5, the application of optogenetic inhibition necessitates transfecting, quantifying, and photoinhibiting a comprehensive set of dPAG neurons activated by predatory threats. This approach is more viable in future studies that can leverage transgenic mouse models for their genetic tractability. Following the Joint Public Review’s recommendations, we have revised our manuscript to ensure a more measured interpretation of our data, carefully balancing the evidence from tracer studies against the limitations of our current methodology.

      Furthermore, referencing Reviewer 1’s critique #9, it is important to consider that various invasive techniques can yield different behavioral outcomes. For instance, research by Olveczky and colleagues (Otchy et al. 2015) demonstrated that acute manipulations (i.e., optogenetic and muscimol inactivation) and chronic surgical ablation of the same brain circuit can produce distinct effects in rats and finches. Despite these methodological constraints, our collective results from lesion, inactivation, electrical stimulation (Kim et al. 2013), optostimulation, and single-unit recording (present) studies cohesively suggest that the dPAG functions upstream of the BLA in processing predatory threat signals.

      (5) The authors should also examine whether 'synaptic' appositions exist between the anterogradely labeled terminals from the dPAG and the double labeled CTB and cFOS neurons in the PVT.

      We appreciate the suggestion to investigate the presence of synaptic appositions, which could potentially offer valuable insights into the synaptic connections and functional interactions within this neural circuit. However, due to the specialized nature of electron microscopy required for these examinations and the extensive resources it entails, this line of inquiry falls beyond the scope of our current study. We hope to address this aspect in future studies, where we can dedicate the necessary resources and expertise to conducting these intricate analyses.

      (6) It is odd to see the projection fields shown in Fig. 4D, where the projection to the PVT looks much sparser compared to other targets in the thalamus and hypothalamus. If the projection to the PVT has such an important function, why does it seem so weak? This should be discussed. Also, because the projection to the PVT seems sparse, the authors should consider alternative paths like the one involving the cuneiform nucleus. The cuneiform nucleus is an important region responding to looming shadows with strong bidirectional links to the dorsolateral periaqueductal gray, providing strong projections to the rostral PVT.

      The perceived scarcity of the dPAG-PVT pathway might not reflect its functional significance accurately. The PVT's small size could make its projections appear less dense in broad anatomical studies. To address this, we have updated Figure 4D with a high-resolution image that offers a detailed view of the PVT region. This enhancement (refer to the updated Fig. 4, bottom) more accurately depicts the projection density within the PVT. It is also critical to consider that the functional impact of neural pathways is not solely dependent on the quantity of projecting neurons. For instance, work by Deisseroth and colleagues (Rajasethupathy et al. 2015) has shown that even relatively sparse monosynaptic projections from the anterior cingulate cortex to the hippocampus can exert significant effects on neural circuit dynamics. Additionally, we have expanded our discussion to consider the potential roles of other circuits, such as the cuneiform nucleus, in driving the behavioral responses observed in our study (pg. 15): “Given the recent significance attributed to the superior colliculus in detecting innate visual threats (Lischinsky and Lin 2019, Wei et al. 2015, Zhou et al. 2019) and the cuneiform nucleus in the directed flight behavior of mice (Bindi et al. 2023, Tsang et al. 2023), further exploration into the communication between these structures and the dPAG-BLA circuitry is warranted.”

      (7) Finally, in the Discussion, it would be nice to comment on how the BLA mediates flee responses. Which pathways are likely involved?

      This excellent suggestion has been incorporated in the discussion (pg. 15): “Future studies will also need to delineate the downstream pathways emanating from the BLA that orchestrate goal-directed flight responses to external predatory threats as well as internal stimulations from the dPAG/BLA circuit. Potential key structures include the dorsal/posterior striatum, which has been associated with avoidance behaviors in response to airpuff in head-fixed mice (Menegas et al. 2018) and flight reactions triggered by auditory looming cues (Li et al. 2021). Additionally, the ventromedial hypothalamus (VMH) has been implicated in flight behaviors in mice, evidenced by responses to the presence of a rat predator (Silva et al. 2013) and upon optogenetic activation of VMH Steroidogenic factor 1 (Kunwar et al. 2015) or the VMH-anterior hypothalamic nucleus pathway (Wang, Chen, and Lin 2015). Investigating the indispensable role of these structures in flight behavior could involve lesion or inactivation studies. Such interventions are anticipated to inhibit flight behaviors elicited by amygdala stimulation and predatory threats, confirming their critical involvement. Conversely, activating these structures in subjects with an inactivated or lesioned amygdala, which would typically inhibit fear responses to external threats (Choi and Kim 2010), is expected to induce fleeing behavior, further elucidating their functional significance.”

      Adamantidis, A., S. Arber, J. S. Bains, E. Bamberg, A. Bonci, G. Buzsaki, J. A. Cardin, R. M. Costa, Y. Dan, Y. Goda, A. M. Graybiel, M. Hausser, P. Hegemann, J. R. Huguenard, T. R. Insel, P. H. Janak, D. Johnston, S. A. Josselyn, C. Koch, A. C. Kreitzer, C. Luscher, R. C. Malenka, G. Miesenbock, G. Nagel, B. Roska, M. J. Schnitzer, K. V. Shenoy, I. Soltesz, S. M. Sternson, R. W. Tsien, R. Y. Tsien, G. G. Turrigiano, K. M. Tye, and R. I. Wilson. 2015. "Optogenetics: 10 years after ChR2 in neurons--views from the community."  Nat Neurosci 18 (9):1202-12. doi: 10.1038/nn.4106.

      Amano, K., T. Tanikawa, H. Kawamura, H. Iseki, M. Notani, H. Kawabatake, T. Shiwaku, T. Suda, H. Demura, and K. Kitamura. 1982. "Endorphins and pain relief. Further observations on electrical stimulation of the lateral part of the periaqueductal gray matter during rostral mesencephalic reticulotomy for pain relief."  Appl Neurophysiol 45 (1-2):123-35.

      Bagley, E. E., and S. L. Ingram. 2020. "Endogenous opioid peptides in the descending pain modulatory circuit."  Neuropharmacology 173:108131. doi: 10.1016/j.neuropharm.2020.108131.

      Bandler, R., P. Carrive, and S. P. Zhang. 1991. "Integration of somatic and autonomic reactions within the midbrain periaqueductal grey: viscerotopic, somatotopic and functional organization."  Prog Brain Res 87:269-305. doi: 10.1016/s0079-6123(08)63056-3.

      Bandler, R., and K. A. Keay. 1996. "Columnar organization in the midbrain periaqueductal gray and the integration of emotional expression."  Prog Brain Res 107:285-300. doi: 10.1016/s0079-6123(08)61871-3.

      Bandler, R., and M. T. Shipley. 1994. "Columnar organization in the midbrain periaqueductal gray: modules for emotional expression?"  Trends Neurosci 17 (9):379-89. doi: 10.1016/0166-2236(94)90047-7.

      Bindi, R. P., C. C. Guimaraes, A. R. de Oliveira, F. F. Melleu, M. A. X. de Lima, M. V. C. Baldo, S. C. Motta, and N. S. Canteras. 2023. "Anatomical and functional study of the cuneiform nucleus: A critical site to organize innate defensive behaviors."  Ann N Y Acad Sci 1521 (1):79-95. doi: 10.1111/nyas.14954.

      Bindi, R. P., R. G. O. Maia, F. Pibiri, M. V. C. Baldo, S. L. Poulter, C. Lever, and N. S. Canteras. 2022. "Neural correlates of distinct levels of predatory threat in dorsal periaqueductal grey neurons."  Eur J Neurosci 55 (6):1504-1518. doi: 10.1111/ejn.15633.

      Cameron, A. A., I. A. Khan, K. N. Westlund, and W. D. Willis. 1995. "The efferent projections of the periaqueductal gray in the rat: a Phaseolus vulgaris-leucoagglutinin study. II. Descending projections."  J Comp Neurol 351 (4):585-601. doi: 10.1002/cne.903510408.

      Cannon, J. T., G. J. Prieto, A. Lee, and J. C. Liebeskind. 1982. "Evidence for opioid and non-opioid forms of stimulation-produced analgesia in the rat."  Brain Res 243 (2):315-21. doi: 10.1016/0006-8993(82)90255-4.

      Carrive, P, and M. M. Morgan. 2012. "Periaqueductal Gray." In The Human Nervous System, edited by J. K.; Paxinos Mai, G., 367-400. London: Academic Press.

      Carrive, P. 1993. "The periaqueductal gray and defensive behavior: functional representation and neuronal organization."  Behav Brain Res 58 (1-2):27-47. doi: 10.1016/0166-4328(93)90088-8.

      Choi, E. A., P. Jean-Richard-Dit-Bressel, C. W. G. Clifford, and G. P. McNally. 2019. "Paraventricular Thalamus Controls Behavior during Motivational Conflict."  J Neurosci 39 (25):4945-4958. doi: 10.1523/JNEUROSCI.2480-18.2019.

      Choi, E. A., and G. P. McNally. 2017. "Paraventricular Thalamus Balances Danger and Reward."  J Neurosci 37 (11):3018-3029. doi: 10.1523/JNEUROSCI.3320-16.2017.

      Choi, J. S., and J. J. Kim. 2010. "Amygdala regulates risk of predation in rats foraging in a dynamic fear environment."  Proc Natl Acad Sci U S A 107 (50):21773-7. doi: 10.1073/pnas.1010079108.

      De Franceschi, G., T. Vivattanasarn, A. B. Saleem, and S. G. Solomon. 2016. "Vision Guides Selection of Freeze or Flight Defense Strategies in Mice."  Curr Biol 26 (16):2150-4. doi: 10.1016/j.cub.2016.06.006.

      De Oca, B. M., J. P. DeCola, S. Maren, and M. S. Fanselow. 1998. "Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses."  J Neurosci 18 (9):3426-32. doi: 10.1523/JNEUROSCI.18-09-03426.1998.

      Deng, H., X. Xiao, and Z. Wang. 2016. "Periaqueductal Gray Neuronal Activities Underlie Different Aspects of Defensive Behaviors."  J Neurosci 36 (29):7580-8. doi: 10.1523/JNEUROSCI.4425-15.2016.

      Engelke, D. S., X. O. Zhang, J. J. O'Malley, J. A. Fernandez-Leon, S. Li, G. J. Kirouac, M. Beierlein, and F. H. Do-Monte. 2021. "A hypothalamic-thalamostriatal circuit that controls approach-avoidance conflict in rats."  Nat Commun 12 (1):2517. doi: 10.1038/s41467-021-22730-y.

      Esteban Masferrer, M., B. A. Silva, K. Nomoto, S. Q. Lima, and C. T. Gross. 2020. "Differential Encoding of Predator Fear in the Ventromedial Hypothalamus and Periaqueductal Grey."  J Neurosci 40 (48):9283-9292. doi: 10.1523/JNEUROSCI.0761-18.2020.

      Fanselow, M. S. 1998. "Pavlovian conditioning, negative feedback, and blocking: mechanisms that regulate association formation."  Neuron 20 (4):625-7. doi: 10.1016/s0896-6273(00)81002-8.

      Fields, H. L. 2000. "Pain modulation: expectation, opioid analgesia and virtual pain."  Prog Brain Res 122:245-53. doi: 10.1016/s0079-6123(08)62143-3.

      Gross, C. T., and N. S. Canteras. 2012. "The many paths to fear."  Nat Rev Neurosci 13 (9):651-8. doi: 10.1038/nrn3301.

      Herry, C., and J. P. Johansen. 2014. "Encoding of fear learning and memory in distributed neuronal circuits."  Nat Neurosci 17 (12):1644-54. doi: 10.1038/nn.3869.

      Kim, E. J., O. Horovitz, B. A. Pellman, L. M. Tan, Q. Li, G. Richter-Levin, and J. J. Kim. 2013. "Dorsal periaqueductal gray-amygdala pathway conveys both innate and learned fear responses in rats."  Proc Natl Acad Sci U S A 110 (36):14795-800. doi: 10.1073/pnas.1310845110.

      Kim, E. J., M. S. Kong, S. G. Park, S. J. Y. Mizumori, J. Cho, and J. J. Kim. 2018. "Dynamic coding of predatory information between the prelimbic cortex and lateral amygdala in foraging rats."  Sci Adv 4 (4):eaar7328. doi: 10.1126/sciadv.aar7328.

      Kim, J. J., J. S. Choi, and H. J. Lee. 2016. "Foraging in the face of fear: Novel strategies for evaluating amygdala functions in rats." In Living without an amygdala, edited by D. G. Amaral and R. Adolphs, 129-148. The Guilford Press.

      Kim, J. J., R. A. Rison, and M. S. Fanselow. 1993. "Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear."  Behav Neurosci 107 (6):1093-8. doi: 10.1037//0735-7044.107.6.1093.

      Kong, M. S., E. J. Kim, S. Park, L. S. Zweifel, Y. Huh, J. Cho, and J. J. Kim. 2021. "'Fearful-place' coding in the amygdala-hippocampal network."  Elife 10. doi: 10.7554/eLife.72040.

      Krout, K. E., and A. D. Loewy. 2000. "Periaqueductal gray matter projections to midline and intralaminar thalamic nuclei of the rat."  J Comp Neurol 424 (1):111-41. doi: 10.1002/1096-9861(20000814)424:1<111::aid-cne9>3.0.co;2-3.

      Kunwar, P. S., M. Zelikowsky, R. Remedios, H. Cai, M. Yilmaz, M. Meister, and D. J. Anderson. 2015. "Ventromedial hypothalamic neurons control a defensive emotion state."  Elife 4. doi: 10.7554/eLife.06633.

      Lefler, Y., D. Campagner, and T. Branco. 2020. "The role of the periaqueductal gray in escape behavior."  Curr Opin Neurobiol 60:115-121. doi: 10.1016/j.conb.2019.11.014.

      Li, Z., J. X. Wei, G. W. Zhang, J. J. Huang, B. Zingg, X. Wang, H. W. Tao, and L. I. Zhang. 2021. "Corticostriatal control of defense behavior in mice induced by auditory looming cues."  Nat Commun 12 (1):1040. doi: 10.1038/s41467-021-21248-7.

      Lischinsky, J. E., and D. Lin. 2019. "Looming Danger: Unraveling the Circuitry for Predator Threats."  Trends Neurosci 42 (12):841-842. doi: 10.1016/j.tins.2019.10.004.

      Lu, B., P. Fan, M. Li, Y. Wang, W. Liang, G. Yang, F. Mo, Z. Xu, J. Shan, Y. Song, J. Liu, Y. Wu, and X. Cai. 2023. "Detection of neuronal defensive discharge information transmission and characteristics in periaqueductal gray double-subregions using PtNP/PEDOT:PSS modified microelectrode arrays."  Microsyst Nanoeng 9:70. doi: 10.1038/s41378-023-00546-8.

      Magierek, V., P. L. Ramos, N. G. da Silveira-Filho, R. L. Nogueira, and J. Landeira-Fernandez. 2003. "Context fear conditioning inhibits panic-like behavior elicited by electrical stimulation of dorsal periaqueductal gray."  Neuroreport 14 (12):1641-4. doi: 10.1097/00001756-200308260-00020.

      McNally, G. P., J. P. Johansen, and H. T. Blair. 2011. "Placing prediction into the fear circuit."  Trends Neurosci 34 (6):283-92. doi: 10.1016/j.tins.2011.03.005.

      Menegas, W., K. Akiti, R. Amo, N. Uchida, and M. Watabe-Uchida. 2018. "Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli."  Nat Neurosci 21 (10):1421-1430. doi: 10.1038/s41593-018-0222-1.

      Morgan, M. M., P. K. Whitney, and M. S. Gold. 1998. "Immobility and flight associated with antinociception produced by activation of the ventral and lateral/dorsal regions of the rat periaqueductal gray."  Brain Res 804 (1):159-66. doi: 10.1016/s0006-8993(98)00669-6.

      Otchy, T. M., S. B. Wolff, J. Y. Rhee, C. Pehlevan, R. Kawai, A. Kempf, S. M. Gobes, and B. P. Olveczky. 2015. "Acute off-target effects of neural circuit manipulations."  Nature 528 (7582):358-63. doi: 10.1038/nature16442.

      Paxinos, G., and C. Watson. 1998. The Rat Brain in Stereotaxic Coordinates. San Diego: Academic Press.

      Rajasethupathy, P., S. Sankaran, J. H. Marshel, C. K. Kim, E. Ferenczi, S. Y. Lee, A. Berndt, C. Ramakrishnan, A. Jaffe, M. Lo, C. Liston, and K. Deisseroth. 2015. "Projections from neocortex mediate top-down control of memory retrieval."  Nature 526 (7575):653-9. doi: 10.1038/nature15389.

      Ressler, R. L., and S. Maren. 2019. "Synaptic encoding of fear memories in the amygdala."  Curr Opin Neurobiol 54:54-59. doi: 10.1016/j.conb.2018.08.012.

      Schenberg, L. C., R. M. Povoa, A. L. Costa, A. V. Caldellas, S. Tufik, and A. S. Bittencourt. 2005. "Functional specializations within the tectum defense systems of the rat."  Neurosci Biobehav Rev 29 (8):1279-98. doi: 10.1016/j.neubiorev.2005.05.006.

      Silva, B. A., C. Mattucci, P. Krzywkowski, E. Murana, A. Illarionova, V. Grinevich, N. S. Canteras, D. Ragozzino, and C. T. Gross. 2013. "Independent hypothalamic circuits for social and predator fear."  Nat Neurosci 16 (12):1731-3. doi: 10.1038/nn.3573.

      Tsang, E., C. Orlandini, R. Sureka, A. H. Crevenna, E. Perlas, I. Prankerd, M. E. Masferrer, and C. T. Gross. 2023. "Induction of flight via midbrain projections to the cuneiform nucleus."  PLoS One 18 (2):e0281464. doi: 10.1371/journal.pone.0281464.

      Vianna, D. M., and M. L. Brandao. 2003. "Anatomical connections of the periaqueductal gray: specific neural substrates for different kinds of fear."  Braz J Med Biol Res 36 (5):557-66. doi: 10.1590/s0100-879x2003000500002.

      Walker, D. L., and M. Davis. 1997. "Involvement of the dorsal periaqueductal gray in the loss of fear-potentiated startle accompanying high footshock training."  Behav Neurosci 111 (4):692-702. doi: 10.1037//0735-7044.111.4.692.

      Wang, L., I. Z. Chen, and D. Lin. 2015. "Collateral pathways from the ventromedial hypothalamus mediate defensive behaviors."  Neuron 85 (6):1344-58. doi: 10.1016/j.neuron.2014.12.025.

      Wei, P., N. Liu, Z. Zhang, X. Liu, Y. Tang, X. He, B. Wu, Z. Zhou, Y. Liu, J. Li, Y. Zhang, X. Zhou, L. Xu, L. Chen, G. Bi, X. Hu, F. Xu, and L. Wang. 2015. "Processing of visually evoked innate fear by a non-canonical thalamic pathway."  Nat Commun 6:6756. doi: 10.1038/ncomms7756.

      Yeh, L. F., T. Ozawa, and J. P. Johansen. 2021. "Functional organization of the midbrain periaqueductal gray for regulating aversive memory formation."  Mol Brain 14 (1):136. doi: 10.1186/s13041-021-00844-0.

      Yilmaz, M., and M. Meister. 2013. "Rapid innate defensive responses of mice to looming visual stimuli."  Curr Biol 23 (20):2011-5. doi: 10.1016/j.cub.2013.08.015.

      Zhou, Z., X. Liu, S. Chen, Z. Zhang, Y. Liu, Q. Montardy, Y. Tang, P. Wei, N. Liu, L. Li, R. Song, J. Lai, X. He, C. Chen, G. Bi, G. Feng, F. Xu, and L. Wang. 2019. "A VTA GABAergic Neural Circuit Mediates Visually Evoked Innate Defensive Responses."  Neuron 103 (3):473-488 e6. doi: 10.1016/j.neuron.2019.05.027.

    1. Author response

      Reviewer #1 (Public Review):

      The authors aimed to investigate if 2-hydroxybutyrate (2HB), a metabolite induced by exercise, influences physiological changes, particularly metabolic alterations post-exercise training. They treated young mice and cultured myoblasts with 2HB, conducted exercise tests, metabolomic profiling, gene expression analysis, and knockdown experiments to understand 2HB's mechanisms. Their findings indicate that 2HB enhances exercise tolerance, boosts branch chain amino acid (BCAA) enzyme gene expression in skeletal muscles, and increases oxidative capacity. They also highlight the role of SIRT4 in these effects. This study establishes 2HB, once considered a waste product, as a regulator of exercise-induced metabolic processes. The study's strength lies in its consistent results across in vitro, in vivo, and ex vivo analyses.

      The authors propose a mechanism in which 2HB inhibits BCAA breakdown, raises NAD+/NADH ratio, activates SIRT4, increases ADP ribosylation, and controls gene expression.

      However, some questions remain unclear based on these findings:

      This study focused on the effects of short-term exercise (1 or 5 bouts of treadmill running) and short-term 2HB treatment (1 or 4 days of treatment). Adaptations to exercise training typically occur progressively over an extended period. It's important to investigate the effects of long-term 2HB treatment and whether extended combined 2HB treatment and exercise training have independent, synergistic, or antagonistic effects.

      We agree with the reviewer that investigation of longer-term 2HB treatment may potentially yield interesting findings with more implications to exercise physiology. To investigate the effects of 2HB treatment against or in combination with a progressive exercise training protocol would require an experiment duration between 4 to 12 weeks, based on previous studies (Systematic Review by Massett et al., Frontiers in Physiology, 2021, 10.3389/fphys.2021.782695). However, our experience with these types of experiments is that such a pursuit would require a breadth of work beyond the scope of this current study. For instance, if there were evidence of weakened effect of 2HB over time, one may be compelled to investigate other organs such as the liver to find signs of metabolic adaptation to the exogenous metabolite. If there were additive or synergistic effects on exercise performance, one may be compelled to investigate changes to the cardiovascular system in addition to the skeletal muscle. Additional questions would be raised around the skeletal muscle as well, including assessment of structural and fibre-type changes. Further, these additional mechanisms would need to be characterized in a time course fashion. Rather, we view the scope of the current study to be the acute response to 2HB as an initial report on mechanistic effects of 2HB.

      Exercise training leads to significant mitochondrial changes, including increased mitochondrial biogenesis in skeletal muscle. It would be valuable to compare the impact of 2HB treatment on mitochondrial content and oxidative capacity in treated mice to that in exercised mice.

      We agree with the author that it is of interest to investigate how 2HB may affect mitochondrial biogenesis. However, our preliminary findings were that 2HB-treated MEFs, C2C12s, and mouse soleus muscles showed no change in PGC1α gene expression after four days of treatment (data not shown). As a follow-up assessment of mitochondrial protein expression, although not specific to mtDNA derived genes, we quantified the expression of the respiratory chain proteins in cells and soleus muscle and found no effect of 2HB treatment (SFig. 5,6). At this stage we conclude that there is not evidence of 2HB modifying mitochondrial biogenesis in this time frame and that further investigation would be best suited to a follow-up study such as one interested in long-term exercise training.

      The authors demonstrate that 2-ketobutyrate (2KB) can serve as an oxidative fuel, suggesting a role for the intact BCAA catabolic pathway. However, it's puzzling that the knockout of BCKDHA, a subunit crucial for the second step of BCAA catabolism, did not result in changes in oxidative capacity in cultured myoblasts.

      While we report the BCKDH complex to be dispensable for 2KB oxidation it is important to note that previous studies have reported the following: (1) that 2KB is a viable substrate for BCKDH, (2) that 2KB is a viable substrate for pyruvate dehydrogenase, and (3) that pyruvate dehydrogenase is also dispensable for 2KB oxidation (see Steele et al., J Nutr., 114: 701-710, and Paxton et al. Biochem J., 234:295-303). Collectively, these data have led previous studies to conclude that BCKDH and pyruvate dehydrogenase are redundant for the first step of 2KB oxidation, with a preference for BCKDH. The flux through either may depend upon the metabolic environment. The aim for figure 3C was to determine whether the BCAA degradation pathway was required for 2KB oxidation. We conclude that this pathway is required, first at the step of PCC.

      While these past studies were mentioned in paragraph 2 of the discussion, in light of the reviewer’s comment we have expanded this paragraph. We have added language to explain that future research interested in the presented 2HB mechanism should carefully consider BCKDH and PDH expression in the cell or tissue of interest, as the metabolism of 2KB is quite central to the presented mechanism.

      Nevertheless, this innovative model of metabolic signaling during exercise will serve as a valuable reference for informing future.

      Reviewer #2 (Public Review):

      Summary:

      The manuscript entitled "A 2-HB-mediated feedback loop regulates muscular fatigue" by the Johnson group reports interesting findings with implications for the health benefits of exercise. The authors use a combination of metabolic/biochemical in vivo and in vitro assays to delineate a metabolic route triggered by 2-HB (a relatively stable metabolite induced by exercise in humans and mice) that controls branched-chain amino transferase enzymes and mitochondrial oxidative capacity. Mechanistically, the author shows that 2-HB is a direct inhibitor of BCAT enzymes that in turn control levels of SIRT4 activity and ADp-ribosylation in the nucleus targeting C/EBP transcription factor, affecting BCAA oxidation genes (see Fig 4i in the paper). Overall, these are interesting and novel observations and findings with relevance to human exercise, with the potential implication of using these metabolites to mimic exercise benefits, or conditions or muscular fatigue that occurs in different human chronic diseases including rheumatic diseases or long COVID.

      Weaknesses:

      There are several experiments/comments that will strengthen the manuscript-

      (1) A final model in Figure 6 integrating the exercise/mechanistic findings, expanding on Fig 4i) will clarify the findings.

      We appreciate the reviewer’s suggestion to incorporate the exercise findings into a summary figure. However, upon internal review we find that such a figure is too similar to Fig 4i to warrant a new diagram.

      (2) In some of the graphs, statistics are missing (e.g Fig 6G).

      Some figures are included primarily for the reader to visualize the data while statistical comparison is conducted in a separate figure, for example Fig 2D-G. However, we have revised the figure legends to ensure that statistical comparisons are described for all appropriate figures, including Fig 6G identified by the reviewer.

      (3) The conclusions on SIRT4 dependency should be carefully written, as it is likely that this is only one potential mechanism, further validation with mouse models would be necessary.

      We appreciate the reviewers feedback and take the point well that a NAD-dependent mechanism will likely stimulate other sirtuins, which are often in fact expressed at greater levels than SIRT4. To reflect this comment in the manuscript we have altered paragraph 5 of the discussion to now focus on sirtuins. We briefly discuss SIRT4 and highlight the need for future consideration of other sirtuins, perhaps particularly mitochondrial sirtuins.

      (4) One of the needed experiments to support the oxidative capacity effects that could be done in cultured cells, is the use of radiosotope metabolites including BCCAs to determine the ability to produce CO2. Alternatively or in combination metabolite flux using isotopes would be useful to strengthen the current results.

      We appreciate the suggestion from the reviewer and we will look to conduct such an experiment in our follow-up work.

      We sincerely thank the reviewers for their input on this study as their suggestions have led to an improved manuscript for the version of record. The reviewer comments are well taken and we are glad that they will be present alongside the final manuscript to provide an important perspective on the work.

    1. Author response:

      [The following is the authors’ response to the current reviews.]

      In response to Reviewer #2, we agree with the reviewer that it needs to be noted that not all forms of recognition are the same and have added the following: "However, we note that not all forms of recognition are the same; researchers may prefer to have their work featured instead of personal stories or critiques of the scientific environment."


      [The following is the authors’ response to the previous reviews.]

      We thank both reviewers for their detailed comments and insightful suggestions. Below we summarize our responses to each concern in addition to the edits within the manuscript.

      We would also like to add a clarification to the eLife assessment, it states “This important bibliometric analysis shows that authors of scientific papers whose names suggest they are female or East Asian get quoted less often in news stories about their work.” We show that individuals with names predicted to be from women or East Asian name origins are less likely to be quoted or mentioned in Nature’s scientific news stories than expected by publication demographics. In this study, we did not compare the level of coverage of a scientific article by the demographics of the authors of the article.

      Reviewer #1

      The article is not so clearly structured, which makes it hard to follow. A better framing, contextualization, and conceptualization of their analysis would help the readers to better understand the results. There are some unclear definitions and wrong wording of key concepts.

      We have adapted our wording in the text and added a more detailed discussion which hopefully makes the paper easier to comprehend. These changes are described in the context of your reviewer's suggestions and addressed in the next section.

      Language use: Male/Female refers to sex, not to gender.

      We have now updated the language throughout the text. Thank you for pointing this out.

      Regional disparities are not the same as names' origin. While the first might relate to the academic origin of authors, inferred from their institutional belonging, the latter reflects the authors' inferred identity. Ethnic identities and the construction of prejudice against specific populations need proper contextualization.

      We have added better contextualization in the manuscript and reworded the section in our results and discussion to clarify that we are analyzing disparities related to perceived ethnicity and not regions. We also added the following text to the results section “In our analysis, we use name origin as an estimate for the perceived ethnicity of a primary source by a journalist. Our prediction is not intended to assign ethnicity to an individual, but to be used broadly as a tool to quantify representational differences in a journalist's sociologically constructed perception of a primary source's ethnicity.” We also added the following text to our Discussion: “Our use of name origins is a proxy for a journalist's or referring scholarly peer’s potential perceptions of the ethnicity of a primary source as signaled by an individual's name. We do not intend to assign an identity to an individual, but to generate a broad metric to measure possible bias for particular ethnicities during journalists' primary source gathering.”

      It would be helpful to have a clear definition of what are quotes, mentions, and citations. For me, it was not so clear and made understanding the results more difficult.

      We added the following text to the results section Extracted Data Used for Analysis: “Quoted names are any names that were attached to a quote within the article. Mentioned names are any names that were stated within the article. Cited names are all author names of a scientific paper that was cited in the news article.”

      The comparison against Nature published research articles is not perfect because journalists will also cover articles not published in Nature. If for example, the gender representation in the quoted articles is not the same between Nature journals and other journals, then this source of inequality would be missing (e.g. if the journalists are biased against women, but not as much when they published in Nature, because they are also biased towards Nature articles). Also, the gender representation among Nature authors could not be the same as in general. Nevertheless, this seems to be a fair benchmark, especially if the authors did not have access to other more comprehensive databases. But a statement of limitations including these potential issues would be good to have.

      To add better context to the generalizability of our work, we added the following text to our discussion: “Furthermore, the news articles present on "www.nature.com" are intended for a very specific readership that may not be reflective of more broad scientific news outlets. In a separate analysis, we took a cursory look into a comparison with The Guardian and found similar disparities in gender and name origin. However, it is not clear which publications should be used as a comparator for science-related articles in The Guardian, and difficult to compare relative rates of representation. While other science news outlets may not have a direct comparator, it would be useful to take a broad comparison across multiple science news outlets to compare against one another. Our existing pipeline could be easily applied to other science news outlets and identify if there exists a consistent pattern of disparity regardless of the intended readership.”

      "we select the highest probability origin for each name as the resultant assignment". Threshold based approaches for race/ethnicity name-based inference have been criticized by the literature as they might reproduce biases (see Kozlowski, D., Murray, D. S., Bell, A., Hulsey, W., Larivière, V., Monroe-White, T., & Sugimoto, C. R. (2022). Avoiding bias when inferring race using name-based approaches. Plos one, 17(3), e0264270.). The authors could use the full distribution of probabilities over names instead of selecting one. The formulae proposed (3-5) could be easily adapted to this change.

      We thank the author for pointing this out. We have updated our analysis to use the probabilities instead of hard assignments. Figure 3 and formulae 3-5 have been updated. While we observe a slight shift in the calculated values, the overall trends are unchanged.

      Is it possible to make an analysis that intersects both name origin and gender? I am not sure if the sample size would allow for this, but if some other dimensions were collapsed, it would be very important to show what happens at the intersection of these two dimensions of discrimination.

      We agree that identifying any differences in quotation patterns at the intersection of gender and name origin would be very useful to identify. To address this, we added supplemental table 5. This table identifies the number of quotes per predicted name origin and gender over all years and article types. In this table, we don’t see a significant difference in gender distribution across predicted name origins.

      Given a larger sample size, we would be able to better identify more subtle differences, but at this sample size, we cannot make more detailed inferences. Additionally, this also addresses a QC-issue, where predicted gender accuracy varies by name origin, specifically East Asian name origin. From our data, we don’t see a large difference in proportions across any name origin. We added the following text to the results section to incorporate this analysis:

      “However, it should be noted that the error rate varies by name origin with the largest decrease in performance on names with an Asian origin [@doi:10.7717/peerj-cs.156;@doi:10.5195/jmla.2021.1252]

      . In our analysis, we did not observe a large difference in names predicted to come from a man or woman between predicted East Asian and other name origins (Table 5). “

      The use of vocabulary should be more homogeneous. For example, in page 13 the authors start to use the concepts of over/under enrichment, which appeared before in a title but was not used.

      The text has been updated to remove all mentions of “over/under enrichment” with “over/under representation”

      In the discussions section, it would be important to see as a statement of limitations the problems that automatic origin and gender inference have.

      We thank the reviewer for this suggestion. We have added the following paragraph to our discussion.

      Computational tools enabled us to automatically analyze thousands of articles to identify existing disparities by gender and name origin, but these tools are not without limitations. Our tools are unable to identify non-binary people and rely on gender predictors that are known to have region-specific biases, with the largest decrease in performance on names of an Asian origin [@doi:10.7717/peerj-cs.156;@doi:10.5195/jmla.2021.1252]. Furthermore, name origin is only a proxy for externally perceived racial or ethnic origins of a source or author and is not as accurate as self-identified race or ethnicity. Self-identification better captures the lived experience of an individual that computational estimates from a name can not capture. This is highlighted in our inability to distinguish between Black and White people from the US by their names. As the collection of demographic data by publication outlets grows, we believe this will enable a more fine-grained and accurate analysis of disparities in scientific journalism.

      Figures 2a and 3a show that the affiliations of authors and their countries was going to be used in this analysis. Yet, this section is not present in the article. I would encourage the authors to add this to the analysis as it would show important patterns, and to intersect the dimensions of gender, name origin and country.

      We were interested in using this analysis in our work, but unfortunately the sample size of cited works in each country was too small to make inferences. If this work was extended to larger scientific outlets to include larger corpora such as The Guardian or New York Times, we think one could be able to make more robust inferences. Since our work only focuses on Nature, we decided not to include this analysis. However, we do include a section in our discussion for future work.

      “As a proxy for measuring possible geographical bias of a journalist, we attempted to identify if there was any geographical bias of cited authors. To do this, we identified the affiliation of each cited author and identified their affiliated country. Unfortunately, we could not robustly extract a large enough number of cited authors from different countries to make any conclusive statements. Expanding our work to other science journalism outlets could help identify possible ways in which geographic region, genders, and perceived ethnicity interact and affect scientific visibility of specific groups. While we are unable to identify that journalists have a specific geographical bias, having reporters explicitly focused on specific regional sources will broaden coverage of international opinions in science.”

      It is not clear at that point what column dependence means.

      The abstract has been updated to state, “Gender disparity in Nature quotes was dependent on the article type.”

      Reviewer #2

      We thank the reviewer for their very detailed and insightful suggestions regarding our analysis and the key caveats that needed better contextualization in our analysis. We went through each major point the reviewer brought up below and included any additional text that was needed.

      In some cases, the manuscript lacks consistency in terminology, and uses word choice that is strange (e.g., "enrichment" and "depletion" when discussion representation).

      We thank the review for pointing this out, we have removed all instances of depletion/enrichment for over/under-representation

      Caveats to Claim 1. So while Claim 1 holds, it does not hold for all comparator sets and for all years. I don't think this is critical of the paper-the authors do discuss the trend in Claim 2-but interpretation of this claim should take care of these caveats, and readers should consider the important differences in first and last authorship.

      We thank the reviewer for their detailed feedback on this section. We have added the missing contextualization of our results. In the results section, I changed the figure caption to: “Speakers predicted to be men are sometimes overrepresented in quotes, but this depends on the year and article type.” Added the following paragraph “When considering the relative proportion of authors and speakers predicted to be men, we only find a slight over-representation of men. This overrepresentation is dependent on the authorship position and the year. Before 2010, quotes predicted as from men are overrepresented in comparison to both first and last authors, but between 2010 and 2017 quotes predicted from men are only overrepresented in comparison for first authors. In 2020, we find a slight over-representation of quotes predicted to be from women relative to first and last authors, but still severely under-represented when considering the general population. The choice of comparison between first and last authors can reveal different aspects of the current state of academia. While this does not hold in all scientific fields, first authors are typically early career scientists and last authors are more senior scientists. It has also been shown that early career scientists tend to be more diverse than senior scientists [@doi:10.7554/eLife.60829; @doi:10.1096/fj.201800639]. Since we find that quotes are only slightly more likely to come from a last author, it is reasonable to compare the relative rate of predicted quotes from men to either authorship position. Comparison with last authorships may reveal more how gender bias currently exists whereas comparison with early career scientists may reveal bias in comparison to a future, more possibly diverse academic environment. We hope that increased representation and recognition of women in science, even beyond what is observed in authorship, can increase the proportion of women first and last authors such that it better reflects the general population.”

      Generalizability to other contexts of science journalism:

      We thank the reviewer for their feedback on the generalizability of our work. We have now added the following text to our discussion to provide the reader with a better context of our results: “To articles presented on "www.nature.com" are intended for a very specific readership that may not be reflective of more broad scientific news outlets. In a separate analysis, we took a cursory look into a comparison with The Guardian and found very similar disparities in gender and name origin. However, it is not clear which publications should be used as a comparator for science-related articles in The

      Guardian, and difficult to compare relative rates of representation. While other science news outlets may not have a direct comparator, it would be useful to take a broad comparison across multiple science news outlets to compare against one another. Our existing pipeline could be easily applied to other science news outlets and identify if there exists a consistent pattern of disparity regardless of the intended readership. ”

      Shallow discussion:

      The authors highlight gender parity in career features, but why exactly is there gender parity in this format

      We thank the reviewer for encouraging us to better contextualize our findings in the broader discourse. We have now added several sections to our Discussion. To address gender parity, we have added the following text: “This finding, coupled with the near equal number of articles written by journalists predicted to be men or women, argues for more diversity in topical coverage. "Career Feature" articles highlight current topics relevant to working scientists and frequently highlight systemic issues with the scientific environment. This column allows space for marginalized people to critique the current state of affairs in science or share their personal stories. This type of content encourages the journalist to seek out a diverse set of primary sources. Including more content that is not primarily focused on recent publications, but all topics surrounding the practice of science, can serve as an additional tool to rapidly achieve gender parity in journalistic recognition.”

      Representation in quotations varies by first and last author, most certainly as a result of the academic division of labor in the life sciences. However, what does it say about the scientific quotation that it appears first authors are more often to be quoted? Does this mean that the division of labor is changing such that the first authors are the lead scientists? Or does it imply that senior authors are being skipped over, or giving away their chance to comment on a study to the first author?

      We thank the reviewer for asking bringing up these important questions. We have added better context to our first author analysis in our discussion. We have included the following two sections to address this. Also, we want to state that we find last authors to be slightly more quoted than first authors, as depicted in Fig. 2d., with first author quotation percentage largely appearing below the red line. We included this text in a response above and include it again here for convenience.

      “Before 2010, quotes predicted as from men are overrepresented in comparison to both first and last authors, but between 2010 and 2017 quotes predicted from men are only overrepresented in comparison for first authors. In 2020, we find a slight over-representation of quotes predicted to be from women relative to first and last authors, but still severely under-represented when considering the general population. The choice of comparison between first and last authors can reveal different aspects of the current state of academia. While this does not hold in all scientific fields, first authors are typically early career scientists and last authors are more senior scientists. It has also been shown that early career scientists tend to be more diverse than senior scientists [@doi:10.7554/eLife.60829; @doi:10.1096/fj.201800639]. Since we find that quotes are only slightly more likely to come from a last author, it is reasonable to compare the relative rate of predicted quotes from men to either authorship position. Comparison with last authorships may reveal more how gender bias currently exists whereas comparison with early career scientists may reveal bias in comparison to a future, more possibly diverse academic environment. We hope that increased representation and recognition of women in science, even beyond what is observed in authorship, can increase the proportion of women first and last authors such that it better reflects the general population.”

      “In our analysis, we also find that there are more first authors with predicted East Asian name origin than last authors. This is in contrast to predicted Celtic/English and European name origins.

      Furthermore, we see that the amount of first author people with predicted East Asian name origins is increasing at a much faster rate than quotes are increasing. If this mismatched rate of representation continues, this could lead to an increasingly large erasure of early career scientists with East Asian name origins. As noted before, focusing on increasing engagement with early career scientists can help to reduce the growing disparity of public visibility of scientists with East Asian name origins.”

      What might be the downstream impacts on the public stemming from the under-representation of scientists with East Asian names? According to Figure 3d, not only are East Asian names under-represented in quotations, but they are becoming more under-represented over time as they appear as authors in a greater number of Nature publications; Those with European names are proportionately represented in quotations given their share of authors in Nature. Why might this be, especially seeing as Anglo names are heavily over-represented?

      To address this point, we have added the following text to our discussion: “In our analysis, we also find that there are more first authors with predicted East Asian name origin than last authors. This is in contrast to predicted Celtic/English and European name origins. Furthermore, the amount of first author people with predicted East Asian name origins is increasing at a much faster rate than quotes are increasing. If this mismatched rate of representation continues, this could lead to an increasingly large erasure of early career scientists with East Asian name origins. As noted before, focusing on increasing engagement with early career scientists can help to reduce the growing disparity of public visibility of scientists with East Asian name origins.”

      I am very confused by Figure 1B. It mixes the counts of News-related items with (non-Springer) research articles in a single stacked bar plot which makes determining the quantity of either difficult. I would advise splitting them out

      Figure 1B has been updated, and the News and Research articles have been separated.

      When querying the first 2000 or so results from the SpringerNature API, are the authors certain that they are getting a random sample of papers?

      These papers were the first 200 English language "Journal" papers returned by the Springer Nature API for each month, resulting in 2400 papers per year from 2005 through 2020. These papers are the first 200 papers published each month by a Springer Nature journal, which may not be completely random, but we believe to be a reasonably representative sample. Furthermore, the Springer Nature comparator set is being used as an additional comparator to the complete set of all Nature research papers used in our analyses.

      In all figures: the authors use capital letters to indicate panels in the caption, but lowercase letters in the figure itself and in the main text. This should be made consistent.

      This has been updated.

      In all figures: the authors should make the caption letter bold in the figure captions, which makes it much easier to find descriptions of specific panels

      This has been updated.

      In the section "coreNLP": the authors mention "co-reference resolution" but without really remarking why it is being used. This is an issue throughout the methods-the authors describe what method they are using but either they don't mention why they are using that method until later, or else not at all.

      We have added better reasoning behind our coreNLP selected methods: “We used the standard set of annotaters: tokenize, ssplit, pos, lemma, ner, parse, coref, and additionally the quote annotator. These perform text tokenization, sentence splitting, part of speech recognition, lemmatization, named entity recoginition, division of sentences into constituent phrases, co-reference resolution, and identification of quoted entities, respectively. We used the "statistical" algorithm to perform coreference resolution for speed. Each of these aspects is required to identify the names of quoted or mentioned speakers and identify any of their associated pronouns. All results were output to json format for further downstream processing.”

      We included a better description of scrapy: “Scrapy is a tool that applies user-defined rules to follow hyperlinks on webpages and return the information contained on each webpage.

      We used Scrapy to extract all web pages containing news articles and extract the text.”

      We also included our motivation for bootstrapping: “We used the boostrap method to construct confidence intervals for each of our calculated statistics.”

      In the section "Name Formatting for Gender Prediction in Quotes or Mentions", genderizeR is mentioned before an introduction to the tool

      We added the following text to provide context: “Even though genderizeR, the computational method used to predict the name's gender, only uses the first name to make the gender prediction, identifying the full name gives us greater confidence that we correctly identified the first name. “

      In the section "Name Formatting for Gender Prediction of Authors", you state that you exclude papers with only one author. How many papers is this? I assume few, in Nature, but if not I can imagine gender differences based on who writes first-authored papers.

      We find that the number excluded is roughly 7% of all papers, which is consistent across Nature and Springer Nature (1113/15013 for cited springer articles, 2899/42155 for random springer articles, 955/12459 for nature authors). We have added the following text to the manuscript for better context: “Roughly 7% of all papers were estimated to be by a single author and removed from this analysis.: 1113/15013 for cited Springer articles, 2899/42155 for random Springer articles, 955/12459 for Nature research articles.”

      In "Name Origin Analysis", for the in-text reference to Equation 3: include the prefix "Eq." or similar to mark this as referencing the equation and not something else

      This has been updated.

      The use of the word "enrichment" in reference to the representation of East Asian authors is strange and does not fit the colloquial definition of the term. I suggest just using a simpler term like "representation" instead

      Similarly, the authors use the word "depletion" to reflect the lower rate of quotes to scientists with East-Asian names, but I feel a simpler word would be more appropriate.

      We thank the reviewer for this suggestion, all instances of “enrichment/depletion” have been replaced with “over/under representation”

      The authors claim in Figure 2d that there is a steady increase in the rate of first author citations, however, this graph is not convincing. It appears to show much more noise than anything resembling a steady change.

      We have reworded our figure description to state that there is a consistent bias towards quoting last authors. Our figure description now states: “Panel d shows a consistent but slight bias towards quoting the last author of a cited article than the first author over time.”

      Supplemental Figures 1b and 1c do not seem to be mentioned in the main text, and I struggle to see their relevance.

      We thank the reviewer for identifying this error; these subpanels have been removed.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Point-by-point response to concerns raised by reviewer #3:

      The manuscript has improved very substantially in revision. The authors have clearly taken the comments on board in good faith. Yet, some small concerns remain around the behavioural analysis.

      In Fig. 8H and H' average sleep/day is ~100. Is this minutes of sleep? 100 min/day is far too low, is it a typo?

      The numbers for sleep bouts are also too low to me e.g. in Fig 9 number of sleep bouts avg around 4.

      In their response to reviewers the authors say these errors were fixed, yet the figures appear not to have been changed. Perhaps the old figures were left in inadvertently?

      Indeed this correction was somehow missed and we thank the reviewer for noticing this. We have now corrected Fig 8H-H’ and Fig 9D.  

      The circadian anticipatory activity analyses could also be improved. The standard in the field is to perform eduction analyses and quantify anticipatory activity e.g. using the method of Harrisingh et al. (PMID: 18003827). This typically computed as the ratio of activity in the 3hrs preceding light transition to activity in the 6hrs preceding light transition.

      In their response to reviewers, the authors have revised their anticipation analyses by quantifying the mean activity in the 6 hrs preceding light transition. However, in the method of Harrisingh et al., anticipation is the ratio of activity in the 3hrs preceding light transition to activity in the 6hrs preceding light transition. Simply computing the activity in the 6hrs preceding light transition does not give a measure of anticipation, determining the ratio is key.

      We acknowledge the importance of obtaining accurate results in our analysis, therefore we have re-evaluated the anticipation activity by measuring the ratio of the mean activity in the 3h preceding light transition over the activity in the 6h preceding light transition. We have reported the data as percentages in Fig 8F-G and modified the figure legends accordingly.

    1. Author response:

      eLife assessment 

      This important study provides evidence for a combination of the latest generation of Oxford Nanopore Technology long reads with state-of-the art variant callers enabling bacterial variant discovery at accuracy that matches or exceeds the current "gold standard" with short reads. The evidence supporting the claims of the authors is convincing, although the inclusion of a larger number of reference genomes would further strengthen the study. The work will be of interest to anyone performing sequencing for outbreak investigations, bacterial epidemiology, or similar studies. 

      We thank the editor and reviewers for the accurate summary and positive assessment. We address the comment about increasing the number of reference genomes in the response to reviewer 2.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      The authors assess the accuracy of short variant calling (SNPs and indels) in bacterial genomes using Oxford Nanopore reads generated on R10.4 flow cells from a very similar genome (99.5% ANI), examining the impact of variant caller choice (three traditional variant callers: bcftools, freebayes, and longshot, and three deep learning based variant callers: clair3, deep variant, and nano caller), base calling model (fast, hac and sup) and read depth (using both simplex and duplex reads). 

      Strengths: 

      Given the stated goal (analysis of variant calling for reads drawn from genomes very similar to the reference), the analysis is largely complete and results are compelling. The authors make the code and data used in their analysis available for re-use using current best practices (a computational workflow and data archived in INSDC databases or Zenodo as appropriate). 

      Weaknesses: 

      While the medaka variant caller is now deprecated for diploid calling, it is still widely used for haploid variant calling and should at least be mentioned (even if the mention is only to explain its exclusion from the analysis). 

      We agree that this would be an informative addition to the study and will add it to the benchmarking.

      Appraisal: 

      The experiments the authors engaged in are well structured and the results are convincing. I expect that these results will be incorporated into "best practice" bacterial variant calling workflows in the future. 

      Thank you for the positive appraisal.

      Reviewer #2 (Public Review): 

      Summary: 

      Hall et al describe the superiority of ONT sequencing and deep learning-based variant callers to deliver higher SNP and Indel accuracy compared to previous gold-standard Illumina short-read sequencing. Furthermore, they provide recommendations for read sequencing depth and computational requirements when performing variant calling. 

      Strengths: 

      The study describes compelling data showing ONT superiority when using deep learning-based variant callers, such as Clair3, compared to Illumina sequencing. This challenges the paradigm that Illumina sequencing is the gold standard for variant calling in bacterial genomes. The authors provide evidence that homopolymeric regions, a systematic and problematic issue with ONT data, are no longer a concern in ONT sequencing. 

      Weaknesses: 

      (1) The inclusion of a larger number of reference genomes would have strengthened the study to accommodate larger variability (a limitation mentioned by the authors). 

      Our strategic selection of 14 genomes—spanning a variety of bacterial genera and species, diverse GC content, and both gram-negative and gram-positive species (including M. tuberculosis, which is neither)—was designed to robustly address potential variability in our results. Moreover, all our genome assemblies underwent rigorous manual inspection as the quality of the true genome sequences is the foundation this research is built upon. Given this, the fundamental conclusions regarding the accuracy of variant calls would likely remain unchanged with the addition of more genomes.  However, we do acknowledge that a substantially larger sample size, which is beyond the scope of this study, would enable more fine-grained analysis of species differences in error rates.

      (2) In Figure 2, there are clearly one or two samples that perform worse than others in all combinations (are always below the box plots). No information about species-specific variant calls is provided by the authors but one would like to know if those are recurrently associated with one or two species. Species-specific recommendations could also help the scientific community to choose the best sequencing/variant calling approaches.

      Thank you for highlighting this observation. The precision, recall, and F1 scores for each sample and condition can be found in Supplementary Table S4. We will investigate the samples that consistently perform below expectation to determine if this is associated with specific species, which may necessitate tailored recommendations for those species. Additionally, we will produce a species-segregated version of Figure 2 for a clearer interpretation and will place it in the supplementary materials.

      (3) The authors support that a read depth of 10x is sufficient to achieve variant calls that match or exceed Illumina sequencing. However, the standard here should be the optimal discriminatory power for clinical and public health utility (namely outbreak analysis). In such scenarios, the highest discriminatory power is always desirable and as such an F1 score, Recall and Precision that is as close to 100% as possible should be maintained (which changes the minimum read sequencing depth to at least 25x, which is the inflection point).

      We agree that the highest discriminatory power is always desirable for clinical or public health applications. In which case, 25x is probably a better minimum recommendation. However, we are also aware that there are resource-limited settings where parity with Illumina is sufficient. In these cases, 10x depth from ONT would provide sufficient data.

      The manuscript currently emphasises the latter scenario, but we will revise the text to clearly recommend 25x depth as a conservative aim in settings where resources are not a constraint, ensuring the highest possible discriminatory power for applications like outbreak analysis.

      (4) The sequencing of the samples was not performed with the same Illumina and ONT method/equipment, which could have introduced specific equipment/preparation artefacts that were not considered in the study. See for example https://academic.oup.com/nargab/article/3/1/lqab019/6193612

      To our knowledge, there is no evidence that sequencing on different ONT machines or barcoding kits leads to a difference in read characteristics or accuracy. To ensure consistency and minimise potential variability, we used the same ONT flowcells for all samples and performed basecalling on the same Nvidia A100 GPU. We will update the methods to emphasise this.

      For Illumina and ONT, the exact machines used for which samples will be added as a supplementary table. We will also add a comment about possible Illumina error rate differences in the ‘Limitations’ section of the Discussion.

      In summary, while there may be specific equipment or preparation artifacts to consider, we took steps to minimise these effects and maintain consistency across our sequencing methods.

      Reviewer #3 (Public Review): 

      Hall et al. benchmarked different variant calling methods on Nanopore reads of bacterial samples and compared the performance of Nanopore to short reads produced with Illumina sequencing. To establish a common ground for comparison, the authors first generated a variant truth set for each sample and then projected this set to the reference sequence of the sample to obtain a mutated reference. Subsequently, Hall et al. called SNPs and small indels using commonly used deep learning and conventional variant callers and compared the precision and accuracy from reads produced with simplex and duplex Nanopore sequencing to Illumina data. The authors did not investigate large structural variation, which is a major limitation of the current manuscript. It will be very interesting to see a follow-up study covering this much more challenging type of variation. 

      We fully agree that investigating structural variations (SVs) would be a very interesting and important follow-up. Identifying and generating ground truth SVs is a nontrivial task and we feel it deserves its own space and study. We hope to explore this in the future.

      In their comprehensive comparison of SNPs and small indels, the authors observed superior performance of deep learning over conventional variant callers when Nanopore reads were basecalled with the most accurate (but also computationally very expensive) model, even exceeding Illumina in some cases. Not surprisingly, Nanopore underperformed compared to Illumina when basecalled with the fastest (but computationally much less demanding) method with the lowest accuracy. The authors then investigated the surprisingly higher performance of Nanopore data in some cases and identified lower recall with Illumina short read data, particularly from repetitive regions and regions with high variant density, as the driver. Combining the most accurate Nanopore basecalling method with a deep learning variant caller resulted in low error rates in homopolymer regions, similar to Illumina data. This is remarkable, as homopolymer regions are (or, were) traditionally challenging for Nanopore sequencing. 

      Lastly, Hall et al. provided useful information on the required Nanopore read depth, which is surprisingly low, and the computational resources for variant calling with deep learning callers. With that, the authors established a new state-of-the-art for Nanopore-only variant, calling on bacterial sequencing data. Most likely these findings will be transferred to other organisms as well or at least provide a proof-of-concept that can be built upon. 

      As the authors mention multiple times throughout the manuscript, Nanopore can provide sequencing data in nearly real-time and in remote regions, therefore opening up a ton of new possibilities, for example for infectious disease surveillance. 

      However, the high-performing variant calling method as established in this study requires the computationally very expensive sup and/or duplex Nanopore basecalling, whereas the least computationally demanding method underperforms. Here, the manuscript would greatly benefit from extending the last section on computational requirements, as the authors determine the resources for the variant calling but do not cover the entire picture. This could even be misleading for less experienced researchers who want to perform bacterial sequencing at high performance but with low resources. The authors mention it in the discussion but do not make clear enough that the described computational resources are probably largely insufficient to perform the high-accuracy basecalling required. 

      We have provided runtime benchmarks for basecalling in Supplementary Figure S16 and detailed these times in Supplementary Table S7. In addition, we state in the Results section (P10 L228-230) “Though we do note that if the person performing the variant calling has received the raw (pod5) ONT data, basecalling also needs to be accounted for, as depending on how much sequencing was done, this step can also be resource-intensive.”

      Even with super-accuracy basecalling considered, our analysis shows that variant calling remains the most resource-intensive step for Clair3, DeepVariant, FreeBayes, and NanoCaller. Therefore, the statement “the described computational resources are probably largely insufficient to perform the high-accuracy basecalling required”, is incorrect. However, we will endeavour to make the basecalling component and considerations more prominent in the Results and Discussion.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This is a valuable study that describes the effects of T. pallidum on neural development by applying single-cell RNA sequencing to an iPSC-derived brain organoid model. The evidence supporting the claims of the authors is solid, although further evidence to understand the differences in infection rates would strengthen the conclusions of the study. In particular, the conclusions would be strengthened by validating infection efficiency as this can impact the interpretation of single-cell sequencing results, and how these metrics affect organoid size as well as comparison with additional infectious agents. Furthermore, additional validations of downstream effectors are not adequate and could be improved. 

      Thank you very much for your valuable comments. Since we used the organoid model for the first time to investigate the effects of T. pallidum on brain development, the study design is not perfect. As you have accurately mentioned, the results of the paper do not have more in-depth details, especially to verify the infection rate of T. pallidum. Your valuable comments will be very useful for us for carrying out further research. In addition, the downstream effector validation is inadequate, so we performed an analysis of single-cell sequencing data to strengthen our view in the revised manuscript (See Figure 5F for a description in current manuscript).

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This is an interesting study by Xu et al showing the effects of infection with the Treponema pallidum virus (which causes syphilis disease) on neuronal development using iPSC-derived human brain organoids as a model and single-cell RNA sequencing. This work provides an important insight into the impact of the virus on human development, bridging the gap between the phenomena observed in studies using animal models as well as non-invasive human studies showing developmental abnormalities in fetuses infected with the virus in utero through maternal vertical transmission.

      Using single-cell RNAseq in combination with qPCR and immunofluorescence techniques, the authors show that T. pallidum infected organoids are smaller in size, in particular during later growth stages, contain a larger number of undifferentiated neuronal lineage cells, and exhibit decreased numbers of specific neuronal subcluster, which the authors have identified as undifferentiated hindbrain neurons.

      The study is an important first step in understanding how T. pallidum affects human neuronal development and provides important insight into the potential mechanisms that underlie the neurodevelopmental abnormalities observed in infected human fetuses. Several important weaknesses have also been noted, which need to be addressed to strengthen the study's conclusions.

      Strengths:

      (1) The study is well written, and the data quality is good for the most part.

      (2) The study provides an important first step in utilizing human brain organoids to study the impact of T. pallidum infection on neuronal development.

      (3) The study's conclusions may provide important insight to other researchers focused on studying how viral infections impact neuronal development. 

      Thank you very much for your positive feedback. Below, you will find our detailed responses to your concerns, addressed point-by-point. I once again sincerely appreciate your time and effort in reviewing our manuscript.

      Weaknesses:

      (1) It is unclear how T. pallidum infection was validated in the organoids. If not all cells are infected, this could have important implications for the study's conclusions, in particular the single-cell RNAseq experiments. Were only cells showing the presence of the virus selected for sequencing? A detailed description of how infection was validated and the process of selection of cells for RNAseq would strongly support the study's conclusions. 

      Thank you for your valuable comment. We completely agree with your point. Exploring the infection rate of T. pallidum to brain organoids is a key factor that must be considered. We selected pluripotent stem cell-derived brain organoids to simulate the process of foetal brain neurodevelopment and cultured them mixed with T. pallidum to mimic T. pallidum invading brain tissue. Since brain organoids are three-dimensional structures formed by nerve cell aggregation, T. pallidum invades organoids from the periphery to the center of the organoids gradually. T. pallidum acts on organoids long enough to increase the infection rates; however, the pathogen is selective in invading human cells. If we only select cells present in T. pallidum for sequencing, the authenticity of simulating "real world" infections is somewhat weakened. To better carry out this study, selecting cells from intact organoids for sequencing, without eliminating cells without T. pallidum, can better simulate the effect of T. pallidum infection on the nervous system. Of course, we should also set up a blank control group.

      (2) The authors show that T. pallidum infection results in impaired development of hindbrain neurons. How does this finding compare to what has already been shown in animal studies? Is a similar deficit in this brain region observed with this specific virus? It would be useful to strengthen the study's conclusions if the authors added a discussion about the observed deficits in hindbrain neuronal development, and prior literature on similar studies conducted in animal models or human patients. Does T. pallidum preferentially target these neurons, or is this a limitation of the current organoid model system? 

      Thank you for your valuable comments. The finding that T. pallidum infection results in impaired development of hindbrain neurons has not been verified in animal experiments. Of course, it is better to further validate the findings in organoid studies through animal experiments. Unfortunately, due to the technical challenges, mature animal models have not been developed for the study of congenital syphilis. Although our team has been working on the development of animal models of congenital neurosyphilis, the current progress is still not satisfactory. After struggling hard in this field for many years, we decided to attempt to utilize human brain organoids instead of animal models to study the impact of T. pallidum infection on neuronal development.

      We also checked prior literature on similar studies that have referred to the content in human patients. Dan Doherty et al. reported that patients with pontocerebellar hypoplasia develop microcephaly at birth or over time after birth (PMID: 23518331). Based on your constructive suggestions, we have added some content related to hindbrain to the “Discussion” section.

      Our study found that T. pallidum could inhibit the differentiation of subNPC1B in brain organoids, thereby reducing the differentiation from subNPC1B to hindbrain neurons, and ultimately affecting the development and maturation of hindbrain neurons during pregnancy. Based on our results, T. pallidum does not preferentially target hindbrain neurons. Of course, there are limitations to the current organoid model system, see the "Limitations" section.

      PMID: 23518331- Dan Doherty et al, Midbrain and hindbrain malformations: advances in clinical diagnosis, imaging, and genetics.

      Revision in the “Discussion” section, line 343-352:

      “The vertebrate hindbrain contains a complex network of dedicated neural circuits that play an essential role in controlling many physiological processes and behaviors, including those related to the cerebellum, pons, and medulla oblongata (Shoja et al., 2018). Patients with pontocerebellar hypoplasia represent the less severe end of the spectrum with early hyperreflexia, developmental delay, and feeding problems, eventually developing spasticity and involuntary movements in childhood, while some patients represent the severe end of the spectrum characterised by polyhydramnios, severe hyperreflexia, contracture, and early death from central respiratory failure. Patients with pontocerebellar hypoplasia develop microcephaly at birth or over time after birth (Doherty et al., 2013).”

      (3) The authors show that T. pallidum-infected organoids are smaller in size by measuring organoid diameter during later stages of organoid growth, with no change during early stages. Does that represent insufficient infection at the early stages? Is this due to increased cell death or lack of cell division in the infected organoids? Experiments using IHC to quantify levels of cleaved caspase and/or protein markers for cell proliferation would be able to address these questions. 

      Thank you for your valuable suggestion. The concentration of T. pallidum in patients with syphilis was generally very low (PMID: 21752804, 35315702, 33099614). In this study, a low concentration of T. pallidum was applied to brain organoids to simulate early foetal transmission of syphilis. Nerve cells mainly establish intercellular connections to form brain organoids in the way of adhesion, which can easily cause organoids to divide and die if treated with a high concentration of T. pallidum. Furthermore, based on your suggestions, we performed additional immunostaining analyses to verify the apoptosis of brain organoids infected by T. pallidum. Cleaved caspase 3 (clCASP3) staining showed that the number of apoptotic cells increased following T. pallidum infection; however, the proportion of apoptotic cells in both groups of brain organoids was very low (Figure supplement 2) (N=12 organoids, each group from three independent bioreactors), which would be not enough to affect the results of the experiment, thereby suggesting that neural differentiation and development of brain organoids were mainly inhibited following T. pallidum infection (rather than promoting organoid apoptosis).

      PMID: 21752804-- Craig Tipple et al, Getting the measure of syphilis: qPCR to better understand early infection.

      PMID: 35315702-- Cuini Wang et al, Quantified Detection of Treponema pallidum DNA by PCR Assays in Urine and Plasma of Syphilis Patients.

      PMID: 33099614—Cuini Wang et al, A New Specimen for Syphilis Diagnosis: Evidence by High Loads of Treponema pallidum DNA in Saliva.

      Revision in the “Results” section, line 105-108:

      “… cleaved caspase 3 (clCASP3) staining showed that the number of apoptotic cells increased significantly following T. pallidum infection, but the proportion of apoptotic cells in both groups of brain organoids was very low (Figure supplement 2) (N=12 organoids, each group from three independent bioreactors) …”

      Revision in the “Materials and methods” section, line 446-447:

      “…anti-cleaved caspase 3 (rabbit, 1:100, Cell Signaling Technology, 9661S),”

      Revision in the “Supplementary File” section, line 78-81:

      Author response image 1.

      The number of clCASP3+ cells in the microscopic field of brain organoids. A nonparametric t-test was used to evaluate the statistical differences between the two groups. (**: P < 0.01).

      (4) In Figure 1D authors show differences in rosette-like structure in the infected organoids. The representative images do not appear to be different in any of the discussed components (e.g., the sox2 signal looks fairly similar between the two conditions). No quantification of these structures was presented. Authors should provide quantification or a more representative image to support their statement. 

      Thank you for your valuable suggestion. I have quantified the neural rosette structure and compared the number of intact rosette-like structures between the two groups (See Figure 1D for a description in current manuscript).

      (5) The IHC images shown in Figures 3E, G, and Figure 4E look very similar between the two conditions despite the discussed decrease in the text. A more suitable representative image should be presented, or the analysis should be amended to reflect the observed results. 

      Thank you for your valuable suggestion. I have replaced more representative images in Figure 3E, G, and Figure 4E in the manuscript.

      Reviewer #2 (Public Review):

      Summary:

      This study provides an important overview of infectious etiology for neurodevelopment delay.

      Strengths:

      Strong RNA evaluation.

      Weaknesses:

      The study lacks an overview of other infectious agents. The study should address the epigenetic contributors (PMID: 36507115) and the role of supplements in improving outcomes (PMID: 27705610). 

      Addressing the above - with references included - is recommended. 

      Thank you for your valuable comment. Our research is mainly inspired by other infectious agents, such as Zika virus; there are many descriptions of Zika virus in the “Discussion” section of the manuscript to better describe and demonstrate our point of view (See pages 12–13). I was unable to retrieve the article (PMID: 36507115), kindly help in confirming the PMID number. I will be very grateful if you can provide the full text. Secondly, I have carefully read the article (PMID: 27705610), which is a very rich and comprehensive review, and summarised and cited it in appropriate places in our manuscript.

      Revision in the “Discussion- limitation” section, line 375-379:

      “First, although several recent protocols have made use of growth factors to promote further neuronal maturation and survival (Lucke-Wold et al., 2018), the organoid culture scheme needs to be further improved owing to the lower percentage of mature neurons and the challenge of cell necrosis within the organoids at this stage in day 55 organoids.”

      Reviewer #3 (Public Review): 

      This article is the first report to study the effects of T. pallidum on the neural development of an iPSC-derived brain organoid model. The study indicates that T. pallidum inhibits the differentiation of subNPC1B neurons into hindbrain neurons, hence affecting brain organoid neurodevelopment. Additionally, the TCF3 and notch signaling pathways may be involved in the inhibition of the subNPC1B-hindbrain neuron differentiation axis. While the majority of the data in this study support the conclusions, there are still some questions that need to be addressed and data quality needs to be improved. The study provides valuable insights for future investigations into the mechanisms underlying congenital neurodevelopment disability. 

      I sincerely appreciate your comments on our paper. The comments have helped us greatly improve the quality of our paper. Thank you for your time and constructive critique.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Paired t-test analysis is not appropriate if two distinct groups are compared. 

      I sincerely apologize for our presentation. We used a nonparametric t-test to compare the two groups. I have confirmed and corrected the statistical method description of this manuscript (Revision in the “Materials and methods” section (line 553-555) and “Figures-legend” section (line 789-790, 817-818, 829-830) in current manuscript).

      Reviewer #3 (Recommendations For The Authors): 

      (1) Can the authors explain why the mean size of organoids infected with T. pallidum is smaller?

      Thank you for your valuable comment. In our study, T. pallidum infection resulted in brain organisational changes in neural rosette-like structures resembling the proliferative regions of the human ventricular zone and caused fewer and incomplete rosette-like structures. Next, the ventricular zone is also the main area where neural progenitor cells (NPCs) reside (PMID: 33838105); our results showed that the proportion of neural progenitor cells (NPC)1 was reduced after T. pallidum infection. Rosette-like structure size changes owing to NPC depletion. Therefore, the mean size of organoids infected with T. pallidum is smaller.

      Revision in the “Results” section, line 101-104:

      “T. pallidum infection resulted in brain organisational changes in neural rosette-like structures resembling the proliferative regions of the human ventricular zone where NPC reside (Krenn et al., 2021), and caused fewer and incomplete rosette-like structures (P < 0.01) (Figure 1D)”

      (2) Why was the target gene for qRT-PCR validation selected to be HOXA5、HOXC5、HOXA4?

      Thank you for your valuable comment. The qRT-PCR experiment was selected here to verify the analysis results of the scRNA-seq. HOX family genes are key factors controlling early hindbrain development, which are expressed in the hindbrain region during the gastrulation stage of early embryonic development and persist into the nerve cell stage, and are essential for the correct induction of hindbrain development and segmentation (PMID: 2571936, 1983472, 1673098, 15930115). Therefore, we selected the HOX family gene for verification.

      PMID: 2571936-WILKINSON D G, et al. Segmental expression of Hox-2 homoeobox- containing genes in the developing mouse hindbrain.

      PMID: 1983472-- FROHMAN M A, et al. Isolation of the mouse Hox-2.9 gene; analysis of embryonic expression suggests that positional information along the anterior-posterior axis is specified by mesoderm.

      PMID: 1673098--MURPHY P, et al. Expression of the mouse labial-like homeobox-containing genes, Hox 2.9 and Hox 1.6, during segmentation of the hindbrain.

      PMID: 15930115-- MCNULTY C L, et al. Knockdown of the complete Hox paralogous group 1 leads to dramatic hindbrain and neural crest defects.

      (3) Why was qRT-PCR not employed in other experimental validations, but solely to validate early neural-specific transcription factor changes?

      Thank you for your valuable comment. The qRT-PCR experiment was selected to validate early neural-specific transcription factor changes, indicating the reliability of the scRNA-seq. Then, validated scRNA-seq data were used to analyze for other neuro-specific gene differences, such as violin plots and heatmap showing differentially expressed genes (Figure 4D and Figure 5B, C). Of course, we also tested it with other experiments, such as immunohistochemistry and flow cytometric screening.

      (4) The authors found that T. pallidum might reduce the differentiation from subNPC1B to hindbrain neurons by inhibiting subNPC1B differentiation in brain organoids. Why were the subNPC1B-specific markers declining?

      Thank you for your valuable comment. scRNA-seq is aimed at complete brain organoids. Cluster analysis of cell types of organoids is performed according to specific marker genes of different cells. The decrease in the expression of marker genes of certain cell groups indicates that the cell proportion of such cell groups in the whole organoids is reduced. We analysed organoids following T. pallidum infection, uniform manifold approximation and projection (UMAP), and clustering of the NPC1 population demonstrated that T. pallidum downregulated the number of subNPC1B population. Therefore, the results demonstrated a decrease in the subNPC1B -specific markers.

      (5) In comparison to the other figures, Figure 5E letter size is excessively small and ambiguous.

      Thanks for your valuable comments, I have adjusted Figure 5E letter size.

      (6) Figure 5E shows that TCF3, more than one gene, is specifically enriched in subNPC1B of the T. pallidum group. It is best to confirm the impact of the other gene. 

      Thank you for raising this key issue that we had not addressed properly in our previous version of the manuscript; we have added further analytical data. The SCENIC analysis found that the transcriptional activity of 52 genes has significantly changed after T. pallidum infection. Furthermore, GO analyses demonstrated that 27 transcription factors were significantly enriched in four key pathways of neural differentiation and development. TCF3 is the sole transcription factor present in all four terms simultaneously, speculating that TCF3 is the key transcription factor for the inhibition of subNPC1B-hindbrain neuron differentiation caused by T. pallidum.

      Revision in the “Results” section, line 261-273:

      “Next, the single-cell regulatory network inference and clustering (SCENIC) analysis for the subNPC1B subcluster was performed to assess the differences in the transcriptional activity of the transcription factors between the two groups and found that the transcriptional activity of 52 genes significantly changed after T. pallidum infection (Figure 5E). Furthermore, GO analyses demonstrated that 27 transcription factors were significantly enriched in key pathways of neural differentiation and development in response to nervous system development, positive regulation of sequence-specific DNA-binding transcription factor activity, positive regulation of neuronal differentiation, and DNA templated transcription regulation. Remarkably, transcription factor 3 (TCF3) is the sole transcription factor present in all four terms simultaneously (Figure 5F), speculating that TCF3 is the key transcription factor for the inhibition of subNPC1B-hindbrain neuron differentiation caused by T. pallidum.”

      Revision in the “Materials and methods” section, line 540-543:

      “The Sankey diagram was created using SankeyMATIC (https://sankeymatic.com/) (Zhang et al., 2023), which was used to characterize the interactions between differential transcription factors and neural differentiation and development.”

      Revision in the “Figure and Figure Legend” section, line 832, 842-844:

      Author response image 2.

      Sankey diagram showing the correspondence between differential transcription factors and neural differentiation and development.

      (7) Are there other experiments demonstrating that TCF3 is a key transcription factor for the inhibition of subNPC1B-hindbrain neuron differentiation caused by T. pallidum

      Thank you for your valuable comment. In the previous experiment, we attempted to select a subNPC1B subcluster by flow sorting to verify the relevant molecular mechanism. Due to the small proportion of subNPC1B subcluster in the whole organoids, the selected cells were in a poor state and could not reach the number of cells required for the experiment. However, we used scRNA-seq data to further identify TCF3 as a key transcription factor that inhibits subNPC1B - hindbrain neuron differentiation induced by T. pallidum. The relevant results and descriptions of the analysis are detailed in the revised manuscript, please see our response to point (6) above.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The authors use the innovative CRISPRi method to uncover regulators of cell density and volume in neutrophils. The results show that cells require NHE activity during chemoattractant-driven cell migration. Before migration occurs, cells also undergo a rapid cell volume increase. These results indicate that water flux, driven by ion channels, appears to play a central role in neutrophil migration. The paper is very well written and clear. I suggest adding some discussion about the role of actin in the process, but this is not essential.

      Strengths

      The novel use of CRIPSPi to uncover cell density regulators is very novel. Some of the uncovered molecules were known before, e.g. discussed in Li & Sun, Frontiers in Cell and Developmental Biology, 2021. Others are more interesting, for example PI3K-gamma. The use of caged fMLP is also nice.

      We thank the reviewer for their positive appraisal of our work and have pursued their suggestions for improving our paper in this revision.

      Weaknesses

      One area of investigation that seems to be absent is mentioned in the introduction. I.e., actin is expected to play a role in regulating cell volume increase. Did the authors perform any experiments with LatA? What was seen there? Do cells still migrate with LatA, or is a different interplay seen? The role of PI3K is interesting, and maybe somewhat related to actin. But this may be a different line of inquiry for the future.

      We agree that we could have done a better job explicitly investigating the role of actin dynamics in volume changes. Towards this end, by using Latrunculin B to depolymerize actin, we find that the volume increase in suspension is not affected (Figure 1 – supplemental figure 2A). In our FxM single cell volume measurements of adherent cells, we similarly observed unhindered swelling following latrunculin treatment. These data indicate that actin is dispensable for chemoattractant-induced cell swelling (Figure 1 – supplemental figure 2B) . There was a minor apparent reduction in the final volume reached with the Latrunculin-treated cells as measured by FxM, but this likely reflects minor uptake of the excluded dye following Latrunculin treatment rather than an actual change in final volume. This conclusion is reinforced by the change in 2D footprint area being well modeled by the 2D projection of an isotropically expanding sphere (Figure 1 – supplemental figure 2C) . Latrunculin treatment completely abolishes migration, as is expected for unconfined migration on fibronectin (Figure 1 – supplemental figure 2D-E) . The second Reviewer also wanted us to dig deeper on the role of PI3K-gamma, so we expanded our analysis of this hit (Figure 3 – supplemental figure 1B-D; Figure 4 – supplemental figure 1D-G) .

      Author response image 1.

      Chemoattractant-induced swelling, but not motility, is independent of actin polymerization. (A) Human primary neutrophils were incubated with DMSO or Latrunculin B, activated with 20 nM fMLP, and then volume responses were measured using electronic sizing via a Coulter counter. Latrunculin treatment did not alter cell swelling, indicating that actin polymerization is dispensable for the chemoattractant-induced volume increase. (B) Similar results were obtained using the FxM assay, showing that Latrunculin-treated cells are capable of swelling after stimulation. (C) The Latrunculin-treated cells also increase their footprints, albeit less so than control cells, but this is within the range of what would be expected for this degree of chemoattractant-induced volume increase (modeled by a sphere expanding an equivalent volume). (D) Single cell tracks of primary human neutrophils responding to acute chemoattractant stimulation. Both panels show 15 minutes of tracks with the tracks prior (left) and the 15 minutes post (right) uncaging the chemoattractant. The scale bar is 50 microns. The top panels show the large increase in motility displayed by control cells, while the Latrunculin-treated cells (bottom panels) fail to move. (E) Latrunculin-treated cells consistently fail to move in response to chemoattractant-stimulation. (F) Representative single cell volume traces show that Latrunculin-treated cells (black) lack short-term volume fluctuations but persistently maintain an elevated volume following chemoattractant stimulation. Control cells (blue) exhibit short-term volume fluctuations. (G) The lack of short-term volume fluctuations following latrunculin treatment is borne out across the population, with the coefficient of variation in the volume for single cells (post-swelling) being dramatically lower in Latrunculin-treated cells, suggesting that these short term volume fluctuations depend on actin-based motility.

      Author response image 2.

      Additional validation of swelling screen hits. (A) Mixed WT and CRISPR KO dHL-60 populations post-stimulation show that CA2 (black) and PI3Ky (green) KO both fail to decrease their densities as much as the WT (cyan) population following chemoattractant stimulation. Cells with negative control guides (light gray) have normal volume responses. All tubes were fractionated and aligned on the fraction containing the median of the WT population. Negative values indicate a fraction with a higher density than WT. (B) To validate the perturbations to cell swelling observed with FxM, primary human neutrophils were stimulated in suspension, and their volumes were measured using a Coulter counter. 20 nM fMLP was added at the 0 minute mark. Shaded regions represent the 95% confidence intervals. (C) PI3Kγ inhibition blocks the chemoattractant-induced volume change in primary human neutrophils, as assayed by FxM. (D) PI3Kγ inhibition also blocked the chemoattractant-drive shape change in human primary neutrophils, as measured by the change in footprint area in FxM (E) The coefficient of variation in volume for control (cyan) and iNHE1 (gold) inhibited human primary neutrophils undergoing chemokinesis are comparable, suggesting that the volume fluctuations are unchanged in moving cells upon NHE1 and PI3Kγ inhibition despite the different baseline volumes.

      Author response image 3.

      Additional validation of motility phenotypes. (A-D) Single cell tracks of primary human neutrophils responding to acute chemoattractant stimulation. Both panels show tracks of cells 15 minutes prior (left) versus 15 minutes post (right) uncaging the chemoattractant. The scale bar is 50 microns. Color saturation indicates time with tracks progressing from gray to full color. (A) Control cells show a large increase in movement upon uncaging, (B) NHE1 inhibited cells also initiate movement but to a lesser degree, (C) hypo-osmotic shock rescues the NHE1 motility defect. (D) PI3Kγ leads to a large fraction of cells failing to initiate movement. (E) PI3Kγ inhibition showed near complete blockage of the chemoattractant-induced motility increase in primary human neutrophils. (F) Control neutrophils (blue) show an increased angular alignment upon stimulation as their motility becomes directional. NHE1-inhibition (gold, iNHE1) has very little effect on this process, while PI3Kγ inhibition (green) leads to a reduction in this alignment at the population level. (G) For the PI3Kγ inhibited cells that start migrating, the migration-induced volume fluctuations are comparable to iNHE1 and control cells. The top panel shows the track of a representative migrating PI3Kγ inhibited cell and the bottom panel, its corresponding volume normalized to the pre-stimulation volume. The scale bar is 50 microns.

      Reviewer #2 (Public Review):

      Nagy et al investigated the role of volume increase and swelling in neutrophils in response to the chemoattractant. Authors show that following chemoattractant response cells lose their volume slightly owing to the cell spreading phase and then have a relatively rapid increase in the cell volume that is concomitant with cell migration. The authors performed an impressive genome-wide CRISPR screen and buoyant density assay to identify the regulators of neutrophil swelling. This assay showed that stimulating cells with chemoattractant fMLP led to an increase in the cell volume that was abrogated with the FPR1 receptor knockout. The screen revealed a cascade that could potentially be involved in cell swelling including NHE1 (sodium-proton antiporter) and PI3K. NHE1 and PI3K are required for chemoattractant-induced swelling in human primary neutrophils. Authors also suggest slightly different functions of NHE1 and PI3K activity where PI3K is also required to maintain chemoattractant-induced cell shape changes. The authors convincingly show that chemoattractant-induced cell swelling is linked to cell migration and NHE1 is required for swelling at the later stages of swelling since the cells at the early point work on low-volume and low-velocity regime. Interestingly, the authors also show that lack of swelling in NHE1-inhibited cells could be rescued by mild hypo-osmotic swelling strengthening the argument that water influx followed chemoattractant stimulation is important for potentiation for migration.

      The conclusions of this paper are mostly well supported by data and are pretty convincing, but some aspects of image acquisition and data analysis need to be clarified and extended.

      We thank the reviewer for their positive appraisal of our work and pursued their suggestions for improving our paper in this revision.

      Weaknesses

      (1) It would really help if the authors could add the missing graph for the footprint area when cells are treated with Latranculin. Graph S1F for volume changes with Lat treatment should be compared with DMSO-treated controls.

      We agree that the Latrunculin condition merits more thorough investigation. To this end, we compared the volume response of human primary neutrophils to chemoattractant addition for Latrunculin B treated cells versus DMSO controls in suspension and show that there is no difference in swelling (Figure 1 – supplemental figure 2A) . This is additionally confirmed with FxM measurements with a slight undershooting of the final volume likely due to minor uptake of the excluded dye by Latrunculin treated cells (Figure 1 – supplemental figure 2B) . We have also included the requested footprint area changes in the Latrunculin treated cells as compared to controls (Figure 1 – supplemental figure 2C) . The treated cell footprints increase much less than the controls, and this is likely due to a lack of active cell spreading in the Latrunculin treated cells. The increase in footprint area observed following latrunculin treatment is within the range of what would be expected for the 2D projection of an isotropically expanding sphere fitted to the Latrunculin volume data (salmon line).

      Author response image 4.

      Chemoattractant-induced swelling, but not motility, is independent of actin polymerization. (A) Human primary eutrophils were incubated with DMSO or Latrunculin B, activated with 20 nM fMLP, and then volume responses were measured using electronic sizing via a Coulter counter. Latrunculin treatment did not alter cell swelling, indicating that actin polymerization is dispensable for the chemoattractant-induced volume increase. (B) Similar results were obtained using the FxM assay, showing that Latrunculin-treated cells are capable of swelling after stimulation. (C) The Latrunculin-treated cells also increase their footprints, albeit less so than control cells, but this is within the range of what would be expected for this degree of chemoattractant-induced volume increase (modeled by a sphere expanding an equivalent volume).

      (2) The authors show inhibition of NHE1 blocked cell swelling using Coulter counter, a similar experiment should be done with PI3K inhibitions especially since they see PI3K inhibition impact chemoattractant-induced cell shape change.

      Good idea. PI3Ky inhibition led to a substantial reduction in the chemoattractant-driven swelling in suspension showing the critical role of PI3K in the swelling of human primary neutrophils (Figure 3 – supplemental figure 1B) .

      Author response image 5.

      Additional validation of swelling screen hits. (B) To validate the perturbations to cell swelling observed with FxM, primary human neutrophils were stimulated in suspension, and their volumes were measured using a Coulter counter. 20 nM fMLP was added at the 0 minute mark. Shaded regions represent the 95% confidence intervals.

      (3) It would be more convincing visually if the authors could also include the movie of cell spreading (footprint) and then mobility with PI3K inhibition.

      Included as suggested. We agree this is a more compelling way to present the data (Figure 4 – supplemental figure 1A-D,G)

      Author response image 6.

      Additional validation of motility phenotypes. (A-D) Single cell tracks of primary human neutrophils responding to acute chemoattractant stimulation. Both panels show tracks of cells 15 minutes prior (left) versus 15 minutes post (right) uncaging the chemoattractant. The scale bar is 50 microns. Color saturation indicates time with tracks progressing from gray to full color. (A) Control cells show a large increase in movement upon uncaging. (D) PI3Kγ leads to a large fraction of cells failing to initiate movement. (E) PI3Kγ inhibition showed near complete blockage of the chemoattractant-induced motility increase in primary human neutrophils. (G) For the PI3Kγ inhibited cells that start migrating, the migration-induced volume fluctuations are comparable to iNHE1 and control cells. The top panel shows the track of a representative migrating PI3Kγ inhibited cell and the bottom panel, its corresponding volume normalized to the pre-stimulation volume. The scale bar is 50 microns.

      (4) It is not clear how cell spreading and later volume increase are linked to overall mobility of neutrophils. Are authors suggesting that cell spreading is not required for cell mobility in neutrophils?

      We did not mean to imply that cell spreading is not required for neutrophil motility. We take advantage of the fact that we can inhibit cell swelling without inhibiting spreading to investigate the specific role of swelling on migration ( Figure 4) . Conversely, cell spreading on a substrate is not required for chemoattractant-induced cell swelling, as chemoattractant-induced swelling occurs in latrunculin-treated cells (Figure 1 – supplemental figure 2A-C) . However, these latrunculin-treated cells are not able to migrate, at least not in the context studied here (Figure 1 – supplemental figure 2 D-E) . Cell spreading and swelling are likely both critical contributors to neutrophil motility, but their relative importance is dependent on the migratory context. The single cell volume fluctuation analysis indicates that migration-associated spreading and shape changes have large impacts on cell volume ( Figure 1 F) . These fluctuations are asynchronous, obscuring their observation at the population level, but the single cell traces clearly demonstrate them and their correlation with movement.

      ( 5) Volume fluctuations associated with motility were impacted by NHE1 inhibition at the baselines, what about PI3K inhibitions? Does that impact the actual fluctuations?

      PI3K inhibition causes a significant fraction of cells to stop migrating (Figure 4 – supplemental figure 1D) , but among those that do move, they are still able to fluctuate in volume (Figure 4 – supplemental figure 1G) .

      Author response image 7.

      Additional validation of motility phenotypes. (G) For the PI3Kγ inhibited cells that start migrating, the migration-induced volume fluctuations are comparable to iNHE1 and control cells. The top panel shows the track of a representative migrating PI3Kγ inhibited cell and the bottom panel, its corresponding volume normalized to the pre-stimulation volume. The scale bar is 50 microns.

      In contrast, latrunculin abolishes the volume fluctuations that normally accompany migration (Figure 1 – supplemental figure 2F-G) . These data suggest that movement/spreading itself is the driver of the rapid volume fluctuations. In contrast, the sustained volume increase following chemoattractant stimulation is independent of shape change and still occurs in latrunculin-treated cells.

      Author response image 8.

      Chemoattractant-induced swelling, but not motility, is independent of actin polymerization. (F) Representative single cell volume traces show that Latrunculin-treated cells (black) lack short-term volume fluctuations but persistently maintain an elevated volume following chemoattractant stimulation. Control cells (blue) exhibit short-term volume fluctuations. (G) The lack of short-term volume fluctuations following latrunculin treatment is borne out across the population, with the coefficient of variation in the volume for single cells (post-swelling) being dramatically lower in Latrunculin-treated cells, suggesting that these short term volume fluctuations depend on actin-based motility.

      (6) It would really help if the authors compared similar analyses and drew conclusions from that, for example, it is unclear what the authors mean by they found no change in the angular persistence of WT and NHE1 inhibited cells which is in contrast to PI3K inhibition since they do not really have an analysis for angular persistence in PI3K inhibited cells. (S4A and S4B).

      Thanks for catching this oversight in these experiments that we previously performed but neglected to include in the initial submission. We now include plots for angular persistence, velocity, and footprint size for the PI3K-gamma-inhibited cells. The results show that PI3K-gamma inhibition interferes both with swelling (Figure 3 – supplemental figure 1B-D) and motility (Figure 4 – supplemental figure 1D-F) , which aligns with its role upstream of the other hits identified in our screen.

      Author response image 9.

      Additional validation of motility phenotypes. (A-D) Single cell tracks of primary human neutrophils responding to acute chemoattractant stimulation. Both panels show tracks of cells 15 minutes prior (left) versus 15 minutes post (right) uncaging the chemoattractant. The scale bar is 50 microns. Color saturation indicates time with tracks progressing from gray to full color. (A) Control cells show a large increase in movement upon uncaging, (B) NHE1 inhibited cells also initiate movement but to a lesser degree, (C) hypo-osmotic shock rescues the NHE1 motility defect. (D) PI3Kγ leads to a large fraction of cells failing to initiate movement. (E) PI3Kγ inhibition showed near complete blockage of the chemoattractant-induced motility increase in primary human neutrophils. (F) Control neutrophils (blue) show an increased angular alignment upon stimulation as their motility becomes directional. NHE1-inhibition (gold, iNHE1) has very little effect on this process, while PI3Kγ inhibition (green) leads to a reduction in this alignment at the population level. (G) For the PI3Kγ inhibited cells that start migrating, the migration-induced volume fluctuations are comparable to iNHE1 and control cells. The top panel shows the track of a representative migrating PI3Kγ inhibited cell and the bottom panel, its corresponding volume normalized to the pre-stimulation volume. The scale bar is 50 microns.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      The authors discuss an effect, "diffusive lensing", by which particles would accumulate in high-viscosity regions, for instance in the intracellular medium. To obtain these results, the authors rely on agent-based simulations using custom rules performed with the Ito stochastic calculus convention. The "lensing effect" discussed is a direct consequence of the choice of the Ito convention without spurious drift which has been discussed before and is likely to be inadequate for the intracellular medium, causing the presented results to likely have little relevance for biology.

      We thank the editors and the reviewers for their consideration of our manuscript. We argue in this rebuttal and revision that our results and conclusions are in fact likely to have relevance for biology. While we use the Itô convention for ease of modeling considering its non-anticipatory nature upon discretization (see (Volpe and Wehr 2016) for the discretization schemes), we refer to Figure S1B to emphasize that diffusive lensing occurs not only under the Itô convention but across a wide parameter space. Indeed, it is absent only in the normative isothermal convention; note that even a stochastic differential equation conforming to the isothermal convention may be reformulated into the Itô convention by adding suitable drift terms, allowing for diffusive lensing to be seen even in case of the isothermal convention. We note in particular that the choice of the convention is a highly context-dependent one (Sokolov 2010); there is not a universally correct choice, and one can obtain stochastic differential equations consistent with Ito or Stratonovich interpretations in different regimes. Lastly, space-dependent diffusivity is now an experimentally well-recognized feature of the cellular interior, as noted in our references and as discussed further later in this response. This fact points towards the potential relevance of our model for subcellular diffusion.

      In our revised preprint, we have made changes to the text and minor changes to figures to address reviewer concerns.

      Responses to the Reviewers

      We thank the reviewers for their feedback and address the issues they raised in this rebuttal and in the revised manuscript. The central point that the reviewers raise concerns the validity of the drift-less Itô interpretation in modeling potential nonequilibrium types of subcellular transport arising from space-dependent diffusivity. If the drift term were considered, the resulting stochastic differential equation stochastic differential equation (SDE) is equivalent to one arising from the isothermal interpretation of heterogeneous diffusivity (Volpe and Wehr 2016), wherein no diffusive lensing is seen (as shown in Fig. S1B). That is, the isothermal interpretation and the drift-comprising Itô SDE produce the same uniform steady-state particle densities.

      While we agree with the reviewers that for a given interpretation, equivalent stochastic differential equations (SDEs) arising from other interpretations may be drawn, we disagree with the generalization that all types of subcellular diffusion conform to the isothermal interpretation. That is, there is no reason why any and all instances of nonequilibrium subcellular particle diffusion must be modeled using isothermal-conforming SDEs (such as the drift-comprising Itô SDE, for instance). We refer to (Sokolov 2010) which prescribes choosing a convention in a context-dependent manner. In this regard, we disagree with the second reviewer’s characterization of making such a choice merely a “choice of writing” considering that it is entirely dependent on the choice of microscopic parameters, as detailed in the discussion section of the manuscript. The following references have also been added to the manuscript: the reference from the first reviewer (Kupferman et al. 2004) proposes a prescription for choosing an appropriate convention based upon comparing the noise correlation time and the particle relaxation time. The reference notes that the Itô convention is appropriate when the particle relaxation time is large when compared to the noise correlation time and the Stratonovich convention is appropriate in the converse scenario. In (Rupprecht et al. 2018), active noise is considered and the resulting Fokker-Planck equation conforms to the Stratonovich convention when thermal noise was negligible. The related reference, (Vishen et al. 2019) compares three timescales: those of particle relaxation, noise correlation and viscoelastic relaxation, to make the choice. Indeed, as noted in the manuscript, lensing is seen in all but one interpretation (without drift additions); only its magnitude is altered by the interpretation/choice of the drift term. The appendix has been modified to include a subsection on the interchangeability of the conventions.

      Separately, with regards to the discussion on anomalous diffusion, the section on mean squared displacement calculation has been amended to avoid confusing our model with canonical anomalous diffusion which considers the anomalous exponent; how the anomalous exponent varies with space-dependent diffusivity offers an interesting future area of study.

      Responses to specific reviewer comments appear below.

      Reviewer #1 (Public Review):

      The manuscript "Diffusive lensing as a mechanism of intracellular transport and compartmentalization", explores the implications of heterogeneous viscosity on the diffusive dynamics of particles. The authors analyze three different scenarios:

      (i)   diffusion under a gradient of viscosity,

      (ii)  clustering of interacting particles in a viscosity gradient, and

      (iii) diffusive dynamics of non-interacting particles with circular patches of heterogeneous viscous medium.

      The implications of a heterogeneous environment on phase separation and reaction kinetics in cells are under-explored. This makes the general theme of this manuscript very relevant and interesting. However, the analysis in the manuscript is not rigorous, and the claims in the abstract are not supported by the analysis in the main text.

      Following are my main comments on the work presented in this manuscript:

      (a) The central theme of this work is that spatially varying viscosity leads to position-dependent diffusion constant. This, for an overdamped Langevin dynamics with Gaussian white noise, leads to the well-known issue of the interpretation of the noise term.

      The authors use the Ito interpretation of the noise term because their system is non-equilibrium.

      One of the main criticisms I have is on this central point. The issue of interpretation arises only when there are ill-posed stochastic dynamics that do not have the relevant timescales required to analyze the noise term properly. Hence, if the authors want to start with an ill-posed equation it should be mentioned at the start. At least the Langevin dynamics considered should be explicitly mentioned in the main text. Since this work claims to be relevant to biological systems, it is also of significance to highlight the motivation for using the ill-posed equation rather than a well-posed equation. The authors refer to the non-equilibrium nature of the dynamics but it is not mentioned what non-equilibrium dynamics to authors have in mind. To properly analyze an overdamped Langevin dynamics a clear source of integrated timescales must be provided. As an example, one can write the dynamics as Eq. (1) \dot x = f(x) + g(x) \eta , which is ill-defined if the noise \eta is delta correlated in time but well-defined when \eta is exponentially correlated in time. One can of course look at the limit in which the exponential correlation goes to a delta correlation which leads to Eq. (1) interpreted in Stratonovich convention. The choice to use the Ito convention for Eq. (1) in this case is not justified.

      We thank the reviewer for detailing their concerns with our model’s assumptions. We have addressed them in the common rebuttal.

      (b) Generally, the manuscript talks of viscosity gradient but the equations deal with diffusion which is a combination of viscosity, temperature, particle size, and particle-medium interaction. There is no clear motivation provided for focus on viscosity (cytoplasm as such is a complex fluid) instead of just saying position-dependent diffusion constant. Maybe authors should use viscosity only when talking of a context where the existence of a viscosity gradient is established either in a real experiment or in a thought experiment.

      The manuscript has been amended to use only “diffusivity” to avoid confusion.

      (c) The section "Viscophoresis drives particle accumulation" seems to not have new results. Fig. 1 verifies the numerical code used to obtain the results in the later sections. If that is the case maybe this section can be moved to supplementary or at least it should be clearly stated that this is to establish the correctness of the simulation method. It would also be nice to comment a bit more on the choice of simulation methods with changing hopping sizes instead of, for example, numerically solving stochastic ODE.

      The main point of this section and of Fig. 1 is the diffusive lensing effect itself: the accumulation of particles in lower-diffusivity areas. To the best of our knowledge, diffusive lensing has not been reported elsewhere as a specific outcome of non-isothermal interpretations of diffusion, with potential relevance to nonequilibrium subcellular motilities. The simulation method has been fully described in the Methods section, and the code has also been shared (see Code Availability).

      A minor comment, the statement "the physically appropriate convention to use depends upon microscopic parameters and timescale hierarchies not captured in a coarse-grained model of diffusion." is not true as is noted in the references that authors mention, a correct coarse-grained model provides a suitable convention (see also Phys. Rev. E, 70(3), 036120., Phys. Rev. E, 100(6), 062602.).

      This has been addressed in the common rebuttal.

      (d) The section "Interaction-mediated clustering is affected by viscophoresis" makes an interesting statement about the positioning of clusters by a viscous gradient. As a theoretical calculation, the interplay between position-dependent diffusivity and phase separation is indeed interesting, but the problem needs more analysis than that offered in this manuscript. Just a plot showing clustering with and without a gradient of diffusion does not give enough insight into the interplay between density-dependent diffusion and position-dependent diffusion. A phase plot that somehow shows the relative contribution of the two effects would have been nice. Also, it should be emphasized in the main text that the inter-particle interaction is through a density-dependent diffusion constant and not a conservative coupling by an interaction potential.

      The density-dependence has been added from the Methods to the main text. The goal of the work is to present lensing as a natural outcome of the parameter choices we make and present its effects as they relate to clustering and commonly used biophysical methods to probe dynamics within cells. A dense sampling of the phase space and how it is altered as a function of diffusivity, and the subsequent interpretation, lie beyond the scope of the present work but offer exciting future directions of study.

      (e) The section "In silico microrheology shows that viscophoresis manifests as anomalous diffusion" the authors show that the MSD with and without spatial heterogeneity is different. This is not a surprise - as the underlying equations are different the MSD should be different.

      The goal here is to compare and contrast the ways in which homogeneous and heterogeneous diffusion manifest in simulated microrheology measurements. We hope that an altered saturation MSD, as is observed in our simulations, provokes interest in considering lensing while modeling experimental data.

      There are various analogies drawn in this section without any justification:

      (i) "the saturation MSD was higher than what was seen in the homogeneous diffusion scenario possibly due to particles robustly populating the bulk milieu followed by directed motion into the viscous zone (similar to that of a Brownian ratchet, (Peskin et al., 1993))."

      In case of i), the Brownian ratchet is invoked as a model to explain directed accumulation. We have removed this analogy to avoid confusion as it is not delved into further over the course of our work.

      (ii) "Note that lensing may cause particle displacements to deviate from a Gaussian distribution, which could explain anomalous behaviors observed both in our simulations and in experiments in cells (Parry et al., 2014)." Since the full trajectory of the particles is available, it can be analyzed to check if this is indeed the case.

      This has been addressed in the common rebuttal.

      (f) The final section "In silico FRAP in a heterogeneously viscous environment ... " studies the MSD of the particles in a medium with heterogeneous viscous patches which I find the most novel section of the work. As with the section on inter-particle interaction, this needs further analysis.

      We thank the reviewer for their appreciation. In presenting these three sections discussing the effects of diffusive lensing, we intend to broadly outline the scope of this phenomenon in influencing a range of behaviors. Exploring the directions further comprise promising future directions of study that lie beyond the scope of this manuscript.

      To summarise, as this is a theory paper, just showing MSD or in silico FRAP data is not sufficient. Unlike experiments where one is trying to understand the systems, here one has full access to the dynamics either analytically or in simulation. So just stating that the MSD in heterogeneous and homogeneous environments are not the same is not sufficient. With further analysis, this work can be of theoretical interest. Finally, just as a matter of personal taste, I am not in favor of the analogy with optical lensing. I don't see the connection.

      We value the reviewer’s interest in investigating the causes underlying the differences in the MSDs and agree that it represents a promising future area of study. The main point of this section of the manuscript was to make a connection to experimentally measurable quantities.

      Reviewer #2 (Public Review):

      Summary:

      The authors study through theory and simulations the diffusion of microscopic particles and aim to account for the effects of inhomogeneous viscosity and diffusion - in particular regarding the intracellular environment. They propose a mechanism, termed "Diffusive lensing", by which particles are attracted towards high-viscosity regions where they remain trapped. To obtain these results, the authors rely on agent-based simulations using custom rules performed with the Ito stochastic calculus convention, without spurious drift. They acknowledge the fact that this convention does not describe equilibrium systems, and that their results would not hold at equilibrium - and discard these facts by invoking the fact that cells are out-of-equilibrium. Finally, they show some applications of their findings, in particular enhanced clustering in the high-viscosity regions. The authors conclude that as inhomogeneous diffusion is ubiquitous in life, so must their mechanism be, and hence it must be important.

      Strengths:

      The article is well-written, and clearly intelligible, its hypotheses are stated relatively clearly and the models and mathematical derivations are compatible with these hypotheses.

      We thank the reviewer for their appreciation.

      Weaknesses:

      The main problem of the paper is these hypotheses. Indeed, it all relies on the Ito interpretation of the stochastic integrals. Stochastic conventions are a notoriously tricky business, but they are both mathematically and physically well-understood and do not result in any "dilemma" [some citations in the article, such as (Lau and Lubensky) and (Volpe and Wehr), make an unambiguous resolution of these]. Conventions are not an intrinsic, fixed property of a system, but a choice of writing; however, whenever going from one to another, one must include a "spurious drift" that compensates for the effect of this change - a mathematical subtlety that is entirely omitted in the article: if the drift is zero in one convention, it will thus be non-zero in another in the presence of diffusive gradients. It is well established that for equilibrium systems obeying fluctuation-dissipation, the spurious drift vanishes in the anti-Ito stochastic convention (which is not "anticipatory", contrarily to claims in the article, are the "steps" are local and infinitesimal). This ensures that the diffusion gradients do not induce currents and probability gradients, and thus that the steady-state PDF is the Gibbs measure. This equilibrium case should be seen as the default: a thermal system NOT obeying this law should warrant a strong justification (for instance in the Volpe and Wehr review this can occur through memory effects in robotic dynamics, or through strong fluctuation-dissipation breakdown). In near-equilibrium thermal systems such as the intracellular medium (where, although out-of-equilibrium, temperature remains a relevant and mostly homogeneous quantity), deviations from this behavior must be physically justified and go to zero when going towards equilibrium.

      Considering that the physical phenomena underlying diffusion span a range of timescales (particle relaxation, noise, environmental correlation, et cetera), we disagree with the assertion that all types of subcellular diffusion processes can be modeled as occurring at thermal equilibrium: for example, one can easily imagine memory effects arising in the presence of an appropriate hierarchy of timescales. We have added references that describe in more detail the way in which the comparison of timescales can dictate the applicability of different conventions. We also refer the referee to the common rebuttal section of our response in which we discuss factors that govern the choice of the interpretation. The adiabatic elimination arguments highlighted in (Kupferman et al. 2004) provide a clear description of how relevant particle and environment-related timescales can inform the choice of stochastic calculus to use.

      With regards to the use of the term “anticipatory” to refer to the isothermal interpretation, we refer to the comment in (Volpe and Wehr 2016) of the Itô interpretation “not looking into the future”. In any case, whether anticipatory or otherwise, the interpretation’s effect on our model remains unchanged, as highlighted in the section in the Appendix on the conversion between different conventions; this section has been added to minimize confusion about the effects of the choice of convention on lensing.

      Here, drifts are arbitrarily set to zero in the Ito convention (the exact opposite of the equilibrium anti-Ito), which is the equilibrium equivalent to adding a force (with drift $- grad D$) exactly compensating the spurious drift. If we were to interpret this as a breakdown of detailed balance with inhomogeneous temperature, the "hot" region would be effectively at 4x higher temperature than the cold region (i.e. 1200K) in Fig 1A.

      Our work is based on existing observations of space-dependent diffusivity in cells (Garner et al., 2023; Huang et al., 2021; Parry et al., 2014; Śmigiel et al., 2022; Xiang et al., 2020). These papers support a definitive model for the existence of space-dependent diffusivity without invoking space-dependent temperature.

      It is the effects of this arbitrary force (exactly compensating the Ito spurious drift) that are studied in the article. The fact that it results in probability gradients is trivial once formulated this way (and in no way is this new - many of the references, for instance, Volpe and Wehr, mention this).

      Addressed in the common rebuttal.

      Enhanced clustering is also a trivial effect of this probability gradient (the local concentration is increased by this force field, so phase separation can occur). As a side note the "neighbor sensing" scheme to describe interactions is very peculiar and not physically motivated - it violates stochastic thermodynamics laws too, as the detailed balance is apparently not respected.

      The neighbor-sensing scheme used here is just one possible model of an effective attractive potential between particles. Other models that lead to density-dependent attraction between particles should also provide qualitatively similar results as ours; this offers an interesting prospect for future research.

      Finally, the "anomalous diffusion" discussion is at odds with what the literature on this subject considers anomalous (the exponent does not appear anomalous).

      This has been addressed in the common rebuttal, and the relevant part of the manuscript has been modified to avoid confusion.

      The authors make no further justification of their choice of convention than the fact that cells are out-of-equilibrium, leaving the feeling that this is a detail. They make mentions of systems (eg glycogen, prebiotic environment) for which (near-)equilibrium physics should mostly prevail, and of fluctuation-dissipation ("Diffusivity varies inversely with viscosity", in the introduction). Yet the "phenomenon" they discuss is entirely reliant on an undiscussed mechanism by which these assumptions would be completely violated (the citations they make for this - Gnesotto '18 and Phillips '12 - are simply discussions of the fact that cells are out-of-equilibrium, not on any consequences on the convention).

      Finally, while inhomogeneous diffusion is ubiquitous, the strength of this effect in realistic conditions is not discussed (this would be a significant problem if the effect were real, which it isn't). Gravitational attraction is also an ubiquitous effect, but it is not important for intracellular compartmentalization.

      The manuscript text has been supplemented with additional references that detail the ways in which the comparison of timescales can dictate how one can apply different conventions. We refer the reviewer to the common rebuttal section of our response where we detail factors that dictate the choice of the convention to use. As previously noted, the adiabatic elimination arguments highlighted in (Kupferman et al., 2004) provide a prescription for how different timescales are to be considered in deciding the choice of stochastic calculus to use.

      With regards to the strength of space-dependent diffusivity in subcellular milieu, various measurements of heterogeneous diffusivity have been made both across different model systems and via different modalities, as cited in our manuscript. (Garner et al. 2023) used single-particle tracking to determine over 100-fold variability in diffusivity within individual S. pombe cells. Single-molecule measurements in (Xiang et al. 2020) and (Śmigiel et al. 2022) reveal an order-of-magnitude variation in tracer diffusion in mammalian cells and multi-fold variation in E. coli cytoplasm respectively. Fluorescence correlation spectroscopy measurements in (Huang et al. 2022) have found a two-fold increase in short-range diffusion of protein-sized tracers in X. laevis extracts. We have also added a reference to a study that uses 3D single particle tracking in the cytosol of a multinucleate fungus, A. gossypii, to identify regions of low-diffusivity near nuclei and hyphal tips (McLaughlin et al. 2020). Many of these references deploy particle tracking and investigate how mesoscale-sized particles (i.e. tracers spanning biologically relevant size scales) are directly impacted by space-dependent diffusivity. Therefore, we base our model on not only space-dependent diffusivity being a well-recognized feature of the cellular interior, but also on these observations pertaining to mesoscale-sized particles’ motion along relevant timescales.

      These measurements are also relevant to the reviewer’s question about the strength of the effect, which depends directly on the variability in diffusivity: for ten- or a hundred-fold diffusivity variations, the effect would be expected to be significant. In case of using the Itô convention directly, the contrast in concentration gradient is, in fact, that of the diffusivity gradient.

      To conclude, the "diffusive lensing" effect presented here is not a deep physical discovery, but a well-known effect of sticking to the wrong stochastic convention.

      As detailed in the various responses above, we respectfully disagree with the notion that there exists a singular correct stochastic convention that is applicable for all cases of subcellular heterogeneous diffusion. Further, as detailed in (Volpe and Wehr 2016) and as detailed in the Appendix, it is possible to convert between conventions and that an isothermal-abiding stochastic differential equation may be suitably altered, by means of adding a drift term, to an Itô-abiding stochastic differential equation; therefore, one can observe diffusive lensing without discarding the isothermal convention if the latter were modified. Indeed, it is only the driftless (or canonical) isothermal convention that does not allow for diffusive lensing.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Review:

      This manuscript by Yue et al. aims to understand the molecular mechanisms underlying the better reproductive outcomes of Tibetans at high altitude by characterizing the transcriptome and histology of full-term placenta of Tibetans and compare them to those Han Chinese at high elevations.

      The approach is innovative, and the data collected are valuable for testing hypotheses regarding the contribution of the placenta to better reproductive success of populations that adapted to hypoxia. The authors identified hundreds of differentially expressed genes (DEGs) between Tibetans and Han, including the EPAS1 gene that harbors the strongest signals of genetic adaptation. The authors also found that such differential expression is more prevalent and pronounced in the placentas of male fetuses than those of female fetuses, which is particularly interesting, as it echoes with the more severe reduction in birth weight of male neonates at high elevation observed by the same group of researchers (He et al., 2022).

      This revised manuscript addressed several concerns raised by reviewers in last round. However, we still find the evidence for natural selection on the identified DEGs--as a group--to be very weak, despite more convincing evidence on a few individual genes, such as EPAS1 and EGLN1.

      The authors first examined the overlap between DEGs and genes showing signals of positive selection in Tibetans and evaluated the significance of a larger overlap than expected with a permutation analysis. A minor issue related to this analysis is that the p-value is inflated, as the authors are counting permutation replicates with MORE genes in overlap than observed, yet the more appropriate way is counting replicates with EQUAL or MORE overlapping genes. Using the latter method of p-value calculation, the "sex-combined" and "female-only" DEGs will become non-significantly enriched in genes with evidence of selection, and the signal appears to solely come from male-specific DEGs. A thornier issue with this type of enrichment analysis is whether the condition on placental expression is sufficient, as other genomic or transcriptomic features (e.g., expression level, local sequence divergence level) may also confound the analysis.

      According to the suggested methods, we counted the replicates with equal or more overlapping genes than observed (≥4 for the “combined” set; ≥9 for the “male-only” set; ≥0 for the “female-only” set). We found that the overlaps between DEGs and TSNGs were significantly enriched only in the “male-only” set (p-value < 1e-4, counting 0 time from 10,000 permutations), but not in the “female-only” set (p-value = 1, counting 10,000 time from 10,000 permutations), or “combined” set (p-value = 0.0603, counting 603 time from 10,000 permutations) (see Table R1 below).

      We updated this information in the revised manuscript, including Results, Methods, and Figure S9.

      Author response table 1.

      Permutation analysis of the overlapped genes between DEGs and TSNGs.

      The authors next aimed to detect polygenic signals of adaptation of gene expression by applying the PolyGraph method to eQTLs of genes expressed in the placenta (Racimo et al 2018). This approach is ambitious but problematic, as the method is designed for testing evidence of selection on single polygenic traits. The expression levels of different genes should be considered as "different traits" with differential impacts on downstream phenotypic traits (such as birth weight). As a result, the eQTLs of different genes cannot be naively aggregated in the calculation of the polygenic score, unless the authors have a specific, oversimplified hypothesis that the expression increase of all genes with identified eQTL will improve pregnancy outcome and that they are equally important to downstream phenotypes. In general, PolyGraph method is inapplicable to eQTL data, especially those of different genes (but see Colbran et al 2023 Genetics for an example where the polygenic score is used for testing selection on the expression of individual genes).

      We would recommend removal of these analyses and focus on the discussion of individual genes with more compelling evidence of selection (e.g., EPAS1, EGLN1).

      According to the suggestion, we removed these analyses in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1: 

      This is my first review of the article entitled "The canonical stopping network: Revisiting the role of the subcortex in response inhibition" by Isherwood and colleagues. This study is one in a series of excellent papers by the Forstmann group focusing on the ability of fMRI to reliably detect activity in small subcortical nuclei - in this case, specifically those purportedly involved in the hyper- and indirect inhibitory basal ganglia pathways. I have been very fond of this work for a long time, beginning with the demonstration of De Hollander, Forstmann et al. (HBM 2017) of the fact that 3T fMRI imaging (as well as many 7T imaging sequences) do not afford sufficient signal to noise ratio to reliably image these small subcortical nuclei. This work has done a lot to reshape my view of seminal past studies of subcortical activity during inhibitory control, including some that have several thousand citations.

      In the current study, the authors compiled five datasets that aimed to investigate neural activity associated with stopping an already initiated action, as operationalized in the classic stop-signal paradigm. Three of these datasets are taken from their own 7T investigations, and two are datasets from the Poldrack group, which used 3T fMRI.

      The authors make six chief points: 

      (1) There does not seem to be a measurable BOLD response in the purportedly critical subcortical areas in contrasts of successful stopping (SS) vs. going (GO), neither across datasets nor within each individual dataset. This includes the STN but also any other areas of the indirect and hyperdirect pathways.

      (2) The failed-stop (FS) vs. GO contrast is the only contrast showing substantial differences in those nodes.

      (3) The positive findings of STN (and other subcortical) activation during the SS vs. GO contrast could be due to the usage of inappropriate smoothing kernels.

      (4) The study demonstrates the utility of aggregating publicly available fMRI data from similar cognitive tasks. 

      (5) From the abstract: "The findings challenge previous functional magnetic resonance (fMRI) of the stop-signal task" 

      (6) and further: "suggest the need to ascribe a separate function to these networks." 

      I strongly and emphatically agree with points 1-5. However, I vehemently disagree with point 6, which appears to be the main thrust of the current paper, based on the discussion, abstract, and - not least - the title.

      To me, this paper essentially shows that fMRI is ill-suited to study the subcortex in the specific context of the stop-signal task. That is not just because of the issues of subcortical small-volume SNR (the main topic of this and related works by this outstanding group), but also because of its limited temporal resolution (which is unacknowledged, but especially impactful in the context of the stop-signal task). I'll expand on what I mean in the following.

      First, the authors are underrepresenting the non-fMRI evidence in favor of the involvement of the subthalamic nucleus (STN) and the basal ganglia more generally in stopping actions. 

      - There are many more intracranial local field potential recording studies that show increased STN LFP (or even single-unit) activity in the SS vs. FS and SS vs. GO contrast than listed, which come from at least seven different labs. Here's a (likely non-exhaustive) list of studies that come to mind:

      Ray et al., NeuroImage 2012 <br /> Alegre et al., Experimental Brain Research 2013 <br /> Benis et al., NeuroImage 2014 <br /> Wessel et al., Movement Disorders 2016 <br /> Benis et al., Cortex 2016 <br /> Fischer et al., eLife 2017 <br /> Ghahremani et al., Brain and Language 2018 <br /> Chen et al., Neuron 2020 <br /> Mosher et al., Neuron 2021 <br /> Diesburg et al., eLife 2021 

      - Similarly, there is much more evidence than cited that causally influencing STN via deep-brain stimulation also influences action-stopping. Again, the following list is probably incomplete: 

      Van den Wildenberg et al., JoCN 2006 <br /> Ray et al., Neuropsychologia 2009 <br /> Hershey et al., Brain 2010 <br /> Swann et al., JNeuro 2011 <br /> Mirabella et al., Cerebral Cortex 2012 <br /> Obeso et al., Exp. Brain Res. 2013 <br /> Georgiev et al., Exp Br Res 2016 <br /> Lofredi et al., Brain 2021 <br /> van den Wildenberg et al, Behav Brain Res 2021 <br /> Wessel et al., Current Biology 2022 

      - Moreover, evidence from non-human animals similarly suggests critical STN involvement in action stopping, e.g.: 

      Eagle et al., Cerebral Cortex 2008 <br /> Schmidt et al., Nature Neuroscience 2013 <br /> Fife et al., eLife 2017 <br /> Anderson et al., Brain Res 2020 

      Together, studies like these provide either causal evidence for STN involvement via direct electrical stimulation of the nucleus or provide direct recordings of its local field potential activity during stopping. This is not to mention the extensive evidence for the involvement of the STN - and the indirect and hyperdirect pathways in general - in motor inhibition more broadly, perhaps best illustrated by their damage leading to (hemi)ballism. 

      Hence, I cannot agree with the idea that the current set of findings "suggest the need to ascribe a separate function to these networks", as suggested in the abstract and further explicated in the discussion of the current paper. For this to be the case, we would need to disregard more than a decade's worth of direct recording studies of the STN in favor of a remote measurement of the BOLD response using (provably) sub ideal imaging parameters. There are myriads of explanations of why fMRI may not be able to reveal a potential ground-truth difference in STN activity between the SS and FS/GO conditions, beginning with the simple proposition that it may not afford sufficient SNR, or that perhaps subcortical BOLD is not tightly related to the type of neurophysiological activity that distinguishes these conditions (in the purported case of the stop-signal task, specifically the beta band). But essentially, this paper shows that a specific lens into subcortical activity is likely broken, but then also suggests dismissing existing evidence from superior lenses in favor of the findings from the 'broken' lens. That doesn't make much sense to me.

      Second, there is actually another substantial reason why fMRI may indeed be unsuitable to study STN activity, specifically in the stop-signal paradigm: its limited time resolution. The sequence of subcortical processes on each specific trial type in the stop-signal task is purportedly as follows: at baseline, the basal ganglia exert inhibition on the motor system. During motor initiation, this inhibition is lifted via direct pathway innervation. This is when the three trial types start diverging. When actions then have to be rapidly cancelled (SS and FS), cortical regions signal to STN via the hyperdirect pathway that inhibition has to be rapidly reinstated (see Chen, Starr et al., Neuron 2020 for direct evidence for such a monosynaptic hyperdirect pathway, the speed of which directly predicts SSRT). Hence, inhibition is reinstated (too late in the case of FS trials, but early enough in SS trials, see recordings from the BG in Schmidt, Berke et al., Nature Neuroscience 2013; and Diesburg, Wessel et al., eLife 2021). 

      Hence, according to this prevailing model, all three trial types involve a sequence of STN activation (initial inhibition), STN deactivation (disinhibition during GO), and STN reactivation (reinstantiation of inhibition during the response via the hyperdirect pathway on SS/FS trials, reinstantiation of inhibition via the indirect pathway after the response on GO trials). What distinguishes the trial types during this period is chiefly the relative timing of the inhibitory process (earliest on SS trials, slightly later on FS trials, latest on GO trials). However, these temporal differences play out on a level of hundreds of milliseconds, and in all three cases, processing concludes well under a second overall. To fMRI, given its limited time resolution, these activations are bound to look quite similar. 

      Lastly, further building on this logic, it's not surprising that FS trials yield increased activity compared to SS and GO trials. That's because FS trials are errors, which are known to activate the STN (Cavanagh et al., JoCN 2014; Siegert et al. Cortex 2014) and afford additional inhibition of the motor system after their occurrence (Guan et al., JNeuro 2022). Again, fMRI will likely conflate this activity with the abovementioned sequence, resulting in a summation of activity and the highest level of BOLD for FS trials. 

      In sum, I believe this study has a lot of merit in demonstrating that fMRI is ill-suited to study the subcortex during the SST, but I cannot agree that it warrants any reappreciation of the subcortex's role in stopping, which are not chiefly based on fMRI evidence. 

      We would like to thank reviewer 1 for their insightful and helpful comments. We have responded point-by-point below and will give an overview of how we reframed the paper here.  

      We agree that there is good evidence from other sources for the presence of the canonical stopping network (indirect and hyperdirect) during action cancellation, and that this should be reflected more in the paper. However, we do not believe that a lack of evidence for this network during the SST makes fMRI ill-suited for studying this task, or other tasks that have neural processes occurring in quick succession. What we believe the activation patterns of fMRI reflect during this task, is the large of amount of activation caused by failed stops. That is, that the role of the STN in error processing may be more pronounced that its role in action cancellation. Due to the replicability of fMRI results, especially at higher field strengths, we believe the activation profile of failed stop trials reflects a paramount role for the STN in error processing. Therefore, while we agree we do not provide evidence against the role of the STN in action cancellation, we do provide evidence that our outlook on subcortical activation during different trial types of this task should be revisited. We have reframed the article to reflect this, and discuss points such as fMRI reliability, validity and the complex overlapping of cognitive processes in the SST in the discussion. Please see all changes to the article indicated by red text.

      A few other points: 

      - As I said before, this team's previous work has done a lot to convince me that 3T fMRI is unsuitable to study the STN. As such, it would have been nice to see a combination of the subsamples of the study that DID use imaging protocols and field strengths suitable to actually study this node. This is especially true since the second 3T sample (and arguably, the Isherwood_7T sample) does not afford a lot of trials per subject, to begin with.

      Unfortunately, this study already comprises of the only 7T open access datasets available for the SST. Therefore, unless we combined only the deHollander_7T and Miletic_7T subsamples there is no additional analysis we can do for this right now. While looking at just the sub samples that were 7T and had >300 trials would be interesting, based on the new framing of the paper we do not believe it adds to the study, as the sub samples still lack the temporal resolution seemingly required for looking at the processes in the SST.

      - What was the GLM analysis time-locked to on SS and FS trials? The stop-signal or the GO-signal? 

      SS and FS trials were time-locked to the GO signal as this is standard practice. The main reason for this is that we use contrasts to interpret differences in activation patterns between conditions. By time-locking the FS and SS trials to the stop signal, we are contrasting events at different time points, and therefore different stages of processing, which introduces its own sources of error. We agree with the reviewer, however, that a separate analysis with time-locking on the stop-signal has its own merit, and now include results in the supplementary material where the FS and SS trials are time-locked to the stop signal as well.

      - Why was SSRT calculated using the outdated mean method? 

      We originally calculated SSRT using the mean method as this was how it was reported in the oldest of the aggregated studies. We have now re-calculated the SSRTs using the integration method with go omission replacement and thank the reviewer for pointing this out. Please see response to comment 3.

      - The authors chose 3.1 as a z-score to "ensure conservatism", but since they are essentially trying to prove the null hypothesis that there is no increased STN activity on SS trials, I would suggest erring on the side of a more lenient threshold to avoid type-2 error. 

      We have used minimum FDR-corrected thresholds for each contrast now, instead of using a blanket conservative threshold of 3.1 over all contrasts. The new thresholds for each contrast are shown in text. Please see below (page 12):

      “The thresholds for each contrast are as follows: 3.01 for FS > GO, 2.26 for FS > SS and 3.1 for SS > GO.”

      - The authors state that "The results presented here add to a growing literature exposing inconsistencies in our understanding of the networks underlying successful response inhibition". It would be helpful if the authors cited these studies and what those inconsistencies are. 

      We thank reviewer 1 for their detailed and thorough evaluation of our paper. Overall, we agree that there is substantial direct and indirect evidence for the involvement of the cortico-basal-ganglia pathways in response inhibition. We have taken the vast constructive criticism on board and agree with the reviewer that the paper should be reframed. We would like to thank the reviewer for the thoroughness of their helpful comments aiding the revising of the paper.

      (1) I would suggest reframing the study, abstract, discussion, and title to reflect the fact that the study shows that fMRI is unsuitable to study subcortical activity in the SST, rather than the fact that we need to question the subcortical model of inhibition, given the reasons in my public review.

      We agree with the reviewer that the article should be reframed and not taken as direct evidence against the large sum of literature pointing towards the involvement of the cortico-basal-ganglia pathway in response inhibition. We have significantly rewritten the article in light of this.

      (2) I suggest combining the datasets that provide the best imaging parameters and then analyzing the subcortical ROIs with a more lenient threshold and with regressors time-locked to the stop-signals (if that's not already the case). This would make the claim of a null finding much more impactful. Some sort of power analysis and/or Bayes factor analysis of evidence for the null would also be appreciated. 

      Instead of using a blanket conservative threshold of 3.1, we instead used only FDR-corrected thresholds. The threshold level is therefore different for each contrast and noted in the figures. We have also added supplementary figures including the group-level SPMs and ROI analyses when the FS and SS trials were time-locked to the stop signal instead of the GO signal (Supplementary Figs 4 & 5). But as mentioned above, due to the difference in time points when contrasting, we believe that time-locking to the GO signal for all trial types makes more sense for the main analysis.

      We have now also computed BFs on the first level ROI beta estimates for all contrasts using the BayesFactor package as implemented in R. We add the following section to the methods and updated the results section accordingly (page 8):

      “In addition to the frequentist analysis we also opted to compute Bayes Factors (BFs) for each contrast per ROI per hemisphere. To do this, we extracted the beta weights for each individual trial type from our first level model. We then compared the beta weights from each trial type to one another using the ‘BayesFactor’ package as implement in R (Morey & Rouder, 2015). We compared the full model comprising of trial type, dataset and subject as predictors to the null model comprising of only the dataset and subject as predictor. The datasets and subjects were modeled as random factors. We divided the resultant BFs from the full model by the null model to provide evidence for or against a significant difference in beta weights for each trial type. To interpret the BFs, we used a modified version of Jeffreys’ scale (Jeffreys, 1939; Lee & Wagenmakers, 2014).”

      (3) I suggest calculating SSRT using the integration method with the replacement of Go omissions, as per the most recent recommendation (Verbruggen et al., eLife 2019).

      We agree we should have used a more optimal method for SSRT estimation. We have replaced our original estimations with that of the integration method with go omissions replacement, as suggested and adapted the results in table 3.

      We have also replaced text in the methods sections to reflect this (page 5):

      “For each participant, the SSRT was calculated using the mean method, estimated by subtracting the mean SSD from median go RT (Aron & Poldrack, 2006; Logan & Cowan, 1984).”

      Now reads:

      “For each participant, the SSRT was calculated using the integration method with replacement of go omissions (Verbruggen et al., 2019), estimated by integrating the RT distribution and calculating the point at which the integral equals p(respond|signal). The completion time of the stop process aligns with the nth RT, where n equals the number of RTs in the RT distribution of go trials multiplied by the probability of responding to a signal.”

      Reviewer #2:

      This work aggregates data across 5 openly available stopping studies (3 at 7 tesla and 2 at 3 tesla) to evaluate activity patterns across the common contrasts of Failed Stop (FS) > Go, FS > stop success (SS), and SS > Go. Previous work has implicated a set of regions that tend to be positively active in one or more of these contrasts, including the bilateral inferior frontal gyrus, preSMA, and multiple basal ganglia structures. However, the authors argue that upon closer examination, many previous papers have not found subcortical structures to be more active on SS than FS trials, bringing into question whether they play an essential role in (successful) inhibition. In order to evaluate this with more data and power, the authors aggregate across five datasets and find many areas that are *more* active for FS than SS, specifically bilateral preSMA, caudate, GPE, thalamus, and VTA, and unilateral M1, GPi, putamen, SN, and STN. They argue that this brings into question the role of these areas in inhibition, based upon the assumption that areas involved in inhibition should be more active on successful stop than failed stop trials, not the opposite as they observed. 

      As an empirical result, I believe that the results are robust, but this work does not attempt a new theoretical synthesis of the neuro-cognitive mechanisms of stopping. Specifically, if these many areas are more active on failed stop than successful stop trials, and (at least some of) these areas are situated in pathways that are traditionally assumed to instantiate response inhibition like the hyperdirect pathway, then what function are these areas/pathways involved in? I believe that this work would make a larger impact if the author endeavored to synthesize these results into some kind of theoretical framework for how stopping is instantiated in the brain, even if that framework may be preliminary. 

      I also have one main concern about the analysis. The authors use the mean method for computing SSRT, but this has been shown to be more susceptible to distortion from RT slowing (Verbruggen, Chambers & Logan, 2013 Psych Sci), and goes against the consensus recommendation of using the integration with replacement method (Verbruggen et al., 2019). Therefore, I would strongly recommend replacing all mean SSRT estimates with estimates using the integration with replacement method. 

      I found the paper clearly written and empirically strong. As I mentioned in the public review, I believe that the main shortcoming is the lack of theoretical synthesis. I would encourage the authors to attempt to synthesize these results into some form of theoretical explanation. I would also encourage replacing the mean method with the integration with replacement method for computing SSRT. I also have the following specific comments and suggestions (in the approximate order in which they appear in the manuscript) that I hope can improve the manuscript: 

      We would like to thank reviewer 2 for their insightful and interesting comments. We have adapted our paper to reflect these comments. Please see direct responses to your comments below. We agree with the reviewer that some type of theoretical synthesis would help with the interpretability of the article. We have substantially reworked the discussion and included theoretical considerations behind the newer narrative. Please see all changes to the article indicated by red text.

      (1) The authors say "performance on successful stop trials is quantified by the stop signal reaction time". I don't think this is technically accurate. SSRT is a measure of the average latency of the stop process for all trials, not just for the trials in which subjects successfully stop. 

      Thank you for pointing this technically incorrect statement. We have replaced the above sentence with the following (page 1):

      “Inhibition performance in the SST as a whole is quantified by the stop signal reaction time (SSRT), which estimates the speed of the latent stopping process (Verbruggen et al., 2019).”

      (2) The authors say "few studies have detected differences in the BOLD response between FS and SS trials", but then do not cite any papers that detected differences until several sentences later (de Hollander et al., 2017; Isherwood et al., 2023; Miletic et al., 2020). If these are the only ones, and they only show greater FS than SS, then I think this point could be made more clearly and directly. 

      We have moved the citations to the correct place in the text to be clearer. We have also rephrased this part of the introduction to make the points more direct (page 2).

      “In the subcortex, functional evidence is relatively inconsistent. Some studies have found an increase in BOLD response in the STN in SS > GO contrasts (Aron & Poldrack, 2006; Coxon et al., 2016; Gaillard et al., 2020; Yoon et al., 2019), but others have failed to replicate this (Bloemendaal et al., 2016; Boehler et al., 2010; Chang et al., 2020; B. Xu et al., 2015). Moreover, some studies have actually found higher STN, SN and thalamic activation in failed stop trials, not successful ones (de Hollander et al., 2017; Isherwood et al., 2023; Miletić et al., 2020).

      (3) Unless I overlooked it, I don't believe that the author specified the criterion that any given subject is excluded based upon. Given some studies have significant exclusions (e.g., Poldrack_3T), I think being clear about how many subjects violated each criterion would be useful. 

      This is indeed interesting and important information to include. We have added the number of participants who were excluded for each criterion. Please see added text below (page 4):

      “Based on these criteria, no subjects were excluded from the Aron_3T dataset. 24 subjects were excluded from the Poldrack_3T dataset (3 based on criterion 1, 9 on criterion 2, 11 on criterion 3, and 8 on criterion 4). Three subjects were excluded from the deHollander_7T dataset (2 based on criterion 1 and 1 on criterion 2). Five subjects were excluded from the Isherwood_7T dataset (2 based on criterion 1, 1 on criterion 2, and 2 on criterion 4). Two subjects were excluded from the Miletic_7T dataset (1 based on criterion 2 and 1 on criterion 4). Note that some participants in the Poldrack_3T study failed to meet multiple inclusion criteria.”

      (4) The Method section included very exhaustive descriptions of the neuroimaging processing pipeline, which was appreciated. However, it seems that much of what is presented is not actually used in any of the analyses. For example, it seems that "functional data preprocessing" section may be fMRIPrep boilerplate, which again is fine, but I think it would help to clarify that much of the preprocessing was not used in any part of the analysis pipeline for any results. For example, at first blush, I thought the authors were using global signal regression, but after a more careful examination, I believe that they are only computing global signals but never using them. Similarly with tCompCor seemingly being computed but not used. If possible, I would recommend that the authors share code that instantiates their behavioral and neuroimaging analysis pipeline so that any confusion about what was actually done could be programmatically verified. At a minimum, I would recommend more clearly distinguishing the pipeline steps that actually went into any presented analyses.

      We thank the reviewer for finding this inconsistency. The methods section indeed uses the fMRIprep boilerplate text, which we included so to be as accurate as possible when describing the preprocessing steps taken. While we believe leaving the exact boilerplate text that fMRIprep gives us is the most accurate method to show our preprocessing, we have adapted some of the text to clarify which computations were not used in the subsequent analysis. As a side-note, for future reference, we’d like to add that the fmriprep authors expressly recommend users to report the boilerplate completely and unaltered, and as such, we believe this may become a recurring issue (page 7).

      “While many regressors were computed in the preprocessing of the fMRI data, not all were used in the subsequent analysis. The exact regressors used for the analysis can be found above. For example, tCompCor and global signals were calculated in our generic preprocessing pipeline but not part of the analysis. The code used for preprocessing and analysis can be found in the data and code availability statement.”

      (5) What does it mean for the Poldrack_3T to have N/A for SSD range? Please clarify. 

      Thank you for pointing out this omission. We had not yet found the possible SSD range for this study. We have replaced this value with the correct value (0 – 1000 ms).

      (6) The SSD range of 0-2000ms for deHollander_7T and Miletic_7T seems very high. Was this limit ever reached or even approached? SSD distributions could be a useful addition to the supplement. 

      Thank you for also bringing this mistake to light. We had accidentally placed the max trial duration in these fields instead of the max allowable SSD value. We have replaced the correct value (0 – 900 ms).

      (7) The author says "In addition, median go RTs did not correlate with mean SSRTs within datasets (Aron_3T: r = .411, p = .10, BF = 1.41; Poldrack_3T: r = .011, p = .91, BF = .23; deHollander_7T: r = -.30, p = .09, BF = 1.30; Isherwood_7T: r = .13, p = .65, BF = .57; Miletic_7T: r = .37, p = .19, BF = 1.02), indicating independence between the stop and go processes, an important assumption of the horse-race model (Logan & Cowan, 1984)." However, the independent race model assumes context independence (the finishing time of the go process is not affected by the presence of the stop process) and stochastic independence (the duration of the go and stop processes are independent on a given trial). This analysis does not seem to evaluate either of these forms of independence, as it correlates RT and SSRT across subjects, so it was unclear how this analysis evaluated either of the types of independence that are assumed by the independent race model. Please clarify or remove. 

      Thank you for this comment. We realize that this analysis indeed does not evaluate either context or stochastic independence and therefore we have removed this from the manuscript.

      (8) The RTs in Isherwood_7T are considerably slower than the other studies, even though the go stimulus+response is the same (very simple) stimulus-response mapping from arrows to button presses. Is there any difference in procedure or stimuli that might explain this difference? It is the only study with a visual stop signal, but to my knowledge, there is no work suggesting visual stop signals encourage more proactive slowing. If possible, I think a brief discussion of the unusually slow RTs in Isherwood_7T would be useful. 

      We have included the following text in the manuscript to reflect this observed difference in RT between the Isherwood_7T dataset and the other datasets (page 9).

      “Longer RTs were found in the Isherwood_7T dataset in comparison to the four other datasets. The only difference in procedure in the Isherwood_7T dataset is the use of a visual stop signal as opposed to an auditory stop signal. This RT difference is consistent with previous research, where auditory stop signals and visual go stimuli have been associated with faster RTs compared to unimodal visual presentation (Carrillo-de-la-Peña et al., 2019; Weber et al., 2024). The mean SSRTs and probability of stopping are within normal range, indicating that participants understood the task and responded in the expected manner.”

      (9) When the authors included both 3T and 7T data, I thought they were preparing to evaluate the effect of magnet strength on stop networks, but they didn't do this analysis. Is this because the authors believe there is insufficient power? It seems that this could be an interesting exploratory analysis that could improve the paper.

      We thank the reviewer for this interesting comment. As our dataset sample contains only two 3T and three 7T datasets we indeed believe there is insufficient power to warrant such an analysis. In addition, we wanted the focus of this paper to be how fMRI examines the SST in general, and not differences between acquisition methods. With a greater number of datasets with different imaging parameters (especially TE or resolution) in addition to field strength, we agree such an analysis would be interesting, although beyond the scope of this article.

      (10) The authors evaluate smoothing and it seems that the conclusion that they want to come to is that with a larger smoothing kernel, the results in the stop networks bleed into surrounding areas, producing false positive activity. However, in the absence of a ground truth of the true contributions of these areas, it seems that an alternative interpretation of the results is that the denser maps when using a larger smoothing kernel could be closer to "true" activation, with the maps using a smaller smoothing kernel missing some true activity. It seems worth entertaining these two possible interpretations for the smoothing results unless there is clear reason to conclude that the smoothed results are producing false positive activity. 

      We agree with the view of the reviewer on the interpretation of the smoothing results. We indeed cannot rule this out as a possible interpretation of the results, due to a lack of ground truth. We have added text to the article to reflect this view and discuss the types of errors we can expect for both smaller and larger smoothing kernels (page 15).

      “In the absence of a ground truth, we are not able to fully justify the use of either larger or smaller kernels to analyse such data. On the one hand, aberrantly large smoothing kernels could lead to false positives in activation profiles, due to bleeding of observed activation into surrounding tissues. On the other side, too little smoothing could lead to false negatives, missing some true activity in surrounding regions. While we cannot concretely validate either choice, it should be noted that there is lower spatial uncertainty in the subcortex compared to the cortex, due to the lower anatomical variability. False positives from smoothing spatially unmatched signal, are more likely than false negatives. It may be more prudent for studies to use a range of smoothing kernels, to assess the robustness of their fMRI activation profiles.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      General response:

      We thank all the reviewers for their detailed reviews.

      All reviewers made a number of valuable comments, in particular by highlighting several points that would benefit from additional clarifications and discussion. We really appreciate the time and effort that went into the reviews. We have updated the paper to reflect the changes we have made in response to the reviewers' comments (largely by including more discussion regarding the model limitations and the effect of various modeling choices). We have also included several new supplementary figures (S7, S8, S9, S10) that provide further details of the model behavior, and show the effect of changing some of the terms in the cost. Below, we go through the individual comments, and highlight the places in which we have made changes to address the reviewers’ comments.

      Reviewer 1:

      Thank you for your review and pointing out multiple things to be discussed and clarified! Below, we go through the various limitations you pointed out and refer to the places where we have tried to address them.

      (1) It's important to keep in mind that this work involves simplified models of the motor system, and often the terminology for 'motor cortex' and 'models of motor cortex' are used interchangeably, which may mislead some readers. Similarly, the introduction fails in many cases to state what model system is being discussed (e.g. line 14, line 29, line 31), even though these span humans, monkeys, mice, and simulations, which all differ in crucial ways that cannot always be lumped together.

      That is a good point. We have clarified this in the text (Introduction and Discussion), to highlight the fact that our model isn’t necessarily meant to just capture M1. We have also updated the introduction to make it more clear which species the experiments which motivate our investigation were performed in.

      (2) At multiple points in the manuscript thalamic inputs during movement (in mice) is used as a motivation for examining the role of preparation. However, there are other more salient motivations, such as delayed sensory feedback from the limb and vision arriving in the motor cortex, as well as ongoing control signals from other areas such as the premotor cortex.

      Yes – the motivation for thalamic inputs came from the fact that those have specifically been shown to be necessary for accurate movement generation in mice. However, it is true that the inputs in our model are meant to capture any signals external to the dynamical system modeled, and as such are likely to represent a mixture of sensory signals, and feedback from other areas. We have clarified this in the Discussion, and have added this additional motivation in the Introduction.

      (3) Describing the main task in this work as a delayed reaching task is not justified without caveats (by the authors' own admission: line 687), since each network is optimized with a fixed delay period length. Although this is mentioned to the reader, it's not clear enough that the dynamics observed during the delay period will not resemble those in the motor cortex for typical delayed reaching tasks.

      Yes, we completely agree that the terminology might be confusing. While the task we are modeling is a delayed reaching task, it does differ from the usual setting since the network has knowledge of the delay period, and that is indeed a caveat of the model. We have added a brief paragraph just after the description of the optimal control objective to highlight this limitation.

      We have also performed additional simulations using two different variants of a model-predictive control approach that allow us to relax the assumption that the go-cue time is known in advance. We show that these modifications of the optimal controller yield results that remain consistent with our main conclusions, and can in fact in some settings lead to preparatory activity plateaus during the preparation epoch as often found in monkey M1 (e.g in Elsayed et al. 2016). We have modified the Discussion to explain these results and their limitations, which are summarized in a new Supplementary Figure (S9).

      (4) A number of simplifications in the model may have crucial consequences for interpretation.

      a) Even following the toy examples in Figure 4, all the models in Figure 5 are linear, which may limit the generalisability of the findings.

      While we agree that linear models may be too simplistic, much prior analyses of M1 data suggest that it is often good enough to capture key aspects of M1 dynamics; for example, the generative model underlying jPCA is linear, and Sussillo et al. (2015) showed that the internal activity of nonlinear RNN models trained to reproduce EMG data aligned best with M1 activity when heavily regularized; in this regime, the RNN dynamics were close to linear. Nevertheless, this linearity assumption is indeed convenient from a modeling viewpoint: the optimal control problem is more easily solved for linear network dynamics and the optimal trajectories are more consistent across networks. Indeed, we had originally attempted to perform the analyses of Figure 5 in the nonlinear setting, but found that while the results were overall similar to what we report in the linear regime, iLQR was occasionally trapped into local minimal, resulting in more variable results especially for inhibition-stabilized network in the strongly connected end of the spectrum. Finally, Figure 5 is primarily meant to explore to what extent motor preparation can be predicted from basic linear control-theoretic properties of the Jacobian of the dynamics; in this regard, it made sense to work with linear RNNs (for which the Jacobian is constant).

      b) Crucially, there is no delayed sensory feedback in the model from the plant. Although this simplification is in some ways a strength, this decision allows networks to avoid having to deal with delayed feedback, which is a known component of closed-loop motor control and of motor cortex inputs and will have a large impact on the control policy.

      This comment resonates well with Reviewer 3's remark regarding the autonomous nature (or not) of M1 during movement. Rather than thinking of our RNN models as anatomically confined models of M1 alone, we think of them as models of the dynamics which M1 implements possibly as part of a broader network involving “inter-area loops and (at some latency) sensory feedback”, and whose state appears to be near-fully decodable from M1 activity alone. We have added a paragraph of Discussion on this important point.

      (5) A key feature determining the usefulness of preparation is the direction of the readout dimension. However, all readouts had a similar structure (random Gaussian initialization). Therefore, it would be useful to have more discussion regarding how the structure of the output connectivity would affect preparation, since the motor cortex certainly does not follow this output scheme.

      We agree with this limitation of our model — indeed one key message of Figure 4 is that the degree of reliance on preparatory inputs depends strongly on how the dynamics align with the readout. However, this strong dependence is somewhat specific to low-dimensional models; in higher-dimensional models (most of our paper), one expects that any random readout matrix C will pick out activity dimensions in the RNN that are sufficiently aligned with the most controllable directions of the dynamics to encourage preparation.

      We did consider optimizing C away (which required differentiating through the iLQR optimizer, which is possible but very costly), but the question inevitably arises what exactly should C be optimized for, and under what constraints (e.g fixed norm or not). One possibility is to optimize C with respect to the same control objective that the control inputs are optimized for, and constrain its norm (otherwise, inputs to the M1 model, and its internal activity, could become arbitrarily small as C can grow to compensate). We performed this experiment (new Supplementary Figure S7) and obtained a similar preparation index; there was one notable difference, namely that the optimized readout modes led to greater observability compared to a random readout; thus, the same amount of “muscle energy” required for a given movement could now be produced by a smaller initial condition. In turn, this led to smaller control inputs, consistent with a lower control cost overall.

      Whilst we could have systematically optimized C away, we reasoned that (i) it is computationally expensive, and (ii) the way M1 affects downstream effectors is presumably “optimized” for much richer motor tasks than simple 2D reaching, such that optimizing C for a fixed set of simple reaches could lead to misleading conclusions. We therefore decided to stick with random readouts.

      Additional comments :

      (1) The choice of cost function seems very important. Is it? For example, penalising the square of u(t) may produce very different results than penalising the absolute value.

      Yes, the choice of cost function does affect the results, at least qualitatively. The absolute value of the inputs is a challenging cost to use, as iLQR relies on a local quadratic approximation of the cost function. However, we have included additional experiments in which we penalized the squared derivative of the inputs (Supplementary Figure S8; see also our response to Reviewer 3's suggestion on this topic), and we do see differences in the qualitative behavior of the model (though the main takeaway, i.e. the reliance on preparation, continues to hold). This is now referred to and discussed in the Discussion section.

      (2) In future work it would be useful to consider the role of spinal networks, which are known to contribute to preparation in some cases (e.g. Prut and Fetz, 1999).

      (3) The control signal magnitude is penalised, but not the output torque magnitude, which highlights the fact that control in the model is quite different from muscle control, where co-contraction would be a possibility and therefore a penalty of muscle activation would be necessary. Future work should consider the role of these differences in control policy.

      Thank you for pointing us to this reference! Regarding both of these concerns, we agree that the model could be greatly improved and made more realistic in future work (another avenue for this would be to consider a more realistic biophysical model, e.g. using the MotorNet library). We hope that the current Discussion, which highlights the various limitations of our modeling choices, makes it clear that a lot of these choices could easily be modified depending on the specific assumptions/investigation being performed.

      Reviewer 2:

      Thank you for your positive review! We very much agree with the limitations you pointed out, some of which overlapped with the comments of the other reviewers. We have done our best to address them through additional discussion and new supplementary figures. We briefly highlight below where those changes can be found.

      (1) Though the optimal control theory framework is ideal to determine inputs that minimize output error while regularizing the input norm, it however cannot easily account for some other varied types of objectives especially those that may lead to a complex optimization landscape. For instance, the reusability of parts of the circuit, sparse use of additional neurons when learning many movements, and ease of planning (especially under uncertainty about when to start the movement), may be alternative or additional reasons that could help explain the preparatory activity observed in the brain. It is interesting to note that inputs that optimize the objective chosen by the authors arguably lead to a trade-off in terms of other desirable objectives. Specifically, the inputs the authors derive are time-dependent, so a recurrent network would be needed to produce them and it may not be easy to interpolate between them to drive new movement variants. In addition, these inputs depend on the desired time of output and therefore make it difficult to plan, e.g. in circumstances when timing should be decided depending on sensory signals. Finally, these inputs are specific to the full movement chain that will unfold, so they do not permit reuse of the inputs e.g. in movement sequences of different orders.

      Yes, that is a good point! We have incorporated further Discussion related to this point. We have additionally included a new example in which we regularize the temporal complexity of the inputs (see also our response to Reviewer 3's suggestion on this topic), which leads to more slowly varying inputs, and may indeed represent a more realistic constraint and lead to simpler inputs that can more easily be interpolated between. We also agree that uncertainty about the upcoming go cue may play an important role in the strategy adopted by the animals. While we have not performed an extensive investigation of the topic, we have included a Supplementary Figure (S9) in which we used Model Predictive Control to investigate the effect of planning under uncertainty about the go cue arrival time. We hope that this will give the reader a better sense of what sort of model extensions are possible within our framework.

      (2) Relatedly, if the motor circuits were to balance different types of objectives, the activity and inputs occurring before each movement may be broken down into different categories that may each specialize into one objective. For instance, previous work (Kaufman et al. eNeuron 2016, Iganaki et al., Cell 2022, Zimnik and Churchland, Nature Neuroscience 2021) has suggested that inputs occurring before the movement could be broken down into preparatory inputs 'stricto sensu' - relating to the planned characteristics of the movement - and a trigger signal, relating to the transition from planning to execution - irrespective of whether the movement is internally timed or triggered by an external event. The current work does not address which type(s) of early input may be labeled as 'preparatory' or may be thought of as a part of 'planning' computations.

      Yes, our model does indeed treat inputs in a very general way, and does not distinguish between the different types of processes they may be composed of. This is partly because we do not explicitly model where the inputs come from, such that our inputs likely englobe multiple processes. We have added discussion related to this point.

      (3) While the authors rightly point out some similarities between the inputs that they derive and observed preparatory activity in the brain, notably during motor sequences, there are also some differences. For instance, while both the derived inputs and the data show two peaks during sequences, the data reproduced from Zimnik and Churchland show preparatory inputs that have a very asymmetric shape that really plummets before the start of the next movement, whereas the derived inputs have larger amplitude during the movement period - especially for the second movement of the sequence. In addition, the data show trigger-like signals before each of the two reaches. Finally, while the data show a very high correlation between the pattern of preparatory activity of the second reach in the double reach and compound reach conditions, the derived inputs appear to be more different between the two conditions. Note that the data would be consistent with separate planning of the two reaches even in the compound reach condition, as well as the re-use of the preparatory input between the compound and double reach conditions. Therefore, different motor sequence datasets - notably, those that would show even more coarticulation between submovements - may be more promising to find a tight match between the data and the author's inputs. Further analyses in these datasets could help determine whether the coarticulation could be due to simple filtering by the circuits and muscles downstream of M1, planning of movements with adjusted curvature to mitigate the work performed by the muscles while permitting some amount of re-use across different sequences, or - as suggested by the authors - inputs fully tailored to one specific movement sequence that maximize accuracy and minimize the M1 input magnitude.

      Regarding the exact shape of the occupancy plots, it is important to note that some of the more qualitative aspects (e.g the relative height of the two peaks) will change if we change the parameters of the cost function. Right now, we have chosen the parameters to ensure that both reaches would be performed at roughly the same speed (as a way to very loosely constrain the parameters based on the observed behavior). However, small changes to the hyperparameters can lead to changes in the model output (e.g one of the two consecutive reaches being performed using greater acceleration than the other), and since our biophysical model is fairly simple, changes in the behavior are directly reflected in the network activity. Essentially, what this means is that while the double occupancy is a consistent feature of the model, the exact shape of the peaks is more sensitive to hyperparameters, and we do not wish to draw any strong conclusions from them, given the simplicity of the biophysical model. However, we do agree that our model exhibits some differences with the data. As discussed above, we have included additional discussion regarding the potential existence of separate inputs for planning vs triggering the movement in the context of single reaches.

      Overall, we are excited about the suggestions made by the Reviewer here about using our approach to analyze other motor sequence datasets, but we think that in order to do this properly, one would need to adopt a more realistic musculo-skeletal model (such as one provided by MotorNet).

      (4) Though iLQR is a powerful optimization method to find inputs optimizing the author's cost function, it also has some limitations. First, given that it relies on a linearization of the dynamics at each timestep, it has a limited ability to leverage potential advantages of nonlinearities in the dynamics. Second, the iLQR algorithm is not a biologically plausible learning rule and therefore it might be difficult for the brain to learn to produce the inputs that it finds. It remains unclear whether using alternative algorithms with different limitations - for instance, using variants of BPTT to train a separate RNN to produce the inputs in question - could impact some of the results.

      We agree that our choice of iLQR has limitations: while it offers the advantage of convergence guarantees, it does indeed restrict the choice of cost function and dynamics that we can use. We have now included extensive discussion of how the modeling choices affect our results.

      We do not view the lack of biological plausibility of iLQR as an issue, as the results are agnostic to the algorithm used for optimization. However, we agree that any structure imposed on the inputs (e.g by enforcing them to be the output of a self-contained dynamical system) would likely alter the results. A potentially interesting extension of our model would be to do just what the reviewer suggested, and try to learn a network that can generate the optimal inputs. However, this is outside the scope of our investigation, as it would then lead to new questions (e.g what brain region would that other RNN represent?).

      (5) Under the objective considered by the authors, the amount of input occurring before the movement might be impacted by the presence of online sensory signals for closed-loop control. It is therefore an open question whether the objective and network characteristics suggested by the authors could also explain the presence of preparatory activity before e.g. grasping movements that are thought to be more sensory-driven (Meirhaeghe et al., Cell Reports 2023).

      It is true that we aren’t currently modeling sensory signals explicitly. However, some of the optimal inputs we infer may be capturing upstream information which could englobe some sensory information. This is currently unclear, and would likely depend on how exactly the model is specified. We have added new discussion to emphasize that our dynamics should not be understood as just representing M1, but more general circuits whose state can be decoded from M1.

      Reviewer #2 (Recommendations For The Authors):

      Additionally, thank you for pointing out various typos in the manuscript, we have fixed those!

      Reviewer 3:

      Thank you very much for your review, which makes a lot of very insightful points, and raises several interesting questions. In summary, we very much agree with the limitations you pointed out. In particular, the choice of input cost is something we had previously discussed, but we had found it challenging to decide on what a reasonable cost for “complexity” could be. Following your comment, we have however added a first attempt at penalizing “temporal complexity”, which shows promising behavior. We have only included those additional analyses as supplementary figures, and we have included new discussion, which hopefully highlights what we meant by the different model components, and how the model behavior may change as we vary some of our choices. We hope this can be informative for future models that may use a similar approach. Below, we highlight the changes that we have made to address your comments.

      The main limitation of the study is that it focuses exclusively on one specific constraint - magnitude - that could limit motor-cortex inputs. This isn't unreasonable, but other constraints are at least as likely, if less mathematically tractable. The basic results of this study will probably be robust with regard such issues - generally speaking, any constraint on what can be delivered during execution will favor the strategy of preparing - but this robustness cuts both ways. It isn't clear that the constraint used in the present study - minimizing upstream energy costs - is the one that really matters. Upstream areas are likely to be limited in a variety of ways, including the complexity of inputs they can deliver. Indeed, one generally assumes that there are things that motor cortex can do that upstream areas can't do, which is where the real limitations should come from. Yet in the interest of a tractable cost function, the authors have built a system where motor cortex actually doesn't do anything that couldn't be done equally well by its inputs. The system might actually be better off if motor cortex were removed. About the only thing that motor cortex appears to contribute is some amplification, which is 'good' from the standpoint of the cost function (inputs can be smaller) but hardly satisfying from a scientific standpoint.

      The use of a term that punishes the squared magnitude of control signals has a long history, both because it creates mathematical tractability and because it (somewhat) maps onto the idea that one should minimize the energy expended by muscles and the possibility of damaging them with large inputs. One could make a case that those things apply to neural activity as well, and while that isn't unreasonable, it is far from clear whether this is actually true (and if it were, why punish the square if you are concerned about ATP expenditure?). Even if neural activity magnitude an important cost, any costs should pertain not just to inputs but to motor cortex activity itself. I don't think the authors really wish to propose that squared input magnitude is the key thing to be regularized. Instead, this is simply an easily imposed constraint that is tractable and acts as a stand-in for other forms of regularization / other types of constraints. Put differently, if one could write down the 'true' cost function, it might contain a term related to squared magnitude, but other regularizing terms would by very likely to dominate. Using only squared magnitude is a reasonable way to get started, but there are also ways in which it appears to be limiting the results (see below).

      I would suggest that the study explore this topic a bit. Is it possible to use other forms of regularization? One appealing option is to constrain the complexity of inputs; a long-standing idea is that the role of motor cortex is to take relatively simple inputs and convert them to complex time-evolving inputs suitable for driving outputs. I realize that exploring this idea is not necessarily trivial. The right cost-function term is not clear (should it relate to low-dimensionality across conditions, or to smoothness across time?) and even if it were, it might not produce a convex cost function. Yet while exploring this possibility might be difficult, I think it is important for two reasons.

      First, this study is an elegant exploration of how preparation emerges due to constraints on inputs, but at present that exploration focuses exclusively on one constraint. Second, at present there are a variety of aspects of the model responses that appear somewhat unrealistic. I suspect most of these flow from the fact that while the magnitude of inputs is constrained, their complexity is not (they can control every motor cortex neuron at both low and high frequencies). Because inputs are not complexity-constrained, preparatory activity appears overly complex and never 'settles' into the plateaus that one often sees in data. To be fair, even in data these plateaus are often imperfect, but they are still a very noticeable feature in the response of many neurons. Furthermore, the top PCs usually contain a nice plateau. Yet we never get to see this in the present study. In part this is because the authors never simulate the situation of an unpredictable delay (more on this below) but it also seems to be because preparatory inputs are themselves strongly time-varying. More realistic forms of regularization would likely remedy this.

      That is a very good point, and it mirrors several concerns that we had in the past. While we did focus on the input norm for the sake of simplicity, and because it represents a very natural way to regularize our control solutions, we agree that a “complexity cost” may be better suited to models of brain circuits. We have addressed this in a supplementary investigation. We chose to focus on a cost that penalizes the temporal complexity of the inputs, as ||u(t+1) - u(t)||^2. Note that this required augmenting the state of the model, making the computations quite a bit slower; while it is doable if we only penalize the first temporal derivative, it would not scale well to higher orders.

      Interestingly, we did find that the activity in that setting was somewhat more realistic (see new Supplementary Figure S8), with more sustained inputs and plateauing activity. While we have kept the original model for most of the investigations, the somewhat more realistic nature of the results under that setting suggests that further exploration of penalties of that sort could represent a promising avenue to improve the model.

      We also found the idea of a cost that would ensure low-dimensionality of the inputs across conditions very interesting. However, it is challenging to investigate with iLQR as we perform the optimization separately for each condition; nevertheless, it could be investigated using a different optimizer.

      At present, it is also not clear whether preparation always occurs even with no delay. Given only magnitude-based regularization, it wouldn't necessarily have to be. The authors should perform a subspace-based analysis like that in Figure 6, but for different delay durations. I think it is critical to explore whether the model, like monkeys, uses preparation even for zero-delay trials. At present it might or might not. If not, it may be because of the lack of more realistic constraints on inputs. One might then either need to include more realistic constraints to induce zero-delay preparation, or propose that the brain basically never uses a zero delay (it always delays the internal go cue after the preparatory inputs) and that this is a mechanism separate from that being modeled.

      I agree with the authors that the present version of the model, where optimization knows the exact time of movement onset, produces a reasonably realistic timecourse of preparation when compared to data from self-paced movements. At the same time, most readers will want to see that the model can produce realistic looking preparatory activity when presented with an unpredictable delay. I realize this may be an optimization nightmare, but there are probably ways to trick the model into optimizing to move soon, but then forcing it to wait (which is actually what monkeys are probably doing). Doing so would allow the model to produce preparation under the circumstances where most studies have examined it. In some ways this is just window-dressing (showing people something in a format they are used to and can digest) but it is actually more than that, because it would show that the model can produce a reasonable plateau of sustained preparation. At present it isn't clear it can do this, for the reasons noted above. If it can't, regularizing complexity might help (and even if this can't be shown, it could be discussed).

      In summary, I found this to be a very strong study overall, with a conceptually timely message that was well-explained and nicely documented by thorough simulations. I think it is critical to perform the test, noted above, of examining preparatory subspace activity across a range of delay durations (including zero) to see whether preparation endures as it does empirically. I think the issue of a more realistic cost function is also important, both in terms of the conceptual message and in terms of inducing the model to produce more realistic activity. Conceptually it matters because I don't think the central message should be 'preparation reduces upstream ATP usage by allowing motor cortex to be an amplifier'. I think the central message the authors wish to convey is that constraints on inputs make preparation a good strategy. Many of those constraints likely relate to the fact that upstream areas can't do things that motor cortex can do (else you wouldn't need a motor cortex) and it would be good if regularization reflected that assumption. Furthermore, additional forms of regularization would likely improve the realism of model responses, in ways that matter both aesthetically and conceptually. Yet while I think this is an important issue, it is also a deep and tricky one, and I think the authors need considerable leeway in how they address it. Many of the cost-function terms one might want to use may be intractable. The authors may have to do what makes sense given technical limitations. If some things can't be done technically, they may need to be addressed in words or via some other sort of non-optimization-based simulation.

      Specific comments

      As noted above, it would be good to show that preparatory subspace activity occurs similarly across delay durations. It actually might not, at present. For a zero ms delay, the simple magnitude-based regularization may be insufficient to induce preparation. If so, then the authors would either have to argue that a zero delay is actually never used internally (which is a reasonable argument) or show that other forms of regularization can induce zero-delay preparation.

      Yes, that is a very interesting analysis to perform, which we had not considered before! When investigating this, we found that the zero-delay strategy does not rely on preparation in the same way as is seen in the monkeys. This seems to be a reflection of the fact that our “Go cue” corresponds to an “internal” go cue which would likely come after the true, “external go cue” – such that we would indeed never actually be in the zero delay setting. This is not something we had addressed (or really considered) before, although we had tried to ensure we referred to “delta prep” as the duration of the preparatory period but not necessarily the delay period. We have now included more discussion on this topic, as well as a new Supplementary Figure S10.

      I agree with the authors that prior modeling work was limited by assuming the inputs to M1, which meant that prior work couldn't address the deep issue (tackled here) of why there should be any preparatory inputs at all. At the same time, the ability to hand-select inputs did provide some advantages. A strong assumption of prior work is that the inputs are 'simple', such that motor cortex must perform meaningful computations to convert them to outputs. This matters because if inputs can be anything, then they can just be the final outputs themselves, and motor cortex would have no job to do. Thus, prior work tried to assume the simplest inputs possible to motor cortex that could still explain the data. Most likely this went too far in the 'simple' direction, yet aspects of the simplicity were important for endowing responses with realistic properties. One such property is a large condition-invariant response just before movement onset. This is a very robust aspect of the data, and is explained by the assumption of a simple trigger signal that conveys information about when to move but is otherwise invariant to condition. Note that this is an implicit form of regularization, and one very different from that used in the present study: the input is allowed to be large, but constrained to be simple. Preparatory inputs are similarly constrained to be simple in the sense that they carry only information about which condition should be executed, but otherwise have little temporal structure. Arguably this produces slightly too simple preparatory-period responses, but the present study appears to go too far in the opposite direction. I would suggest that the authors do what they can to address these issue via simulations and/or discussion. I think it is fine if the conclusion is that there exist many constraints that tend to favor preparation, and that regularizing magnitude is just one easy way of demonstrating that. Ideally, other constraints would be explored. But even if they can't be, there should be some discussion of what is missing - preparatory plateaus, a realistic condition-invariant signal tied to movement onset - under the present modeling assumptions.

      As described above, we have now included two additional figures. In the first one (S8, already discussed above), we used a temporal smoothness prior, and we indeed get slightly more realistic activity plateaus. In a second supplementary figure (S9), we have also considered using model predictive control (MPC) to optimize the inputs under an uncertain go cue arrival time. There, we found that removing the assumption that the delay period is known came with new challenges: in particular, it requires the specification of a “mental model” of when the Go cue will arrive. While it is reasonable to expect that monkeys will have a prior over the go time arrival cue that will be shaped by the design of the experiment, some assumptions must be made about the utility functions that should be used to weigh this prior. For instance, if we imagine that monkeys carry a model of the possible arrival time of the go cue that is updated online, they could nonetheless act differently based on this information, for instance by either preparing so as to be ready for the earliest go cue possible or alternatively to be ready for the average go cue. This will likely depend on the exact task design and reward/penalty structure. Here, we added simulations with those two cases (making simplifying assumptions to make the problem tractable/solvable using model predictive control), and found that the “earliest preparation” strategy gives rise to more realistic plateauing activity, while the model where planning is done for the “most likely go time” does not. We suspect that more realistic activity patterns could be obtained by e.g combining this framework with the temporal smoothness cost. However, the main point we wished to make with this new supplementary figure is that it is possible to model the task in a slightly more realistic way (although here it comes at the cost of additional model assumptions). We have now added more discussion related to those points. Note that we have kept our analyses on these new models to a minimum, as the main takeaway we wish to convey from them is that most components of the model could be modified/made more realistic. This would impact the qualitative behavior of the system and match to data but – in the examples we have so far considered – does not appear to modify the general strategy of networks relying on preparation.

      On line 161, and in a few other places, the authors cite prior work as arguing for "autonomous internal dynamics in M1". I think it is worth being careful here because most of that work specifically stated that the dynamics are likely not internal to M1, and presumably involve inter-area loops and (at some latency) sensory feedback. The real claim of such work is that one can observe most of the key state variables in M1, such that there are periods of time where the dynamics are reasonably approximated as autonomous from a mathematical standpoint. This means that you can estimate the state from M1, and then there is some function that predicts the future state. This formal definition of autonomous shouldn't be conflated with an anatomical definition.

      Yes, that is a good point, thank you for making it so clearly! Indeed, as previous work, we do not think of our “M1 dynamics” as being internal to M1, but they may instead include sensory feedback / inter-area loops, which we summarize into the connectivity, that we chose to have dynamics that qualitatively resemble data. We have now incorporated more discussion regarding what exactly the dynamics in our model represent.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife assessment 

      Dasgupta and colleagues make a valuable contribution to the understanding how the guidance factor Sema7a promotes connections between mechanosensory hair cells and afferent neurons of the zebrafish lateral line system. The authors provide solid evidence that loss of Sema7a function results in fewer contacts between hair cells and afferents through comprehensive quantitative analysis. Additional work is needed to distinguish the effects of different isoforms of Sema7a to determine whether there are specific roles of secreted and membrane bound forms. 

      Public Reviews:

      Reviewer #1 (Public Review):

      Dasguta et al. have dissected the role of Sema7a in fine tuning of a sensory microcircuit in the posterior lateral line organ of zebrafish. They attempt to also outline the different roles of a secreted verses membrane-bound form of Sema7a in this process. Using genetic perturbations and axonal network analysis, the authors show that loss of both Sema7a isoforms causes abnormal axon terminal structure with more bare terminals and fewer loops in contact with presynaptic sensory hair cells. Further, they show that loss of Sema7a causes decreased number and size of both the pre- and post-synapse. Finally, they show that overexpression of the secreted form of Sema7a specifically can elicit axon terminal outgrowth to an ectopic Sema7a expressing cell. Together, the analysis of Sema7a loss of function and overexpression on axon arbor structure is fairly thorough and revealed a novel role for Sema7a in axon terminal structure. However, the connection between different isoforms of Sema7a and the axon arborization needs to be substantiated. Furthermore, the effect of loss of Sema7a on the presynaptic cell is not ruled out as a contributing factor to the synaptic and axon structure phenotypes. These issues weaken the claims made by the authors including the statement that they have identified dual roles for the GPI-anchored verses secreted forms of Sema7a on synapse formation and as a chemoattractant for axon arborization respectively. 

      Reviewer #2 (Public Review):

      In this work, Dasgupta et al. investigates the role of Sema7a in the formation of peripheral sensory circuit in the lateral line system of zebrafish. They show that Sema7a protein is present during neuromast maturation and localized, in part, to the base of hair cells (HCs). This would be consistent with pre-synaptic Sema7a mediating formation and/or stabilization of the synapse. They use sema7a loss-of-function strain to show that lateral line sensory terminals display abnormal arborization. They provide highly quantitative analysis of the lateral line terminal arborization to show that a number of specific topological parameters are affected in mutants. Next, they ectopically express a secreted form of Sema7a to show that lateral line terminals can be ectopically attracted to the source. Finally, they also demonstrate that the synaptic assembly is impaired in the sema7a mutant. Overall, the data are of high quality and properly controlled. The availability of Sema7a antibody is a big plus, as it allows to address the endogenous protein localization as well to show the signal absence in the sema7a mutant. The quantification of the arbor topology should be useful to people in the field who are looking at the lateral line as well as other axonal terminals. I think some results are overinterpreted though. The authors state: "Our findings demonstrate that Sema7A functions both as a juxtracrine and as a secreted cue to pattern neural circuitry during sensory organ development." However, they have not actually demonstrated which isoform functions in HCs (also see comments below). In addition, they have to be careful in interpreting their topology analysis, as they cannot separate individual axons. Thus, such analysis can generate artifacts. They can perform additional experiments to address these issues or adjust their interpretations. 

      Reviewer #3 (Public Review):

      The data reported here demonstrate that Sema7a defines the local behavior of growing axons in the developing zebrafish lateral line. The analysis is sophisticated and convincingly demonstrates effects on axon growth and synapse architecture. Collectively, the findings point to the idea that the diffusible form of sema7a may influence how axons grow within the neuromast and that the GPI-linked form of sema7a may subsequently impact how synapses form, though additional work is needed to strongly link each form to its' proposed effect on circuit assembly. 

      The revised manuscript is significantly improved. The authors comprehensively and appropriately addressed most of the reviewers' concerns. In particular, they added evidence that hair cells express both Sema7A isoforms, showed that membrane bound Sema7A does not have long range effects on guidance, demonstrated how axons behave close to ectopic Sema7A, and analyzed other features of the hair cells that revealed no strong phenotypes. The authors also softened the language in many, but not all places. Overall, I am satisfied with the study as a whole. 

      Reviewer #4 (Public Review):

      This study provides direct evidence showing that Sema7a plays a role in the axon growth during the formation of peripheral sensory circuits in the lateral-line system of zebrafish. This is a valuable finding because the molecules for axon growth in hair-cell sensory systems are not well understood. The majority of the experimental evidence is convincing, and the analysis is rigorous. The evidence supporting Sema7a's juxtracrine vs. secreted role and involvement in synapse formation in hair cells is less conclusive. The study will be of interest to cell, molecular and developmental biologists, and sensory neuroscientists. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      In their revised manuscript, Dasgupta et al. have provided further experiments to address the role of Sema7a (sec and GPI-anchored) in regulating axon guidance in the lateral line system. Specifically, the inclusion of the heat shock controls and FM labeling to show hair cell mechanotransduction were crucial to interpretation of the results. However, there are still concerns about the specificity of the results. My primary concern is if the change in axon patterning is specifically due to loss of Sema7a in the mutant hair cells. These animals are morphologically very abnormal and, in the rebuttal, the authors state that hair cell number is reduced. This is not quantified in the manuscript and should be included. 

      Thank you for this suggestion. We have included the data in the manuscript in lines 137-139, in Figure 2—figure supplement 1B, and in the source data for Figure 2 and Figure 2-figure supplements.

      If there is not a function for Sema7a in hair cells themselves, why is the number reduced? 

      The sema7a-/- homozygous mutants are not viable and they die by 6 dpf. The loss of Sema7A protein produce other developmental defects including brain edema and a curved body axis. We believe a slight but not significant decrease in hair cell number may arise from a minute developmental delay in the morphogenesis of the neuromast. We have accordingly quantified our data at three distinct developmental stages-at 2 dpf, 3 dpf, and 4 dpf-and have incorporated them in the revised manuscript.

      Additionally, FM data should be quantified and presented in animals without a transgene in the same excitation/emission spectra for clearer interpretation of the staining.

      We have quantified the intensities of labeling with FM 4-64 styryl dye from the control and the sema7a-/- mutant larvae and incorporated the data in lines 139-146, in Figure 2—figure supplement 1D, and in source data for Figure 2 and Figure 2-figure supplements. We Kept the transgenes to concurrently show the arborization phenotype, hair cell morphology, and the FM 4-64 incorporation between the genotypes. 

      Rescue analysis using the myo6d promotor would allow the authors to ensure that the axon deficits can be rescued by putting Sema7a back into the sensory hair cells. Transient transgenesis could be useful for this approach and would not require the creation of a stable line. This could be done with both forms of Sema7a allowing the true assessment of whether or not the secreted and GPI-anchored form have disparate functions as claimed in lines 418424. 

      Although we recognize the importance of the rescue of the sema7a-/- mutant phenotype with the sema7asec and the sema7aGPI transcripts, it is not possible for us to perform that experiment at the moment, for the first author will leave the lab next week.  However, he plans to continue work on this project as an independent investigator to dissect the individual roles of the transcript variants in specifying the pattern of sensory arborization, a project that includes generation of transcript-specific knockout animals and rescue experiments with stable transgenic fish lines. 

      Other concerns:

      (1) The timeline of the heat shock experiment is confusing to me and, therefore, it makes me question the specificity of those results. Based on the speed of axon outgrowth and the time necessary for transcription and translation after heat shock induction of the transgene, it is unclear to me how the axon growth defects could occur in the timeline provided. Imaging two hours after the start of the heat shock is very rapid and speaks to either an indirect effect of the transgenesis on the axon growth or a leaky promotor/induction paradigm. It is possible I am just misunderstanding the set up but, from what I could gather, the imaging is being done 2 hrs after the start of the heat shock. This should be clarified. 

      The axons of the zebrafish posterior lateral line migrate relatively fast. The pioneering axons migrate at around 120 μm/hour (Sato et. al., 2010) and the follower axons migrate at almost 30-80 μm/hour (Sato et. al., 2010). The heat-shock promoter that we have utilized, hsp70l, is highly effective in inducing gene expression and subsequent protein formation within 30 to 60 mins. We believe an hour of heat shock and an hour of incubation post heat shock is sufficient to induce directed axon migration to a distance that spans from 27 μm to 140 μm. 

      We strongly believe that the directed arborization of the sensory axons towards the Sema7Asec source is not due to an indirect effect of transgenesis or leaky promoter induction, as in all 18 of the injected but not heat-shocked control larvae we did not observe ectopic Sema7Asec expression, and no aberrant projection was formed from the sensory arbor network. We highlight this observation in lines 297-299 and in Figure 4E.

      Sato et. al., 2010: Single-cell analysis of somatotopic map formation in the zebrafish lateral line system. Developmental Dynamics 239:2058–2065, 2010.

      Similarly, it would help to clarify if t(0) in the figure is the onset of the heat shock or onset of imaging two hours after the heat shock is started. 

      The t=0 hour in the Figure 4I denotes the onset of imaging two hours after the heat shock began. We have clarified this in the manuscript in lines 1155-1156.

      (2) In the rebuttal, the line numbers cited do not match up with the appropriate text, I believe.

      We have corrected this and updated the manuscript.

      (3) Some of the supplemental figures are not mentioned in the text, or I could not find them. For example: Figure 1 supplement 2J. 

      Thank you for pointing this. We have corrected the manuscript, and the new information is added in line 114.  

      (4) Table 1 statistics: were these adjusted for multiple comparisons using a bonferroni correction or something similar? This is necessary for statistical significance to be meaningful. 

      We did not adjust the p-values for multiple comparisons because the values correspond to only three or four statistical tests per experiment, strongly indicating the unlikelihood of erroneous significance due solely to multiple tests.

      (5) Figure 1I and 1-S3 - The legend states a positive correlation between axonal signal and sema7A signal. Correlations are 0.5, 0.6, and 0.4 (2,3, 4dpf). This is not a convincing positive correlation. At best this is no to a very weak positive correlation. 

      In lines 122-126 we mention that the basal association of the sensory arbors shows a positive correlation with Sema7A accumulation. We never emphasize on the strength of the correlation. However, a consistent positive correlation at three different developmental stages suggests that progressive Sema7A accumulation at the base of the hair cells may guide the sensory arbors to increasingly associate themselves with the hair cells.    

      Reviewer #2 (Recommendations For The Authors):

      I am a bit disappointed that the authors elected not to experimentally address the issue raised by all reviewers: whether the secreted or membrane bound isoform is active in hair cells. They rather decided to change their interpretation in the text. It is fine, given the eLife review structure. However, that would make the manuscript much stronger. Other issues were adequately addressed through textual changes as well. 

      Although we recognize the importance of the rescue of the sema7a-/- mutant phenotype with the sema7asec and the sema7aGPI transcripts, it is not possible for us to perform that experiment at the moment, for the first author will leave the lab next week.  However, he plans to continue work on this project as an independent investigator to dissect the individual roles of the transcript variants in specifying the pattern of sensory arborization, a project that includes generation of transcript-specific knockout animals and rescue experiments with stable transgenic fish lines. 

      Reviewer #3 (Recommendations For The Authors):

      Overall, I am satisfied with the study as a whole and just have a few minor comments that remain to be addressed. 

      (1) Although the authors say that they added appropriate no plasmid/heatshock-only and plasmid-only/no heatshock controls, these results need to be presented more clearly, as they are separated in the paper and only one was quantified (i.e. 100% of embryos showed no defect). Please just make it clear that no defects were observed in either control for either experiment (both secreted and membrane bound ectopic expression). 

      We have clearly stated this information in lines 297-299 and 343-345.

      (2) Please add a compass to Fig. 1A to indicate the orientation of the neuromast. It would also be helpful to add labels for developmental ages to all of the figures, rather than making the reader look it up in the legend. 

      We have updated the Figure 1A and the corresponding figure legend in lines 882883 . We have denoted the larval age in the figure legends to keep the individual images uncluttered.  

      (3) For the RT-PCR experiments in Figure 1, no negative control was included to show that supporting cell or neuronal genes are not detected in the purified hair cells and v.v. that neither isoform is detected in supporting cells or neurons. I ask only because there is a lot of immune-signal outside of the hair cells and I am curious whether that is secreted or might come from other cell types. For neurons and supporting cells, simply demonstrating absence of Sema7a overall would suffice. 

      We have utilized the transgenic line Tg(myo6b:actb1-EGFP) that expresses the fluorophore GFP specifically in the hair cells of the neuromast. Unfortunately, we do not possess a transgenic line that reliably and specifically labels the support cells in the neuromast. Hence, in our sorting experiment the GFP-negative cells that are collected from the trunk segments of the larvae contain all the non-hair cells including epidermal cells, neuronal cells, and immune cells etc. Such a mixture of varied cellular identity may not serve as a reliable negative control. 

      In Figure 7, we have plotted the normalized expression values of the sema7a gene in the neuromast. The plot clearly depicts that the source of Sema7A is the young and the mature hair cells, not the support cells. We further confirm this observation by

      immunostaining where the Sema7A signal is highly restricted to the hair cells and not in any other cell in the neuromast (Figure 1E). Immunostaining further demonstrates that the lateral line sensory arbors also do not produce the Sema7A protein (Figure 1H; Video 1).

      We agree with the reviewer that there are diverse immune cells, including macrophages in and around the neuromast. These macrophages are dynamic and possess highly ramified structure (Denans et. al., 2022). In all our Sema7A immunostainings, we never observed structures that resemble macrophages. Albeit we cannot confirm that Sema7A is not expressed in a distant immune cell, but we highly doubt that signal coming from immune cells is impacting hair cell innervation by the sensory arbors during homeostatic development.

      Denans et. al., 2022: Nature Communications volume 13, Article number: 5356 (2022).

      (4) In Figure 1, Supplement 4, I do not see the immunogen labeled in blue. 

      We have corrected the figure legend. The immunogenic region of the Sema7A protein is now clearly denoted in the figure legend of Figure 1—figure supplement 4.

      (5) In Figure 2, please add a control image as requested, as that enables direct comparison. There is ample room in the figure. 

      We have updated the Figure 2 and made the suggested change.

      (6) In Figure 2, Supplement 1, the FM4-64 data are not presented in a quantified fashion. Please report at least how many embryos showed reliable uptake and preferably how many hair cells per embryo showed reliable uptake. 

      We have quantified the FM 4-64 intensities in control and sema7a-/- mutant larvae. The new data is added to the manuscript in lines 142-146, 577-579 , and in Figure 2—figure supplement 1D.

      (7) In Figure 3, there seems to be a typo in the figure legend: "mutants in the same larvae" does not make sense to me. 

      We have corrected the error. The modified statement is represented in lines 10671068.

      (8) The text should refer more explicitly to the statistical tests reported in Table 1, i.e. as the results are presented. 

      In lines 1105 and 1109, we clearly state the statistical tests that were performed.

      (9) In Figure 6, Supplement 1, please show the raw data points not just the bar graphs

      We have updated the Figure 6—figure supplement 1.

      (10) Minor point: the authors state that they addressed the distance over which secreted Sema7A may act, but this was not evident to me in the text. Please make this finding clearer.

      We have clarified this information in lines 310-311.

      (11) Finally, the discussion contains a statement that is not supported by the data: "We have discovered dual modes of Sema7A function in vivo." They have discovered evidence that there are two isoforms, that loss of both disrupts connectivity, and that overexpression of only the secreted form can elicit growth from a distance. However, there is no direct evidence that the membrane-bound form is responsible for local effects. It is formally possible still that the phenotypes are a result of dual roles for the secreted form. It is clear that another manuscript is forthcoming that will expand on the role of the transmembrane form, but for this manuscript, the authors should make firm conclusions only about the data presented herein.

      Thank you for this suggestion. We have modified the manuscript in lines 425-434.

      Reviewer #4 (Recommendations For The Authors):

      The authors have made significant changes to the manuscript based on the comments of the reviewers. It is now suitable for publication.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I have no more experiment to ask but the following errors should be corrected prior.

      (1) L. 183-198: Figure 3 panels were erroneously referred in several places.

      This has been corrected.

      (2) L.182-183: description of active/total cell numbers in main text does not match numbers in Figure 3B

      This has been corrected.

      (3) L.185-187: Figure 3C indicates significant changes of rheobase only between DMI+6OHDA versus 6-OHDA group. Statistical comparison between sham and DMI+6-OHDA was not provided, which may change the interpretation of the data in Figure 3B, C: "...these findings suggest that the 6-OHDA induced lesion of midbrain dopaminergic neurons evoked the increased firing of DRN5-HT neurons" (L.185-187).

      We thank the reviewer for highlighting this point. Indeed, a Kruskal-Wallis test comparing all three groups revealed a significantly lower rheobase in DMI + 6-OHDA mice compared to Sham while the 6-OHDA injected group was not affected. Therefore, the increased firing of DRN5-HT neurons recorded in 6-OHDA injected mice pretreated with DMI also critically involves the noradrenergic system. This is now included in the revised results section of the manuscript (lines 190-197).

      (4) L. 188: The description of "While the excitability of DRN5-HT neurons was not affected in 6-OHDA mice..." does not match the clearly increased cellular excitability shown in Figure 3G-I.

      This has been corrected and we are now referring more specifically to the rheobase, which is not affected in 6-OHDA mice.

      (5) Mann-Whitney tests were inappropriately used for statistics in Figures 3-6: Multiple comparisons (>=3 groups) should be performed one-way ANOVA or the Kruskal-Wallis test for nonparametric data.

      We thank the reviewer for the comment. We now applied the one-way ANOVA/KruskalWallis tests and the text has been modified accordingly.

      (6) It seems that the data points in some panels of Figure 4C represented a cell, but others were averaged within a mouse (Figure 4D). This needs to be clarified or corrected.

      None of the data in Figure 4 was averaged within a mouse. In the the type of chosen graph (aligned dot plot) the equal data are overlapped.

      Reviewer #2 (Recommendations For The Authors):

      The authors' revised manuscript has addressed most of my concerns. However, I'm not convinced by the authors' claim regarding Figure 5B. It would be great if the authors at least discuss in their manuscript why the DMI pretreatment group alone, not the 6OHDA group, significantly lowers the firing rate of DRN (DA) and increases the Erest of DRN (DA), compared to the sham-lesion group. These statistically significant data are not explained at all in the revised manuscript (This effect can be explained by the neuroprotection of NA-neurons from 6-OHDA toxicity?).

      We thank the reviewer for this comment. Since using a one-way ANOVA or a KruskalWallis test for comparing the three groups (as suggested by reviewer 1), the changes previously shown in Figure 5B are not significant.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife assessment

      This manuscript represents a cleanly designed experiment for assessing biological motion processing in children (mean age = 9) with and without ADHD. The group differences concerning accuracy in global and local motion processing abilities are solid, but the analyses suggesting dissociable relationships between global and local processing and social skills, age, and IQ are inconclusive. The results are useful in terms of understanding ADHD and the ontogenesis of different components of the processing of biological motion.

      We thank the editors and reviewers for their valuable feedback and constructive comments. We have carefully considered each point raised by the reviewers and made the necessary revisions to the manuscript. Regarding the relationships between global and local BM processing, the accumulated evidence from previous studies has converged on the dissociation of the two BM components, e.g., while global BM processing is susceptible to learning and practice, local BM processing does not show a learning trend (Chang and Troje, 2009; Grossman et al., 2004), and the brain activations in response to local and global BM cues are different (Chang et al., 2018; Duarte et al., 2022). Nevertheless, we concurred with reviewers that the evidence for such dissociation from the current study by itself is not strong enough. Therefore, we have toned down on this point and no longer claimed the dissociation (including the title). Based on the current results, we focused our discussion on the different aspects of BM processing in children with and without ADHD.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The paper presents a nice study investigating the impairments of biological motion perception in individuals with ADHD in comparison with neurotypical controls. Motivated by the idea that there is a relationship between biological motion perception and social capabilities, the authors investigated the impairments of local and global (holistic) biological motion perception, the diagnosis status, and several additional behavioral variables that are affected in ADHS (IQ, social responsiveness, and attention / impulsivity). As well local as global biological motion perception is impaired in ADHD individuals. In addition, the study demonstrates a significant correlation between local biological motion perception skills and the social responsiveness score in the ADHD group, but not in controls. A path analysis in the ADHD group suggests that general performance in biological motion perception is influenced mainly by global biological motion perception performance and attentional and perceptual reasoning skills.

      Strengths:

      It is true that there exists not much work on biological motion perception and ADHD. Therefore, the presented study contributes an interesting new result to the biological motion literature, and adds potentially also new behavioral markers for this clinical group. The design of the study is straightforward and technically sound, and the drawn conclusions are supported by the presented results.

      Thanks for this positive assessment of our work.

      Weaknesses:

      Some of the claims about the relationship between genetic factors and ADHD and the components of biological motion processing have to remain speculative at this point because genetic influences were not explicitly tested in this paper. Specifically, the hypothesis that the perception of human social interaction is critically based on a local mechanism for the detection of asymmetry in foot trajectories of walkers (this is what 'BL-local' really measures), or on the detection of live agents in cluttered scenes seems not very plausible.

      Thanks for these comments. We agree that the relationship between genetic factors and BM perception remains to be further examined, as we did not test the genetic influences in this study. We have deleted relavant discussion about genetics. Based on our results, we discuss the possible mechanisms behind the relationship between local BM processing and social interaction in the revised manuscript as follows:

      “As mentioned above, we found a significant negative correlation between the SRS total score and the accuracy of local BM processing, specifically in the ADHD group. This could be due to decreased visual input related to atypical local BM processing, which further impairs global BM processing. According to the two-process theory of biological motion processing61, local BM cues guide visual attention towards BM stimuli55,62. Consequently, the visual input of BM stimuli increases, facilitating the development of the ability to process global BM cues through learning21,63. The latter is a prerequisite for attributing intentions to others and facilitating social interactions with other individuals20,64,65. Thus, atypical local BM processing may contribute to impaired social interaction through altered visual inputs. Further empirical studies are required to confirm these hypotheses.” (lines 417 - 428)

      Based on my last comments, now the discussion has been changed in a way that tries to justify the speculative claims by citing a lot of other speculative papers, which does not really address the problem. For example, the fact that chicks walk towards biological motion stimuli is interesting. To derive that this verifies a fundamental mechanism in human biological motion processing is extremely questionable, given that birds do not even have a cortex. Taking the argumentation of the authors serious, one would have to assume that the 'Local BM' mechanism is probably located in the mesencephalon in humans, and then would have to interact in some way with social perception differences of ADHD children. To me all this seems to make very strong (over-)claims. I suggest providing a much more modest interpretation of the interesting experimental result, based on what has been really experimentally shown by the authors and closely related other data, rather than providing lots of far-reaching speculations.

      In the same direction, in my view, go claims like 'local BM is an intrinsic trait' (L. 448) , which is not only imprecise (maybe better 'mechanisms of processing of local BM cues') but also rather questionable. Likely, this' local processing of BM' is a lower level mechanisms, located probably in early and mid-levels of the visual cortex, with a possible influence of lower structures. It seems not really plausible that this is related to a classical trait variables in the sense of psychology, like personality, as seems to be suggested here. Also here I suggest a much more moderate and less speculative interpretation of the results.

      We thank the reviewer for pointing out these issues. According to these comments, we have carefully revised the discussion to avoid strong (over-) claims. We have deleted the example of chicks, but substituted with more empirical studies to explain our results. We agree that the Local BM mechanism is probably located in subcortical regions in humans, which were reported by some MRI studies (Chang et al., 2018; Hirai and Senju, 2020; Loula et al., 2005). We have added some evidence that atypical local BM processing may decrease visual inputs related to social information as follows:

      “According to the two-process theory of biological motion processing61, local BM cues guide visual attention towards BM stimuli55,62. Consequently, the visual input of BM stimuli increases, facilitating the development of the ability to process global BM cues through learning21,63. The latter is a prerequisite for attributing intentions to others and facilitating social interactions with other individuals20,64,65. Thus, atypical local BM processing may contribute to impaired social interaction through altered visual inputs.” (lines 421 - 427)

      We have also deleted the clarims of 'local BM is an intrinsic trait' (originally L. 448) and related discussion as it was not conclusive based on the current study.

      Reviewer #2 (Public Review):

      Summary:

      Tian et al. aimed to assess differences in biological motion (BM) perception between children with and without ADHD, as well as relationships to indices of social functioning and possible predictors of BM perception (including demographics, reasoning ability and inattention). In their study, children with ADHD showed poorer performance relative to typically developing children in three tasks measuring local, global, and general BM perception. The authors further observed that across the whole sample, performance in all three BM tasks was negatively correlated with scores on the social responsiveness scale (SRS), whereas within groups a significant relationship to SRS scores was only observed in the ADHD group and for the local BM task. Local and global BM perception showed a dissociation in that global BM processing was predicted by age, while local BM perception was not. Finally, general (local & global combined) BM processing was predicted by age and global BM processing, while reasoning ability mediated the effect of inattention on BM processing.

      Strengths:

      Overall, the manuscript is presented in a clear fashion and methods and materials are presented with sufficient detail so the study could be reproduced by independent researchers. The study uses an innovative, albeit not novel, paradigm to investigate two independent processes underlying BM perception. The results are novel and have the potential to have wide-reaching impact on multiple fields.

      We appreciate the reviewer’s positive feedback very much.

      Weaknesses:

      The manuscript has greatly improved in clarity and methodological considerations in response to the review. There are only a few minor points which deserve the authors' attention:

      When outlining the moviation for the current study, results from studies in ADHD and ASD are used too interchangeably. The authors use a lack of evidence for contributing (psychological/developmental) factors on BM processing in ASD to motivate the present study and refer to evidence for differences between typical and non-typical BM processing using studies in both ASD and ADHD. While there are certainly overlapping features between the two conditions/neurotypes, they are not to be considered identical and may have distinct etiologies, therefore the distinction between the two should be made clearer.

      We thank the reviewer for pointing out this issue. We have removed some unnecessary citations about ASD and referred to studies about social cognition in ADHD to elaborate the motivation of this study:

      “Further exploration of a diverse range of social cognitions (e.g., biological motion perception) can provide a fresh perspective on the impaired social function observed in ADHD. Moreover, recent studies have indicated that the social cognition in ADHD may vary depending on different factors at the cognitive, pathological, or developmental levels, such as general cognitive impairment5, symptoms severity8, or age5. Nevertheless, understanding how these factors relate to social cognitive dysfunction of in ADHD is still in its infancy. Bridging this gap is crucial as it can help depict the developmental trajectory of social cognition and identify effective interventions for impaired social interaction in individuals with ADHD.” (lines 53 - 62)

      In the first/main analysis, is unclear to me why in the revised manuscript the authors changed the statistical method from ANOVA/ANCOVA to independent samples t-tests (unless the latter were only used for post-hoc comparisons, then this needs to be stated). Furthermore, although p-values look robust, for this analysis too it should be indicated whether and how multiple comparison problems were accounted for.

      Thanks for the reviewer’s comments. According to the suggestions from reviewer #3, it may be inapposite to regard gender as a covariate in ANOVA, which may violate the assumptions of ANCOVA. To ensure that gender does not influence the results, firstly, we separated boys and girls on the plots with different coloured individual data points, and there are no signs of a gender effect in their TD group. Secondly, we use t-tests to examine the difference between TD and ADHD groups. Finally, we conducted a subsampling analysis with balanced data, and the results remained consistent.

      In part 1 of the results, we aimed to compare the task accuracies between the TD and ADHD groups in three independent tasks, which assess the participants’ abilities to process three types of BM cues. We assumed that individuals with ADHD show poorer performance in three tasks compared to TD individuals. With regard to that, we consider that multiple comparisons may not be necessary.

      Reviewer #3 (Public Review):

      Strengths:

      The authors present differences between ADHD and TD children in biological motion processing, and this question has not received as much attention as equivalent processing capabilities in autism. They use a task that appears well controlled. They raise some interesting mechanistic possibilities for differences in local and global motion processing, which are distinctions worth exploring. The group differences will therefore be of interest to those studying ADHD, as well as other developmental conditions, and those examining biological motion processing mechanisms in general.

      We appreciate the reviewer’s positive assessment of this work.

      Weaknesses:

      The data are not strong enough to support claims about differences between global and lobal processing wrt social communication skills and age. The mechanistic possibilities for why these abilities may dissociate in such a way are interesting, but the crucial tests of differences between correlations do not present a clear picture. Further empirical work would be needed to test the authors' claims. Specifics:

      The authors state frequently that it was the local BM task that related to social communication skills (SRS) and not the global tasks. However, the results section shows a correlation between SRS and all three tasks. The only difference is that when looking specifically within the ADHD group, the correlation is only significant for the local task. The supplementary materials demonstrate that tests of differences between correlations present an incomplete picture. Currently they have small samples for correlations, so this is unsurprising.

      Thanks for this comment. We agree with the reviewer that the relationship between local and global processing with social communication and age needs more expirical work. Based on our results, there are only possible dissociable roles of local and global BM processing. The accumulated evidence from previous studies has converged on this dissociation, e.g., whild global BM processing is susceptible to learning and practice, local BM processing does not show a learning trend (Chang and Troje, 2009; Grossman et al., 2004), and the brain activations in response to local and global BM cues are different (Chang et al., 2018; Duarte et al., 2022). We concurred with reviewers that the evidence for such dissociation from the current study by itself is not strong enough. Therefore, we have toned down on this point and no longer emphasized the dissociation. Based on the current results, we focused our discussion on the different aspects of BM processing in children with and without ADHD. Future studies with larger sample sizes are needed to confirm this disociable relationship.

      Theoretical assumptions. The authors make some statements about local vs global biological motion processing that should still be made more tentatively. They assume that local processing is specifically genetically whereas global processing is a product of experience. These data in newborn chicks are controversial and confounded - I cannot remember the specifics but I think there an upper vs lower visual field complexity difference here.

      We appreciate the reviewer’s suggestion. We agree that the relationship between genetic factors and BM perception remains to be further examined as we didn’t perform any genetic analysis in the current study. Some speculative papers have been removed, so do the statement about newborn chicks given the controversial and confounded results. We have toned down our claims and povided a moderate interpretation of the results:

      “Sensitivity to local BM cues emerges early in life54,55 and involves rapid processing in the subcortical regions16,56-58. As a basic pre-attentive feature23, local BM cues can guide visual attention spontaneously59,60. In contrary, the ability to process global BM cues is related to slow cortical BM processing and is influenced by many factors such as attention25,26 and visual experience21,51. As mentioned above, we found a significant negative correlation between the SRS total score and the accuracy of local BM processing, specifically in the ADHD group. This could be due to decreased visual input related to atypical local BM processing, which further impairs global BM processing. According to the two-process theory of biological motion processing61, local BM cues guide visual attention towards BM stimuli55,62. Consequently, the visual input of BM stimuli increases, facilitating the development of the ability to process global BM cues through learning21,63. The latter is a prerequisite for attributing intentions to others and facilitating social interactions with other individuals20,64,65. Thus, atypical local BM processing may contribute to impaired social interaction through altered visual inputs.” (lines 413 - 427)

      “Few developmental studies have been conducted on local BM processing. The ability to process local BM cues remained stable and did not exhibit a learning trend21,25. A reasonable interpretation may be that local BM processing is a low-level mechanism, probably performed by the primary visual cortex and subcortical regions such as the superior colliculus, pulvinar, and ventral lateral nucleus14,56,61.” (lines 441- 446)

      Readability. The manuscript needs very careful proofreading and correction for grammar. There are grammatical errors throughout.

      Thank the reviewer for this feedback. We have performed thorough proofreading and corrected grammatical errors throughout the manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I thank the authors for their revisions that address several of the minor points that I raised in my last review. A number of requests are still not sufficiently answered:

      L. 290 ff.: These model 'BM-local = age + gender etc ' is a pretty sloppy notation. I think what is meant that a GLM was used that uses the predictors genderetc. time appropriate beta_i values. This formulas should be corrected or one just says that a GLM was run with the predictors gender

      The same criticism applies to these other models that follow.

      This was corrected.

      However, the corrected text remains sloppy: example: 'BM-locaL = ...' What exacty is 'BM-Local' the accuracy? etc. Here a precise notation shoudl be given that clearly names which variables are used here as predictors and target variables.

      We appreciate the reviewer’s suggestion. We clarified which variables are used in our model and gived them precise notations:

      “Three linear models were built to investigate the contributing factors: (a) ACClocal = β0 + β1 * age + β2 * gender + β3 * FIQ + β4 * QbInattention, (b) ACCglobal = β0 + β1 * age + β2 * gender + β3 * FIQ + β4 * QbInattention, and (c) ACCgeneral = β0 + β1 * age + β2 * gender + β3 * FIQ + β4 * QbInattention + β5 * ACClocal + β6 * ACCglobal. ACClocal, ACCglobal and ACCgeneral refer to the response accuracies of the three tasks in the ADHD group, and QbInattention is the standardised score for sustained attention function.” (lines 337 - 343)

      All these models assume linearity of the combination of the predictors. was this assumption verified?

      We referred to the previous study of BM perception in children. They found main predictor variables, including IQ (Rutherford et al., 2012; Jones et al., 2011) and age (Annaz et al., 2010; van et al., 2016), have a linear relation with the ability of BM processing.

      This answer is insufficient and not convincing. Because a variable Y depends linearly on predictor A and B in some other study, this does not imply that is is also linear in predictor C, or does not show interactions with such predictors in the present study.

      What is needed here is the testing of models with interaction terms and verifying that such models are not better predictors. If authors do not want to do this, they need at least to clearly point out that they made the strong assumption of linearity of their model, which might be wrong and thus be a substantial limitation of their analysis.

      Thanks for the suggestion. We tried to compare each possible mode with and without relative interactions. The results showed that the change of Coefficient of Determination (R-squared, R2) between the two models was not statistically significant.

      L. 296ff.: For model (b) it looks like general BM performance is strongly driven by the predictor global BM performance in the ADHD group. Does the same observation also apply to the controls?

      The same phenomenon was not observed in TD children. We have briefly discussed this point in the Discussion section of the revised manuscript (lines 449 - 459).

      Was such a path analysis also done for the TD subjects or not? If yes, was then also predicted that the variable BM-Global largely and directedly influences the variable BM-General? (The answer refers to the general discussion section, where no such analysis is presented, as far as I understand.)

      Thank you for your comment. We also conduct a path analysis similar to that in the ADHD group. There is no statistically significant mediator effect in the TD group. Please see Figure S3 for complete statistics.

      Reviewer #2 (Recommendations For The Authors):

      (1) Please add public access to the data repository so data availability can be assessed.

      The data analyzed during the study is available at https://osf.io/37p5s/.

      (2) Lines 119-115: The differences observed in ADHD participants in the studies referenced here were relative to what group? The last sentence here also refers to two groups, and it is difficult to gather which specific groups are meant, also because the two references relate to both ADHD and ASD samples. Please clarify.

      The suggestion is well taken. We have clarified the expressions accordingly:

      “Specifically, compared with the typically developing (TD) group, children with ADHD showed reduced activity of motion-sensitive components (N200) while watching biological and scrambled motions, although no behavioural differences were observed. Another study found that children with ADHD performed worse in BM detection with moderate noise ratios than the TD group32.” (lines 100 - 105)

      (3) Line 116: I'm not sure what is meant by 'despite initial indications' - please briefly specify/summarise here why the investigation into BM processing in ADHD is warranted.

      Thank the reviewer for pointing out this issue. We rephrase this part and briefly specify “why the investigation into BM processing in ADHD is warranted”:

      “Despite initial findings about atypical BM perception in ADHD, previous studies on ADHD treated BM perception as a single entity, which may have led to misleading or inconsistent findings28. Hence, it is essential to deconstruct BM processing into multiple components and motion features.” (lines 108 -111)

      (4) Lines 290-293: Please complete the sentence.

      Thank the reviewer for pointing out this issue. Th sentence has been completed:

      “For Task 2 and 3, where children were asked to detect the presence or discriminate the facing direction of the target walker, TD group have higher accuracies than the ADHD group (Task 2 - TD: 0.70 ± 0.12, ADHD: 0.59 ± 0.12, t73 = 3.677, p < 0.001, Cohen's d = 0.861; Task 3 - TD: 0.79 ± 0.12, ADHD: 0.63 ± 0.17, t73 = 4.702, p < 0.001, Cohen's d = 1.100).” (lines 284 - 288)

      Reviewer #3 (Recommendations For The Authors):

      (1) Conclusions concerning differences between the local and global tasks wrt SRS and age (see above). I believe the authors need to reword throughout to reflect that the tests of differences between these crucial correlations did not present a clear picture.

      We have reworded throughout the paper to reflect the inconclusiveness with regard to the relationship between local and global processing with social communication based on this study only. Future studies with larger sample sizes are needed to confirm this conclusion. The mechanism for this dissociable relationship should be validated by more psychologial tests in the future studies.

      (2) I would again tone down the discussion of genetic specification of local processing, given it is highly controversial.

      We thank the reviewer for pointing out the issue. We agree the point about the genetic specification of local processing remains controversial. The interpretation of results about local BM processing has been rephrased. Please refer to our response to the point #2 mentioned.

      (3) The manuscript needs very careful proofreading and grammatical correction throughout.

      Thanks for the suggestion to check the grammar. We have carefully proofread the manuscript to correct grammatical errors

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife assessment

      Following synaptic vesicle fusion events at release sites, vesicle remnants will need to be cleared in order to allow new rounds of vesicle docking and fusion. This fundamental study of Mahapatra and Takahashi examines the role of release site clearance in synaptic transmission during repetitive activity in two types of central synapses, the giant calyx of Held and hippocampal CA1 synapses. The study uses pharmacological approaches to interfere with release site clearance by blocking membrane retrieval (endocytosis). They compare the effects on short-term plasticity with those obtained by pharmacologically inhibiting scaffold protein activity. The data presented make a compelling case for fast endocytosis as necessary for rapid site clearance and vesicle recruitment to active zones. The data reveal an unexpected, fast role for local site clearance in counteracting synaptic depression.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The study examines the role of release site clearance in synaptic transmission during repetitive activity under physiological conditions in two types of central synapses, calyx of Held and hippocampal CA1 synapses. After acute block of endocytosis by pharmacology, deeper synaptic depression or less facilitation was observed in two types of synapses. Acute block of CDC42 and actin polymerization, which possibly inhibits the activity of Intersectin, affected synaptic depression at the calyx synapse, but not at CA1 synapses. The data suggest an unexpected, fast role of the site clearance in counteracting synaptic depression.

      Strengths:

      The study uses acute block of the molecular targets with pharmacology together with precise electrophysiology. The experimental results are clear cut and convincing. The study also examines the physiological roles of the site clearance using action potential-evoked transmission at physiological Ca and physiological temperature at mature animals. This condition has not been examined.

      Weaknesses:

      Pharmacology may have some off-target effects, though acute manipulation should be appreciated and the authors have tried several reagents to verify the overall conclusions.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Mahapatra and Takahashi report on the physiological consequences of pharmacologically blocking either clathrin and dynamin function during compensatory endocytosis or of the cortical actin scaffold both in the calyx of Held synapse and hippocampal boutons in acute slice preparations

      Strengths:

      Although many aspects of these pharmacological interventions have been studied in detail during the past decades, this is a nice comprehensive and comparative study, which reveals some interesting differences between a fast synapse (Calyx of Held) tuned to reliably transmit at several 100 Hz and a more slow hippocampal CA1 synapse. In particular the authors find that acute disturbance of the synaptic actin network leads to a marked frequency-dependent enhancement of synaptic depression in the Calyx, but not in the hippocampal synapse This striking difference between both preparations is the most interesting and novel finding.

      Weaknesses:

      Unfortunately, however, these findings concerning the different consequences of actin depolymerization are not sufficiently discussed in comparison to the literature. My only criticism concerns the interpretation of the ML 141 and Lat B data. With respect to the Calyx data, I am missing a detailed discussion of the effects observed here in light of the different RRP subpools SRP and FRP. This is very important since Lee at al. (2012, PNAS 109 (13) E765-E774) showed earlier that disruption of actin inhibits the rapid transition of SRP SVs to the FRP at the AZ. The whole literature on this important concept is missing. Likewise, the role of actin for the replacement pool at a cerebellar synapse (Miki et al., 2016) is only mentioned in half a sentence. There is quite some evidence that actin is important both at the AZ (SRP to FRP transition, activation of replacement pool) and at the peri-active zone for compensatory endocytosis and release site clearance. Both possible underlying mechanisms (SRP to FRP transition or release site clearance) should be better dissected.

      We dissected the latrunculin effect further by referring to the related literature within the scope of this study in the revised Discussion section (last paragraph).

      Reviewer #3 (Public Review):

      The manuscript by Mahapatra and Takahashi addresses the role of presynaptic release site clearance during sustained synaptic activity. The authors characterize the effects of pharmacologically interfering with SV endocytosis (pre-incubation with Dynasore or Pitstop-2) on synaptic short-term plasticity (STP) at two different CNS synapses (calyx of Held synapses and hippocampal SC to CA1 synapses) using patch-clamp recordings in acute slices under experimental conditions designed to closely mimic a physiological situation (37{degree sign}C and 1.3 mM external [Ca2+]). Endocytosis blocker-induced changes in STP and in the recovery from short-term depression (STD) are compared to those seen after pharmacologically inhibiting actin filament assembly (pre-incubation with Latrunculin-B or the selective Cdc42 GTPase inhibitor ML-141). Presynaptic capacitance (Cm) recordings in calyx terminals were used to establish the effects of the pharmacological maneuvers on SV endocytosis.

      Latrunculin-B and ML-141 neither affect SV endocytosis (assayed by Cm recordings) nor EPSC recovery following conditioning trains, but strongly enhances STD at calyx synapses. No changes in STP were observed at Latrunculin-B- or ML-141-treated SC to CA1 synapses.

      Dynasore and Pitstop-2 slow down endocytosis, limit the total amount of exocytosis in response to long stimuli, enhance STD in response to 100 Hz stimulation, but profoundly accelerate EPSC recovery following conditioning 100 Hz trains at calyx synapses. At SC to CA1 synapses, Dynasore and Pitstop-2 reduce the extend of facilitation and lower relative steady-state EPSCs suggesting a change in the facilitation-depression balance in favor of the latter.

      The authors use state-of-the art techniques and their data, which is clearly presented, leads to authors to conclude that endocytosis is universally important for clearance of release sites while the importance of scaffold protein-mediated site clearance is limited to 'fast synapses'.

      Unfortunately, and perhaps not completely unexpected in view of the pharmacological tools chosen, there are several observations which remain difficult to understand:

      (1) Blocking site clearance affects release sites that have previously been used, i.e. sites at which SV fusion has occurred and which therefore need to be cleared. Calyces use at most 20% of all release sites during a single AP, likely fewer at 1.3 mM external [Ca2+]. Even if all those 20% of release sites become completely unavailable due to a block of release site clearance, the 2nd EPSC in a train should not be reduced by >20% because ~80% of the sites cannot be affected. However, ~50% EPSC reduction was observed (Fig. 2B1, lower right panel) raising the possibility that Dynasore does more than specifically interfering with SVs endocytosis (and possibly Pitstop as well). Non-specific effects are also suggested by the observed two-fold increase in initial EPSC size in SC to CA1 synapses after Dynasore pre-incubation.

      This study compares different experimental conditions to conclude the physiological role of endocytosis on rapid neurotransmission at the large calyceal synapse in mice. A related study at the Drosophila neuromuscular junction (Kawasaki et al., Nat. Neuroscience 2000) reported similar findings in comparable experimental settings (physiological conditions and acute block of endocytosis).

      (2) More severe depression was observed at calyx synapses after blocking endocytosis which the authors attribute to a presynaptic mechanism affecting pool replenishment. When probing EPSC recovery after conditioning 100 Hz trains, a speed up was observed mediated by an "unknown mechanism" which is "masked in 2 mM [Ca2+]". These two observations, deeper synaptic depression during 100 Hz but faster recovery from depression following 100 Hz, are difficult to align and no attempt was made to find an explanation.

      By varying temperature (PT vs RT), calcium concentration (1.3 mM vs 2.0 mM), and stimulation frequency (10, 100, and 200 Hz; some data are not shown), the effect of endocytosis block on EPSC STD and recovery from STD kinetics at the post-hearing calyx were compared in these settings: (PT, 1.3 mM [Ca2+]), (PT, 2.0 mM Ca2+), and (RT, 2.0 mM [Ca2+]), to dissect their respective role.

      (3) To reconcile previous data reporting a block of Ca2+-dependent recovery (CDR) by Dynasore or Latrunculin (measured at 2 mM external [Ca2+]) with the data presented here (using 1.3 mM external [Ca2+]) reporting no effect or a speed up of recovery from depression, the authors postulate that "CDR may operate only when excessive Ca2+ enters during massive presynaptic activation" (page 10 line 244). While that is possible, such explanation ignores plenty of calyx studies demonstrating fiber stimulation-induced CDR and elucidating molecular pathways mediating fiber stimulation-induced CDR, and it also completely dismisses the strong change in recovery time course after 10 Hz conditioning (single exponential) as compared to 100 Hz conditioning (double exponential with a pronounced fast component).

      Strong presynaptic stimuli such as those illustrated in Figs. 1B,C induce massive exocytosis. The illustrated Cm increase of 2 to 2.5 pF represents fusion of 25,000 to 30,000 SVs (assuming a single SV capacitance of 80 aF) corresponding to a 12 to 15% increase in whole terminal membrane surface (assuming a mean terminal capacitance of ~16 pF). Capacitance measurements can only be considered reliable in the absence of marked changes in series and membrane conductance. Documentation of the corresponding conductance traces is therefore advisable for such massive Cm jumps and merely mentioning that the first 450 ms after stimulation were skipped during analysis or referring to previous publications showing conductance traces is insufficient.

      All bar graphs in Figures 1 through 6 and Figures S3 through S6 compare three or even four (Fig. 5C) conditions, i.e. one control and at least two treatment data sets. It appears as if repeated t-tests were used to run multiple two-group comparisons (i.e. using the same control data twice for two different comparisons). Either a proper multiple comparison test should be used or a Bonferroni correction or similar multiple-comparison correction needs to be applied.

      We updated the statistical analysis of all data using one-way ANOVA and t-test with BonferroniHolm method of p level correction and rectified one analysis in Fig 1 and 3, all major conclusions are unchanged.

      Finally, the terminology of contrasting "fast-signaling" (calyx synapses) and "slow-plastic" (SC synapses) synapses seems to imply that calyx synapses lack plasticity, as does the wording "conventional bouton-type synapses involved in synaptic plasticity" (page 11, line 251). I assume, the authors primarily refer to the maximum frequencies these two synapse types typically transmit (fast-signaling vs slow-signaling)?

      Properties of these two synapses described explicitly in updated text and they are renamed as fast and slow synapes.

      Recommendations for the authors:

      Reviewer #3 (Recommendations For The Authors):

      'SV replenishment' and 'site clearance' should not be used synonymously as it seems to be done sometimes here.

      In this revision, we described them more explicitly.

      The data presented in Fig. S6 are detached from the rest of the manuscript, not relevant and should be removed. page 4 line 95 "... to ensure sufficient Ca2+ currents to induce exo-endocytosis." ICa is large enough to induce exocytosis also at 1.3 mM Ca2+. Please clarify.

      We updated the relevant section.

      page 5, line 108 "... this slow endocytosis showed a strongly prolonged time course without accompanied by the change of Cm or presynaptic Ca2+ currents" Please fix.

      Fixed.

      page 5, line 121 "Thus, at calyces of Held, bath-application of Dynasore or Pitstop-2 can block both fast and slow endocytosis without perturbing presynaptic intracellular milieu." Bath-application never perturbs the intracellular milieu. Please clarify.

      Rephrased.

      page 6 line 128 "... physiological aCSF" is a misnomer (= physiological artificial CSF). Please fix.

      In the introduction section, it is clearly described.

      page 11, line 252 "... from hippocampal SC-CA1 pyramidal neurons" There are no "SC-CA1 pyramidal neurons". Please fix.

      Fixed.

      page 12, line 285 "In acute slices optimized to physiological conditions" The conditions are optimized, not the slices. Please fix.

      Fixed.

      page 14, line 323 same as above

      Fixed.

      page 14, line 330 LTP at SC-CA1 synapses is postsynaptic. Please clarify.

      Rephrased

      page 16, line 381 "had a series resistance of 3-4 MOhm" versus

      page 17, line 408 "The patch pipettes had a series resistance of 5-15 MOhm (less than 10 MOhm in most cells)" 3-4 is perhaps pipette resistance while 5-15 is perhaps series resistance? Please clarify.

      Fixed.

      page 17, line 398 "Cm traces were averaged at every 10 ms (for 10 Hz train stimulation) or 20 ms (for 5 ms single or 1 Hz train stimulation)." Do you mean to say that Cm traces were smoothed with a moving average using a window size of 10 or 20 ms duration? Please clarify.

      Rephrased to clarify better.

      page 18, "All values are given as mean {plus minus} SEM and significance of difference was evaluated by Student's unpaired t-test, unless otherwise noted." Please check. You cannot simply use repeated t-tests for multiple comparisons. Either a proper multiple comparison test should be used or a Bonferroni correction or similar multiple-comparison correction needs to be applied.

      All statistical analysis are updated using one-way ANOVA and t-test, with Bonferroni-Holm method of p level correction and one analysis is rectified in Fig 1 and 3, with no change in major conclusions.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1:

      Summary:

      The authors aim to test the sensory recruitment theory of visual memory, which assumes that visual sensory areas are recruited for working memory, and that these sensory areas represent visual memories in a similar fashion to how perceptual inputs are represented. To test the overlap between working memory (WM) and perception, the authors use coarse stimulus (aperture) biases that are known to account for (some) orientation decoding in the visual cortex (i.e., stimulus energy is higher for parts of an image where a grating orientation is perpendicular to an aperture edge, and stimulus energy drives decoding). Specifically, the authors show gratings (with a given "carrier" orientation) behind two different apertures: one is a radial modulator (with maximal energy aligned with the carrier orientation) and the other an angular modulator (with maximal energy orthogonal to the carrier orientation). When the subject detects contrast changes in these stimuli (the perceptual task), orientation decoding only works when training and testing within each modulator, but not across modulators, showing the impact of stimulus energy on decoding performance. Instead, when subjects remember the orientation over a 12s delay, orientation decoding works irrespective of the modulator used. The authors conclude that representations during WM are therefore not "sensory-like", given that they are immune to aperture biases. This invalidates the sensory recruitment hypothesis, or at least the part assuming that when sensory areas are recruited during WM, they are recruited in a manner that resembles how these areas are used during perception.

      Strengths:

      Duan and Curtis very convincingly show that aperture effects that are present during perception, do not appear to be present during the working memory delay. Especially when the debate about "why can we decode orientations from human visual cortex" was in full swing, many may have quietly assumed this to be true (e.g., "the memory delay has no stimuli, and ergo no stimulus aperture effects"), but it is definitely not self-evident and nobody ever thought to test it directly until now. In addition to the clear absence of aperture effects during the delay, Duan and Curtis also show that when stimulus energy aligns with the carrier orientation, cross-generalization between perception and memory does work (which could explain why perception-to-memory cross-decoding also works). All in all, this is a clever manipulation, and I'm glad someone did it, and did it well.

      Weaknesses:

      There seems to be a major possible confound that prohibits strong conclusions about "abstractions" into "line-like" representation, which is spatial attention. What if subjects simply attend the endpoints of the carrier grating, or attend to the edge of the screen where the carrier orientation "intersects" in order to do the task? This may also result in reconstructions that have higher bold at areas close to the stimulus/screen edges along the carrier orientation. The question then would be if this is truly an "abstracted representation", or if subjects are merely using spatial attention to do the task.

      Alternatively (and this reaches back to the "fine vs coarse" debate), another argument could be that during memory, what we are decoding is indeed fine-scale inhomogenous sampling of orientation preferences across many voxels. This is clearly not the most convincing argument, as the spatial reconstructions (e.g., Figure 3A and C) show higher BOLD for voxels with receptive fields that are aligned to the remembered orientation (which is in itself a form of coarse-scale bias), but could still play a role.

      To conclude that the spatial reconstruction from the data indeed comes from a line-like representation, you'd need to generate modeled reconstructions of all possible stimuli and representations. Yes, Figure 4 shows that line results in a modeled spatial map that resembles the WM data, but many other stimuli might too, and some may better match the data. For example, the alternative hypothesis (attention to grating endpoints) may very well lead to a very comparable model output to the one from a line. However testing this would not suffice, as there may be an inherent inverse problem (with multiple stimuli that can lead to the same visual field model).

      The main conclusion, and title of the paper, that visual working memories are abstractions of percepts, is therefore not supported. Subjects could be using spatial attention, for example. Furthermore, even if it is true that gratings are abstracted into lines, this form of abstraction would not generalize to any non-spatial feature (e.g., color cannot become a line, contrast cannot become a line, etc.), which means it has limited explanatory power.

      We thank the reviewer for bringing up these excellent questions.

      First, to test the alternative hypothesis of spatial attention, we fed a dot image into the image-computable model. We placed the dot where we suspect one might place their spatial attention, namely, at the edge of the stimulus that is tangent to the orientation of the grating. We generated the model response for three orientations and their combination by rotating and averaging. From Author response image 1 below, one can see that this model does not match the line-like representation we reported. Nonetheless, we would like to avoid making the argument that attention does not play a role. We strongly suspect that if one was attending to multiple places along a path that makes up a line, it would produce the results we observed. But there begins a circularity in the logic, where one cannot distinguish between attention to a line-like representation and a line of attention being the line-like representation.

      Author response image 1.

      Reconstruction maps for the dot image at the edge of 15°, 75°, 135°, and the combined across three orientation conditions.

      Second, we remain agnostic to the question of whether fine-scale inhomogenous sampling of orientation selective neurons may drive some of the decoding results we report here. It is possible that our line-like representations are driven by neurons tuned to the sample orientation that have receptive fields that lie along the line. Here, we instead focus on testing the idea that WM decoding does not depend on aperture biases.

      Finally, we agree with the reviewer that there is much more work to be done in this area. Our working hypothesis, that WM representations are abstractions of percepts, is admittedly based on Occam's razor and an appeal to efficient coding principles. We also agree that these results may not generalize to all forms of WM (eg, color). As always, there is a tradeoff between interpretability (visual spatial formats in retinotopically organized maps) and generalizability. Frankly, we have no idea how one might be able to test these ideas when subjects might be using the most common type of memory reformatting - linguistic representations, which are incredibly efficient.

      Additional context:

      The working memory and perception tasks are rather different. In this case, the perception task does not require the subject to process the carrier orientation (which is largely occluded, and possibly not that obvious without paying attention to it), but attention is paid to contrast. In this scenario, stimulus energy may dominate the signal. In the WM task, subjects have to work out what orientation is shown to do the task. Given that the sensory stimulus in both tasks is brief (1.5s during memory encoding, and 2.5s total in the perceptual task), it would be interesting to look at decoding (and reconstructions) for the WM stimulus epoch. If abstraction (into a line) happens in working memory, then this perceptual part of the task should still be susceptible to aperture biases. It allows the authors to show that it is indeed during memory (and not merely the task or attentional state of the subject) that abstraction occurs.

      Again, this is an excellent question. We used a separate perceptual task instead of the stimulus epoch as control mainly for two reasons. First, we used a control task in which participants had to process the contrast, not orientation, of the grating because we were concerned that participants would reformat the grating into a line-like representation to make the judgments. To avoid this, we used a task similar to the one used when previous researchers first found the stimulus vignetting effect (Roth et al., 2018). Again, our main goal was to try to focus on the bottom-up visual features. Second, because of the sluggishness of the BOLD response, combined with our task design (ie, memory delay always followed the target stimulus), we cannot disentangle the visual and memory responses that co-exist at this epoch. Any result could be misleading.

      What's also interesting is what happens in the passive perceptual condition, and the fact that spatial reconstructions for areas beyond V1 and V2 (i.e., V3, V3AB, and IPS0-1) align with (implied) grating endpoints, even when an angular modulator is used (Figure 3C). Are these areas also "abstracting" the stimulus (in a line-like format)?

      We agree these findings are interesting and replicate what we found in our previous paper (Kwak & Curtis, Neuron, 2022). We believe that these results do imply that these areas indeed store a reformatted line-like WM representation that is not biased by vignetting. We would like to extend a note of caution, however, because the decoding results in the higher order areas (V3AB, IPS0-1, etc) are somewhat poor (especially in comparison to V1, V2, V3) (see Figure 2).

      Reviewer #2:

      Summary:

      According to the sensory recruitment model, the contents of working memory (WM) are maintained by activity in the same sensory cortical regions responsible for processing perceptual inputs. A strong version of the sensory recruitment model predicts that stimulus-specific activity patterns measured in sensory brain areas during WM storage should be identical to those measured during perceptual processing. Previous research casts doubt on this hypothesis, but little is known about how stimulus-specific activity patterns during perception and memory differ. Through clever experimental design and rigorous analyses, Duan & Curtis convincingly demonstrate that stimulus-specific representations of remembered items are highly abstracted versions of representations measured during perceptual processing and that these abstracted representations are immune to aperture biases that contribute to fMRI feature decoding. The paper provides converging evidence that neural states responsible for representing information during perception and WM are fundamentally different, and provides a potential explanation for this difference.

      Strengths:

      (1) The generation of stimuli with matching vs. orthogonal orientations and aperture biases is clever and sets up a straightforward test regarding whether and how aperture biases contribute to orientation decoding during perception and WM. The demonstration that orientation decoding during perception is driven primarily by aperture bias while during WM it is driven primarily by orientation is compelling.

      (2) The paper suggests a reason why orientation decoding during WM might be immune to aperture biases: by weighting multivoxel patterns measured during WM storage by spatial population receptive field estimates from a different task the authors show that remembered but not actively viewed - orientations form "line-like" patterns in retinotopic cortical space.

      We thank the reviewer for noting the strengths in our work.

      Weaknesses:

      (1) The paper tests a strong version of the sensory recruitment model, where neural states representing information during WM are presumed to be identical to neural states representing the same information during perceptual processing. As the paper acknowledges, there is already ample reason to doubt this prediction (see, e.g., earlier work by Kok & de Lange, Curr Biol 2014; Bloem et al., Psych Sci, 2018; Rademaker et al., Nat Neurosci, 2019; among others). Still, the demonstration that orientation decoding during WM is immune to aperture biases known to drive orientation decoding during perception makes for a compelling demonstration.

      We agree with the reviewer, and would add that the main problem with the sensory recruitment model of WM is that it remains underspecified. The work cited above and in our paper, and the results in this report is only the beginning of efforts to fully detail what it means to recruit sensory mechanisms for memory.

      (2) Earlier work by the same group has reported line-like representations of orientations during memory storage but not during perception (e.g., Kwak & Curtis, Neuron, 2022). It's nice to see that result replicated during explicit perceptual and WM tasks in the current study, but I question whether the findings provide fundamental new insights into the neural bases of WM. That would require a model or explanation describing how stimulus-specific activation patterns measured during perception are transformed into the "line-like" patterns seen during WM, which the authors acknowledge is an important goal for future research.

      We agree with the reviewer that perhaps some might see the current results as an incremental step given our previous paper. However, we would point out that researchers have been decoding memorized orientation from the early visual cortex for 15 years, and not one of those highly impactful studies had ever done what we did here, which was to test if decoded WM representations are the product of aperture biases. Not only do our results indicate that decoding memorized orientation is immune to these biases, but they critically suggest a reason why one can decode orientation during WM.

      Reviewer #3:

      Summary:

      In this work, Duan and Curtis addressed an important issue related to the nature of working memory representations. This work is motivated by findings illustrating that orientation decoding performance for perceptual representations can be biased by the stimulus aperture (modulator). Here, the authors examined whether the decoding performance for working memory representations is similarly influenced by these aperture biases. The results provide convincing evidence that working memory representations have a different representational structure, as the decoding performance was not influenced by the type of stimulus aperture.

      Strengths:

      The strength of this work lies in the direct comparison of decoding performance for perceptual representations with working memory representations. The authors take a well-motivated approach and illustrate that perceptual and working memory representations do not share a similar representational structure. The authors test a clear question, with a rigorous approach and provide convincing evidence. First, the presented oriented stimuli are carefully manipulated to create orthogonal biases introduced by the stimulus aperture (radial or angular modulator), regardless of the stimulus carrier orientation. Second, the authors implement advanced methods to decode the orientation information present, in visual and parietal cortical regions, when directly perceiving or holding an oriented stimulus in memory. The data illustrates that working memory decoding is not influenced by the type of aperture, while this is the case in perception. In sum, the main claims are important and shed light on the nature of working memory representations.

      We thank the reviewer for noting the strengths in our work.

      Weaknesses:

      I have a few minor concerns that, although they don't affect the main conclusion of the paper, should still be addressed.

      (1) Theoretical framing in the introduction: Recent work has shown that decoding of orientation during perception does reflect orientation selectivity, and it is not only driven by the stimulus aperture (Roth, Kay & Merriam, 2022).

      Excellent point, and similar to the point made by Reviewer 1. We now adjust our text and cite the paper in the Introduction.

      Below, we paste our response to Reviewer 1:

      “Second, we remain agnostic to the question of whether fine-scale inhomogenous sampling of orientation selective neurons may drive some of the decoding we report here. It is possible that our line-like representations are driven by neurons tuned to the sample orientation that have receptive fields that lie along the line. Here, we instead focus on testing the idea that WM decoding does not depend on aperture biases.”

      (2) Figure 1C illustrates the principle of how the radial and angular modulators bias the contrast energy extracted by the V1 model, which in turn would influence orientation decoding. It would be informative if the carrier orientations used in the experiment were shown in this figure, or at a minimum it would be mentioned in the legend that the experiment used 3 carrier orientations (15{degree sign}, 75{degree sign}, 135{degree sign}) clockwise from vertical. Related, when trying to find more information regarding the carrier orientation, the 'Stimuli' section of the Methods incorrectly mentions that 180 orientations are used as the carrier orientation.

      We apologize for not clearly indicating the stimulus features in the figure. Now, we added the information about the target orientations in Figure 1C legend. Also, we now corrected in the Methods section the mistakes about the carrier orientation and the details of the task. Briefly, participants were asked to use a continuous report over 180 orientations. We now clarify that “We generated 180 orientations for the carrier grating to cover the whole orientation space during the continuous report task.”

      (3) The description of the image computable V1 model in the Methods is incomplete, and at times inaccurate. i) The model implements 6 orientation channels, which is inaccurately referred to as a bandwidth of 60{degree sign} (should be 180/6=30). ii) The steerable pyramid combines information across phase pairs to obtain a measure of contrast energy for a given stimulus. Here, it is only mentioned that the model contains different orientation and spatial scale channels. I assume there were also 2 phase pairs, and they were combined in some manner (squared and summed to create contrast energy). Currently, it is unclear what the model output represents. iii) The spatial scale channel with the maximal response differences between the 2 modulators was chosen as the final model output. What spatial frequency does this channel refer to, and how does this spatial frequency relate to the stimulus?

      (i) First, we thank the reviewer for pointing out this mistake since the range of orientations should be 180deg instead of 360deg. We corrected this in the revised version.

      (ii) Second, we apologize for not being clear. In the second paragraph of the “Simulate model outputs” section, we wrote,

      “For both types of stimuli, we used three target orientations (15°, 75°, and 135° clockwise from vertical), which had two kinds of phases for both the carriers and the modulators. We first generated the model’s responses to each target image separately, then averaged the model responses across all phases for each orientation condition.”

      We have corrected this text by now writing,

      from vertical), two phases for the carrier (0 or π), and two phases for the modulator (sine “For both types of stimuli, we used three target orientations (15°, 75°, and 135° clockwise from vertical), two phases for the carrier (0 or π), and two phases for the modulator (sine or cosine phase). We first generated the model responses to each phase condition separately, then averaged them across all phases for each orientation condition.”

      (iii) Third and again we apologize for the misunderstanding. Since both modulated gratings have the same spatial frequency, the channel with the largest response should be equal to the spatial frequency of the stimulus. We corrected this by now writing,

      “For the final predicted responses, we chose the subband with maximal responses (the 9th level), which corresponds to the spatial frequency of the stimulus (Roth, Heeger, and Merriam 2018).”

      (4) It is not clear from the Methods how the difficulty in the perceptual control task was controlled. How were the levels of task difficulty created?

      Apologies for not being clear. The task difficulty was created by setting the contrast differences between the two stimuli. The easiest level is choosing the first and the last contrast as pairs, while the hardest level is choosing the continuous two contrasts. We added these sentences

      “The contrast for each stimulus was generated from a predefined set of 20 contrasts uniformly distributed between 0.5 and 1.0 (0.025 step size). We created 19 levels of task difficulty based on the contrast distance between the two stimuli. Thus, the difficulty ranged from choosing contrast pairs with the largest difference (0.5, easiest) to contrast pairs with the smallest difference (0.025, hardest). Task difficulty level changed based on an adaptive, 1-up-2-down staircase procedure (Levitt 1971) to maintain performance at approximately 70% correct.”

      Recommendations For The Authors

      (Reviewer #1):

      (1) If the black circle (Fig 3A & C) is the stimulus size, and the stimulus (12º) is roughly half the size of the entire screen (24.8º), then how are spatial reconstructions generated for parts of the visual field that fall outside of the screen? I am asking because in Figure 3 the area over which spatial reconstructions are plotted has a diameter at least 3 times the diameter of that black circle (the stimulus). I'm guessing this is maybe possible when using a very liberal fitting approach to prf's, where the center of a prf can be outside of the screen (so you'd fit a circle to an elongated blob, assuming that blob is the edge of a circle, or something). Can you really reliably estimate that far out into visual space/ extrapolate prf's that exist in a part of the space you did not fully map (because it's outside of the screen)?

      We thank the reviewer for pointing out this confusing issue.

      First, the spatial construction map has a diameter 3 times the diameter of the stimulus because we included voxels whose pRF eccentricities were within 20º in the reconstruction, the same as Kwak & Curtis, 2022. There are reasons for doing so. First, while the height of the screen is 24.8º, the width of the screen is 44º. Thus, it is possible to have voxels whose pRF eccentricities are >20º. Second, for areas outside the height boundaries, there might not be pRF centers, but the whole pRF Gaussian distributions might still cover the area. Moreover, when creating the final map combined across three orientation conditions, we rotated them to be centered vertically, which then required a 20x20º square. Finally, inspecting the reconstruction maps, we noticed that the area that was twice the stimulus size (black circle) made very little contributions to the reconstructions. Therefore, the results depicted in Figure 3A&C are justified, but see the next comment and our response.

      (2) Is the quantification in 3B/C justified? The filter line uses a huge part of visual space outside of the stimulus (and even the screen). For the angular modulator in the "perception" condition, this means that there is no peak at -90/90 degree. But if you were to only use a line that is about the size of the stimulus (a reasonable assumption), it would have a peak at -90/90 degree.

      This is an excellent question. We completely agree that it is more reasonable to use filter lines that have the same size (12º) as the stimulus instead of the whole map size (40º). Based on the feedback from the Reviewer, we redid the spatial reconstruction analyses and now include the following changes to Figure 3.

      (1) We fitted the lines using pixels only within the stimulus. In Figure 3A and Figure 3C, we now replaced the reconstruction maps.

      (2) We added the color bar in Figure 3A.

      (3) We regenerated the filtered responses and calculated the fidelity results by using line filters with the stimulus size. We replaced the filtered responses and fidelity results in Figure 3B and Figure 3D. With the new analysis, as anticipated by the Reviewer, we now found peaks at -90/90 degrees for the angular modulated gratings in the perceptual control task in V1 and V2. Thank you Reviewer 1!!!!

      (4) We also made corresponding changes in the Supplementary Figure S4 and S5, as well as the statistical results in Table S4 and S5.

      (5) In the “Methods” section, we added “within the stimulus size” for both “fMRI data analysis: Spatial reconstruction” and “Quantification and statistical analysis” subsections.

      (3) Figure 4 is nice, but not exactly quantitative. It does not address that the reconstructions from the perceptual task are hugging the stimulus edges much more closely compared to the modeled map. Conversely, the yellow parts of the reconstructions from the delay fan out much further than those of the model. The model also does not seem to dissociate radial/angular stimuli, while in the perceptual data the magnitude of perceptual reconstruction is clearly much weaker for angular compared to radial modulator.

      We thank the reviewer for this question. First, we admit that Figure 4 is more qualitative than quantitative. However, we see no alternative that better depicts the similarity in the model prediction and the fMRI results for the perceptual control and WM tasks. The figure clearly shows the orthogonal aperture bias. Second, we agree that aspects of the observed fMRI results are not perfectly captured by the model. This could be caused by many reasons, including fMRI noise, individual differences, etc. Importantly, different modulators induce orthogonal aperture bias in the perceptual but not the WM task, and therefore does not have a major impact on the conclusions.

      (4) The working memory and perception tasks are rather different. In this case, the perception task does not require the subject to process the carrier orientation (which is largely occluded, and possibly not that obvious without paying attention to it), but attention is paid to contrast. In this scenario, stimulus energy may dominate the signal. In the WM task, subjects have to work out what orientation is shown to do the task. Given that the sensory stimulus in both tasks is brief (1.5s during memory encoding, and 2.5s total in the perceptual task), it would be interesting to look at decoding (and reconstructions) for the WM stimulus epoch. If abstraction (into a line) happens in working memory, then this perceptual part of the task should still be susceptible to aperture biases. It allows the authors to show that it is indeed during memory (and not merely the task or attentional state of the subject) that abstraction occurs.

      We addressed the same point in the response for Reviewer 1, “additional context” section.

      Recommendations for improving the writing:

      (1) The main text had too little information about the Methods. Of course, some things need not be there, but others are crucial to understanding the basics of what is being shown. For example, the main text does not describe how many orientations are used (well... actually the caption to Figure 1 says there are 2: horizontal and vertical, which is confusing), and I had to deduce from the chance level (1/3) that there must have been 3 orientations. Also, given how important the orthogonality of the carrier and modulator are, it would be good to have this explicit (I would even want an analysis showing that indeed the two are independent). A final example is the use of beta weights, and for delay period decoding only the last 6s (of the 12s delay) are modeled and used for decoding.

      We thank the reviewer for identifying aspects of the manuscript that were confusing. We made several changes to the paper to clarify these details.

      First, we added the information about the orientations we used in the caption for Figure 1 and made it clear that Figure 1C is just an illustration using vertical/horizontal orientations. Second, the carrier and the modulator are different in many ways. For example, the carrier is a grating with orientation and contrast information, while the modulator is the aperture that bounds the grating without these features. Their phases are orthogonal, and we added this in the second paragraph of the “Stimuli” section. Last, in the main text and the captions, we now denote “late delay” when writing about our procedures.

      (2) Right under Figure 3, the text reads "angular modulated gratings produced line-like representations that were orthogonal carrier orientation reflecting the influence of stimulus vignetting", but the quantification (Figure 3D) does not support this (there is no orthogonal "bump" in the filtered responses from V1-V3, and one aligned with the carrier orientation in higher areas).

      This point was addressed in the “recommendations for the authors (Reviewer 1), point 2” above.

      Minor corrections to text and figures:

      (1) Abstract: "are WM codes" should probably be "WM codes are".

      We prefer to keep “are WM codes” as it is grammatically correct.

      (2) Introduction: Second sentence 2nd paragraph: representations can be used to decode representations? Or rather voxel patterns can be used...

      Changed to “On the one hand, WM representations can be decoded from the activity patterns as early as primary visual cortex (V1)...”

      (3) Same paragraph: might be good to add more references to support the correlation between V1 decoding and behavior. There's an Ester paper, and Iamchinina et al. 2021. These are not trial-wise, but trial-wise can also be driven by fluctuating arousal effects, so across-subject correlations help fortify this point.

      We added these two papers as references.

      (4) Last paragraph: "are WM codes" should probably be "WM codes are".

      See (1) above.

      (5) Figure 1B & 2A caption: "stimulus presenting epoch" should probably be "stimulus presentation epoch".

      Changed to “stimulus epoch”.

      (6) Figure 1C: So this is very unclear, to say stimuli are created using vertical and horizontal gratings (when none of the stimuli used in the experiment are either).

      We solved and answered this point in response to Reviewer 3, point 2.

      (7) Figure 2B caption "cross" should probably be "across".

      We believe “cross” is fine since cross here means cross-decoding.

      (8) Figure 3A and C are missing a color bar, so it's unclear how these images are generated (are they scaled, or not) and what the BOLD values are in each pixel.

      All values in the map were scaled to be within -1 to 1. We added the color bar in both Figure 3 and Figure 4.

      (9) Figure 3B and D (bottom row) are missing individual subject data.

      We use SEM to indicate the variance across subjects.

      (10) Figure D caption: "early (V1 and V2)" should probably be "early areas (V1 and V2)".

      Corrected.

      (11) Methods, stimuli says "We generated 180 orientations for the carrier grating to cover the whole orientation space." But it looks like only 3 orientations were generated, so this is confusing.

      We solved and answered this point in response to Reviewer 3, point 2.

      (12) Further down (fMRI task) "random jitters" is probably "random jitter"

      Corrected.

    1. Author response:

      Response to Reviewer #1 (Public Review):

      We thank the reviewer for their constructive criticism of our study, their proposed solutions, and for highlighting areas of the methodology and analytical pipeline where explanations were unclear or unsatisfactory. We will take the reviewer’s feedback into account to improve the clarity and readability of the revised manuscript. We acknowledge the importance of ruling out eye movements as a potential confound. We address these concerns briefly below, but a more detailed explanation (and a full breakdown of the relevant analyses, including the corrected and uncorrected results) will be provided in the revised manuscript.

      First, the source of EEG activity recorded from the frontal electrodes is often unclear. Without an external reference, it is challenging to resolve the degree to which frontal EEG activity represents neural or muscular responses1. Thus, as a preventative measure against the potential contribution of eye movement activity, for all our EEG analyses, we only included activity from occipital, temporal, and parietal electrodes (the selected electrodes can be seen in the final inset of Figure 3).

      Second, as suggested by the reviewer, we re-ran our analyses using the activity measured from the frontal electrodes alone. If the source of the nonlinear decoding accuracy in the AV condition was muscular activity produced by eye movements, we would expect to observe better decoding accuracy from sensors closer to the source. Instead, we found that decoding accuracy from the frontal electrodes (peak d' = 0.08) was less than half that of decoding accuracy from the more posterior electrodes (peak d' = 0.18). These results suggest that the source of neural activity containing information about stimulus position was located over occipito-parietal areas, consistent with our topographical analyses (inset of Figure 4).

      Third, we compared the average eye movements between the three main sensory conditions (auditory, visual, and audiovisual). In the visual condition, there was little difference in eye movements corresponding to the five stimulus locations, likely because the visual stimuli were designed to be spatially diffuse. For the auditory and audiovisual conditions, there was more distinction between eye movements corresponding to the stimulus locations. However, these appeared to be the same between auditory and audiovisual conditions. If consistent saccades to audiovisual stimuli had been responsible for the nonlinear decoding we observed, we would expect to find a higher positive correlation between horizontal eye position and stimulus location in the audiovisual condition than in the auditory or visual conditions. Instead, we found no difference in correlation between audiovisual and auditory stimuli, indicating that eye movements were equivalent in these conditions and unlikely to explain better decoding accuracy for audiovisual stimuli.

      Finally, we note that the stricter eye movement criterion acknowledged in the Discussion section of the original manuscript resulted in significantly better audiovisual d' than the MLE prediction, but this difference did not survive cluster correction. This is an important distinction to make as, when combined with the results described above, it seems to support our original interpretation that the stricter criterion combined with our conservative measure of (mass-based) cluster correction2 led to type 2 error.

      References

      (1) Roy, R. N., Charbonnier, S., & Bonnet, S. (2014). Eye blink characterization from frontal EEG electrodes using source separation and pattern recognition algorithms. Biomedical Signal Processing and Control, 14, 256–264.

      (2) Pernet, C. R., Latinus, M., Nichols, T. E., & Rousselet, G. A. (2015). Cluster-based computational methods for mass univariate analyses of event-related brain potentials/fields: A simulation study. Journal of Neuroscience Methods, 250, 85–93.

      Response to Reviewer #2 (Public Review):

      We thank the reviewer for their insight and constructive feedback. As emphasized in the review, an interesting question that arises from our results is that, if the neural data exceeds the optimal statistical decision (MLE d'), why doesn’t the behavioural data? We agree with the reviewer’s suggestion that more attention should be devoted to this question, and plan to provide a deeper discussion of the relationship between behavioural and neural super-additivity in the revised manuscript. We also note that while this discrepancy remains unexplained, our results are consistent with the literature. That is, both non-linear neural responses (single-cell recordings) and behavioural responses that match MLE are reliable phenomenon in multisensory integration1,2,3,4.

      One possible explanation for this puzzling discrepancy is that behavioural responses occur sometime after the initial neural response to sensory input. There are several subsequent neural processes between perception and a behavioural response5, all of which introduce additional noise that may obscure super-additive perceptual sensitivity. In particular, the mismatch between neural and behavioural accuracy may be the result of additional neural processes that translate sensory activity into a motor response to perform the behavioural task.

      Our measure of neural super-additivity (exceeding optimally weighted linear summation) differs from how it is traditionally assessed (exceeding summation of single neuron responses)2. However, neither method has yet fully explained how this neural activity translates to behavioural responses, and we think that more work is needed to resolve the abovementioned discrepancy. However, our method will facilitate this work by providing a reliable method of measuring neural super-additivity in humans, using non-invasive recordings.

      References

      (1) Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14(3), 257–262.

      (2) Ernst, M. O., & Banks, M. S., (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429–433.

      (3) Meredith, M. A., & Stein, B. E. (1993). Interactions among converging sensory inputs in the superior colliculus. Science, 221, 389–391.

      (4) Stanford, T. R., & Stein, B. E. (2007). Superadditivity in multisensory integration: putting the computation in context. Neuroreport 18, 787–792.

      (5) Heekeren, H., Marrett, S. & Ungerleider, L. (2008). The neural systems that mediate human perceptual decision making. Nature Reviews Neuroscience, 9, 467–479.

    1. Author response:

      Thanks for the eLife assessment

      “This study employed a comprehensive approach to examining how the MT+ region integrates into a complex cognition system in mediating human visuo-spatial intelligence. While the findings are useful, the experimental evidence is incomplete and the study design, hypothesis, analyses, writing, and presentation need to be improved.” We plan to revise the manuscript according to the comments of Public Reviews.

      We are grateful for the excellent and very helpful comments, and now we address provisional author responses.

      Reviewer #1 (Public Review):

      Summary:

      The study of human intelligence has been the focus of cognitive neuroscience research, and finding some objective behavioral or neural indicators of intelligence has been an ongoing problem for scientists for many years. Melnick et al, 2013 found for the first time that the phenomenon of spatial suppression in motion perception predicts an individual's IQ score. This is because IQ is likely associated with the ability to suppress irrelevant information. In this study, a high-resolution MRS approach was used to test this theory. In this paper, the phenomenon of spatial suppression in motion perception was found to be correlated with the visuo-spatial subtest of gF, while both variables were also correlated with the GABA concentration of MT+ in the human brain. In addition, there was no significant relationship with the excitatory transmitter Glu. At the same time, SI was also associated with MT+ and several frontal cortex FCs.

      Strengths:

      (1) 7T high-resolution MRS is used.

      (2) This study combines the behavioral tests, MRS, and fMRI.

      Weaknesses:

      (1) In the intro, it seems to me that the multiple-demand (MD) regions are the key in this study. However, I didn't see any results associated with the MD regions. Did I miss something??

      Thank reviewer for pointing this out. After careful consideration, we agree with your point of view. According to the results of Melnick 2013, the motion surround suppression (SI) and the time thresholds of small and large gratings representing hMT+ functionality are correlated with Verbal Comprehension, Perceptual Reasoning, Working Memory, and Processing Speed Indicators, with correlation coefficients of 0.69, 0.47, 0.49, and 0.50, respectively. This suggests that hMT+ does have the potential to become the core of MD system. However, due to our results only delving into “the GABA-ergic inhibition in human MT predicts visuo-spatial intelligence mediated by reverberation with frontal cortex”, it is not yet sufficient to prove that hMT+is the core node of the MD system, we will adjust the explanatory logic of the article, that is, emphasizing the de-redundancy of hMT+ in visual-spatial intelligence and the improvement of information processing efficiency, while weakening the significance of hMT+ in MD systems.

      (2) How was the sample size determined? Is it sufficient??

      Thank reviewer for pointing this out. We use G*power to determine our sample size. In the study by Melnick (2013), they reported a medium effect between SI and Perception Reasoning sub-ability (r=0.47). Here we use this r value as the correlation coefficient (ρ H1), setting the power at the commonly used threshold of 0.8 and the alpha error probability at 0.05. The required sample size is calculated to be 26. This ensures that our study has adequate power to yield valid statistical results. Furthermore, compared to earlier within-subject studies like Schallmo et al.'s 2018 research, which used 22 datasets to examine GABA levels in MT+ and the early visual cortex (EVC), our study includes a more extensive dataset.

      (3) In Schallmo elife 2018, there was no correlation between GABA concentration and SI. How can we justify the different results different here?

      Thank reviewer for pointing this out. There are several differences between us:

      a. While the earlier study by Schallmo et al. (2018) employed 3T MRS, we utilize 7T MRS, enhancing our ability to detect and measure GABA with greater accuracy.

      b. Schallmo elife 2018 choose to use the bilateral hMT+ as the MRS measurement region while we use the left hMT+. The reason why we focus on left hMT+ are describe in reviewer 1. (6). Briefly, use of left MT/V5 as a target was motivated by studies demonstrating that left MT/V5 TMS is more effective at causing perceptual effects (Tadin et al., 2011).

      c. The resolution of MRS sequence in Schallmo elife 2018 is 3 cm isotropic voxel, while we apply 2 cm isotropic voxel. This helps us more precisely locate hMT+ and exclude more white matter signal.

      (4) Basically this study contains the data of SI, BDT, GABA in MT+ and V1, Glu in MT+ and V1-all 6 measurements. There should be 6x5/2 = 15 pairwise correlations. However, not all of these results are included in Figure 1 and supplementary 1-3. I understand that it is not necessary to include all figures. But I suggest reporting all values in one Table.

      We thank the reviewer for the good suggestion, we are planning to make a correlation matrix to reporting all values.

      (5) In Melnick (2013), the IQ scores were measured by the full set of WAIS-III, including all subtests. However, this study only used the visual spatial domain of gF. I wonder why only the visuo-spatial subtest was used not the full WAIS-III?

      We thank the reviewer for pointing this out. The decision was informed by Melnick’s findings which indicated high correlations between Surround suppression (SI) and the Verbal Comprehension, Perceptual Reasoning, Working Memory, and Processing Speed Indexes, with correlation coefficients of 0.69, 0.47, 0.49, and 0.50, respectively. It is well-established that the hMT+ region of the brain is a sensory cortex involved in visual perception processing (3D perception). Furthermore, motion surround suppression (SI), a specific function of hMT+, aligns closely with this region's activities. Given this context, the Perception Reasoning sub-ability was deemed to have the clearest mechanism for further exploration. Consequently, we selected the most representative subtest of Perception Reasoning—the Block Design Test—which primarily assesses 3D visual intelligence.

      (6) In the functional connectivity part, there is no explanation as to why only the left MT+ was set to the seed region. What is the problem with the right MT+?

      We thank the reviewer for pointing this out. The main reason is that our MRS ROI is the left hMT+, we would like to make different models’ ROI consistent to each other. Use of left MT/V5 as a target was motivated by studies demonstrating that left MT/V5 TMS is more effective at causing perceptual effects (Tadin et al., 2011). In addition, we will check the results of our localizer to confirm whether similar findings are consistently replicated.

      (7) In Melnick (2013), the authors also reported the correlation between IQ and absolute duration thresholds of small and large stimuli. Please include these analyses as well.

      We thank the reviewer for the good advice. Containing such result do help researchers compare the result between Melnick and us. We are planning to make such picture in the revised version.

      Reviewer #2 (Public Review):

      Summary:

      Recent studies have identified specific regions within the occipito-temporal cortex as part of a broader fronto-parietal, domain-general, or "multiple-demand" (MD) network that mediates fluid intelligence (gF). According to the abstract, the authors aim to explore the mechanistic roles of these occipito-temporal regions by examining GABA/glutamate concentrations. However, the introduction presents a different rationale: investigating whether area MT+ specifically, could be a core component of the MD network.

      Strengths:

      The authors provide evidence that GABA concentrations in MT+ and its functional connectivity with frontal areas significantly correlate with visuo-spatial intelligence performance. Additionally, serial mediation analysis suggests that inhibitory mechanisms in MT+ contribute to individual differences in a specific subtest of the Wechsler Adult Intelligence Scale, which assesses visuo-spatial aspects of gF.

      Weaknesses:

      (1) While the findings are compelling and the analyses robust, the study's rationale and interpretations need strengthening. For instance, Assem et al. (2020) have previously defined the core and extended MD networks, identifying the occipito-temporal regions as TE1m and TE1p, which are located more rostrally than MT+. Area MT+ might overlap with brain regions identified previously in Fedorenko et al., 2013, however the authors attribute these activations to attentional enhancement of visual representations in the more difficult conditions of their tasks. For the aforementioned reasons, It is unclear why the authors chose MT+ as their focus. A stronger rationale for this selection is necessary and how it fits with the core/extended MD networks.

      We really appreciate reviewer’s opinions. The reason why we focus on hMT+ is following: According to the results of Melnick 2013, the motion surround suppression (SI) and the time thresholds of small and large gratings representing hMT+ functionality are correlated with Verbal Comprehension, Perceptual Reasoning, Working Memory, and Processing Speed Indicators, with high correlation coefficients of 0.69, 0.47, 0.49, and 0.50, respectively. In addition, Fedorenko et al. 2013, the averaged MD activity region appears to overlap with hMT+. Based on these findings, we assume that hMT+ does have the potential to become the core of MD system.

      (2) Moreover, although the study links MT+ inhibitory mechanisms to a visuo-spatial component of gF, this evidence alone may not suffice to position MT+ as a new core of the MD network. The MD network's definition typically encompasses a range of cognitive domains, including working memory, mathematics, language, and relational reasoning. Therefore, the claim that MT+ represents a new core of MD needs to be supported by more comprehensive evidence.

      Thank reviewer for pointing this out. After careful consideration, we agree with your point of view. Due to our results only delving into visuo-spatial intelligence, it is not yet sufficient to prove that hMT is the core node of the MD system. We will adjust the explanatory logic of the article, that is, emphasizing the de-redundancy of hMT+in visual-spatial intelligence and the improvement of information processing efficiency, while weakening the significance of hMT+ in MD systems.

      Reviewer #3 (Public Review):

      Summary:

      This manuscript aims to understand the role of GABA-ergic inhibition in the human MT+ region in predicting visuo-spatial intelligence through a combination of behavioral measures, fMRI (for functional connectivity measurement), and MRS (for GABA/glutamate concentration measurement). While this is a commendable goal, it becomes apparent that the authors lack fundamental understanding of vision, intelligence, or the relevant literature. As a result, the execution of the research is less coherent, dampening the enthusiasm of the review.

      Strengths:

      (1) Comprehensive Approach: The study adopts a multi-level approach, i.e., neurochemical analysis of GABA levels, functional connectivity, and behavioral measures to provide a holistic understanding of the relationship between GABA-ergic inhibition and visuo-spatial intelligence.

      (2) Sophisticated Techniques: The use of ultra-high field magnetic resonance spectroscopy (MRS) technology for measuring GABA and glutamate concentrations in the MT+ region is a recent development.

      Weaknesses:

      Study Design and Hypothesis

      (1) The central hypothesis of the manuscript posits that "3D visuo-spatial intelligence (the performance of BDT) might be predicted by the inhibitory and/or excitation mechanisms in MT+ and the integrative functions connecting MT+ with the frontal cortex." However, several issues arise:

      (1.1) The Suppression Index depicted in Figure 1a, labeled as the "behavior circle," appears irrelevant to the central hypothesis.

      We thank the reviewer for pointing this out. In our study, the inhibitory mechanisms in hMT+ are conceptualized through two models: the neurotransmitter model and the behavior model. The Suppression Index is essential for elucidating the local inhibitory mechanisms within behavior model. However, we acknowledge that our initial presentation in the introduction may not have clearly articulated our hypothesis, potentially leading to misunderstandings. We plan to revise the introduction to better clarify these connections and ensure the relevance of the Suppression Index is comprehensively understood.

      (1.2) The construct of 3D visuo-spatial intelligence, operationalized as the performance in the Block Design task, is inconsistently treated as another behavioral task throughout the manuscript, leading to confusion.

      We thank the reviewer for pointing this out. We acknowledge that our manuscript may have inconsistently presented this construct across different sections, causing confusion. To address this, we plan to ensure a consistent description of 3D visuo-spatial intelligence in both the introduction and the discussion sections. But we would like to maintain 'Block Design task score' within the results section to help readers clarify which subtest we use.

      (1.3) The schematics in Figure 1a and Figure 6 appear too high-level to be falsifiable. It is suggested that the authors formulate specific and testable hypotheses and preregister them before data collection.

      We thank the reviewer for pointing this out. We are planning to revise the Figure 1a and make it less abstract and more logical. For Figure 6, the schematic represents our theoretical framework of how hMT+ works in the 3D viso-spatial intelligence, we believe the elements within this framework are grounded in related theories and supported by evidence discussed in our results and discussions section, making them specific and testable.

      (2) Central to the hypothesis and design of the manuscript is a misinterpretation of a prior study by Melnick et al. (2013). While the original study identified a strong correlation between WAIS (IQ) and the Suppression Index (SI), the current manuscript erroneously asserts a specific relationship between the block design test (from WAIS) and SI. It should be noted that in the original paper, WAIS comprises Similarities, Vocabulary, Block design, and Matrix reasoning tests in Study 1, while the complete WAIS is used in Study 2. Did the authors conduct other WAIS subtests other than the block design task?

      Thanks for pointing this out. Reviewer #1 also asked this question, we copy the answers in here “The decision was informed by Melnick’s findings which indicated high correlations between Surround suppression (SI) and the Verbal Comprehension, Perceptual Reasoning, Working Memory, and Processing Speed Indexes, with correlation coefficients of 0.69, 0.47, 0.49, and 0.50, respectively. It is well-established that the hMT+ region of the brain is a sensory cortex involved in visual perception processing (3D perception). Furthermore, motion surround suppression (SI), a specific function of hMT+, aligns closely with this region's activities. Given this context, the Perception Reasoning sub-ability was deemed to have the clearest mechanism for further exploration. Consequently, we selected the most representative subtest of Perception Reasoning—the Block Design Test—which primarily assesses 3D visual intelligence.”

      (3) Additionally, there are numerous misleading references and unsubstantiated claims throughout the manuscript. As an example of misleading reference, "the human MT ... a key region in the multiple representations of sensory flows (including optic, tactile, and auditory flows) (Bedny et al., 2010; Ricciardi et al., 2007); this ideally suits it to be a new MD core." The two references in this sentence are claims about plasticity in the congenitally blind with sensory deprivation from birth, which is not really relevant to the proposal that hMT+ is a new MD core in healthy volunteers.

      Thanks for pointing this out. We have carefully read the corresponding references and considered the corresponding theories and agree with these comments. Due to our results only delving into “the GABA-ergic inhibition in human MT predicts visuo-spatial intelligence mediated by reverberation with frontal cortex”, it is not yet sufficient to prove that hMT+ is the core node of the MD system, we will adjust the explanatory logic of the article, that is, emphasizing the de redundancy of hMT+in visual-spatial intelligence and the improvement of information processing efficiency, while weakening the significance of hMT+ in MD systems. In addition, regarding the potential central role of hMT+ in the MD system, we agree with your view that research on hMT+ as a multisensory integration hub mainly focuses on developmental processes. Meanwhile, in adults, the MST region of hMT+ is considered a multisensory integration area for visual and vestibular inputs, which potentially supports the role of hMT+ in multitasking multisensory systems (Gu et al., J. Neurosci, 26(1), 73–85, 2006; Fetsch et al., Nat. Neurosci, 15, 146–154, 2012.). Further research could explore how other intelligence sub-ability such as working memory and language comprehension are facilitated by hMT+'s features.

      Another example of unsubstantiated claim: the rationale for selecting V1 as the control region is based on the assertion that "it mediates the 2D rather than 3D visual domain (Born & Bradley, 2005)". That's not the point made in the Born & Bradley (2005) paper on MT. It's crucial to note that V1 is where the initial binocular convergence occurs in cortex, i.e., inputs from both the right and left eyes to generate a perception of depth.

      Thank you for pointing this out. We acknowledge the inappropriate citation of "Born & Bradley, 2005," which focuses solely on the structure and function of the visual area MT. However, we believe that choosing hMT+ as the domain for 3D visual analysis and V1 as the control region is justified. Cumming and DeAngelis (Annu Rev Neurosci, 24:203–238.2001) state that binocular disparity provides the visual system with information about the three-dimensional layout of the environment, and the link between perception and neuronal activity is stronger in the extrastriate cortex (especially MT) than in the primary visual cortex(V1). This supports our choice and emphasizes the relevance of MT+ in our study. We will revise our reference in the revised version.

      Results & Discussion

      (1) The missing correlation between SI and BDT is crucial to the rest of the analysis. The authors should discuss whether they replicated the pattern of results from Melnick et al. (2013) despite using only one WAIS subtest.

      We thank for reviewer’s suggestion. Now the correlation result is placed in the supplemental material, we will put it back to the main text.

      (2) ROIs: can the authors clarify if the results are based on bilateral MT+/V1 or just those in the left hemisphere? Can the authors plot the MRS scan area in V1? I would be surprised if it's precise to V1 and doesn't spread to V2/3 (which is fine to report as early visual cortex).

      We thank for reviewer’s suggestion. We plan to draw the V1 ROI MRS scanning area and use the visual template to check if the scanning area contains V2/3. If it does, we will refer to it as the early visual cortex rather than specifically V1 in our reporting.

      (3) Did the authors examine V1 FC with either the frontal regions and/or whole brain, as a control analysis? If not, can the author justify why V1 serves as the control region only in the MRS but not in FC (Figure 4) or the mediation analysis (Figure 5)? That seems a little odd given that control analyses are needed to establish the specificity of the claim to MT+

      We thank for reviewer’s suggestion. We plan to do the V1 FC-behavior connection as control analysis. For mediation analysis, since V1 GABA/Glu has no correlation with BDT score, it is not sufficient to apply mediation analysis.

      (4) It is not clear how to interpret the similarity or difference between panels a and b in Figure 4.

      We thank reviewer for pointing this out. We plan to further interpret the difference between a and b in the revised version. Panels a represents BDT score correlated hMT+-region FC, which is obviously involved in frontal cortex. While panels b represents SI correlated hMT+-region FC, which shows relatively less regions. The overlap region is what we are interested in and explain how local inhibitory mechanisms works in the 3D viso-spatial intelligence. In addition, we would like to revise Figure 4 and point out the overlap region.

      (5) SI is not relevant to the authors‘ priori hypothesis, but is included in several mediation analyses. Can the authors do model comparisons between the ones in Figure 5c, d, and Figure S6? In other words, is SI necessary in the mediation model? There seem discrepancies between the necessity of SI in Figures 5c/S6 vs. Figure 5d.

      We thank the reviewer for highlighting this point. The relationship between the Suppression Index (SI) and our a priori hypotheses is elaborated in the response to reviewer 3, section (1). SI plays a crucial role in explicating how local inhibitory mechanisms function within the context of the 3D visuo-spatial task. Additionally, Figure 5c illustrates the interaction between the frontal cortex and hMT+, showing how the effects from the frontal cortex (BA46) on the Block Design Task are fully mediated by SI. This further underscores the significance of SI in our model.

      (6) The sudden appearance of "efficient information" in Figure 6, referring to the neural efficiency hypothesis, raises concerns. Efficient visual information processing occurs throughout the visual cortex, starting from V1. Thus, it appears somewhat selective to apply the neural efficiency hypothesis to MT+ in this context.

      We thank the reviewer for highlighting this point. There is no doubt that V1 involved in efficient visual information processing. However, in our result, the V1 GABA has no significant correlation between BDT score, suggesting that the V1 efficient processing might not sufficiently account for the individual differences in 3D viso-spatial intelligence. Additionally, we will clarify our use of the neural efficiency hypothesis by incorporating it into the introduction of our paper to better frame our argument.

      Transparency Issues:

      (1) Don't think it's acceptable to make the claim that "All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary information". It is the results or visualizations of data analysis, rather than the raw data themselves, that are presented in the paper/supp info.

      We thank reviewer for pointing this out. We realized that such expression will lead to confusion. We will delete this expression.

      (2) No GitHub link has been provided in the manuscript to access the source data, which limits the reproducibility and transparency of the study.

      We thank reviewer for pointing this out. We will attach the GitHub link in the revised version.

      Minor:

      "Locates" should be replaced with "located" throughout the paper. For example: "To investigate this issue, this study selects the human MT complex (hMT+), a region located at the occipito-temporal border, which represents multiple sensory flows, as the target brain area."

      We thank reviewer for pointing this out. We will revise it.

      Use "hMT+" instead of "MT+" to be consistent with the term in the literature.

      We thank reviewer for pointing this out. We agree to use hMT+ in the literature.

      "Green circle" in Figure 1 should be corrected to match its actual color.

      We thank reviewer for pointing this out. We will revise it.

      The abbreviation for the Wechsler Adult Intelligence Scale should be "WAIS," not "WASI."

      We thank reviewer for pointing this out. We will revise it.

    1. Author Response:

      We appreciate the thorough comments from the reviewers. Before revising the manuscript, we would like to briefly reply to the main concerns raised:

      • Is pupil size a reliable proxy of effort? A vast amount of work demonstrates that pupil size sensitively scales with fluctuations in effort: for instance, the pupil dilates when increasing load in working memory, or multiple object tracking tasks, and such pupillary effects robustly explain individual differences in cognitive ability and fluctuations in performance across trials.1–4 This extends to the planning of movements as pupil dilations are observed prior to the execution of (eye) movements.5 As reviewed previously6–12 (based on vast literature each), any increase in effort is associated with an increase in pupil size. Inadvertently, we phrased as if the link between effort and pupil size was established via shared neural correlates. However, this is not the case as the link between effort and pupil size had been established well before the underlying neural circuitry of this relationship was investigated in detail. During the revision, we plan to rewrite this section to clarify that pupil size indexes effort and to provide a clear distinction between this link and putative neural underpinnings of such effort-linked modulations.

      • Is saccade latency an alternative explanation for the link between effort and saccade selection? Longer saccade latencies may imply more complex oculomotor programming (e.g. saccades with larger amplitudes require longer latencies for non-microsaccades13, and latencies increase when distractors are presented14), and latencies are indeed known to differ across directions15,16. As suggested, it is possible that saccade latencies may also predict saccade preferences. However, even if this is the case, this would not constitute an alternative explanation. As saccade latency may index oculomotor programming complexity, it can potentially be considered an alternative outcome measure of effort, albeit restricted to the context of saccades. Therefore, if saccade latencies predict saccade preferences, this would not affect our conclusion, rather it would constitute as converging evidence that supports the conclusion that effort drives saccade selection.

      A related question is why one would use pupil size as a measure of effort, given the methodological care that pupillometry requires. There are a number of points that make pupil size sensible and promising in comparison with saccade latencies. In contrast to saccade latencies, pupil size allows to capture the effort of different effector systems (e.g. head or hand movements), and potentially even the effort associated with covert shifts of attention. Moreover, pupil size is a temporally rich and continuous measure that allows to isolate processes unfolding prior to (eye) movement onset (e.g. oculomotor programming). Together, this makes pupil size a powerful tool to study the costs of visual selection more broadly. In the revision, we will add analyses incorporating latencies and other other saccade metrics. We will also discuss the differences between pupil size and saccade latencies in capturing saccade costs and effort.

      • Are the current results causal or correlational? Most of the currently reported results are indeed correlational in nature. In our first tasks, we correlated pupil size during saccade planning to saccade preferences in a subsequent task. Although the link between across tasks was correlational, the observed relationship clearly followed our previously specified hypothesis.17 Moreover, experiments 1 and 2 of the visual search data replicated and extended this relationship. We also directly manipulated cognitive demand in the second visual search experiment. In line with the hypothesis that effort affects saccade selection, participants executed less saccades overall when performing a (primary) auditory dual task, and even cut the costly saccades most. Whilst mostly correlational, we do not know of a more fitting and parsimonious explanation for our findings than effort predicting saccade selection. We will address causality in the discussion for transparency and point more clearly to the second visual search experiment for causal evidence.

      References

      (1) Alnæs, D. et al. Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus. J. Vis. 14, 1 (2014).

      (2) Koevoet, D., Strauch, C., Van der Stigchel, S., Mathôt, S. & Naber, M. Revealing visual working memory operations with pupillometry: Encoding, maintenance, and prioritization. WIREs Cogn. Sci. e1668 (2023) doi:10.1002/wcs.1668.

      (3) Robison, M. K. & Unsworth, N. Pupillometry tracks fluctuations in working memory performance. Atten. Percept. Psychophys. 81, 407–419 (2019).

      (4) Unsworth, N. & Miller, A. L. Individual Differences in the Intensity and Consistency of Attention. Curr. Dir. Psychol. Sci. 30, 391–400 (2021).

      (5) Richer, F. & Beatty, J. Pupillary Dilations in Movement Preparation and Execution. Psychophysiology 22, 204–207 (1985).

      (6) Bumke, O. Die Pupillenstörungen Bei Geistes-Und Nervenkrankheiten. (Fischer, 1911).

      (7) Kahneman, D. Attention and Effort. (Prentice-Hall, 1973).

      (8) van der Wel, P. & van Steenbergen, H. Pupil dilation as an index of effort in cognitive control tasks: A review. Psychon. Bull. Rev. 25, 2005–2015 (2018).

      (9) Loewenfeld, I. E. Mechanisms of reflex dilatation of the pupil. Doc. Ophthalmol. 12, 185–448 (1958).

      (10) Mathôt, S. Pupillometry: Psychology, Physiology, and Function. J. Cogn. 1, 16 (2018).

      (11) Sirois, S. & Brisson, J. Pupillometry. WIREs Cogn. Sci. 5, 679–692 (2014).

      (12) Strauch, C., Wang, C.-A., Einhäuser, W., Van der Stigchel, S. & Naber, M. Pupillometry as an integrated readout of distinct attentional networks. Trends Neurosci. 45, 635–647 (2022).

      (13) Kalesnykas, R. P. & Hallett, P. E. Retinal eccentricity and the latency of eye saccades. Vision Res. 34, 517–531 (1994).

      (14) Walker, R., Deubel, H., Schneider, W. X. & Findlay, J. M. Effect of Remote Distractors on Saccade Programming: Evidence for an Extended Fixation Zone. J. Neurophysiol. 78, 1108–1119 (1997).

      (15) Hanning, N. M., Himmelberg, M. M. & Carrasco, M. Presaccadic attention enhances contrast sensitivity, but not at the upper vertical meridian. iScience 25, 103851 (2022).

      (16) Hanning, N. M., Himmelberg, M. M. & Carrasco, M. Presaccadic Attention Depends on Eye Movement Direction and Is Related to V1 Cortical Magnification. J. Neurosci. 4

      4, (2024).

      (17) Koevoet, D., Strauch, C., Naber, M. & Van der Stigchel, S. The Costs of Paying Overt and Covert Attention Assessed With Pupillometry. Psychol. Sci. 34, 887–898 (2023).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      We thank the reviewers for the detailed assessment of our work as well as their praise and constructive feedback which helped us to significantly improve our manuscript.

      Reviewer #1 (Public Review):

      The inferior colliculus (IC) is the central auditory system's major hub. It integrates ascending brainstem signals to provide acoustic information to the auditory thalamus. The superficial layers of the IC ("shell" IC regions as defined in the current manuscript) also receive a massive descending projection from the auditory cortex. This auditory cortico-collicular pathway has long fascinated the hearing field, as it may provide a route to funnel "high-level" cortical signals and impart behavioral salience upon an otherwise behaviorally agnostic midbrain circuit.

      Accordingly, IC neurons can respond differently to the same sound depending on whether animals engage in a behavioral task (Ryan and Miller 1977; Ryan et al., 1984; Slee & David, 2015; Saderi et al., 2021; De Franceschi & Barkat, 2021). Many studies also report a rich variety of non-auditory responses in the IC, far beyond the simple acoustic responses one expects to find in a "low-level" region (Sakurai, 1990; Metzger et al., 2006; Porter et al., 2007). A tacit assumption is that the behaviorally relevant activity of IC neurons is inherited from the auditory cortico-collicular pathway. However, this assumption has never been tested, owing to two main limitations of past studies:

      (1) Prior studies could not confirm if data were obtained from IC neurons that receive monosynaptic input from the auditory cortex.

      (2) Many studies have tested how auditory cortical inactivation impacts IC neuron activity; the consequence of cortical silencing is sometimes quite modest. However, all prior inactivation studies were conducted in anesthetized or passively listening animals. These conditions may not fully engage the auditory cortico-collicular pathway. Moreover, the extent of cortical inactivation in prior studies was sometimes ambiguous, which complicates interpreting modest or negative results.

      Here, the authors' goal is to directly test if auditory cortex is necessary for behaviorally relevant activity in IC neurons. They conclude that surprisingly, task relevant activity in cortico-recipient IC neuron persists in absence of auditory cortico-collicular transmission. To this end, a major strength of the paper is that the authors combine a sound-detection behavior with clever approaches that unambiguously overcome the limitations of past studies.

      First, the authors inject a transsynaptic virus into the auditory cortex, thereby expressing a genetically encoded calcium indicator in the auditory cortex's postsynaptic targets in the IC. This powerful approach enables 2-photon Ca2+ imaging from IC neurons that unambiguously receive monosynaptic input from auditory cortex. Thus, any effect of cortical silencing should be maximally observable in this neuronal population. Second, they abrogate auditory cortico-collicular transmission using lesions of auditory cortex. This "sledgehammer" approach is arguably the most direct test of whether cortico-recipient IC neurons will continue to encode task-relevant information in absence of descending feedback. Indeed, their method circumvents the known limitations of more modern optogenetic or chemogenetic silencing, e.g. variable efficacy.

      I also see three weaknesses which limit what we can learn from the authors' hard work, at least in the current form. I want to emphasize that these issues do not reflect any fatal flaw of the approach. Rather, I believe that their datasets likely contain the treasure-trove of knowledge required to completely support their claims.

      (1) The conclusion of this paper requires the following assumption to be true: That the difference in neural activity between Hit and Miss trials reflects "information beyond the physical attributes of sound." The data presentation complicates asserting this assumption. Specifically, they average fluorescence transients of all Hit and all Miss trials in their detection task. Yet, Figure 3B shows that mice's d' depends on sound level, and since this is a detection task the smaller d' at low SPLs presumably reflects lower Hit rates (and thus higher Miss rates). As currently written, it is not clear if fluorescence traces for Hits arise from trials where the sound cue was played at a higher sound level than on Miss trials. Thus, the difference in neural activity on Hit and Miss trials could indeed reflect mice's behavior (licking or not licking). But in principle could also be explained by higher sound-evoked spike rates on Hit compared to Miss trials, simply due to louder click sounds. Indeed, the amplitude and decay tau of their indicator GCaMP6f is non-linearly dependent on the number and rate of spikes (Chen et al., 2013), so this isn't an unreasonable concern.

      (2) The authors' central claim effectively rests upon two analyses in Figures 5 and 6. The spectral clustering algorithm of Figure 5 identifies 10 separate activity patterns in IC neurons of control and lesioned mice; most of these clusters show distinct activity on averaged Hit and Miss trials. They conclude that although the proportions of neurons from control and lesioned mice in certain clusters deviates from an expected 50/50 split, neurons from lesioned mice are still represented in all clusters. A significant issue here is that in addition to averaging all Hits and Miss trials together, the data from control and lesioned mice are lumped for the clustering. There is no direct comparison of neural activity between the two groups, so the reader must rely on interpreting a row of pie charts to assess the conclusion. It's unclear how similar task relevant activity is between control and lesioned mice; we don't even have a ballpark estimate of how auditory cortex does or does not contribute to task relevant activity. Although ideally the authors would have approached this by repeatedly imaging the same IC neurons before and after lesioning auditory cortex, this within-subjects design may be unfeasible if lesions interfere with task retention. Nevertheless, they have recordings from hundreds to thousands of neurons across two groups, so even a small effect should be observable in a between-groups comparison.

      (3) In Figure 6, the authors show that logistic regression models predict whether the trial is a Hit or Miss from their fluorescence data. Classification accuracy peaks rapidly following sound presentation, implying substantial information regarding mice's actions. The authors further show that classification accuracy is reduced, but still above chance in mice with auditory cortical lesions. The authors conclude from this analysis task relevant activity persists in absence of auditory cortex. In principle I do not disagree with their conclusion.

      The weakness here is in the details. First, the reduction in classification accuracy of lesioned mice suggests that auditory cortex does nevertheless transmit some task relevant information, however minor it may be. I feel that as written, their narrative does not adequately highlight this finding. Rather one could argue that their results suggest redundant sources of task-relevant activity converging in the IC. Secondly, the authors conclude that decoding accuracy is impaired more in partially compared to fully lesioned mice. They admit that this conclusion is at face value counterintuitive, and provide compelling mechanistic arguments in the Discussion. However, aside from shaded 95% CIs, we have no estimate of variance in decoding accuracy across sessions or subjects for either control or lesioned mice. Thus we don't know if the small sample sizes of partial (n = 3) and full lesion (n = 4) groups adequately sample from the underlying population. Their result of Figure 6B may reflect spurious sampling from tail ends of the distributions, rather than a true non-monotonic effect of lesion size on task relevant activity in IC.

      Our responses to the ‘recommendations for the authors’ below lay out in detail how we addressed each comment and concern. Besides filling in key information about how our original analysis aimed at minimizing any potential impact of differences in sound level distributions - namely that trials used for decoding were limited to a subset of sound levels - and which was accidentally omitted in the original manuscript, we have now carried out several additional analyses.

      We would like to highlight one of these because it supplements both the clustering and decoding analysis that we conducted to compare hit and miss trial activity, and directly addresses what the reviewer identified as our work’s main weakness (a possible confound between animal behavior and sound level distributions) and the request for an analysis that operates at the level of single units rather than the population level. Specifically, we assessed, separately for each recorded neuron, whether there was a statistically significant difference in the magnitude of neural activity between hit and miss trials. This approach allowed us to fully balance the numbers of hit and miss trials at each sound level that were entered into the analysis. The results revealed that a large proportion (close to 50%) of units were task modulated, i.e. had significantly different response magnitudes between hit and miss trials, and that this proportion was not significantly different between lesioned and non-lesioned mice. We hope that this, together with the rest of our responses, convincingly demonstrates that the shell of the IC encodes mouse sound detection behavior even when top-down input from the auditory cortex is absent.

      Reviewer #2 (Public Review):

      Summary:

      This study takes a new approach to studying the role of corticofugal projections from auditory cortex to inferior colliculus. The authors performed two-photon imaging of cortico-recipient IC neurons during a click detection task in mice with and without lesions of auditory cortex. In both groups of animals, they observed similar task performance and relatively small differences in the encoding of task-response variables in the IC population. They conclude that non-cortical inputs to the IC provide can substantial task-related modulation, at least when AC is absent. Strengths:

      This study provides valuable new insight into big and challenging questions around top-down modulation of activity in the IC. The approach here is novel and appears to have been executed thoughtfully. Thus, it should be of interest to the community.

      Weaknesses: There are, however, substantial concerns about the interpretation of the findings and limitations to the current analysis. In particular, Analysis of single unit activity is absent, making interpretation of population clusters and decoding less interpretable. These concerns should be addressed to make sure that the results can be interpreted clearly in an active field that already contains a number of confusing and possibly contradictory findings.

      Our responses to the ‘recommendations for the authors’ below lay out in detail how we addressed each comment and concern. Several additional analyses have now been carried out including ones that operate at the level of single units rather than the population level, as requested by the reviewer. We would like to briefly highlight one here because it supplements both the clustering and decoding analysis that we conducted to compare hit and miss trial activity and directly addresses what the other reviewers identified as our work’s main weakness (a possible confound between animal behavior and sound level distributions). Specifically, we assessed, separately for each recorded neuron, whether there was a statistically significant difference in the magnitude of neural activity between hit and miss trials. This approach allowed us to fully balance the numbers of hit and miss trials at each sound level that were entered into the analysis. The results revealed that a large proportion (close to 50%) of units were task modulated, i.e. had significantly different response magnitudes between hit and miss trials, and that this proportion was not significantly different between lesioned and non-lesioned mice. We hope that this, together with the rest of our responses, convincingly demonstrates that the shell of the IC encodes mouse sound detection behavior even when top-down input from the auditory cortex is absent.

      Reviewer #3 (Public Review):

      Summary:

      This study aims to demonstrate that cortical feedback is not necessary to signal behavioral outcome to shell neurons of the inferior colliculus during a sound detection task. The demonstration is achieved by the observation of the activity of cortico-recipient neurons in animals which have received lesions of the auditory cortex. The experiment shows that neither behavior performance nor neuronal responses are significantly impacted by cortical lesions except for the case of partial lesions which seem to have a disruptive effect on behavioral outcome signaling. Strengths:

      The experimental procedure is based on state of the art methods. There is an in depth discussion of the different effects of auditory cortical lesions on sound detection behavior. Weaknesses:

      The analysis is not documented enough to be correctly evaluated. Have the authors pooled together trials with different sound levels for the key hit vs miss decoding/clustering analysis? If so, the conclusions are not well supported, as there are more misses for low sound levels, which would completely bias the outcome of the analysis. It would possible that the classification of hit versus misses actually only reflects a decoding of sound level based on sensory responses in the colliculus, and it would not be surprising then that in the presence or absence of cortical feedback, some neurons responds more to higher sound levels (hits) and less to lower sound levels (misses). It is important that the authors clarify and in any case perform an analysis in which the classification of hits vs misses is done only for the same sound levels. The description of feedback signals could be more detailed although it is difficult to achieve good temporal resolution with the calcium imaging technique necessary for targeting cortico-recipient neurons.

      Our responses to the ‘recommendations for the authors’ below lay out in detail how we addressed each comment and concern. Besides filling in key information about how our original analysis aimed at minimizing any potential impact of differences in sound level distributions - namely that trials used for decoding were limited to a subset of sound levels - and which was accidentally omitted in the original manuscript, we have now carried out several additional analyses to directly address what the reviewer identified as our work’s main weakness (a possible confound between animal behavior and sound level distributions). This includes an analysis in which we were able to demonstrate for one imaging session with a sufficiently large number of trials that limiting the trials entered into the decoding analysis to those from a single sound level did not meaningfully impact decoding accuracy. We would like to highlight another new analysis here because it supplements both the clustering and decoding analyses that we conducted to compare hit and miss trial activity and addresses the other reviewers’ request for an analysis that operates at the level of single units rather than the population level. Specifically, we assessed, separately for each recorded neuron, whether there was a statistically significant difference in the magnitude of neural activity between hit and miss trials. This approach allowed us to fully balance the numbers of hit and miss trials at each sound level that were entered into the analysis. The results revealed that a large proportion (close to 50%) of units were task modulated, i.e. had significantly different response magnitudes between hit and miss trials, and that this proportion was not significantly different between lesioned and non-lesioned mice. We hope that this, together with the rest of our responses, convincingly demonstrates that the shell of the IC encodes mouse sound detection behavior even when top-down input from the auditory cortex is absent.

      Reviewer #1 (Recommendations For The Authors):

      Thank you for the opportunity to read your paper. I think the conclusion is exciting. Indeed, you indicate that perhaps contrary to many of our (untested) assumptions, task-relevant activity in the IC may persist in absence of auditory cortex.

      As mentioned in my public review: Despite my interest in the work, I also think that there are several opportunities to significantly strengthen your conclusions. I feel this point is important because your work will likely guide the efforts of future students and post-docs working on this topic. The data can serve as a beacon to move the field away from the (somewhat naïve) idea that the evolved forebrain imparts behavioral relevance upon an otherwise uncivilized midbrain. This knowledge will inspire a search for alternative explanations. Indeed, although you don't highlight it in your narrative, your results dovetail nicely with several studies showing task-relevant activity in more ventral midbrain areas that project to the IC (e.g., pedunculopontine nuclei; see work from Hikosaka in monkeys, and more recently in mice from Karel Svoboda's lab).

      Thanks for the kind words.

      These studies, in particular the work by Inagaki et al. (2022) outlining how the transformation of an auditory go signal into movement could be mediated via a circuit involving the PPN/MRN (which might rely on the NLL for auditory input) and the motor thalamus, are indeed highly relevant.

      We made the following changes to the manuscript text.

      Line 472:”...or that the auditory midbrain, thalamus and cortex are bypassed entirely if simple acousticomotor transformations, such as licking a spout in response to a sound, are handled by circuits linking the auditory brainstem and motor thalamus via pedunculopontine and midbrain reticular nuclei (Inagaki et al., 2022).”

      The beauty of the eLife experiment is that you are free to incorporate or ignore these suggestions. After all, it's your paper, not mine. Nevertheless, I hope you find my comments useful.<br /> First, a few suggestions to address my three comments in the public review.

      Suggestion for public comment #1: An easy way to address this issue is to average the neural activity separately for each trial outcome at each sound level. That way you can measure if fluorescence amplitude (or integral) varies as a function of mice's action rather than sound level. This approach to data organization would also open the door to the additional analyses for addressing comment #2, such as directly comparing auditory and putatively non-auditory activity in neurons recorded from control and lesioned mice.

      We have carried out additional analyses for distinguishing between the two alternative explanations of the data put forward by the reviewer: That the difference in neural activity between hit and miss trials reflects a) behavior or b) sound level (more precisely: differences in response magnitude arising from a higher proportion of high-sound-level trials in the hit trial group than in the miss trial group). If the data favored b), we would expect no difference in activity between hit and miss trials when plotted separately for each sound level. The new Figure 4 - figure supplement 1 indicates that this is not the case. Hit and miss trial activity are clearly distinct even when plotted separately for different sound levels, confirming that this difference in activity reflects the animals’ behavior rather than sensory information.

      Changes to manuscript.

      Line 214: “While averaging across all neurons cannot capture the diversity of responses, the averaged response profiles suggest that it is mostly trial outcome rather than the acoustic stimulus and neuronal sensitivity to sound level that shapes those responses (Figure 4 – figure supplement 1).”

      Additionally, we assessed for each neuron separately whether there was a significant difference between hit and miss trial activity and therefore whether the activity of the neuron could be considered “task-modulated”. To achieve this, we used equal numbers of hit and miss trials at each sound level to ensure balanced sound level distributions and thus rule out any potential confound between sound level distributions and trial outcome. This analysis revealed that the proportion of task-modulated neurons was very high (close to 50%) and not significantly different between lesioned and non-lesioned mice (Figure 6 - figure supplement 3).

      Changes to the manuscript.

      Line 217: “Indeed, close to half (1272 / 2649) of all neurons showed a statistically significant difference in response magnitude between hit and miss trials…”

      Line 307: “Although the proportion of individual neurons with distinct response magnitudes in hit and miss trials in lesioned mice did not differ from that in non-lesioned mice, it was significantly lower when separating out mice with partial lesions (Figure 6 – figure supplement 3).”

      Differences in the distributions of sound levels in the different trial types could also potentially confound the decoding into hit and miss trials. Our original analysis was actually designed to take this into account but, unfortunately, we failed to include sufficient details in the methods section.

      Changes to the manuscript.

      Line 710: “Rather than including all the trials in a given session, only trials of intermediate difficulty were used for the decoding analysis. More specifically, we only included trials across five sound levels, comprising the lowest sound level that exceeded a d’ of 1.5 plus the two sound levels below and above that level. That ensured that differences in sound level distributions would be small, while still giving us a sufficient number of trials to perform the decoding analysis.“

      In this context, it is worth bearing in mind that a) the decoding analysis was done on a frame-byframe basis, meaning that the decoding score achieved early in the trial has no impact on the decoding score at later time points in the trial, b) sound-driven activity predominantly occurs immediately after stimulus onset and is largely over about 1 s into the trial (see cluster 3, for instance, or average miss trial activity in Figure 4 – figure supplement 1), c) decoding performance of the behavioral outcome starts to plateau 500-1000 ms into the trial and remains high until it very gradually begins to decline after about 2 s into the trial. In other words, decoding performance remains high far longer than the stimulus would be expected to have an impact on the neurons’ activity. Therefore, we would expect any residual bias due to differences in the sound level distribution that our approach did not control for to be restricted to the very beginning of the trial and not to meaningfully impact the conclusions derived from the decoding analysis.

      Finally, we carried out an additional decoding analysis for one imaging session in which we had a sufficient number of trials to perform the analysis not only over the five (59, 62, 65, 68, 71 dB SPL) original sound levels, but also over a reduced range of three (62, 65, 68 dB SPL) sound levels, as well as a single (65 dB SPL) sound level (Figure 6 - figure supplement 1). The mean sound level differences between the hit trial distributions and miss trial distributions for these three conditions were 3.08, 1.01 and 0 dB, respectively. This analysis suggests that decoding performance is not meaningfully impacted by changing the range of sound levels (and sound level distributions), other than that including fewer sound levels means fewer trials and thus noisier decoding.

      Changes to manuscript.

      Line 287: ”...and was not meaningfully affected by differences in sound level distributions between hit and miss trials (Figure 6 – figure supplement 1).”

      Suggestion for public comment #2: Perhaps a solution would be to display example neuron activity in each cluster, recorded in control and lesioned mice. The reader could then visually compare example data from the two groups, and immediately grasp the conclusion that task relevant activity remains in absence of auditory cortex. Additionally, one possibility might be to calculate the difference in neural activity between Hit and Miss trials for each task-modulated neuron. Then, you could compare these values for neurons recorded in control and lesion mice. I feel like this information would greatly add to our understanding of cortico-collicular processing.

      I would also argue that it's perhaps more informative to show one (or a few) example recordings rather than averaging across all cells in a cluster. Example cells would give the reader a better handle on the quality of the imaging, and this approach is more standard in the field. Finally, it would be useful to show the y axis calibration for each example trace (e.g. Figure 5 supp 1). That is also pretty standard so we can immediately grasp the magnitude of the recorded signal.

      We agree that while the information we provided shows that neurons from lesioned and nonlesioned groups are roughly equally represented across the clusters, it does not allow the reader to appreciate how similar the activity profiles of neurons are from each of the two groups. However, picking examples can be highly subjective and thus potentially open to bias. We therefore opted instead to display, separately for lesioned and non-lesioned mice, the peristimulus time histograms of all neurons in each cluster, as well as the cluster averages of the response profiles (Figure 5 - figure supplement 3). This, we believe, convincingly illustrates the close correspondence between neural activity in lesioned and non-lesioned mice across different clusters. All our existing and new figures indicate the response magnitude either on the figures’ y-axis or via scale/color bars.

      Changes to manuscript.

      Line 254: “Furthermore, there was a close correspondence between the cluster averages of lesioned and non-lesioned mice (Figure 5 – figure supplement 3).”

      Furthermore, we’ve now included a video of the imaging data which, we believe, gives the reader a much better handle on the data quality than further example response profiles would.

      Changes to manuscript.

      Line 197: ”...using two-photon microscopy (Figure 4B, Video 1).”

      Suggestion for public comment #3: In absence of laborious and costly follow-up experiments to boost the sample size of partial and complete lesion groups, it may be more prudent to simply tone down the claims that lesion size differentially impacts decoding accuracy. The results of this analysis are not necessary for your main claims.

      Our new results on the proportions of ‘task-modulated’ neurons (Figure 6 - figure supplement 3) across different experimental groups show that there is no difference between non-lesioned and lesioned mice as a whole, but mice with partial lesions have a smaller proportion of taskmodulated neurons than the other two groups. While this corroborates the results of the decoding analysis, we certainly agree that the small sample size is a caveat that needs to be acknowledged.

      Changes to manuscript.

      Line 477: ”Some differences were observed for mice with only partial lesions of the auditory cortex.

      Those mice had a lower proportion of neurons with distinct response magnitudes in hit and miss trials than mice with (near-)complete lesions. Furthermore, trial outcomes could be read out with lower accuracy from these mice. While this finding is somewhat counterintuitive and is based on only three mice with partial lesions, it has been observed before that smaller lesions…”

      A few more suggestions unrelated to public review:

      Figure 1: This is somewhat of an oddball in this manuscript, and its inclusion is not necessary for the main point. Indeed, the major conclusion of Fig 1 is that acute silencing of auditory cortex impairs task performance, and thus optogenetic methods are not suitable to test your hypothesis. However, this conclusion is also easily supported from decades of prior work, and thus citations might suffice.

      We do not agree that these data can easily be substituted with citations of prior published work. While previous studies (Talwar et al., 2001, Li et al., 2017) have demonstrated the impact of acute pharmacological silencing on sound detection in rodents, pharmacological and optogenetic silencing are not equivalent. Furthermore, we are aware of only one published study (Kato et al., 2015) that investigated the impact of optogenetically perturbing auditory cortex on sound detection (others have investigated its impact on discrimination tasks). Kato et al. (2015) examined the effect of acute optogenetic silencing of auditory cortex on the ability of mice to detect the offsets of very long (5-9 seconds) sounds, which is not easily comparable to the click detection task employed by us. Furthermore, when presenting our work at a recent meeting and leaving out the optogenetics results due to time constraints, audience members immediately enquired whether we had tried an optogenetic manipulation instead of lesions. Therefore, we believe that these data represent a valuable piece of information that will be appreciated by many readers and have decided not to remove them from the manuscript.

      A worst case scenario is that Figure 1 will detract from the reader's assessment of experimental rigor. The data of 1C are pooled from multiple sessions in three mice. It is not clear if the signed-rank test compares performance across n = 3 mice or n = 13 sessions. If the latter, a stats nitpicker could argue that the significance might not hold up with a nested analysis considering that some datapoints are not independent of one another. Finally, the experiment does not include a control group, gad2-cre mice injected with a EYFP virus. So as presented, the data are equally compatible with the pessimistic conclusion that shining light into the brain impairs mice's licking. My suggestion is to simply remove Figure 1 from the paper. Starting off with Figure 3 would be stronger, as the rest of the study hinges upon the knowledge that control and lesion mice's behavior is similar.

      Instead of reporting the results session-wise and doing stats on the d’ values, we now report results per mouse and perform stats on the proportions of hits and false alarms separately for each mouse. The results are statistically significant for each mouse and suggest that the differences in d’ are primarily caused by higher false alarm rates during the optogenetic perturbation than in the control condition.

      Changes to manuscript.

      New Figure 1.

      We agree that including control mice not expressing ChR2 would be important for fully characterizing the optogenetic manipulation and that the lack of this control group should be acknowledged. However, in the context of this study, the outcome of performing this additional experiment would be inconsequential. We originally considered using an optogenetic approach to explore the contribution of cortical activity to IC responses, but found that this altered the animals’ sound detection behavior. Whether that change in behavior is due to activation of the opsin or simply due to light being shone on the brain has no bearing on the conclusion that this type of manipulation is unsuitable for determining whether auditory cortex is required for the choice-related activity that we recorded in the IC.

      Changes to manuscript.

      Line 106: ”Although a control group in which the auditory cortex was injected with an EYFP virus lacking ChR2 would be required to confirm that the altered behavior results from an opsindependent perturbation of cortical activity, this result shows that this manipulation is also unsuitable… ”

      Figure 2, comment #1: The micrograph of panel B shows the densest fluorescence in the central IC. You interpret this as evidence of retrograde labeling of central IC neurons that project to the shell IC. This is a nice finding, but perhaps a more relevant micrograph would be to show the actual injection site in the shell layers. The rest of Figure 2 documents the non-auditory cortical sources of forebrain feedback. Since non-auditory cortical neurons may or may not target distinct shell IC sub-circuits, it's important to know where the retrograde virus was injected. Stylistic comment: The flow of the panels is somewhat unorthodox. Panel A and B follow horizontally, then C and D follow vertically, followed by E-H in a separate column. Consider sequencing either horizontally or vertically to maximize the reader's experience.

      Figure 2, comment # 2: It would also be useful to show more rostral sections from these mice, perhaps as a figure supplement, if you have the data. I think there is a lot of value here given a recent paper (Olthof et al., 2019 Jneuro) arguing that the IC receives corticofugal input from areas more rostral to the auditory cortex. So it would be beneficial for the field to know if these other cortical sources do or do not represent likely candidates for behavioral modulation in absence of auditory cortex.

      Figure 2, comment #3: You have a striking cluster of retrogradely labeled PPC neurons, and I'm not sure PPC has been consistently reported as targeting the IC. It would be good to confirm that this is a "true" IC projection as opposed to viral leakage into the SC. Indeed, Figure 2, supplement 2 also shows some visual cortex neurons that are retrogradely labeled. This has bearing on the interpretations, because choice-related activity is rampant in PPC, and thus could be a potential source of the task relevant activity that persists in your recordings. This could be addressed as the point above, by showing the SC sections from these same mice.

      All IC injections were made under visual guidance with the surface of the IC and adjacent brain areas fully exposed after removal of the imaging window. Targeting the IC and steering clear of surrounding structures, including the SC, was therefore relatively straightforward.

      We typically observed strong retrograde labeling in the central nucleus after viral injections into the dorsal IC and, given the moderate injection volume (~50 nL at each of up to three sites), it was also typical to see spatially fairly confined labeling at the injection sites. For the mouse shown in Figure 2, we do not have further images of the IC. This was one of the earliest mice to be included in the study and we did not have access to an automatic slide scanner at the time. We had to acquire confocal images in a ‘manual’ and very time-consuming manner and therefore did not take further IC images for this mouse. We have now included, however, a set of images spanning the whole IC and the adjacent SC sections for the mouse for which we already show sections in Figure 2 - figure supplement 2. These were added as Figure 2 - figure supplement 3A to the manuscript. These images show that the injections were located in the caudal half of the IC and that there was no spillover into the SC - close inspection of those sections did not reveal any labeled cell bodies in the SC. Furthermore, we include as Figure 2 - figure supplement 3B a dozen additional rostral cortical sections of the same mouse illustrating corticocollicular neurons in regions spanning visual, parietal, somatosensory and motor cortex. Given the inclusion of the IC micrographs in the new supplementary figure, we removed panel B from Figure 2. This should also make it easier for the reader to follow the sequencing of the remaining panels.

      Changes to manuscript.

      New Figure 2 - figure supplement 3.

      Line 159: “After the experiments, we injected a retrogradely-transported viral tracer (rAAV2-retrotdTomato) into the right IC to determine whether any corticocollicular neurons remained after the auditory cortex lesions (Figure 2, Figure 2 – figure supplement 2, Figure 2 – figure supplement 3). The presence of retrogradely-labeled corticocollicular neurons in non-temporal cortical areas (Figure 2) was not the result of viral leakage from the dorsal IC injection sites into the superior colliculus (Figure 2 – figure supplement 3).”

      Line 495: “...projections to the IC, such as those originating from somatosensory cortical areas (Lohse et al., 2021; Lesicko et al., 2016) and parietal cortex may have contributed to the response profiles that we observed.

      Figure 5 (see also public review point #2): I am not convinced that this unsupervised method yields particularly meaningful clusters; a grain of salt should be provided to the reader. For example, Clusters 2, 5, 6, and 7 contain neurons that pretty clearly respond with either short latency excitation or inhibition following the click sound on Hits. I would argue that neurons with such diametrically opposite responses should not be "classified" together. You can see the same issue in some of Namboodiri/Stuber's clustering (their Figure 1). It might be useful to make it clear to the reader that these clusters can reflect idiosyncrasies of the algorithm, the behavior task structure, or both.

      We agree.

      Changes to manuscript.

      Line 666: “While clustering is a useful approach for organizing and visualizing the activity of large and heterogeneous populations of neurons, we need to be mindful that, given continuous distributions of response properties, the locations of cluster boundaries can be somewhat arbitrary and/or reflect idiosyncrasies of the chosen method and thus vary from one algorithm to another. We employed an approach very similar to that described in Namboodiri et al. (2019) because it is thought to produce stable results in high-dimensional neural data (Hirokawa et al. 2019).”

      Methods:

      How was a "false alarm" defined? Is it any lick happening during the entire catch trial, or only during the time period corresponding to the response window on stimulus trials?

      The response window was identical for catch and stimulus trials and a false alarm was defined as licking during the response window of a catch trial.

      Changes to manuscript.

      Line 598: “During catch trials, neither licking (‘false alarm’) during the 1.5-second response window …”

      L597 and so forth: What's the denominator in the conversion from the raw fluorescence traces into DF/F? Did you take the median or mode fluorescence across a chunk of time? Baseline subtract average fluorescence prior to click onset? Similarly, please provide some more clarification as to how neuropil subtraction was achieved. This information will help us understand how the classifier can decode trial outcome from data prior to sound onset.

      Signal processing did not involve the subtraction of a pre-stimulus period.

      Changes to manuscript.

      Line 629: ”Neuropil extraction was performed using default suite2p parameters (https://suite2p.readthedocs.io/en/latest/settings.html), neuropil correction was done using a coefficient of 0.7, and calcium ΔF/F signals were obtained by using the median over the entire fluorescence trace as F0. To remove slow fluctuations in the signal, a baseline of each neuron’s entire trace was calculated by Gaussian filtering in addition to minimum and maximum filtering using default suite2p parameters. This baseline was then subtracted from the signal.”

      Was the experimenter blinded to the treatment group during the behavior experiments? If not, were there issues that precluded blinding (limited staffing owing to lab capacity restrictions during the pandemic)? This is important to clarify for the sake of rigor and reproducibility.

      Changes to manuscript.

      Line 574: “The experimenters were not blinded to the treatment group, i.e. lesioned or non-lesioned, but they were blind to the lesion size both during the behavior experiments and most of the data processing.”

      Minor:

      L127-128: "In order to test...lesioned the auditory cortex bilaterally in 7 out of 16 animals". I would clarify this by changing the word animals to "mice" and 7 out of 16 by stating n = 9 and n = 7 are control and lesion groups, respectively.

      Agreed.

      Changes to manuscript.

      Line 129: “...compared the performance of mice with bilateral lesions of the auditory cortex (n = 7) with non-lesioned controls (n = 9)”

      L225-226: You rule out self-generated sounds as a likely source of behavioral modulation by citing Nate Sawtell's paper in the DCN. However, Stephen David's lab suggested that in marmosets, post sound activity in central IC may in fact reflect self-generated sounds during licking. I suggest addressing this with a nod to SVD's work (Singla et al., 2017; but see Shaheen et al., 2021).

      Agreed.

      Changes to manuscript.

      Line 243: “(Singla et al., 2017; but see Shaheen et al., 2021)”

      Line 238 - 239: You state that proportions only deviate greater than 10% for one of the four statistically significant clusters. Something must be unclear here because I don't understand: The delta between the groups in the significant clusters of Fig 5C is (from left to right) 20%, 20%, 38%, and 12%. Please clarify.

      Our wording was meant to convey that a deviation “from a 50/50 split” of 10% means that each side deviates from 50 by 10% resulting in a 40/60 (or 60/40) split. We agree that that has the potential to confuse readers and is not as clear as it could be and have therefore dropped the ambiguous wording.

      Changes to manuscript.

      Line 253: ”,..the difference between the groups was greater than 20% for only one of them.”

      L445: I looked at the cited Allen experiment; I'd be cautious with the interpretation here. A monosynaptic IC->striatum projection is news to me. I think Allen Institute used an AAV1-EGFP virus for these experiments, no? As you know, AAV1 is quite transsynaptic. The labeled fibers in striatum of that experiment may reflect disynaptic labeling of MGB neurons (which do project to striatum).

      Agreed. We deleted the reference to this Allen experiment.

      L650: Please define "network activity". Is this the fluorescence value for each ROI on each frame of each trial? Averaged fluorescence of each ROI per frame? Total frame fluorescence including neuropil? Depending on who you ask, each of these measures provides some meaningful readout of network activity, so clarification would be useful.

      Changes to manuscript.

      Line 707: “Logistic regression models were trained on the network activity of each session, i.e., the ΔF/F values of all ROIs in each session, to classify hit vs miss trials. This was done on a frame-by-frame basis, meaning that each time point (frame) of each session was trained separately.

      Figure 3 narrative or legend: Listing the F values for the anova would be useful. There is pretty clearly a main effect of training session for hits, but what about for the false alarms? That information is important to solidify the result, and would help more specialized readers interpret the d-prime plot in this figure.

      Agreed. There were significant main effects of training day for both hit rates and false alarm rates (as well as d’).

      Changes to manuscript.

      Line 165: “The ability of the mice to learn and perform the click detection task was evident in increasing hit rates and decreasing false alarm rates across training days (Figure 3A, p < 0.01, mixed-design ANOVAs).”

      In summary, thank you for undertaking this work. Your conclusions are provocative, and thus will likely influence the field's direction for years to come.

      Thank you for those kind words and valuable and constructive feedback, which has certainly improved the manuscript.

      Reviewer #2 (Recommendations For The Authors):

      MAJOR CONCERNS

      (1) (Fig. 5) What fraction of individual neurons actually encode task-related information in each animal group? How many neurons respond to sound? The clustering and decoding analyses are interesting, but they obscure these simple questions, which get more directly at the main questions of the study. Suggested approach: For a direct comparison of AC-lesioned and -non-lesioned animals, why not simply compare the mean difference between PSTH response for each neuron individually? To test for trial outcome effects, compare Hit and Miss trials (same stimulus, different behavior) and for sound response effects, compare Hit and False alarm trials (same behavior, different response). How do you align for time in the latter case when there's no stimulus? Align to the first lick event. The authors should include this analysis or explain why their approach of jumping right to analysis of clusters is justified.

      We have now calculated the fraction of neurons that encode trial outcome by comparing hit and miss trial activity. That fraction does not differ between non-lesioned animals and lesioned animals as a whole, but is significantly smaller in mice with partial lesions. The author’s suggestion of comparing hit and false alarm trial activity to assess sound responsiveness is problematic because hit trials involve reward delivery and consumption. Consequently, they are behaviorally very different from false alarm trials (not least because hit trials tend to contain much more licking). Therefore, we calculated the fraction of neurons that respond to the acoustic stimulus by comparing activity before and after stimulus onset in miss trials. We found no significant difference between the non-lesioned and lesioned mice or between subgroups.

      We have addressed these points with the following changes to the manuscript:

      Line 217: “Indeed, close to half (1272 / 2649) of all neurons showed a statistically significant difference in response magnitude between hit and miss trials, while only a small fraction (97 / 2649) exhibited a significant response to the sound.”

      Line 307: “Although the proportion of individual neurons with distinct response magnitudes in hit and miss trials in lesioned mice did not differ from that in non-lesioned mice, it was significantly lower when separating out mice with partial lesions (Figure 6 – figure supplement 3).”

      Line 648: “Analysis of task-modulated and sound-driven neurons. To identify individual neurons that produced significantly different response magnitudes in hit and miss trials, we calculated the mean activity for each stimulus trial by taking the mean activity over the 5 seconds following stimulus presentation and subtracting the mean activity over the 2 seconds preceding the stimulus during that same trial. A Mann-Whitney U test was then performed to assess whether a neuron showed a statistically significant difference (Benjamini-Hochberg adjusted p-value of 0.05) in response magnitude between hit and miss trials. The analysis was performed using equal numbers of hit and miss trials at each sound level to ensure balanced sound level distributions. If, for a given sound level, there were more hit than miss trials, we randomly selected a sample of hit trials (without substitution) to match the sample size for the miss trials and vice versa. Sounddriven neurons were identified by comparing the mean miss trial activity before and after stimulus presentation. Specifically, we performed a Mann-Whitney U test to assess whether there was a statistically significant difference (Benjamini-Hochberg adjusted p-value of 0.05) between the mean activity over the 2 seconds preceding the stimulus and the mean activity over the 1 second period following stimulus presentation.”

      Some more specific concerns about focusing only on cluster-level and population decoding analysis are included below.

      (2) (L 234) "larger field of view". Do task-related or lesion-dependent effects depend on the subregion of IC imaged? Some anatomists would argue that the IC shell is not a uniform structure, and concomitantly, task-related effects may differ between fields. Did coverage of IC subregions differ between experimental groups? Is there any difference in task related effects between subregions of IC? Or maybe all this work was carried out only in the dorsal area? The differences between lesioned and non-lesioned animals are relatively small, so this may not have a huge impact, but a more nuanced discussion that accounts for observed or potential (if not tested) differences between regions of the IC.

      The specific subregion coverage could also impact the decoding analysis (Fig 6), and if possible it might be worth considering an interaction between field of view and lesion size on decoding.

      Each day we chose a new imaging location to avoid recording the same neurons more than once and aimed to sample widely across the optically accessible surface of the IC. We typically stopped the experiment only when there were no more new areas to record from. In terms of the depth of the imaged neurons, we were limited by the fact that corticorecipient neurons become sparser with depth and that the signal available from the GCaMP6f labeling of the Ai95 mice becomes rapidly weaker with increasing distance from the surface. This meant that we recorded no deeper than 150 µm from the surface of the IC. Consequently, while there may have been some variability in the average rostrocaudal and mediolateral positioning of imaging locations from animal to animal due to differences between mice in how much of the IC surface was visible, cranial window positioning, and in neuronal labeling etc, our dataset is anatomically uniform in that all recorded neurons receive input from the auditory cortex and are located within 150 µm of the surface of the IC. Therefore, we think it highly unlikely that small sampling differences across animals could have a meaningful impact on the results.

      Given that there is no consensus as to where the border between the dorsal and external/lateral cortices of the IC is located and that it is typically difficult to find reliable anatomical reference points (the location of the borders between the IC and surrounding structures is not always obvious during imaging, i.e. a transition from a labeled area to a dark area near the edge of the cranial window could indicate a border with another structure, but also the IC surface sloping away from the window or simply an unlabeled area within the IC), we made no attempt to assign our recordings from corticorecipient neurons to specific subdivisions of the IC.

      Changes to manuscript.

      Line 195: “We then proceeded to record the activity of corticorecipient neurons within about 150 µm of the dorsal surface of the IC using two-photon microscopy (Figure 4B, Video 1).”

      Line 375: “We imaged across the optically accessible dorsal surface of the IC down to a depth of about 150 µm below the surface. Consequently, the neurons we recorded were located predominantly in the dorsal cortex. However, identifying the borders between different subdivisions of the IC is not straightforward and we cannot rule out the possibility that some were located in the lateral cortex.”

      (3) (L 482-483) "auditory cortex is not required for the task-related activity recording in IC neurons of mice performing a sound detection task". Most places in the text are clearer, but this statement is confusing. Yes, animals with lesions can have a "normal"-looking IC, but does that mean that AC does not strongly modulate IC during this behavior in normal animals? The authors have shown convincingly that subcortical areas can both shape behavior and modulate IC normally, but AC may still be required for IC modulation in non-lesioned animals. Given the complexity of this system, the authors should make sure they summarize their results consistently and clearly throughout the manuscript.

      The reviewer raises an important point. What we have shown is that corticorecipient dorsal IC neurons in mice without auditory cortex show neural activity during a sound detection task that is largely indistinguishable from the activity of mice with an intact auditory cortex. In lesioned mice, the auditory cortex is thus not required. Whether the IC activity of the non-lesioned group can be shaped by input from the auditory cortex in a meaningful way in other contexts, such as during learning, is a question that our data cannot answer.

      Changes to manuscript.

      Line 508: "While modulation of IC activity by this descending projection has been implicated in various functions, most notably in the plasticity of auditory processing, we have shown in mice performing a sound detection task that IC neurons show task-related activity in the absence of auditory cortical input."

      LESSER CONCERNS

      (L. 106-107) "Optogenetic suppression of cortical activity is thus also unsuitable..." It appears that behavior is not completely abolished by the suppression. One could also imagine using a lower dose of muscimol for partial inactivation of AC feedback. When some behavior persists, it does seem possible to measure task-related changes in the IC. This may not be necessary for the current study, but the authors should consider how these transient methods could be applied usefully in the Discussion. What about inactivation of cortical terminals in the IC? Is that feasible?

      Our argument is not that acute manipulations are unsuitable because they completely abolish the behavior, but because they significantly alter the behavior. Although it would not be trivial to precisely measure the extent of pharmacological cortical silencing in behaving mice that have been fitted with a midbrain window, it should be possible to titrate the size of a muscimol injection to achieve partial silencing of the auditory cortex that does not fully abolish the ability to detect sounds. However, such an outcome would likely render the data uninterpretable. If no effect on IC activity was observed, it would not be possible to conclude whether this was due to the fact that the auditory cortex was only partially silenced or that projections from the auditory cortex have no influence on the recorded IC activity. Similarly, if IC activity was altered, it would not be possible to say whether this was due to altered descending modulation resulting from the (partially) silenced auditory cortex or to the change in behavior, which would likely be reflected in the choice-related activity measured in the IC.

      Silencing of corticocollicular axons in the IC is potentially a more promising approach and we did devote a considerable amount of time and effort to establishing a method that would allow us to simultaneously image IC neurons while silencing corticocollicular axons, trying both eNpHR3.0 and Jaws with different viral labeling approaches and mouse lines. However, we ultimately abandoned those attempts because we were not convinced that we had achieved sufficient silencing or that we would be able to convincingly verify this. Furthermore, axonal silencing comes with its own pitfalls and the interpretation of its consequences is not straightforward. Given that our discussion already contains a section (line 421) on axonal silencing, we do not feel there would be any benefit in adding to that.

      (Figure 1). Can the authors break down the performance for FA and HR, as they do in Fig. 3? It would be helpful to know what aspect of behavior is impaired by the transient inactivation.

      Good point. Figure 1 has been updated to show the results separately for hit rates, false alarms and d’. The new figure indicates that the change in d’ is primarily a consequence of altered false alarm rates. Please also see our response to a related comment by reviewer #1.

      Changes to manuscript.

      New figure 1.

      (Figure 4 legend). Minor: Please clarify, what is time 0 in panel C? Time of click presentation?

      Yes, that is correct.

      Changes to manuscript.

      Line 209: ”Vertical line at time 0 s indicates time of click presentation.”

      (L. 228-229). There has been a report of lick and other motor related activity in the IC - e.g., see Shaheen, Slee et al. (J Neurosci 2021), the timing of which suggests that some of it may be acoustically driven.

      Thanks for pointing this out. Shaheen et al., 2021 should certainly have been cited by us in this context as well as in other parts of the manuscript.

      Changes to manuscript.

      Line 243: “(Singla et al., 2017; but see Shaheen et al., 2021)”

      Also, have the authors considered measuring a peri-lick response? The difference between hit and miss trials could be perceptual or it could reflect differences in motor activity. This may be hard to tease apart, but, for example, one can test whether activity is stronger on trials with many licks vs. few licks?

      (L. 261) "Behavior can be decoded..." similar or alternative to the previous question of evoked activity, can you decode lick events from the population activity?

      The difference between hit and miss trial activity almost certainly partially reflects motor activity associated with licking. This was stated in the Discussion, but to make that point more explicitly, we now include a plot of average false alarm trial activity, i.e. trials without sound (catch trials) in which animals licked (but did not receive a reward).

      Given a sufficient number of catch trials, it should be possible to decode false alarm and correct rejection trials. However, our experiment was not designed with that in mind and contains a much smaller number of catch trials than stimulus trials (approximately one tenth the number of stimulus trials), so we have not attempted this.

      Changes to manuscript.

      New Figure 4 - figure supplement 1.

      (L. 315) "Pre-stimulus activity..." Given reports of changes in activity related to pupil-indexed arousal in the auditory system, do the authors by any chance have information about pupil size in these datasets?

      Given that all recordings were performed in the dark, fluctuations in pupil diameter were relatively small. Therefore, we have not made any attempt to relate pupil diameter to any of the variables assessed in this manuscript.

      (L. 412) "abolishes sound detection". While not exactly the same task, the authors might comment on Gimenez et al (J Neurophys 2015) which argued that temporary or permanent lesioning of AC did not impair tone discrimination. More generally, there seems to be some disagreement about what effects AC lesions have on auditory behavior.

      Thank you for this suggestion. Gimenez et al. (2015) investigated the ability of freely moving rats to discriminate sounds (and, in addition, how they adapt to changes in the discrimination boundary). Broadly consistent with later reports by Ceballo et al. (2019) (mild impairment) and O’Sullivan et al. (2019) (no impairment), Gimenez et al. (2015) reported that discrimination performance is mildly impaired after lesioning auditory cortex. Where the results of Gimenez et al. (2015) stand out is in the comparatively mild impairments that were seen in their task when they used muscimol injections, which contrast with the (much) larger impairments reported by others (e.g. Talwar et al., 2001; Li et al., 2017; Jaramillo and Zador, 2014).

      Changes to manuscript.

      Line 433: ”However, transient pharmacological silencing of the auditory cortex in freely moving rats (Talwar et al., 2001), as well as head-fixed mice (Li et al., 2017), completely abolishes sound detection (but see Gimenez et al., 2015).”

      (L. 649) "... were generally separable" Is the claim here that the clusters are really distinct from each other? This is unexpected, and it might be helpful if the authors could show this result in a figure.

      The half-sentence that this comment refers to has been removed from the methods section. Please also see a related comment by reviewer #1 which prompted us to add the following to the methods section.

      Changes to manuscript.

      Line 666: “While clustering is a useful approach for organizing and visualizing the activity of large and heterogeneous populations of neurons we need to be mindful that, given continuous distributions of response properties, the locations of cluster boundaries can be somewhat arbitrary and/or reflect idiosyncrasies of the chosen method and thus vary from one algorithm to another. We employed an approach very similar to that described in Namboodiri et al. (2019) because it is thought to produce stable results in high-dimensional neural data (Hirokawa et al. 2019).”

      Reviewer #3 (Recommendations For The Authors):

      (1) The authors must absolutely clarify if the hit versus misses decoding and clustering analysis is done for a single sound level or for multiple sound levels (what is the fraction of trials for each sound leve?). If the authors did it for multiple sound levels they should redo all analyses sound-level by sound-level, or for a single sound level if there is one that dominates. No doubt that there is information about the trial outcome in IC, but it should not be over-estimated by a confound with stimulus information.

      This is an important point. The original clustering analysis was carried out across different sound levels. We have now carried out additional analysis for distinguishing between two alternative explanations of the data, which were also raised by reviewer #1. – that the difference in neural activity between hit and miss trials could reflect a) the animals’ behavior or b) relatively more hit trials at higher sound levels, which would be expected to produce stronger responses. If the data favored b), we would expect no difference in activity between hit and miss trials when plotted separately for different sound levels. The new figure 4 - figure supplement 1 indicates that that is not the case. Hit and miss trial activity are clearly distinct even when plotted separately for different sound levels, confirming that this difference in activity reflects the animals’ behavior rather than sensory information.

      We made the following changes to manuscript.

      Line 214: “While averaging across all neurons cannot capture the diversity of responses, the averaged response profiles suggest that it is mostly trial outcome rather than the acoustic stimulus and neuronal sensitivity to sound level that shapes those responses (Figure 4 – figure supplement 1).”

      Differences in the distributions of sound levels in the different trial types could also potentially confound the decoding into hit and miss trials. Our analysis actually aimed to take this into account but, unfortunately, we failed to include sufficient details in the methods section.

      Changes to manuscript.

      Line 710: “Rather than including all the trials in a given session, only trials of intermediate difficulty were used for the decoding analysis. More specifically, we only included trials across five sound levels, comprising the lowest sound level that exceeded a d’ of 1.5 plus the two sound levels below and above that level. That ensured that differences in sound level distributions would be small, while still giving us a sufficient number of trials to perform the decoding analysis.“

      In this context, it is worth bearing in mind that a) the decoding analysis was done on a frame-byframe basis, meaning that the decoding score achieved early in the trial has no impact on the decoding score at later time points in the trial, b) sound-driven activity predominantly occurs immediately after stimulus onset and is largely over about 1 s into the trial (see cluster 3, for instance, or average miss trial activity in figure 4 - figure supplement 1), c) decoding performance of the behavioral outcome starts to plateau 500-1000 ms into the trial and remains high until it very gradually begins to decline after about 2 s into the trial. In other words, decoding performance remains high far longer than the stimulus would be expected to have an impact on the neurons’ activity. Therefore, we would expect any residual bias due to differences in the sound level distribution that our approach did not control for to be restricted to the very beginning of the trial and not to meaningfully impact the conclusions derived from the decoding analysis.

      Furthermore, we carried out an additional decoding analysis for one imaging session in which we had a sufficient number of trials to perform the analysis not only over the five (59, 62, 65, 68, 71 dB SPL) original sound levels, but also over a reduced range of three (62, 65, 68 dB SPL) sound levels, as well as a single (65 dB SPL) sound level (Figure 6 - figure supplement 1). The mean sound level difference between the hit trial distributions and miss trial distributions for these three conditions were 3.08, 1.01 and 0 dB, respectively. This analysis suggests that decoding performance is not meaningfully impacted by changing the range of sound levels (and sound level distributions) other than that including fewer sound levels means fewer trials and thus noisier decoding.

      Changes to manuscript.

      Line 287: ”...and was not meaningfully affected by differences in sound level distributions between hit and miss trials (Figure 6 – figure supplement 1).”

      Finally, in order to supplement the decoding analysis, we determined for each individual neuron whether there was a significant difference between the average hit and average miss trial activity. Note that this was done using equal numbers of hit and miss trials at each sound level to ensure balanced sound level distributions and to rule out any potential confound of sound level. This revealed that the proportion of neurons containing “information about trial outcome” was generally very high, close to 50% on average, and not significantly different between lesioned and non-lesioned mice.

      Changes to manuscript.

      Line 307: “Although the proportion of individual neurons with distinct response magnitudes in hit and miss trials in lesioned mice did not differ from that in non-lesioned mice, it was significantly lower when separating out mice with partial lesions (Figure 6 – figure supplement 3).”

      Line 648: “Analysis of task-modulated and sound-driven neurons. To identify individual neurons that produced significantly different response magnitudes in hit and miss trials, we calculated the mean activity for each stimulus trial by taking the mean activity over the 5 seconds following stimulus presentation and subtracting the mean activity over the 2 seconds preceding the stimulus during that same trial. A Mann-Whitney U test was then performed to assess whether a neuron showed a statistically significant difference (Benjamini-Hochberg adjusted p-value of 0.05) in response magnitude between hit and miss trials. The analysis was performed using equal numbers of hit and miss trials at each sound level to ensure balanced sound level distributions. If, for a given sound level, there were more hit than miss trials we randomly selected a sample of hit trials (without substitution) to match the sample size for the miss trials and vice versa. ”

      (2) I have the feeling that the authors do not exploit fully the functional data recorded with two-imaging. They identify several cluster but do not describe their functional differences. For example, cluster 3 is obviously mainly sensory driven as it is not modulated by outcome. This could be mentioned. This could also be used to rule out that trial outcome is the results of insufficient sensory inputs. Could this cluster be used to predict trial outcome at the onset response? Could it be used to predict the presence of the sound, and with which accuracy. The authors discuss a bit the different cluster type, but in a very elusive manner. I recognize that one should be careful with the use of signal analysis methods in calcium imaging but a simple linear deconvolution of the calcium dynamic who help to illustrate the conclusions that the authors propose based on peak responses. It would also be very interesting to align the clusters responses (deconvolved) to the timing of licking and rewards event to check if some clusters do not fire when mice perform licks before the sound comes. It would help clarify if the behavioral signals described here require both the presence of the sound and the behavioral action or are just the reflection of the motor command. As noted by the authors, some clusters have late peak responses (2 and 5). However, 2 and 5 are not equivalent and a deconvolution would evidence that much better. 2 has late onset firing. 5 has early onset but prolonged firing.

      We agree with the reviewer’s statement that “cluster 3 is obviously mainly sensory driven”. In the Discussion we refer to cluster 3 as having a “largely behaviorally invariant response profile to the auditory stimulus” (line X), which is consistent with the statement of the reviewer. With regard to the reviewer’s suggestion to describe the “functional differences” between the clusters, we would like to refer to the subsequent three sentences of the same paragraph in which we speculate on the cognitive and behavioral variables that may underlie the response profiles of different clusters. Given the limitations imposed by the task structure, we do not think it is justified to expand on this.

      We have added an additional analysis in order to explicitly address the question of which neurons are sound responsive (please also see response to point 3 below and to point 1 of reviewer #2). That trial outcome could be predicted on the basis of only the sound-responsive neurons’ activity during the initial period of the trial (“predict trial outcome at the onset response”) is unlikely given their small number (only 97 of 2649 neurons show a statistically significant sound-evoked response) and given that only a minority (42/98) of those sound-driven neurons are also modulated by trial outcome within that initial trial period (i.e. 0-1s after stimulus onset; data not shown).

      Changes to manuscript.

      Line 219: “..., while only a small fraction (97 / 2649) exhibited a significant response to the sound.”

      Line 658: “Sound-driven neurons were identified by comparing the mean miss trial activity before and after stimulus presentation. Specifically, we performed a Mann-Whitney U test to assess whether there was a statistically significant difference (Benjamini-Hochberg adjusted p-value of 0.05) between the mean activity over the 2 seconds preceding the stimulus and the mean activity over the 1 second period following stimulus presentation. This analysis was performed using miss trials with click intensities from 53 dB SPL to 65 dB SPL (many sessions contained very few or no miss trials at higher sound levels).”

      While calcium traces represent an indirect measure of neural activity, deconvolution does not necessarily provide an accurate picture of the spiking underlying those traces and has the potential to introduce additional problems. For instance, deconvolution algorithms tend to perform poorly at inferring the spiking of inhibited neurons (Vanwalleghem et al., 2021). Given that suppression is such a prominent feature of IC activity and is evident both in our calcium data as well as in the electrophysiology data of others (Franceschi and Barkat, 2021), we decided against using deconvolved spikes in our analyses. See also the side-by-side comparison below of the hit and miss trial activity of one example neuron based on either the calcium trace (left) or deconvolved spikes (right) (extracted using the OASIS algorithm (Friedrich et al., 2017) incorporated into suite2p (Pachitariu et al., 2016).

      Author response image 1.

      (3) Along the same line, the very small proportion of really sensory driven neurons (cluster 3) is not discussed. Is it what on would expect in typical shell or core IC neurons?

      As requested by reviewer #2 and mentioned in response to the previous point, we have now quantified the number of neurons in the dataset that produced significant responses to sound (97 / 2649). For a given imaging area, the fraction of neurons that show a statistically significant change in neural activity following presentation of a click of between 53 dB SPL and 65 dB SPL rarely exceeded ten percent. While that number is low, it is not necessarily surprising given the moderate intensity and very short duration of the stimuli. For comparison: Using the same transgenics, labeling approach and imaging setup and presenting 200-ms long pure tones at 60 dB SPL with frequencies between 2 kHz and 64 kHz, we typically find that between a quarter and a third of neurons in a given imaging area exhibit a statistically significant response (data not shown).

      Changes to manuscript.

      Line 219: “..., while only a small fraction (97 / 2649) exhibited a significant response to the sound.”

      Line 658: “Sound-driven neurons were identified by comparing the mean miss trial activity before and after stimulus presentation. Specifically, we performed a Mann-Whitney U test to assess whether there was a statistically significant difference (Benjamini-Hochberg adjusted p-value of 0.05) between the mean activity over the 2 seconds preceding the stimulus and the mean activity over the 1 second period following stimulus presentation. This analysis was performed using miss trials with click intensities from 53 dB SPL to 65 dB SPL (many sessions contained very few or no miss trials at higher sound levels).”

      Line 220: “While the number of sound-responsive neurons is low, it is not necessarily surprising given the moderate intensity and very short duration of the stimuli. For comparison: Using the same transgenics, labeling approach and imaging setup and presenting 200-ms long pure tones at 60 dB SPL with frequencies between 2 kHz and 64 kHz, we typically find that between a quarter and a third of neurons in a given imaging area exhibit a statistically significant response (data not shown).”

      (4) In the discussion, the interpretation of different transient and permanent cortical inactivation experiment is very interesting and well balanced given the complexity of the issue. There is nevertheless a comment that is difficult to follow. The authors state:

      If cortical lesioning results in a greater weight being placed on the activity in spared subcortical circuits for perceptual judgements, we would expect the accuracy with which trial-by-trial outcomes could be read out from IC neurons to be greater in mice without auditory cortex. However, that was not the case.

      However, there is no indication that the activity they observe in shell IC is causal to the behavioral decision and likely it is not. There is also no indication that the behavioral signals seen by the authors reflect the weight put on the subcortical pathway for behavior. I find this argument handwavy and would remove it.

      While we are happy to amend this section, we would not wish to remove it because a) we believe that the point we are trying to make here is an important and reasonable one and b) because it is consistent with the reviewer’s comment. Hopefully, the following will make this clearer: In order for the mouse to make a perceptual judgment and act upon it - in the context of our task, hearing a sound and then licking a spout - auditory information needs to be read out and converted into a motor command. If the auditory cortex normally plays a key role in such perceptual judgments, cortical lesions would require the animal to base its decisions on the information available from the remaining auditory structures, potentially including the auditory midbrain. This might result in a greater correspondence between the mouse’s behavior and the neural activity in those structures. That we did not observe this outcome for the IC could mean that the auditory cortex did not contribute to the relevant perceptual judgments (sound detection) in the first place. Therefore, no reweighting of signals from the other structures is necessary. Alternatively, greater weight might be placed exclusively on structures other than the auditory midbrain, e.g. the thalamus. The latter would imply that the contribution of the IC remains the same. This includes the possibility that the IC shell does not play a causal role in the behavioral decision – in either control mice or mice with cortical lesions – as suggested by the reviewer.

      Changes to manuscript.

      Line 471: “This could imply that, following cortical lesions, greater weight is placed on structures other than the IC, with the thalamus being the most likely candidate, ..”

      (5) In Fig. 5 the two colors used in B and C are the same although they describe different categories.

      The dark green and ‘deep orange’ we used to distinguish between non-lesioned and lesioned in Figure 5C are slightly lighter than the colors used to distinguish between these two categories in other figures and therefore might be more easily confused with the blue and red in Figure 5B. This has been changed.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We have made revisions accordingly. The following is a list of the changes we have made in this revised Version of Record:

      (1) We have added three more panels to Figure 1-figure supplement 1, showing that lipopolysaccharide-induced severe lung injury also generate some ectopic tuft cells expressing both Dclk1 and Gα-gustducin, a G protein α subunit expressed in taste bud cells and many tuft cells.

      (2) We have added a new supplemental figure, Figure 2-figure supplement 1, showing the reanalysis data of the single-cell RNAseq dataset (GSE197163) indicating the numbers of Trpm5-GFP+ ectopic tuft cells expressing Tas2r108, Tas2r105, Tas2r138, Tas2r137 and other Tas2rs, respectively. And the original “Figure 2-figure supplement 1” in the previous version has been changed to “Figure 2-figure supplement 2”.

      (3) We have added another new supplemental figure, Figure 3-figure supplement 1, showing the H1N1 infection-damaged lung tissue volumes in the Gng13-cKO mice are significantly greater than those in WT or Trpm-/- mice, which is in agreement with the data of the injured lung surface areas from these three genotypes of mice (Figure 3 C and D). And the original “Figure 3-figure supplement 1” in the previous version has been changed to “Figure 3-figure supplement 2”.

      (4) We have added to the new Figure 3-figure supplement 2 two new panels: I and J, showing the reanalysis data of the single-cell RNAseq dataset (GSE197163), indicating that about 57% of Trpm5-GFP+ ectopic tuft cells express Gγ13, some of which express Alox5, a key enzyme to the biosynthesis of pro-resolving mediators.

      (5) We have added one reference on Sytox and another on Alox5.

      (6) We have corrected two labeling errors to Figure 3 G and M, and some other typos in the article. Also, we have removed “Present address” attached to some authors since no present address was needed at all.

      Attached below is our point-by-point reply to the comments and suggestions made by the reviewers. We hope that you and the reviewers will find all concerns satisfactorily addressed.

      Responses to public reviews:

      Reviewer #1:

      Li et al. report here on the expression of a G-protein subunit Gng13 in ectopic tuft cells that develop after severe pulmonary injury in mice. By deleting this gene in ectopic tuft cells as they arise, the authors observed worsened lung injury and greater inflammation after influenza infection, as well as a decrease in the overall number of ectopic tuft cells. This was in stark contrast to the deletion of Trpm5, a cation channel generally thought to be required for all functional gustatory signaling in tuft cells, where no phenotype is observed. Strengths here include a thorough assessment of lung injury via a number of different techniques. Weaknesses are notable: confusingly, these findings are at odds with reports from other groups demonstrating no obvious phenotype upon influenza infection in mice lacking the transcription factor Pou2f3, which is essential for all tuft cell specification and development. The authors speculate that heterogeneity within nascent tuft cell populations, specifically the presence of pro- and anti-inflammatory tuft cells, may explain this difference, but they do not provide any data to support this idea.

      We thank the reviewer for pointing out the strengths of this work. The phenotypes of the Gng13 conditional knockout mice upon severe pulmonary injury seem to be severer than those of Trpm5 knockout or Pou2f3 knockout mice, which we would attribute to functionally specific tuft cell subtypes. In the intestines, tuft cells are known to promote type II innate immune responses. Those ectopic pulmonary tuft cells emerge at 12 days post infection, and may not be involved in the initial immune responses to the infection, and instead, some of them may contribute to the inflammation resolution and functional recovery. Reanalysis of the previously published single tuft cell RNAseq dataset indeed showed that Gng13 is expressed in a subset of these ectopic pulmonary tuft cells, and anti-inflammatory genes such as Alox5 are also found in some of these tuft cells (please see the newly added Figure 3 supplement 2 I and J). Together, these data suggest that while some of these tuft cells may still play a pro-inflammatory role as in the intestines, some other Gγ13-expressing tuft cells contribute to the inflammation resolution, and disruption of the latter’s function results in the severer phenotypes.

      Reviewer #2:

      The study by Li et al. aimed to demonstrate the role of the Gγ13-mediated signal transduction pathway in tuft cell-driven inflammation resolution and repairing injured lung tissue. The authors showed a reduced number of tuft cells in the parenchyma of Gγ13 null lungs following viral infection. Mice with a Gγ13 null mutation showed increased lung damage and heightened macrophage infiltration when exposed to the H1N1 virus. Their further findings suggested that lung inflammation resolution, epithelial barrier, and fibrosis were worsened in Gγ13 null mutants.

      Strengths:

      The beautiful immunostaining findings do suggest that the number of tuft cells is decreased in Gr13 null mutants.

      Weaknesses:

      The description of phenotypes, and the approaches used to measure the phenotypes are problematic. Rigorous investigation of the mouse lung phenotypes is needed to draw meaningful conclusions.

      Thank the reviewer for pointing out the major findings and strengths of our work. Regarding the approaches used to measure the phenotypes, we first did double immunostaining and validated that the lipopolysaccharide-induced DCLK1+ positive cells are indeed ectopic pulmonary tuft cells with an antibody to Gα-gustducin, a commonly expressed G protein α subunit in taste buds and tuft cells. Second, in addition to the measurements of the injured lung surface areas, we determined the injured lung tissue volumes by slicing the injured lungs into a series of tissue sections, quantifying the injured areas in each section and then reconstructing the injured volumes. Third, we reanalyzed the previously published single-tuft cell RNAseq dataset and found that a subset (i.e., ~57%) of Trpm5-GFP+ tuft cells express Gng13, some of which express anti-inflammatory genes such as Alox5. These additional data further support our finding that a subset of these Gγ13-expressing ectopic tuft cells may contribute to the inflammation resolution while others may play a proinflammatory role.

      Reply to the recommendations of Reviewer #1:

      (1) A major issue with this study is the fact that Chat-Cre mediated knockout of Gng13 leads to reduced tuft cells and impaired recovery, yet global TRPM5 deletion (this study) and global Pou2f3 deletion (Barr et al.) exhibit no apparent phenotype. One can imagine a Trpm5-independent role of Gng13 in tuft cells, but it is much harder to reconcile with the fact that Pou2f3 KO mice, which lack tuft cells entirely, exhibit no apparent phenotype. This was examined in some detail in Barr et al., demonstrating no apparent change in weight loss, dysplastic expansion (Krt5+ cells), or goblet cell metaplasia. The most parsimonious explanation is that Gng13 deletion in another Chat+ cell type, probably neurons of some sort, is leading to this phenotype. The authors really need to investigate this in some detail as the data does not really support a role of tuft cells in the phenotype they observe. Better yet, identification of the other Chat+ cell type in which Gng13 deletion promotes impaired lung recovery would be very interesting. While neurons seem likely, perhaps there is another Chat+ cell type expressing Gng13 in the respiratory tract that could be playing a role as well. In either case, the discrepancy between Pou2f3 KO (no phenotype) and Chat-Cre / Gng13 KO (impaired recovery) is difficult to reconcile.

      We agree with the reviewer, and it took us some time to make senses of the data as well. The differences in phenotypes between Trpm5-knockout versus Gng13 conditional knockout (Gng13-cKO) could be explained by that Gγ13 is a partner of Gβγ moiety of a heterotrimeric G protein (Gαβγ),which is known to act on many effector enzymes and ion channels, while Trpm5 largely regulates the influx of monovalent cations, depolarizing the plasma membrane potentials. Thus, it is understandable that nullification of Gng13 may have more profound effect on cell physiology and consequent phenotypes than that of Trpm5, and similar differential effects were also found in the intestines (Frontiers in Immunology, 2023, DOI 10.3389/fimmu.2023.1259521).

      Data from several research groups have indicated that there are subtypes of tuft cells, each of which displays unique gene expression patterns as well as input and out signal profiles. It is yet not well understood how each subtype may contribute to the inflammatory responses or inflammation resolution. Comparative analyses of our data from the Gng13-cKO mice versus those from Pou2f3-KO mice suggest that Gng13-expressing tuft cells may have a role in the inflammation resolution while other ectopic tuft cells may contribute to the maintenance of the inflammation at a certain level, impairing subsequent tissue repairing and recovery. The exact molecular and cellular mechanisms are to be revealed in our future studies.

      The central nervous system may also play a role in the impaired lung recovery. But our detailed immunochemical studies did not identify any significant number of neurons innervating the lung tissue co-expressing ChAT and Gng13, suggesting that no immediate action from these neurons may regulate the pulmonary inflammation resolution or functional recovery.

      Together, our data suggest the importance of tuft cell subtype-specific functions, which may help us further understand the role of these rare tuft cells.

      (2) Figures showing alternative injury models inducing the generation of ectopic tuft cells are not convincing and not quantified. DCLK1 can be a bit promiscuous, so verifying tuft cell expansion in these other models with other markers (especially for LPS and HDM which have not been reported elsewhere) is important.

      We agree with the reviewer that DCLK1 is not a very specific marker for tuft cells. We have also observed that chemical inductions of these ectopic tuft cells with bleomycin, HDM or LPS are not as effective as H1N1 viruses. To verify that these rare DCLK1-positive cells are indeed tuft cells, we performed double immunostaining with antibodies to DCLK1 and to Gα-gustducin, another tuft cell marker. The results showed that some of these spindle-shaped DCLK1 positive cells indeed also express Gα-gustducin (see the newly added panels in Figure 1-figure supplement 1), indicating that they are most likely the chemically induced ectopic tuft cells. We also agree with the reviewer that it would be important to further investigate the possible roles of these cells during the stages of the chemically induced injury, inflammation resolution and functional recovery.

      (3) Calcium responses in isolated post-flu tuft cells are interesting but difficult to interpret as presented. Can higher-power images be shown? Also, no statistical analysis is presented to provide any confidence in that data.

      Thank the reviewer for the suggestions. As found in taste buds, only a subset of these ectopic tuft cells expresses Tas2rs, and each of these cells may express a few of the 35 murine Tas2rs. Thus, a particular bitter tasting compound can activate only few tuft cells and we had to use low-magnification to include more responsive cells in a field under the imaging microscope. We agree with the reviewer that it would be an interesting idea to statistically correlate the response profile to bitter substances with the cell’s Tas2r expression pattern, which we have done with sperm cells before (Molecular Human Reproduction, 2013, doi:10.1093/molehr/gas040). However, the main focus of this work is on the effect of Gng13-cKO in a subset of these ectopic tuft cells on the recovery. We plan to investigate these interesting cells in more details in the future.

      (4) I am unaware of Sytox being a specific dye for pyroptotic cells. Can the authors please provide a reference or otherwise justify this?

      Sytox is a dye to stain dead cells, which has been used previously in the studies on gasdermin-mediated lytic cell death (Xi et al., Up-regulation of gasdermin C in mouse small intestine is associated with lytic cell death in enterocytes in worm-induced type 2 immunity. PNAS 2021 118(30) e2026307118 https://doi.org/10.1073/pnas.2026307118). In our work we used the dye for the same assay.

      (5) The authors perform qPCR for various taste receptor genes pre- and post-flu, but do not show that these genes are specifically induced in tuft cells. Since single-cell data and bulk RNA-Seq are available from Barr et al., the authors should validate the expression of these Tas2r genes specifically in post-flu tuft cells.

      Thank the reviewer for the suggestion. Yes, we have performed analysis of the single-cell RNAseq dataset (GSE197163, Barr et al. 2022) and found that among 613 Trpm5-GFP+ tuft cells, Tas2r108 was expressed in the greatest number of cells, i.e., 67 cells, followed by Tas2r105, Tas2R138, Tas2r137, Tas2r118 and Tas2r102, which were detected in 11, 10, 10, 5 and 4 cells, respectively (see the newly added Figure 2-figure supplement 1). This order of expressing cell numbers is very much in agreement with that of the relative Tas2r expression levels obtained with the qPCR experiment (Figure 2A), indicating the expression of these Tas2rs likely in the ectopic tuft cells. We will further validate the data by analyzing the bulk RNA-Seq dataset when it is accessible to us.

      (6) Some general editing of language throughout would be helpful to increase readability.

      Thanks for pointing out. We have carefully checked the manuscripts, corrected some typos and revised several sentences to increase its readability.

      (7) For the fibrosis analysis, trichrome staining is very heterogenous, which is reflected by the large error bars in Fig. 8B. A more quantitative, "whole lung" analysis such as hydroxyproline content or western blotting for Col1a1 would be ideal.

      The approach of Masson’s trichrome staining along with qRT-PCR assays on the fibrotic gene expression has been used previously to quantitatively analyze fibrosis (e.g., Zhang et al., Neuropilin-1 mediates lung tissue-specific control of ILC2 function in type 2 immunity. Nature Immunology 23:237-250, 2022, https://doi.org/10.1038/s41590-021-01097-8). We agree with the reviewer that there are large error bars in Fig. 8B, and hydroxyproline content assay or western blotting for Col1a1 would be ideal. But our qRT-PCR was performed on the RNA samples extracted from the “whole lungs”, and its data are also able to reflect the extent of fibrosis of the lungs.

      (8) The authors claim that only a subset of tuft cells express Gng13, but this is supported only by a single IF image in Fig. 3 supplement 1G. The authors could download the single-cell dataset from Barr et al. to confirm the heterogeneity of Gng13 expression and get a better sense of the fraction of total ectopic tuft cells that express this, as it is a critical point in their model.

      Thank the reviewer for the suggestion. Yes, we have downloaded and reanalyzed the single-cell RNAseq dataset (GSE197163), and found that out of 613 Trpm5-GFP+ tuft cells, 350 or 57% of these cells expressed Gng13 (Figure 3-figure supplement 2I). This result, together with our immunohistochemical data (Figure 3-figure supplement 2G and H) indicates that Gγ13 is expressed in a subset of these ectopic tuft cells. More comprehensive studies are needed to characterize these tuft cell subtypes and elucidate subtype-selective functions.

      Reply to the recommendations of Reviewer #2:

      The study needs more rigorous examinations of the phenotypes. For example, quantification of the injury area in Fig3C is problematic. Similarly, fibrotic phenotype and quantification in Fig 8C also have problems. This study heavily used qRT-PCR analysis to quantitate the level change of bitter/other receptors in a minor population of tuft cells which are also minor in a whole lung. Given the limited number of cells, it is difficult to appreciate that qRT-PCR can pick up the difference. In addition, how would the findings in this study reconcile with the finding by Huang (PMID: 36129169) where pou2f3 null mutants (without tuft cells) were used? Huang et al. did not observe more severe phenotypes in the mice without tuft cells than controls.

      Thank the reviewer for the recommendations. Regarding Fig 3C, please see the reply below: revisions for clarity point #2.

      Fig 8 B and C used Masson’s trichrome staining to quantitatively analyze fibrosis, which has been used by other groups as well (e.g., Zhang et al., Neuropilin-1 mediates lung tissue-specific control of ILC2 function in type 2 immunity. Nature Immunology 23:237-250, 2022, https://doi.org/10.1038/s41590-021-01097-8). Our qRT-PCR data on the fibrotic gene expression (Figure 8A) further support the Masson’s trichrome staining results.

      We realized that tuft cells make up only a minor population in the lungs. So, we performed qRT-PCR assays on the RNA samples isolated from mostly the injured tissues along with the corresponding tissues from the uninjured lungs as control. To validate our qRT-PCR data, we reanalyzed the previously published single ectopic tuft cell RNAseq dataset (GSE197163), and found that the most abundantly expressed Tas2r108 determined by qRT-PCR was also expressed in the greatest number of tuft cells, and the order of expression levels of other Tas2rs are also well in agreement between the qRT-PCR and single-cell RNAseq data (Figure 2A, Figure 2-figure supplement 1), cross-validating the data obtained by these two very different approaches.

      We have carefully studied the finding by Huang (PMID: 36129169). Our data suggest that there are subtypes of the ectopic tuft cells, some of which contribute to the inflammation resolution while others play a proinflammatory role. Indeed, the reanalysis of the aforementioned single tuft cell RNAseq dataset found that about 57% Trpm5-GFP+ ectopic tuft cells expressed Gng13, and some of which expressed Alox5, a key enzyme to the biosynthesis of pro-resolving mediators. Thus, in the Pou2f3-knockout mice, both pro- and anti-inflammatory tuft cells are ablated, it would be hard to observe any significant phenotypes. When the function of a subset of Gγ13-expressing tuft cells is disrupted, the anti-inflammatory role from these cells is eliminated, resulting severer phenotypes. More studies are needed to further understand the subtype-specific functions of these fascinating tuft cells.

      Do Gγ13 null mutants show similar phenotypes in bleomycin injury model?

      Bleomycin and other chemicals-induced injury models indeed engender much fewer ectopic pulmonary tuft cells. Thus, it is more difficult to test the effect of Gng13 mutation due to the small number of the Gng13-expressing tuft cells in either WT or mutant lungs.

      What is the cell fate of lineage labeled tuft cells in the lungs of Chat-Cre:Ai9:Gng13flox/flox mice following viral infection at different times examined? The numbers were decreased at different time points post-injury based on the data. Did these cells undergo apoptosis? It is an excellent idea to look into the cell fate of ChAT-Cre:Ai9:Gng13flox/flox. We believe that these cells would have a similar fate to other ectopic tuft cells, probably undergoing apoptosis. But our data suggest that Gng13 mutation suppresses the increase the ectopic tuft cells, or the increase of a particular subtype of these tuft cells. Further studies are needed to elucidate the molecular mechanisms of the Gγ13-mediated signal transduction pathways regulating the proliferation of a subset of ectopic tuft cells.

      Here are the revisions for clarity and coherence to the figures:

      (1) Fig 2: For the functional assessment, using tracheal tuft cells from the same ChAT-Cre:Ai9 mice would be a suitable positive control in the calcium response traces experiment. These specific cells could also serve as a control in Fig2a.

      We would agree with the reviewer that tracheal tuft cells from the same ChAT-Cre: Ai9 mice would be an ideal positive control in the calcium response experiment as well as in the qRT-PCR assay. But we have established reliable methods to calcium image primary cells expressing taste receptors and quantify their RNA expression levels, which have been used in our previous publications, e.g., (1) Functional characterization of bitter taste receptors expressed in mammalian testis. Molecular Human Reproduction, 2013, doi:10.1093/molehr/gas040; (2) Infection by the parasitic helminth Trichinella spiralis activates a Tas2r-mediated signaling pathway in intestinal tuft cells. PNAS 2019, www.pnas.org/cgi/doi/10.1073/pnas.1812901116. We thank the reviewer for the excellent suggestion.

      (2) Fig 3C: It is not clear whether the depicted areas really represent the injured area. To provide a more comprehensive view, the authors should also provide histological analysis and quantification of the injured lung. A 3D representation of the injury area would offer a more accurate presentation.

      Thank the reviewer for the point. The depicted areas in Fig 3C are indeed the injured surface areas of the lungs. Following the reviewer’s suggestion, we carried out the histological analysis to determine the injured tissue volumes of the lungs. We fixed the lungs, and sliced them into 12 μm-thick sections, which were imaged under a microscope. The injured areas in a section were identified and quantified using the ImageJ software, and then the injured volume for this section was obtained by multiplying the area by the thickness of the section, i.e., 12 μm. Statistical analyses indicate that the injured volume of the Gng13-cKO lungs is significantly more than those of WT or Trpm5-KO mice, which has been included in Figure 3-figure supplement 1, and is in agreement with the data of the injured surface areas (Fig 3C).

      (3) Fig 3 G/I/K/M: There seems to be an inconsistency in the time points. There's no indication for 14 dpi, yet two for 25 dpi. Additionally, a color legend for each sample would be helpful.

      Thank the reviewer for pointing out. There were two typos, which have been corrected. Yes, the time points should be 14 dpi, 20 dpi, 25 dpi and 50 dpi. And a color legend has been added as well.

      (4) Fig 4A: Using CD64 co-stained with Krt5 might better highlight the immune cells in the damaged region. Additionally, could you clarify the choice of the neutrophil marker CD64 over CD45 for staining the injured lung?

      We agree with the reviewer that Krt5 antibody staining can help define the damaged region. We sectioned the lung tissues with a special attention to the damaged areas, but we found that the adjacent healthy areas also had extra immune cells. Thus, we counted in all these CD64+ cells in both the damaged as well as the surrounding, seemingly healthy areas. We used CD64 instead of CD45 to label these altered immune cells because we found that CD64 can better label the differential immune cells between WT and Gng13-cKO mice following H1N1 infection. Furthermore, CD64-labeled cells could be readily related to the Gsdmd/Gsdme-expressing F4/80-labeled immune cells shown in Figure 5 and its supplemental figures.

      (5) Fig 5 and Supplemental Fig 5: It appears that the F4/80 staining exhibits notable background staining.

      Yes, there is some background staining. The antibody was the best we could find, but its quality could be further improved. On the other hand, we thought that there were some cellular debris that might be stained positive by that antibody. At a higher magnification, however, we could still identify individual cells co-expressing IL-1β.

      (6) Fig 8C: The depicted area does not seem to adequately represent the fibrosis in the injured lung.

      Masson’s trichrome staining has been previously used to quantitatively analyze fibrosis (e.g., Zhang et al., Neuropilin-1 mediates lung tissue-specific control of ILC2 function in type 2 immunity. Nature Immunology 23:237-250, 2022, https://doi.org/10.1038/s41590-021-01097-8). Our qRT-PCR assays on the fibrotic gene expression (Figure 8A) were performed on the RNA samples extracted from the whole lungs, and the resultant data are able to reflect the extent of fibrosis of the lungs, although we also agree with the reviewer that additional data would make the conclusion more convincing.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We express our sincere appreciation for your insightful comments and constructive suggestions. It is with great pleasure that we submit the revised version of our manuscript. Over the past months, we have meticulously considered all the invaluable feedback provided by the three anonymous reviewers, and endeavored to incorporate significant revisions accordingly. Furthermore, we have meticulously rephrased the results section in accordance with your guidance, aiming to bolster the rigor of our manuscript. The specific changes implemented in the revised manuscript are outlined below:

      - Revised the title of the manuscript.

      - Revised the description of early mitotic and meiotic chromosome structure in the scc3 mutant (Lines 167-274).

      - Added the BiFC results illustrating the interaction between SCC3 and other cohesin proteins in Figure S10.

      - Enhanced the detail in the description of figure legends, particularly for Figures 2 and 4.

      - Refined and rephrased the language of the manuscript.

      We hope these positive revisions have substantially strengthened the manuscript. Once again, we extend our heartfelt gratitude for your invaluable input.

      eLife assessment

      This important study elucidates the function of the cohesin subunit SCC3 in impeding DNA repair between inter-sister chromatids in rice. The observation of sterility in the SCC3 weak mutant prompted an investigation of abnormal chromosome behavior during anaphase I through karyotype analysis. While the evidence presented is largely solid, the strength of support can be substantially improved in some aspects, leaving room for further investigation. This research contributes to our understanding of meiosis in rice and attracts cell biologists, reproductive biologists, and plant geneticists.

      Public Reviews:

      Reviewer #1 (Public Review):

      The manuscript describes the identification and characterization of rice SCC3, including the generation and characterization of plants containing apparently lethal null mutations in SCC3 as well as mutant plants containing a c-terminal frame-shift mutation. The weak scc3 mutants showed both vegetative and reproductive defects. Specifically, mitotic chromosomes appeared to partially separate during prometaphase, while meiotic chromosomes were diffuse during early meiosis and showed alterations in sister chromatid cohesion, homologous chromosome pairing, and recombination. The authors suggest that SCC3 acts as a cohesin subunit in mitosis and meiosis, but also plays more functions other than just cohesion.

      Reviewer #2 (Public Review):

      This manuscript shows detailed evidence of the role of cohesin regulators in rice meiosis and mitosis.

      Reviewer #3 (Public Review):

      Prior research on SCC3, a cohesin subunit protein, in yeast and Arabidopsis has underscored its vital role in cell division. This study investigated into the specific functions of SCC3 in rice mitosis and meiosis. In a weakened SCC3 mutant, sister chromatids separating was observed in anaphase I, resulting in 24 univalents and subsequent sterility. The authors meticulously documented SCC3's loading and degradation dynamics on chromosomes, noting its impact on DNA replication. Despite the loss of homologous chromosome pairing and synapsis in the mutant, chromosomes retained double-strand breaks without fragmenting. Consequently, the authors inferred that in the scc3 mutant, DNA repair more frequently relies on sister chromatids as templates compared to the wild type.

      We extend our sincere gratitude to the Editors and the Reviewers for their highly constructive and insightful suggestions. We deeply appreciate receiving both positive feedback and constructive criticism on our manuscript. In light of the reviewers’ comments, we have diligently undertaken substantial revisions to improve the manuscript. The revised version comprehensively addresses all the points raised by the reviewers.

      Below, we provide a detailed point-by-point response to the reviewers’ comments:

      Recommendations for the authors:

      Reviewer #1:

      (1) Line 170- looking at pollen formation does not specifically evaluate whether SCC3 is involved in meiosis.

      Thank you very much for this advice. We totally agree with your point of view that pollen formation defects only indicate the problem of gametogenesis. We are sorry for not accurately describing this sentence. It has been revised in the manuscript (Lines 167-176).

      (2) Lines 203-205- this seems more like discussion and is pure speculation. Another possibility described above is that the truncated SCC3 protein is partially functional and what they see is due to this partial functionality. Have the authors considered the possibility that a partially functional version of SCC3 is produced that alters its function or the function of the cohesin complex? How much of the protein epitope remains in the truncated protein?

      We are so grateful for the insightful suggestions provided. We concur with the proposition that a partially functional SCC3 may indeed be synthesized, contributing to the survivability of the mutant. Notably, the truncated version of the protein retains approximately 60% to 70% of the epitope, which ostensibly maintains a residual functionality within the weak scc3 mutant. In this manuscript, the loss of C-terminal 910-1116 aa of SCC3 contains a special protein epitope and a certain protein secondary structure, which may alter the protein’s folding and its subsequent roles within the cohesin complex.

      In this study, we encountered challenges in generating null alleles of the scc3 mutants in rice utilizing the CRISPR-Cas9 system. Consequently, it is plausible that the scc3-1 and scc3-2 variants represent null alleles of SCC3, resulting in embryonic lethality. We posit that the identification of weak alleles is paramount to facilitating the survival of the organism. Thus, selecting some weak mutants, particularly those exhibiting the most pronounced phenotype, is advantageous for conducting further research. Our findings indicate that the diminished scc3 mutant lacks only a segment of the C-terminal, yet this deficiency is adequate to ensure the plant's survival while significantly impeding the meiotic process. We cannot dismiss the likelihood that these observed defects are attributable to the unique truncated proteins. We extend our sincerest thanks once again.

      (3) Lines 212- I question whether what the authors see in Figure 2 is chromosome fragmentation. It could just as well be alterations in chromosome structure. Likewise, the authors provide little to no evidence that the mutation affects the replication process. Rather, the presence of replicated chromosomes later in mitosis and meiosis would argue that replication is not disrupted.

      We express our gratitude to the reviewer for highlighting this critical inquiry. Contrary to the scenario of chromosome fragmentation, as you astutely observed, the preservation of normal sister chromatids during prometaphase indicates that the replication process remains uninterrupted. In alignment with your insights, our study embarked on an extensive series of full-length fluorescence in situ hybridization (FISH) experiments to elucidate the underlying mechanisms contributing to the observed increase in the distance between sister chromatids, particularly during interphase. The preponderance of our findings corroborates the hypothesis that the chromosomes exhibit alterations in structure, as depicted in Figure 2A. Intriguingly, our data suggest that cohesin, upon interaction with other chromatin-bound proteins, may facilitate loop extrusion, anchoring itself in a manner that potentially alters chromosomal architecture. These alterations in chromosome structure and the subsequent defects in genome folding and cohesion establishment, particularly rely on SCC3. In response to your valuable suggestions, we have meticulously revised the relevant sections of our manuscript. We extend our sincere thanks for your insightful comments.

      (4) Line 230- what does the sentence SCC3 may enhance the interaction with DNA mean, the interaction of the cohesin complex?

      We are sorry for the ambiguity in our initial description and wish to clarify that SCC3 indeed plays a pivotal role in augmenting the interaction between the cohesin complex and DNA. Our observations revealed an upsurge in the signal intensity of SCC3 as cells transition from interphase to prophase, as depicted in Figure 2B. This enhancement correlates with the observed defects in scc3 mutants during prophase, suggesting that SCC3’s functional significance is particularly pronounced at this stage of the cell cycle. We have revised our manuscript to reflect these insights more accurately, in accordance with your valuable suggestions. We express our sincere gratitude for your guidance.

      (5) Oddly, and unexplainably the authors present data indicating that SCC3 interacts with RAD21.1, but not SMC1, SMC3, or REC8. The fact that the authors report that SCC3 only interacts with RAD21.1 but no other cohesin proteins is quite hard to explain.

      As argued in the point above, the available data do not provide compelling evidence supporting the interaction between SCC3 and other cohesin proteins. We have repeated yeast two-hybrid (Y2H) experiments yielding consistent outcomes, which also surprised us initially. In the revised manuscript, we further added the bimolecular fluorescence complementation (BiFC) results between SCC3 and other cohesin proteins in rice protoplast (Figure S10). These supplementary data affirm that SCC3 predominantly interacts with RAD21.1, excluding interactions with other cohesin proteins. While the absence of such interactions is perplexing, our investigations have failed to detect any binding between SCC3 and other cohesin proteins.

      A weak interaction between SCC3 and REC8 has been reported in Arabidopsis (Kuttig et al. bioRxiv https://doi.org/10.1101/2022.06.20.496767). We speculate that either these proteins do not interact or the yeast-hybrid assays may be inadequate for detecting their interaction, as several factors can impede interaction in a heterologous system. In Figure 7, we could only detect the interaction between SCC3 and RAD21.1 in both Y2H and BiFC experiments. This suggests potential alterations in protein folding or conformation, or the involvement of additional regulatory factors modulating the interaction between SCC3 and other cohesin proteins. Notably, given RAD21.1’s pivotal role as a core component in the cohesin complex, our supplementary findings demonstrate the interactions between SMC1/3 and RAD21.1 (data not shown). Consequently, our current data propose a model wherein RAD21.1 and SMC1/3 form a circular structure, with SCC3 positioned on the outer periphery of the ring complex, associating specifically with RAD21.1 (Figure 8A).

      Reviewer #2:

      The authors did not consider creating heterozygous mutants for the replication fork. Moderate English language editing may be required.

      We extend our gratitude to the reviewer for their valuable suggestions. Initially, we did not explore the potential relationship between SCC3 and the replication fork. Cohesin, as we understand, becomes associated with DNA prior to DNA replication. The phenomenon of sister chromatid co-entrapment arises as replication forks traverse through cohesin rings, a process intricately linked to DNA replication dynamics. In this study, we exclusively observed aberrant chromosome structures in the scc3 mutant during interphase (Figure 2). We conjecture that these anomalies may stem from alterations in chromosome structure, such as genome folding and loop extrusion, rather than being directly attributable to the DNA replication fork. However, the precise nature of these chromosome structural aberrations during interphase in the scc3 mutant remains elusive, necessitating further comprehensive investigation in future studies. We have refined the language of our manuscript in accordance with the reviewer’s suggestions. Once again, we express our sincere appreciation for the invaluable suggestions provided.

      Reviewer #3:

      While the paper's conclusions are generally well-supported, further substantiation is needed for the claim that SCC3 inhibits template choice for sister chromatids. To bolster this conclusion, I recommend that the authors perform whole-genome sequencing on parental and F1 individuals from two rice variants, subsequently calculating the allele frequencies at heterozygous sites in the F1 individuals. If SCC3 indeed inhibits inter-sister chromatid repair in the wild type, we would anticipate a higher frequency of inter-homologous chromosome repair (i.e., gene conversion). This should be manifested as a bias away from the Mendelian inheritance ratio (50:50) in the offspring of the wild type compared to the offspring of the scc3+/- mutant.

      We express our sincere appreciation for your insightful suggestions. It is really a good suggestion. We have arranged to do this experiment. As it takes long time to prepare plant materials and sequence analysis, we hope the ongoing sequencing work will get some important information supporting those hypotheses. As we have not obtained the direct evidence that SCC3 involved in sister chromatid repair, we changed the title as “SCC3 is an axial element essential for homologous chromosome pairing and synapsis”. Once again, we really extend our gratitude for your invaluable suggestions.

      A point that warrants consideration is the placement of the protein interaction experiments involving SCC3 within the paper. It is presented relatively late in the manuscript. If the authors possess information regarding the interaction between RAD21.1 and SCC3 and how it relates to the functional study of RAD21.1, it could contribute to a more comprehensive analysis. However, if this information is unrelated to the current study, it might be advisable to omit it, as it appears to diverge from the main focus of this work.

      We express our sincere gratitude for your invaluable suggestions. It has been documented in yeast that the interaction between SCC3 and SCC1 is indispensable for the efficient loading of cohesin. In our study, we endeavored to elucidate the intricate relationships among various cohesin subunits. Through our investigations, we have discerned that RAD21.1 serves as a pivotal core subunit within the cohesin complex, facilitating interactions with both SMC1/3 and SCC3 (data not shown). Additionally, our findings indicate that the interaction between RAD21.1 and SCC3 is imperative for maintaining the stability of the cohesin ring and its association with DNA (data not shown). Consequently, the interaction between these two proteins assumes paramount importance for our subsequent analyses. This study holds significant promise for future investigations.

      It's worth noting that while the title of the study claims that "SCC3 inhibits inter-sister chromatids repair during rice meiosis," the last sentence of the abstract weakens this conclusion by using the word "seems." A study's title should ideally reflect the most definitive and conclusive findings.

      We sincerely appreciate your valuable suggestions. In response, we have revised the description in our manuscript to enhance its rigor.

      In Figure 8C, it appears that cohesin is depicted between two DNA strands.

      Figure 8C illustrates the process of sister chromatid repair during meiosis in the scc3 mutant. Two gray lines and two blue lines represent the four sister chromatids of two homologous chromosomes, respectively. In the wild type, cohesin plays a crucial role in tethering together the two sister chromatids. As per your reminder, cohesin should indeed encircle the two sister chromatids, as depicted in Figure 8B. Following a thorough evaluation and to mitigate any potential confusion, we have deleted Figure 8C.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We appreciate your comments and suggestions on our manuscript.

      In particular, we have measured the affinity between the middle tail domain of myosin-5a (Myo5a-MTD) and the actin-binding domain of melanophilin (Mlph-ABD) using microscale thermophoresis, and obtained the Kd of ~0.56 uM, which is similar to the Kd of the globular tail domain of myosin-5a (Myo5a-GTD) to the GTD-binding motif of melanophilin (Mlph-GTBM). Moreover, we have performed Western blot of the lysate of transfected cells, showing that the proteins of the dominant negative construct and the negative control were expressed at similar lever without noticeable degradation.

      We appreciate the editors’ and reviewers’ comment on how melanophilin might be regulated in binding to the exon-G of myosin-5 and to actin filaments. Phosphorylation of melanophilin by protein kinase A is one possible mechanism. We will investigate this issues in our future study.

      We also took this opportunity to correct several minor errors in the manuscript. Textual alterations can be viewed in the “tracked change” version of the manuscript. Below is the comments from the editors and the two reviewers together with our point-by-point responses.

      eLife assessment

      This study represents a useful description of a third interaction site between melanophilin and myosin-5a which is important in regulating the distribution of pigment granules in melanocytes. While much of the data forms a solid case for this interaction, the inclusion of important controls for the cellular studies and measurement of interaction affinities would have been helpful.

      Public Reviews:

      Reviewer #1 (Public Review):

      Interactions known to be important for melanosome transport include exon F and the globular tail domain (GTD) of MyoVa with Mlph. Motivated by a discrepancy between in vitro and cell culture results regarding necessary interactions for MyoVa to be recruited to the melanosome, the authors used a series of pull-down and pelleting assays experiments to identify an additional interaction that occurs between exon G of MyoVa and Mlph. This interaction is independent of and synergistic with the interaction of Mlph with exon F. However, the interaction of the actin-binding domain of Mlph can occur either with exon G or with the actin filament, but not both simultaneously. These data lead to a modified recruitment model where both exon F and exon G enhance the binding of Mlph to auto-inhibited MyoVa, and then via an unidentified switch (PKA?) the actin-binding domain of Mlph dissociates from MyoVa and interacts with the actin filament to enhance MyoVa processivity.

      The only weakness noted is that the authors could have had a more complete story if they pursued whether PKA phosphorylation/dephosphorylation of Mlph is indeed the switch for the actin-binding domain of Mlph to interact with exon G versus the actin filament.

      We thank Reviewer #1 for careful reading of the manuscript and appreciation of the study. We agree with the Reviewer that it is important to understand how the actin-binding domain of Mlph switch its interaction with the exon-G of Myo5a and actin filament. We would like to pursue this direction in our future research.

      Reviewer #2 (Public Review):

      The authors identify a third component in the interaction between myosin Va and melanophilin- an interaction between a 32-residue sequence encoded by exon-g in myosin Va and melanophilin's actin-binding domain. This interaction has implications for how melanosome motility may be regulated.

      While this work is largely well done and certainly publishable following needed revisions (e.g. some affinity measurements, necessary controls for the dominant negative experiments), I believe that additional work would be required to make a more compelling case. First, the study provides just one more piece to a well-developed story (the role of exon-F and the GTD in myosin Va: melanophilin (Mlph) interaction), much of which was published 20 years ago by several labs. Second, the study does not demonstrate a physiological significance for their findings other than that exon-G plays an auxiliary role in the binding of myosin Va to Mlph. For example, what dictates the choice between Mlph's actin binding domain (ABD) binding to actin or to exon-G. Is it a PTM or local actin concentration? It is unlikely to be alternative splicing as exon-G is present in all spliced isoforms of myosin Va. And what changes re melanosome dynamics in cells between these two alternatives? Similarly, the paper does not provide any in vitro evidence that binding to exon-G instead of actin effects the processivity of a Rab27a/Myosin Va/Mlph transport complex. For example, if the ABD sticks to exon-G instead of actin, does that block Mlph's ability to promote processivity through its interaction with the actin filament during transport? In summary, given that the authors did not directly test their model either in vitro or in cells, I do not think this story represent a significant conceptual advance.

      We thank Reviewer #2 for careful reading of the manuscript and the suggestions of improving the manuscript. As suggested by the reviewer, we have measured the affinity between the middle tail domain of Myo5a (Myo5a-MTD) and Mlph-ABD (Kd ~0.562 uM), which is similar to that between the globular tail domain of Myo5a (Myo5a-GTD) and the GTBM of Mlph. In addition, we have performed additional experiments showing the integrity and the expression level of the dominant negative constructs in the transfected cells.

      We believe more extensive experiments are required to address other questions raised by the reviewer. For example, what dictates the choice between Mlph's actin binding domain (ABD) binding to actin or to exon-G is an open question. As we proposed, phosphorylation by protein kinase A is only one possible mechanism. We would like to pursue them in our future research.

      Recommendations for the authors:

      The reviewing editor feels strongly that addressing some of the points raised by the reviewers would make this a more compelling manuscript. In particular, a measurement of the affinity of the relevant fragments from melanophilin and myosin-5a would indicate that the interaction might be physiologically relevant. Concerning the dominant negative experiments, the lack of effect of an expressed fragment could be that the expressed fragments were simply degraded or expressed at too low of a level to be competing. The reviewer gives guidelines on how to address this. Reviewer #2 made a point that it would be compelling if the effect of phosphorylation as suggested in the model was tested, but we all agree that this could well be the subject of a later study. In addition, the authors make a very interesting proposal for how protein kinase A could be involved in this regulation as has been suggested previously. Perhaps the use of phosphomimetic mutations could give some insight into this. Such experiments, if consistent with the proposed model would certainly raise the impact of this study. Finally, a very clear periodicity in hydrophobic amino acids is apparent in the interacting sequences of both Myo5 (yrisLykrMidLmeqLekqdktVrkLkkqLkvFakkIgeLevgqmen) and Mlph (tdeeLseMedrVamtAseVqqAeseIsdIesrIaaLra). This is strongly suggesting a leucine-zipper-like coiled coil, rather than an interaction mediated solely by charge. Recent softwares (and easily accessible too) like AlphaFold multimer might yield important structural insight into the binding configuration and might help rationalize the effect of the mutations herein.

      We thank the editors and the reviewers for their suggestions of improving the manuscript. We have performed the several essential experiments to address the concerns raised by the reviewers.

      (1) Regarding the affinity of the relevant fragments from melanophilin and myosin-5a. We have measured the affinity between Mlph-ABD and Myo5a-MTD using MST (Kd ~562 nM) (see revised Figure 3A).

      (2) Regarding the concerns on the dominant negative experiments. We have examined the molecular sizes and expression levels of  Mlph or Myo5a constructs by Western blots. First, we show that all constructs have correct molecular size in transfected cells (see revised Figure 6C and 7D), indicating that the inability of Myo5a or Mlph truncations to generate dilute-like phenotypes was not due to the intracellular degradation of the EGFP fusion protein. Second, by correcting for the percentage of transfected cells, we show that the overall expression levels of the wild-type construct and the mutants are roughly equal. Third, we categorized the expression levels into high and low, and calculated percentage of the DN phenotype in high and low expression levels. The results are consistent with the percentage of DN phenotype in total EGFP fusion protein cells.

      (3) Regarding the suggestion to investigate the effect of phosphorylation by protein kinase A on Mlph-ABD’s interaction with Myo5a and actin filament. We understand that it is important to elucidate the mechanism by which the actin-binding domain of Mlph switch its interaction with the exon-G of Myo5a and actin filament. However, as we proposed, phosphorylation by protein kinase A is one possible mechanism, and more extensive experiments are required to address this question. Therefore, we would like to pursue it in our future research.

      (4) Regarding the suggestion to predict the interaction between the exon-G of myosin-5a and Mlph-ABD using AlphaFold. We have used AlphaFold multimer to predict the Myo5a-MTD/Mlph-ABD interaction. Remarkably, the AlphaFold predicted that the binding of Myo5a-MTD with Mlph-ABD is mediated by an antiparallel coiled-coil formed by Myo5a (1430-1467) and Mlph (450-481), just as predicted by the editors. This prediction is also consistent with our finding that the exon-G of Myo5a interacts with Mlph-ABD. However, the predicted model cannot explain our mutagenesis results. We will pursue this point in the future research. Nevertheless, we are grateful to the editors for bringing this idea to our attention, because it will help us to design experiments to investigate the nature of Myo5a-exon-G/Mlph-ABD interaction.

      Reviewer #1 (Recommendations For The Authors):

      Specific minor comments

      Q1: In figs 6-7 an overlay between DAPI and EGFP would be helpful for the reader to see perinuclear distribution.

      As suggested, we have added the merged images of DAPI and EGFP in the revised Figure 6 and 7.

      Q2: The delta symbol in the pdf text was corrupted.

      The corrupted delta symbol has been fixed in the revised manuscript.

      Reviewer #2 (Recommendations For The Authors):

      Q1: Please explain in detail early in the text what exon-G is - length, position in the tail, and evidence that it is a coiled coil (CC). Of note, is it only long enough for about 4 heptad repeats? Has it been shown biochemically to form a CC? Is the CC irreversible? What would be the consequence of removing the exon-G CC on the ability of surrounding regions to bind Mlph (exon-F and the GTD)?

      We thank the reviewer for this suggestion. In the revision, we added a new paragraph (the first paragraph in the results section) and revised Figure 1A to introduce the middle tail domain and alternatively spliced exons of Myo5a.

      Exon-G is 32 amino acids in length, located at the C-terminal region of the middle tail domain, immediately before the globular tail domain. Exon-G region was predicted to form a short coiled-coil by using on-line tools (such as paircoil), and this prediction has not been tested biochemically. Moreover, we do not know whether the exon-G coiled-coil is reversible or not.

      We have not examined the effect of removing the whole exon-G on the interaction between the GTD and Mlph-GTBM. The exon-G (residues 1436-1467) and the GTD core (residues 1498-1877) are separated by a long loop of 31 residues. We therefore expect that the removing the exon-G will not affect the GTD/Mlph-GTBM interaction.

      Physically, exon-F is immediately followed by exon-G, and those two regions might interfere with each other. In our preliminary study, we found that removing the whole exon-G abolished the interaction between exon-F and Mlph-EFBD. On the other hand, removing the C-terminal half (residues 1454-1467) of exon-G had little effect the interaction between exon-F and Mlph-EFBD (see Figure 2C). In this work, we intentionally selected the later construct for functional analysis of the exon-G/Mlph-ABD interaction, because removing the C-terminal half of exon-G abolishes the interaction with Mlph-ABD, but does not affect the exon-F/Mlph-EFBD interaction.

      Q2: Figures 1-3. While the pulldown experiments demonstrating an interaction between Mlph-ABD residues 446-571 and Myo5a-MTD are a good start, one would like to see affinity measurements to gauge the likelihood that this interaction is physiologically relevant. The same goes for the pulldown experiments demonstrating an interaction between (i) the C-terminal half of exon-G (residues 1453-1467) and the Mlph-ABD, (ii) between residues 1411-1467 (a short peptide containing exon-F and exon-G) and the Mlph-ABD, and (iii) between residues 1436-1467 (a short peptide containing exon-G) and the Mlph-ABD. This would also apply to the pulldowns in 3C-3E where versions of the proteins with charge residue changes were tested.

      We agree the reviewer’s opinion that determination of the affinities between Mlph-ABD and Myo5a-MTD and their variants will be helpful in understanding the physiological relevance of Exon-G/Mlph-ABD interaction. However, the extensive experiments suggested by the reviewer require many high quality, purified proteins, which are not trivial.

      Nevertheless, we think it is important to know the affinity between Myo5a-MTD and Mlph-ABD (both wild-type), as this parameter can be used for the comparison of the three interactions between Myo5a and Mlph. Therefore, we have obtained the affinity between Myo5a-MTD and Mlph-ABD using microscale thermophoresis (MST). The dissociation constant (Kd) of Myo5a-MTD to Mlph-ABD is 0.562±0.169 uM, which is similar to that between Myo5a-GTD and Mlph-GTBM (~1 uM) (Geething & Spudich (2007) JBC 282:21518). Consistent with GST pulldown results, MST shows that deletion of C-terminal half of exon-G (1453-1467) greatly decreases the MST signals (see revised Figure 3A).

      Q3: While the domain negative (DN) approach to testing functional significance is OK, rescuing dilute/myosin Va null melanocytes with full-length myosin Va containing the various deletions would have been more convincing. Also, the authors must show (i) that the DN constructs are the correct size in transfected cells (i.e. are not degraded), and (ii) that they are expressed at roughly equal levels (either by doing Westerns and correcting for the percent of transfected cells, or by measuring total cellular fluorescence in transfected cells). Without this information, it remains possible that constructs not exhibiting a DN effect are simply degraded or poorly expressed. This applies to all the DN data in Figures 6 and 7.

      We agree with the reviewer that Myo5a null melanocytes is ideal for investigating exon G function. Unfortunately, we do not have Myo5a null melanocytes derived from dilute mice.

      To confirm the integrity of the overexpressed proteins in the transfected cells, we performed Western blot of those proteins, including  EGFP-Mlph-RBD (wild-type and two mutants) and Myo5a-Tail (wild-type and G mutant), in the lysate of the transfected cells. Western blots show that all those proteins have correct molecular masses, indicating no degradation of those overexpressed proteins (see revised Figure 6C and 7C). Moreover, by correcting for the percentage of transfected cells, we show that the overall expression levels in each transfected cell of the wild-type construct and the mutants are roughly equal. This information is included in the revised manuscript (Line 222-225; 237-241).

      Q4: The authors scored the DN phenotype as yes/no but it mostly likely varies depending on the degree of over-expression. Showing that the degree of melanosome centralization scales with the degree of overexpression, and that the correlation between expression level and phenotype varies depending on the construct would strengthen the results.

      We agree with the reviewer’s prediction that the degree of DN phenotype should depend on the of over-expression level. We analyzed the EGFP signals of transfected cells and found very few cells with medium expression level. Therefore, we simply categorized the expression levels into high and low, and calculated the DN phenotype in each categories as shown in the table below. These results are consistent with the expectation that the degree of DN phenotype depends on the over-expression level of the transfected constructs.

      Author response table 1.

      Percentage of the EGFP-expressing cells with perinuclear aggregation of melanosomes

      Q5: The conclusion from the data in Figure 8A- "the presence of both exon-F and exon-G is insufficient for binding to the Mlph occupied by Myo5a, but sufficient for binding to the unoccupied Mlph"- should be verified by also doing the experiment in myosin Va knockdown cells.

      We agree. Unfortunately, our RNAi knockdown of Myo5a in melanocytes by RNAi is not ideal and we do not have Myo5a knockout melanocytes. We will pursue this point in the future.

      Q6: Line 213 "three Mlph-binding regions, i.e., exon-F, exon-F, and GTD (Figure 7A)" has a typo.

      This typo has been corrected.

      Q7: The authors should provide high mag insets for the images in Figure 8.

      As suggested, we have revised Figure 8 by including high mag insets for the images.

    1. Author response

      Reviewer #1 (Public Review):

      Summary:

      The authors aimed to modify the characteristics of the extracellular matrix (ECM) produced by immortalized mesenchymal stem cells (MSCs) by employing the CRISPR/Cas9 system to knock out specific genes. Initially, they established VEGF-KO cell lines, demonstrating that these cells retained chondrogenic and angiogenic properties. Additionally, lyophilized carriage tissues produced by these cells exhibited retained osteogenic properties.

      Subsequently, the authors established RUNX2-KO cell lines, which exhibited reduced COLX expression during chondrogenic differentiation and notably diminished osteogenic properties in vitro. Transplantation of lyophilized carriage tissues produced by RUNX2-KO cell lines into osteochondral defects in rat knee joints resulted in the regeneration of articular cartilage tissues as well as bone tissues, a phenomenon not observed with tissues derived from parental cells. This suggests that gene-edited MSCs represent a valuable cell source for producing ECM with enhanced quality.

      Strengths:

      The enhanced cartilage regeneration observed with ECM derived from RUNX2-KO cells supports the authors' strategy of creating gene-edited MSCs capable of producing ECM with superior quality. Immortalized cell lines offer a limitless source of off-the-shelf material for tissue regeneration.

      We thank the reviewer for the interest in our work. We however want to clarify that the present manuscript does not report the generation of ECM with “superior quality”, but rather of modulated composition and thus function.

      Weaknesses:

      Most data align with anticipated outcomes, offering limited novelty to advance scientific understanding. Methodologically, the chondrogenic differentiation properties of immortalized MSCs appeared deficient, evidenced by Safranin-O staining of 3D tissues and histological findings lacking robust evidence for endochondral differentiation. This presents a critical limitation, particularly as authors propose the implantation of cartilage tissues for in vivo experiments. Instead, the bulk of data stemmed from type I collagen scaffold with factors produced by MSCs stimulated by TGFβ.

      The chondrogenic differentiation of our MSOD-B line and their capacity of undergoing endochondral ossification has been robustly demonstrated in previous studies (Pigeot et al., Advanced Materials 2021 and Grigoryan et al., Science Translational Medicine 2022). In the present manuscript, we thus compare the chondrogenic capacity of newly established VEGF-KO and RUNX-KO lines to those of MSOD-B cells. We demonstrate by qualitative (Safranin-O staining, Collagen type 2 and Collagen type X immuno-stainings) and quantitative (glycosaminoglycans assay) assays that the generated tissues consist in cartilage grafts of similar quality than the MSOD-B counterpart. Of note, the safranin-O stainings were performed on lyophilized tissues, which can alter the staining quality/intensity. We will thus provide additional stainings of generated tissues pre-lyophilization.

      The rationale behind establishing VEGF-KO cell lines remains unclear. What specific outcomes did the authors anticipate from this modification?

      VEGF is a known master regulator of angiogenesis and a key mediator of endochondral ossification. It has also been extensively used in bone tissue engineering studies as a supplemented factor – primarily in the form of VEGFα – to increase the vascularization and thus outcome of bone formation of engineered grafts (https://www.nature.com/articles/s42003-020-01606-9, https://www.sciencedirect.com/science/article/pii/S8756328216301752). In our study, it was thus identified as a natural candidate to demonstrate the possibility to generate VEGF-KO cartilage and subsequently assess the functional impact on both the angiogenic and osteogenic potential of resulting cartilage tissue.

      Insufficient depth was given to elucidate the disparity in osteogenic properties between those observed in ectopic bone formation and those observed in transplantation into osteochondral defects. While the regeneration of articular cartilage in RUNX2-KO ECM presents intriguing results, the study lacked an exploration into underlying mechanisms, such as histological analyses at earlier time points.

      Using RUNX2-KO ECM, we aimed at demonstrating the impact on cartilage remodeling and bone formation. This was performed ectopically but also in the rat osteochondral defect as a regenerative set-up of higher clinical relevance. We agree with the reviewer that additional experimental groups and time-points (not only earlier but also longer ones) would offer a better mechanistic understanding of the ECM contribution to the joint repair. However, as stated in our manuscript this is a proof-of-concept study that successfully demonstrated the influence of the cartilage ECM modification on the in vivo skeletal regeneration. A follow-up study would need to be performed to complement existing evidence and strengthen the relevance of our approach for cartilage repair.

      Reviewer #2 (Public Review):

      The manuscript submitted by Sujeethkumar et al. describes an alternative approach to skeletal tissue repair using extracellular matrix (ECM) deposited by genetically modified mesenchymal stromal/stem cells. Here, they generate a loss of function mutations in VEGF or RUNX2 in a BMP2-overexpressing MSC line and define the differences in the resulting tissue-engineered constructs following seeding onto a type I collagen matrix in vitro, and following lyophilization and subcutaneous and orthotopic implantation into mice and rats. Some strengths of this manuscript are the establishment of a platform by which modifications in cell-derived ECM can be evaluated both in vitro and in vivo, the demonstration that genetic modification of cells results in complexity of in vitro cell-derived ECM that elicits quantifiable results, and the admirable goal to improve endogenous cartilage repair. However, I recommend the authors clarify their conclusions and add more information regarding reproducibility, which was one limitation of primary-cell-derived ECMs.

      We thank the reviewer for the positive evaluation of our work.

      Overcoming the limitations of native/autologous/allogeneic ECMs such as complete decellularization and reduction of batch-to-batch variability was not specifically addressed in the data provided herein. For the maintenance of ECM organization and complexity following lyophilization, evidence of complete decellularization was not addressed, but could be easily evaluated using polarized light microscopy and quantification of human DNA for example in constructs pre and post-lyophilization.

      We will clarify the experiments and characterization performed with lyophilized tissues versus those performed with decellularized ones. We will also provide evidence of DNA removal in our decellularized ECMs.

      It would be ideal to see minimization of batch-to-batch variability using this approach, as mitigation of using a sole cell line is likely not sufficient (considering that the sole cell line-derived Matrigel does exhibit batch-to-batch and manufacturer-to-manufacturer variability). I recommend adding details regarding experimental design and outcomes not initially considered. Inter- and intra-experimental reproducibility was not adequately addressed. The size of in vitro-derived cartilage pellets was not quantified, and it is not clear that more than one independent 'differentiation' was performed from each gene-edited MSC line to generate in vitro replicates and constructs that were implanted in vivo.

      We thank the Reviewer for the comment on variability/reproducibility concern. Using a cell line does confer higher robustness but indeed does not grant unlimited consistency of batch production. We will temper our claims in the discussion and mention the need to regularly re-characterize cell lines properties upon passages.

      In our study, our grafts have been generated from various batches and tested in more than one experimental repeat. This will be further described in the revised version of our manuscript. We will also implement data on the size variability of generated tissues.

      The use of descriptive language in describing conclusions may mislead the reader and should be modified accordingly throughout the manuscript. For example, although this reviewer agrees with the comparative statements made by the authors regarding parental and gene-edited MSC lines, non-quantifiable terms such as 'frank' 'superior' (example, line 242) are inappropriate and should rather be discussed in terms of significance. Another example is 'rich-collagenous matrix,' which was not substantiated by uniform immunostaining for type II collagen (line 189).

      I have similar recommendations regarding conclusive statements from the rat implantation model, which was appropriately used for the purpose of evaluating the response of native skeletal cells to the different cell-derived ECMs. Interpretations of these results should be described with more accuracy. For example, increased TRAP staining does not indicate reduced active bone formation (line 237). Many would not conclude that GAGs were retained in the RUNX2-KO line graft subchondral region based on the histology. Quantification of % chondral regeneration using histology is not accurate as it is greatly influenced by the location in the defect from which the section was taken. Chondral regeneration is usually semi-quantified from gross observations of the cartilage surface immediately following excision. The statements regarding integration (example line 290) are not founded by histological evidence, which should show high magnification of the periphery of the graft adjacent to the native tissue.

      We thank the Reviewer for the constructive suggestions. We will revise language accordingly throughout the manuscript.

      Reviewer #3 (Public Review):

      Summary:

      In this study, the authors have started off using an immortalized human cell line and then gene-edited it to decrease the levels of VEGF1 (in order to influence vascularization), and the levels of Runx2 (to decrease chondro/osteogenesis). They first transplanted these cells with a collagen scaffold. The modified cells showed a decrease in vascularization when VEGF1 was decreased, and suggested an increase in cartilage formation.

      In another study, the matrix generated by these cells was subsequently remodeled into a bone marrow organ. When RUNX2 was decreased, the cells did not mineralize in vitro, and their matrices expressed types I and II collagen but not type X collagen in vitro, in comparison with unedited cells. In vivo, the author claims that remodeling of the matrices into bone was somewhat inhibited. Lastly, they utilized matrices generated by RUNX2 edited cells to regenerate chondro-osteal defects. They suggest that the edited cells regenerated cartilage in comparison with unedited cells.

      Strengths:

      -The notion that inducing changes in the ECM by genetically editing the cells is a novel one, as it has long been thought that ECM composition influences cell activity.

      -If successful, it may be possible to make off-the-shelf ECMS to carry out different types of tissue repair.

      We thank the Reviewer for the critical evaluation of our work and the highlighted novelty of it.

      Weaknesses:

      -The authors have not generated histologically identifiable cartilage or bone in their transplants of the cells with a type I scaffold.

      The chondrogenic differentiation of our MSOD-B line and their capacity of undergoing endochondral ossification has been robustly demonstrated in previous studies (Pigeot et al., Advanced Materials 2021 and Grigoryan et al., Science Translational Medicine 2022). In the present manuscript, we thus compare the chondrogenic capacity of newly established VEGF-KO and RUNX-KO lines to those of MSOD-B. We demonstrate by qualitative (Safranin-O staining, Collagen type 2 and Collagen type X immuno-stainings) and quantitative (glycosaminoglycans assay) assays that the generated tissues consist in cartilage tissue of similar quality than the MSOD-B. However, the safranin-O stainings were performed on lyophilized tissues, which can alter the staining quality/intensity. We will thus provide additional stainings of generated tissues pre-lyophilization.

      On the contested formation of bone in vivo by our ECMs grafts, we have provided compelling qualitative evidence via Masson´s Trichrome stainings and quantification of mineralized volume by µCT. Both cortical bone and trabecular structures were identified ectopically. Those are standard evaluation methods in the field, we would be happy to receive additional suggestions by the Reviewer.

      -In many cases, they did not generate histologically identifiable cartilage with their cell-free-edited scaffold. They did generate small amounts of bone but this is most likely due to BMPs that were synthesized by the cells and trapped in the matrix.

      We now appreciate that the Reviewer agrees on the successful formation of bone induced by our engineered grafts. We however still respectfully disagree with the “small amount of bone” statement since our MSOD-B and MSOD-B VEGF KO cartilage grafts led to the full generation of a mature ectopic bone organ (that is, also composed of extensive marrow). This has been assessed qualitatively and quantitatively.

      We agree with the Reviewer on the key role of BMP-2 in the remodeling process into bone and bone marrow, which we have extensively described in our previous publication (Pigeot et al., Advanced Materials 2021). We previously demonstrated that the low amount of BMP-2 (in the dozens of nanogram/tissue range) embedded in the matrix is not sufficient per se to induce ectopic endochondral ossification. It is the combined presence of GAGs in the matrix -thus cartilage- that allows the success of bone formation. Since we have already demonstrated in the present manuscript that the GAGs content is the same in MSOD-B and MSOD-B edited ECMs, we will provide additional data demonstrating the maintenance of BMP-2 content in all generated cartilage tissues.

      -There is a great deal of missing detail in the manuscript.

      We will provide additional information on the MSOD-B line and the overall methodology in our revised version.

      -The in vivo study is underpowered, the results are not well documented pictorially, and are not convincing.

      We will provide additional information and pictures related to our in vivo studies. We believe our group size supports our conclusions confirmed by statistical assessment.

      -Given the fact that they have genetically modified cells, they could have done analyses of ECM components to determine what was different between the lines, both at the transcriptome and the protein level. Consequently, the study is purely descriptive and does not provide any mechanistic understanding of what mixture of matrix components and growth factors works best for cartilage or bone. But this presupposes that they actually induced the formation of bona fide cartilage, at least.

      We thank the Reviewer for the suggestion. However, our study did not aim at understanding what ECM graft composition work best for cartilage nor bone regeneration respectively. Instead, we propose the exploitation of our cellular tools to interrogate the function of key ECM constituents and their impact in skeletal regeneration. We once more confirm that we generated lyophilized cartilage grafts which will be more evidently supported by histological assessment before lyophilization.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Chen and colleagues first compared the cartilage tissues collected from OA and HA patients using histology and immunostaining. Then, a genome-wide DNA methylation analysis was performed, which informed the changes of a novel gene, TNXB. IHC confirmed that TNXB has a lower expression level in HA cartilage than OA. Next, the authors demonstrated that TNXB levels were reduced in the HA animal model, and intraarticular injection of AAV carrying TNXB siRNA induced cartilage degradation and promoted chondrocyte apoptosis. Based on KEGG enrichment, histopathological analysis, and western blot, the authors also showed the relationship between TNXB and AKT phosphorylation. Lastly, AKT agonist, specifically SC79 in this study, was shown to partially rescue the changes of in vitro-cultured chondrocytes induced by Tnxb knock-down. Overall, this is an interesting study and provided sufficient data to support their conclusion.

      Strengths:

      (1) Both human and mouse samples were examined.

      (2) The HA model was used.

      (3) Genome-wide DNA methylation analysis was performed.

      Weaknesses:

      (1) In some experiments, the selection of the control groups was not ideal.

      Thank you for comments. The reviewer raised the concerns about using human OA cartilage as control, instead of health cartilage. This is an important detail we didn’t describe in the previous version. We have added our explanation in revised Methods.

      (2) More details on analyzing methods and information on replicates need to be included.

      We greatly appreciate your careful review and helpful suggestions. We have added detailed information to our revised draft.

      (3) Discussion can be improved by comparing findings to other relevant studies.

      Thank the reviewer very much for the opportunity to improve our manuscript. We have improved discussions as reviewer suggested in Recommendation 13.

      (4) The use of transgenic mice with conditional Tnxb depletion can further define the physiological roles of Tnxb.

      Thanks for this valuable comment. We understand that conditional Tnxb-KO mice is much helpful for the study of biological roles of Tnxb, and it will be constructed and used in our future studies.

      Recommendations For the Authors:

      (1) Please add more information about HA such as incidence to highlight the importance of the study.

      We greatly appreciate your careful review and helpful suggestions. We have provided more information about the importance of HA study in revised Introduction. Please see lines 90-93 and 103-112.

      (2) Please justify the use of OA cartilage, instead of normal tissues, as the control.

      Thanks for your suggestion. We certainly would have liked to use healthy cartilage as control, but we were extremely difficult to obtain enough control samples from healthy individuals. Despite the mechanistic and phenotypic differences between HA and OA, OA is often used as “disease” control to reveal the characteristics in HA 1,2. Thus, we measured cartilage degeneration and DNA methylation difference in HA and OA patients. We have provided the statement and evidence in revised manuscript. Please see lines 144-145.

      (3) Please provide details of how to calculate the Cartilage wear area ratio in Figure 1D, and measure the positive staining area in Figure 1F.

      We apologize for the issue you pointed out. Here, we provide detailed information for how positively stained areas are calculated. Specifically, in Figure 1D, we obtained the cartilage area ratio by calculating the ratio of blue cartilage staining area to the whole tissue area by using image J software. In Figure 1F, the area of positive staining was determined upon secondary antibody treatment and color development using DAB chromogen (brown stain). We then obtained the positive staining area ratio by calculating the ratio of positive staining area to the whole cartilage area by using image J software.

      (4) Please label the location of hemorrhagic ferruginous deposits in Figure 1.

      Thank you for your valuable suggestion. We have used black arrows to indicate hemorrhagic ferruginous deposits in revised Figure 1A.

      (5) Please define the meaning of "n" in all figure legends, such as technical or biological replicates.

      Thanks for your suggestion. We have defined the meaning of "n" in all figure legends in revised manuscript.

      (6) In Figure 3, please increase the font size of B, D, F, H, and J. The same applies to other figures.

      Thank you for your valuable suggestion. We have increased the font size of figures in our revised manuscript.

      (7) Line 327, "(Figure 1, F and G)" should be Figure 2F, G.

      Thanks for your reminding. We have corrected it in the revision. Please see lines 347.

      (8) Reduced TNXB levels in human HA cartilage are one of the major findings in this study. Currently, only semi-quatative IHC was used to draw the conclusion. A second method, such as real-time PCR or western blot, is required.

      Thanks for your suggestion. We feel very sorry that we did not have enough samples of human HA cartilages for qPCR and WB experiments, due to severe erosion of the HA cartilage. We have pointed out this limitation in revised drafts. Please see lines 445-448.

      (9) Figure 3 shows that reduced Tnxb was accompanied by the increased Dnmt1. In addition, this study is about methylation. Have the authors tested the change of Dnmt1 levels when Tnxb was knocked down?

      Thanks for your suggestion. According to the reviewer's suggestion, we have tested the expression of Dnmt1 in Tnxb-KD chondrocytes, and no significant alteration was observed. Please see the following Figure.

      Author response image 1.

      Figure Legend: Representative IHC staining of Dnmt1 in articular cartilage from Tnxb-KD HA mice. Corresponding quantification of the proportion of Dnmt1 positive regions. Red arrows indicate positive cells. Scale bar: 100 μm. Data were presented as means ± SD; n = 5 in each group. ns = no significance by unpaired Student’s t test.

      (10) Also, is there a causal relationship between Tnxb levels and the distribution of methylation levels? Any related study was performed?

      Following the valuable suggestion of the reviewer, we used two well-known DNA methyltransferase inhibitors (RG108 or 5-Aza-dc) 3 to examine whether DNA methylation regulates transcriptional expression of TNXB. We found that both inhibitors significantly up-regulated Tnxb mRNA level. We have added this result to the revised Supplementary Figure 4 and draft (lines 292-296 and 369-374).

      (11) In Figure 6, what was the control of "AKT agnost" group?

      Thank you for your suggestion. We feel sorry for our negligence and we have added the vehicle group as a control for AKT agonists in Figure 6 in our revised manuscript.

      (12) Previous studies have reported the involvement of TNXB in TGF-β signaling. Have the authors examined the effect of TNXB on TGF-β signaling in chondrocytes?

      Thank you for your suggestion. Here, we examined the expression of TGF-β signaling in Tnxb-KD chondrocyte and no significant changes were observed. We have discussed this result in revised draft (lines 475-479). We have added this result to the revised Supplementary Figure 7.

      (13) Discussion can be improved. For example, have previous studies reported the association between TNXB and methylation in other cells/tissues? In addition to apoptosis, are there other potential mechanisms underlying the protective role of TNXB in chondrocytes?

      Thank you for your valuable comments. Previous studies have shown the different DNA methylation of TNXB in whole blood from rheumatoid arthritis patients and in retinal pigment epithelium from patients with age-related macular degeneration 4,5. Herein, we were the first to report the association between DNA methylation of TNXB and HA cartilage degeneration. As for TNXB, there are limited public studies regarding physiological function of TNXB, among which mostly report the effect of TNXB on extracellular matrix organization 6,7. In our work, we found that TNXB regulated the phosphorylation of AKT. Since previous reports showed AKT controlled the expression of Mmp13 8, we thought that TNXB might regulated the chondrocyte extracellular matrix organization, in addition to its function on apoptosis. We have discussed these in revised manuscript (lines 462-464, and 495-501).

      (14) The manuscript writing needs to be improved. Typos and grammar issues were noted.

      Thanks. We have modified and polished our language and we hope the revised version could be acceptable for you.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript mainly studied the biological effect of tenascin XB (TNXB) on hemophilic arthropathy (HA) progression. Using bioinformatic and histopathological approaches, the authors identified the novel candidate gene TNXB for HA. Next, the authors showed that TNXB knockdown leads to chondrocyte apoptosis, matrix degeneration, and subchondral bone loss in vivo/vitro. Furthermore, AKT agonists promoted extracellular matrix synthesis and prevented apoptosis in TNXB knockdown chondrocytes.

      Strengths:

      In general, this study significantly advances our understanding of HA pathogenesis. The authors utilize comprehensive experimental strategies to demonstrate the role of TNXB in cartilage degeneration associated with HA. The results are clearly presented, and the conclusions appear appropriate.

      Weaknesses:

      Additional clarification is required regarding the gender of the F8-/- mouse in the study. Is the mouse male or female?

      We feel sorry that we did not provide enough information about the gender of the F8-/- mouse in the previous draft. Here, we used male F8-/- mice as the study subjects for our experiments. Hemophilia A is predominantly seen in males because of the X chromosome linkage 9.

      Recommendations For The Authors:

      Some issues need to be addressed in the manuscript:

      (1) During the progression of HA, in addition to cartilage degeneration, synovial hypertrophy and inflammation are also significant symptoms. How is the expression of TNXB in HA synovium?

      Thank you for your valuable comments. According to the reviewer's suggestion, we tested the expression of TNXB in the synovium, and there was no statistically significant difference in the expression level of TNXB in the synovium (Supplementary Figure. 2) Please see lines 347-349.

      (2) Lines 183-188. The methods of virus infection should be more detailed. What was the concentration of the AAVs injected? And how many doses were administrated?

      Thank you for your suggestion. We have added an explanation of virus infection and injected doses in revised methods section (lines 205-206).

      (3) Line 197-198. Could the author double-check the decalcification time for human cartilage samples? Is it for 3 months? Or for 3 weeks?

      Thank you for your suggestion. We have reconfirmed the decalcification of human cartilage samples for 3 months.

      (4) Line 343-344 "Above results suggest that TNXB might be protective against HA and its cartilage suppression is closely related to HA development." The conclusion is inappropriate, please revise it.

      Thanks for your suggestion. We have revised this conclusion into “Above results suggest that the suppression of TNXB in cartilage promotes the HA development”. Please see lines 365-366.

      (5) Line 326-327, the IHC staining for human samples is shown in Figure 2, not Figure 1. Please double check and revise it.

      Thanks for your reminding. We feel sorry for our negligence and we have corrected it in the revision.

      (6) For Figure 1B, it shows the MRI images of knee joints. However, the method section lacks details regarding the MRI imaging scan and analysis. Could the author include this information in the method section?

      Thank you for your valuable comments. We have added the method of MRI imaging scan and analysis in revised Methods. Please see lines 154-163.

      (7) In Figure 5, The statistical result of Bcl-2 is inconsistent with its Western blot band. Please check.

      Thanks for your reminding. We have modified it in the revision.

      (8) Please read through the text carefully to check for language problems. For example, in Line 68 "Our" not "our".

      Thanks for your reminding. In revision, we have corrected it. Please see Line 68.

      Reviewer #3 (Public Review):

      Summary:

      The manuscript by Dr. Chen et al. investigates the genes that are differentially methylated and associated with cartilage degeneration in hemophilia patients. The study demonstrates the functional mechanisms of the TNXB gene in chondrocytes and F8-/- mice. The authors first showed significant DNA methylation differences between hemophilic arthritis (HA) and osteoarthritis through genome-wide DNA methylation analysis. Subsequently, they showed a decreased expression of the differentially methylated TNXB gene in cartilage from HA patients and mice. By knocking down TNXB in vivo and in vitro, the results indicated that TNXB regulates extracellular matrix homeostasis and apoptosis by modulating p-AKT. The findings are novel and interesting, and the study presents valuable information in blood-induced arthritis research.

      Strengths:

      The authors adopted a comprehensive approach by combining genome-wide DNA methylation analysis, in vivo and in vitro experiments using human and mouse samples to illustrate the molecular mechanisms involved in HA progression, which is crucial for developing targeted therapeutic strategies. The study identifies Tenascin XB (TNXB) as a central mediator in cartilage matrix degradation. It provides mechanistic insights into how TNXB influences cartilage matrix degradation by regulating the activation of AKT. It opens avenues for future research and potential therapeutic interventions using AKT agonists for cartilage protection in hemophilic arthropathy. The conclusions drawn from the study are clear and directly tied to the findings.

      Weaknesses:

      (1) The study utilizes a small sample size (N=5 for both osteoarthritis and hemophilic arthropathy). A larger sample size would enhance the generalizability and statistical power of the findings.

      Thank you for pointing out this deficiency. Indeed, our sample size is relatively small, although the overall sample size was sufficient for statistical analyses. And we have added this limitation in discussion in revised manuscript. Please see line 445-448. Considering the small sample size, we subsequently performed functional validation study for TNXB, one of the most significant genes, and demonstrated that TNXB exerted critical impacts on chondrocytes apoptosis in HA pathogenesis in vivo and in vitro.

      (2) The use of an animal model (F8-/- mouse) to investigate the role of TNXB may not fully capture the complexity of human hemophilic arthropathy. Differences in the biology between species may affect the translatability of the findings to human patients.

      Thank you for your valuable comments. We recognize that biological differences between species can affect the clinical translation of research findings. In our work, we sequenced human cartilage samples to obtain the differentially methylated gene-TNXB. Meanwhile, we demonstrated that protein expression of TNXB protein was significantly down-regulated in HA human cartilage and F8-/- transgenic mouse cartilage. The F8-/- transgenic mouse serves as a well-accepted model for the study of hemophilia, which is phenotypically similar to that of human patients suffering from the disease and spontaneously bleeds into the joints and soft tissues. Besides, this model mouse has been widely used in the study of hemophilia and hemophilic arthritis 9-11.

      (3) The study primarily focuses on TNXB as a central mediator, but it might overlook other potentially relevant factors contributing to cartilage degradation in hemophilic arthropathy. A more holistic exploration of genetic and molecular factors could provide a broader understanding of the condition.

      Thanks for your suggestion. Since our human sample size is relatively small, we should interpret differentially methylated genes cautiously. Therefore, we mainly focused on the most top significant gene TNXB for functional study. In our further study, we will expand the sample size to more comprehensively explore the molecular mechanisms of HA.

      Recommendations For The Authors:

      The following are my suggestions:

      (1) Why do the authors choose to concentrate on the knee joint in the introduction when hemophilia, characterized by a deficiency in clotting factor F8, is recognized as a systemic disease?

      Thank you for your valuable comments. Although hemophilia a systemic disease, approximately 80%-90% of bleeding episodes in patients with hemophilia occur within the musculoskeletal system, especially in the knee joint 12.

      (2) While Figure 1 illustrates distinct expressions of Dnmt1 and Dnmt3a, only Dnmt1 results are presented in HA mice models in Figure 3. To address this, it is suggested that the expression of Dnmt3a be explored in animal models.

      Thank you for your suggestion. According to the reviewer's suggestion, we examined the expression of Dnmt3a in mouse articular cartilage, and the expression level of Dnmt3a was significantly up-regulated in both the 4W and 8W model groups compared with the control group (Figure 3). Please see line 364.

      (3) In Figure 3, the sample size for Dnmt1 is smaller than the other indicators; therefore, supplementing the sample count is recommended.

      Thanks for your reminding. We have corrected it in the revision.

      (4) Regarding Figure 4G, a few apoptotic cells were observed in the AAV NC group. It is advised that this figure be reviewed for accuracy.

      Thanks for your suggestion. In Figure 5D, the AAV-NC group is the case of needle-injected with AAV. Therefore, it is normal for apoptotic cells to appear in the cartilage layer.

      (5) The authors concluded that TNXB plays a role in apoptosis and AKT signaling. Providing expression data for Caspase9 would be valuable to strengthen this assertion, as PI3K/AKT signaling directly influences its activation during apoptosis.

      Thank you for your comments. We have examined the expression of Cleaved-Caspase9 protein, and found that knockdown of TNXB resulted in upregulation of Cleaved-Caspase9 protein expression, which was reversed by addition of SC79. This result has added in revised Figure 6 and manuscript. Please see line 414.

      (6) Quantitative analysis of the differences between the two groups in Supplemental Figures is necessary.

      Thank you for your suggestion. We have added the quantitative analysis of the differences between the two groups in Supplemental Figures.

      (7) With three major isoforms (homologs) of AKT in mammals-AKT1, 2, and 3 - why did the authors specifically focus on AKT1?

      Thank you for your comments. Based on the results of the KEGG enrichment analysis of differential methylated genes, we investigated the role of PI3K/AKT pathway in apoptosis of HA chondrocytes. AKT is universally acknowledged as a core factor in the PI3K/AKT pathway that plays critical roles in various cellular activities such as cell proliferation, cell differentiation, cell apoptosis, metabolism and so on 13,14, More notably, several studies demonstrated that in AKT family, Akt1 primarily was involved in regulation of chondrocyte survival and proteoglycan synthesis 15. Therefore, we detected phosphorylation of AKT1 in HA cartilages and TNXB-KD chondrocytes, and found that TNXB regulation chondrocytes ECM and apoptosis by AKT1. Reference:

      (1) Cooke, E.J., Zhou, J.Y., Wyseure, T., Joshi, S., Bhat, V., Durden, D.L., Mosnier, L.O., and von Drygalski, A. (2018). Vascular Permeability and Remodelling Coincide with Inflammatory and Reparative Processes after Joint Bleeding in Factor VIII-Deficient Mice. Thromb Haemost 118, 1036-1047. 10.1055/s-0038-1641755.

      (2) Kleiboer, B., Layer, M.A., Cafuir, L.A., Cuker, A., Escobar, M., Eyster, M.E., Kraut, E., Leavitt, A.D., Lentz, S.R., Quon, D., et al. (2022). Postoperative bleeding complications in patients with hemophilia undergoing major orthopedic surgery: A prospective multicenter observational study. J Thromb Haemost 20, 857-865. 10.1111/jth.15654.

      (3) Weiland, T., Weiller, M., Kunstle, G., and Wendel, A. (2009). Sensitization by 5-azacytidine toward death receptor-induced hepatic apoptosis. J Pharmacol Exp Ther 328, 107-115. 10.1124/jpet.108.143560.

      (4) Anaparti, V., Agarwal, P., Smolik, I., Mookherjee, N., and El-Gabalawy, H. (2020). Whole Blood Targeted Bisulfite Sequencing and Differential Methylation in the C6ORF10 Gene of Patients with Rheumatoid Arthritis. J Rheumatol 47, 1614-1623. 10.3899/jrheum.190376.

      (5) Porter, L.F., Saptarshi, N., Fang, Y., Rathi, S., den Hollander, A.I., de Jong, E.K., Clark, S.J., Bishop, P.N., Olsen, T.W., Liloglou, T., et al. (2019). Whole-genome methylation profiling of the retinal pigment epithelium of individuals with age-related macular degeneration reveals differential methylation of the SKI, GTF2H4, and TNXB genes. Clin Epigenetics 11, 6. 10.1186/s13148-019-0608-2.

      (6) Mao, J.R., Taylor, G., Dean, W.B., Wagner, D.R., Afzal, V., Lotz, J.C., Rubin, E.M., and Bristow, J. (2002). Tenascin-X deficiency mimics Ehlers-Danlos syndrome in mice through alteration of collagen deposition. Nat Genet 30, 421-425. 10.1038/ng850.

      (7) Zhang, K., Wang, X., Zeng, L.T., Yang, X., Cheng, X.F., Tian, H.J., Chen, C., Sun, X.J., Zhao, C.Q., Ma, H., and Zhao, J. (2023). Circular RNA PDK1 targets miR-4731-5p to enhance TNXB expression in ligamentum flavum hypertrophy. FASEB J 37, e22877. 10.1096/fj.202200022RR.

      (8) Guo, H., Yin, W., Zou, Z., Zhang, C., Sun, M., Min, L., Yang, L., and Kong, L. (2021). Quercitrin alleviates cartilage extracellular matrix degradation and delays ACLT rat osteoarthritis development: An in vivo and in vitro study. J Adv Res 28, 255-267. 10.1016/j.jare.2020.06.020.

      (9) Weitzmann, M.N., Roser-Page, S., Vikulina, T., Weiss, D., Hao, L., Baldwin, W.H., Yu, K., Del Mazo Arbona, N., McGee-Lawrence, M.E., Meeks, S.L., and Kempton, C.L. (2019). Reduced bone formation in males and increased bone resorption in females drive bone loss in hemophilia A mice. Blood Adv 3, 288-300. 10.1182/bloodadvances.2018027557.

      (10) Haxaire, C., Hakobyan, N., Pannellini, T., Carballo, C., McIlwain, D., Mak, T.W., Rodeo, S., Acharya, S., Li, D., Szymonifka, J., et al. (2018). Blood-induced bone loss in murine hemophilic arthropathy is prevented by blocking the iRhom2/ADAM17/TNF-alpha pathway. Blood 132, 1064-1074. 10.1182/blood-2017-12-820571.

      (11) Vols, K.K., Kjelgaard-Hansen, M., Ley, C.D., Hansen, A.K., and Petersen, M. (2019). Bleed volume of experimental knee haemarthrosis correlates with the subsequent degree of haemophilic arthropathy. Haemophilia 25, 324-333. 10.1111/hae.13672.

      (12) Lobet, S., Peerlinck, K., Hermans, C., Van Damme, A., Staes, F., and Deschamps, K. (2020). Acquired multi-segment foot kinematics in haemophilic children, adolescents and young adults with or without haemophilic ankle arthropathy. Haemophilia 26, 701-710. 10.1111/hae.14076.

      (13) Garcia, D., and Shaw, R.J. (2017). AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Mol Cell 66, 789-800. 10.1016/j.molcel.2017.05.032.

      (14) Johnson, J., Chow, Z., Lee, E., Weiss, H.L., Evers, B.M., and Rychahou, P. (2021). Role of AMPK and Akt in triple negative breast cancer lung colonization. Neoplasia 23, 429-438. 10.1016/j.neo.2021.03.005.

      (15) Rao, Z., Wang, S., and Wang, J. (2017). Peroxiredoxin 4 inhibits IL-1beta-induced chondrocyte apoptosis via PI3K/AKT signaling. Biomed Pharmacother 90, 414-420. 10.1016/j.biopha.2017.03.075.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      We thank the reviewers for their thorough review of and overall positive comments on our manuscript. We have revised the manuscript to address the one remaining concern raised by one of the reviewers. This is described below.

      Fig.1B-C: To give a standard deviation from 2 data points has no statistical significance. In this case it would be better to define as range/difference of the 2 data points.

      We have modified the legend for Figure 1 to now read, “The average of two experiments is plotted with the bars representing the range of each time point.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      In 'Systems analysis of miR-199a/b-5p and multiple miR-199a/b-5p targets during chondrogenesis', Patel et al. present a variety of analyses using different methodologies to investigate the importance of two miRNAs in regulating gene expression in a cellular model of cartilage development. They first re-analysed existing data to identify these miRNAs as one of the most dynamic across a chondrogenesis development time course. Next, they manipulated the expression of these miRNAs and showed that this affected the expression of various marker genes as expected. An RNA-seq experiment on these manipulations identified putative mRNA targets of the miRNAs which were also supported by bioinformatics predictions. These top hits were validated experimentally and, finally, a kinetic model was developed to demonstrate the relationship between the miRNAs and mRNAs studied throughout the paper.

      I am convinced that the novel relationships reported here between miR-199a/b-5p and target genes FZD6, ITGA3, and CAV1 are likely to be genuine. It is important for researchers working on this system and related diseases to know all the miRNA/mRNA relationships but, as the authors have already published work studying the most dynamic miRNA (miR-140-5p) in this biological system I was not convinced that this study of the second miRNA in their list provided a conceptual advance on their previous work.

      We believe this study is an enhancement on our previous work for two reasons, which have been alluded to in new text within the introduction. Firstly, our previous work used experimental and bioinformatic analysis to identify microRNAs with significant regulatory roles during chondrogenesis. This new manuscript additionally uses  a systems biology approaches to identify novel miRNA-mRNA interactions and capture these within an in silico model. Secondly, this work was initiated by the analysis of our previously generated data – using a novel tool we developed for this type of data (Bioconductor - TimiRGeN).  

      I was also concerned with the lack of reporting of details of the manipulation experiments. The authors state that they have over-expressed miR-199a-5p (Figure 2A) and knocked down miR-199b-5p (Figure 2B) but they should have reported their proof that these experiments had worked as predicted, e.g. showing the qRT-PCR change in miRNA expression. Similarly, I was concerned that one miRNA was over-expressed while the other was knocked down - why did the authors not attempt to manipulate both miRNAs in both directions? Were they unable to achieve a significant change in miRNA expression or did these experiments not confirm the results reported in the manuscript?

      We agree with the reviewer that some additional data were needed to demonstrate the effective regulation of miR-199-5p.  Hence, Supplementary Figure 1 is now included which provides validation of the effects of miR-199a-5p overexpression (Supplementary Figure 1A) and inhibition of miR-199a/b-5p (Supplementary Figure 1B). Within the main manuscript, Figure 2B has been amended to include the consequences of inhibition of miR-199a-5p, with 2C showing the consequences of miR-199b-5p inhibition. Further, we include new data with regards to miR-199a/b-5p inhibition on CAV1 (Figure 4A). 

      I had a number of issues with the way in which some of the data was presented. Table 1 only reported whether a specific pathway was significant or not for a given differential expression analysis but this concealed the extent of this enrichment or the level of statistical significance reported. Could it be redrawn to more similarly match the format of Figure 3A? The various shades of grey in Figure 2 and Figure 4 made it impossible to discriminate between treatments and therefore identify whether these data supported the conclusions made in the text. It also appeared that the same results were reported in Figure 3B and 3C and, indeed, Figure 3B was not referred to in the main text. Perhaps this figure could be made more concise by removing one of these two sets of panels.

      We agree with all points made here and have amended these within the manuscript. Figure 1A is now pathway enrichment plots from the TimiRGeN R Bioconductor package, and the table which previously showed the pathways enriched at each time point is now in the supplementary materials (supp. Table 1). Figure 2 and 4 now have color instead of shades of grey. Figure 3C has now been moved to supplementary materials (Supplementary Figure 2) and is referenced in the text. 

      Overall, while I think that this is an interesting and valuable paper, I think its findings are relatively limited to those interested in the role of miRNAs in this specific biomedical context.

      Reviewer #2 (Public review):

      Summary:

      This study represents an ambitious endeavor to comprehensively analyze the role of miR199a/b-5p and its networks in cartilage formation. By conducting experiments that go beyond in vitro MSC differentiation models, more robust conclusions can be achieved.

      Strengths:

      This research investigates the role of miR-199a/b-5p during chondrogenesis using bioinformatics and in vitro experimental systems. The significance of miRNAs in chondrogenesis and OA is crucial, warranting further research, and this study contributes novel insights.

      Weaknesses:

      While miR-140 and miR-455 are used as controls, these miRNAs have been demonstrated to be more relevant to Cartilage Homeostasis than chondrogenesis itself. Their deficiency has been genetically proven to induce Osteoarthritis in mice. Therefore, the results of this study should be considered in comparison with these existing findings.

      We agree with the reviewers comments. miR-455-null mice develop normally but miR-140-null (or mutated) mice and humans do have skeletal abnormalities (e.g. Nat Med. 2019 Apr;25(4):583-590. doi: 10.1038/s41591-019-0353-2), indicating a role in chondrogenesis.  We have made an addition in the description to point towards the need to assess the roles miR-199a/b-5p may play during skeletogenesis and OA. We anticipate miR-199a/b-5p to be relevant in OA and have ongoing additional work for this – but this beyond the scope of this manuscript. 

      Recommendations to Authors:

      Reviewer #1 (Recommendations to authors):

      Beyond the issues raised in the public review, I had a few minor recommendations that are largely designed to help improve the understanding of the manuscript as it is currently written.

      (1) Please provide the statistical tests used to obtain p-values in the Figure 2 and 4 legends.

      We have now added statistical test information to the figure legends of figures 2 and 4.

      (2) It is stated on p. 9 that both miRNAs may share a functional repertoire because 25 and 341 genes are interested between their inhibition experiments. Please provide statistical support that this overlap is an enrichment over the null background in this experiment. Total DE genes – chi squared. Expected / Observed. 

      A chi-squared test is now presented in the manuscript which shows that the number of significant genes which were found in common between miR-199a-5p knockdown and miR-199b-5p knockdown were significantly more than expected for day 0 or day 1 of the experiments. 

      (3) The final sentence on p. 12 (beginning 'Size of the points reflect...') seemed out of place - is it part of a legend?

      Thank you for pointing out this mistake - it was part of figure 3C and now is in the supplementary materials.

      (4) A sentence on p. 14 reads that 'FZD6 and ITGA3 levels increased significantly' but this should read decreased, rather than increased. Quite an important typo!

      Thank you for pointing this error out. It has been corrected.

      (5) Theoretical transcripts are mentioned in the legend of Figure 5A but these were not present in the figure. Please include these or remove them from the legend.

      This error has been removed form Figure 5A.

      (6) On p 20, the references 22 and 27 should I think be moved to earlier in the sentence (after 'miR-199a-5p-FZD6 has been predicted previously'). Currently, it reads as if these references support your luciferase assays which you claim are the first evidence for this target relationship.

      We agree with this change and have corrected the manuscript.

      (7) The reference to Figure 5D on p. 20 should be a reference to Figure 5C.

      Thank you for pointing this error out – this has been corrected.

      Reviewer #2 (Recommendations to authors):

      (1) The paper is based on the importance of miR-140 and miR-455 as miRNAs in chondrogenesis, citing only Barter, M. J. et al. Stem Cells 33, (2015). Considering the scope and results of this study, this citation is insufficient.

      We agree with this reviewers comments. For many year miR-140 and miR-455 have been experimented on and their importance in OA research has become apparent. We included additional references within the introduction to address this.

      (2) Analyzing chondrogenesis solely through differentiation experiments from MSCs is inadequate. It is essential to perform experiments involving the network within normal cartilage tissue and/or the generation of knockout mice to understand the precise role of miR199a/b-5p in chondrogenesis.

      We have added an additional paragraph in the discussion to state this, and do believe it is highly important that miR-199a/b-5p be tested in OA samples – however this would be beyond the intended scope of this article.

      (3) In light of the above points, it is imperative to investigate the role of miR-199a/b-5p beyond the in vitro differentiation model from MSCs, encompassing mouse OA models or human disease samples.

      In tangent with the previous address, we agree with the pretense and believe additional experiments should be performed to gain more insight to the mechanism of how miR-199a/b-5p regulate OA. But development of a new mouse line to investigate this is not in the scope of this manuscript.

    1. Author response:

      Reviewer #1 (Public Review):

      Summary:

      In this study the authors use an elegant set of single-molecule experiments to assess the transcriptional and post-transcriptional regulation of RecB. The question stems from a previous observation from the same lab, that RecB protein levels are low and not induced under DNA damage. The authors first show that recB transcript levels are low and have a short half-life. They further show that RecB levels are likely regulated via translational control. They provide evidence for low noise in RecB protein levels across cells and show that the translation of the mRNA increases under double-strand break conditions. Authors identify Hfq binding sites in the recbcd [recBCD] operon and show that Hfq regulates the levels of RecB protein without changing the mRNA levels. They suggest that RecB translation is directly controlled by Hfq binding to mRNA, as mutating one of the binding sites has a direct effect on RecB protein levels.

      Strengths:

      The implication of Hfq in regulation of RecB translation is important and suggests mechanisms of cellular response to DNA damage that are beyond the canonically studied mechanisms (such as transcriptional regulation by LexA). Data are clearly presented and the writing is direct and easy to follow. Overall, the study is well-designed and provides novel insights into the regulation of RecB, that is part of the complex required to process break ends.

      Weaknesses:

      Some key findings need additional support/ clarifications to strengthen the conclusions. These are suggested to the authors.

      Reviewer #2 (Public Review):

      Summary:

      The authors carry out a careful and rigorous quantitative analysis of RecB transcript and protein levels at baseline and in response to DNA damage. Using single-molecule FISH and Halo-tagging in order to achieve sensitive measurements, they provide evidence that enhanced RecB protein levels in response to DNA damage are achieved through a post-transcriptional mechanism mediated by the La-like RNA binding protein, Hhq1 [Sm-like RNA binding protein, Hfq]. In terms of biological relevance, the authors suggest that this mechanism provides a way to control the optimum level of RecB expression as both deletion and over-expression are deleterious. In addition, the proposed mechanism provides a new framework for understanding how transcriptional noise can be suppressed at the protein level.

      Strengths:

      Strengths of the manuscript include the rigorous approaches and orthogonal evidence to support the core conclusions, for example, the evidence that altering either Hhq1 [Hfq] or its recognition sequence on the RNA similarly enhance the protein to RNA ratio of RecB. The writing is clear and the experiments are well-controlled. The modeling approaches provide essential context to interpret the data, particularly given the small numbers of molecules per cell. The interpretations are careful and well supported.

      Weaknesses:

      The authors make a compelling case for the biological need to exquisitely control RecB levels, which they suggest is achieved by the pathway they have uncovered and described in this work. However, this conclusion is largely inferred as the authors only investigate the effect on cell survival in response to (high levels of) DNA damage and in response to two perturbations - genetic knock-out or over-expression, both of which are likely more dramatic than the range of expression levels observed in unstimulated and DNA damage conditions.

      In the discussion, we proposed that the post-transcriptional regulation of recB that we have uncovered could be involved in keeping RecB levels within an optimal range. We agree that testing the phenotypic impact of small changes in RecB levels would add additional strength to this suggestion. However, this is experimentally very challenging because of the low copy number of RecB molecules, which makes it difficult to slightly alter RecB levels in a controlled and homogeneous (across cells) manner. Developing the synthetic biology tools necessary for such an experiment is beyond the scope of this article. In the manuscript, we will clarify the limits of our interpretation of the role of the uncovered regulation.

      Reviewer #3 (Public Review):

      Summary:

      The work by Kalita et al. reports regulation of RecB expression by Hfq protein in E.coli cell. RecBCD is an essential complex for DNA repair and chromosome maintenance. The expression level needs to be regulated at low level under regular growth conditions but upregulated upon DNA damage. Through quantitative imaging, the authors demonstrate that recB mRNAs and proteins are expressed at low level under regular conditions. While the mRNA copy number demonstrates high noise level due to stochastic gene expression, the protein level is maintained at a lower noise level compared to expected value. Upon DNA damage, the authors claim that the recB mRNA level is not significantly affected, but RecB protein level increases due to a higher translation efficiency. [Upon DNA damage, the authors claim that the recB mRNA concentration is decreased, however RecB protein level is compensated by higher translation efficiency]. Through analyzing CLASH data on Hfq, they identified two Hfq binding sites on RecB polycistronic mRNA, one of which is localized at the ribosome binding site (RBS). Through measuring RecB mRNA and protein level in the ∆hfq cell, the authors conclude that binding of Hfq to the RBS region of recB mRNA suppresses translation of recB mRNA. This conclusion is further supported by the same measurement in the presence of Hfq sequestrator, the sRNA ChiX, and the deletion of the Hfq binding region on the mRNA.

      Strengths:

      (1) The manuscript is well-written and easy to understand.

      (2) While there are reported cases of Hfq regulating translation of bound mRNAs, its effect on reducing translation noise is relatively new.

      (3) The imaging and analysis are carefully performed with necessary controls.

      Weaknesses:

      The major weaknesses include a lack of mechanistic depth, and part of the conclusions are not fully supported by the data.

      (1) Mechanistically, it is still unclear why upon DNA damage, translation level of recB mRNA increases, which makes the story less complete. The authors mention in the Discussion that a moderate (30%) decrease in Hfq protein was observed in previous study, which may explain the loss of translation repression on recB. However, given that this mRNA exists in very low copy number (a few per cell) and that Hfq copy number is on the order of a few hundred to a few thousand, it's unclear how 30% decrease in the protein level should resides a significant change in its regulation of recB mRNA.

      While Hfq is a highly abundant protein, it has many mRNA and sRNA targets, some of which are also present in large amounts (DOI: 10.1046/j.1365-2958.2003.03734.x). As recently shown, the competition among the targets over Hfq proteins results in unequal (across various targets) outcomes, where the targets with higher Hfq affinity have an advantage over the ones with less efficient binding (DOI: 10.1016/j.celrep.2020.02.016). In line with these findings, we reason that upon DNA damage, a moderate decrease in the Hfq protein abundance (30%) can lead to a similar competition among Hfq targets where high-affinity targets outcompete low- affinity ones as well as low-abundant ones (such as recB mRNAs). Therefore, we hypothesise that the regulation of low abundant targets of Hfq by moderate perturbations of Hfq protein level is a potential explanation for the change in RecB translation that we have observed. We will expand this part of the discussion to explain our reasoning in a more explicit and coherent way.

      (2) Based on the experiment and the model, Hfq regulates translation of recB gene through binding to the RBS of the upstream ptrA gene through translation coupling. In this case, one would expect that the behavior of ptrA gene expression and its response to Hfq regulation would be quite similar to recB. Performing the same measurement on ptrA gene expression in the presence and absence of Hfq would strengthen the conclusion and model

      Indeed, based on our model, we expect PtrA expression to be regulated by Hfq in a similar manner to RecB. However, the product encoded by the ptrA gene, Protease III, (i) has been poorly characterised; (ii) unlike RecB, is located in the periplasm (DOI: 10.1128/jb.149.3.1027-1033.1982); and (iii) is not involved in any DNA repair pathway. Therefore, analysing PtrA expression would take us away from the key questions of our study.

      (3) The authors agree that they cannot exclude the possibility of sRNA being involved in the translation regulation. However, this can be tested by performing the imaging experiments in the presence of Hfq proximal face mutations, which largely disrupt binding of sRNAs.

      (4) The data on construct with a long region of Hfq binding site on recB mRNA deleted is less convincing. There is no control to show that removing this sequence region itself has no effect on translation, and the effect is solely due to the lack of Hfq binding. A better experiment would be using a Hfq distal face mutant that is deficient in binding to the ARN motifs.

      We thank the referee for these suggestions. We have performed the requested experiments, and the quantification of RecB abundance in the presence of Hfq proteins mutated in the proximal and distal face will be added to the revised version of the manuscript.

      (5) Ln 249-251: The authors claim that the stability of recB mRNA is not changed in ∆hfq simply based on the steady-state mRNA level. To claim so, the lifetime needs to be measured in the absence of Hfq.

      We agree that this statement is not fully supported by our data and will address this issue in the revised version.

      (6) What's the labeling efficiency of Halo-tag? If not 100% labeled, is it considered in the protein number quantification? Is the protein copy number quantification through imaging calibrated by an independent method? Does Halo tag affect the protein translation or degradation?

      Our previous study (DOI: 10.1038/s41598-019-44278-0) described a detailed characterisation of the HaloTag labelling technique for quantifying low-copy proteins in single E. coli cells.

      In that study, we used RecB-HaloTag as an example of a low-copy number protein. We showed a complete quantitative agreement of RecB detection between two fully independent methods: HaloTag-based labelling with cell fixation and RecB-sfGFP combined with a microfluidic device that lowers protein diffusion in the bacterial cytoplasm. This second method has previously been validated for protein quantification (DOI: 10.1038/ncomms11641) and provides detection of 80-90% of the labelled protein. Additionally, in our protocol, immediate chemical fixation of cells after the labelling and quick washing steps ensure that new, unlabelled RecB proteins are not produced. We, therefore, conclude that our approach to RecB detection is highly reliable and sufficient for comparing RecB production in different conditions and mutants.

      The RecB-HaloTag construct has been designed for minimal impact on RecB production and function. The HaloTag is translationally fused to RecB in a loop positioned after the serine present at position 47 where it is unlikely to interfere with (i) the formation of RecBCD complex (based on RecBCD structure, DOI: 10.1038/nature02988), (ii) the initiation of translation (as it is far away from the 5’UTR and the beginning of the open reading frame) and (iii) conventional C-terminal-associated mechanisms of protein degradation (DOI: 10.15252/msb.20199208). In our manuscript, we showed that the RecB-HaloTag degradation rate is similar to the dilution rate due to bacterial growth. This is in line with a recent study on unlabelled proteins, which shows that RecB’s lifetime is set by the cellular growth rate (https://doi.org/10.1101/2022.08.01.502339) and indicates that the HaloTag fusion is not affecting RecB stability.

      Furthermore, we have demonstrated (DOI: 10.1038/s41598-019-44278-0) that (i) bacterial growth is not affected by replacing the native RecB with RecB-HaloTag, (ii) RecB-HaloTag is fully functional upon DNA damage, and (iii) no proteolytic processing of the RecB-HaloTag is detected by Western blot.

      These results suggest that RecB expression and functionality are unlikely to be affected by the translational HaloTag insertion at Ser-47 in RecB. In the revised version of the manuscript, we will add information about the construct and discuss the reliability of the quantification.

      (7) Upper panel of Fig S8a is redundant as in Fig 5B. Seems that Fig S8d is not described in the text.

      Indeed, the data in the upper panel in Fig S8a was repeated (from Fig 5B) for visual purposes to facilitate comparison with the panel below. We will modify the figure legend to indicate this repetition clearly.

      In Fig S8d, we confirmed the functionality of the Hfq protein expressed from the pQE-Hfq plasmid in our experimental conditions, which was not described in the text. We will include this clarification in the updated manuscript.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      We would like to first thank the Editor as well as the three reviewers for their enthusiasm and conducting another careful evaluation of our manuscript. We appreciate their thoughtful and constructive comments and suggestions. Some concerns regarding experimental design, data analysis, and over-interpretation of our findings still remains unresolved after the initial revision. Here we endeavored to address these remaining concerns through further refinement of our writing, and inclusion of these concerns in the discussion session. We hope our response can better explain the rationale of our experimental design and data interpretation. In addition, we also acknowledge the limitations of our present study, so that it will benefit future investigations into this topic. Our detail responses are provided below.

      Reviewer #1 (Public Review):

      This study examines whether the human brain uses a hexagonal grid-like representation to navigate in a non-spatial space constructed by competence and trustworthiness. To test this, the authors asked human participants to learn the levels of competence and trustworthiness for six faces by associating them with specific lengths of bar graphs that indicate their levels in each trait. After learning, participants were asked to extrapolate the location from the partially observed morphing bar graphs. Using fMRI, the authors identified brain areas where activity is modulated by the angles of morphing trajectories in six-fold symmetry. The strength of this paper lies in the question it attempts to address. Specifically, the question of whether and how the human brain uses grid-like representations not only for spatial navigation but also for navigating abstract concepts, such as social space, and guiding everyday decision-making. This question is of emerging importance.

      I acknowledge the authors' efforts to address the comments received. However, my concerns persist:

      Thanks very much again for the re-evaluation and comments. Please find our revision plans to each comment below.

      (1) The authors contend that shorter reaction times correlated with increased distances between individuals in social space imply that participants construct and utilize two-dimensional representations. This method is adapted from a previous study by Park et al. Yet, there is a fundamental distinction between the two studies. In the prior work, participants learned relationships between adjacent individuals, receiving feedback on their decisions, akin to learning spatial locations during navigation. This setup leads to two different predictions: If participants rely on memory to infer relationships, recalling more pairs would be necessary for distant individuals than for closer ones. Conversely, if participants can directly gauge distances using a cognitive map, they would estimate distances between far individuals as quickly as for closer ones. Consequently, as the authors suggest, reaction times ought to decrease with increasing decision value, which, in this context, corresponds to distances. However, the current study allowed participants to compare all possible pairs without restricting learning experiences, rendering the application of the same methodology for testing two-dimensional representations inappropriate. In this study, the results could be interpreted as participants not forming and utilizing two-dimensional representations.

      We apologize for not being clear enough about our task design, we have made relevant changes in the methodology section in the manuscript to make it clearer. The reviewer’s concern is that participants learned about all the pairs in the comparison task which makes the distance effect invalid. We would like to clarify that during all the memory test tasks (the comparison task, the collect task and the recall task outside and inside scanner), participants never received feedback on whether their responses were correct or not. Therefore, the comparison task in our study is similar to the previous study by Park et al. (2021). Participants do not have access to correct responses for all possible pairs of comparison prior to or during this task, they would need to make inference based on memory retrieval.

      (2) The confounding of visual features with the value of social decision-making complicates the interpretation of this study's results. It remains unclear whether the observed grid-like effects are due to visual features or are genuinely indicative of value-based decision-making, as argued by the authors. Contrary to the authors' argument, this issue was not present in the previous study (Constantinescu et al.). In that study, participants associated specific stimuli with the identities of hidden items, but these stimuli were not linked to decision-making values (i.e., no image was considered superior to another). The current study's paradigm is more akin to that of Bao et al., which the authors mention in the context of RSA analysis. Indeed, Bao et al. controlled the length of the bars specifically to address the problem highlighted here. Regrettably, in the current paradigm, this conflation remains inseparable.

      We’d like to thank the reviewer for facilitating the discussion on the question of ‘social space’ vs. ‘sensory space’. The task in scanner did not require value-based decision making. It is akin to both the Bao et al. (2019) study and Constantinescu et al. (2016) study in a sense that all three tasks are trying to ask participants to imagine moving along a trajectory in an abstract, non-physical space and the trajectory is grounded in sensory cue. Participants were trained to associate the sensory cue with abstract (social/nonsocial) concepts. We think that the paradigm is a relatively faithful replication of the study by Constantinescu et al. Nonetheless, we agreed that a design similar to Bao et al. (2019) which controls for sensory confounds would be more ideal to address this concern, or adopting a value-based decision-making task in the scanner similar to that by Park et al. (2021), and we have included this limitation in the discussion section.

      (3) While the authors have responded to comments in the public review, my concerns noted in the Recommendation section remain unaddressed. As indicated in my recommendations, there are aspects of the authors' methodology and results that I find difficult to comprehend. Resolving these issues is imperative to facilitate an appropriate review in subsequent stages.

      Considering that the issues raised in the previous comments remain unresolved, I have retained my earlier comments below for review.

      We apologize for not addressing the recommendations properly, please find detailed our response and plans for revision.

      I have some comments. I hope that these can help.

      (1) While the explanation of Fig.4A-C is lacking in both the main text and figure legend, I am not sure if I understand this finding correctly. Did the authors find the effects of hexagonal modulation in the medial temporal gyrus and lingual gyrus correlate with the individual differences in the extent to which their reaction times were associated with the distances between faces when choosing a better collaborator? If so, I am not sure what argument the authors try to draw from these findings. Do the authors argue that these brain areas show hexagonal modulation, which was not supported in the previous analysis (Fig.3)? What is the level of correlation between these behavioral measures and the grid consistency effects in the vmPFC and EC, where the authors found actual grid-like activity? How do the authors interpret this finding? More importantly, how does this finding associate with other findings and the argument of the study?

      We apologize for not being clear enough in the manuscript and we will improve the clarity in our revision. This exploratory analysis reported in Figure 4 aims to use whole-brain analysis to examine: 1) if there is any correlation between the strength of grid-like representation of social value map and behavioral indicators of map-like representation; and 2) if there are any correlation between the strength of grid-like representation of this social value map and participants’ social trait.

      To be more specific, for the behavioral indicator, we used the distance effect in the reaction time of the comparison task outside the scanner. We interpreted stronger distance effect as a behavioral index of having better internal map-like representation. We interpreted stronger grid consistency effect as a neural index of better representation of the 2D social space. Therefore, we’d like to see if there exists correlation between behavioral and neural indices of map-like representation.

      To achieve this goal, behavioral indicators are entered as covariates in second-level analysis of the GLM testing grid consistency effect (GLM2). Figure3 showed results from GLM2 without the covariates. Figure4 showed results of clusters whose neural indices of map-like representation covaried with that from behavior and survived multiple-comparison correction. Indeed, in these regions, the grid consistency effect was not significant at group level (so not shown in Figure 3). We tried to interpret this finding in our discussion (line 374-289 for temporal lobe correlation, line 395-404 for precuneus correlation).

      Finally, we would like to point out that including the covariates in GLM2 did not change results in Figure3, the clusters in Figure3 still survives correction. Meanwhile, these clusters in Figure 3 did not show correlation with behavioral indicators of map-like representation.

      Author response image 1.

      (2) There are no behavioral results provided. How accurately did participants perform each of the tasks? How are the effects of grid consistency associated with the level of accuracy in the map test?

      Why did participants perform the recall task again outside the scanner?

      We will endeavor to improve signposting the corresponding figures in the main text. For the behavioral results, we reported the stats in section “Participants construct social value map after associative learning of avatars and corresponding characteristics” in the main text, and the plots are shown in Figure 1. Particularly, figure 1F showed accuracy of tasks in training, as well as the recall task in the scanner. For the correlation, we did not find significant correlation between behavioural accuracy and grid consistency effect. We will make it clearer in the result section.

      (3) The methods did not explain how the grid orientation was estimated and what the regressors were in GLM2. I don't think equations 2 and 3 are quite right.

      For the grid orientation estimation method, we provided detailed description in the Supplementary methods 2.2.2. We will add links to this section in the main text.

      Equation 2 and 3 describes how the parametric regressors entered into GLM2 were formed and provided prerequisites on calculation of grid orientations. Equation 2 was the results of directly applying the angle addition and subtraction theorems so they should be correct. We will try to make the rationale clearer in the supplementary text.

      (4) With the increase in navigation distances, more grid cells would activate. Therefore, in theory, the activity in the entorhinal cortex should increase with the Euclidean distances, which has not been found here. I wonder if there was enough variability in the Euclidean distances that can be captured by neural correlates. This would require including the distributions of Euclidean distances according to their trajectory angles. Regarding how Fig.1E is generated, I don't understand what this heat map indicates. Additionally, it needs to be confirmed if the grid effects remain while controlling for the Euclidean distances of navigation trajectories.

      We did not specifically control for the trajectory length, we only controlled for the distribution of trajectory to be uniform. We have included a figure of the distribution of Euclidean distances in Figure S9 and the distribution of trajectory direction in Figure S8.

      Author response image 2.

      As for Figure 1E, we aim to reproduce the findings from Figure 1F in Constantinescu et al. (2016) where they showed that participants progressively refined the locations of the outcomes through training. We divided the space into 15×15 subregions and computed the amount of time spent in each subregion and plotted Figure 1E. Brighter color in Figure 1E indicate greater amount of time spent in the corresponding subregion. Note that all these timing indices were computed as a percentage of the total time spent in the explore task in a given session. If participants were well-acquainted with the space and avatars, they would spend more time at the avatar (brighter color in avatar locations) in the review session compared to the learning session.

      As for the effect of distances on grid-like representation, we did not include the distance as a parametric modulator in grid consistency effect GLM (GLM2) due to insufficient trials in each bin (6-8 trials). But there is side evidence that could potentially rule out this confound. In the distance representation analysis, we did not find distance representation in any of the clusters that have significant grid-like representation (regions in Figure 2).

      Reviewer #2 (Public Review):

      Summary:

      In this work, Liang et al. investigate whether an abstract social space is neurally represented by a grid-like code. They trained participants to 'navigate' around a two-dimensional space of social agents characterized by the traits warmth and competence, then measured neural activity as participants imagined navigating through this space. The primary neural analysis consisted of three procedures: 1) identifying brain regions exhibiting the hexagonal modulation characteristic of a grid-like code, 2) estimating the orientation of each region's grid, and 3) testing whether the strength of the univariate neural signal increases when a participant is navigating in a direction aligned with the grid, compared to a direction that is misaligned with the grid. From these analyses, the authors find the clearest evidence of a grid-like code in the prefrontal cortex and weaker evidence in the entorhinal cortex.

      Strengths:

      The work demonstrates the existence of a grid-like neural code for a socially-relevant task, providing evidence that such coding schemes may be relevant for a variety of two-dimensional task spaces.

      Weaknesses:

      In the revised manuscript, the authors soften their claims about finding a grid code in the entorhinal cortex and provide additional caveats about limitations in their findings. It seems that the authors and reviewers are in agreement about the following weaknesses, which were part of my original review: Claims about a grid code in the entorhinal cortex are not well-supported by the analyses presented. The whole-brain analysis does not suggest that the entorhinal cortex exhibits hexagonal modulation; the strength of the entorhinal BOLD signal does not track the putative alignment of the grid code there; multivariate analyses do not reveal any evidence of a grid-like representational geometry.

      In the authors' response to reviews, they provide additional clarification about their exploratory analyses examining whether behavior (i.e., reaction times) and individual difference measures (i.e., social anxiety and avoidance) can be predicted by the hexagonal modulation strength in some region X, conditional on region X having a similar estimated grid alignment with some other region Y. My guess is that readers would find it useful if some of this language were included in the main text, especially with regard to an explanation regarding the rationale for these exploratory studies.

      Thank you very much again for your careful re-evaluation and suggestions. We have tried to improve our writing and incorporate the suggestions in the new revision.

      Reviewer #3 (Public Review):

      Liang and colleagues set out to test whether the human brain uses distance and grid-like codes in social knowledge using a design where participants had to navigate in a two-dimensional social space based on competence and warmth during an fMRI scan. They showed that participants were able to navigate the social space and found distance-based codes as well as grid-like codes in various brain regions, and the grid-like code correlated with behavior (reaction times).

      On the whole, the experiment is designed appropriately for testing for distant-based and grid-like codes, and is relatively well powered for this type of study, with a large amount of behavioral training per participant. They revealed that a number of brain regions correlated positively or negatively with distance in the social space, and found grid-like codes in the frontal polar cortex and posterior medial entorhinal cortex, the latter in line with prior findings on grid-like activity in entorhinal cortex. The current paper seems quite similar conceptually and in design to previous work, most notably Park et al., 2021, Nature Neuroscience.

      (1) The authors claim that this study provides evidence that humans use a spatial / grid code for abstract knowledge like social knowledge.

      This data does specifically not add anything new to this argument. As with almost all studies that test for a grid code in a similar "conceptual" space (not only the current study), the problem is that, when the space is not a uniform, square/circular space, and 2-dimensional then there is no reason the code will be perfectly grid like, i.e., show six-fold symmetry. In real world scenarios of social space (as well as navigation, semantic concepts), it must be higher dimensional - or at least more than two dimensional. It is unclear if this generalizes to larger spaces where not all part of the space is relevant. Modelling work from Tim Behrens' lab (e.g., Whittington et al., 2020) and Bradley Love's lab (e.g., Mok & Love, 2019) have shown/argued this to be the case. In experimental work, like in mazes from the Mosers' labs (e.g., Derdikman et al., 2009), or trapezoid environments from the O'Keefe lab (Krupic et al., 2015), there are distortions in mEC cells, and would not pass as grid cells in terms of the six-fold symmetry criterion.

      The authors briefly discuss the limitations of this at the very end but do not really say how this speaks to the goal of their study and the claim that social space or knowledge is organized as a grid code and if it is in fact used in the brain in their study and beyond. This issue deserves to be discussed in more depth, possibly referring to prior work that addressed this, and raise the issue for future work to address the problem - or if the authors think it is a problem at all.

      Thanks very much again for your careful re-evaluation and comments. We have tried to incorporate some of the suggested papers into our discussion. In summary, we agree that there is more to six-fold symmetric code that can be utilized to represent “conceptual space”. We think that the next step for a stronger claim would be to find the representation of more spontaneous non-spatial maps.

      References

      Bao, X., Gjorgieva, E., Shanahan, L. K., Howard, J. D., Kahnt, T., & Gottfried, J. A. (2019). Grid-like Neural Representations Support Olfactory Navigation of a Two-Dimensional Odor Space. Neuron, 102(5), 1066-1075 e1065. https://doi.org/10.1016/j.neuron.2019.03.034

      Constantinescu, A. O., O'Reilly, J. X., & Behrens, T. E. J. (2016). Organizing conceptual knowledge in humans with a gridlike code. Science, 352(6292), 1464-1468. https://doi.org/10.1126/science.aaf0941

      Park, S. A., Miller, D. S., & Boorman, E. D. (2021). Inferences on a multidimensional social hierarchy use a grid-like code. Nat Neurosci, 24(9), 1292-1301. https://doi.org/10.1038/s41593-02100916-3

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Although this manuscript contains a potentially interesting piece of work that delineates a mechanism of IQCH that associates with spermatogenesis, this reviewer feels that a number of issues require clarification and re-evaluation for a better understanding of the role of IQCH in spermatogenesis. With the shortage of logics and supporting data, causal relationships are still not clear among IQCH, CaM, and HNRPAB. The most serious point in this manuscript could be that the authors try to generalize their interpretations with too simplified model from limited pieces of their data. The way the data and the logic are presented needs to be largely revised, and several interpretations should be supported by direct evidence.

      Response: Thank you for the reviewer’s comment. IQCH is a calmodulin-binding protein, and the binding of IQCH and CaM was confirmed by LC-MS/MS analysis and co-IP assay using sperm lysate. We thus speculated that if the interaction of IQCH and CaM might be a prerequisite for IQCH function. To prove that speculation, we took HNRPAB as an example. We knocked down IQCH in cultured cells, and a decrease in the expression of HNRPAB was observed. Similarly, when we knocked down CaM in cultured cells, and a decrease in the expression of HNRPAB was also detected. However, these results cannot exclude that IQCH or CaM could regulate HNRPAB expression alone. To investigate that if IQCH or CaM could regulate HNRPAB expression alone, we overexpressed IQCH in cells that knocked down CaM, while the expression of HNRPAB cannot be rescued, suggesting that IQCH cannot regulate HNRPAB expression when CaM is reduced. In consistent, we overexpressed CaM in cells that knocked down IQCH, while the expression of HNRPAB cannot be rescued, suggesting that CaM cannot regulate HNRPAB expression when IQCH is reduced. Thus, IQCH or CaM cannot regulate HNRPAB expression alone. Moreover, we deleted the IQ motif of IQCH, which is required for binding to CaM. The co-IP results showed that the interaction of IQCH and CaM was disrupted when deleting the IQ motif of IQCH, and the expression of HNRPAB was decreased. Therefore, we suggested that the interaction of IQCH and CaM might be required for IQCH regulating HNRPAB. In future studies, we will further investigate the relationships among IQCH, CaM, and HNRPAB.

      Reviewer #3 (Public Review):

      (1) More background details are needed regarding the proteins involved, in particular IQ proteins and calmodulin. The authors state that IQ proteins are not well-represented in the literature, but do not state how many IQ proteins are encoded in the genome. They also do not provide specifics regarding which calmodulins are involved, since there are at least 5 family members in mice and humans. This information could help provide more granular details about the mechanism to the reader and help place the findings in context.

      Response: Thanks to reviewer’s suggestion. We have provided additional background information regarding IQ-containing protein family members in humans and mice, as well as other IQ-containing proteins implicated in male fertility, in the Introduction section. Furthermore, we have supplemented the Introduction with background information concerning the association between CaM and male infertility.

      (2) The mouse fertility tests could be improved with more depth and rigor. There was no data regarding copulatory plug rate; data was unclear regarding how many WT females were used for the male breeding tests and how many litters were generated; the general methodology used for the breeding tests in the Methods section was not very explicitly or clearly described; the sample size of n=3 for the male breeding tests is rather small for that type of assay; and, given that ICHQ appears to be expressed in testicular interstitial cells (Fig. S10) and somewhat in other organs (Fig. S2), another important parameter of male fertility that should be addressed is reproductive hormone levels (e.g., LH, FSH, and testosterone). While normal epididymal size in Fig. S3 suggests that hormone (testosterone) levels are normal, epididymal size and/or weight were not rigorously quantified.

      Response: Thanks to reviewer’s comment. We have provided the data regarding copulatory plug rate and the average number of litters for breeding tests in revised Figure 3—figure supplement 2. The methodology used for the breeding tests has been revised to be more detailed and explicit in the revised Method section. Moreover, we have increased the sample size for male breeding tests to n=6. We measured the serum levels of FSH, LH, and Testosterone in the WT (9.3±1.9 ng/ml, 0.93±0.15 ng/ml, and 0.2±0.03 ng/ml) and Iqch KO mice (12±2 ng/ml, 1.17±0.2 ng/ml, and 0.2±0.04 ng/ml). There was no significant difference observed in the serum levels of reproductive hormones between WT and Iqch KO mice; therefore, we did not include the data in the study. Furthermore, we have added quantitative data on epididymal size in the revised Figure 3—figure supplement 2.

      (3) The Western blots in Figure 6 should be rigorously quantified from multiple independent experiments so that there is stronger evidence supporting claims based on those assays.

      Response: We appreciate the reviewer's comment. As suggested, we have added quantified data in Figure 6—figure supplement 2 from the results of Western blotting in Figure 6.

      (4) Some of the mouse testis images could be improved. For example, the PNA and PLCz images in Figure S7 are difficult to interpret in that the tubules do not appear to be stage-matched, and since the authors claimed that testicular histology is unaffected in knockout testes, it should be feasible to stage-match control and knockout samples. Also, the anti-ICHQ and CaM immunofluorescence in Figure S10 would benefit from some cell-type-specific co-stains to more rigorously define their expression patterns, and they should also be stage-matched.

      Response: Thanks to reviewer’s suggestions. We have included immunofluorescence images of anti-PLCz, anti-PNA and anti-IQCH and CaM during spermatogenesis development.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) There are multiple grammatical errors and statements drawn beyond the results. The entire manuscript would benefit from professional editing.

      Response: We are sorry for the grammatical errors. We have enlisted professional editing services to refine our manuscript.

      (2) Line 40, "Firstly" is not appropriate here.

      Response: Thanks to reviewer’s comment. The word "Firstly" has been removed from the revised manuscript.

      (3) Line 44, "processes".

      Response: Thanks to reviewer’s suggestion. We have changed “process” in to “processes” on line 45.

      (4) "spermatocytogenesis (mitosis)" is incorrect.

      Response: Thanks to reviewer’s comment. We have changed “spermatocytogenesis (mitosis)” in to “mitosis” on line 47.

      (5) Ca and Ca2+ are both used in line 67 - 77. Be consistent.

      Response: We appreciate the reviewer's detailed checks. We have maintained consistency by revising instances of "Ca" to "Ca2+" in revised manuscript.

      (6) Line 238 to 240, "To elucidate the molecular mechanism by which IQCH regulates male fertility, we performed liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis using mouse sperm lysates and detected 288 interactors of IQCH (Data S1)."It is not clear how LC-MS/MS using mouse sperm lysates could detect "288 interactors of IQCH"? A co-IP experiment for IQCH using sperm lysates prior to LC-MS/MS is needed to detect "interactors of IQCH". However, in the Methods section, consistent with the main text, proteomic quantification was conducted for protein extract from sperm. Figure legend for Fig. 5 did not explain this, either.Thus, it is unable to evaluate Figure 5.

      Response: We sincerely apologize for the oversight. Following reviewer’s suggestions, we have supplemented the method details of LC-MS/MS experiment in the Methods section of revised manuscript. Additionally, we conducted a co-IP experiment for IQCH using sperm lysates prior to LC-MS/MS and we did not include the corresponding figure in the manuscript. The results are as follows:

      Author response image 1.

      The results of a co-IP experiment for IQCH using sperm lysates from WT mice.

      (7) Line 246, "... key proteins that might be activated by IQCH". What does "activated" here refer to? Should it be "upregulated"?

      Response: We are sorry to our inexact statement. Instead, "upregulated" would better convey the intended meaning. According to reviewer’s suggestions, we have modified "activated" into "upregulated".

      (8) Line 252 to 254, "the cross-analysis revealed that 76 proteins were shared between the IQCH-bound proteins and the IQCH-activated proteins (Fig. 5E), implicating this subset of genes as direct targets." This is a confusing statement. Is the author trying to say, IQCH-bound proteins have upregulated expression, suggesting that IQCH enhances their expression?

      Response: We appreciate the reviewer's comment regarding the clarity of the statement in Line 252 to 254 of the manuscript. We have modified this sentence into “Importantly, cross-analysis revealed that 76 proteins were shared between the IQCH-bound proteins and the downregulated proteins in Iqch KO mice (Figure 5E), suggesting that IQCH might regulate their expression by the interaction.”

      (9) Line 260 to 261, "SYNCRIP, HNRNPK, FUS, EWSR1, ANXA7, SLC25A4, and HNRPAB ... the loss of which showed the greatest influence on the phenotype of the Iqch KO mice." There is no evidence suggesting that the loss of SYNCRIP, HNRNPK, FUS, EWSR1, ANXA7, SLC25A4, and HNRPAB leads to Iqch KO phenotype.

      Response: We apologize for our inaccurate statement. According to the literature, Fus KO, Ewsr1 KO, and Hnrnpk KO male mice were infertile, showing the spermatogenic arrest with absence of spermatozoa (Kuroda et al. 2000; Tian et al. 2021; Xu et al. 2022). Syncrip is involved meiotic process in Drosophila by interacting with Doublefault (Sechi et al. 2019). HNRPAB might be associated with mouse spermatogenesis by binding to Protamine 2 and contributing its translational regulation. Specifically, ANXA7 is a calcium-dependent phospholipid-binding protein that is a negative regulator of mitochondrial apoptosis (Du et al. 2015). Loss of SLC25A4 results in mitochondrial energy metabolism defects in mice (Graham et al. 1997). Moreover, RNA immunoprecipitation on formaldehyde cross-linked sperm followed by qPCR detected the interactions between HNRPAB and Catsper1, Catsper2, Catsper3, Ccdc40, Ccdc39, Ccdc65, Dnah8, Irrc6, and Dnhd1, which are essential for sperm development (Fukuda et al. 2013). Our Iqch KO mice showed abnormal sperm count, motility, morphology, and mitochondria, so we inferenced that IQCH might play a role in spermatogenesis by regulating the expression of SYNCRIP, HNRNPK, FUS, EWSR1, ANXA7, SLC25A4, and HNRPAB to some extent. We have changed an appropriate stamen that “We focused on SYNCRIP, HNRNPK, FUS, EWSR1, ANXA7, SLC25A4, and HNRPAB, which play important roles in spermatogenesis.”

      (10) Fig. 6C and 6D use different styles of error bars.

      Response: We are sorry for our oversight. In accordance with the reviewer's recommendations, we have modified the representation of error bars in the revised Fig. 6C.

      (11) Line 296 to 297, "As expected, CaM interacted with IQCH, as indicated by LC-MS/MS analysis". It is not clear how LC-MS/MS detects protein interaction.

      Response: As reviewer’s suggestions, we have supplemented the method details of LC-MS/MS experiment in the Methods section of revised manuscript. The results of proteins interacting with IQCH in sperm lysates from the LC-MS/MS experiment analysis were submitted as Figure 5—source data 1.

      (12) It is still not clear how the interaction between IQCH, CaM, and HNRPAB is required for the expression of each other.

      Response: Thank you for the reviewer’s comment. IQCH is a calmodulin-binding protein, and the binding of IQCH and CaM was confirmed by LC-MS/MS analysis and co-IP assay using sperm lysate. We thus speculated that if the interaction of IQCH and CaM might be a prerequisite for IQCH function. To prove that speculation, we took HNRPAB as an example. We knocked down IQCH in cultured cells, and a decrease in the expression of HNRPAB was observed. Similarly, when we knocked down CaM in cultured cells, and a decrease in the expression of HNRPAB was also detected. However, these results cannot exclude that IQCH or CaM could regulate HNRPAB expression alone. To investigate that if IQCH or CaM could regulate HNRPAB expression alone, we overexpressed IQCH in cells that knocked down CaM, while the expression of HNRPAB cannot be rescued, suggesting that IQCH cannot regulate HNRPAB expression when CaM is reduced. In consistent, we overexpressed CaM in cells that knocked down IQCH, while the expression of HNRPAB cannot be rescued, suggesting that CaM cannot regulate HNRPAB expression when IQCH is reduced. Thus, IQCH or CaM cannot regulate HNRPAB expression alone. Moreover, we deleted the IQ motif of IQCH, which is required for binding to CaM. The co-IP results showed that the interaction of IQCH and CaM was disrupted when deleting the IQ motif of IQCH, and the expression of HNRPAB was decreased. Therefore, we suggested that the interaction of IQCH and CaM might be required for IQCH regulating HNRPAB. In future studies, we will further investigate the relationships among IQCH, CaM, and HNRPAB.

      Reviewer #3 (Recommendations For The Authors):

      The authors have addressed my minor concerns. However, they neglected to address any of my more significant concerns in the public review. I assume that they simply overlooked these critiques, despite the fact that eLife explicitly states that "...as a general rule, concerns about a claim not being justified by the data should be explained in the public review." Therefore, the authors should have looked more carefully at the public reviews. As a result, my major concerns about the manuscript remain.

      Response: We apologize for overlooking the public review process. We have improved our study based on the feedback received during the public review.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study advances our understanding of why diabetes is a risk factor for more severe Covid-19 disease. The authors offer solid evidence that cathepsin L is more active in diabetic individuals, that this higher activity is recapitulated at the cellular level in the presence of high glucose, and that high glucose leads to higher cathepsin L maturation. While not all aspects of the relationship between diabetes and cathepsin L (e.g., effects of metabolic acidosis) have been investigated, the work should be of interest to researchers in diabetes, virology, and immunology.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The study by He et al. investigates the relationship of an increased susceptibility of diabetes patients to COVID-19. The paper raises the possibility that hyperglycemia-induced cathepsin L maturation could be one of the driving forces in this pathology, suggesting that an increased activity of CTSL leads to accelerated virus infection rates due to an elevated processing of the SARS-CoV-2 spike protein.

      In a clinical case-control study, the team found that the severity of corona infections was higher in diabetic patients, and their CTSL levels correlated well with the progression of the disease. They further showed an increase in CTSL activity in the long term as well as acute hyperglycemia. SARS-CoV-2 increasingly infected cells that were cultured in serum from diabetic patients, the same was observed using high glucose medium. No effect was observed in the medium with increased concentrations of insulin. CTSL knockout abolished the glucose-dependent increase in infection.

      Increased glucose levels did not correlate with an increase in CTSL transcription. Rather He et al. could show that high glucose levels led to CTSL translocation from the ER into the lysosome. It was the glucose-dependent processing of the protease to its active form which promoted infection.

      Strengths:

      It is a complete study starting from a clinical observation and ending on the molecular mechanism. A strength is certainly the wide selection of experiments. The clinical study to investigate the effect of glucose on CTSL concentrations in healthy individuals sets the stage for experiments in cell culture, animal models, and human tissue. The effect of CTSL knockout cell lines on glucose-induced SARS-CoV2 infection rates is convincing. Finally, the team used a combination of Western blots and confocal microscopy to identify the underlying molecular mechanisms. The authors manage to keep the diabetic condition at the center of their study and therefore extend on previous knowledge of glucose-induced CTSL activation and their consequences for COVID-19 infections. By doing so, they create a novel connection between CTSL involvement in SARS-CoV2 infections and diabetes.

      Weaknesses:

      (1) The authors suggest that hyperglycemia as a symptom of diabetes leads to an increased infection rate in those patients. Throughout their study, the team focuses on two select symptoms of a diabetic condition, hyperglycemia and hyperinsulinemia. The team acknowledges in the discussion that there could be various other reasons. Hyperglycemia can lead to metabolic acidosis and a shift in blood pH. As CTSL activity is highly dependent on pH, it would have been crucial to include this parameter in the study.

      We sincerely appreciate your valuable comment. We agree that hyperglycemia can lead to metabolic acidosis and alter blood pH. However, the normal range for blood pH in humans is relatively narrow, typically ranging from 7.35 to 7.45. In our study, we ensured that blood pH remained within this normal range for both diabetic and healthy control samples. To address your concern, we conducted experiments to investigate CTSL activity in response to pH fluctuations within this physiological range. The updated Fig. 4a now presents these findings, demonstrating consistent CTSL activity despite pH variations. Statistical analysis was performed using one-way ANOVA with Tukey’s post hoc test to ensure robustness. We have also amended the figure legend and provided corresponding descriptions in the final edition manuscript (line 15-18, page 7).

      Author response image 1.

      (2) The study rarely differentiates between cellular and extracellular CTSL activity. A more detailed explanation for the connection between the intracellular CTSL and serum CTSL in diabetic individuals, presumably via lysosomal exocytosis, could be helpful with regard to the final model to give a more complete picture.

      Thank you for your insightful comments. Previous studies have elucidated the process by which lysosomal CTSL is transported via vesicles and subsequently secreted from the cell membrane through exocytosis (references 1-5). To provide a more comprehensive understanding, we have incorporated this information on Fig. 6h, page 32 of the final edition manuscript. This addition aims to enhance clarity regarding the connection between intracellular and serum CTSL activity in diabetic individuals, particularly through lysosomal exocytosis.

      Author response image 2.

      References:

      (1) Reddy A et al. Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell. 2001 Jul 27;106(2):157-69. doi: 10.1016/s0092-8674(01)00421-4. PMID: 11511344.

      (2) Hasanagic M et al. Different Pathways to the Lysosome: Sorting out Alternatives. Int Rev Cell Mol Biol. 2015;320:75-101. doi: 10.1016/bs.ircmb.2015.07.008. Epub 2015 Aug 19. PMID: 26614872.

      (3) Reiser J et al. Specialized roles for cysteine cathepsins in health and disease. J Clin Invest. 2010 Oct;120(10):3421-31. doi: 10.1172/JCI42918. Epub 2010 Oct 1. PMID: 20921628; PMCID: PMC2947230.

      (4) Jaiswal JK et al. Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J Cell Biol. 2002 Nov 25;159(4):625-35. doi: 10.1083/jcb.200208154. Epub 2002 Nov 18. PMID: 12438417; PMCID: PMC2173094.

      (5) Coutinho MF et al. Mannose-6-phosphate pathway: a review on its role in lysosomal function and dysfunction. Mol Genet Metab. 2012 Apr;105(4):542-50. doi: 10.1016/j.ymgme.2011.12.012. Epub 2011 Dec 23. PMID: 22266136.

      (3) In the early result section, an effect of hyperglycemia on total CTSL concentrations is described, but the data is not very convincing. Over the course of the manuscript, the hypothesis shifts increasingly towards an increase in protease trans-localization and processing to the active form rather than a change in total protease amounts. The overall importance of CTSL concentrations remains questionable.

      Thank you for your insightful feedback. We have addressed your concerns regarding the impact of hyperglycemia on CTSL concentrations. Fig. 2h-j illustrate the effect of acute hyperglycemia on both CTSL concentration and activity in 15 healthy male volunteers over a 160-minute period. During this short timeframe, CTSL concentration remained stable, as evidenced by consistent RNA results from cells exposed to varying glucose levels (Supplementary Fig.1). However, there was a significant increase in CTSL activity, indicating that glucose elevation rapidly triggers CTSL maturation through propeptide cleavage. This activation process occurs more rapidly than CTSL protein synthesis. In summary, acute hyperglycemia specifically elevates CTSL activity, while chronic hyperglycemia may impact both CTSL activity and concentration (Fig. 2a-d). Additionally, Tournu C, et al. (1998) (reference 1) and Shi Q, et al. (2018) (reference 2) have reported that increased glucose metabolism promotes the maturation and secretion of CTSL and other proteases. These findings align with our evidence that hyperglycemia drives CTSL maturation, as discussed at line 10-25, page 12 in the final edition manuscript.

      References:

      (1) Tournu C et al. Glucose controls cathepsin expression in Ras-transformed fibroblasts. Arch Biochem Biophys. 1998 Dec 1;360(1):15-24. doi: 10.1006/abbi.1998.0916. PMID: 9826424.

      (2) Shi Q et al. Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal Cathepsin B to promote cancer metastasis and chemoresistance. Cancer Cell. 2022 Oct 10;40(10):1207-1222.e10. doi: 10.1016/j.ccell.2022.08.012. Epub 2022 Sep 8. PMID: 36084651.

      Reviewer #2 (Public Review):

      Summary:

      In this study, the authors hypothesized that individuals with diabetes have elevated blood CTSL levels, which facilitates SARS-CoV-2 infection. The authors conducted in vitro experiments, revealing that elevated glucose levels promote SARS-CoV-2 infection in wild-type cells. In contrast, CTSL knockout cells show reduced susceptibility to high glucose-promoted effects. Additionally, the authors utilized lung tissue samples obtained from both diabetic and non-diabetic patients, along with db/db diabetic and control mice. Their findings indicate that diabetic conditions lead to an elevation in CTSL activity in both humans and mice.

      Strengths:

      The authors have effectively met their research objectives, and their conclusions are supported by the data presented. Their findings suggest that high glucose levels promote CTSL maturation and translocation from the endoplasmic reticulum to the lysosome, potentially contributing to diabetic comorbidities and complications.

      Weaknesses:

      (1) In Figure 1e, the authors measured plasma levels of COVID-19 related proteins, including ACE2, CTSL, and CTSB, in both diabetic and non-diabetic COVID-19 patients. Notably, only CTSL levels exhibited a significant increase in diabetic patients compared to non-diabetic patients, and these levels varied throughout the course of COVID-19. Given that the diabetes groups encompass both male and female patients, it is essential to ascertain whether the authors considered the potential impact of gender on CTSL levels. The diabetes groups comprised a higher percentage of male patients (61.3%) compared to the non-diabetes group, where males constituted only 38.7%.

      Thank you for your insightful feedback. In response to your concerns regarding the potential impact of gender on CTSL levels in diabetic and non-diabetic COVID-19 patients, we conducted analyses to address this issue. While our initial study involved 62 COVID-19 patients, with 31 having diabetes and 31 without, matching based on gender and age, we acknowledged the challenge of obtaining balanced gender distribution in both groups due to the difficulty of collecting blood samples from COVID-19 patients. To mitigate potential gender bias resulting from small sample sizes, we conducted a supplementary clinical study involving 122 non-COVID-19 volunteers, including 61 individuals with diabetes and 61 without. The percentage of males in the diabetes group was 50.8%, while in the healthy group, males constituted 44.3% (P value = 0.468), indicating no significant gender bias. We have incorporated this information into the discussion section on line 4-13, page 11 in the final edition manuscript, to provide clarity on this aspect of our study.

      (2) Lines 145-149: "The results showed that WT Huh7 cell cultured in high glucose medium exhibited a much higher infective rate than those in low glucose medium. However, CTSL KO Huh7 cells maintained a low infective rate of SARS-CoV-2 regardless of glucose or insulin levels (Fig. 3f-h). Therefore, hyperglycemia enhanced SARS-CoV-2 infection dependent on CTSL." However, this evidence may be insufficient to support the claim that hyperglycemia enhances SARS-CoV-2 infection dependent on CTSL. The human hepatoma cell line Huh7 might not be an ideal model to validate the authors' hypothesis regarding high blood glucose promoting SARS-CoV-2 infection through CTSL.

      Thank you for your valuable feedback. We have addressed the concerns regarding the sufficiency of evidence supporting the claim that hyperglycemia enhances SARS-CoV-2 infection dependent on CTSL. Specifically, we have revised the expression to state, “Therefore, hyperglycemia enhanced SARS-CoV-2 infection through CTSL.” as suggested, in line 9, page 7 in the final edition manuscript. Additionally, we acknowledge the potential involvement of other bioactive factors, such as 1,5-anhydro-D-glucitol (1,5-AG), in mediating SARS-CoV-2 infection in patients with diabetes, as outlined in the discussion section from line 13-21, page 13 in the final edition manuscript.

      Regarding the choice of the human hepatoma cell line Huh7 as a model for investigating hyperglycemia-induced CTSL maturation and SARS-CoV-2 infection, we recognize the importance of tissue specificity and the liver’s significance as a target organ for COVID-19. Despite potential limitations, such as generalization of liver function abnormalities and lack of tissue specificity in SARS-CoV-2 impact, Huh7 cells offer practical advantages as a mature cell model for studying SARS-CoV-2 infection, including accessibility, susceptibility to infection, and stable proliferation (reference 1-3). We have elaborated on these considerations in the discussion section at line 19-23, page 11 in the final edition manuscript, to provide context for our choice of experimental model.

      References:

      (1) Gupta A et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020 Jul;26(7):1017-1032. doi: 10.1038/s41591-020-0968-3. Epub 2020 Jul 10. PMID: 32651579.

      (2) Nie X et al. Multi-organ proteomic landscape of COVID-19 autopsies. Cell. 2021 Feb 4;184(3):775-791.e14. doi: 10.1016/j.cell.2021.01.004. Epub 2021 Jan 9. PMID: 33503446; PMCID: PMC7794601.

      (3) Ciotti M et al. The COVID-19 pandemic. Crit Rev Clin Lab Sci. 2020 Sep;57(6):365-388. doi: 10.1080/10408363.2020.1783198. Epub 2020 Jul 9. PMID: 32645276.

      (3) The Abstract and Introduction sections lack effective organization.

      Thank you for your valuable comments. We have rewritten the Abstract and Introduction sections and incorporated the updated descriptions in the final edition manuscript.

      Reviewer #1 (Recommendations For The Authors):

      (1) When referring to diabetes, does this exclusively include diabetes type 2?

      Thank you for your inquiry. In our study, the term “diabetes” encompasses the condition of hyperglycemia in a broad sense, rather than specifically indicating type 1 diabetes (T1DM) or type 2 diabetes (T2DM). This broader definition aligns with the scope of our research objectives and findings, particularly observed in the cell experiments conducted. We have clarified this point in the revised discussion section, from line 6-9, page 12 in the final edition manuscript, to provide additional context for readers.

      (2) The titles of the individual paragraphs are not very strong and descriptive. More precise titles help to structure the paper better for the reader.

      Thank you for your valuable comments. We have rewritten the title of each section to make it more precise for readers and incorporated the updated descriptions in the manuscript.

      (3) Fig.3c, adding a 0 nM insulin control would be nice.

      Thank you for your suggestion. We have revised Fig.3c according to your advice. The revised figure was located at page 29 in the final edition manuscript. The corresponding figure legend has also been revised.

      Author response image 3.

      (4) Fig.3e non-infection control would be nice.

      Thank you for your suggestion. We have incorporated your feedback by adding a non-infection control in Fig. 3e. In this revised figure, we included a measurement of SARS-CoV-2 pseudovirus infection assessed through the fluorescence captured by a reader. Cells infected by the pseudovirus exhibited activation of the firefly luciferase, resulting in the release of fluorescence. Conversely, non-infected control cells showed no fluorescence, with the reader recording a value of zero. The updated figure can now be found on page 29 in the final edition manuscript, and we have adjusted the corresponding figure legend accordingly.

      Author response image 4.

      (5) In Figure 5, the processing of CTSL in cells (b-c) strongly differs from processing in tissue (d-e) focusing on amounts of dc-mCTSL. Do you have an explanation for this? Overall, blots are hard to judge by eye and it would be nice to include blots with shorter exposure.

      Thank you for your insightful feedback. The differences observed in the processing of CTSL between cells (Fig. 5b) and tissues (Fig. 5d-e) may be attributed to the complexities inherent in tissue samples, which can impact the clarity of the images. Furthermore, in human tissue samples, it is pertinent to consider that patients in the diabetes group had their blood glucose levels controlled within or near the normal range prior to lung surgery. As a result, the evidence supporting CTSL maturation in human lung tissue blotting images may be less compelling. We have addressed this aspect in the revised results section (lines 10-13, page 9). Additionally, we will consider including blots with shorter exposure to enhance visual clarity in future studies.

      (6) Considering Fig2B and Figure S1, the evidence of an effect of hyperglycemia or high glucose medium on total CTSL protein concentration is not very strong. In my opinion, this claim in the results section for Fig2 should be revisited.

      Thank you for your valuable suggestion. We have revisited the section in question and made appropriate revisions. The original sentence has been modified to accurately reflect the findings: "We found that plasma CTSL activity was strongly positively correlated with chronic hyperglycemia indicated by HbA1c and was significantly higher in diabetic patients than in euglycemic individuals (Fig. 2a, c). Additionally, plasma CTSL concentration showed a positive trend with chronic hyperglycemia indicated by HbA1c (Fig. 2b, d)". These changes have been incorporated into the revised results section (lines 12-16, page 5).

      (7) Overall, data hinting to increased CTSL activity is stronger than protein amount. This being said, in hyperglycemia, blood pH can be affected (metabolic acidosis). As CTSL has higher activity at low pH, could the increase in activity be caused by a drop in pH? Can you include this aspect in your manuscript? For example, is there a pH difference in serum of nondiabetic vs diabetic patients?

      Thank you for your valuable input. We have already addressed the potential impact of pH changes on CTSL activity in our response to Weakness No. 1. As indicated, although hyperglycemia can lead to metabolic acidosis and changes in blood pH, the pH levels observed in our study remained within the normal range (7.35 to 7.45). Therefore, we conducted experiments to investigate CTSL activity in response to changes in pH, which showed consistent activity levels within this range. This information has been included in our revised manuscript (line 15-18, page 7).

      Reviewer #2 (Recommendations For The Authors):

      (1) The Abstract and Introduction sections lack effective organization. The manuscript's style resembles that of Cell Journal rather than aligning with the customary format of eLife.

      Thank you for your valuable comments. The Abstract and Introduction sections have been reorganized to be more precise for readers has been included in our revised manuscript. Additionally, we have meticulously updated the manuscript's style to align with the standard format of eLife in our revised manuscript, especially key resources table of materials and methods sections.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      We are pleased that Reviewer 3 has deemed our revisions satisfactory; below, we provide responses to the remaining Recommendations for the Authors from Reviewer 2.

      Reviewer #2 (Recommendations For The Authors):

      Minor corrections:

      • Line 91: GWT should be GNWT

      Fixed, thank you.

      • Figure 2: fix the label "Participationcoefficient rank" (no space between Participation and coefficient)

      Fixed, thank you for spotting.

      • Line 317: Figure 2 should be Figure 3

      Fixed, thank you.

      • Line 360: Figure 4D, right?

      Fixed, thank you. We also confirm that Figure 4 and its caption are correct. Under anaesthesia, many regions have more Integrated Information than during Recovery (red regions), but the only changes that are consistently observed across all three contrasts are the decreases.

      • Line 375: Should be Figure 5A

      Fixed, thank you.

      • The recovery period of the anesthesia data is not described in Methods.

      We have now added the missing information:

      “Propofol was discontinued following the deep anaesthesia scan, and participants reached level 2 of the Ramsey scale approximately 11 minutes afterwards, as indicated by clear and rapid responses to verbal commands. This corresponds to the “recovery” period 176.”

      We have also expanded our discussion on the interaction between information decomposition and measures of directionality:

      “Indeed, transfer entropy can itself be decomposed into information-dynamic atoms through Partial Information Decomposition and Integrated Information Decomposition 33,34,49,151; ΦID can further decompose the Normalised Directed Transfer Entropy measure used by Deco et al 5, as recently demonstrated 152. We look forward to a more refined conceptualization of the synergistic workspace architecture that takes into account both information types and the directionality of information flow – especially in datasets with higher temporal resolution.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Pg. 3 - lines 51-53: "Once established, the canonical RdDM pathway takes over, whereby small RNAs are generated by the plant-specific polymerase IV (Pol IV). In both cases, a second plant-specific polymerase, Pol V, is an essential downstream component." The authors' intro omits an important aspect of Pol V's function in RdDM, which is quite relevant to their study. Pol V transcribes DNA to synthesize noncoding RNA scaffolds, to which AGO4-bound 24 nt siRNAs are thought to base pair, leading to DRM2 recruitment for cytosine methylation near to these nascent Pol V transcripts (Wierzbicki et al 2008 Cell; Wierzbicki et al. 2009 Nat Genet). I recommend that the authors cite these key studies.

      These citations have now been added (see line 57).

      The authors provide compelling evidence that Pol V redistributes to ectopic heterochromatin regions in h1 mutants (e.g., Fig1a browser shot). Presumably, this would allow Pol V to transcribe these regions in h1 mutants, whereas it could not transcribe them in WT plants. Have the authors detected and/or quantified Pol V transcripts in the h1 mutant compared to WT plants at the sites of Pol V redistribution (detected via NRPE1 ChIP)?

      Robust detection of Pol V transcripts can be experimentally challenging, and instead we quantify and detect NRPE1 dependent methylation at these regions (Fig 5), which occurs downstream of Pol V transcript production. However, we note detecting Pol V transcripts as a potential future direction in the discussion (see line 263).

      Pg. 5 - lines 101-102: Figure 1e - "The preferential enrichment of NRPE1 in h1 was more pronounced at TEs that overlapped with heterochromatin associated mark, H3K9me2 (Fig. 1e). Was a statistical test performed to determine that the overall differences are significant only at TE sites with H3K9me2? Can the sites without H3K9me2 also be differentiated statistically?

      Yes, there is a statistically significant difference between WT and h1 at both the H3K9me2 marked and unmarked TEs (Wilcoxon rank sum tests, see updated Fig 1e). The size of the effect is larger for the H3K9me2 marked TEs (median difference of 0.41 vs 0.16). Median values have now been added to the boxplots so that this is directly viewable to the reader (Fig 1e). This reflects the general increase in NRPE1 occupancy in h1 mutants through the genome, with the effect consistently stronger in heterochromatin. In our initial version of the manuscript, we summarise the effect as follows “We found that h1 antagonizes NRPE1 occupancy throughout the genome, particularly at heterochromatic regions” (previous version line 83, current version line 95). Although important exceptions exist (see Fig 5, NRPE1 and DNA methylation loss in h1), we now make this point even more explicit, and have updated the manuscript at several locations (abstract line 26, results line 245, discussion line 265).

      Pg. 5 - lines 108-110: The authors state, "Importantly, we found no evidence for increased NRPE1 expression at the mRNA or protein level in the h1 mutant (Suppl. Fig. 2)." But the authors did observe reduced NRPE1 transcript levels in h1 mutants, in their re-analysis of RNA-seq data and reduced NRPE1 protein signals via western blot in (Suppl. Fig. 2), which should be reported here in the results.

      As described further below, we reanalysed h1 RNA-seq from scratch, and see no evidence for significant differential gene expression of NRPE1. This table and analysis are now provided in Supplementary Table 1.

      More importantly, the above logic about NRPE1 expression in h1 mutants assumes that NRPE1 is the stoichiometrically limiting subunit for Pol V assembly and function in vivo, but this is not known to be the case:

      (1) While NRPE1's expression is somewhat reduced (and not increased) in h1 mutant plants, we cannot be certain that other genes influencing Pol V stability or recruitment are unaffected by h1 mutants. I thus recommend that the authors perform RT-qPCR directly on the WT and h1 mutant materials used in their current study, quantifying NRPE1, NRPE2, NRPE5, DRD1, DMS3, RDM1, SUVH2 and SUVH9 transcript levels.

      (2) Normalizations used to compare samples should be included with RT-qPCR and western assays. An appropriate house-keeping gene like Actin2 or Ubiquitin could be used to normalize the RT-qPCR. Protein sample loading in Suppl. Fig. 2 could be checked by Coomassie staining and/or an antibody detection of a house-keeping protein.

      We have now included a full re-analysis of h1 RNA-seq (data from Choi et al 2020) focusing on transcriptional changes of DNA methylation machinery genes in the h1 mutant. Of the 61 genes analysed, only AGO6 and AGO9 were found to be differentially expressed (2-3 fold upregulation). This analysis is now included as a table

      (Supplementary Table 1). The western blot has been moved to Supplementary Fig 3 to now illustrate antibody specificity and H1 loss in the h1 mutant lines, so NRPE1 itself serves as a loading control (Supplementary Fig 3a).

      Pg. 6 - lines 129-131: The authors state that "over NRPE1 defined peaks (where NRPE1 occupancy is strongest in WT) we observed no change in H1 occupancy in nrpe1 (Fig 2b). The results indicate that H1 does not invade RdDM regions in the nrpe1 mutant background." This conclusion assumes that the author's H1 ChIP is successfully detecting H1 occupancy. However, in Fig 2d there does not appear to be H1 enrichment or peaks as visualized across the 10766 ZF-DMS3 off-target loci, or even at the selected 451 ZFDMS3 off-target hyper DMRs, where the putative signal for H1 enrichment on the metaplot center is extremely weak/non-existent.

      As a reference for H1 enrichment in chromatin (e.g., looking where H2A.W antagonizes H1 occupancy) one can compare analyses in Bourguet et al (2021) Nat Commun, involving co-authors of the current study. Bourguet et al (2021) Fig 5b show a metaplot of H1 levels centered on H2A.W peaks with H1 ChIP signal clearly tapering away from the metaplot center point peak. To my eye, the H1 ChIP metaplots for ZF-DMS3 offtarget loci in the current manuscript (Fig 2d) resemble "shuffled peaks" controls like those in Fig 5b of Bourguet et al (2021).

      Can one definitively interpret Fig 2d as showing RdDM "not reciprocally affecting H1 localization" without first showing the specificity of the ChIP-seq results in a genotype where H1 occupancy changes? Alternatively, could this dataset be displayed with Deeptools heatmaps to strengthen the evidence that the authors are detecting H1 occupancy/enrichment genome-wide, before diving into WT/nrpe1 mutant analysis at ZF-DMS3 off-target loci?

      This is an excellent suggestion from the reviewer. We have now included several analyses that assess and demonstrate the quality of our H1 ChIP-seq profiles. First, as suggested by the reviewer, we show that our H1 profiles peak over H2A.W enriched euchromatic TEs as defined by Bourguet et al, mirroring these published findings. Next, we investigated whether our H1 profiles match Teano’s recently described pattern over genes, confirming a similar pattern with 3’ enrichment of H1 over H3K27me3 unmarked genes. Furthermore, we show that the H1 peaks defined here are similarly enriched with GFP tagged H1.2 from the Teano et al. 2023 study. These analyses that validate the quality of our H1 ChIP-seq datasets and bolster the conclusion that NRPE1 redistribution does not affect H1 occupancy. These new analysis are now presented in Supplementary Figure 3 and see line 153.

      Pg. 8 - lines 228-230: The authors state that, "As with NRPE1, SUVH1 increased in the h1 background significantly more in heterochromatin, with preferential enrichment over long TEs, cmt2 dependent hypo CHH DMRs, and heterochromatic TEs (Fig. 6b)."

      Contrary to the above statement, the violin plots in Fig. 6c show SUVH1 occupancy increasing at euchromatic TEs in the h1 mutant. What statistical test allowed the authors to determine that the increase in h1 occurs "significantly more in heterochromatin"? The authors should critically interpret Fig. 6c and 6d, which are not currently referenced in the results section. More support is needed for the claim that SUVH1 specifically encroaches into heterochromatin in the h1 mutant, rather than just TEs generally (euchromatic and heterochromatic alike).

      Similar to what we see for NRPE1, statistical tests that we have now performed show that SUVH1 is significantly enriched in h1 in all classes. Importantly however, the effect size is larger in all of the heterochromatin associated classes. We display these statistical tests and the median values on the plots so that effects are immediately viewable (see updated Fig 6).

      In addition, the authors should verify that SUVH1-3xFLAG transgenes (in the WT and h1 mutant backgrounds, respectively) and endogenous Arabidopsis genes encoding the transcriptional activator complex (SUVH1-SUVH3-DNAJ1-DNAJ2) are not overexpressed in the h1 mutant vs. WT. Higher expression of SUVH1 or limiting factors in the larger complex could explain the observation of increased SUVH1 occupancy in the h1 background.

      We do not see a difference in SUVH1/3/DNAJ1/2 complex gene expression in the h1 background (see Supplementary Table 1). However, we cannot rule out that that our SUVH1-FLAG line in h1 is more highly expressed than the corresponding SUVH1-FLAG line in WT. We now note this point in line 248.

      Pg. 8 - lines 231-232: Here the authors make a sweeping conclusion about H1 demarcating, "the boundary between euchromatic and heterochromatic methylation pathways, likely through promoting nucleosome compaction and restricting heterochromatin access." I do not see how a H1 boundary between euchromatic and heterochromatic methylation pathways is revealed based on the SUVH1-3xFLAG occupancy data, which shows increased enrichment at every category interrogated in the h1 mutant (Fig 6b,c,d) and all along the baseline too in the h1 mutant browser tracks (Fig 6a). Can the authors provide more examples of this phenomenon (similar to Fig 6a) and better explain why their SUVH1-3xFLAG ChIP supports this demarcation model?

      The general conclusion from SUVH1 about H1’s agnostic role in preventing heterochromatin access is now further supported from our findings with H3K27me3 (see Figure 6e and description from line 250). However, we agree that the demarcation model as initially presented was overly simplistic. This point was also raised by reviewer 2. We have removed the line highlighted by the reviewer in the revised version of the manuscript. In the revised version we clarify that H1 impedes RdDM and associated machinery throughout the genome (consistent with H1’s established broad occupancy across the genome) but this effect is most pronounced in heterochromatin, corresponding to maximal H1 occupancy (abstract line 26, results line 245, discussion line 265). 

      Corrections:

      Pg. 8 - lines 226-227: "We therefore wondered whether complex's occupancy might also be affected by H1." The sentence contains a typo, where I assume the authors mean to refer to occupancy by the SUVH1-SUVH3-DNAJ1-DNAJ2 transcriptional activator complex. This needs to be specified more clearly.

      The paragraph has been updated (see from line 237).

      Pg. 13 - lines 393-405: There are minor errors in the capitalization of titles and author initials in the References. I recommend that the authors proofread all the references to eliminate these issues:

      Thank you, these have been corrected.

      Choi J, Lyons DB, Zilberman D. 2021. Histone H1 prevents non-cg methylation-mediated small RNA biogenesis in arabidopsis heterochromatin. Elife 10:1-24. doi:10.7554/eLife.72676 (...)

      Du J, Johnson LM, Groth M, Feng S, Hale CJ, Li S, Vashisht A a., Gallego-Bartolome J, Wohlschlegel J a., Patel DJ, Jacobsen SE. 2014. Mechanism of DNA methylation-directed histone methylation by KRYPTONITE. Mol Cell 55:495-504. doi:10.1016/j.molcel.2014.06.009 (...)

      Du J, Zhong X, Bernatavichute Y V, Stroud H, Feng S, Caro E, Vashisht A a, Terragni J, Chin HG, Tu A, Hetzel J, Wohlschlegel J a, Pradhan S, Patel DJ, Jacobsen SE. 2012. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell 151:167-80. doi:10.1016/j.cell.2012.07.034

      Reviewer #2 (Recommendations For The Authors):

      As for a normal review, here are our major and minor points.

      Major:

      (1) Lines 38 to 45 of the introduction are important for the subsequent definition of heterochromatic and non-heterochromatic transposons, but the definition is ambiguous. Is heterochromatin defined by surrounding context such as pericentromeric position or is this an autonomous definition? Can a TE with the chromosomal arms be considered heterochromatic provided that it is long enough and recruits the right machinery? These cases should be more explicitly introduced. Ideally, a supplemental dataset should provide a key to the categories, genomic locations and overlapping TEs as they were used in this analysis, even if some of the categories were taken from another study.

      We have now added all the regions used for analysis in this study to Supplementary Table 3.

      (2) Line 80: This would be the first chance to cite Teno et al. and the "encroachment" of

      PcG complexes to TEs in H1 mutants

      Done - “H1 also plays a key role in shaping nuclear architecture and preventing ectopic polycomb-mediated H3K27me3 deposition in telomeres (Teano et al., 2023).” See line 83

      (3) It is "only" a supplemental figure but S2 but it should still follow the rules: Indicate the number of biological replicates for the RNA-seq data, and perform a statistical test. In case of WB data, provide a loading control.

      We are now using the western blot to illustrate antibody specificity and H1 loss in the h1 mutant lines, so NRPE1 itself serves as a loading control (Supplementary Fig 3a). For NRPE1 mRNA expression, we have now replaced this with a more comprehensive transcriptome analysis of methylation machinery in h1 (see Supplementary Table 1). 

      (4) Lines 115 to 124 and corresponding data: Here, the goal is to exclude other changes to heterochromatin structure other than "increased access" in H1 mutants; however, only one feature, H3K9me2, is tested. Testing this one mark does not necessarily prove that the nature of the chromatin does not change, e.g. H2A.W could be differently redistributed, DDM1 may change, VIM protein, and others. Either more comprehensive testing for heterochromatin markers should be performed, or the conclusions moderated.

      We have moderated the text accordingly (see line 135).

      (5) Lines 166ff and Figure 1, a bit out of order also Figure 5: The general hypothesis is that NRPE1 redistributes to heterochromatic regions in h1 mutants (as do other chromatin modifiers), but the data seem to only support a higher occurrence at target sites.

      a. The way the NRPE1 data is displayed makes it seem like there is much more NRPE1 in the h1 samples, even at peaks that should not be recruiting more as they do not represent "long" TEs. It would be good to present more gbrowse shots of all peak classes.

      We now clarify that h1 does result in a general increase of NRPE1 throughout the genome, but the effect is strongest at heterochromatin. In our initial version of the manuscript, we summarise the effect as follows “We found that h1 antagonizes NRPE1 occupancy throughout the genome, particularly at heterochromatic regions” (previous version line 83, current version line 95). We have modified the language at several locations throughout the manuscript to make this point more clearly (abstract line 26, results line 245, discussion line 265). We include several browser shots in Supp Fig. 8.

      b. The data are "normalized" how exactly?

      c. One argument of observing "gaining" and "losing" peaks is that there is redistribution of NRPE1 from euchromatic to heterochromatic sites. There should be an analysis and figure to corroborate the point (e.g. by comparing FRIP values). Figure 1b shows lower NRPE1 signals at the TE flanking regions. This could reflect a redistribution or a flawed normalization procedure.

      The data are normalised using a standardised pipeline by log2 fold change over input, after scaling each sample by mapped read depth using the bamCompare function in deepTools. This is now described in detail in the Materials and Methods line 365, with full code and pipelines available from GitHub (https://github.com/Zhenhuiz/H1-restrictseuchromatin-associated-methylation-pathways-from-heterochromatic-encroachment).

      d. Figure 1d and f show similar profiles comparing "long" and "short" TEs or "CMT2 dependent hypo-CHH" and "DRM2 dependent CHH". How do these categories relate to each other, how many fragments are redundant?

      The short vs long TEs were defined in Liu et al 2018 (doi: 10.1038/s41477-017-0100-y) and the DMRs were defined in Zhang et al. 2018 (DOI: 10.1073/pnas.1716300115). There is likely to be some degree of overlap between the categories, but numbers are very different (short TEs (n=820), long TEs (n=155), drm2 DMRs (n=5534), CMT (n=21784)) indicating that the different categories are informative. We have now listed all the regions used for analysis in this study as in Supplementary Table 3.

      e. The purpose of the data presented in Figure 1 b is to compare changes of NRPE1 association in H3K9me3 non-overlapping and overlapping TEs between wild-type and background, yet the figure splits the categories in two subpanels and does neither provide a fold-change number nor a statistical test of the comparison. As before, the figure does not really support the idea that NPRE1 somehow redistribute from its "normal" sites towards heterochromatin as both TE classes seem to show higher NRPE1 binding in h1 mutants.

      There is a statistically significant difference between WT and h1 at both the H3K9me2 marked and unmarked TEs, however, the size of the effect is larger for the H3K9me2 marked TEs (median difference of 0.41 vs 0.16). Median values have now been added to the boxplots so that this is directly viewable to the reader (Fig 1e). Although important exceptions exist (see Fig 5 – regions that lose NRPE1 and DNA methylation), this reflects the general increase in NRPE1 occupancy in h1 mutants throughput the genome, with a consistently stronger effect in heterochromatin. As noted above, we have updated the manuscript to make this point more clearly (abstract line 26, results line 245, discussion line 265).

      f. Panel g is the only attempt to corroborate the redistribution towards heterochromatic regions, but at this scale, the apparent reduction of binding in the chromosome arms may be driven by off-peak differences and normalization problems between different ChIP samples with different signal-to-noise-ratio.

      We describe our normalisation and informatic pipeline in more detail in the Materials and Methods line 365. It is also important to note that the reduction is not only observed at the chromosomal level, but also at specific sites. We called differential peaks between WT and h1 mutant. The "Regions that gain NRPE1 in h1" peaks are more enriched in heterochromatic regions, while " Regions that lose NRPE1 in h1" peaks are more enriched outside heterochromatic regions.

      g. Figure 5: how many regions gain vs lose NRPE1 in h1 mutants? If the "redistribution causes loss" scenario applies, the numbers should overall be balanced but that does not seem the case. The loss case appears to be rather exceptional judging from the zigzagging meta-plot. Are these sites related to the sites taken over by PcG-mediated repression in h1 mutants?

      As described in line 222 (previous version of the manuscript line 206), there are 15,075 sites that gain and 1,859 sites that lose NRPE1 in h1. Comparing these sites to

      H3K27me3 in the Teano et al. study was an excellent suggestion. We compared sites that gain NRPE1 to sites that gain H3K27me3 in h1, finding a statistically significant overlap (2.4 fold enrichment over expected, hypergeometric test p-value 2.1e-71). Reciprocally, sites that lose NRPE1 were significantly enriched for overlap with H3K27me3 loss regions (1.6 fold over expected, hypergeometric test p-value 1.4e-4). This indicates that RdDM and H3K27me3 patterning are similarly modulated by H1. To directly test this, we reanalysed the H3K27me3 ChIP-seq data from Teano et al., finding coincident gain and loss of H3K27me3 at sites that gain and lose NRPE1 in h1. These results are described from line 250 and in Fig 6e, which supports a general role for H1 in preventing heterochromatin encroachment.

      (6) Lines 166ff and Figure 3: The data walk towards the scenario of pathway redistribution but actually find that RdDM plays a minor role overall as a substantial increase in heterochromatin regions occurs in all contexts and is largely independent of RdDM.

      a. How exactly are DNA-methylation data converted across regions to reach a fraction score from 0 to 1? There is no explanation in the legend for the methods that allow to recapitulate.

      We now explain our methods in full in the Materials and Methods and all the code for generating these has now been deposited on GitHub (https://github.com/Zhenhuiz/H1restricts-euchromatin-associated-methylation-pathways-from-heterochromaticencroachment). Briefly, BSMAP is used to calculate the number of reads that are methylated vs unmethylated on a per-cytosine basis across the genome. Next, the DNA methylation fraction in each region is calculated by adding all the methylation fractions per cytosine in a given window, and divided by the total number of cytosines in that same window (ie mC/(unmC+mC)) i.e. this is expressed as a fraction ranging from 0 to 1.

      “0” indicates this region is not methylated, and “1” indicates this region is fully methylated (every cytosine is 100% methylated).  

      b. Kernel plots? These are slang for experts and should be better described. In addition, nothing is really concluded from these plots in the text, although they may be quite informative.

      Kernel density plots show the proportion of TEs that gain or lose methylation in a particular mutant, rather than the overall average as depicted in the methylation metaplots above. We now describe the kernel density plots in more detail in the Figure 3 legend. 

      (7) Figure 4: This could be a very interesting analysis if the reader could actually understand it.

      a. The legend is minimal. What is the meaning of hypo and hyper regions indicated to the right of Figure 4c?

      b. The color scale represents observed/expected values. What exactly does this mean? Mutant vs WT?

      c. Some comparisons in 4a are cryptic, e.g. h1 nrpe1 nrpe1 vs CHH?

      d. Figure 4d focuses on a correlation square of relevance, but why? Interestingly the square does not correspond to any "hypo" or "hyper" label?

      Thank you, we have revised Figure 4 and legend based on these suggestions to clarify all of the above.

      (8) Lines 226 and Figure 6B. De novo (or increased) targeting of SUVH1 to heterochromatic sites in h1 mutants, similar to NRPE1, is used to support the argument that more access allows other chromatin modifiers to encroach. SUVH1 strongly depends on RdDM for its in vivo binding and may be the least conclusive factor to argue for a "general" encroachment mechanism.

      We appreciate the reviewers point here. Something that is entirely independent of RdDM following the same pattern would be stronger evidence in favour of general encroachment. Excitingly, this is exactly what we provide evidence for when investigating the interrelationship with H3K27me3 and we appreciate the reviewer’s suggestion to check this! This data is now described in Figure 6e and line 250.

      Minor:

      (1) Line 23: "Loss of H1 resulted in heterochromatic TE enrichment by NRPE1." This does not seem right. NRPE enrichment as TEs

      Modified, (line 26) thank you.

      (2) Lines 73-74: The idea that DDM1 displaces H1 in heterochromatic TEs is somewhat counterintuitive to model that heterochromatic TEs are unavailable for RdDM because of the presence of H1. Is this displacement non-permanent and directly linked to interaction with CMT2/3 Met1?

      This is a very good question and we agree with the reviewer that the effect of DDM1 may only be transient or insufficient to allow for full RdDM assembly, or indeed there may be a direct interaction between DDM1 and CMTs/MET1. During preparation of these revisions, a structure of Arabidopsis nucleosome bound DDM1 was published, which provides some insight by showing that DDM1 promotes DNA sliding. This is at least consistent with the idea of DDM1 causing transient / non-permanent displacement of H1 that would be insufficient for RdDM establishment. We incorporate discussion of these ideas at line 80.

      (3) Line 85: A bit more background on the Reader activator complex should be given. In fact, the reader may not really care that it was more recently discovered (not really recent btw) but what does it actually do?

      We have quite extensively reconfigured this paragraph to take into account our new finding with H3K27me3, such that there is less emphasis on the reader activator complex. The sentence now reads as follows:

      “We found that h1 antagonizes NRPE1 occupancy throughout the genome, particularly at heterochromatic regions. This effect was not limited to RdDM,  similarly impacting both the methylation reader complex component, SUVH1 (Harris et al., 2018) and polycomb-mediated H3K27me3 (Teano et al., 2023).” (line 95). 

      Also, when describing the experiment the results section (line 241), we now provide more background on SUVH1’s function.

      (4) Lines 80-81: Since it is already shown that RdDM associated small RNAs are more enriched in h1 at heterochromatin, help us to know what is precisely the added value of studying the enrichment of NRPE1 at these sites.

      Good point. We have the following line: ‘...small RNAs are not a direct readout of functional RdDM activity and Pol IV dependent small RNAs are abundant in regions of the genome that do not require RdDM for methylation maintenance and that do not contain Pol V (Stroud et al., 2014).’ (line 90)

      (5) Line 99: This seems to be the only time where the connection between long TEs and heterochromatic regions is mentioned but no source is cited.

      We have added the following appropriate citations: (Bourguet et al., 2021; Zemach et al., 2013). (line 110).

      (6) Line 100: DMRs is used for the first time here without explanation and full text. The abbreviation is introduced later in the text (Line 187).

      Thank you, we now describe DMRs upon first use, line 112.

      (7) Figure 2: Panels 2 c and d should show metaplots for WT and transgenes in one panel. There is something seriously wrong with the normalization in d or the scale for left and right panel is not the same. Neither legend nor methods describe how normalization was performed.

      Thank you for pointing this out, the figure has been corrected. We have updated the Materials and Methods (line 365) and have added codes and pipelines to GitHub to explain the normalisation procedure in more detail (https://github.com/Zhenhuiz/H1restricts-euchromatin-associated-methylation-pathways-from-heterochromaticencroachment).

    1. Author response:

      The following is the authors’ response to the original reviews.

      We are very grateful to the reviewers for their constructive comments. Here is a summary of the main changes we made from the previous manuscript version, based on the reviewers’ comments:

      (1) Introduction of a new model, based on a Markov chain, capturing within-trial evolution in search strategy .

      (2) Addition of a new figure investigating inter-animal variations in search strategy.

      (3) Measurement of model fit consistency across 10 simulation repetitions, to prevent the risk of model overfitting.

      (4) Several clarifications have been made in the main text (Results, Discussion, Methods) and figure legends.

      (5) We now provide processed data and codes for analyses and models at GitHub repository

      (6) Simplification of the previous modeling. We realized that the two first models in the previous manuscript version were simply special cases of the third model. Therefore, we retained only the third model, which has been renamed as the ‘mixture model’.

      (7) Modification of Figure 4-6 and Supplementary Figure 7-8 (or their creation) to reflect the aforementioned changes

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors design an automated 24-well Barnes maze with 2 orienting cues inside the maze, then model what strategies the mice use to reach the goal location across multiple days of learning. They consider a set of models and conclude that one of these models, a combined strategy model, best explains the experimental data.

      This study is written concisely and the results presented concisely. The best fit model is reasonably simple and fits the experimental data well (at least the summary measures of the data that were presented).

      Major points:

      (1) One combined strategy (once the goal location is learned) that might seem to be reasonable would be that the animal knows roughly where the goal is, but not exactly where, so it first uses a spatial strategy just to get to the first vestibule, then switches to a serial strategy until it reaches the correct vestibule. How well would such a strategy explain the data for the later sessions? The best combined model presented in the manuscript is one in which the animal starts with a roughly 50-50 chance of a serial (or spatial strategy) from the start vestibule (i.e. by the last session before the reversal the serial and spatial strategies are at ~50-50m in Fig. 5d). Is it the case that even after 15 days of training the animal starts with a serial strategy from its starting point approximately half of the time? The broader point is whether additional examination of the choices made by the animal, combined with consideration of a larger range of possible models, would be able to provide additional insight into the learning and strategies the animal uses.

      Our analysis focused on the evolution of navigation strategies across days and trials. The reviewer raises the interesting possibility that navigation strategy might evolve in a specific manner within each trial, especially on the later days once the environment is learned. To address this possibility, we first examined how some of the statistical distributions, previously analyzed across days, evolved within trials. Consistent with the reviewer’s intuition, the statistical distributions changed within trials, suggesting a specific strategy evolution within trials. Second, we developed a new model, where strategies are represented as nodes of a Markov chain. This model allows potential strategy changes after each vestibule visit, according to a specific set of transition probabilities. Vestibules are chosen based on the same stochastic processes as in the previous model. This new model could be fitted to the experimental distributions and captured both the within-trial evolution and the global distributions. Interestingly, the trials were mostly initiated in the random strategy (~67% chance) and to a lesser extent in the spatial strategy (~25% chance), but rarely in the serial strategy (~8% chance). This new model is presented in Figure 6.

      (2) To clarify, in the Fig. 4 simulations, is the "last" vestibule visit of each trial, which is by definition 0, not counted in the plots of Fig. 4b? Otherwise, I would expect that vestibule 0 is overrepresented because a trial always ends with Vi = 0.

      The last vestibule visit (vestibule 0 by definition) is counted in the plots of Fig.4b. We initially shared the same concern as the reviewer. However, upon further consideration, we arrived at the following explanation: A factor that might lead to an overrepresentation of vestibule 0 is the fact that, unlike other vestibules, it has to be contained in each trial, as trials terminated upon the selection of vestibule 0. Conversely, a factor that might contribute to an underrepresentation of vestibule 0 is that, unlike other vestibules, it cannot be counted more than once per trial. Somehow these two factors seem to counterbalance each other, resulting in no discernible overrepresentation or underrepresentation of vestibule 0 in the random process. 

      Reviewer #2 (Public Review):

      This paper uses a novel maze design to explore mouse navigation behaviour in an automated analogue of the Barnes maze. Overall I find the work to be solid, with the cleverly designed maze/protocol to be its major strength - however there are some issues that I believe should be addressed and clarified.

      (1) Whilst I'm generally a fan of the experimental protocol, the design means that internal odor cues on the maze change from trial to trial, along with cues external to the maze such as the sounds and visual features of the recording room, ultimately making it hard for the mice to use a completely allocentric spatial 'place' strategy to navigate. I do not think there is a way to control for these conflicts between reference frames in the statistical modelling, but I do think these issues should be addressed in the discussion.

      It should be pointed out that all cues on the maze (visual, tactile, odorant) remained unchanged across trials, since the maze was rotated together with goal and guiding cues. Furthermore, the maze was equipped with an opaque cover to prevent mice from seeing the surrounding room (the imaging of mouse trajectories was achieved using infrared light and camera). It is however possible that some other cues such as room sounds and odors could be perceived and somewhat interfered with the sensory cues provided inside the maze. We have now mentioned this possibility in the discussion.

      (2) Somewhat related - I could not find how the internal maze cues are moved for each trial to demarcate the new goal (i.e. the luminous cues) ? This should be clarified in the methods.

      The luminous cues were fixed to the floor of the arena. Consequently, they rotated along with the arena as a unified unit, depicted in figure 1. We have added some clarifications in Figure 1 legend and methods.

      (3) It appears some data is being withheld from Figures 2&3? E.g. Days 3/4 from Fig 2b-f and Days 1-5 on for Fig 3. Similarly, Trials 2-7 are excluded from Fig 3. If this is the case, why? It should be clarified in the main text and Figure captions, preferably with equivalent plots presenting all the data in the supplement.

      The statistical distributions for all single days/trials are shown in the color-coded panels of Figure2&3. In the line plots of Figure2&3, we show only the overlay of 2-3 lines for the sake of clarity. The days/trials represented were chosen to capture the dynamic range of variability within the distributions. We have added this information in the figure legends.

      (4) I strongly believe the data and code should be made freely available rather than "upon reasonable request".

      Matrices of processed data and various codes for simulations and analyses are now available at https://github.com/ sebiroyerlab/Vestibule_sequences.

      Reviewer #3 (Public Review):

      Royer et al. present a fully automated variant of the Barnes maze to reduce experimenter interference and ensure consistency across trials and subjects. They train mice in this maze over several days and analyze the progression of mouse search strategies during the course of the training. By fitting models involving stochastic processes, they demonstrate that a model combined of the random, spatial, and serial processes can best account for the observed changes in mice's search patterns. Their findings suggest that across training days the spatial strategy (using local landmarks) was progressively employed, mostly at the expense of the random strategy, while the serial strategy (consecutive nearby vestibule check) is reinforced from the early stages of training. Finally, they discuss potential mechanistic underpinnings within brain systems that could explain such behavioral adaptation and flexibility.

      Strength:

      The development of an automated Barnes maze allows for more naturalistic and uninterrupted behavior, facilitating the study of spatial learning and memory, as well as the analysis of the brain's neural networks during behavior when combined with neurophysiological techniques. The system's design has been thoughtfully considered, encompassing numerous intricate details. These details include the incorporation of flexible options for selecting start, goal, and proximal landmark positions, the inclusion of a rotating platform to prevent the accumulation of olfactory cues, and careful attention given to atomization, taking into account specific considerations such as the rotation of the maze without causing wire shortage or breakage. When combined with neurophysiological manipulations or recordings, the system provides a powerful tool for studying spatial navigation system.

      The behavioral experiment protocols, along with the analysis of animal behavior, are conducted with care, and the development of behavioral modeling to capture the animal's search strategy is thoughtfully executed. It is intriguing to observe how the integration of these innovative stochastic models can elucidate the evolution of mice's search strategy within a variant of the Barnes maze.

      Weakness:

      (1) The development of the well-thought-out automated Barnes maze may attract the interest of researchers exploring spatial learning and memory. However, this aspect of the paper lacks significance due to insufficient coverage of the materials and methods required for readers to replicate the behavioral methodology for their own research inquiries.

      Moreover, as discussed by the authors, the methodology favors specialists who utilize wired recordings or manipulations (e.g. optogenetics) in awake, behaving rodents. However, it remains unclear how the current maze design, which involves trapping mice in start and goal positions and incorporating angled vestibules resulting in the addition of numerous corners, can be effectively adapted for animals with wired implants.

      The reviewer is correct in pointing out that the current maze design is not suitable for performing experiments with wired implant, particularly due to the maze’s enclosed structure and the access to the start/goal boxes through side holes. Instead, pharmacogenetics and wireless approaches for optogenetic and electrophysiology would need to be used. We have now mentioned this limitation in the discussion.

      (2) Novelty: In its current format, the main axis of the paper falls on the analysis of animal behavior and the development of behavioral modeling. In this respect, while it is interesting to see how thoughtfully designed models can explain the evolution of mice search strategy in a maze, the conclusions offer limited novel findings that align with the existing body of research and prior predictions.

      We agree with the reviewer that our study is weakly connected to previous researches on hippocampus and spatial navigation, as it consists mainly of animal behavior analysis and modeling and addresses a relatively unexplored topic. We hope that the combination of our behavioral approach with optogenetic and electrophysiology will allow in the future new insights that are in line with the existing body of research.

      (3) Scalability and accessibility: While the approach may be intriguing to experts who have an interest in or are familiar with the Barnes maze, its presentation seems to primarily target this specific audience. Therefore, there is a lack of clarity and discussion regarding the scalability of behavioral modeling to experiments involving other search strategies (such as sequence or episodic learning), other animal models, or the potential for translational applications. The scalability of the method would greatly benefit a broader scientific community. In line with this view, the paper's conclusions heavily rely on the development of new models using custom-made codes. Therefore, it would be advantageous to make these codes readily available, and if possible, provide access to the processed data as well. This could enhance comprehension and enable a larger audience to benefit from the methodology.

      The current approach might indeed extend to other species in equivalent environments and might also constitute a general proof of principle regarding the characterization of animal behaviors by the mixing of stochastic processes. We have now mentioned these points in the discussion.

      As suggest by the reviewer, we have now provided model/simulation codes and processed data to replicate the figures, at https://github.com/sebiroyerlab/Vestibule_sequences

      (4) Cross-validation of models: The authors have not implemented any measures to mitigate the risk of overfitting in their modeling. It would have been beneficial to include at least some form of cross-validation with stochastic models to address this concern. Additionally, the paper lacks the presence of analytics or measures that assess and compare the performance of the models.

      To avoid the risk of model overfitting, the most appropriate solution appeared to be repeating the simulations several times and examining the consistency of the obtained parameters across repetitions. For the mixture model, we now show in Supplementary figure 7 the probabilities obtained from 10 repetitions of the simulation. Similarly, for the Markov chain model, the probabilities obtained from 10 repetitions of the simulation are shown in Figure 6.

      Regarding model comparison, we have simplified our mixture model into only one model, as we realized the 2 other models in the previous manuscript version were simply special cases of the 3rd model. Nevertheless, comparison was still needed for the estimation for the best value of N (the number of consecutive segments that a strategy lasts) in the mixture model. We now show the comparison of mean square errors obtained for different values of N, using t-test across 10 repetitions of the simulations (Figure 5c).

      (5) Quantification of inter-animal variations in strategy development: It is important to investigate, and address the argument concerning the possibility that not all animals recruit and develop the three processes (random, spatial, and serial) in a similar manner over days of training. It would be valuable to quantify the transition in strategy across days for each individual mouse and analyze how the population average, reflecting data from individual mice, corresponds to these findings. Currently, there is a lack of such quantification and analysis in the paper.

      We have added a figure (Supplementary figure 8) showing the mixture model matching analyses for individual animals. A lot of variability is indeed observed across animals, with some animals displaying strong preferences for certain strategies compare to others. The average across mouse population showed a similar trend as the result obtained with the pooled data.

      Recommendations for the authors:

      Summary of Reviewer Comments:

      (1) In its present form, the manuscript lacks sufficient coverage of the materials and methods necessary for readers to replicate the behavioral methodology in their own research inquiries. For instance, it would be beneficial to clarify how the cues are rotated relative to the goal.

      (2) The models may be over-fitted, leading to spurious conclusions, and cross-validation is necessary to rule out this possibility.

      (3) The specific choice of the three strategies used to fit behavior in this model should be better justified, as other strategies may account for the observed behavior.

      (4) The study would benefit from an analysis of behavior on an animal-by-animal basis, potentially revealing individual differences in strategies.

      (5) Spatial behavior is not necessarily fully allocentric in this task, as only the two cues in the arena can be used for spatial orientation, unlike odor cues on the floor and sound cues in the room. This should be discussed.

      (6) Making the data and code fully open source would greatly strengthen the impact of this study.

      In addition, each reviewer has raised both major and minor concerns which should be addressed if possible.

      Reviewer #1 (Recommendations For The Authors):

      Minor points:

      (1) Change "tainted" to "tinted" in Fig. 1a

      (2) Should note explicitly in Fig. 2d that the goal is at vestibule 0, and also in the legend

      (3) Fig. 3 legend should say "c-e)", not "c-f)"

      (4) Supplementary Fig. 8 legend repeats "d)" twice

      Reviewer #2 (Recommendations For The Authors):

      Packard & McGaugh 1996 is cited twice as refs 5 and 14

      Reviewer #3 (Recommendations For The Authors):

      - Figure 3: Please correct the labels referenced as "c-f)" in the figure's legend.

      - Rounding numbers issue on page 4: 82.62% + 17.37% equals 99.99%, not 100%.

      We fixed all minor points. We are very thankful to the reviewers for their constructive comments.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We are thankful to the reviewers and the editor for their detailed feedback, insightful suggestions, and thoughtful assessment of our work. Our point-by-point responses to the comments and suggestions are below.

      The revised manuscript has taken into account all the comments of the three reviewers. Modifications include corrections to errors in spelling and unit notation, additional quantification, improvements to the clarity of the language in some places, as well as additional detail in the descriptions of the methods, and revisions to the figures and figure legends.

      We have also undertaken additional analyses and added materials in response to reviewer suggestions. In brief:

      In response to a suggestion from Reviewer #1, we added Figure 6-1 to show examples of the calcium traces of individual fish and individual ROIs from the condensed data in Figure 6. We revised Figure 7 as follows:

      • We added an analysis of the duration of the response to shock to address comments from Reviewers #2 and #3.

      • In response to Reviewer #3, we added histograms showing the distribution of the amplitudes of the calcium signals in the gsc2 and rln3a neurons to show, without relying on the detection of peaks in the calcium trace, that the rln3a neurons have more oscillations in activity.

      We added Figure 8-2 in response to the suggestion from Reviewer #3 to analyze turning behavior in larvae with ablated rln3a neurons.

      To address Reviewer #2’s suggestion to show how the ablated transgenic animals compare to the non-ablated transgenic animals of the same genotype, we have added this analysis as Figure 8-3.

      A detailed point-by-point is as follows:

      The reviewers agree that the study of Spikol et al is important, with novel findings and exciting genetic tools for targeting cell types in the nucleus incertus. The conclusions are overall solid. Results could nonetheless be strengthened by performing few additional optogenetic experiments and by consolidating the analysis of calcium imaging and behavioral recordings as summarized below.

      (1) Light pulses used for optogenetic-mediated connectivity mapping were very long (5s), which could lead to non specific activation of numerous population of neurons than the targeted ones. To confirm their results, the authors should repeat their experiments with brief 5-50ms (500ms maximum) -long light pulses for stimulation.

      As the activity of the gsc2 neurons is already increased by 1.8 fold (± 0.28) within the first frame that the laser is activated (duration ~200 msec), it is unlikely that that the observed response is due to non-specific activation induced by the long light pulse.

      (2) In terms of analysis, the authors should improve :

      a) The detection of calcium events in the "calcium trace" showing the change in fluorescence over time by detecting the sharp increase in the signal when intracellular calcium rises;

      We have added an additional analysis to Figure 7 that does not rely on detection of calcium peaks. See response to Reviewer #3.

      b) The detection of bouts in the behavioral recordings by measuring when the tail beat starts and ends, thereby distinguishing the active swimming during bouts from the immobility observed between bouts.

      Our recordings capture the entire arena that the larva can explore in the experiment and therefore lack the spatial resolution to capture and analyze the tail beat. Rather, we measured the frequency and length of phases of movement in which the larva shows no more than 1 second of immobility. To avoid confusion with studies that measure bouts from the onset of tail movement, we removed this term from the manuscript and refer to activity as phases of movement.

      (3) The reviewers also ask for more precisions in the characterization of the newly-generated knock-in lines and the corresponding anatomy as explained in their detailed reports.

      Please refer to the point-by-point request for additional details that have now been added to the manuscript.

      Reviewer #1 (Recommendations For The Authors):

      The conclusions of this paper are mostly well supported by data, but some technical aspects, especially about calcium imaging and data analysis, need to be clarified.

      (1) Both the endogenous gsc2 mRNA expression and Tg(gsc2:QF2) transgenic expression are observed in a neuronal population in the NI, but also in a more sparsely distributed population of neurons located more anteriorly (for example, Fig. 2B, Fig. 5A). The latter population is not mentioned in the text. It would be necessary to clarify whether or not this anterior population is also considered as the NI, and whether this population was included for the analysis of the projection patterns and ablation experiments.

      The sparsely distributed neurons had been mentioned in the Results, line 134, but we have now added more detail. In line 328, we have clarified that: “As the sparsely distributed anterior group of gsc2 neurons (Fig. 2B, C) are anatomically distinct from the main cluster and not within the nucleus incertus proper, they were excluded from subsequent analyses.”

      (2) Both Tg(gsc2:QF2) and Tg(rln3a:QF2) transgenic lines have the QF genes inserted in the coding region of the targeted genes. This probably leads to knock out of the gene in the targeted allele. Can the authors mention whether or not the endogenous expression of gsc2 and rln3a was affected in the transgenic larvae? Is it possible that the results they obtained using these transgenic lines are affected by the (heterozygous or homozygous) mutation of the targeted genes?

      Figure 8-1 includes in situ hybridization for gsc2 and rln3a in heterozygous Tg(gsc2:QF2)c721; Tg(QUAS:GFP)c578 and Tg(rln3a:QF2; he1.1:YFP)c836; Tg(QUAS:GFP)c578 transgenic larvae.

      The expression of gsc2 is unaffected in Tg(gsc2:QF2)c721; Tg(QUAS:GFP)c578 heterozygotes

      (Fig. 8-1A), whereas the expression of rln3a is reduced in Tg(rln3a:QF2; he1.1:YFP)c836; Tg(QUAS:GFP)c578 heterozygous larvae (Fig. 8-1D), as mentioned in the legend for Figure 8-1. We confirmed these findings by comparing endogenous gene expression between transgenic and non-transgenic siblings that were processed for RNA in situ hybridization in the same tube.

      The behavioral results we obtained are not due to rln3a heterozygosity because comparisons were made with sibling larvae that are also heterozygous for Tg(rln3a:QF2; he1.1:YFP)c836; Tg(QUAS:GFP)c578, as stated in the Figure 8 legend.

      (3) Optogenetic activation and simultaneous calcium imaging is elegantly designed using the combination of the orthogonal Gal4/UAS and QF2/QUAS systems (Fig. 6). However, I have some concerns about the analysis of calcium responses from a technical point of view. Their definition of ΔF/F in this manuscript is described as (F-Fmin)/(Fmax-Fmin) (see line 1406). This is confusing because it is different from the conventional definition of ΔF/F, which is F-F0/F0, where F0 is a baseline GCaMP fluorescence. Their way of calculating the ΔF/F is inappropriate for measuring the change in fluorescence relative to the baseline signal because it rather normalizes the amplitude of the responses across different ROIs. The same argument applies to the analyses done for Fig. 7.

      We have taken a careful look at our analyses and replotted the data using F-F0/F0. However, this only changes Y-axis values and does not change the shape of the calcium trace or the change in signal upon stimulation. Both metrics (F-F0/F0 and (F-Fmin)/(Fmax-Fmin)) adjust the fluorescence values of each ROI to its own baseline.

      (4) The %ΔF/F plots shown in Fig.6 are highly condensed showing the average of different ROIs (cells) within one fish and then the average of multiple fish. It would be helpful to see example calcium traces of individual ROIs and individual fish to know the variability across ROIs and fish. Also, It would be helpful to know how much laser power (561 nm laser) was used to photostimulate ReaChR.

      Laser power (5%) was added to the section titled Calcium Signaling in Methods.

      In Figure 6, shading in the %ΔF/F plots (D, D’, E, E’, F, F’, G, G’, H, H’) represents the variability across ROIs, and the dot plots (D’’, E’’, F’’, G’’, H’’) show the variability across fish (where each data point represents an individual fish). We have now also added Figure 6-1 with examples of calcium traces from individual fish and individual ROIs.

      (5) Some calcium traces presented in Fig. 6 (Fig. 6D, D', F, H, H') show discontinuous fluctuations at the onset and offset of the photostimulation period. Is this caused by some artifacts introduced by switching the settings for the photostimulation? The authors should mention if there are some alternative explanations for this discontinuity.

      As noted by the reviewer, this artifact does result from switching the settings for photostimulation, which we mention in the legend for Figure 6.

      (6) In the introduction, they mention that the griseum centrale is a presumed analogue of the NI (lines 74-75). It would be helpful for the readers to better understand the brain anatomy if the authors could discuss whether or not their findings on the gsc2 and rln3a NI neurons support this idea.

      Our findings on the gsc2 and rln3a neurons support the idea that the griseum centrale of fish is the analogue of the mammalian NI. We have now edited the text in the third paragraph of the discussion, line 1271, to make this point more clearly: “By labeling with QUAS-driven fluorescent reporters, we determined that the anatomical location, neurotransmitter phenotype, and hodological properties of gsc2 and rln3a neurons are consistent with NI identity, supporting the assertion that the griseum centrale of fish is analogous to the mammalian NI. Both groups of neurons are GABAergic, reside on the floor of the fourth ventricle and project to the interpeduncular nucleus.”

      Reviewer #2 (Recommendations For The Authors):

      Major comments:

      (1) Throughout the figures a need for more precision and reference in the anatomical evidence:

      • Specify how many planes over which height were projected for each Z-projection in Figure 1,2,3, ....

      We added this information to the last paragraph of the section titled Confocal Imaging within the Materials and Methods.

      • Provide the rhombomere numbers, deliminate the ventricles & always indicate on the panel the orientation (Rostral Caudal, Left Right or Ventral Dorsal) for Figure 1 panels D-F , Figure 2-1B-G, Figure 2-2A-C in the adult brain, Figure 3.

      We annotated Figures 2-1 and 2-2 as suggested. We also indicated the orientation (anterior to the top or anterior to the left) in all figure legends. For additional context on the position of gsc2 and rln3a neurons within the larval brain, refer to Fig. 1A-C’, Fig. 1-2A, Fig. 2, Fig. 4 and Fig. 5.

      • Add close up when necessary: Figure 2-2A-C, specify in the text & in the figure where are the axon bundles from the gsc2+ neurons in the adult brain- seems interesting and is not commented on?

      We added a note to the legend of Figure 2-2: Arrowheads in B and B’ indicate mApple labeling of gsc2 neuronal projections to the hypothalamus. We also refer to Fig 2-2B, B’ in the Results section titled Distinct Projection Patterns of gsc2 and rln3a neurons.

      • keep the same color for one transgene within one figure: example, glutamatergic neurons should always be the same color in A,B,C - it is confusing as it is.

      We have followed the reviewer’s suggestion and made the color scheme consistent in Figure 3.

      • Movies: add the labels (which transgenic lines in which color, orientation & anatomical boundaries for NI, PAG, any other critical region that receives their projections and the brain ventricle boundaries) on the anatomical movies in supplemental (ex Movie 4-1 for gsc2 neurons and 4-2 for rln3 neurons: add cerebellum, IPN, raphe, diencephalon, and rostral and caudal hypothalamus, medulla for 4-1 as well as lateral hypothalamus and optic tectum for 42); add the ablated region when necessary.

      We added more detail to the movie legends. Please refer to Figure 4 for additional anatomical details.

      • for highlighting projections from NI neurons and distinguish them from the PAG neurons, the authors elegantly used 2 Photon ablation of one versus the other cluster: this method is valid but we need more resolution that the Z stacks added in supplemental by performing substraction of before and after maps.

      We are not sure what the author meant by subtraction as there are no before and after images in this experiment. Larvae underwent ablation of cell bodies and were imaged one day later in comparison to unablated larvae.

      In particular, it is not clear to me if both PAG and NI rln3a neurons project to medulla - can the authors specify this point & the comparison between intact & PAG vs NI ablation maps? The authors should resolve better the projections to all targeted regions of NI gsc2 neurons and differentiate them from other PAG gsc2 neurons, same for rln3a neurons.

      We have clarified this point on line 549.

      Make sure to mention in the result section the duration between ablation & observation that is key for the axons to degrade.

      We always assessed degeneration of neuronal processes at 1-day post-ablation.

      (“2) calcium imaging experiments:

      a) with optogenetic connectivity mapping:

      the authors combine an impressive diverse set of optogenetic actuators & sensors by taking advantage of the QUAS/QF2 and UAS/GAL4 systems to test connectivity from Hb-IPN onto gsc2 and rln3 neurons.

      The experiments are convincing but the choice of the duration of the stimulation (5s) is not adequate to test for direct connectivity: the authors should make sure that response in gsc2 neurons is observed with short duration (50ms-1s max).

      As noted above:

      “As the activity of the gsc2 neurons is already increased by 1.8 fold (± 0.28) within the first frame that the laser is activated (duration ~200 msec), it is unlikely that that the observed response is due to non-specific activation induced by the long light pulse.”

      note: Specify that the gsc2 neurons tested are in NI.

      We have edited the text accordingly in the Results section titled Afferent input to the NI from the dHb-IPN pathway.

      b) for the response to shock: in the example shown for rln3 neurons, the activity differs before and after the shock with long phases of inhibition that were not seen before. Is it representative? the authors should carefully stare at their data & make sure there is no difference in activity patterns after shock versus before.

      We reexamined the responses for each of the rln3a neurons individually and confirmed that, although oscillations in activity are frequent, the apparent inhibition (excursions below baseline) are an idiosyncratic feature of the particular example shown.

      (3) motor activity assay:

      a) there seems to be a misconception in the use of the word "bout" to estimate in panels H and I bout distance and duration and the analysis should be performed with the criterion used by all in the motor field:

      As we know now well based on the work of many labs on larval zebrafish (Orger, Baier, Engert, Wyart, Burgess, Portugues, Bianco, Scott, ...), a bout is defined as a discrete locomotor event corresponding to a distance swam of typically 1-6mm, bout duration is typically 200ms and larvae exhibit a bout every s or so during exploration (see Mirat et al Frontiers 2013; Marques et al Current Biology 2018; Rajan et al. Cell Reports 2022).

      Since the larval zebrafish has a low Reynolds number, it does not show much glide and its movement corresponds widely to the active phase of the tail beats.

      Instead of detecting the active (moving) frames as bouts, the authors however estimate these values quite off that indicate an error of calibration in the detection of a movement: a bout cannot last for 5-10s, nor can the fish swim for more than 1 cm per bout (in the definition of the authors, bout last for 5-10 s, and bout correspond to 10 cm as 50 cm is covered in 5 bouts).

      The authors should therefore distinguish the active (moving) from inactive (immobile) phase of the behavior to define bouts & analyze the corresponding distance travelled and duration of active swimming. They would also benefit from calculating the % of time spent swimming in order to test whether the fish with ablated rln3 neurons change the fraction of the time spent swimming.

      As noted above:

      Our recordings capture the entire arena that the larva can explore in the experiment and therefore lack the spatial resolution to capture and analyze the tail beat. Rather, we measured the frequency and length of phases of movement in which the larva shows no more than 1 second of immobility. To avoid confusion with studies that measure bouts from the onset of tail movement, we removed this term from the manuscript and refer to activity as phases of movement.

      Note that a duration in seconds is not a length and that the corresponding symbol for seconds in a scientific publication is "s" and not "sec".

      We have corrected this.

      b) controls in these experiments are key as many clutches differ in their spontaneous exploration and there is a lot of variation for 2 min long recordings (baseline is 115s). The authors specify that the control unablated are a mix of siblings; they should show us how the ablated transgenic animals compare to the non ablated transgenic animals of the same clutch.

      The unablated Tg(gsc2:QF2)c721; Tg(QUAS:GFP)c578 and Tg(rln3a:QF2, he1.1:YFP)c836; Tg(QUAS:GFP)c578 larvae in the control group are siblings of ablated larvae. We repeated the analyses using either the Tg(gsc2:QF2)c721; Tg(QUAS:GFP)c578 or Tg(rln3a:QF2, he1.1:YFP)c836; Tg(QUAS:GFP)c578 larvae only as controls and added the results in Figure 8-3. Although the statistical power is slightly reduced due to a smaller number of samples in the control group, the conclusions are the same, as the behavior of Tg(gsc2:QF2)c721; Tg(QUAS:GFP)c578 and Tg(rln3a:QF2, he1.1:YFP)c836; Tg(QUAS:GFP)c578 unablated larvae is indistinguishable.

      Minor comments:

      (1) Anatomy :

      • Add precision in the anatomy in Figure 1:

      • Improve contrast for cckb.

      The contrast is determined by the signal to background ratio from the fluorescence in situ hybridization. Increasing the brightness would increase both the signal and the background, as any modification must be applied to the whole image.

      • since the number of neurons seems low in each category, could you quantify the number of rln3+, nmbb+, gsc2+, cckb+ neurons in NI?

      Quantification of neuronal numbers has been added to the first Results section titled Identification of gsc2 neurons in the Nucleus Incertus, lines 219-224.

      note: indicate duration for the integral of the DF/F in s and not in frames.

      We have added this in the legends for Figures 6 and 7 and in Materials and Methods.

      (2) Genetic tools:

      To generate a driver line for the rln3+ neurons using the Q system, the authors used the promoter for the hatching gland in order to drive expression in a structure outside of the nervous system that turns on early and transiently during development: this is a very elegant approach that should be used by many more researchers.

      If the her1 construct was integrate together with the QF2 in the first exon of the rln3 locus as shown in Figure 2, the construct should not be listed with a ";" instead of a "," behind rln3a:QF2 in the transgene name. Please edit the transgene name accordingly.

      We have edited the text accordingly.

      (3) Typos:

      GABAergic neurons is misspelled twice in Figure 3.

      Thank you for catching this. We have corrected the misspellings.

      Reviewer #3 (Recommendations For The Authors):

      • More analysis should be done to better characterize the calcium activity of gsc2 and rln3a populations. Specifically:

      Spontaneous activity is estimated by finding peaks in the time-series data, but the example in Fig7 raises concerns about this process: Two peaks for the gsc2 cell are identified while numerous other peaks of apparently similar SNR are not detected. Moreover, the inset images suggest GCaMP7a expression might be weaker in the gsc2 transgenic and as such, differences in peak count might be related to the SNR of the recordings rather than underlying activity. Overall, the process for estimating spontaneous activity should be more rigorous.

      To not solely rely on the identification of peaks in the calcium traces, we also plotted histograms of the amplitudes of the calcium signals for the rln3a and gsc2 neurons. The histograms show that the amplitudes of the rln3a calcium signals frequently occur at small and large values (suggesting large fluctuations in activity), whereas the amplitudes of the gsc2 calcium signals occur most frequently at median values. We added this analysis to a revised Figure 7.

      Interestingly, there are a number of large negative excursions in the calcium data for the rln3a cell - what is the authors' interpretation of these? Could it be that presynaptic inhibition via GABA-B receptors in dIPN might influence dIPN-innervating rln3a neurons?

      As noted above:

      We reexamined the responses for each of the rln3a neurons individually and confirmed that, although oscillations in activity are frequent, the apparent inhibition (excursions below baseline) are an idiosyncratic feature of the particular example shown.

      Regarding shock-evoked activity, the authors state "rln3a neurons showed ... little response to shock", yet the immediate response after shock appears very similar in gsc2 vs rln3a cells (approx 30 units on the dF/F scale). The subsequent time-course of the response is what appears to distinguish gsc2 versus rln3a; it might thus be useful to separately quantify the amplitude and decay time constant of the shock evoked response for the two populations.

      The reviewer is correct that the difference between the gsc2 and rln3a neurons in the response to shock is dependent on the duration of time post-shock that is analyzed. Thus, the more relevant feature is the length of the response rather than the size. To reflect this, we compared the average length of responses for the gsc2 and rln3a neurons. We have now added this analysis to Figure 7 and updated the text accordingly.

      • The difference in spontaneous locomotor behavior is interesting and the example tracking data suggests there might also be differences in turn angle distribution and/or turn chain length following rln3 NI ablations. I would recommend the authors consider exploring this.

      Thank you for this suggestion. We wrote additional code to quantify turning behavior and found that larvae with rln3a NI neurons ablated do indeed have a statistically significant increase in turning compared to other groups. We now show this analysis as Figure 8-2 and we added an explanation of the quantification of turning behavior to the Methods section titled Locomotor assay.

      • I didn't follow the reasoning in the discussion that activity of rln3a cells may control transitions between phases of behavioral activity and inactivity. The events (at least those that are detected) in Fig7 occur with an average interval exceeding 30 s, yet swim bouts occur at a frequency around 1 Hz. The authors should clarify their hypothesis about how these disparate timescales might be connected.

      As noted above:

      Our recordings capture the entire arena that the larva can explore in the experiment and therefore lack the spatial resolution to capture and analyze the tail beat. Rather, we measure the frequency and length of phases of movement in which the larva shows no more than 1 second of immobility. To avoid confusion with studies that measure bouts from the onset of tail movement, we removed this term from the manuscript and refer to activity as phases of movement.

      • Fig2-2: Images are ordered from (A, B, C) anterior to (A', B', C') posterior. Its not clear what this means and images appear to be in sequence A, A', B, B'.... please clarify and consider including a cartoon of the brain in sagittal view showing location of sections indicated.

      We clarified the text in the Figure 2-2 legend and added a drawing of the brain showing the location of the sections.

      • In Fig7, why are 300 frames analyzed pre/post shock? Even for gsc2, the response appears complete in ~100 frames.

      Reviewer #2 also pointed out that the difference between the gsc2 and rln3a neurons in the response to shock is dependent on the duration of time post-shock that is analyzed. Thus, the more relevant feature is the length of the response rather than the size. To reflect this, we compared the average length of response for the gsc2 and rln3a neurons and modified the text and Figure as described above.

      • What are the large negative excursions in the calcium signal in the rln3a data (Fig7E)?

      See response to Reviewer # 2, repeated below:

      We looked through each of the responses of individual rln3a neuron and confirmed that, although oscillations in activity are frequent among the rln3a neurons, the apparent inhibition (excursions below baseline) are an idiosyncratic feature of the particular example shown.

      • There are several large and apparently perfectly straight lines in the fish tracking examples (Fig8) suggestive of tracking errors (ie. where the tracked centroid instantaneously jumps across the camera frame). Please investigate these and include analysis of the distribution of swim velocities to support the validity of the tracking data.

      The reason for this is indeed imperfect tracking resulting in frames in which the tracker does not detect the larva. The result is that the larva appears to move 1 cm or more in a single frame. However, analysis of the distribution of distances across all frames shows that these events (movement of 1 cm or more in a single frame) are rare (less than 0.04%), and there are no systematic differences that would explain the differences in locomotor behavior presented in Fig. 8. A summary of the data is as follows:

      Controls: 0.0249% of distances 1 cm or greater gsc2 neurons ablated: 0.0302% of distances 1 cm or greater rln3a NI neurons ablated: 0.0287% of distances 1 cm or greater rln3a PAG neurons ablated: 0.0241% of distance 1 cm or greater

      • Insufficient detail is provided in the methods about how swim bouts are detected (and their durations extracted) from the centroids tracking data. Please expand detail in this section.

      We added an explanation to the Methods section titled Locomotor assay.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment:

      This study uses carefully designed experiments to generate a useful behavioural and neuroimaging dataset on visual cognition. The results provide solid evidence for the involvement of higher-order visual cortex in processing visual oddballs and asymmetry. However, the evidence provided for the very strong claims of homogeneity as a novel concept in vision science, separable from existing concepts such as target saliency, is inadequate.

      We appreciate the positive and balanced assessment from the reviewers. We agree that visual homogeneity is similar to existing concepts such as target saliency. We have tried our best to articulate our rationale for defining it as a novel concept. However, the debate about whether visual homogeneity is novel or related to existing concepts is completely beside the point, since that is not the key contribution of our study.

      Our key contribution is our quantitative model for how the brain could be solving generic visual tasks by operating on a feature space. In the literature there are no theories regarding the decision-making process by which the brain could be solving generic visual tasks. In fact, oddball search tasks, same-different tasks and symmetry tasks are never even mentioned in the same study because it is tacitly assumed that the underlying processes are completely different! Our work brings together these disparate tasks by proposing a specific computation that enables the brain to solve both types of tasks and providing evidence for it. This specific computation is a well-defined, falsifiable model that will need to be replicated, elaborated and refined by future studies.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors define a new metric for visual displays, derived from psychophysical response times, called visual homogeneity (VH). They attempt to show that VH is explanatory of response times across multiple visual tasks. They use fMRI to find visual cortex regions with VH-correlated activity. On this basis, they declare a new visual region in the human brain, area VH, whose purpose is to represent VH for the purpose of visual search and symmetry tasks.

      Thank you for your concise summary. We appreciate your careful reading and thoughtful and constructive comments.

      Strengths:

      The authors present carefully designed experiments, combining multiple types of visual judgments and multiple types of visual stimuli with concurrent fMRI measurements. This is a rich dataset with many possibilities for analysis and interpretation.

      Thank you for your accurate assessment of the strengths of our study.

      Weaknesses:

      The datasets presented here should provide a rich basis for analysis. However, in this version of the manuscript, I believe that there are major problems with the logic underlying the authors' new theory of visual homogeneity (VH), with the specific methods they used to calculate VH, and with their interpretation of psychophysical results using these methods. These problems with the coherency of VH as a theoretical construct and metric value make it hard to interpret the fMRI results based on searchlight analysis of neural activity correlated with VH.

      We appreciate your concerns, and have tried our best to respond to them fully against your specific concerns below.

      In addition, the large regions of VH correlations identified in Experiments 1 and 2 vs. Experiments 3 and 4 are barely overlapping. This undermines the claim that VH is a universal quantity, represented in a newly discovered area of the visual cortex, that underlies a wide variety of visual tasks and functions.

      We agree with you that the VH regions defined using symmetry task and search task do not overlap completely (as we have shown in Figure S13). However this is to be expected for several reasons. First, the images in the symmetry task were presented at fixation, whereas the images in the visual search task were presented peripherally. Second, the lack of overlap could be due to variations across individuals. Indeed, considerable individual variability has been observed in the location of category-selective regions such as VWFA (Glezer and Riesenhuber 2013) and FFA (Weiner and Grill-Spector, 2012). We propose that testing the same participants on both search and symmetry tasks would reveal overlapping VH regions. We now acknowledge these issues in the Results (p. 26).

      Maybe I have missed something, or there is some flaw in my logic. But, absent that, I think the authors should radically reconsider their theory, analyses, and interpretations, in light of the detailed comments below, to make the best use of their extensive and valuable datasets combining behavior and fMRI. I think doing so could lead to a much more coherent and convincing paper, albeit possibly supporting less novel conclusions.

      We appreciate your concerns. We have tried our best to respond to them fully against your specific concerns below.

      THEORY AND ANALYSIS OF VH

      (1) VH is an unnecessary, complex proxy for response time and target-distractor similarity. VH is defined as a novel visual quality, calculable for both arrays of objects (as studied in Experiments 1-3) and individual objects (as studied in Experiment 4). It is derived from a center-to-distance calculation in a perceptual space. That space in turn is derived from the multi-dimensional scaling of response times for target-distractor pairs in an oddball detection task (Experiments 1 and 2) or in a same-different task (Experiments 3 and 4).

      The above statements are not entirely correct. Experiments 1 & 3 are oddball visual search experiments. Their purpose was to estimate the underlying perceptual space of objects.

      Proximity of objects in the space is inversely proportional to response times for arrays in which they were paired. These response times are higher for more similar objects. Hence, proximity is proportional to similarity. This is visible in Fig. 2B as the close clustering of complex, confusable animal shapes.

      VH, i.e. distance-to-center, for target-present arrays, is calculated as shown in Fig. 1C, based on a point on the line connecting the target and distractors. The authors justify this idea with previous findings that responses to multiple stimuli are an average of responses to the constituent individual stimuli. The distance of the connecting line to the center is inversely proportional to the distance between the two stimuli in the pair, as shown in Fig. 2D. As a result, VH is inversely proportional to the distance between the stimuli and thus to stimulus similarity and response times. But this just makes VH a highly derived, unnecessarily complex proxy for target-distractor similarity and response time. The original response times on which the perceptual space is based are far more simple and direct measures of similarity for predicting response times.

      We agree that VH brings no explanatory power to target-present searches, since target-present response times are a direct estimate of target-distractor similarity. However, we are additionally explaining target-absent response times. Target-absent response times are well known to vary systematically with image properties, but why they do so have not been clear in the literature.

      Our key conceptual advance lies in relating the neural response to a search array to the neural response of the constituent elements, and in proposing a decision variable using which participants can make both target-present and target-absent judgements on any search array.

      (2) The use of VH derived from Experiment 1 to predict response times in Experiment 2 is circular and does not validate the VH theory.

      The use of VH, a response time proxy, to predict response times in other, similar tasks, using the same stimuli, is circular. In effect, response times are being used to predict response times across two similar experiments using the same stimuli. Experiment 1 and the target present condition of Experiment 2 involve the same essential task of oddball detection. The results of Experiment 1 are converted into VH values as described above, and these are used to predict response times in Experiment 2 (Fig. 2F). Since VH is a derived proxy for response values in Experiment 1, this prediction is circular, and the observed correlation shows only consistency between two oddball detection tasks in two experiments using the same stimuli.

      We agree that it would be circular to use oddball search times in Experiment 1 to explain only target-present search times in Experiment 2, since they basically involve the same searches. However, we are explaining both target-present and target-absent search times in a unified framework; systematic variations in target-absent search times have been noted in the literature but never really explained. One could still simply say that target-absent search times are some function of the target-present search times, but this still doesn’t provide an explanation for how participants are making target-present and absent decisions. The existing literature contains models for how visual search might occur for a specific target and distractor but does not elucidate how participants might perform generic visual search where target and distractors are not known in advance.

      Our key conceptual advance lies in relating the neural response to a search array to the neural response of the constituent elements, and in proposing a decision variable using which participants can make both target-present and target-absent judgements on any search array.

      (3) The negative correlation of target-absent response times with VH as it is defined for target-absent arrays, based on the distance of a single stimulus from the center, is uninterpretable without understanding the effects of center-fitting. Most likely, center-fitting and the different VH metrics for target-absent trials produce an inverse correlation of VH with target-distractor similarity.

      We see no cause for concern with the center-fitting procedure, for several reasons. First, the best-fitting center remained stable despite many randomly initialized starting points. Second, the best-fitting center derived from one set of objects was able to predict the target-absent and target-present responses of another set of objects. Finally, the VH obtained for each object (i.e. distance from the best-fitting center) is strongly correlated with the average distance of that object from all other objects (Figure S1A). We have now clarified this in the Results (p. 11).

      The construction of the VH perceptual space also involves fitting a "center" point such that distances to center predict response times as closely as possible. The effect of this fitting process on distance-to-center values for individual objects or clusters of objects is unknowable from what is presented here. These effects would depend on the residual errors after fitting response times with the connecting line distances. The center point location and its effects on the distance-to-center of single objects and object clusters are not discussed or reported here.

      While it is true that the optimal center needs to be found by fitting to the data, there no particular mystery to the algorithm: we are simply performing a standard gradient-descent to maximize the fit to the data. We have described the algorithm clearly and are making our codes public. We find the algorithm to yield stable optimal centers despite many randomly initialized starting points. We find the optimal center to be able to predict responses to entirely novel images that were excluded during model training. We are making no assumption about the location of centre with respect to individual points. Therefore, we see no cause for concern regarding the center-finding algorithm.

      Yet, this uninterpretable distance-to-center of single objects is chosen as the metric for VH of target-absent displays (VHabsent). This is justified by the idea that arrays of a single stimulus will produce an average response equal to one stimulus of the same kind. However, it is not logically clear why response strength to a stimulus should be a metric for homogeneity of arrays constructed from that stimulus, or even what homogeneity could mean for a single stimulus from this set. It is not clear how this VHabsent metric based on single stimuli can be equated to the connecting line VH metric for stimulus pairs, i.e. VHpresent, or how both could be plotted on a single continuum.

      Most visual tasks, such as finding an animal, are thought to involve building a decision boundary on some underlying neural representation. Even visual search has been portrayed as a signal-detection problem where a particular target is to be discriminated from a distractor. However none of these formulations work in the case of generic visual tasks, where the target and distractor identities are unknown. We are proposing that, when we view a search array, the neural response to the search array can be deduced from the neural responses to the individual elements using well known rules, and that decisions about an oddball target being present or absent can be made by computing the distance of this neural response from some canonical mean firing rate of a population of neurons. This distance to center computation is what we denote as visual homogeneity. We have revised our manuscript throughout to make this clearer and we hope that this helps you understand the logic better.

      It is clear, however, what should be correlated with difficulty and response time in the target-absent trials, and that is the complexity of the stimuli and the numerosity of similar distractors in the overall stimulus set. The complexity of the target, similarity with potential distractors, and the number of such similar distractors all make ruling out distractor presence more difficult. The correlation seen in Fig. 2G must reflect these kinds of effects, with higher response times for complex animal shapes with lots of similar distractors and lower response times for simpler round shapes with fewer similar distractors.

      You are absolutely correct that the stimulus complexity should matter, but there are no good measures for stimulus complexity. But considering what factors are correlated with target-absent response times is entirely different from asking what decision variable or template is being used by participants to solve the task.

      The example points in Fig. 2G seem to bear this out, with higher response times for the deer stimulus (complex, many close distractors in the Fig. 2B perceptual space) and lower response times for the coffee cup (simple, few close distractors in the perceptual space). While the meaning of the VH scale in Fig. 2G, and its relationship to the scale in Fig. 2F, are unknown, it seems like the Fig. 2G scale has an inverse relationship to stimulus complexity, in contrast to the expected positive relationship for Fig. 2F. This is presumably what creates the observed negative correlation in Fig. 2G.

      Taken together, points 1-3 suggest that VHpresent and VHabsent are complex, unnecessary, and disconnected metrics for understanding target detection response times. The standard, simple explanation should stand. Task difficulty and response time in target detection tasks, in both present and absent trials, are positively correlated with target-distractor similarity.

      Respectfully, we disagree with your assessment. Your last point is not logically consistent though: response times for target-absent trials cannot be correlated with any target-distractor similarity since there is no target in the first place in a target-absent array. We have shown that target-absent response times are in fact, independent of experimental context, which means that they index an image property that is independent of any reference target (Results, p. 15; Section S4). This property is what we define as visual homogeneity.

      I think my interpretations apply to Experiments 3 and 4 as well, although I find the analysis in Fig. 4 especially hard to understand. The VH space in this case is based on Experiment 3 oddball detection in a stimulus set that included both symmetric and asymmetric objects. However, the response times for a very different task in Experiment 4, a symmetric/asymmetric judgment, are plotted against the axes derived from Experiment 3 (Fig. 4F and 4G). It is not clear to me why a measure based on oddball detection that requires no use of symmetry information should be predictive of within-stimulus symmetry detection response times. If it is, that requires a theoretical explanation not provided here.

      We are using an oddball detection task to estimate perceptual dissimilarity between objects, and construct the underlying perceptual representation of both symmetric and asymmetric objects. This enabled us to then ask if some distance-to-center computation can explain response times in a symmetry detection task, and obtain an answer in the affirmative. We have reworked the text to make this clear.

      (4) Contrary to the VH theory, same/different tasks are unlikely to depend on a decision boundary in the middle of a similarity or homogeneity continuum.

      We have provided empirical proof for our claims, by showing that target-present response times in a visual search task are correlated with “different” responses in the same-different task, and that target-absent response times in the visual search task are correlated with “same” responses in the same-different task (Section S3).

      The authors interpret the inverse relationship of response times with VHpresent and VHabsent, described above, as evidence for their theory. They hypothesize, in Fig. 1G, that VHpresent and VHabsent occupy a single scale, with maximum VHpresent falling at the same point as minimum VHabsent. This is not borne out by their analysis, since the VHpresent and VHabsent value scales are mainly overlapping, not only in Experiments 1 and 2 but also in Experiments 3 and 4. The authors dismiss this problem by saying that their analyses are a first pass that will require future refinement. Instead, the failure to conform to this basic part of the theory should be a red flag calling for revision of the theory.

      We respectfully disagree – by no means did we dismiss this problem! In fact, we have explicitly acknowledged this by saying that VH does not explain all the variance in the response times, but nonetheless explains substantial variance and might form the basis for an initial guess or a fast response. The remaining variance might be explained by processes that involve more direct scrutiny. Please see Results, page 10 & 22.

      The reason for this single scale is that the authors think of target detection as a boundary decision task, along a single scale, with a decision boundary somewhere in the middle, separating present and absent. This model makes sense for decision dimensions or spaces where there are two categories (right/left motion; cats vs. dogs), separated by an inherent boundary (equal left/right motion; training-defined cat/dog boundary). In these cases, there is less information near the boundary, leading to reduced speed/accuracy and producing a pattern like that shown in Fig. 1G.

      The key conceptual advance of our study is that we show that even target/present, same/different or symmetry judgements can be fit into the standard decision-making framework.

      This logic does not hold for target detection tasks. There is no inherent middle point boundary between target present and target absent. Instead, in both types of trials, maximum information is present when the target and distractors are most dissimilar, and minimum information is present when the target and distractors are most similar. The point of greatest similarity occurs at the limit of any metric for similarity. Correspondingly, there is no middle point dip in information that would produce greater difficulty and higher response times. Instead, task difficulty and response times increase monotonically with the similarity between targets and distractors, for both target present and target absent decisions. Thus, in Figs. 2F and 2G, response times appear to be highest for animals, which share the largest numbers of closely similar distractors.

      Unfortunately, your logic does not boil down to any quantitative account, since you are using vague terms like “maximum information”. Further, any argument based solely on item similarity to explain visual search or symmetry responses cannot explain systematic variations observed for target-absent arrays and for symmetric objects, for the reasons below.

      If target-distractor dissimilarity were the sole driver of response times, target-absent judgements should always take the longest time since the target and distractor have zero similarity, with no variation from one image to another. This account does not explain why target-absent response times vary so systematically.

      Similarly, if symmetry judgements are solely based on comparing the dissimilarity between two halves of an object, there should be no variation in the response times of symmetric objects since the dissimilarity between their two halves is zero. However we do see systematic variation in the response times to symmetric objects.

      DEFINITION OF AREA VH USING fMRI

      (1) The area VH boundaries from different experiments are nearly completely non-overlapping.

      In line with their theory that VH is a single continuum with a decision boundary somewhere in the middle, the authors use fMRI searchlight to find an area whose responses positively correlate with homogeneity, as calculated across all of their target present and target absent arrays. They report VH-correlated activity in regions anterior to LO. However, the VH defined by symmetry Experiments 3 and 4 (VHsymmetry) is substantially anterior to LO, while the VH defined by target detection Experiments 1 and 2 (VHdetection) is almost immediately adjacent to LO. Fig. S13 shows that VHsymmetry and VHdetection are nearly non-overlapping. This is a fundamental problem with the claim of discovering a new area that represents a new quantity that explains response times across multiple visual tasks. In addition, it is hard to understand why VHsymmetry does not show up in a straightforward subtraction between symmetric and asymmetric objects, which should show a clear difference in homogeneity. • Actually VHsymmetry is apparent even in a simple subtraction between symmetric and asymmetric objects (Figure S10). The VH regions identified using the visual search task and symmetry task have a partial overlap, not zero overlap as you are incorrectly claiming.

      We have noted that it is not straightforward to interpret the overlap, since there are many confounding factors. One reason could simply be that the stimuli in the symmetry task were presented at fixation, whereas the visual search arrays contained items exclusively in the periphery. Another that the participants in the two tasks were completely different, and the lack of overlap is simply due to inter-individual variability. Testing the same participants in two tasks using similar stimuli would be ideal but this is outside the scope of this study. We have acknowledged these issues in the Results (p. 26) and in the Supplementary Material (Section S8).

      (2) It is hard to understand how neural responses can be correlated with both VHpresent and VHabsent.

      The main paper results for VHdetection are based on both target-present and target-absent trials, considered together. It is hard to interpret the observed correlations, since the VHpresent and VHabsent metrics are calculated in such different ways and have opposite correlations with target similarity, task difficulty, and response times (see above). It may be that one or the other dominates the observed correlations. It would be clarifying to analyze correlations for target-present and target-absent trials separately, to see if they are both positive and correlated with each other.

      Thanks. The positive correlation between VH and neural response holds even when we do the analysis separately for target-present and -absent searches (correlation between neural response in VH region and visual homogeneity (n = 32, r = 0.66, p < 0.0005 for target-present searches & n = 32, r = 0.56, p < 0.005 for target-absent searches).

      (3) The definition of the boundaries and purpose of a new visual area in the brain requires circumspection, abundant and convergent evidence, and careful controls.

      Even if the VH metric, as defined and calculated by the authors here, is a meaningful quantity, it is a bold claim that a large cortical area just anterior to LO is devoted to calculating this metric as its major task. Vision involves much more than target detection and symmetry detection. The cortex anterior to LO is bound to perform a much wider range of visual functionalities. If the reported correlations can be clarified and supported, it would be more circumspect to treat them as one byproduct of unknown visual processing in the cortex anterior to LO, rather than treating them as the defining purpose for a large area of the visual cortex.

      We totally agree with you that reporting a new brain region would require careful interpretation and abundant and converging evidence. However, this requires many studies worth of work, and historically category-selective regions like the FFA have achieved consensus only after they were replicated and confirmed across many studies. We believe our proposal for the computation of a quantity like visual homogeneity is conceptually novel, and our study represents a first step that provides some converging evidence (through replicable results across different experiments) for such a region. We have reworked our manuscript to make this point clearer (Discussion, p 32).

      Reviewer #2 (Public Review):

      Summary:

      This study proposes visual homogeneity as a novel visual property that enables observers perform to several seemingly disparate visual tasks, such as finding an odd item, deciding if two items are the same, or judging if an object is symmetric. In Experiment 1, the reaction times on several objects were measured in human subjects. In Experiment 2, the visual homogeneity of each object was calculated based on the reaction time data. The visual homogeneity scores predicted reaction times. This value was also correlated with the BOLD signals in a specific region anterior to LO. Similar methods were used to analyze reaction time and fMRI data in a symmetry detection task. It is concluded that visual homogeneity is an important feature that enables observers to solve these two tasks.

      Strengths:

      (1) The writing is very clear. The presentation of the study is informative.

      (2) This study includes several behavioral and fMRI experiments. I appreciate the scientific rigor of the authors.

      We are grateful to you for your balanced assessment and constructive comments.

      Weaknesses:

      (1) My main concern with this paper is the way visual homogeneity is computed. On page 10, lines 188-192, it says: "we then asked if there is any point in this multidimensional representation such that distances from this point to the target-present and target-absent response vectors can accurately predict the target-present and target-absent response times with a positive and negative correlation respectively (see Methods)". This is also true for the symmetry detection task. If I understand correctly, the reference point in this perceptual space was found by deliberating satisfying the negative and positive correlations in response times. And then on page 10, lines 200-205, it shows that the positive and negative correlations actually exist. This logic is confusing. The positive and negative correlations emerge only because this method is optimized to do so. It seems more reasonable to identify the reference point of this perceptual space independently, without using the reaction time data. Otherwise, the inference process sounds circular. A simple way is to just use the mean point of all objects in Exp 1, without any optimization towards reaction time data.

      We disagree with you since the same logic applies to any curve-fitting procedure. When we fit data to a straight line, we are finding the slope and intercept that minimizes the error between the data and the straight line, but we would hardly consider the process circular when a good fit is achieved – in fact we take it as a confirmation that the data can be fit linearly. In the same vein, we would not have observed a good fit to the data, if there did not exist any good reference point relative to which the distances of the target-present and target-absent search arrays predicted these response times.

      In Section S1, we have already reported that the visual homogeneity estimates for each object is strongly correlated with the average distance of each object to all other objects (r = 0.84, p<0.0005, Figure S1). Second, to confirm that the results we obtained are not due to overfitting, we have already reported a cross-validation analysis, where we removed all searches involving a particular image and predicted these response times using visual homogeneity. This too revealed a significant model correlation confirming that our results are not due to overfitting.

      (2) On page 11, lines 214-221. It says: "these findings are non-trivial for several reasons". However, the first reason is confusing. It is unclear to me why "it suggests that there are highly specific computations that can be performed on perceptual space to solve oddball tasks". In fact, these two sentences provide no specific explanation for the results.

      We have now revised the text to make it clearer (Results, p. 11).

      (3) The second reason is interesting. Reaction times in target-present trials can be easily explained by target-distractor similarity. But why does reaction time vary substantially across target-absent stimuli? One possible explanation is that the objects that are distant from the feature distribution elicit shorter reaction times. Here, all objects constitute a statistical distribution in the feature (perceptual) space. There is certainly a mean of this distribution. Some objects look like outliers and these outliers elicit shorter reaction times in the target-absent trials because outlier detection is very salient.

      One might argue that the above account is merely a rephrasing of the idea of visual homogeneity proposed in this study. If so, feature saliency is not a new account. In other words, the idea of visual homogeneity is another way of reiterating the old feature saliency theory.

      Thank you for this interesting point. We don’t necessarily see a contradiction. However, we are proposing a quantitative decision variable that the brain could be using to make target present/absent judgements.

      (4) One way to reject the feature saliency theory is to compare the reaction times of the objects that are very different from other objects (i.e., no surrounding objects in the perceptual space, e.g., the wheel in the lower right corner of Fig. 2B) with the objects that are surrounded by several similar objects (e.g., the horse in the upper part of Fig. 2B). Also, please choose the two objects with similar distance from the reference point. I predict that the latter will elicit longer reaction times because they can be easily confounded by surrounding similar objects (i.e., four-legged horses can be easily confounded by four-legged dogs). If the density of object distribution per se influences the visual homogeneity score, I would say that the "visual homogeneity" is essentially another way of describing the distributional density of the perceptual space.

      We agree with you, and we have indeed found that visual homogeneity estimates from our model are highly correlated with the average distance of an object relative to all other objects. However, we performed several additional experiments to elucidate the nature of target-absent response times. We find that they are unaffected by whether these searches are performed in the midst of similar or dissimilar objects (Section S4, Experiment S6), and even when the same searches are performed among nearby sets of objects with completely uncorrelated average distances (Section S4, Experiment S7). We have now reworked the text to make this clearer.

      (5) The searchlight analysis looks strange to me. One can easily perform a parametric modulation by setting visual homogeneity as the trial-by-trial parametric modulator and reaction times as a covariate. This parametric modulation produces a brain map with the correlation of every voxel in the brain. On page 17 lines 340-343, it is unclear to me what the "mean activation" is.

      We have done something similar. For each region we took the mean activation at each voxel as the average activation 3x3x3 voxel neighborhood in the brain, and took its correlation with visual homogeneity. We have now reworked this to make it clearer (Results, p. 16).

      Minor points

      (1) In the intro, it says: "using simple neural rules..." actually it is very confusing what "neural rules" are here. Better to change it to "computational principles" or "neural network models"??

      We have now replaced this with “using well-known principles governing multiple object representations”.

      (2) In the intro, it says: "while machine vision algorithms are extremely successful in solving feature-based tasks like object categorization (Serre, 2019), they struggle to solve these generic tasks (Kim et al., 2018; Ricci et al. 2021). These are not generic tasks. They are just a specific type of visual task-judging relationship between multiple objects. Moreover, a large number of studies in machine vision have shown that DNNs are capable of solving these tasks and even more difficult tasks. Two survey papers are listed here.

      Wu, Q., Teney, D., Wang, P., Shen, C., Dick, A., & Van Den Hengel, A. (2017). Visual question answering: A survey of methods and datasets. Computer Vision and Image Understanding, 163, 21-40.

      Małkiński, M., & Mańdziuk, J. (2022). Deep Learning Methods for Abstract Visual Reasoning: A Survey on Raven's Progressive Matrices. arXiv preprint arXiv:2201.12382.

      Thank you for sharing these references. In fact, a recent study has shown that specific deep networks can indeed solve the same-different task (Tartaglini et al, 2023). However our broader point remains that the same-different or other such visual tasks are non-trivial for machine vision algorithms.

      Reviewer #1 (Recommendations For The Authors):

      Nothing to add to the public review. If my concerns turn out to be invalid, I apologize and will happily accept correction. If they are valid, I hope they will point toward a new version of this paper that optimizes the insights to be gained from this impressive dataset.

      Reviewer #2 (Recommendations For The Authors):

      My suggestions are as follows:

      (1) Analyze the fMRI data using the parametric modulation approach first at the single-subject level and then perform group analysis.

      To clarify, we have obtained image-level activations from each subject, and used it for all our analyses.

      (2) Think about a way to redefine visual homogeneity from a purely image-computable approach. In other words, visual homogeneity should be first defined as an image feature that is independent of any empirical response data. And then use the visual homogeneity scores to predict reaction times.

      While we understand what you mean, any image-computable representation such as from a deep network may carry its own biases and may not be an accurate representation of the underlying object representation. By contrast, neural dissimilarities in the visual cortex are strongly predictive of visual search oddball response times. That is why we used visual search oddball response times as a proxy for the underlying neural representation, and then asked whether some decision variable can be derived from this representation to explain both target present and absent judgements in visual search.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      The authors provide convincing experimental evidence of extended motivational signals encoded in the mouse anterior cingulate cortex (ACC) that are implemented by the orbitofrontal cortex (OFC)-to-ACC signaling during learning. The results are valuable to the field of motivation and cognition. The experimental methods used were state-of-the-art. The manuscript would further benefit from theory-driven analyses to inform a mechanistic understanding, particularly for the single-cell calcium imaging results. These results will be of interest to those interested in cortical function, learning, and/or motivation.

      We thank the reviewers for their thoughtful reading of our paper and providing constructive feedback. We have made the relevant changes to the manuscript to improve the writing and figures. We provide responses below to each of the reviewer’s comments.

      Reviewer #1 (Public Review):

      (1) An important conclusion (Figure 4) is that when mice are trained to run through no reward (N) cues in order to reach reward (R) cues, the OFC neurons projecting to ACC each respond to different specific events in a manner that ensures that collectively they tile the extended behavioural sequence. What I was less sure of was whether the ACC neurons do the same or not. Figure 3 suggests that on average ACC neurons maintain activity across N cues in order to get to R cues but I was not sure whether this was because all individual neurons did this or whether some had activity patterns like the OFC neurons projecting to ACC.

      We agree that it remains uncertain what individual ACC neurons do during the extended behavioral sequence. We now include a few sentences in the discussion about what we hypothesize, as we did not perform the cellular resolution imaging to determine this:

      “While we did not perform single-cell imaging of ACC in our task, we hypothesize that individual ACC neurons could encode the distribution of actions/opportunities47 (i.e. stop, run, lick, suppress lick) taken during R or N cues. ACC neurons could compute the relative value of the action taken such that more ACC neurons become recruited once mice learn to run out of N cues. The sustained increase in bulk ACC activity across N cue trials (Figure 2) could come from a stable sequence of individual neurons that encode the timescale of the actions taken. In this way, OFC projections would encode current motivation across N cues before learning, which then triggers ACC to compute the valuebased actions. Motivational signals in OFC would thus represent state since past rewards/goals, while in ACC these signals represent actions taken to pursue rewards/goals in the future.”

      (2) Figure 1 versus Figure 2: There does not seem to be a particular motivation for whether chemogenetic inactivation or optogenetic inhibition were used in different experiments. I think that this is not problematic but, if I am wrong and there were specific reasons for performing each experiment in a certain way, then further clarification as to why these decisions were made would be useful. If there is no particular reason, then simply explaining that this is the case might stop readers from seeking explanations.

      Thank you for this comment and we agree that clarification on this is important. We performed chemogenetic inhibition of ACC in Figure 1 to take a broad survey of behavioral effects throughout a 40-min long behavioral session, and performed optogenetic inhibition in Figure 2 because we wanted to restrict our inhibition to the few seconds of cue presentation during a behavioral session and across days. Furthermore, we wanted to combat any potential off-target effects that would come from repeated administration of CNO over the several days of training (Manvich et al 2018). We have included a couple sentences on page 4 to clarify this:

      “We proceeded to test whether these motivation related signals in ACC are required for learning. To restrict our inhibition to cue presentation portions of our task, and combat any potential off-target effects of CNO31 from repeated administration across several days of training, we used optogenetic inhibition.”

      (3) P5, paragraph 2. The authors argue that OFC and anteriomedial (AM) thalamic inputs into ACC are especially important for mediating motivation through N cues in order to reach R cues. Is this based on a statistical comparison between the activity in OFC or AM inputs as opposed to the other inputs?

      We determined that OFC and AM thalamic inputs to ACC are particularly important by comparing the pre-cue activity in a reward-no reward-reward trial sequence (RNR; Figure 3B). Specifically, we performed paired t-tests comparing pre-cue activity between N and R cues, and found a statistically significant increase for R cues but only for the OFC and AM inputs, not for the BLA or LC inputs.

      (4) P3, paragraph 2. Some papers by Khalighinejad and colleagues (eg Neuron 2020, Current Biology, 2022) might be helpful here in as much as they assess ACC roles in determining action frequency, initiation, and speed and mediating the relationship between reward availability and action frequency and speed.

      We thank the reviewer for bringing these relevant papers to our attention. We have included these papers in our citations in this paragraph.

      (5) Paragraph 1 "This learning is of a more deliberate, informed nature than habitual learning, as they are sensitive to the current value of outcomes and can lead to a novel sequence of actions for a desired outcome1-3." Should "they" be "it"?

      This is correct, we have edited this in the manuscript.

      Reviewer #2 (Public Review):

      Impact:

      The findings will be valuable for further research on the impact of motivational states on behaviour and cognition. The authors provided a promising concept of how persistent motivational states could be maintained, as well as established a novel, reproducible task assay. While experimental methods used are currently state-of-the-art, theoretical analysis seems to be incomplete/not extensive. We thank the reviewer for these comments. In our paper, we performed single-cell calcium imaging of OFC projection neurons to ACC to build a mechanistic understanding for the bulk ramp-like response we identified in these neurons with photometry. We identified ensembles of neurons that tile sequences of trials that match the bulk response, in particular a subset of neurons that are active at the time a reward (R) cue is reached after 2 no-reward (N) cues. We included a paragraph in the discussion to address future theory-driven analyses to address how computation is achieved by OFC projection neurons:

      “We linked the ramp-like increase in neural activity in OFC to motivation, but several questions still remain about how motivation is computed and why it would be represented as a ramp. Motivation could be computed as a combination of several variables such as time since last reward, value of reward, and effort to reach future rewards. Future theorydriven analyses could determine how motivation is computed, and whether individual variables of time, value, and effort, are encoded as clusters of similar tuned neurons, or mixed and collectively represented at the population level. In either case, it is likely that a combined map of task space and value-information carried by OFC are being used to inform downstream regions, such as ACC, for adjusting behavior. ”

      Reviewer #2 (Recommendations for the Authors):

      Overall, the layout of the figures seems a little bit chaotic and makes it hard to understand the boundaries between panels.

      We agree that the figure layout could be improved upon to aid the reader in moving from panel to panel. We have edited two of the main figures with layouts that are most irregular (Figures 2 and 4) to help with this.

      Figures/text should include the promoters used for protein expression so that readers understand which cell types would be affected.

      We have made sure to edit the figures to include the promoter of the viruses we used, and edited the text to include both the AAV serotype and promoter.

      Discuss why it is necessary for multiple prefrontal areas to be involved in maintaining motivational signals.

      We thank the reviewer for this comment. We believe that prefrontal areas would be recruited as tasks to study motivational states become more complex and require animals to keep track of task structure and perform value-guided actions. We have included a couple sentences in the final paragraph of the discussion about this:

      “Our work showed the recruitment of multiple frontal cortical areas in this process, which is to be expected as animals are required to build, maintain, and use representations of task structure and value to drive learned, motivated behaviors47. Future work can build upon the task we developed here to determine how the frontal cortex maintains motivational states across many more cue-outcome associations, and how these associations may dynamically change across time48”.

      Additionally, we included a short discussion on how in motivational signals differ between OFC and ACC in our work. We suggest OFC encodes current motivation before and after learning, which then leads ACC to represent learned actions taken and thus have a longer timescale motivational response (see response to Reviewer 1).

      Minor: Page 4, Line 1: "increase" instead of "increases".

      This is correct, we have edited this in the manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study provides important insights into the role of neurexins as regulators of synaptic strength and timing at the glycinergic synapse between neurons of the medial nucleus of the trapezoid body and the lateral superior olive, key components of the auditory brainstem circuit involved in computing sound source location from differences in the intensity of sounds arriving at the two ears. Through an elegant combination of genetic manipulation, fluorescence in-situ hybridization, ex vivo slice electrophysiology, pharmacology, and optogenetics, the authors provide convincing evidence to support their claims. While further work is needed to reveal the mechanistic basis by which neurexins influence glycinergic neurotransmission, this work will be of interest to both auditory and synaptic neuroscientists.

      We appreciate the recognition of the significance of our study in shedding light on the role of neurexins in regulating synaptic strength and timing at the glycinergic synapse. Indeed, further investigations are warranted to delve deeper into the specific role of each different variant of neurexins in the future. We hope that our work will spark more interest and collaboration in unraveling the complexities of molecular codes of synaptic function.

      Public Reviews:

      Reviewer #1 (Public Review):

      Jiang et al. demonstrated that ablating Neurexins results in alterations to glycinergic transmission and its calcium sensitivity, utilizing a robust experimental system. Specifically, the authors employed rAAV-Cre-EGFP injection around the MNTB in Nrxn1/2/3 triple conditional mice at P0, measuring Glycine receptor-dependent IPSCs from postsynaptic LSO neurons at P13-14. Notably, the authors presented a clear reduction of 60% and 30% in the amplitudes of opto- and electric stimulation-evoked IPSCs, respectively. Additionally, they observed changes in kinetics, alterations in PPR, and sensitivity to lower calcium and the calcium chelator, EGTA, indicating solid evidence for changes in presynaptic properties of glycinergic transmission.

      Furthermore, the authors uncovered an unexpected increase in sIPSC frequency without altering amplitude. Despite the reduction in evoked IPSC, immunostaining revealed an increase in GlyT2 and VGAT in TKO mice, supporting the notion of an increase in synapse number. However, the reviewer expresses caution regarding the authors' conclusion that "glycinergic neurotransmission likely by promoting the synapse formation/maintenance, which is distinct from the phenotypes observed in glutamatergic and GABAergic neurons (Chen et al., 2017; Luo et al., 2021)", as outlined in lines 173-175. The reviewer suggests that this statement may be overstated, pointing out the authors' own discussion in lines 254-265, which acknowledges multiple possibilities, including the potential that the increase in synapses is a consequence rather than a causal effect of Nrxn deletion.

      We appreciate the reviewer’s thoughtful evaluation of our study. We agree that our conclusion regarding the promotion of synapse formation/maintenance may have been overstated and recognize the need for a more nuanced interpretation of our findings. Accordingly, we have revised our interpretation by discussing carefully the various possibilities that may cause the observed increase in synapse number in line 256-266.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Jiang et al., explore the role of neurexins at glycinergic MNTB-LSO synapses. The authors utilize elegant and compelling ex vivo slice electrophysiology to assess how the genetic conditional deletion of Nrxns1-3 impacts inhibitory glycinergic synaptic transmission and found that TKO of neurexins reduced electrically and optically evoked IPSC amplitudes, slowed optically evoked IPSC kinetics and reduced presynaptic release probability. The authors use classic approaches including reduced [Ca2+] in ACSF and EGTA chelation to propose that changes in these evoked properties are likely driven by the loss of calcium channel coupling. Intriguingly, while evoked transmission was impaired, the authors reported that spontaneous IPSC frequency was increased, potentially due to an increased number of synapses in LSO. Overall, this manuscript provides important insight into the role of neurexins at the glycinergic MNTP-LSO synapse and further emphasizes the need for continued study of both the non-redundant and redundant roles of neurexins.

      We thank the reviewer for the strong comments and support of our work.

      Strengths:

      This well-written manuscript seamlessly incorporates mouse genetics and elegant ex vivo electrophysiology to identify a role for neurexins in glycinergic transmission at MNTB-LSO synapses. Triple KO of all neurexins reduced the amplitude and timing of evoked glycinergic synaptic transmission. Further, spontaneous IPSC frequency was increased. The evoked synaptic phenotype is likely a result of reduced presynaptic calcium coupling while the spontaneous synaptic phenotype is likely due to increased synapse numbers. While neuroligin-4 has been identified at glycinergic synapses, this study, to the best of my knowledge, is the first to study Nrxn function at these synapses.<br />

      We again appreciate the positive feedback on the strengths of our study. We agree that the observed reduction in evoked synaptic transmission and the increase in spontaneous IPSC frequency provide intriguing insights into the function of neurexins in regulating glycinergic synaptic activity.

      Weaknesses:

      The data are compelling and report an intriguing functional phenotype. The role of Neurexins redundantly controls calcium channel coupling has been previously reported. Mechanistic insight would significantly strengthen this study.

      We wholeheartedly agree with the reviewer that understanding how neurexins control calcium channel coupling at the presynaptic active zone is crucial for elucidating their role in synaptic transmission. While our current study has provided compelling evidence for the functional phenotypes of pan-neurexin deletion, we recognize the importance of investigating the underlying molecular mechanisms in future research. Exploring these mechanisms would undoubtedly enhance our understanding of neurexin function at various synapses and contribute to advancing the field.

      The claim that triple KO of Nrxns from MNTB increases the number of synapses in LSO is not strongly supported.

      We agree. Echoing the suggestion made by reviewer 1 (as mentioned above), we acknowledge that the claim regarding the increase in synapse numbers in the LSO following the triple knockout of neurexins from the MNTB was overstated. Consequently, we have revised our conclusions more carefully to reflect this adjustment.

      Despite the stated caveats of measuring electrically evoked currents and the more robust synaptic phenotypes observed using optically evoked transmission, the authors rely heavily on electrical stimulation for most measurements.

      We acknowledge that optogenetic stimulation offers crucial advantages, and we have provided a balanced discussion of the caveats associated with both methods in our manuscript. Additionally, we have conducted new optogenetic experiments specifically for measuring the paired-pulse ratio in control and Nrxn123 TKO mice. These results have been included as a new supplementary figure (Figure S2).

      For experiments involving EGTA and low Ca2+ manipulations, we opted for electrical stimulation due to concerns regarding potential side effects of optogenetics, including the phototoxicity and photobleaching during prolonged light exposure.

      The differential expression of individual neurexins might indicate that specific neurexins may dominantly regulate synaptic transmission, however, this possibility is not discussed in detail.

      We thank the reviewer for bringing up this important point. The differential expression of individual neurexins indeed suggests that specific neurexins may play dominant roles in regulating synaptic transmission. While our study primarily focused on the collective impact of ablating all neurexins, we acknowledge the significance of exploring the specific contributions of individual neurexin isoforms in the future. Understanding the distinct roles of each neurexin isoform could provide valuable insights into the precise mechanisms underlying synaptic function and plasticity. We have added discussion in our revised manuscript Line223-230.

      Reviewer #3 (Public Review):

      Summary:

      The authors investigate the hypothesis that neurexins serve a crucial role as regulators of the synaptic strength and timing at the glycinergic synapse between neurons of the medial nucleus of the trapezoid body (MNTB) and the lateral superior olivary complex (LSO). It is worth mentioning that LSO neurons are an integration station of the auditory brainstem circuit displaying high reliability and temporal precision. These features are necessary for computing interaural cues to derive sound source location from comparing the intensities of sounds arriving at the two ears. In this context, the authors' findings build up according to the hypothesis first by displaying that neurexins were expressed in the MNTB at varying levels. They followed this up with the deletion of all neurexins in the MNTB through the employment of a triple knock-out (TKO). Using electrophysiological recordings in acute brainstem slices of these TKO mice, they gathered solid evidence for the role of neurexins in synaptic transmission at this glycinergic synapse primarily by ensuring tight coupling of Ca2+ channels and vesicular release sites. Additionally, the authors uncovered a connection between the deletion of neurexins and a higher number of glycinergic synapses in TKO mice, for which they provided evidence in the form of immunostainings and related it to electrophysiological data on spontaneous release. Consequently, this investigation expands our knowledge on the molecular regulation of synaptic transmission at glycinergic synapses, as well as on the auditory processing at the level of the brainstem.

      Strengths:

      The authors demonstrate substantial results in support of the hypothesis of a critical role of neurexins for regulating glycinergic transmission in the LSO using various techniques. They provide evidence for the expression of neurexins in the MNTB and consecutively successfully generate and characterize the neurexin TKO. For their study on LSO IPSCs the authors transduced MNTB neurons by co-injection of virus-carrying Cre and ChR2 and subsequently optogenetically evoke release of glycine. As a result, they observed a significant reduction in amplitude and significantly slower rise and decay times of the IPSCs of the TKO in comparison with control mice in which MNTB neurons were only transduced with ChR2. Furthermore, they observed an increased paired pulse ratio (PPR) of LSO IPSCs in the TKO mice, indicating lower release probability. Elaborating on the hypothesis that neurexins are essential for the coupling of synaptic vesicles to Ca2+ channels, the authors show lowered Ca2+ sensitivity in the TKO mice. Additionally, they reveal convincing evidence for the connection between the increased frequency of spontaneous IPSC and the higher number of glycinergic synapses of the LSO in the TKO mice, revealed by immunolabeling against the glycinergic presynaptic markers GlyT2 or VGAT.

      We thank the reviewer for the thoughtful and thorough evaluation of the significance of investigating the role of neurexins in glycinergic transmission at the MNTB-LSO synapse, particularly in the context of auditory processing and sound localization. The positive feedback is greatly appreciated.

      Weaknesses:

      The major concern is novelty as this work on the effects of pan-neurexin deletion in a glycinergic synapse is quite consistent with the authors' prior work on glutamatergic synapses (Luo et al., 2020). The authors might want to further work out novel aspects and strengthen the comparative perspective. Conceptually, the authors might want to be more clear about interpreting the results on the altered dependence of release on voltage-gated Ca2+ influx (Ca2+ sensitivity, coupling).

      Regarding the reviewer’s concern about the novelty of our work, we acknowledge that our previous work has explored the effects of pan-neurexin deletion on glutamatergic synapses (Luo et al., 2020). However, we would like to point out that a novelty of our present study indeed stems from the exploration of how different types of synapses converge to employ the same mechanism of synaptic function, particularly in the context of neurexin-mediated regulation. Our previous study focused on glutamatergic synapses, the current study delves into the realm of glycinergic synapses, which represent a distinct population with unique properties and functions. Despite the differences between these synapse types, our findings reveal a commonality in the underlying mechanisms of synaptic regulation mediated by neurexins. This convergence of mechanisms across different synapse types highlights the fundamental role of neurexins in synaptic function and plasticity. By elucidating how neurexins regulate synaptic transmission at both excitatory and inhibitory synapses, we provide valuable insights into the general principles governing synaptic function. In addition, this comparative perspective may shed light on the complex interplay between excitatory and inhibitory neurotransmission, which is crucial for maintaining the balance of neuronal activity and network dynamics.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      During the developmental period spanning P3-P12, the MNTB-LSO synapses undergo a transition from GABAergic to glycinergic transmission. It is well-established that Neurexin plays a role in modulating GABAergic transmission. In the authors' experimental system, AAV was injected at P0, likely impacting GABAergic transmission, including potentially influencing synapse number, before subsequently affecting glycinergic transmission. A thoughtful discussion of how the experimental interventions might have influenced this developmental process and glycinergic transmission would enhance the clarity and interpretation of their findings.

      We thank the reviewer for raising the interesting topic of the transmitter switch during neurodevelopment. Strong evidence using gerbils and rats as animal models demonstrates that the MNTB-LSO synapses undergo a shift from GABAergic to glycinergic during the early development. However, in a more recent study by Friauf and colleagues (Fisher et al., 2019), patch-clamp recordings in acute mouse brainstem slices at P4-P11 combined with pharmacological blockade of GABAA receptors and/or glycine receptors clearly demonstrated no GABAergic synaptic component on LSO principal neurons, suggesting the transmitter subtype switch may be species different. We add a discussion in our revision to clarify this topic.

      Reviewer #2 (Recommendations For The Authors):

      The data are compelling and report an intriguing functional phenotype. Mechanistic insight into how this phenotype manifests would significantly strengthen this study. For example, which neuroligin is found at these MNTB-LSO synapses?

      We agree that investigating the underlying molecular mechanisms, particularly the specific function of each variant of neurexins and their respective ligands on the postsynaptic neurons, is crucial. Exploring these mechanisms, which extend beyond the scope of our current study, would undoubtedly enhance our understanding of neurexin function at various synapses and foster advancements in the field.

      Does the TKO alter the ability of MNTB inputs to induce AP firing in LSO neurons?

      Activation of the MNTB inputs does not directly induce AP firing in LSO neurons, because the MNTB-LSO synapses are glycinergic and serve to inhibit neuronal activity.

      We think the reviewer was to ask whether pan-neurexin deletion in the MNTB neurons alter their ability to impact the firing of LSO neurons. Indeed, the weakening of glycinergic transmission due to pan-neurexin ablation in MNTB neurons could potentially alter the excitation-inhibition (E/I) balance, thereby impacting the overall excitability of LSO neurons. We have conducted preliminary experiments to investigate this aspect and found that the E/I balance at LSO neurons was notably increased in TKO mice. We are currently preparing a manuscript to comprehensively address the role of neurexins at the auditory circuit and behavior levels.

      Additional calcium measurements using GECIs would provide insight into whether nanodomain calcium or total calcium is altered at these synapses.

      We appreciate the valuable suggestion provided by the reviewer. However, distinguishing between Ca2+ nanodomain and Ca2+ microdomain using Ca2+ imaging techniques requires advanced systems such as two-photon STED microscopy, which are beyond the scope of our current research.

      It is unclear why fluorescence intensity is quantified instead of the number of synaptic clusters in LSO. In addition to changes in synapse numbers, fluorescent intensity can indicate a number of other possible morphological changes.

      We appreciate the valuable suggestion from the reviewer. We have re-analyzed our imaging data to compare synaptic density. The results, as included in Fig.3f and 3h, confirm an increase in the number of glycinergic synapses after pan-neurexin deletion.

      The most robust synaptic phenotypes were produced by measuring light-evoked oIPSCs and the authors acknowledge that electrically-evoked eIPSCs might be contaminated by uninfected fibers or by other sources of glycinergic inputs. I suggest that IPSC PPRs, EGTA, and low Ca2+ experiments be performed using optogenetics.

      As discussed in our response to Public Reviews, we acknowledge that optogenetic stimulation offers crucial advantages, and we have provided a balanced discussion of the caveats associated with both methods in our manuscript. Additionally, following the reviewer’s suggestion, we have conducted new optogenetic experiments specifically for measuring the paired-pulse ratio in control and Nrxn123 TKO mice. We included this new dataset in supplementary Figure S2, which is consistent with our result obtained with electrically fiber stimulation.

      For experiments involving EGTA and low Ca2+ manipulations, we opted for electrical stimulation due to major concerns regarding potential side effects of optogenetics, including the phototoxicity and photobleaching during prolonged light exposure.

      It is sometimes confusing which type of evoked stimulation is being used (e.g. PPR, EGTA, and low Ca2+ experiments). To aid in the interpretations of these experiments, it would help to clarify.

      We appreciate the reviewer's suggestion regarding the clarity of the evoked stimulation methods used in our experiments. We have revised the manuscript to provide clearer descriptions of the specific types of evoked stimulation employed in each experiment. Thank you for guiding towards this clarification.

      The comparisons to Chen et al 2017 and the senior author's 2020 paper seem disjointed and do not contribute to the findings, which alone, are quite interesting. Given the prevailing notion that neurexins control different synaptic properties depending on the brain region and/or synapse studied, is it surprising that the findings observed here differ from previous studies of different synapses (glutamatergic and GABAergic)?

      By comparing previous studies at different types of neurons/synapses, our findings reveal a commonality in the underlying mechanisms of synaptic regulation mediated by neurexins. This convergence of mechanisms across different synapse types highlights the fundamental role of neurexins in synaptic function and plasticity. In addition, this comparative perspective may shed light on the complex interplay between excitatory and inhibitory neurotransmission, which is crucial for maintaining the balance of neuronal activity and network dynamics.

      Despite Nrxn3 being the most abundant Nrxn mRNA in MNTB neurons, the possible contributions of this highly expressed protein are not discussed.

      We thank the reviewer for bringing up this important point. The differential expression of individual neurexins indeed suggests that specific neurexins may play dominant roles in regulating synaptic transmission. While our study primarily focused on the collective impact of ablating all neurexins, we acknowledge the significance of exploring the specific contributions of individual neurexin isoforms in the future. Understanding the distinct roles of each neurexin isoform could provide valuable insights into the precise mechanisms underlying synaptic function and plasticity. We have added discussion in our revised manuscript Line223-230.

      Reviewer #3 (Recommendations For The Authors):

      • There are several instances of spaces missing and typos, please carefully check the manuscript.

      We greatly appreciate the reviewer's helpful feedback on the text that could be clarified or improved. We have meticulously edited the manuscript to address these concerns.

      • While studying the properties of IPSC, apart from optogenetic stimulation, the authors performed experiments with electrical fiber stimulation. Their findings showed a slightly significant reduction of the IPSC amplitude and no effect on the IPSCs kinetics when comparing the TKO and control. One weakness is the discrepancy between the results from the optogenetic and fiber stimulation experiments, which the authors contribute to inefficient transfection in the fiber stimulation experiments. The authors state that they tried to optimize their protocols for virus injection protocols. However, they do not elaborate on how the transfection rates could be improved in the discussion section. Moreover, it would be good to further address the reasons for the difference in amplitude between the control IPSCs in the optogenetic and fiber stimulation experiments.

      Echoing the suggestion by Reviewer 2 (see above), we acknowledge that optogenetic stimulation offers certain advantages, and we have provided a balanced discussion of the caveats associated with both methods in our manuscript. In addition, we have performed a new set of optogenetic experiment for the paired-pulse ratio measurement in control and Nrxn123 TKO mice and included as a new figure in supplementary figure S2.

      For experiments involving EGTA and low Ca2+ manipulations, we opted for electrical stimulation due to major concerns regarding potential side effects of optogenetics, including the phototoxicity and photobleaching during prolonged light exposure.

      We added the detail of virus injection strategy that optimized the transfection rates in the method section “To enhance virus infection efficiency, we decreased the dosage per injection while increasing the frequency of injections. Additionally, we ensured the pipette remained immobilized for 20-30 seconds to guarantee virus absorption at injection sites. As a result of this strategy, we estimated that the vast majority of MNTB neurons were inoculated by AAVs.” See line288-290.

      • Abstract: "ablation of all neurexins in MNTB neurons reduced not only the amplitude but also altered the kinetics of the glycinergic synaptic transmission at LSO neurons."

      Changed as suggested.

      • Consider revising to "The synaptic dysfunctions primarily resulted from an altered dependence of release on voltage-gated Ca2+ influx."

      We appreciate the reviewer's suggestion, which helps improve the clarity of our manuscript. We have revise the phrasing as follows: "The synaptic dysfunctions primarily resulted from an impaired calcium sensitivity of release and a loosened coupling between voltage-gated calcium channels and synaptic vesicles."

      • Line 39 should be vertebrates.

      Revised as suggested.

      • Line 49 it would sound better to say "which further points to the diverse actions of neurexins in specific neurons."

      Revised as suggested.

      • Line 60 - this paragraph could include information about GABA signaling from the MNTB to the LSO, because on line 113 you mention LSO neurons receive inhibitory GABAergic/glycinergic inputs, but when you do not mention blocking of GABA currents to isolate the glycinergic ones.

      We thank the reviewer for the thoughtful and detailed suggestion. We revised the text in line 60 to “In the mature mammalian auditory brainstem” and in line 113, we removed GABAergic to emphasize the nature of glycinergic synapse, particularly in the mouse brainstem where no GABAergic components are found (Fisher et al., 2019).

      • Line 72/73 it should be adeno-associated virus; line 73: "combining this with the RNAScope technique" sounds better.

      Changed as suggested.

      • Line 91 using the RNAScope technique; lines 97, 119 as a control; line 108 the functional organization.<br />

      Changed as suggested.

      • Line 113 should be a pharmacological approach; line 122 optogenetically evoked.

      Changed as suggested.

      • Line 132, 160: the control.

      Changed as suggested.

      • Line 147 thus were infected; line 148 likely to be present but were obscured .

      Changed as suggested.

      • Line 154 which has been routinely used.

      Changed as suggested.

      • Line 155 It is not supposed to be Figure 2h but 2i; following that Figure 2i should be 2j; in my opinion, Figure 2i does not display a strong depression for the TKO mice.

      Changed as suggested.

      • Line 171 a better flow is achieved by saying: together these data show.

      Changed as suggested.

      • EC50 rather than IC50 of [Ca2+].

      Changed as suggested.

      • 180 it is better to say "we approached the matter by..."; line 183 while recording;

      Changed as suggested.

      • Line 203 were much stronger than the effect at control synapses; line 206 tightly clustering.

      Changed as suggested.

      • Line 212 sounds like they provide evidence for retina and spinal cord as well, should be made clear.

      Changed as suggested.

      • Line 289 previously.

      Changed as suggested.

      • Line 295 should be 30 min.

      Changed as suggested.

      • Line 336, 337 confocal microscope.

      Changed as suggested.

      • Please provide the number of data points also in figure captions or in the results section.

      Added in the captions as suggested.

      • Line 533, a better phrasing would be: the blocking effect of 0.2 mM Ca on IPSC amplitude.

      Changed as suggested.

      • Explain either in the methods or result section how was the EC50 of Ca2+ calculated.

      Added in the methods as suggested.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study provides important evidence supporting the ability of a new type of neuroimaging, OPM-MEG system, to measure beta-band oscillation in sensorimotor tasks on 2-14 years old children and to demonstrate the corresponding development changes, since neuroimaging methods with high spatiotemporal resolution that could be used on small children are quite limited. The evidence supporting the conclusion is solid but lacks clarifications about the much-discussed advantages of OPM-MEG system (e.g., motion tolerance), control analyses (e.g., trial number), and rationale for using sensorimotor tasks. This work will be of interest to the neuroimaging and developmental science communities.

      We thank the editors and reviewers for their time and comments on our manuscript. We have responded in detail to the comments, on a point-by-point basis, below. Included in our responses (and our revised manuscript) are additional analyses to control for trial count, clarification of the advantages of OPM-MEG, and justification of our use of sensory (as distinct from motor) stimulation. In what follows, our responses are in bold typeface; additions to our manuscript are in bold italic typeface. 

      Reviewer #1 (Public Review):

      Summary:

      Compared with conventional SQUID-MEG, OPM-MEG offers theoretical advantages of sensor configurability (that is, sizing to suit the head size) and motion tolerance (the sensors are intrinsically in the head reference frame). This study purports to be the first to experimentally demonstrate these advantages in a developmental study from age 2 to age 34. In short, while the theoretical advantages of OPM-MEG are attractive - both in terms of young child sensitivity and in terms of motion tolerance - neither was in fact demonstrated in this manuscript. We are left with a replication of SQUID-MEG observations, which certainly establishes OPM-MEG as "substantially equivalent" to conventional technology but misses the opportunity to empirically demonstrate the much-discussed theoretical advantages/opportunities.

      Thank you for reviewing our manuscript. We agree that our results demonstrate substantial equivalence with conventional MEG. However, as mentioned by Reviewer 3, most past studies have “focused on older children and adolescents (e.g., 9-15 years old)” whereas our youngest group is 25 years. We believe that by obtaining data of sufficient quality in these age groups, without the need for any restriction of head movement, we have demonstrated the advantage of OPM-MEG. We now have made this clear in our discussion:

      “…our primary aim was to test the feasibility of OPM-MEG for neurodevelopmental studies. Our results demonstrate we were able to scan children down to age 2 years, measuring high-fidelity electrophysiological signals and characterising the neurodevelopmental trajectory of beta oscillations. The fact that we were able to complete this study demonstrates the advantages of OPM-MEG over conventional-MEG, the latter being challenging to deploy across such a large age range…”

      Strengths:

      A replication of SQUID-MEG observations, which certainly establishes OPM-MEG as "substantially equivalent" to conventional technology but misses the opportunity to empirically demonstrate the much-discussed theoretical advantages/opportunities.

      As noted above the demonstration of equivalence was one of our primary aims. We have elaborated further on the advantages below.

      Weaknesses:

      The authors describe 64 tri-axial detectors, which they refer to as 192 channels. This is in keeping with some of the SQUID-MEG description, but possibly somewhat disingenuous. For the scientific literature, perhaps "64 tri-axial detectors" is a more parsimonious description.

      The number of channels in a MEG system refers to the number of independent measurements of magnetic field. This, in turn, tells us the number of degrees of freedom in the data that can be exploited by algorithms like signal space separation or beamforming. E.g. the MEGIN (cryogenic) MEG system has 306 channels, 102 magnetometers and 204 planar gradiometers. Sensors are constructed as “triple sensor elements” with one magnetometer and 2 gradiometers (in orthogonal orientations) centred on a single location. In our system, each sensor has three orthogonal metrics of magnetic field which are (by definition) independent. We have 64 such sensors, and therefore 192 independent channels – indeed when implementing algorithms like SSS we have shown we can exploit this number of degrees of freedom.1 192 channels is therefore an accurate description of the system.

      A small fraction (<20%) of trials were eliminated for analysis because of "excess interference" - this warrants further elaboration.

      We agree that this is an important point. We now state in our methods section:

      “…Automatic trial rejection was implemented with trials containing abnormally high variance (exceeding 3 standard deviations from the mean) removed. All experimental trials were also inspected visually by an experienced MEG scientist, to exclude trials with large spikes/drifts that were missed by the automatic approach. In the adult group, there was a significant overlap between automatically and manually detected bad trials (0.7+-1.6 trials were only detected manually). In the children 10.0 +-9.4 trials were only detected manually)…”

      We also note that the other reviewers and editor questioned whether the higher rejection rate in children had any bearing on results. This is an extremely important question. In revising the manuscript this has also been taken into account with all data reanalysed with equal trial counts in children and adults. Results are presented in Supplementary Information Section 5.

      Figure 3 shows a reduced beta ERD in the youngest children. Although the authors claim that OPMMEG would be similarly sensitive for all ages and that SQUID-MEG would be relatively insensitive to young children, one trivial counterargument that needs to be addressed is that OPM has NOT in fact increased the sensitivity to young child ERD. This can possibly be addressed by analogous experiments using a SQUID-based system. An alternative would be to demonstrate similar sensitivity across ages using OPM to a brain measure such as evoked response amplitude. In short, how does Figure 3 demonstrate the (theoretical) sensitivity advantage of OPM MEG in small heads ?

      We completely understand the referees’ point – indeed the question of whether a neuromagnetic effect really changes with age, or apparently changes due to a drop in sensitivity (caused by reduced head size or - in conventional MEG and fMRI - increased subject movement) is a question that can be raised in all neurodevelopmental studies.

      Our authors have many years’ experience conducting studies using conventional MEG (including in neurodevelopment) and agreed that the idea of scanning subjects down to age two in conventional MEG would not be practical; their heads are too small and they typically fail to tolerate an environment where they are forced to remain still for long periods. Even if we tried a comparative study using conventional MEG, the likely data exclusion rate would be so high that the study would be confounded. This is why most conventional MEG studies only scan older children and adolescents. For this reason, we cannot undertake the comparative study the reviewer suggests. There are however two reasons why we believe sensitivity is not driving the neurodevelopmental effects that we observe:

      Proximity of sensors to the head: 

      For an ideal wearable MEG system, the distance between the sensors and the scalp surface (sensor proximity) would be the same regardless of age (and size), ensuring maximum sensitivity in all subjects. To test how our system performed in this regard, we undertook analyses to compute scalp-to-sensor distances. This was done in two ways:

      (1) Real distances in our adaptable system: We took the co-registered OPM sensor locations and computed the Euclidean distance from the centre of the sensitive volume (i.e. the centre of the vapour cell) to the closest point on the scalp surface. This was measured independently for all sensors, and an average across sensors calculated. We repeated this for all participants (recall participants wore helmets of varying size and this adaptability should help minimise any relationship between sensor proximity and age).

      (2) Simulated distances for a non-adaptable system: Here, the aim was to see how proximity might have changed with age, had only a single helmet size been used. We first identified the single example subject with the largest head (scanned wearing the largest helmet) and extracted the scalpto-sensor distances as above. For all other subjects, we used a rigid body transform to co-register their brain to that of the example subject (placing their head (virtually) inside the largest helmet). Proximity was then calculated as above and an average across sensors calculated. This was repeated for all participants.

      In both analyses, sensor proximity was plotted against age and significant relationships probed using Pearson correlation. 

      In addition, we also wanted to probe the relation between sensor proximity and head circumference. Head circumference was estimated by binarising the whole head MRI (to delineate volume of the head), and the axial slice with the largest circumference around was selected. We then plotted sensor proximity versus head circumference, for both the real (adaptive) and simulated (nonadaptive) case (expecting a negative relationship – i.e. larger heads mean closer sensor proximity). The slope of the relationship was measured and we used a permutation test to determine whether the use of adaptable helmets significantly lowered the identified slope (i.e. do adaptable helmets significantly improve sensor proximity in those with smaller head circumference).

      Results are shown in Figure R1. We found no measurable relationship between sensor proximity and age (r = -0.195; p = 0.171) in the case of the real helmets (panel A). When simulating a non-adaptable helmet, we did see a significant effect of age on scalp-to-sensor distance (r = -0.46; p = 0.001; panel B). This demonstrates the advantage of the adaptability of OPM-MEG; without the ability to flexibly locate sensors, we would have a significant confound of sensor proximity. 

      Plotting sensor proximity against head circumference we found a significant negative relationship in both cases (r = -0.37; p = 0.007 and  r = -0.78; p = 0.000001); however, the difference between slopes was significant according to a permutation test (p < 0.025) suggesting that adaptable has indeed improved sensor proximity in those with smaller head circumference. This again shows the benefits of adaptability to head size.

      Author response image 1.

      Scalp-to-sensor distance as a function of age (A/B) and head circumference (C/D). A and C show the case for the real helmets; B and D show the simulated non-adaptable case.

      In sum, the ideal wearable system would see sensors located on the scalp surface, to get as close as possible to the brain in all subjects. Our system of multiple helmet sizes is not perfect in this regard (there is still a significant relationship between proximity and head circumference). However, our solution has offered a significant improvement over a (simulated) non-adaptable system. Future systems should aim to improve even further on this, either by using additively manufactured bespoke helmets for every subject (this is a gold standard, but also costly for large studies), or potentially adaptable flexible helmets.

      Burst amplitudes:

      The reviewer suggested to “demonstrate similar sensitivity across ages using OPM to a brain measure”. We decided not to use the evoked response amplitude (as suggested), since this would be expected to change with age. Instead, we used the amplitude of the bursts.

      Our manuscript shows a significant correlation between beta modulation and burst probability – implying that the stimulus-related drop in beta amplitude occurs because bursts are less likely to occur. Further, we showed significant age-related changes in both beta amplitude and burst probability leading to a conclusion that the age dependence of beta modulation was caused by changes in the likelihood of bursts (i.e. bursts are less likely to ’switch off’ during sensory stimulation in children). We have now extended these analyses to test whether burst amplitude also changes significantly with age – we reasoned that if burst amplitude remained the same in children and adults, this would not only suggest that beta modulation is driven by burst probability (distinct from burst amplitude), but also show directly that the beta effects we see are not attributable to a lack of sensitivity in younger people. 

      We took the (unnormalized) beamformer projected electrophysiological time series from sensorimotor cortex and filtered it 5-48 Hz (the motivation for the large band was because bursts are known to be pan-spectral and have lower frequency content in children; this band captures most of the range of burst frequencies highlighted in our spectra). We then extracted the timings of the bursts, and for each burst took the maximum projected signal amplitude. These values were averaged across all bursts in an individual subject, and plotted for all subjects against age.

      Author response image 2.

      Beta burst amplitude as a function of age; A) shows index finger simulation trials; B shows little finger stimulation trials. In both case there was no significant modulation of burst amplitude with age.

      Results (see Figure R2) showed that the amplitude of the beta burst showed no significant age-related modulation (R2 = 0.01, p = 0.48 for index finger and R2 = 0.01, p = 0.57 for the little finger). This is distinct from both burst probability and task induced beta modulation. This adds weight to the argument that the diminished beta modulation in children is not caused by a lack of sensitivity to the MEG signal and supports our conclusion that burst probability is the primary driver of the agerelated changes in beta oscillations.

      Both of the above analyses have been added to our supplementary information and mentioned in the main manuscript. The first shows no confound of sensor proximity to the scalp with age in our study. The second shows that the bursts underlying the beta signal are not significantly lower amplitude in children – which we reasoned they would be if sensitivity was diminished at younger ages. We believe that the two together suggest that we have mitigated a sensitivity confound in our study.

      The data do not make a compelling case for the motion tolerance of OPM-MEG. Although an apparent advantage of a wearable system, an empirical demonstration is still lacking. How was motion tracked in these participants?

      We agree that this was a limitation of our experiment. 

      We have the equipment to track motion of the head during an experiment, using IR retroreflective markers placed on the helmet and a set of IR cameras located inside the MSR. However, the process takes a long time to set up, it lacks robustness, and would have required an additional computer (the one we typically use was already running the somatosensory stimulus and video). When the study was designed, we were concerned that the increased set up time for motion tracking would cause children to get bored, and result in increased participant drop out. For this reason we decided not to capture motion of the head during this study.

      With hindsight this was a limitation which – as the reviewer states – makes us unable to prove that motion robustness was a significant advantage for this study. That said, during scanning there was both a parent and an experimenter in the room for all of the children scanned, and anecdotally we can say that children tended to move their head during scans – usually to talk to the parent. Whilst this cannot be quantified (and is therefore unsatisfactory) we thought it worth mentioning in our discussion, which reads:

      “…One limitation of the current study is that practical limitations prevented us from quantitatively tracking the extent to which children (and adults) moved their head during a scan. Anecdotally however, experimenters present in the room during scans reported several instances where children moved, for example to speak to their parents who were also in the room. Such levels of movement could not be tolerated in conventional MEG or MRI and so this again demonstrates the advantages afforded by OPM-MEG…”

      As a note, empirical demonstrations of the motion tolerance of OPM-MEG have been published previously: Early demonstrations included Boto et al. 2 who captured beta oscillations in adults playing a ball game and Holmes et al. who measured visual responses as participants moved their head to change viewing angle3. In more recent demonstrations, Seymour et al. measured the auditory evoked field in standing mobile participants4; Rea et al. measured beta modulation as subjects carried out a naturalistic handwriting task5 and Holmes et al measured beta modulation as a subject walked around a room.6

      Furthermore, while the introduction discusses at some length the phenomenon of PMBR, there is no demonstration of the recording of PMBR (or post-sensory beta rebound). This is a shame because there is literature suggesting an age-sensitivity to this, that the optimal sensitivity of OPM-MEG might confirm/refute. There is little evidence in Figure 3 for adult beta rebound. Is there an explanation for the lack of sensitivity to this phenomenon in children/adolescents? Could a more robust paradigm (button-press) have shed light on this?

      We understand the question. There are two limitations to the current study in respect to measuring the PMBR:

      Firstly, sensory tasks generally do not induce as strong a PMBR as motor tasks and with this in mind a stronger rebound response could have been elicited using a button press. However, it was our intention to scan children down to age 2 and we were sceptical that the youngest children would carry out a button press as instructed. For this reason we opted for entirely passive stimulation, requiring no active engagement from our participants. The advantages of this was a stimulus that all subjects could engage with. However, this was at the cost of a diminished rebound.

      The second limitation relates to trial length. Multiple studies have shown that the PMBR can last over ~10 s 7,8. Indeed, Pfurtscheller et al. argued in 1999 that it was necessary to leave 10 s between movements to allow the PMBR to return to a true baseline9, though this has rarely been adhered to in the literature. Here, we wanted to keep recordings short for the comfort of the younger participants, so we adopted a short trial duration. However, a consequence of this short trial length is that it becomes impossible to access the PMBR directly; one can only measure beta modulation with the task. This limitation has now been addressed explicitly in our discussion:

      “…this was the first study of its kind using OPM-MEG, and consequently aspects of the study design could have been improved. Firstly, the task was designed for children; it was kept short while maximising the number of trials (to maximise signal to noise ratio). However, the classical view of beta modulation includes a PMBR which takes ~10 s to reach baseline following task cessation7–9. Our short trial duration therefore doesn’t allow the rebound to return to baseline between trials, and so conflates PMBR with rest. Consequently, we cannot differentiate the neural generators of the task induced beta power decrease and the PMBR; whilst this helped ensure a short, child friendly task, future studies should aim to use longer rest windows to independently assess which of the two processes is driving age related changes…”

      Data on functional connectivity are valuable but do not rely on OPM recording. They further do not add strength to the argument that OPM MEG is more sensitive to brain activity in smaller heads - in fact, the OPM recordings seem plagued by the same insensitivity observed using conventional systems.

      Given the demonstration above that bursts are not significantly diminished in amplitude in children relative to adults; and further given the demonstrations in the literature (e.g. Seedat et al.10) that functional connectivity is driven by bursts, we would argue that the effects of connectivity changing with age are not related to sensitivity but rather genuinely reflect a lack of coordination of brain activity.

      The discussion of burst vs oscillations, while highly relevant in the field, is somewhat independent of the OPM recording approach and does not add weight to the OPM claims.

      We agree that the burst vs. oscillations discussion does not add weight to the OPM claims per se. However, we had two aims of our paper, the second being to “investigate how task-induced beta modulation in the sensorimotor cortices is related to the occurrence of pan-spectral bursts, and how the characteristics of those bursts change with age.” As the reviewer states, this is highly relevant to the field, and therefore we believe adds impact, not only to the paper, but also by extension to the technology.

      In short, while the theoretical advantages of OPM-MEG are attractive - both in terms of young child sensitivity and in terms of motion tolerance, neither was in fact demonstrated in this manuscript. We are left with a replication of SQUID-MEG observations, which certainly establishes OPM-MEG as "substantially equivalent" to conventional technology but misses the opportunity to empirically demonstrate the much-discussed theoretical advantages/opportunities.

      We thank the referee for the time and important contributions to this paper. We believe the fact that we were able to record good data in children as young as two years old was, in itself, an experimental realisation of the ‘theoretical advantages’ of OPM-MEG. Our additional analyses, inspired by the reviewers comments, help to clarify the advantages of OPM-MEG over conventional technology. The reviewers’ insights have without doubt improved the paper.

      Reviewer #2 (Public Review):

      Summary:

      The authors introduce a new 192-channel OPM system that can be configured using different helmets to fit individuals from 2 to 34 years old. To demonstrate the veracity of the system, they conduct a sensorimotor task aimed at mapping developmental changes in beta oscillations across this age range. Many past studies have mapped the trajectory of beta (and gamma) oscillations in the sensorimotor cortices, but these studies have focused on older children and adolescents (e.g., 9-15 years old) and used motor tasks. Thus, given the study goals, the choice of a somatosensory task was surprising and not justified. The authors recorded a final sample of 27 children (2-13 years old) and 24 adults (21-34 years) and performed a time-frequency analysis to identify oscillatory activity. This revealed strong beta oscillations (decreases from baseline) following the somatosensory stimulation, which the authors imaged to discern generators in the sensorimotor cortices. They then computed the power difference between 0.3-0.8 period and 1.0-1.5 s post-stimulation period and showed that the beta response became stronger with age (more negative relative to the stimulation period). Using these same time windows, they computed the beta burst probability and showed that this probability increased as a function of age. They also showed that the spectral composition of the bursts varied with age. Finally, they conducted a whole-brain connectivity analysis. The goals of the connectivity analysis were not as clear as prior studies of sensorimotor development have not conducted such analyses and typically such whole-brain connectivity analyses are performed on resting-state data, whereas here the authors performed the analysis on task-based data. In sum, the authors demonstrate that they can image beta oscillations in young children using OPM and discern developmental effects.

      Thank you for this summary and for taking the time to review our manuscript.

      Strengths:

      Major strengths of the study include the novel OPM system and the unique participant population going down to 2-year-olds. The analyses are also innovative in many respects.

      Thank you – we also agree that the major strength is in the unique cohort.

      Weaknesses:

      Several weaknesses currently limit the impact of the study. 

      First, the choice of a somatosensory stimulation task over a motor task was not justified. The authors discuss the developmental motor literature throughout the introduction, but then present data from a somatosensory task, which is confusing. Of note, there is considerable literature on the development of somatosensory responses so the study could be framed with that.

      We completely understand the referee’s point, and we agree that the motivation for the somatosensory task was not made clear in our original manuscript.

      Our choice of task was motivated completely by our targeted cohort; whilst a motor task would have been our preference, it was generally felt that making two-year-olds comply with instructions to press a button would have been a significant challenge. In addition, there would likely have been differences in reaction times. By opting for a passive sensory stimulation we ensured compliance, and the same stimulus for all subjects. We have added text on this to our introduction as follows:

      “…Here, we combine OPM-MEG with a burst analysis based on a Hidden Markov Model (HMM) 10–12 to investigate beta dynamics. We scanned a cohort of children and adults across a wide age range (upwards from 2 years old). Because of this, we implemented a passive somatosensory task which can be completed by anyone, regardless of age…”

      We also state in our discussion:

      “…here we chose to use passive (sensory) stimulation. This helped ensure compliance with the task in subjects of all ages and prevented confounds of e.g. reaction time, force, speed and duration of movement which would be more likely in a motor task.7,8 However, there are many other systems to choose and whether the findings here regarding beta bursts and the changes with age also extend to other brain networks remains an open question.…”

      Regarding the neurodevelopmental literature – we are aware of the literature on somatosensory evoked responses – particularly median nerve stimulation – but we can find little on the neurodevelopmental trajectory of somatosensory induced beta oscillations (the topic of our paper). We have edited our introduction as follows:

      “…All these studies probed beta responses to movement execution; in the case of tactile stimulation (i.e. sensory stimulation without movement) both task induced beta power loss, and the post stimulus rebound have been consistently observed in adults9,13–18. Further, beta amplitude in sensory cortex has been related to attentional processes19 and is broadly thought to carry top down top down influence on primary areas20. However, there is less literature on how beta modulation changes with age during purely sensory tasks.…”

      We would be keen for the reviewer to point to any specific papers in the literature that we may have missed.

      Second, the primary somatosensory response actually occurs well before the time window of interest in all of the key analyses. There is an established literature showing mechanical stimulation activates the somatosensory cortex within the first 100 ms following stimulation, with the M50 being the most robust response. The authors focus on a beta decrease (desynchronization) from 0.3-0.8 s which is obviously much later, despite the primary somatosensory response being clear in some of their spectrograms (e.g., Figure 3 in older children and adults). This response appears to exhibit a robust developmental effect in these spectrograms so it is unclear why the authors did not examine it. This raises a second point; to my knowledge, the beta decrease following stimulation has not been widely studied and its function is unknown. The maps in Figure 3 suggest that the response is anterior to the somatosensory cortex and perhaps even anterior to the motor cortex. Since the goal of the study is to demonstrate the developmental trajectory of well-known neural responses using an OPM system, should the authors not focus on the best-understood responses (i.e., the primary somatosensory response that occurs from 0.0-0.3 s)?

      We understand the reviewer’s point. The original aim of our manuscript was to investigate the neurodevelopmental trajectory of beta oscillations, not the evoked response. In fact, the evoked response in this paradigm is complicated by the fact that there are three stimuli in a very short (<500 ms) time window. For this reason, we prefer the focus of our paper to remain on oscillations.

      Nevertheless, we agree that not including the evoked responses was a missed opportunity.  We have now added evoked responses to our analysis pipeline and manuscript. As surmised by the reviewer, the M50 shows neurodevelopmental changes (an increase with age). Our methods section has been updated accordingly and Figure 3 has been modified. The figure and caption are copied below for the convenience of the reviewer.

      Author response image 3.

      Beta band modulation with age: (A) Brain plots show slices through the left motor cortex, with a pseudo-T-statistical map of beta modulation (blue/green) overlaid on the standard brain. Peak MNI coordinates are indicated for each subgroup. Time frequency spectrograms show modulation of the amplitude of neural oscillations (fractional change in spectral amplitude relative to the baseline measured in the 2.5-3 s window). Vertical lines indicate the time of the first braille stimulus. In all cases results were extracted from the location of peak beta desynchronisation (in the left sensorimotor cortex). Note the clear beta amplitude reduction during stimulation. The inset line plots show the 4-40 Hz trial averaged phase-locked evoked response, with the expected prominent deflections around 20 and 50 ms. (B) Maximum difference in beta-band amplitude (0.3-0.8 s window vs 1-1.5 s window) plotted as a function of age (i.e., each data point shows a different participant; triangles represent children, circles represent adults). Note significant correlation (𝑅2 \= 0.29, 𝑝 = 0.00004 *). (C) Amplitude of the P50 component of the evoked response plotted against age. There was no significant correlation (𝑅2 \= 0.04, 𝑝 = 0.14 ). All data here relate to the index finger stimulation; similar results are available for the little finger stimulation in Supplementary Information Section 1.

      Regarding the developmental effects, the authors appear to compute a modulation index that contrasts the peak beta window (.3 to .8) to a later 1.0-1.5 s window where a rebound is present in older adults. This is problematic for several reasons. First, it prevents the origin of the developmental effect from being discerned, as a difference in the beta decrease following stimulation is confounded with the beta rebound that occurs later. A developmental effect in either of these responses could be driving the effect. From Figure 3, it visually appears that the much later rebound response is driving the developmental effect and not the beta decrease that is the primary focus of the study. Second, these time windows are a concern because a different time window was used to derive the peak voxel used in these analyses. From the methods, it appears the image was derived using the .3-.8 window versus a baseline of 2.5-3.0 s. How do the authors know that the peak would be the same in this other time window (0.3-0.8 vs. 1.0-1.5)? Given the confound mentioned above, I would recommend that the authors contrast each of their windows (0.3-0.8 and 1.0-1.5) with the 2.5-3.0 window to compute independent modulation indices. This would enable them to identify which of the two windows (beta decrease from 0.3-0.8 s or the increase from 1.0-1.5 s) exhibited a developmental effect. Also, for clarity, the authors should write out the equation that they used to compute the modulation index. The direction of the difference (positive vs. negative) is not always clear.

      We completely understand the referee’s point; referee 1 made a similar point. In fact, there are two limitations of our paradigm regarding the measurement of PMBR versus the task-induced beta decrease:

      Firstly, sensory tasks generally do not induce as strong a PMBR as motor tasks and with this in mind a stronger rebound response could have been elicited using a button press. However, as described above it was our intention to scan children down to age 2 and we were sceptical that the youngest children would carry out a button press as instructed.

      The second limitation relates to trial length. Multiple studies have shown that the PMBR can last over ~10 s7,8. Indeed, Pfurtscheller et al. argued in 1999 that it was necessary to leave 10 s between movements to allow the PMBR to return to a true baseline9 Here, we wanted to keep recordings relatively short for the younger participants, and so we adopted a short trial duration. However, a consequence of this short trial length is that it becomes impossible to access the PMBR directly because the PMBR of the nth trial is still ongoing when the (n+1)th trial begins. Because of this, there is no genuine rest period, and so the stimulus induced beta decrease and subsequent rebound cannot be disentangled. This limitation has now been made clear in our discussion as follows:

      “…this was the first study of its kind using OPM-MEG, and consequently aspects of the study design could have been improved. Firstly, the task was designed for children; it was kept short while maximising the number of trials (to maximise signal to noise ratio). However, the classical view of beta modulation includes a PMBR which takes ~10 s to reach baseline following task cessation7–9. Our short trial duration therefore doesn’t allow the rebound to return to baseline between trials, and so conflates PMBR with rest. Consequently, we cannot differentiate the neural generators of the task induced beta power decrease and the PMBR; whilst this helped ensure a short, child friendly task, future studies should aim to use longer rest windows to independently assess which of the two processes is driving age related changes…”

      To clarify our method of calculating the modulation index, we have added the following statement to the methods:

      “The beta modulation index was calculated using the equation , where , and are the average Hilbert-envelope-derived amplitudes in the stimulus (0.3-0.8s), post-stimulus (1-1.5s) and baseline (2.5-3s) windows, respectively.”

      Another complication of using a somatosensory task is that the literature on bursting is much more limited and it is unclear what the expectations would be. Overall, the burst probability appears to be relatively flat across the trial, except that there is a sharp decrease during the beta decrease (.3-.8 s). This matches the conventional trial-averaging analysis, which is good to see. However, how the bursting observed here relates to the motor literature and the PMBR versus beta ERD is unclear.

      Again, we agree completely; a motor task would have better framed the study in the context of existing burst literature – but as mentioned above, making 2-year-olds comply with the instructions for a motor task would have been difficult. Interestingly in a recent paper, Rayson et al. used EEG to investigate burst activity in infants (9 and 12 months) and adults during observed movement execution, with results showing stimulus induced decrease in beta burst rate at all ages, with the largest effects in adults21. This paper was not yet published when we submitted our article but does help us to frame our burst results since there is strong agreement between their study and ours. We now mention this study in both our introduction and discussion. 

      Another weakness is that all participants completed 42 trials, but 19% of the trials were excluded in children and 9% were excluded in adults. The number of trials is proportional to the signal-to-noise ratio. Thus, the developmental differences observed in response amplitude could reflect differences in the number of trials that went into the final analyses.

      This is an important observation and we thank the reviewer for raising the issue. We have now re-analysed all of our data, removing trials in the adults such that the overall number of trials was the same as for the children. All effects with age remained significant. We chose to keep the Figures in the main manuscript with all good trials (as previously) and present the additional analyses (with matched trial numbers) in supplementary information. However, if the reviewer feels strongly, we could do it the other way around (there is very little difference between the results).

      Reviewer #3 (Public Review):

      This study demonstrated the application of OPM-MEG in neurodevelopment studies of somatosensory beta oscillations and connections with children as young as 2 years old. It provides a new functional neuroimaging method that has a high spatial-temporal resolution as well wearable which makes it a new useful tool for studies in young children. They have constructed a 192-channel wearable OPM-MEG system that includes field compensation coils which allow free head movement scanning with a relatively high ratio of usable trials. Beta band oscillations during somatosensory tasks are well localized and the modulation with age is found in the amplitude, connectivity, and panspectral burst probability. It is demonstrated that the wearable OPM-MEG could be used in children as a quite practical and easy-to-deploy neuroimaging method with performance as good as conventional MEG. With both good spatial (several millimeters) and temporal (milliseconds) resolution, it provides a novel and powerful technology for neurodevelopment research and clinical applications not limited to somatosensory areas.

      We thank the reviewer for their summary, and their time in reviewing our manuscript.

      The conclusions of this paper are mostly well supported by data acquired under the proper method. However, some aspects of data analysis need to be improved and extended.

      (1) The colour bars selected for the pseudo-T-static pictures of beta modulation in Figures 2 and 3, which are blue/black and red/black, are not easily distinguished from the anatomical images which are grey-scale. A colour bar without black/white would make these figures better. The peak point locations are also suggested to be marked in Figure 2 and averaged locations in Figure 3 with an error bar.

      Thank you for this comment which we certainly agree with. The colour scheme used has now been changed to avoid black. We have also added peak locations. 

      (2) The data points in plots are not constant across figures. In Figures 3 and 5, they are classified into triangles and circles for children and adults, but all are circles in Figures 4 and 6.

      Thank you! We apologise for the confusion. Data points are now consistent across plots.

      (3) Although MEG is much less susceptible to conductivity inhomogeneity of the head than EEG, the forward modulating may still be impacted by the small head profile. Add more information about source localization accuracy and stability across ages or head size.

      This is an excellent point. We have added to our discussion relating to the accuracy of the forward model. 

      “…We failed to see a significant difference in the spatial location of the cortical representations of the index and little finger; there are three potential reasons for this. First, the system was not designed to look for such a difference – sensors were sparsely distributed to achieve whole head coverage (rather than packed over sensory cortex to achieve the best spatial resolution in one area22). Second, our “pseudo-MRI” approach to head modelling (see Methods) is less accurate than acquisition of participantspecific MRIs, and so may mask subtle spatial differences. Third, we used a relatively straightforward technique for modelling magnetic fields generated by the brain (a single shell forward model). Although MEG is much less susceptible to conductivity inhomogeneity of the head than EEG, the forward model may still be impacted by the small head profile. This may diminish spatial resolution and future studies might look to implement more complex models based on e.g. finite element modelling23. Finally, previous work 24 suggested that, for a motor paradigm in adults, only the beta rebound, and not the power reduction during stimulation, mapped motortopically. This may also be the case for purely sensory stimulation. Nevertheless, it remains the case that by placing sensors closer to the scalp, OPM-MEG should offer improved spatial resolution in children and adults; this should be the topic of future work…”

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      Major items to further test include the differing number of trials, the windowing issue, and the focus on motor findings in the intro and discussion. First, I would recommend the authors adjust the number of trials in adults to equate them between groups; this will make their developmental effects easier to interpret.  

      Thank you for raising this important point. This has now been done and appears in our supplementary information as discussed above.

      Second, to discern which responses are exhibiting developmental effects, the authors need to contrast the 0.3-0.8 window with the later window (2.5-3.0), not the window that appears to have the PMBR-like response. This artificially accentuates the response. I also think they should image the 1.0-1.5 vs 2.5-3.0s window to determine whether the response in this time window is in the same location as the decrease and then contrast this for beta differences. 

      We completely understand this point, which relates to separating the reduction in beta amplitude during stimulation and the rebound post stimulation. However, as explained above, doing so unambiguously would require the use of much longer trials. Here we were only able to measure stimulus induced beta modulation (distinct from the separate contributions of the task induced beta power reduction and rebound). It may be that future studies, with >10 s trial length, could probe the role of the PMBR, but such studies require long paradigms which are challenging to implement with children.

      Third, changing the framing of the study to highlight the somatosensory developmental literature would also be an improvement.

      We have added to our introduction a stated in the responses above.

      Finally, the connectivity analysis on data from a somatosensory task did not make sense given the focus of the study and should be removed in my opinion. It is very difficult to interpret given past studies used resting state data and one would expect the networks to dynamically change during different parts of the current task (i.e., stimulation versus baseline).

      We appreciate the point regarding connectivity. However, it was our intention to examine the developmental trajectory of beta oscillations, and a major role of beta oscillations is in mediating connectivity. It is true that most studies are conducted in the resting state (or more recently – particularly in children – during movie watching). The fact that we had a sensory task running is a confound; nevertheless, the connectivity we derived in adults bears a marked similarity to that from previous papers (e.g. 25) and we do see significant changes with age. We therefore believe this to be an important addition to the paper and we would prefer to keep it.

      References

      (1) Holmes, N., Bowtell, R., Brookes, M. J. & Taulu, S. An Iterative Implementation of the Signal Space Separation Method for Magnetoencephalography Systems with Low Channel Counts.

      Sensors 23, 6537 (2023).

      (2) Boto, E. et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature (2018) doi:10.1038/nature26147.

      (3) Holmes, M. et al. A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography. NeuroImage 181, 760–774 (2018).

      (4) Seymour, R. A. et al. Using OPMs to measure neural activity in standing, mobile participants. NeuroImage 244, 118604 (2021).

      (5) Rea, M. et al. A 90-channel triaxial magnetoencephalography system using optically pumped magnetometers. annals of the new york academy of sciences 1517, https://doi.org/10.1111/nyas.14890 (2022).

      (6) Holmes, N. et al. Enabling ambulatory movement in wearable magnetoencephalography with matrix coil active magnetic shielding. NeuroImage 274, 120157 (2023).

      (7) Pakenham, D. O. et al. Post-stimulus beta responses are modulated by task duration. NeuroImage 206, 116288 (2020).

      (8) Fry, A. et al. Modulation of post-movement beta rebound by contraction force and rate of force development. Human Brain Mapping 37, 2493–2511 (2016).

      (9) Pfurtscheller, G. & Lopes da Silva, F. H. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin Neurophysio 110, 1842–1857 (1999).

      (10) Seedat, Z. A. et al. The role of transient spectral ‘bursts’ in functional connectivity: A magnetoencephalography study. NeuroImage 209, 116537 (2020).

      (11) Baker, A. P. et al. Fast transient networks in spontaneous human brain activity. eLife 2014, 1867 (2014).

      (12) Vidaurre, D. et al. Spectrally resolved fast transient brain states in electrophysiological data. NeuroImage 126, 81–95 (2016).

      (13) Gaetz, W. & Cheyne, D. Localization of sensorimotor cortical rhythms induced by tactile stimulation using spatially filtered MEG. NeuroImage 30, 899–908 (2006).

      (14) Cheyne, D. et al. Neuromagnetic imaging of cortical oscillations accompanying tactile stimulation. Cognitive Brain Research 17, 599–611 (2003).

      (15) van Ede, F., Jensen, O. & Maris, E. Tactile expectation modulates pre-stimulus β-band oscillations in human sensorimotor cortex. NeuroImage 51, 867–876 (2010).

      (16) Salenius, S., Schnitzler, A., Salmelin, R., Jousmäki, V. & Hari, R. Modulation of Human Cortical Rolandic Rhythms during Natural Sensorimotor Tasks. NeuroImage 5, 221–228 (1997).

      (17) Cheyne, D. O. MEG studies of sensorimotor rhythms: A review. Experimental Neurology 245, 27–39 (2013).

      (18) Kilavik, B. E., Zaepffel, M., Brovelli, A., MacKay, W. A. & Riehle, A. The ups and downs of beta oscillations in sensorimotor cortex. Experimental Neurology 245, 15–26 (2013).

      (19) Bauer, M., Oostenveld, R., Peeters, M. & Fries, P. Tactile Spatial Attention Enhances Gamma-Band Activity in Somatosensory Cortex and Reduces Low-Frequency Activity in Parieto-Occipital Areas. J. Neurosci. 26, 490–501 (2006).

      (20) Barone, J. & Rossiter, H. E. Understanding the Role of Sensorimotor Beta Oscillations. Frontiers in Systems Neuroscience 15, (2021).

      (21) Rayson, H. et al. Bursting with Potential: How Sensorimotor Beta Bursts Develop from Infancy to Adulthood. J Neurosci 43, 8487–8503 (2023).

      (22) Hill, R. M. et al. Optimising the Sensitivity of Optically-Pumped Magnetometer Magnetoencephalography to Gamma Band Electrophysiological Activity. Imaging Neuroscience (2024) doi:10.1162/imag_a_00112.

      (23) Stenroos, M., Hunold, A. & Haueisen, J. Comparison of three-shell and simplified volume conductor models in magnetoencephalography. NeuroImage 94, 337–348 (2014).

      (24) Barratt, E. L., Francis, S. T., Morris, P. G. & Brookes, M. J. Mapping the topological organisation of beta oscillations in motor cortex using MEG. NeuroImage 181, 831–844 (2018).

      (25) Rier, L. et al. Test-Retest Reliability of the Human Connectome: An OPM-MEG study. Imaging Neuroscience (2023) doi:10.1162/imag_a_00020.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study investigates the transcriptional changes in neurons that underlie loss of learning and memory with age in C. elegans, and how cognition is maintained in insulin/IGF-1-like signaling mutants. The presented evidence is convincing, utilizing a cutting-edge method to isolate neurons from worms for genomics that is clearly conveyed with a rigorous experimental approach. Overall, this study supports that older daf-2 worms maintain cognitive function via mechanisms that are unique from younger wild type worms, which will be of interest to neuroscientists and researchers studying ageing.

      Thank you, we appreciate the positive comments.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      The authors perform RNA-seq on FACS-isolated neurons from adult worms at days 1 and 8 of adulthood to profile the gene expression changes that occur with cognitive decline. Supporting data are included indicating that by day 7 of adulthood, learning and memory are reduced, indicating that this time point or after represents cognitively aged worms. Neuronal identity genes are reduced in expression within cognitively aged worms, whereas genes involved in proteostasis, transcription/chromatin, and stress response are elevated. A number of specific examples are provided, representing markers of specific neuronal subtypes, and correlating expression changes to the erosion of particular functions (e.g. motor neurons, chemosensory neurons, aversive learning neurons, etc). 

      To investigate whether the upregulation of genes in neurons with age is compensatory or deleterious, the authors reduced the expression of a set of three significantly upregulated genes and performed behavioral assays in young adults. In each case, reduction of expression improved memory, consistent with a model in which age-associated increases impair neuronal function. This claim would be bolstered by an experiment elevating the expression of these genes in young neurons, which should reduce the learning index if the hypothesis is correct. 

      This is an interesting suggestion. Our long-term goal is to find ways to improve memory, and to better understand the “rules” that might govern changes with age. In this case, were interested in addressing the hypothesis that genes that rise with age must be compensatory, which is a frequently stated theory that is not often tested. Here we showed that knocking down three genes that are upregulated in aged animals improved memory; our results suggest that the wild-type functions of these genes are likely deleterious for learning and memory functions, and further, that their increased expression with age is not a compensatory function. Certainly for future work, it might be interesting to better understand how and why these specific genes have a deleterious function that increases with age, and whether that function is different in younger animals where they are not highly expressed.

      The authors then characterize learning and memory in wild-type, daf-2, and daf-2/daf-16 worms with age and find that daf-2 worms have an extended ability to learn for approximately 10 days longer than wild types. This was daf-16 dependent. Memory was extended in daf-2 as well, and strikingly, daf-2;daf-16 had no short-term memory even at day 1. Transcriptomic analysis of FACS-sorted neurons was performed on the three groups at day 8. The authors focus their analysis on daf-2 vs. daf-2;daf-16 and present evidence that daf-2 neurons express a stress-resistance gene program. One question that remains unanswered is how well the N2 and daf-2;daf-16 correlate overall, and are there differences? This may be informative as wild type and daf-2;daf-16 mutants are not phenotypically identical when it comes to memory, and there may be differences that can be detected despite the overlap in the PCA. This analysis could reveal the daf-16 targets involved in memory. 

      Re. daf-2;daf-16 vs N2: This is a good suggestion. Our analysis in Fig. S5 showed that the daf-2 vs N2 comparison shows similar results with the daf-2 vs daf-16;daf-2 comparison, but some additional genes are differentially expressed. Interestingly, the daf-2 vs N2 comparison shows that the bZip transcription factors are upregulated in daf-2 compared with N2 worms (Fig. S6f). This may indicate that additional transcription factors are controlled by the daf-2 mutation in the nervous system in addition to the DAF-16/FOXO transcription factor.

      Author response image 1.

      We also identified the differentially expressed genes in the Day 8 neuronal daf-16;daf-2 to N2 comparison, as the reviewer is asking about. The samples from different genotypes do separate from one another in the PCA plot, indicating there are differences between daf-16,daf-2 and N2 neurons. However, the difference is smaller and there are fewer genes differentially expressed between daf-16;daf-2 and N2: only 38 genes are significantly higher in daf-16;daf-2, and only 53 genes are significantly higher in N2 (log2FC > 0.5, p-adj<0.05). The genes higher in N2 are enriched in endopeptidase inhibitors, and the genes higher in daf-16;daf-2 are not enriched in any gene ontology terms. These results indicate that there are some differences between daf-16;daf-2 and N2 neurons, which correlates with the behavioral differences we see, but the difference is small compared to daf-2 neurons. We have added these data to the paper (Fig. S4e,f); thank you for the suggestion.

      The authors tested eight candidate genes that were more highly expressed in daf-2 neurons vs. daf-2;daf-16 and showed that reduction of 2 and 5 of these genes impaired learning and memory, respectively, in daf-2 worms. This finding implicates specific neuronal transcriptional targets of IIS in maintaining cognitive ability in daf-2 with age, which, importantly, are distinct from those in young wild type worms. 

      Reviewer #2 (Public Review): 

      Weng et al. perform a comprehensive study of gene expression changes in young and old animals, in wild-type and daf-2 insulin receptor mutants, in the whole animal, and specifically in the nervous system. Using this data, they identify gene families that are correlated with neuronal ageing, as well as a distinct set of genes that are upregulated in neurons of aged daf-2 mutants. This is particularly interesting as daf-2 mutants show both extended lifespans and healthier neurons in aged animals, reflected by better learning/memory in older animals compared with wild-type controls. Indeed, the knockdown of several of these upregulated genes resulted in poorer learning and memory. In addition, the authors showed that several genes upregulated during ageing in wild-type neurons also contribute to learning and memory; specifically knockdown of these genes in young animals resulted in improved memory. This indicates that (at least in this small number of cases), genes that show increased transcript levels with age in the nervous system somehow suppress memory, potentially by having damaging effects on neuronal health. 

      Finally, from a resource perspective, the neuronal transcriptome provided here will be very useful for C. elegans researchers as it adds to other existing datasets by providing the transcriptome of older animals (animals at day 8 of adulthood) and demonstrating the benefits of performing tissue-specific RNAseq instead of whole-animal sequencing. 

      Thank you!

      The work presented here is of high quality and the authors present convincing evidence supporting their conclusions.

      Thanks!

      I only have a few comments/suggestions: 

      (1) Do the genes identified to decrease learning/memory capacity in daf-2 animals (Figure 4d/e) also impact neuronal health? daf-2 mutant worms show delayed onset of age-related changes to neuron structure (Tank et al., 2011, J Neurosci). Does knockdown of the genes shown to affect learning also affect neuron structure during ageing, potentially one mechanism through which they modulate learning/memory? 

      Thank you for this suggestion, which would be good for a future direction, particularly for genes that might have some relationship to previously-identified cellular structural process. The genes we tested here include dod-24, alh-2, mtl-1, F08H9,4, C44B7.5, hsp-12.3, hsp-12.6, and cpi-1, which are related to stress response, proteolysis inhibitor, metabolic, and innate immunity GO categories, thus associated with stress resistance, proteolysis, lipid metabolism processes; none are obvious choices for morphological effects.

      However, it is worth noting that learning and memory decline much faster (Days 4-8) than morphological differences are observed (generally after Day 12-15). Moreover, those morphological differences have been studied primarily in mechanosensory neurons (touch neurons) rather than the chemosensory neurons that are involved in learning and memory, so additional genes may be required for those differences that we were not focusing on in thisi study.

      (2) The learning and memory assay data presented in this study uses the butanone olfactory learning paradigm, which is well established by the same group. Have the authors tried other learning assays when testing for learning/memory changes after the knockdown of candidate genes? Depending on the expression pattern of these genes, they may have more or less of an effect on olfactory learning versus for example gustatory or mechanosensory-based learning. 

      The reason that we use the butanone olfactory learning paradigm is because it is more similar to learning of information (neutral odorant association with positive cue (food)) – the kind of memory we would like to preserve in humans - rather than a stress-induced memory, such as starvation or pathogenesis-associated aversive learning paradigms, which are more like PTSD. (There is likely to be quite a bit of overlap in mechanism, however, including the role of genes such as magi-1 and casy-1, so it would not be surprising if many of these genes also were required for other learning paradigms.)

      (3) I have a comment on the 'compensatory vs dysregulatory' model as stated by the authors on page 7. I understand that this model presents the two main options, but perhaps this is slightly too simplistic: the gene expression that rises during ageing may be detrimental for memory (= dysregulatory), but at the same time may also be beneficial for other physiological roles in other tissues (=compensatory). 

      This is a good point, and we made the clarification that in the text: “There may be other scenarios in which a gene with multiple functions may be detrimental for some behaviors but beneficial for other physiological roles.”

      Reviewer #3 (Public Review): 

      Summary: 

      In this manuscript, Weng et al. detect a neuron-specific transcriptome that regulates aging. The authors first profile neuron-specific responses during aging at a time point where a loss in memory function is present. They discover signatures unique to neurons which validate their pipeline and reveal the loss of neuron identity with age. For example, old neurons reduce the expression of genes related to synaptic function and neuropeptide signaling and increase the expression of chromatin regulators, insulin peptides, and glycoproteins. The authors discover the detrimental effect of selected upregulated genes (utx-1, ins-19, and nmgp-1) by knocking them down in the whole body and detecting improvement of short memory functions. They then use their pipeline to test neuronal profiles of long-lived insulin/IGF mutants. They discover that genes related to stress response pathways are upregulated upon longevity (e.g. dod-24, F08H9.4) and that they are required for improved neuron function in long-lived individuals. 

      Strengths: 

      Overall, the manuscript is well-written, and the experiments are well-described. The authors take great care to explain their reasoning for performing experiments in a specific way and guide the reader through the interpretation of the results, which makes this manuscript an enjoyable and interesting read. Using neuron-specific transcriptomic analysis in aged animals the authors discover novel regulators of learning and memory, which underlines the importance of cell-specific deep sequencing. The time points of the transcriptomic profiling are elegantly chosen, as they coincide with the loss of memory and can be used to specifically reveal gene expression profiles related to neuron function. The authors showcase on the dod-24 example how powerful this approach is. In long-lived insulin/IGF-1 receptor mutants body-wide dod-24 expression differs from neuron-specific profiles. Importantly, the depletion of dod-24 has an opposing effect on lifespan and learning memory. The dataset will provide a useful resource for the C. elegans and aging community. 

      Thank you, we do hope people will find the data useful.

      Weaknesses: 

      While this study nicely describes the neuron-specific profiles, the authors do not test the relevance in a tissue-specific way. It remains unclear if modifying the responses only in neurons has implications for either memory or potentially for lifespan. The authors point to this in the text and refer to tissue-specific datasets. However, it is possible that the tissue-specific profile changes with age. The authors should consider mining publicly available cell-specific aging datasets and performing neuron-specific RNAi to test the functional relevance of the neuron-specific response. This would strengthen the importance of cell-specific profiling.

      Thank you for your suggestions. As we have mentioned in the text, our candidate genes are either (1) only expressed in the neurons (alh-2 and F08H9.4), or they are only more highly expressed in daf-2 compared to wild type only in the nervous system (C44B7.5 or dod-24). Thus, the effect we see from knocking down these genes in daf-2 are likely neuron-specific. Additionaly, we performed our assays with neuron-sensitive RNAi strain CQ745: daf-2(e1370) III; vIs69 [pCFJ90(Pmyo-2::mCherry + Punc-119::sid-1)] V. It has been previously shown that neuronal expression of sid-1 decreases non-neuronal RNAi, suggesting that neurons expressing transgenic sid-1(+) served as a sink for dsRNA (Calixto et al., 2010). Thus, this neuron-sensitive RNAi is likely neuron-specific and our results is unlikely from knocking down these genes in non-neuronal tissues. However, we do acknowledge this issue.

      To identify the expression pattern of these genes in a more cell-specific way in the adults, we examined the expression of our candidate genes that affected learning and memory, namely dod-24, F08H9.4, C44B7.9, alh-2, and mtl-1, in the Calico database (Roux et al., 2023). From that database, we can see that dod-24 is mainly expressed in the PHC and PVM neurons, and F08H9.4 is largely expressed in various neurons. Both have only slight expression outside the nervous system. C44B7.5 and mtl-1 are more broadly expressed, but C44B7.5 was not found to be differentially expressed in other tissues in daf-2, and mtl-1 only had a slight effect on learning and memory. Perhaps due to their sequencing depth and detection limit, Roux et al. didn’t detect alh-2 expression anywhere in their data.

      Thus, the neuron-specific expression and daf-2 differential expression pattern of these genes indicate that the learning and memory improvement in aged daf-2 is unlikely due to neuronal non-autonomous effects.

      To better address this concern (that for the genes that we found only expressed in the neurons, the neuron-confined expression may change with age) we examined the expression pattern change of these genes with age. As is shown below, from the Calico database, we can see that the expression in the nervous system persists, and even slightly increases, with age, thus age-related expression pattern change is not a concern to our analysis.

      Author response image 2.

      Author response image 3.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Most of my comments are in the public section. A few additional recommendations for the authors regarding the formatting/presentation: 

      The presentation of Figure S6e-h in the introduction is somewhat confusing and feels out of order. If presented first, it should be S1. Otherwise, discussion of this figure should go at the end of the results section or in the discussion if appropriate. 

      Thank you for pointing this out. We have moved the discussion of this figure to the Discussion section.

      I do not see Figure S5 described in the text.

      Good catch, thank you. We have added the descriptions for Figure S5 in the text.

      In general, check the figures, figure legends, and how they are referenced in the text, particularly the supplemental figures and legends.

      Minor comments:

      There is a typo in the Figure 4 legend: Neuronal IIX should be IIS. 

      Thanks for pointing this out. We have corrected it in the text.

      Reviewer #2 (Recommendations For The Authors): 

      • There are multiple instances throughout the manuscript where there are statements in brackets that provide justification or explanation for some of the approaches used. There is no reason for 'side note' brackets to be used. I suggest removing them and incorporating these statements into the narrative.

      Thank you, we have now incorporated these points into the main text.

      • Introduction: page 4 "here we RNA-sequenced FACS-isolated neurons" should be "here we performed RNA sequencing on FACS-isolated neurons...".

      Thank you, we have changed the text accordingly.

      • Figure 2A: I do not understand the legend for this panel "Tissue Query for wild-type genes expressed at higher levels in aged worms show lower nervous system and neuron prediction score." Please clarify.

      We have clarified the Figure 2A legend:

      (A)  Tissue prediction score for wild-type genes expressed at higher levels in aged worms.

      • Page 8: "We previously observed that loss of single genes that play a role in complex behaviors like learning and memory can have a large impact on function 60, unlike the additive roles of longevity-promoting genes 11." - a large impact on what function?

      Thank you for noting, we have clarified it in the text accordingly:

      “We previously observed that for genes that play a role in complex behaviors like learning and memory, the loss of single genes can have a large impact on these complex behaviors 60, unlike the additive roles of longevity-promoting genes 11.”

      • Next line "Therefore, one mechanism by which wild-type worms lose their function with age..." - again, what function?

      Thank you for noting this, we have clarified the text to say we refer to the learning and memory functions.

      • Page 9: "Thus, daf-2 mutants maintain their higher cognitive quality of life longer than wild-type worms, while daf-16;daf-2 mutants spend their whole lives without memory ability (Figure 3d), in contrast to claims that daf-2 mutants are less healthy than wild-type or daf-16 worms23." - since ref 23 did not perform any learning/memory tests, the definition of 'health' in ref 23 is different to 'cognitive health' as studied here. So the findings in this study are not 'in contrast' to ref 23 but rather add to these findings.

      Learning and memory ability is an important function for a healthy individual, thus we would assert that indeed, cognitive health is an important part of the “health” of daf-2 worms. In ref 23, Bansal et al. claim that daf-2 worms are less healthy without assessing their learning and memory ability; their lack of data is an insufficient reason for us to remove our statement, as cognitive health is part of healthspan. Here we find that the “learning span” of daf-2 lasts at least proportionally if not longer than that of wild type. We have also previously shown that daf-2 worms also have longer maximum velocity span with age (Hahm et al., 2015), in direct contrast with Bansal et al.’s claim that daf-2 worms move less well and thus are less healthy – daf-2 worms simply stop sooner when presented with food and switch to feeding, due to their higher odr-10 levels. The Bansal paper continues to be frequently cited as finding that daf-2 mutants are less healthy than wild type, a claim for which we can still find no experimental evidence to support. Therefore, it is important that we make the point that daf-2 worms have extended cognitive health, which is part of health span.

      • Page 13: I feel like the sentence "Furthermore, memory maintenance with age might require additional functions that were not previously uncovered in analyses of young animals" is both vague (what functions are referred to?) and a little bit obvious (obvious that age-related changes would not be revealed in analyses of young animals). Perhaps rephrase to make the desired point clearer? 

      We have clarified the sentence in the text:

      “Furthermore, memory maintenance with age might require additional genes that function in promoting stress resistance and neuronal resilience, which were not previously uncovered in analyses of young animals.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Comments to the Author):

      Summary:

      In this study, Xie and colleagues aimed to explore the function and potential mechanisms of the gut microbiota in a hamster model of severe leptospirosis. The results demonstrated that Leptospira infection was able to cause intestine damage and inflammation. Leptospira infection promoted an expansion of Proteobacteria, increased gut barrier permeability, and elevated LPS levels in the serum. Thus, they proposed an LPS-neutralization therapy which improved the survival rate of moribund hamsters combined with antibody therapy or antibiotic therapy.

      Strengths:

      The work is well-designed and the story is interesting to me. The gut microbiota is essential for immunity and systemic health. Many life-threatening pathogens, such as SARS-CoV-2 and other gut-damaged infection, have the potential to disrupt the gut microbiota in the later stages of infection, causing some harmful gut microbiota-derived substances to enter the bloodstream. It is emphasized that in addition to exogenous pathogenic pathogens, harmful substances of intestinal origin should also be considered in critically ill patients.

      Weaknesses:

      Q1: There are many serotypes of Leptospira, it is suggested to test another pathogenic serotype of Leptospira to validate the proposed therapy.

      That’s a constructive suggestion. We have tested another pathogenic serotype of Leptospira (L. interrogans serovar Autumnalis strain 56606) to verify the LPS-neutralization therapy combined with antibiotic therapy (Supplementary Fig. S9B). The results showed that the combination of the LPS-neutralization therapy with antibody therapy or antibiotic therapy also significantly improved the survival rate of hamsters infected by 56606.

      Q2: Authors should explain why the infective doses of leptospires was not consistent in different study.

      Thank you for your comment. To examine the role of the gut microbiota on acute leptospirosis, the infective doses of leptospires was chosen for 106, while in other sections of the study, the infective doses of leptospires was chosen for 107. In fact, we also used 107 leptospires to infect hamsters, however, the infective doses of 107 leptospires might be overdose, there was no significant difference on the survival rate between the control group and the Abx-treated group. A previous study also highlighted that the infective doses of leptospires was important in the investigating the sex on leptospirosis, as male hamsters infected with L. interrogans are more susceptible to severe leptospirosis after exposure to lower infectious doses than females (103 leptospires but not 104 leptospires) (1).

      Reference

      (1) GOMES C K, GUEDES M, POTULA H H, et al. Sex Matters: Male Hamsters Are More Susceptible to Lethal Infection with Lower Doses of Pathogenic Leptospira than Female Hamsters (J). Infect Immun, 2018, 86(10).

      Q3: In the discussion section, it is better to supplement the discussion of the potential link between the natural route of infection and leptospirosis.

      Thank for your suggestion. We have supplemented it in the discussion (line 523-527 in the track change PDF version).

      Q4: Line 231, what is the solvent of thioglycolate?

      We have supplemented it in the manuscript (line 242-243 in the track change PDF version).

      Q5: Lines 962-964, there are some mistakes which are not matched to Figure 7.

      Thank you for pointing that out, we have corrected it in the manuscript.

      Reviewer #2 (Comments to the Author):

      Summary:

      Severe leptospirosis in humans and some mammals often meet death in the endpoint. In this article, authors explored the role of the gut microbiota in severe leptospirosis. They found that Leptospira infection promoted a dysbiotic gut microbiota with an expansion of Proteobacteria and LPS neutralization therapy synergized with antileptospiral therapy significantly improved the survival rates in severe leptospirosis. This study is well-organized and has potentially important clinical implications not only for severe leptospirosis but also for other gut-damaged infections.

      Weaknesses:

      Q1: In the Introduction section and Discussion section, the authors should describe and discuss more about the differences in the effect of Leptospira infection between mice and hamsters, so that the readers can follow this study better.

      Thank you for your suggestion, we have supplemented it in the manuscript (line 62-66 in the track change PDF version).

      Q2: Lines 92-95, the authors should explain why they chose two different routines of infection.

      Thank you for your comment, we have explained it in the manuscript (line 100 in the track change PDF version).

      Q3: Line 179-180, the concentration of PMB and Dox is missed, and 0.016 μg/L is just ok.

      We have corrected it in the manuscript.

      Q4: "μL" or "μl" and "mL" or "ml' should be uniform in the manuscript.

      Thank you for your suggestion, we have revised it in the manuscript.

      Q5: In the culture of primary macrophages, how many cells are inoculated in the plates should be described clearly.

      We have supplemented it in the manuscript (line 250 in the track change PDF version).

      Q6: Line 271, it is better to list primers used for leptospiral detection in the text. Because it allows readers to find the information they need more directly.

      Thank you for your suggestions, we have supplemented it in the manuscript (line 281-284 in the track change PDF version).

      Q7: Line 366-369, Lactobacillus seems to be a kind of key bacteria during Leptospira infection. A previous study (doi: 10.1371/journal.pntd.0005870) also demonstrated that pre-treatment with Lactobacillus plantarum prevented severe pathogenesis in mice. The authors should discuss the potential probiotic for leptospirosis prevention.

      We have discussed it in the manuscript (line 564-566 in the track change PDF version).

      Q8: Lines 450-451, not all concentrations of fecal filtration from two groups upregulated all gene expression mentioned in the text, the authors should correct it.

      Thank you for pointing that out, we have corrected it in the manuscript (line 461-462 in the track change PDF version).

      Reviewer #3 (Comments to the Author):

      Summary:

      This is a well-prepared manuscript that presented interesting research results. The only defect is that the authors should further revise the English language.

      Strengths:

      The omics method produced unbiased results.

      Weaknesses:

      Q1: LPS neutralization is not a new method for treating leptospiral infection.

      Thank you for your comment. Yes, LPS neutralization is not a new method for treating leptospiral infection, most of which might focus on leptospiral LPS. In addition, Leptospira seemed to be naturally resistant to polymyxin B (1). Recently, neutralizing gut-derived LPS was applied in other diseases which significantly relieved diseases (2-3). In this study, we found that Leptospira infection promoted an expansion of Proteobacteria, increased gut barrier permeability, and elevated LPS levels in the serum. Thus, we proposed an LPS-neutralization therapy which improved the survival rate of moribund hamsters combined with antibody therapy or antibiotic therapy.

      Reference

      (1) LIEGEON G, DELORY T, PICARDEAU M. Antibiotic susceptibilities of livestock isolates of leptospira (J). Int J Antimicrob Agents, 2018, 51(5):693-699.

      (2) MUNOZ L, BORRERO M J, UBEDA M, et al. Intestinal Immune Dysregulation Driven by Dysbiosis Promotes Barrier Disruption and Bacterial Translocation in Rats With Cirrhosis (J). Hepatology, 2019, 70(3):925-938.

      (3) ZHANG X, LIU H, HASHIMOTO K, et al. The gut-liver axis in sepsis: interaction mechanisms and therapeutic potential (J). Crit Care, 2022, 26(1):213.

      Q2: The authors should further revise the English language used in the text.

      Thank you for your suggestion, our manuscript has been polished by American Journal Experts (certificate number: 81C8-C5C1-9D5D-109D-3F23).

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      In their valuable study, Chen et al. aim to define the neuronal role of HMMR, a microtubule-associated protein typically associated with cell division. Their findings suggest that HMMR is necessary for proper neuronal morphology and the generation of polymerizing microtubules within neurites, potentially by promoting the function of TPX2. While the study is recognized as a first step in deciphering the influence of HMMR on microtubule organization in neurons, reviewers note the current work has important gaps and would benefit from further exploration of the mechanism of microtubule stability by HMMR, the link between HMMR-mediated microtubule generation and morphogenesis, and the physiological implications of disrupting HMMR during neuronal morphogenesis.

      Public Reviews:

      Reviewer #1 (Public Review):

      The microtubule cytoskeleton is essential for basic cell functions, enabling intracellular transport, and establishment of cell polarity and motility. Microtubule-associated proteins (MAPs) contribute to the regulation of microtubule dynamics and stability - mechanisms that are specifically important for the development and physiological function of neurons. Here, the authors aimed to elucidate the neuronal function of the MAP Hmmr, which they had previously identified in a quantitative study of the proteome associated with neuronal microtubules.

      The authors conduct well-controlled experiments to demonstrate the localization of endogenous as well as exogenous Hmmr on microtubules within the soma as well as all neurites of hippocampal neurons. Functional analysis using gain- and loss-of-function approaches demonstrates that Hmmr levels are crucial for neuronal morphogenesis, as the length of both dendrites and axons decreases upon loss of Hmmr and increases upon Hmmr overexpression. In addition to length alterations, the branching pattern of neurites changes with Hmmr levels. To uncover the mechanism of how Hmmr influences neuronal morphology, the authors follow the lead that Hmmr overexpression induces looped microtubules in the soma, indicative of an increase in microtubule stability. Microtubule acetylation indeed decreases and increases with Hmmr LOF and GOF, respectively. Together with a rescue of nocodazole-induced microtubule destabilization by Hmmr GOF, these results argue that Hmmr regulates microtubule stability. Highlighted by the altered movement of a plus-end-associated protein, Hmmr also has an effect on the dynamic nature of microtubules. The authors present evidence suggesting that the nucleation frequency of neuronal microtubules depends on Hmmr's ability to recruit the microtubule nucleator Tpx2. Together, these data add novel insight into MAP-mediated regulation of microtubules as a prerequisite for neuronal morphogenesis. While the data shown support the author's conclusions, the study also has several weaknesses:

      • The study appears incomplete as the initial proteomics analysis which is referenced as an entry into the study is not presented. This surely is the authors' choice, however, without presenting this data set, it would make more sense if the authors first showed the localization of Hmmr on neuronal microtubules and then started with the functional analysis.

      The reviewer suggests moving the Hmmr localization data in front of the loss- and gain-of-function data because we did not present the proteomics data. However, we still believe placing the loss- and gain-of-function data in the beginning is the better arrangement. This is because it allows the audience to see the drastic changes on neuronal morphology when HMMR is depleted or overly abundant. It also provides a better linkage between HMMR’s localization on microtubules and its effect on the stability and dynamics of microtubules.

      • Neurite branching is quantified, but the methods used are not consistent (normalized branch density vs. Sholl analysis) and there is no distinction between alterations of branching in dendrites vs. axons. This information should be added as it could prove informative with respect to the physiological function of Hmmr in neurite branching.

      Sholl analysis is considered the gold standard in neurite branching analyses. However, in the knockdown experiment (Figure 1A~1E), HMMR-depleted neurons exhibited extremely short axons (<100 μm) and dendrites (<40 μm). Using Sholl analysis to assess the branching of these Hmmrdepleted neurons became unsuitable. That is why we used normalized branch density (Figure 1E) in the knockdown experiment and Sholl analysis (Figure 1J) in the overexpression experiment.

      Regarding the branching difference between axons and dendrites, only axons exhibit branches at 4 DIV. Therefore, the branching analysis focuses on axons rather than on dendrites. We have revised the manuscript to clarify this.

      • The authors show that altered Hmmr levels affect neurite branching and identify an effect on microtubule stability and dynamics as a molecular mechanism. However, how branching correlates with or is regulated by Hmmr-mediated microtubule dynamics is neither addressed experimentally nor discussed by the authors. The physiological significance of altered neuronal morphogenesis also lacks discussion.
      • To discuss how branching correlates with or is regulated by HMMR-mediated microtubule dynamics, we have added the following paragraph into the Discussion section:

      “It has been shown that compromising microtubule nucleation in neurons by SSNA1 mutant overexpression prevents proper axon branching (Basnet et al., 2018). Additionally, dendritic branching in Drosophila sensory neurons depends on the orientation of microtubule nucleation. Nucleation that results in an anterograde microtubule growth leads to increased branching, while nucleation that results in a retrograde microtubule growth leads to decreased branching (Yalgin et al., 2015). These results demonstrate the importance of microtubule nucleation on neurite branching. It is conceivable that overexpressing a microtubule nucleation promoting protein such as HMMR results in an increase of branching complexity.”

      • In terms of discussing the physiological significance of altered neuronal morphogenesis. We have added the following paragraph to the Discussion section:

      “Neurons are the communication units of the nervous system. The formation of their intricate shape is therefore crucial for the physiological function. Alterations in neuronal morphogenesis have a profound impact on how nerve cells communicate, leading to a variety of physiological consequences. These consequences include impaired neural circuit formation and function, compromised signal transmission between neurons, as well as altered anatomical structure of the CNS. Depending on the specific type and location of the morphogenetically altered neurons, the physiological consequences can include neurological disorders such as autism spectrum disorder (Berkel et al., 2012) and schizophrenia (Goo et al., 2023), as well as learning and memory deficits (Winkle et al., 2016). However, due to the involvement of HMMR on mitosis, most HMMR mutations are associated with familial cancers (based on ClinVar data).”

      • Multiple times, the manuscript lacks a rationale for an experimental approach, choice of cell type, time points, regions of interest, etc. Also, a meaningful description of the methods and for how data were analyzed is missing, making the paper hard to read for someone not directly from the field.

      We understand the reviewer’s comments regarding the lack of rationale for choosing the experimental approach, choice of cell type, time points, regions of interest, etc. As a result, we have added the rationales where appropriate to help readers from other fields to better understand the choice of cell type, time points, regions of interest, etc. A brief explanation is shown below:

      • Approach and timing: We employed both electroporation (immediate but milder expression) and lipofectamine transfection (delayed but stronger expression). We prioritized knocking down HMMR early in development, so electroporation was used. For overexpression experiments, we chose lipofectamine which allows high protein expression level to be achieved.

      • Cell selection: Hippocampal neurons were chosen in experiments that involve morphological quantification due to their homogeneous morphology. On the other hand, cortical neurons were selected in experiments that require large amounts of neurons and/or experiments where we want to demonstrate the universality of a proposed hypothesis.

      • Regions of interest (ROIs): In our previous publication (Chen et al., 2017), it was discovered that a significant reduction of EB3 emanation frequency can be detected at the tip and the base of the neurite but not in the middle of the neurite in TPX2-depleted neurons. The reason for this difference is due to the presence of GTP-bound Ran GTPase (RanGTP) at the tip and the base of the neurite. Since RanGTP has also been shown to regulate the interaction between HMMR and TPX2 in the cell-free system (Scrofani et al., 2015), it is possible that the same phenomenon can be observed in HMMR-depleted neurons. This is why we examined those 3 ROIs in Figure 4.

      Reviewer #2 (Public Review):

      The mechanism of microtubule formation, stabilization, and organization in neurites is important for neuronal function. In this manuscript, the authors examine the phenotype of neurons following alteration in the level of the protein HMMR, a microtubule-associated protein with established roles in mitosis. Neurite morphology is measured as well as microtubule stability and dynamic parameters using standard assays. A binding partner of HMMR, TPX2, is localized. The results support a role for HMMR in neurons.

      The work presented in this manuscript seeks to determine if a MAP called HMMR contributes to microtubule dynamics in neurons. Several steps, including validation of the RNAi, additional statistical analysis, use of cells at the same age in culture, and better documentation in figures, would increase the impact of the work.

      In many places, the data can be improved which might make the story more convincing. As presented, the results show that HMMR is distributed as puncta on neurons with data coming from a single HMMR antibody, and some background staining that was not discussed. In the discussion the authors state that HMMR impacts microtubule stability, which was evaluated by the presence of post-translational modification and resistance to nocodazole; the data are suggestive but not entirely convincing. The discussion also states that HMMR increases the “amount” of growing microtubules which was measured as the frequency of comet appearance. The authors did not comment on how the number of growing microtubules results in the observed morphological changes.

      We actually tested several HMMR antibodies, including E-19 (Santa Cruz, sc-16170), EPR4054 (Abcam, ab124729), and a variety of antibodies provided by Prof. Eva Turley. E-19 performed the best in immunofluorescence (IF) staining and knockdown validation. The other antibodies either failed to detect HMMR in IF staining or generate excessive background signal. We understand that the final images are produced using a single antibody. But since we meticulous validated this antibody and that the localization of overexpressed HMMR is consistent with the endogenous HMMR, we are very confident about our data generated using this single antibody.

      We have added the following paragraph in the Discussion section to elucidate how the number of growing microtubules result in the observed morphological changes such as an increase of axon branches:

      “It has been shown that compromising microtubule nucleation in neurons by SSNA1 mutant overexpression prevents proper axon branching (Basnet et al., 2018). Additionally, dendritic branching in Drosophila sensory neurons depends on the orientation of microtubule nucleation. Nucleation that results in an anterograde microtubule growth leads to increased branching, while nucleation that results in a retrograde microtubule growth leads to decreased branching (Yalgin et al., 2015). These results demonstrate the importance of microtubule nucleation on neurite branching. It is conceivable that overexpressing a microtubule nucleation promoting protein such as HMMR results in an increase of branching complexity.

      Reviewer #1 (Recommendations for The Authors):

      (1) The manuscript jumps extensively between main figures and supplementary figures. Please check whether parts of the supplement could be moved to the main figures.

      We understand the frustration of moving back and forth between the main figures and supplementary figures. After examining the manuscript, we decided to combine Figure 2A with Figure S3.

      (2) In Figure 1, total neurite length between days 3 and 4 DIV does not appear to change - can this be true?

      Please check or else explain.

      We carefully re-examined our raw data and found out the total neurite length of 4 DIV hippocampal neurons expressing non-targeting shRNA (Figure 1B) and that of 3 DIV hippocampal neurons expressing AcGFP (Figure 1G) are indeed very similar. The explanation is that the 3 DIV hippocampal neurons used for Figure 1G was cultured in low-density and in the presence of cortical neuron-conditioned neurobasal medium (as written in Methods, Neuron culture and transfection section). The low-density culture with minimal overlapping neurites allowed us to better quantify total neurite length, because neurons expressing AcGFP-mHMMR sprouted long and highly branched axons. However, the addition of cortical neuron-conditioned neurobasal medium promoted neurite elongation. This is the reason why the total neurite length of 4 DIV hippocampal neurons expressing non-targeting shRNA (Figure 1B) and that of 3 DIV hippocampal neurons expressing AcGFP (Figure 1G) is similar.

      (3) Groen et al. have shown that Hmmr also bundles microtubules, a mechanism that surely is important for neuronal microtubules. Please discuss.

      We thank the reviewer for pointing out that HMMR also bundles microtubules and have added this to our revised Discussion section:

      “It has been shown that the Xenopus HMMR homolog XRHAMM bundles microtubules in vitro (Groen et al., 2004). In addition, deleting proteins which promote microtubule bundling (e.g., doublecortin knockout, MAP1B/MAP2 double knockout) leads to impaired neurite outgrowth (Bielas et al., 2007; Teng et al., 2001). These observations are consistent with our data that overexpressing HMMR leads to the increased axon and dendrite outgrowth, while depleting it results in the opposite phenotype (Figure 1).”

      (4) Please explain why in Figure 4, cortical neurons were chosen for analysis and why and how the three different ROIs were picked.

      To answer the question why we chose cortical neurons for the analyses in Figure 4, it will be important to explain why we used hippocampal neurons for other figures. Primary hippocampal neurons have a high homogeneity in terms of their morphology. This uniform morphology allows more consistent morphological quantification. Figure 4, however, does not involve morphological quantification. We are more confident to conclude that HMMR regulates microtubule dynamics if this effect can be detected in the relatively heterogeneous cortical neurons. These are the reasons why we chose to analyze cortical neurons in Figure 4.

      In our previous publication (Chen et al., 2017), it was discovered that a significant reduction of EB3 emanation frequency can be detected at the tip and the base of the neurite but not in the middle of the neurite in TPX2-depleted neurons. The reason for this difference is due to the presence of GTP-bound Ran GTPase (RanGTP) at the tip of the neurite and in the soma. Since RanGTP has also been shown to regulate the interaction between HMMR and TPX2 in the cell-free system (Scrofani et al., 2015), it is possible that the same phenomenon can be observed in HMMR-depleted neurons. This was why we examined those 3 ROIs in Figure 4.

      (5) Microtubule looping has been shown to occur in regions prior to branch formation (e.g. Dent et al. 2004). As the authors identify increased looping upon Hmmr GOF, this should be discussed.

      We thank the reviewer for pointing out that microtubule looping occurs in regions of branch formation and have added this to our revised discussion:

      “It is worth noting that the elevated level of HMMR increases the branching density of axons (Figure 1J) and promotes the formation of looped microtubules (Figure 3A). This is consistent with the observations that looped microtubules are often detected in regions of axon branch formation (Dent et al., 1999; Dent and Kalil, 2001; Purro et al., 2008).”

      Reviewer #2 (Recommendations for The Authors):

      (1) The work seeks to gain insight into microtubule behavior in neurons, an important issue.

      (2) Several steps, including validation of the RNAi, additional statistical analysis, use of cells at the same age in culture, and better documentation in figures, would increase the impact of the work.

      (3) Figure 1 documents the results of experiments in which the HMMR protein was depleted using shRNA. A western blot of cell extracts from control and depleted cells is needed to verify that the protein level is reduced; alternatively, documentation of the reduction in RNA levels in treated cells could be provided. Neurite, axon, and dendrite length and branch density are measured. The neurite length is in microns, and the axon length is normalized to 100% of the non-treated cells. Please use the same for measures for easier comparison. Looking at the images in Figure 1, the length of the dendrites does not look different in the examples shown, whereas the axon appears shorter. This impression is not supported by the quantification. Are representative images shown? Additionally, the authors should report the values for each replicate of the experiment and compare the three averages rather than comparison of lengths from all measurements. A related issue is that the dendrites do not look longer in panel F, following overexpression of HMMR. For examples of using averages of replicates see: https://pubmed.ncbi.nlm.nih.gov/32346721/

      The reviewer mentioned that Western blot of cell extracts or RNA quantification from control and depleted cells are needed to verify that the protein level is reduced.

      Unfortunately, these assays are extremely difficult to perform in primary neurons due to the low transfection efficiency. We believe that the consistent knockdown phenotype from 3 different shRNA sequences (Figure 1A-D) and the immunofluorescence staining in depleted primary neurons (Figure S2) are sufficient to confirm that HMMR level is reduced.

      We revised Figure 1C, 1D, 1H, 1I so that axon and dendrite lengths are all in micron.

      We selected another image for the non-targeting control in Figure 1A to better demonstrate the reduction of dendrite length when HMMR is knocked down.

      We thank the reviewer for the suggestion of comparing the three average values rather than comparing all measurements. We have performed statistical analyses for all our data using the average values and revised the graphs accordingly. While the P-values changed, our conclusions remain the same.

      We thank the reviewer for pointing out this discrepancy and have selected another image of the AcGFP control for Figure 1F to better demonstrate the increase of dendrite length when HMMR is overexpressed.

      (4) Given the changes in neurite morphology, the authors examine the localization of endogenous and overexpressed. The supplemental figures (see S2 and S3) show evidence that HMMR is present in a punctate pattern by conventional immunofluorescence. This is reasonable evidence that the protein is in a linear pattern along cytoskeletal microtubules and that the signal is present in puncta. Please move this to the main text, perhaps replacing Figure 2A, which is low magnification and very hard to see the HMMR staining. Additionally, the level of overexpression of HMMR is not mentioned. Please address this; were cells with similar levels of overexpression selected? Did the result depend on the overexpression? A related issue is the DIV for the cells - some are examined earlier and some at later times; does this impact the results? Please provide information or perform experiments with consistent timing. For the immunofluorescence, were multiple antibodies tried to see if the result was the same with each? Were different fixations, in addition to methanol, utilized?

      We have replaced Figure 2A with Figure S3 based on the reviewer’s suggestion.

      In the HMMR overexpression experiments, we used HMMR antibody and immunofluorescence staining to confirm that the overexpression is achieved. However, we did not quantify to what extend HMMR was overexpressed.

      We performed all the depletion experiments on 4 DIV to maximize knockdown efficiency and performed all the overexpression experiments on 3 DIV to prevent excessive axon fasciculation. Nonetheless, we examined the effect of HMMR depletion on neuronal morphology on 3 DIV. The trend of reduced total neurite length, axon length, and dendrite length can be observed, but no statistical significance can be detected. We also examined the effect of HMMR overexpression on neuronal morphology on 4 DIV and did observe an increase of total neurite length, axon length, and dendrite length. But the overlapping and bundled axons made reliable quantification extremely difficult.

      We actually tested multiple HMMR antibodies, such as E-19 (Santa Cruz, sc-16170), EPR4054 (Abcam, ab124729), and a variety of antibodies provided by Prof. Eva Turley. E19 performed the best in immunofluorescence (IF) staining and knockdown validation. The other antibodies either failed to detect HMMR in IF staining or generate excessive background signal. We also tested various fixation methods, including 37°C formaldehyde fixation, -20°C methanol fixation, 37°C formaldehyde followed by -20°C methanol fixation. All fixation methods generated similar IF staining pattern using the E-19 antibody, but 3.7% formaldehyde fixation produced the highest signal.

      (5) In Figure 2 C it is hard to see DAPI fluorescence. Are the white areas in the merge with bright cell nuclei? Is Figure 2C control or overexpressing cells? If this is endogenous, is there less signal in PLA compared with S4, which was in culture longer and is overexpressed prior to using PLA for detection?

      The white areas in Figure 2C the reviewer mentioned are not cell nuclei, they are actually bubbles formed within the mounting medium.

      HMMR detected in Figure 2C is endogenous. We did not quantitatively compare the PLA signals in Figure 2C and those in Figure S4. This is because the PLA signals in Figure 2C are generated using anti-HMMR (to detect endogenous HMMR) and anti-β-III-tubulin antibodies while those in Figure S4 are generated using anti-AcGFP (to detect overexpressed AcGFP-mHMMR) and anti-β-III-tubulin antibodies. Since the affinity of the two antibodies (i.e., anti-HMMR and anti-AcGFP) toward their antigens is different, comparing the PLA signals is not informative.

      (6) The images of the endogenous HMMR (Fig S3) and the PLA with tubulin and HMMR antibodies are not the same (2C). The "dots" in PLA are widely separated; gauging from the marker bar length of 50 μm, the small clusters of dots are about 10 μm apart. In Figure S3, the puncta are much more closely spaced, appearing almost in a linear fashion along the microtubules. Enlarging the PLA image shows that each dot is very small - just a few pixels - please provide additional explanation including the minimal detection limit for the method, and why the images differ. If the standard immunofluorescence signal was enhanced, for example with the use of two secondaries, what is observed? Is the distribution of HMMR similar for both dendrites and axons? Microtubule polarity differs in these locations, so greater attention to this point seems of interest. There is a significant amount of punctate HMMR in the cytoplasm (or outside the cytoplasm?) in Figure S5; this is concerning. Please outline the cell edge for ease of visualization. What is the distribution of HMMR in a cell that has been treated with cold and/or nocodazole to disassemble the microtubules? is the signal lost?

      The reasons images of the endogenous HMMR (Figure S3) and the PLA with tubulin and HMMR antibodies (Figure 2C) differ are due to the following reasons. o PLA utilizes two primary antibodies to target two different epitopes on HMMR and βIII-tubulin. It is conceivable that not every anti-HMMR antibody has the correct orientation and/or proximity (<40 nm) toward the anti-β-III-tubulin antibody to enable DNA amplification. This results in the shortage of PLA puncta compared to immunofluorescence signals.

      • The creator of PLA has pointed out that in situ PLA is a method based upon equilibrium reactions and several enzymatic steps. Therefore, only a fraction of the inter-acting molecules is detected (Weibrecht et al., 2010).

      We have not used signal enhancing immunofluorescence staining methods [e.g., using tertiary antibodies or tyramide signal amplification (TSA)] to detect HMMR. This is mainly because HMMR signal is strong enough to be detected using standard immunofluorescence staining.

      Regarding the question “Is the distribution of HMMR similar for both dendrites and axons?” The reviewer raised a very important issue about the polarity difference of microtubules in axons (uniform) and dendrites (mixed). We were aware of such issue and very carefully examined the distribution and signal intensity of HMMR in axons vs dendrites. However, no differences were detected.

      The reviewer mentioned that “there is a significant amount of punctate HMMR in the cytoplasm (or outside the cytoplasm?) in Figure S5; this is concerning. Please outline the cell edge for ease of visualization.” Instead of outlining the cell edge, we have selected another image to facilitate the visualization of HMMR signals. There are indeed HMMR signals outside the cell. However, these outside signals are usually weaker and smaller in size compared to those inside the cell.

      After the examination of neurons expressing AcGFP-mHMMR with or without 100 nM nocodazole treatment, we did not notice any difference of AcGFP-mHMMR in distribution. We did not examine the distribution and signal intensity of the endogenous HMMR.

      (7) To determine if HMMR alters microtubule stability, the authors examine the distribution of acetylated tubulin and resistance to nocodazole-induced microtubule disassembly. In Figure 3 please show immunofluorescence images of the acetylated tubulin staining, not just the ratio images; the color is not obviously different in the various panels shown. For statistical analysis, see the comment above for Figure 1. For the nocodazole experiment, a similar change in neurite length following drug treatment was observed (Figure 3H), for the experimental and control, even though the starting length was greater in the overexpressing cells. Please consider the possibility that in both cases the microtubules are only partially resistant to nocodazole and that HMMR is not changing the fraction of microtubules that are sensitive to the drug. The cells were treated at 3 DIV; the authors note that more stable microtubules accumulate with time; how does time in culture impact stability? Often, acute treatment with a high concentration of nocodazole is used to assay microtubule stability; here the authors used a low (nM) concentration for 2 days (chronic). Why not use a higher concentration (1-10 μM) for a shorter incubation? The data show that overexpression of HMMR results in curved, buckled microtubules are these microtubules more acetylated and/or retained after nocodazole treatment?

      The reviewer suggested that we show immunofluorescence images of the acetylated tubulin staining, not just the ratio images. But we still believe showing the ratio images is the better approach. This is because the microtubules density can be different from neuron to neuron. Showing acetylated tubulin may provide a false impression when the overall microtubule density is higher or lower in a particular neuron. We realized that “16 colors” pseudo-color scheme has the cyan color at the lower intensity which can sometimes be confused with the white color at the higher intensity. Therefore, we changed the pseudocolor from “16 colors” to “fire” for Figure 3B and 3E to better visualize these images so that they appear more consistent with the quantitative data.

      The reviewer raised a very good question regarding the possibility that HMMR is not changing the fraction of microtubules that are sensitive to nocodazole. We re-conducted the same experiment and used a series of different nocodazole concentrations. While the addition of nocodazole causes a concentration-dependent reduction of total neurite length in both AcGFP and AcGFP-mHMMR expressing neurons, there are subtle differences in the susceptibility of neurite length to the concentration of nocodazole. 1) 10 nM nocodazole treatment causes a significant reduction of neurite length in AcGFP expressing neurons, but not in AcGFP-mHMMR expressing neurons. This result indicates that AcGFP-mHMMR expression increases the tolerance of neurite elongation toward 10 nM nocodazole treatment. 2) 50 nM and 100 nM nocodazole treatment exhibits no statistical significance in AcGFP expressing neurons, suggesting that 50 nM nocodazole has reached maximal effectiveness. In AcGFP-mHMMR expressing neurons, 100 nM nocodazole further reduces the neurite length compared to the 50 nM group. These results argue against the possibility that HMMR does not change the fraction of microtubules that are sensitive to nocodazole. We have revised Figure 3H accordingly.

      The reviewer asked why we did not use the acute nocodazole treatment (μM concentration) to assess the effect of Hmmr on microtubule stability. This is because we used the neurite length as an indicator for microtubule stability. That is why the chronic treatment was chosen to produce a more detectable effect on neurite length.

      The reviewer asked whether the looped microtubules caused by HMMR overexpression are more acetylated and/or nocodazole resistant. While we do not have direct evidence to answer the reviewer’s question, we can deduce the answer from our observations. We noticed that looped microtubules are only present when HMMR is highly expressed (i.e., using lipofection to introduce HMMR-expressing plasmid) but not when HMMR is mildly expressed (i.e., using electroporation to introduce HMMR-expressing plasmid). From these observations, we can conclude that HMMR is more abundantly present on looped microtubules. Since HMMR overexpression leads to higher microtubule acetylation (Figure 3E), looped microtubules which contains more HMMR are most likely to be more acetylated.

      (8) An additional measure of microtubule dynamics is to measure the growth of microtubules using a live cell marker for microtubule plus ends. Such experiments were performed, using tagged EB3. The images are rather fuzzy. Parameters of microtubule dynamics were measured at three locations - is there data that the authors can cite about any differences in dynamics in control cells at these locations? They look very similar, so it is not clear why the different locations were used. It is not possible to learn much from the kymographs which look similar for all panels; I would remove these unless they can be changed or labeled to help the reader. Data is presented for three shRNA reagents. No data are presented to document the extent to which the protein is depleted with these reagents. This should be fixed. Alternatively, an RNAi pool could be utilized. Is there a control for off-target effects? For the analysis were all the comets used to generate the average values? What about a comparison of the average of each trial - not each comet?

      In our previous publication (Chen et al., 2017), it was discovered that a significant reduction of EB3 emanation frequency can be detected at the tip and the base of the neurite but not in the middle of the neurite in TPX2-depleted neurons. The reason for this difference is due to the presence of RanGTP at the tip and the base of the neurite. Since RanGTP has also been shown to regulate the interaction between HMMR and TPX2 in the cell-free system (Scrofani et al., 2015), it is possible that the same phenomenon can be observed in HMMR-depleted neurons. This is why we examined those 3 ROIs in Figure 4.

      We notice that photobleaching causes the EB3-mCherry signal to diminish at later time points, which made it difficult to observe the differences amongst kymographs. In the revised Figure 4B and 4D, we removed the second half of all the kymographs to make the differences more obvious.

      The reviewer mentioned that there are no data documenting the extent to which the protein is depleted with the shRNAs. These data are shown in Figure S2, in which we quantified the HMMR protein level in the soma and along the neurite in neurons expressing different shRNA molecules.

      The reviewer asked whether there is a control for off-target effects. The answer is yes. We performed the rescue experiment to control for off-target effects, which is shown in Figure S1.

      We revised Figure 4 so that the dynamic properties of EB3 are quantified using the average of each experimental repetition.

      (9) In a final experiment, the authors examine the distribution of TPX2, a binding partner of HMMR. Include a standard immunofluorescence in addition to PLA to illustrate the distribution of TPX2. The quantification used was the inter puncta distance; please quantify the signal in control and treated cells.

      The reviewer asked us to include a standard immunofluorescence staining to illustrate the distribution of TPX2. We have done that in our previous publication (Chen et al., 2017) and TPX2 localizes primarily to the centrosome (https://www.nature.com/articles/srep42297/figures/2). In order to enhance the weak signal of TPX2 along the neurite, we actually needed to use PLA in that publication (https://www.nature.com/articles/srep42297/figures/3).

      Proximity ligation assay (PLA) generates fluorescent signals based on a local enzymatic reaction which catalyzes the amplification of a specific DNA sequence that can then be detected using a red fluorescent probe. Because this enzymatic reaction is not linear, the amount of amplified DNA nor the intensity of the fluorescence does not correlate with the strength of the interaction (Soderberg et al., 2006). As a result, quantification of PLA is typically done by counting the number of fluorescent puncta per unit area or by calculating the area containing fluorescent signal (not signal intensity) per unit area in the case that PLA signals are too strong and coalesced. That is why our quantification is based on the distance between PLA fluorescent puncta, not the fluorescent signal intensity.

      References

      Basnet, N., H. Nedozralova, A.H. Crevenna, S. Bodakuntla, T. Schlichthaerle, M. Taschner, G. Cardone, C. Janke, R. Jungmann, M.M. Magiera, C. Biertumpfel, and N. Mizuno. 2018. Direct induction of microtubule branching by microtubule nucleation factor SSNA1. Nat. Cell Biol. 20:1172-1180.

      Berkel, S., W. Tang, M. Trevino, M. Vogt, H.A. Obenhaus, P. Gass, S.W. Scherer, R. Sprengel, G. Schratt, and G.A. Rappold. 2012. Inherited and de novo SHANK2 variants associated with autism spectrum disorder impair neuronal morphogenesis and physiology. Hum. Mol. Genet. 21:344-357.

      Bielas, S.L., F.F. Serneo, M. Chechlacz, T.J. Deerinck, G.A. Perkins, P.B. Allen, M.H. Ellisman, and J.G. Gleeson. 2007. Spinophilin facilitates dephosphorylation of doublecortin by PP1 to mediate microtubule bundling at the axonal wrist. Cell. 129:579-591.

      Chen, W.S., Y.J. Chen, Y.A. Huang, B.Y. Hsieh, H.C. Chiu, P.Y. Kao, C.Y. Chao, and E. Hwang. 2017. Ran-dependent TPX2 activation promotes acentrosomal microtubule nucleation in neurons. Sci. Rep. 7:42297.

      Dent, E.W., J.L. Callaway, G. Szebenyi, P.W. Baas, and K. Kalil. 1999. Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches. J. Neurosci. 19:8894-8908.

      Dent, E.W., and K. Kalil. 2001. Axon branching requires interactions between dynamic microtubules and actin filaments. J. Neurosci. 21:9757-9769.

      Goo, B.S., D.J. Mun, S. Kim, T.T.M. Nhung, S.B. Lee, Y. Woo, S.J. Kim, B.K. Suh, S.J. Park, H.E. Lee, K. Park, H. Jang, J.C. Rah, K.J. Yoon, S.T. Baek, S.Y. Park, and S.K. Park. 2023. Schizophrenia-associated Mitotic Arrest Deficient-1 (MAD1) regulates the polarity of migrating neurons in the developing neocortex. Mol. Psychiatry. 28:856-870.

      Groen, A.C., L.A. Cameron, M. Coughlin, D.T. Miyamoto, T.J. Mitchison, and R. Ohi. 2004. XRHAMM functions in ran-dependent microtubule nucleation and pole formation during anastral spindle assembly. Curr. Biol. 14:1801-1811.

      Purro, S.A., L. Ciani, M. Hoyos-Flight, E. Stamatakou, E. Siomou, and P.C. Salinas. 2008. Wnt regulates axon behavior through changes in microtubule growth directionality: a new role for adenomatous polyposis coli. J. Neurosci. 28:8644-8654.

      Scrofani, J., T. Sardon, S. Meunier, and I. Vernos. 2015. Microtubule nucleation in mitosis by a RanGTP-dependent protein complex. Curr. Biol. 25:131-140.

      Soderberg, O., M. Gullberg, M. Jarvius, K. Ridderstrale, K.J. Leuchowius, J. Jarvius, K. Wester, P. Hydbring, F. Bahram, L.G. Larsson, and U. Landegren. 2006. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods. 3:995-1000.

      Teng, J., Y. Takei, A. Harada, T. Nakata, J. Chen, and N. Hirokawa. 2001. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J. Cell Biol. 155:65-76.

      Weibrecht, I., K.J. Leuchowius, C.M. Clausson, T. Conze, M. Jarvius, W.M. Howell, M. Kamali-Moghaddam, and O. Soderberg. 2010. Proximity ligation assays: a recent addition to the proteomics toolbox. Expert Rev Proteomics. 7:401-409.

      Winkle, C.C., R.H. Olsen, H. Kim, S.S. Moy, J. Song, and S.L. Gupton. 2016. Trim9 Deletion Alters the Morphogenesis of Developing and Adult-Born Hippocampal Neurons and Impairs Spatial Learning and Memory. J. Neurosci. 36:49404958.

      Yalgin, C., S. Ebrahimi, C. Delandre, L.F. Yoong, S. Akimoto, H. Tran, R. Amikura, R. Spokony, B. Torben-Nielsen, K.P. White, and A.W. Moore. 2015. Centrosomin represses dendrite branching by orienting microtubule nucleation. Nat. Neurosci. 18:1437-1445.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The authors set up a pipeline for automated high-throughput single-molecule fluorescence imaging (htSMT) in living cells and analysis of molecular dynamics

      Strengths:

      htSMT reveals information on the diffusion and bound fraction of molecules, dose-response curves, relative estimates of binding rates, and temporal changes of parameters. It enables the screening of thousands of compounds in a reasonable time and proves to be more sensitive and faster than classical cell-growth assays. If the function of a compound is coupled to the mobility of the protein of interest, or affects an interaction partner, which modulates the mobility of the protein of interest, htSMT allows identifying the modulator and getting the first indication of the mechanism of action or interaction networks, which can be a starting point for more in-depth analysis.

      Weaknesses:

      While elegantly showcasing the power of high-throughput measurements, the authors disclose little information on their microscope setup and analysis procedures. Thus, reproduction by other scientists is limited. Moreover, a critical discussion about the limits of the approach in determining dynamic parameters, the mechanism of action of compounds, and network reconstruction for the protein of interest is missing. In addition, automated imaging and analysis procedures require implementing sensitive measures to assure data and analysis quality, but a description of such measures is missing.

      The reviewer rightly highlights both the power and complexity in high throughput assay systems, and as such the authors have spent significant effort in first developing quality control checks to support screening. We discuss some of these as part of the description and characterization of the platform. We added additional details into the manuscript to help clarify. The implementation of our workflow for image acquisition, processing and analysis relies heavily on the specifics of our lab hardware and software infrastructure. We have added additional details to the text, particularly in the Methods section, and believe we have added enough information that our results can be reproduced using the suite of tools that already exist for single molecule tracking.

      The reviewer also points out that all assays have limitations, and these have not been clearly identified as part of our discussion of the htSMT platform. We have also added some comments on the limitations of the current system and our approach.

      Reviewer #2 (Public Review):

      Summary:

      McSwiggen et al present a high throughput platform for SPT that allows them to identify pharmaceutics interactions with the diffusional behavior of receptors and in turn to identify potent new ligands and cellular mechanisms. The manuscript is well written, it provides a solid new mentor and a proper experimental foundation

      Strengths:

      The method capitalizes and extends to existing high throughput toolboxes and is directly applied to multiple receptors and ligands. The outcomes are important and relevant for society. 10^6 cells and >400 ligands per is a significant achievement.

      The method can detect functionally relevant changes in transcription factor dynamics and accurately differentiate the ligand/target specificity directly within the cellular environment. This will be instrumental in screening libraries of compounds to identify starting points for the development of new therapeutics. Identifying hitherto unknown networks of biochemical signaling pathways will propel the field of single-particle live cell and quantitative microscopy in the area of diagnostics. The manuscript is well-written and clearly conveys its message.

      Weaknesses:

      There are a few elements, that if rectified would improve the claims of the manuscript.

      The authors claim that they measure receptor dynamics. In essence, their readout is a variation in diffusional behavior that correlates to ligand binding. While ligand binding can result in altered dynamics or /and shift in conformational equilibrium, SPT is not recording directly protein structural dynamics, but their effect on diffusion. They should correct and elaborate on this.

      This is an excellent clarifying question, and we have tried to make it more explicit in the text. The reviewer is absolutely correct; we’re not using SPT to directly measure protein structural dynamics, but rather the interactions a given protein makes with other macromolecules within the cell. So when an SHR binds to ligand it adopts conformations that promote association with DNA and other protein-protein interactions relevant to transcription. This is distinct from assays that directly measure conformational changes of the protein.

      L 148 What do the authors mean 'No correlation between diffusion and monomeric protein size was observed, highlighting the differences between cellular protein dynamics versus purified systems'. This is not justified by data here or literature reference. How do the authors know these are individual molecules? Intensity distributions or single bleaching steps should be presented.

      The point we were trying to make is that the relative molecular weights for the monomer protein (138 kDa for Halo-AR, 102 kDa for ER-Halo, 122 kDa for Halo-GR, and 135 kDa for Halo-PR) is uncorrelated with its apparent free diffusion coefficient. Were we to make this measurement on purified protein in buffer, where diffusion is well described by the Stokes Einstein equation, one would expect to see monomer size and diffusion related. We’ve clarified this point in the manuscript.

      Along the same lines, the data in Figs 2 and 4 show that not only the immobile fraction is increased but also that the diffusion coefficient of the fast-moving (attributed to free) is reduced. The authors mention this and show an extended Fig 5 but do not provide an explanation.

      This is an area where there is still more work to do in understanding the estrogen receptor and other SHRs. As the reviewer says, we see not only an increase in chromatin binding but also a decrease in the diffusion coefficient of the “free” population. A potential explanation is that this is a greater prevalence of freely-diffusing homodimers of the receptor, or other protein-protein interactions (14-3-3, P300, CBP, etc) that can occur after ligand binding. Nothing in our bioactive compound screen shed light on this in particular, and so we can only speculate and have refrained from drawing further conclusions in the text.

      How do potential transient ligand binding and the time-dependent heterogeneity in motion (see comment above) contribute to this? Also, in line 216 the authors write "with no evidence" of transient diffusive states. How do they define transient diffusive states? While there are toolboxes to directly extract the existence and abundance of these either by HMM analysis or temporal segmentation, the authors do not discuss or use them.

      Throughout the analysis in this work, we consider all of tracks with a 2-second FOV as representative of a single underlying population and have not looked at changes in dynamics within a single movie. As we show in the supplemental figures we added (see Figure 3, figure supplement 1), this appears to be a reasonable assumption, at least in the cases we’ve encountered in this manuscript. For experiments involving changes in dynamics over time, these are experiments where we’ve added compound simultaneous with imaging and collect many 2-second FOVs in sequence to monitor changes in ER dynamics. In this case when we refer to “transient states,” we are pointing out that we don’t observe any new states in the State Array diagram that exist in early time points but disappear at later time point.

      The reviewer suggests track-level analysis methods like hidden Markov models or variational Bayesian approaches which have been used previously in the single molecule community. These are very powerful techniques, provided the trajectories are long (typically 100s of frames). In the case of molecules that diffuse quickly and can diffuse out of the focal plane, we don’t have the luxury of such long trajectories. This was demonstrated previously (Hansen et al 2017, Heckert el al 2022) and so we’ve adopted the State Array approach to inferring state occupations from short trajectories. As the reviewer rightly points out, this approach potentially loses information about state transitions or changes over time, but as of now we are not aware of any robust methods that work on short trajectories.

      The authors discuss the methods for extracting kinetic information of ligand binding by diffusion. They should consider the temporal segmentation of heterogenous diffusion. There are numerous methods published in journals or BioRxiv based on analytical or deep learning tools to perform temporal segmentation. This could elevate their analysis of Kon and Koff.

      We’re aware of a number of approaches for analyzing both high framerate SMT as well as long exposure residence time imaging. As we say above, we’re not aware of any methods that have been demonstrated to work robustly on short trajectories aside from the approaches we’ve taken. Similarly, for residence time imaging there are published approaches, but we’re not aware of any that would offer new insight into the experiments in this study. If the reviewer has specific suggestions for analytical approaches that we’re not aware of we would happily consider them.

      Reviewer #3 (Public Review):

      Summary:

      The authors aim to demonstrate the effectiveness of their developed methodology, which utilizes super-resolution microscopy and single-molecule tracking in live cells on a high-throughput scale. Their study focuses on measuring the diffusion state of a molecule target, the estrogen receptor, in both ligand-bound and unbound forms in live cells. By showcasing the ability to screen 5067 compounds and measure the diffusive state of the estrogen receptor for each compound in live cells, they illustrate the capability and power of their methodology.

      Strengths:

      Readers are well introduced to the principles in the initial stages of the manuscript with highly convincing video examples. The methods and metrics used (fbound) are robust. The authors demonstrate high reproducibility of their screening method (R2=0.92). They also showcase the great sensitivity of their method in predicting the proliferation/viability state of cells (R2=0.84). The outcome of the screen is sound, with multiple compounds clustering identified in line with known estrogen receptor biology.

      Weaknesses:

      • Potential overstatement on the relationship of low diffusion state of ER bound to compound and chromatin state without any work on chromatin level.

      We appreciate the reviewers caution in over-interpreting the relationship between an increase in the slowest diffusing states that we observe by SMT and bona fide engagement with chromatin. In the case of the estrogen receptor there is strong precedent in the literature showing increases in chromatin binding and chromatin accessibility (as measured by ChIP-seq and ATAC-seq) upon treatment with either estradiol or SERM/Ds. Taken together with the RNA-seq, we felt it reasonable to assume all the trajectories with a diffusion coefficient less that 0.1 µm2/sec were chromatin bound.

      • Could the authors clarify if the identified lead compound effects are novel at any level?

      Most of the compounds we characterize in the manuscript have not previously been tested in an SMT assay, but many are known to functionally impact the ER or other SHRs based on other biochemical and functional assays. We have not described here any completely novel ER-interacting compounds, but to our knowledge this is the first systematic investigation of a protein showing that both direct and indirect perturbation can be inferred by observing the protein’s motion. Especially for the HSP90 inhibitors, the observation that inhibiting this complex would so dramatically increase ER chromatin-binding as opposed to increasing the speed of the free population is counterintuitive and novel.

      • More video example cases on the final lead compounds identified would be a good addition to the current data package.

      Reviewer #1 (Recommendations For The Authors):

      General:

      • More information on the microscope setup and analysis procedures should be given. Since custom code is used for automated image registration, spot detection, tracking, and analysis of dynamics, this code should be made publicly available.

      Results:

      • line 97: more details about the robotic system and automatic imaging, imaging modalities, and data analysis procedures should be given directly in the text.

      Additional information added to text and methods

      • line 100: we generated three U2OS cell lines --> how?

      Additional information added to text and methods

      • line 101: ectopically expressing HaloTag fused proteins --> how much overexpression did cells show?

      The L30 promoter tends to produce fairly low expression levels. The same approach was used for all ectopic expression plasmids, and for the SHRs the expression levels were all comparable to endogenous levels. We have not checked this for H2B, Caax and free Halo but given that the necessary dye concentration to achieve similar spot densities is within a 10-fold range for all constructs, its reasonable to say that those clonal cell lines will also have modest Halotag expression.

      • line 107: Single-molecule trajectories measured in these cell lines yielded the expected diffusion coefficients --> how was data analysis performed?

      Additional information added to text and methods

      • line 109: how was the localization error determined?

      Additional information added to text and methods

      • line 155: define occupation-weighted average diffusion coefficient.

      Additional information added to text and methods

      • line 157: with 34% bound in basal conditions and 87% bound after estradiol treatment  contradicts figure 2b, where the bound fraction is up to 50% after estradiol treatment.

      Line 157 is the absolute fraction bound, figure 2b is change in fbound

      • line 205: Figure 2c is missing.

      Fixed

      • line 215: within minutes --> how was this data set obtained? which time bins were taken?

      Additional information added to text and methods

      • line 216: with no evidence of transient diffusive states  What is meant by transient diffusive state? It seems all time points have a diffusive component, which decreases over time.

      Additional information added to text and methods

      The diffusive peak decreases, the bound peak increases but no other peaks emerge during that time (e.g. neither super fast nor super slow)

      • line 225: it seems that fbound of GDC-0810 and GDC-0927 are rather similar in FRAP experiments, please comment, how was FRAP done?

      FRAP is in the methods section. The curves and recovery times are quite distinct, is the reviewer looking at

      • line 285: reproducibly: how often was this repeated?

      Information added to the manuscript

      • line 285: it would be necessary to name all of the compounds that were tested, e.g. with an ID number in the graph and a table. This also refers to extended data 7 and 8.

      Additional supplemental file with the list of bioactive compounds tested will be included.

      • line 290/1: what is meant by vendor-provided annotation was poorly defined?

      Additional information added to text and methods. Specifically, the “other” category is the most common category, and it includes both compounds with unknown targets/functions as well as compound where the target and pathway are reasonably well documented. Hence, we applied our own analysis to better understand the list of active compounds.

      Figures:

      • fig. 2-6: detailed statistics are missing (number of measured cells, repetitions, etc.).

      We have added clarifying information, including an “experiment design and sample size” section in the Methods.

      • fig. 3: the authors need to give a list with details about the 5067 compounds tested,

      Additional supplemental file with the list of bioactive compounds tested will be included.

      • extended data 1c: time axis does not correspond to the 1.5s of imaging in the text, results line 127.

      Axes fixed

      • extended data 3: panel c and d are mislabeled.

      Panel labels fixed

      Methods:

      • line 746: HILO microscope: the authors need to explain how they can get such large fields of view using HILO

      Additional details added to the materials and methods. The combination of the power of the lasers, the size of the incident beam out of the fiber optic coupling device and the sCMOS camera are the biggest components that enable detection over a larger field of view.

      • line 761: it is common practice to publish the analysis code. Since the authors wrote their own code, they should publish it

      Our software contains proprietary information that we cannot yet release publicly. Comparable results can be achieved with HILO data using publicly-available tools like utrack. State Arrays code is distributed and the parameters used are listed in the M&M.

      Reviewer #2 (Recommendations For The Authors):

      The writing and presentation are coherent, concise, and easy to follow.

      The authors should consider justifying the following:

      Why is 1.5s imaging time selected? Topological and ligand variations may last significantly longer than this. The authors should present at least for one condition the same effect images for longer.

      Related to the similar comment above, we added a figure examining the jump length distribution as a function of frame. Over the 6 seconds of data collection the jump length distribution is unchanged, suggesting it is reasonable to consider all the trajectories within an FOV as representative of the same underlying dynamical states.

      The authors miss the k test or T test in their graphs.

      We chose to apply the Kurskal-Wallis test in the context of the bioactive screen to assess whether a grouping of compounds based on their presumed cellular target was significantly different from the control even when individual compounds might not by themselves raise to significance. In this case many of the pathway inhibitors are subtle and not necessarily obvious in their difference. In the other cases throughout the manuscript, whether two conditions are statistically distinguishable is rarely in question and of far less importance to the conclusions in the manuscript than the magnitude of the difference. We’ve added statistical tests where appropriate.

      The overall integrated area of Fig 4a appears to reduce upon ligand addition. Data appear normalized but the authors should also add N (number of molecules) on top of the graphs.

      While the integrated area may appear to decrease, all State Array analysis is performed by first randomly sampling 10,000 trajectories from the assay well and inferring state distribution on those 10,000. This has been clarified in the figure legend and in the Methods.

      Minor

      Extended Figure 3 legend c, d appear swapped and incorrectly named in the text.

      Panel labels fixed

      L 197 but this appears not to BE a general feature of SHRs (maybe missing Be).

      Error fixed

      L205 authors refer to Figure 2c, which does not exist.

      Panel reference fixed

      Reviewer #3 (Recommendations For The Authors):

      Among minor issues:

      In Figure 1B, if the authors could specify how they discriminate the specific cell lines from the mixed context, it would enhance clarity. Could they perform additional immunofluorescence to understand how the assignment is determined? Alternatively, could they also show the case with isolated cell lines in an unmixed context?

      Immunofluorescence would be a challenge given that there is not a good epitope to distinguish the three ectopically-expressed genes from each other or from endogenous proteins in the case of H2B and CaaX. We are really reliant on the single cell dynamics to determine the likely cell identity. That said, we’ve added graphs of a number of individual cell State Arrays from the same data graphed in 1A which support the notion that it’s reasonable to assume a cells identity given the observed dynamics.

      In Extended Figure 2F: possibly a CHip-Seq experiment would be more directly qualified to state the effect of ER ligand on ER ability to bind chromatin.

      This is true. Presumably ER that is competent at activating transcription of ER-responsive genes is also capable of binding DNA. ChIP would be the more direct measure, but would not address whether the protein was functional. We chose to balance these measuring these two aspects of ER biology by pairing dynamics with the end-point transcription readout.

      In Figure 3: A representation with plate-by-plate orientation along the x-axis, with controls included in each plate, would be more appropriate to reflect the consistency of the controls used in the assay across different plates. Currently, all controls are pooled in one location, and we cannot appreciate how the controls vary from plate to plate.

      Figure added to the supplement

      Also in this figure, a general workflow of the screen down to segmentation/analysis would be a great add-on.

      New figure added to the supplement and reflected in the textual description of the platform

      In Extended Figures 3B and C an add-on of the positive and negative control would make the figure more convincing.

      Addressed as part of figure added to the supplement

      Is there any description of compound leads identified that is novel in nature in relation to impact on ER, and if so could it be stated more clearly in the text as novel finding?

      To our knowledge, the impact of HSP inhibition in increasing ER-chromatin association has never been described, neither has the link between inhibition post-translation modifying enzymes like the CDKs or mTOR and ER dynamics ever been described. We added clarifying text to the manuscript

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Detection of early-stage colorectal cancer is of great importance. Recently, both laboratory scientists and clinicians have reported different exosomal biomarkers to identify colorectal cancer patients.

      Here, the authors exhibited a full RNA landscape for plasma exosomes of 60 individuals, including 31 colorectal cancer (CRC) patients, 19 advanced adenoma (AA) patients, and 10 noncancerous controls. RNAs with high fold change, high absolute abundance, and various module attribution were used to construct RT-qPCR-based RNA models for CRC and AA detection.

      Overall, this is a well-performed proof-of-concept study to highlight exosomal RNAs as potential biomarkers of early-stage colorectal cancer and its precancerous lesions.

      Thank you for your careful evaluation and valuable suggestions, which have provided valuable guidance for the improvement of our paper. In response to your feedback, we have implemented the following improvements.

      (1) Depicting the full RNA landscape of circulating exosomes is still quite challenging. The authors annotated 58,333 RNA species in exosomes, most of which were lncRNAs, but the authors do not explain how they characterized those RNAs.

      Author response and action taken: Thanks for your comments. In the Supplementary Methods section titled "Identification of mRNAs and lncRNAs", we have provided a comprehensive explanation on the characterization of mRNAs and lncRNAs to address the concerns you raised. Characterization of long-chain RNAs is a great challenge. For lncRNA analysis, the transcriptome was assembled using the Cufflinks and Scripture based on the reads mapped to the reference genome. The assembled transcripts were annotated using the Cuffcompare program from the Cufflinks package. The unknown transcripts were used to screen for putative lncRNAs.

      (2) The authors tested their models in a medium size population of 124 individuals, which is not enough to obtain an accurate evaluation of the specificity and sensitivity of the biomarkers proposed here. External validation would be required.

      Author response and action taken: Thanks for your comments. We fully acknowledge the significance of external validations in the evaluation of diagnostic model performance. Unfortunately, as a pilot study, we currently do not have the conditions for a multicenter investigation. To mitigate result bias and overfitting effects, we implemented a rigorous variable selection strategy and enhanced model stability through 10-fold cross-validation. In the meantime, we will persist in our efforts to elevate the quality of our research and seek additional resources for external validation in future studies.

      Reviewer #2:

      The authors present an important study on the potential of small extracellular vesicle (sEV)-derived RNAs as biomarkers for the early detection of colorectal cancer (CRC) and precancerous adenoma (AA). The authors provide a detailed analysis of the RNA landscape of sEVs isolated from participants, identifying differentially expressed sEV-RNAs associated with T1a stage CRC and AA compared to normal controls. The paper further categorises these sEV-RNAs into modules and constructs a 60-gene model that successfully distinguishes CRC/AA from NC samples. The authors also validate their findings using RT-qPCR and propose an optimised classifier with high specificity and sensitivity. Additionally, the authors discuss the potential of sEV-RNAs in understanding CRC carcinogenesis and suggest that a comprehensive biomarker panel combining sEV-RNAs and proteins could be promising for identifying both early and advanced CRC patients. Overall, the study provides valuable insights into the potential clinical application of sEV-RNAs in liquid biopsy for the early detection of CRC and AA.

      Major strengths:

      (1) Comprehensive sEV RNA profiling: The study provides a valuable dataset of the whole-transcriptomic profile of circulating sEVs, including miRNA, mRNA, and lncRNA. This approach adds to the understanding of sEV-RNAs' role in CRC carcinogenesis and facilitates the discovery of potential biomarkers.

      (2) Detection of early-stage CRC and AA: The developed 60-gene t-SNE model successfully differentiated T1a stage CRC/AA from normal controls with high specificity and sensitivity, indicating the potential of sEV-RNAs as diagnostic markers for early-stage colorectal lesions.

      (3) Independent validation cohort: The study combines RNA-seq, RT-qPCR, and modelling algorithms to select and validate candidate sEV-RNAs, maximising the performance of the developed RNA signature. The comparison of different algorithms and consideration of other factors enhance the robustness of the findings.

      Thank you for your careful evaluation and valuable suggestions. These comments have been highly valuable for the performance evaluation and clinical applications of our work. In response to your feedback, we have implemented the following improvements.

      (1). Lack of analysis on T1-only patients in the validation cohort: While the study identifies key sEV-RNAs associated with T1a stage CRC and AA, the validation cohort is only half of the patients in T1(25 out of 49). It would be better to do an analysis using only the T1 patients in the validation cohort, so the conclusion is not affected by the T2-T3 patients.

      Author response and action taken: Thanks for your comments. This feedback is essential for ensuring consistency in the results with our previous findings. In this context, we revalidated various diagnostic panels using exclusively Stage I patients (Figure 7—figure supplement 2). To minimize the potential overfitting effect due to the reduction in sample size after partitioning, we implemented a 10-fold cross-validation for each panel and these panels exhibit promising performance in Stage I colorectal cancer (CRC) patients.

      Author response image 1.

      The ROC analysis of different sEV-RNA signatures in the prediction of Stage I CRC patients by different algorithms (a: 6-gene panel; b: 7-gene panel; c: 8-gene panel; d: 9-gene panel).

      (2). Lack of performance analysis across different demographic and tumor pathology factors listed in Supplementary Table 12. It's important to know if the sEV-RNAs identified in the study work better/worse in different age/sex/tumor size/Yamada subtypes etc.

      Author response and action taken: Thanks for your comments. This feedback will be immensely beneficial for clinical diagnosis. Similarly, cross-validation was performed in this section. We assessed the discriminative effects of CRC on NC, taking into account different age groups, genders, tumor sizes, and anatomical locations (Figure 7—figure supplement 3). Overall, these sEV RNA panels perform better in individuals under the age of 55 and in female patients. There is no significant difference in discriminative effects across different tumor sizes. Compared to rectal cancer, the discriminative effects are better in colon cancer.

      Author response image 2.

      The ROC analysis of different sEV-RNA signatures for predicting CRC patients using the Lasso regression algorithm in different clinical parameters (ab: age; cd: gender; ef: tumor size; gh: anatomical position).

    1. Author response:

      We thank the reviewers for their positive assessments and constructive feedback.

      In light of their comments, we will aim to improve the explanation of the methods and interpretation of results, as well as their relation to well-established literature in this research area.

      The major contributions of our work are threefold:

      • First, we introduce a novel way of analyzing codas that specifically targets subcoda structures by considering inter-click intervals within codas in terms of transition probabilities. By describing codas’ click patterns via Variable Length Markov Chains, we do not need to consider codas in their entirety, but we can detect coda subunits.This enables a new dimension for quantitatively comparing differences among various individuals, social units, and clans; which we term ‘vocal style’.

      • Using this approach, we reinforce findings from past research, including the idea that identity codas function as symbolic markers of vocal clan identity (Hersh et al., 2022; Sharma et al., 2024). More importantly, we offer new insights into the function of non-identity codas, which comprise the majority of coda types produced by sperm whales but have been largely uncharacterized. 

      • Our work reveals that non-identity coda vocal styles are more similar for spatially overlapped clans, and suggests that this similarity in style may be maintained by social learning across clan boundaries. This opens up a paradigm shift in our understanding of between-clan acoustic interactions.

      From a broader perspective, our work builds on two well-established research areas: the form and function of sperm whale codas, and statistical generative models, specifically Variable Length Markov Chains on finite data spaces. Our methods, results, and interpretations are grounded in theories and concepts from these fields.

      For clarity, we will ensure that our terminology aligns with field standards and existing research. We will clearly introduce each key theory or concept at first mention and justify its relevance. In particular, we will clarify the definition and meaning of the distance between subcoda trees for a general audience. We agree with the reviewers’ comments on the broader implications and will refine our work accordingly.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      Both reviewers positively received the manuscript, in general. The agreement was that the manuscript presented valuable findings, using solid techniques and approaches, that shed additional light into how the canine distemper virus hemagglutinin might engage cellular receptors and how that engagement impacts host tropism. While both reviewers appreciated the X-ray crystallographic data, they also felt that the AFM experiments could have been performed at a higher standard and that the interpretation of the results ensuing from those AFM experiments could have been explained more thoroughly and in simpler terms. An additional missed opportunity of the current manuscript is the lack of comparison of the crystal structure to that of the already published cryo-EM structure, for context.

      Thank you very much for constructive comments of the editor and reviewers. Following your comments, we have changed the text related to the AFM experiments with simpler terms as follows.

      “When CDV-H was loaded onto a mica substrate and scanned with a cantilever to acquire images of attached molecules, the CDV-H dimer was observed as two globules clustered together in most cases, but sometimes, each domain moved independently (Fig. 7B and Supplementary Movie). Time-course analysis of the dynamics of the representative CDV-H dimer showed that CDV-H could adopt both associated and dissociated forms (Fig. 7C). The distances between the domains were calculated by measuring those between the centers of mass of each domain. Finally, the distribution of distances between each head domain in the CDV-H dimers showed approximately 15 nm as a major peak (Fig. 7D). This is a reasonable length for the linker between the head domain dimers.” in Page 11, Lines 8-17.

      With regards to the structural comparison between cryo-EM structure published in Proc. Natl. Acad. Sci. U. S. A. (2023) 120, e2208866120 and our crystal structure, we have compared these structures for Cα on page 6 and added the following text. “A recent cryo-EM structure of the wild-type CDV-H ectodomain revealed that the head dimer is located on one side of the stalk region in solution (Proc. Natl. Acad. Sci. U. S. A. (2023) 120, e2208866120)” in Page 14, Lines 22-24.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Fukuhara, Maenaka, and colleagues report a crystal structure of the canine distemper virus (CDV) attachment hemagglutinin protein globular domain. The structure shows a dimeric organization of the viral protein and describes the detailed amino-acid side chain interactions between the two protomers. The authors also use their best judgement to comment on predicted sites for the two cellular receptors - Nectin-4 and SLAM - and thus speculate on the CDV host tropism. A complementary AFM study suggests a breathing movement at the hemagglutinin dimer interface.

      Strengths:

      The study of CDV and related Paramyxoviruses is significant for human/animal health and is very timely. The crystallographic data seem to be of good quality.

      Thank you very much for the constructive comment of the reviewer.

      Weaknesses:

      While the recent CDV hemagglutinin cryo-EM structure is mentioned, it is not compared to the present crystal structure, and thus the context of the present study is poorly justified. Additionally, the results of the AFM experiment are not unexpected. Indeed, other paramyxoviral RBP/G proteins also show movement at the protomer interface.

      Thank you very much for constructive comments of the reviewer. When we submitted our manuscript to e-life, cryo-EM structure just published in Proc. Natl. Acad. Sci. U. S. A. (2023) 120, e2208866120 a week ago was not able to be available. Following the comment of the reviewer, we have added the text about the structural comparison between the cryo-EM structure and our crystal structure. We also have changed the text related to the AFM experiments to tone down the movement of the protomer interfaceas follows.

      “This observation raises the possibility that each head domain of CDV-H also dissociates and moves flexibly, as shown in the structure of Nipah virus (NiV)-G protein, previously (Science (2022) 375, 1373–1378).” in Page 11, Lines 4-6.

      Reviewer #2 (Public Review):

      Summary:

      The authors solved the crystal structure of CDV H-protein head domain at 3,2 A resolution to better understand the detailed mechanism of membrane fusion triggering. The structure clearly showed that the orientation of the H monomers in the homodimer was similar to that of measles virus H and different from other paramyxoviruses. The authors used the available co-crystal strictures of the closely related measles virus H structures with the SLAM and Nectin4 receptors to map the receptor binding site on CDV H. The authors also confirmed which N-linked sites were glycosylated in the CDV H protein and showed that both wildtype and vaccine strains of CDV H have the same glycosylation pattern. The authors documented that the glycans cover a vast majority of the H surface while leaving the receptor binding site exposed, which may in part explain the long-term success of measles virus and CDV vaccines. Finally, the authors used HS-AFM to visualize the real-time dynamic characteristics of CDV-H under physiological conditions. This analysis indicated that homodimers may dissociate into monomers, which has implications for the model of fusion triggering.

      The structural data and analysis were thorough and well-presented. However, the HS-AFM data, while very exciting, was not presented in a manner that could be easily grasped by readers of this manuscript. I have some suggestions for improvement.

      (1) The authors claim their structure is very similar to the recently published croy-EM structure of CDV H. Can the authors provide us with a quantitative assessment of this statement?

      Thank you very much for constructive comments of the reviewer. When we submitted our manuscript to e-life, cryo-EM structure just published in Proc. Natl. Acad. Sci. U. S. A. (2023) 120, e2208866120 a week ago was not able to be available. Following the comment of the reviewer, we have added the text about the structural comparison between the cryo-EM structure and our crystal structure. We also have changed the text related to the AFM experiments to tone down the movement of the protomer interface as follows.

      “This observation raises the possibility that each head domain of CDV-H also dissociates and moves flexibly, as shown in the structure of Nipah virus (NiV)-G protein, previously (Science (2022) 375, 1373–1378).” in Page 11, Lines 4-6.

      (2) The results for the HS-AFM are difficult to follow and it is not clear how the authors came to their conclusions. Can the authors better explain this data and justify their conclusions based on it?

      Thank you very much for constructive comments of the reviewer. Following your comments, we have changed the text related to the AFM experiments with simpler terms as follows.

      “When CDV-H was loaded onto a mica substrate and scanned with a cantilever to acquire images of attached molecules, the CDV-H dimer was observed as two globules clustered together in most cases, but sometimes, each domain moved independently (Fig. 7B and Supplementary Movie). Time-course analysis of the dynamics of the representative CDV-H dimer showed that CDV-H could adopt both associated and dissociated forms (Fig. 7C). The distances between the domains were calculated by measuring those between the centers of mass of each domain. Finally, the distribution of distances between each head domain in the CDV-H dimers showed approximately 15 nm as a major peak (Fig. 7D). This is a reasonable length for the linker between the head domain dimers.” in Page 11, Lines 8-17.

      (3) The fusion triggering model in Figure 8 is ambiguous as to when H-F interactions are occurring and when they may be disrupted. The authors should clarify this point in their model.

      Thank you very much for constructive comments of the reviewer. Following your comments, we have changed the Figure 8 and its legend.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) AFM experiments with SLAM or Nectin-4 immobilized on the cantilever would be much more informative.

      Thank you very much for the constructive comment of the reviewer. We will try this experiment in the next paper.

      (2) The authors should compare their crystal structure to that of the reported cryo-EM structure.

      With regards to the structural comparison between cryo-EM structure published in Proc. Natl. Acad. Sci. U. S. A. (2023) 120, e2208866120 and our crystal structure, we have added the text.

      (3) Figure 1D - why does the beta2 MG negative control have such a high SPR signal?

      Thank you very much for the constructive comment of the reviewer. The immobilization levels for b 2-microglobulin (beta2 MG), CDV-OP-H and CDV-5VD-H were similar, 1204.7 RU, 1235.7 RU, and 1504.5 RU, respectively. We applied relatively high concentrations (5 mM) of dNectin4 and hNectin4 onto the chip to determine low-affinity dissociation constants. Then, the signals for beta2 MG (negative control) were high. In other SPR experiments for cell surface receptors, such high signals for beta2 MG were often observed in our previous paper, Kuroki et al., J. Immunol. 2019 Dec 15;203(12):3386-3394. doi: 10.4049/jimmunol.1900562. Therefore, we think that these SPR signals are not unusual.

      (4) Figure 1C - please indicate the Ve volume for the peak and add in Ve for standard.

      Thank you very much for the constructive comment of the reviewer. We have indicated the Ve volume for the peak and added in Ve for standard in Figure 1C.

      (5) The authors mention that one of the chains in the asymmetric unit was better resolved than the other. Please show regions of the atomic model fit regions of the electron density to convince the reader of the quality of your data.

      Thank you very much for the constructive comment of the reviewer. We have added new Supplementary figure 2 for comparison of electron density maps of chains A and B.

      (6) Table 2 indicates that the difference between Rw and Rf values is larger than 5% which indicates slight overfitting during refinement. Please provide details of your refinement strategy and attempt simulated annealing as a strategy to reduce this delta.

      Thank you very much for the constructive comment of the reviewer. We further introduced TLS and NCS parameters for the refinement. Consequently, the R/Rfree factors became 0.2645/0.3092. Simulated annealing had been already carried out. All the refinement statistics in the table 2 are updated.

      Reviewer #2 (Recommendations For The Authors):

      (1) The authors' fusion triggering model was difficult to follow. For example, this sentence was difficult to understand: "The other possible models may include the monomer-dimer-tetramer transition facilitated by receptor binding for the fusion."

      Thank you very much for the constructive comment of the reviewer. Following your comments, we have removed the above sentences and have added the detail mechanism of the proposed model in Discussion. Furthermore, we have changed the Figure 8 and its legend for readers to understand more clearly.

      (2) Figure 5A is not called out in the main text.

      Thank you very much for the constructive comment of the reviewer. Following your comments, we have added the text as follows.

      “the crystal structure of MeV-H in complex with hNectin-4 showed that the H-SLAM interaction consists of three main sites (Fig. 5A) (Nat. Struct. Mol. Biol. (2013) 20, 67–72).” in Page 11, Lines 4-6.

      (3) Page 9, Line 4: interspaces? Perhaps interphases.

      Thank you very much for the constructive comment of the reviewer. We have changed the term “interspaces” to “internal spaces”.

      (4) Page 12, penultimate line: The authors mention "epitopes for anti-MeV-H Abs." Do they mean anti-CDV-H Abs?

      Thank you very much for the constructive comment of the reviewer. Following your comments, we have changed the “anti-MeV-H Abs” to “anti-morbillivirus H neutralizing antibodies”.

      (5) The paper will benefit from an English language editor to help clarify what the authors are trying to convey.

      Thank you very much for the constructive comment of the reviewer.

      We have asked a English proof reading company to check.

    1. Author response:

      We are grateful to the reviewers for their interest and enthusiasm about the work, and deeply appreciate their constructive comments and suggestions. Our responses are below

      (1) Do mice with BCR-ABL/MSI2-HOXA9 leukemia have an increased pool of leukemic stem cells (LSC), or do they have an increased propensity to develop blast cells? Is it the number of LSCs that has increased, or is it the function of LSC to give rise to the disease that has increased? It is not clear if the detected differences in Lineage-negative cells (Figure S1D) were detected in vitro in retrovirally transduced cells or were detected in vivo in transplanted mice. If the differences were detected in vitro, could the author confirm the same findings in vivo? This will greatly enhance the understanding of in vivo disease pathogenesis and could directly link the aggressivity of the disease (shortened survival) with an increased stem cell-like population.

      We find that BCR-ABL/MSI2-HOXA9 leads to a marked increase in Lineage negative (Lin-) cells which contains the LSC fraction. Specifically, the LSC containing fraction represented 14.1% of the BCR-ABL driven disease and 56.7% of the BCR-ABL and MSI2-HOXA9 driven disease (p<.0001). This suggests that MSI2-HOXA9 triggers the expansion of the undifferentiated LSC containing pool. In addition, the blast frequency was also increased albeit to a lesser extent, with 63.8% blasts (SEM 1.1) for BCR-ABL and 83.3% (SEM 3.1) for BCR-ABL/MSI2-HOXA9 (p=.0001). This suggests that the resulting aggressive disease seen with MSI2-HOXA9 is a consequence of a large increase in undifferentiated  LSC containing cells, as well as the resulting increase in the blast count. The Lin- cells were analyzed from fully established leukemias in vivo (Fig. S1D)

      (2) The authors suggest that BCR-ABL/MSI2-HOXA9 leads to the development of blast crisis-CML. One of the main characteristics of blast crisis-CML is drug resistance. Is BCR-ABL/MSI2-HOXA9 leukemia resistant to classical CML treatment drugs?

      The sensitivity to Imatinib is a very interesting question. In general, while differentiated cells in CML are sensitive to Imatinib, the more undifferentiated cells (LSCs) are resistant1,2. Based on the fact that therapy resistance in blast crisis is largely driven by the undifferentiated fraction of leukemia cells, and given that BCR-ABL/MSI2-HOXA9 driven disease harbors a larger fraction of these undifferentiated cells, we would predict that BCR-ABL/MSI2-HOXA9 leukemia would also be more resistant to imatinib. However, this would need to be experimentally demonstrated and is an important question to address.

      (3) The authors have emphasized the heightened expression of Polrmt in delineating the mitochondrial phenotype of BCR-ABL/MSI2-HOXA9 leukemia cells. However, the regulatory mechanism governing the expression of Polrmt by MSI2-HOXA9 has not been clearly demonstrated by the authors. Unveiling this mechanism would constitute a novel finding and significantly elevate the quality of the research.

      Since Polrmt and mitochondrial genes are transcribed in the nucleus we explored whether MSI2-HOXA9 may control mitochondrial gene expression by triggering expression of Polrmt and other key transcription factors. Consistent with this possibility, MSI2-HOXA9 was preferentially found in the nucleus relative to MSI2. In addition, there were 10 occurrences of the minimal MSI2 RRM1 consensus binding sequence UAGU within the Polrmt transcript. While this is consistent with the possibility that Polrmt expression can be post-transcriptionally modulated by MSI2-HOXA9, this needs to be experimentally validated using Clip Seq analysis with wild type MSI2 as well as the MSI2-HOXA9 fusion protein in context of blast crisis CML.

      (4) Did the authors observe any survival differences between BCR-ABL/NUP98-HOXA9 and BCR-ABL/MSI2-HOXA9?

      In previous work from our lab we have found that the median survival for BCR-ABL/NUP98-HOXA9 was 17 days, and with BCR-ABL/ MSI2-HOXA9 was 18.5 days (p value of 0.22). This suggests that there is not a significant difference in survival times between the leukemias driven by the distinct alleles, and they may be equally aggressive.

      (1) MSI2-HOXA9 fusion is extremely rare as it has been only found in a handful of patients and it is not clear whether other MSI2 fusions function in a similar manner.

      We were very surprised and excited to see the large number of translocations in solid cancers that involve MSI2.  Interestingly, MSI2 translocations occurred both at the N and the C terminus.  Distinct translocations are likely to have unique roles in each disease context. For example, if MSI2’s 5 prime end is part of a translocation, it may functionally contribute via its promoter to drive expression in immature cells and could thus activate oncogenic signals (e.g. controlled by the partner gene) in immature cells which are inherently more susceptible to transformation (Eµ-myc is an example of such a translocation). If Msi2’s RRM domains are part of the fusion, they could bind and target RNAs aberrantly (such as in the wrong cell and the wrong time) and lead to activation of downstream oncogenic mediators. To fully understand the role of each of these translocations in each specific cancer, we would need to experimentally test their impact by ectopic expression in the appropriate cell of origin and domain mapping the basis of any impact in the relevant cancer models as we have done for MSI2-HOXA9 in blast crisis CML in the work we report here.   While this is an intensive undertaking, it is nonetheless important future work as it will undoubtedly lead to new insight about MSI2 linked translocations in diverse solid cancers such as breast cancer and lung cancer.

      (2) The mechanism needs to be strengthened since MSI2 alone or the HOXA9 mutant may not be linked to the mitochondrial mechanism. (3) It is not clear that the mitochondrial pathway is sufficient for the MSI2-HOXA9 oncogenic mechanism.

      Our observation that MSI2-HOXA9 triggered changes in mitochondrial function was of particular interest as it was (to our knowledge) uncharted in context of Msi2 signaling in cancer, thus leading us to explore this further.  However, multiple other signals are likely downstream regulators and these may well act cooperatively with, or independently of, the heightened­­ mitochondrial function we report here. Among these pathways, the most likely mediators included oncogenic programs related to the Wnt pathway including Wnt, Fzd 3 and Frat1, and those related to the Notch pathway including-Tribbles and Hey1 as well as other stem cell genes such as Aldh1. These programs have been previously implicated in the regulation of myeloid leukemia3-11 and could well mediate the impact of the MSI2-HOXA9 translocation. The relative contribution of mitochondrial metabolism and that of developmental and stem cell signals to the onset of MSI2-HOXA9 driven blast crisis CML is an important avenue of future work.

      References

      (1) Corbin, A. S., Agarwal, A., Loriaux, M., Cortes, J., Deininger, M. W. & Druker, B. J. 2011. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 121: 396-409. PMC3007128.

      (2) Graham, S. M., Jørgensen, H. G., Allan, E., Pearson, C., Alcorn, M. J., Richmond, L. & Holyoake, T. L. 2002. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99: 319-325.

      (3) Gurska, L. M., Ames, K. & Gritsman, K. 2019. Signaling Pathways in Leukemic Stem Cells. Adv Exp Med Biol 1143: 1-39. PMC7249489.

      (4) Narendra, G., Raju, B., Verma, H. & Silakari, O. 2021. Identification of potential genes associated with ALDH1A1 overexpression and cyclophosphamide resistance in chronic myelogenous leukemia using network analysis. Med Oncol 38: 123.

      (5) Ran, D., Schubert, M., Pietsch, L., Taubert, I., Wuchter, P., Eckstein, V., Bruckner, T., Zoeller, M. & Ho, A. D. 2009. Aldehyde dehydrogenase activity among primary leukemia cells is associated with stem cell features and correlates with adverse clinical outcomes. Exp Hematol 37: 1423-1434.

      (6) Reya, T., Duncan, A. W., Ailles, L., Domen, J., Scherer, D. C., Willert, K., Hintz, L., Nusse, R. & Weissman, I. L. 2003. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423: 409-414.

      (7) Riether, C., Schürch, C. M., Bührer, E. D., Hinterbrandner, M., Huguenin, A. L., Hoepner, S., Zlobec, I., Pabst, T., Radpour, R. & Ochsenbein, A. F. 2017. CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia. J Exp Med 214: 359-380. PMC5294846.

      (8) Riether, C., Schürch, C. M., Flury, C., Hinterbrandner, M., Drück, L., Huguenin, A. L., Baerlocher, G. M., Radpour, R. & Ochsenbein, A. F. 2015. Tyrosine kinase inhibitor-induced CD70 expression mediates drug resistance in leukemia stem cells by activating Wnt signaling. Sci Transl Med 7: 298ra119.

      (9) Venton, G., Pérez-Alea, M., Baier, C., Fournet, G., Quash, G., Labiad, Y., Martin, G., Sanderson, F., Poullin, P., Suchon, P., Farnault, L., Nguyen, C., Brunet, C., Ceylan, I. & Costello, R. T. 2016. Aldehyde dehydrogenases inhibition eradicates leukemia stem cells while sparing normal progenitors. Blood Cancer J 6: e469. PMC5056970.

      (10) Yin, D. D., Fan, F. Y., Hu, X. B., Hou, L. H., Zhang, X. P., Liu, L., Liang, Y. M. & Han, H. 2009. Notch signaling inhibits the growth of the human chronic myeloid leukemia cell line K562. Leuk Res 33: 109-114.

      (11) Kang, Y. A., Pietras, E. M. & Passegué, E. 2020. Deregulated Notch and Wnt signaling activates early-stage myeloid regeneration pathways in leukemia. J Exp Med 217. PMC7062512.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Will the nanobody be available to the TB research community?

      Yes, we will make E11rv available upon request. Please see our materials availability statement.

      Reviewer #2 (Recommendations For The Authors):

      (1) It would be interesting to test the potential impact of residual ASB-14 contaminant on the biochemical behavior of ESAT-6-CFP10 heterodimer and ESAT-6 homodimer or tetramer and their hemolytic activity in comparison with the ones without ASB-14.

      We agree that this is an interesting line of questioning. Based on the study by Refai et al. that we cite in the text, ESAT-6 treated with nonionic detergents ASB-14 or LDAO, but not other common detergents, undergoes a conformational change that increases its cytotoxicity in cell assays, hemolytic activity, and ability to dimerize with CFP-10. What is not known at this point, is how similar the ASB-bound conformation is to anything seen physiologically.

      (2) Building on the progress in making anti-ESAT-6 nanobodies and their anti-Mtb effects in the cells, it could have been tested in human or mouse primary macrophages infected with Mtb and a mouse model of Mtb infection for its anti-Mtb efficiency.

      We thank the reviewer for this suggestion, and we agree that these would be very informative next steps for determining the therapeutic potential of anti-ESAT-6 nanobodies.

      Reviewer #3 (Recommendations For The Authors):

      Minor comments:

      Line 133: "It is well established that Mm-induced hemolysis is ESX-1 dependent, but our results suggest that Mtb must lack one or more factors necessary for efficient hemolysis.". I would tone this down a bit, as it is also known that M. tuberculosis escapes much later than M. marinum from the phagosome, which could indicate different kinetics.

      We thank the reviewer for their insightful comments. We agree that the kinetics of Mtb and Mm infection are quite different and that this may impact the hemolysis assay. As described by Augenstreich et al. some hemolysis by Mtb is observed at 48 hours, though the method of normalization makes it impossible to determine absolute amount of hemolysis that occurred in their experiment. Our findings just show that the absolute amount of Mtb hemolysis in 2 hours is negligible, setting it apart from Mm. We have edited the wording of this statement in the manuscript to avoid any confusion.

      Line 155: "Because Mtb often exists in an acidified compartment". First of all, the reference used here does not discuss anything about Mtb, secondly, papers that do measure the acidification of Mtb-loaded phagosomes indicate that this acidification is very mild (typically to pH 6.2).

      We agree that this point should be articulated more precisely. We have added additional clarification that the pH of Mtb-containing compartments in macrophages can fall in a broad range depending on the activation state of the macrophages, and that non-activated macrophages are typically only mildly acidic. We have updated our references to better describe the current state of knowledge on this topic.

      Line 339: "Whereas most of these functions rely only on the secretion of ESAT-6 into the cytoplasm, the ability of E11rv to access Mtb suggests that this communication is likely two-way." No, not necessary, there are many processes in which ESX-1 substrates affect the macrophage. This nanobody could affect EsxA functioning only once the bacteria reach the cytoplasm. I think checking phagosomal escape in these cells is therefore crucial.

      We agree that phagosomal escape and subsequent direct secretion of ESAT-6 into the cytoplasm is a reasonable alternative hypothesis. We have added this point to our discussion, and we agree that looking directly at phagosomal escape is an important next step.

      Figure 7 is not mentioned in the text (mistake for Fig 6).

      This has been corrected.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The study is highly interesting and the applied methods are target-oriented. The biophysical characterization of viable N-protein species and several representative N-protein mutants is supported by the data, including polarity, hydrophobicity, thermodynamic stability, CD spectra, particle size, and especially protein self-association. The physicochemical parameters for viable N-protein and related coronavirus are described for comparison in detail. However, the conclusion becomes less convincing that the interaction of peptides or motifs was judged by different biophysical results, with no more direct data about peptide interaction. Additionally, the manuscript could benefit from more results involving peptide interaction to support the author's opinions or make expression more accurate when concerning the interaction of motifs. Although the authors put a lot of effort into the study, there are still some questions to answer.

      We thank the Reviewer for this assessment and wholeheartedly agree that there are still many questions. The main thrust of the present work was not intended to unravel the detailed mechanistic origin of all observations, but rather to juxtapose the different observations made with different viable N-protein species across the mutant spectrum, in order to get a sense of how narrowly the biophysical phenotype is confined to ensure virus viability. Such a study has become possible for the first time with the unprecedented genomic database of SARS-CoV-2. This has led to observations of non-local effects of individual mutations that are not independent and non-additive relative to the effects of other mutations, and in that sense we have inferred ‘interactions’. These might be mediated by direct contacts or indirectly through altered chain configurations. In the revised manuscript we have clarified this point.

      Meanwhile, a number of documented direct physical intra-molecular and intra-dimer interactions provide a context to our study of mutation effects. The flexibility of the IDRs provides a rich variety of contacts that have been observed in molecular dynamics and single-molecule fluorescence studies (Rozycki & Boura, Biophys Chem. 2022 and Cubuk et al, Nat Communs 2021). We have previously carried out detailed hydrodynamic studies of self-association interfaces located in the leucine-rich region. More recently, NMR data just published by the Blackledge laboratory (Botova et al., bioRxiv 2024) extend the list of intra-molecular contacts with the observation of long-range intra-molecular interactions between the NTD and the CTD, NTD and the phosphorylated SR-rich region, and NTD and the previously studied leucine-rich region. The latter contacts require the C-terminal region of the linker to loop back onto the NTD, which may well introduce susceptibility to any of the linker mutations. However, detailed linker configurations are beyond the scope of the present work.

      With regard to the effects of the Omicron mutations in the N-arm IDR, we have shown hydrodynamic data directly demonstrating peptide self-association, and we are currently working on a more detailed functional follow-up study which we hope to communicate soon.

      Reviewer #2 (Public Review):

      Summary: This work focuses on the biochemical features of the SARS-CoV-2 Nucleocapsid (N)protein, which condenses the large viral RNA genome inside the virus and also plays other roles in the infected cell. The N protein of SARS-CoV-2 and other coronaviruses is known to contain two globular RNA-binding domains, the NTD and CTD, flanked by disordered regions. The central disordered linker is particularly well understood: it contains a long SR-rich region that is extensively phosphorylated in infected cells, followed by a leucine-rich helical segment that was shown previously by these authors to promote N protein oligomerization.

      In the current work, the authors analyze 5 million viral sequence variants to assess the conservation of specific amino acids and general sequence features in the major regions of the N protein. This analysis shows that disordered regions are particularly variable but that the general hydrophobic and charge character of these regions are conserved, particularly in the SR and leucine-rich regions of the central linker. The authors then construct a series of N proteins bearing the most prevalent mutations seen in the Delta and Omicron variants, and they subject these mutant proteins to a comprehensive array of biophysical analyses (temperature sensitivity, circular dichroism, oligomerization, RNA binding, and phase separation).

      Strengths:

      The results include a number of novel findings that are worthy of further exploration. Most notable are the analyses of the previously unstudied P31L mutation of the Omicron variant. The authors use ColabFold and sedimentation analysis to suggest that this mutation promotes the self-association of the disordered N-terminal region and stimulates the formation of N protein condensates. Although the affinity of this interaction is low, it seems likely that this mutation enhances viral fitness by promoting N-terminal interactions. The work also addresses the impact of another unstudied mutation, D63G, that is located on the surface of the globular NTD and has no significant effect on the properties analyzed here, raising interesting questions about how this mutation enhances viral fitness. Finally, the paper ends with studies showing that another common mutant, R203K/G204R,disrupts phase separation and might thereby alter N protein function in a way that enhances viral fitness.

      Thank you for highlighting the strengths of our paper.

      Weaknesses:

      In general, the results in the paper confirm previous ideas about the role of N protein regions. The key novelty of the paper lies in the identification of point mutations, notablyP13L, that suggest previously unsuspected functions of the N-terminal disordered region in protein oligomerization. The paper would benefit from further exploration of these possibilities.

      We agree that the bioinformatic results confirm previous ideas about the role of the N protein regions. However, we believe our results go beyond the previous thinking in a crucial aspect, which is that we examine the full (so far known) mutant spectrum of N-protein. Properties previously inferred from the inspection of single consensus sequences can be misleading because of the quasispecies nature of RNA viruses. By considering the mutant spectrum we can obtain a sense for how significant differences in the physicochemical properties of the different regions are, and how much variation is possible without jeopardizing essential protein functions.

      With regard to the N-arm IDR mutations we believe this deserves a separate study focusing on the apparent N-arm function. Our rationale for presenting some initial N-arm results in the current paper was to highlight how the variability of N-protein species in the mutant spectrum can even include differences in the type and number of protein self-association interfaces.

      Reviewer #3 (Public Review):

      Nguyen, Zhao, et al. used bioinformatic analysis of mutational variants of SARS-CoV-2Nucleocapsid (N) protein from the large genomic database of SARS-CoV-2 sequences to identify domains and regions of N where mutations are more highly represented and computationally determined the effects of these mutations on the physicochemical properties of the protein. They found that the intrinsically disordered regions (IDRs) of N protein are more highly mutated than structured regions and that these mutations can lead to higher variability in the physical properties of these domains. These computational predictions are compared to in vitro biophysical experiments to assess the effects of identified mutations on the thermodynamic stability, oligomeric state, particle formation, and liquid-liquid phase separation of a few exemplary mutants.

      The paper is well-written and easy to follow, and the conclusions drawn are supported by the evidence presented. The analyses and conclusions are interesting and will be of value to virologists, cell biologists, and biophysicists studying SARS-CoV-2 function and assembly. It would be nice if some further extrapolation or comments could be made regarding the effects of the observed mutations on the in vivo behavior and properties of the virus, but I appreciate that this is much higher-order than could be addressed with the approaches employed here.

      We thank the Reviewer for this positive assessment. With regard to the possible in vivo behavior of mutant species, we agree that this would require additional data beyond the scope of the present work.

      However, for the N:G215C mutant we can point to a very recent preprint by Kubinski et al. (bioRxiv 2024) that describes reverse genetics experiments where the isolated N:G215C mutation caused altered in vivo pathology, enhanced viral replication, and altered virion morphology. We have cited this work in the revised manuscript.

      As mentioned above, for the P13L mutation we hope to communicate a more detailed follow-up study that will allow us to extrapolate on its in vivo behavior.

      Recommendations For The Authors:

      Reviewer #1:

      (1) Given the structure organization of N-protein in Figure 1, the authors should explain why linker region 180-247 is different from linker (175-247) mentioned in the first result.

      We thank the reviewer for bringing up this point, which we agree deserves clarification. While often the NTD has been assigned a C-terminal limit of 180 (e.g., in the NMR structure by Dinesh et al, Plos Pathogens 2020), the last several residues in the NTD are already disordered and contain the S176/R177 pair and therefore may be ascribed to the beginning of the SR-rich portion of the linker. In order not to artificially truncate functional sequences of either NTD or linker, we have decided to allow the designations of the NTD and linker regions to overlap. We believe this is conservative in that possible NTD or linker properties extending into this transition region will be preserved. In order to explain this in the manuscript, we have modified Figure 1 and inserted a brief sentence “(Due to ambiguity in delineation between NTD and linker, designations overlapping in 175-180 were used to avoid artificial truncation and permit conservative evaluation of the properties of each domain.)”.

      (2) Please specify the "physicochemical requirements" in the fourth paragraph of the first result, and its physicochemical meaning and references.

      Thank you for pointing this out; we agree this was not well expressed. We have rephrased this (including new references) to “…we find that hydrophobicity is uniformly high and polarity correspondingly low in the folded NTD and CTD domains, which is consistent with the expectation that folded structures are stabilized by buried hydrophobic residues (Eisenberg and McLachlan, 1986; Kauzmann, 1959)”.

      (3) The authors should clarify the biological meaning of the net charge and phosphorylation charge in the first result, just like the description in the results of polarity and hydrophobicity.

      We agree this will improve readability, and have inserted an introductory sentence to the study of charges in the mutant spectrum: “Charges in proteins can control multiple properties related to electrostatic interactions, from functions of active sites to protein solubility, protein interactions, and conformational ensembles in IDRs (Garcia-Viloca et al., 2004; Gerstein and Chothia, 1996; Gitlin et al., 2006; Mao et al., 2010).”.

      (4) The authors should clarify the calculation method and meaning of the column "occurs in % of all genomes" in Table 2.

      We have inserted a footnote specifying that this is the “Percentage of all sequenced genomes carrying the specific mutation.”.

      (5) Please specify what information or conclusion we can get for the shift of the intrinsic fluorescent spectrum of N: D63G in the third result paragraph 2.

      We have rephrased the second sentence of this paragraph to “The presence of the N:D63G mutation in the NTD is highlighted in the shift of the intrinsic fluorescence quantum yield of this mutant in comparison to Nref ”. It confirms the structural prediction, which positions D63G at the protein surface near the NA binding site, and sets up the question whether this obligatory mutation of Delta-variant N-protein affects NA binding and thereby possibly assembly. Unexpectedly, we did not find any impact of the D63G mutation on NA binding, although we observed a modest impact on temperature-dependent particle formation by DLS.

      (6) The conclusion, "some epistatic interaction between mutation of the linker and N-arm" in the third result paragraph 4, is over-interpreted from the result of the CD spectra because they didn't detect peptide interaction between mutation of the linker and N-arm.

      Thank you for raising this point. We did not mean to make a strong conclusion here, and have now deleted this statement.

      (7) The parallel assay for N: G215C and Nδ in SV-AUC experiments is recommended to be conducted with other groups to avoid experimental error.

      I believe this may be a misunderstanding: Indeed we had carried out SV-AUC experiments for all the mutants, as shown in Figure 5A. However, since all but the N:G215C and Nδ formed only dimers as the reference protein, we did not comment on these in the results text. We have rectified this omission in the revision by inserting the sentence: “…The same behavior is observed for N:D63G, No, N:R203K/G204R, as well as N:P13L/Δ31-33 at low micromolar concentrations (Figure 5A). By contrast, the G215C mutation promotes the formation of higher oligomers…”

      With regard to experimental error, SV-AUC is an absolute method based on first principles and we have maintained our instruments by performing regular calibrations, using methods developed by us and colleagues at NIST, as described in the literature (Anal Biochem 2013, PLOS ONE 2018, Eur. Biophys. J. 2021). Previously we have critically examined the accuracy of s-values by SV-AUC before and after calibration in a large multi-laboratory study (PLOS ONE 2015), and found that the accuracy of s-values is ~1%. This allows detailed comparisons of results from different runs and different points in time. To alleviate any concerns we have now mentioned our calibration methods in the methods section.

      (8) The authors did not test the function of Nδ R203M mutation, so they should not mention about it like in the third result paragraph 5, which is over-interpreted from result 5A.

      We accept the criticism that we have not yet examined the R203M mutation in isolation. However, we believe some speculation is in order: Nδ consists of D63G, R203M, G215C, and D377Y, of which D63G is unlikely to impact oligomeric state based on our data of N:D63G. It is therefore reasonable to assume that R203M and/or D377Y interfere with the observed promotion of oligomerization that we have observed with N:G215C. In previous work, we have traced the 215C-incuded oligomerization to the transient helix in the leucine-rich region of the linker 215-235 (Science Advances, 2023), Since 377Y is quite far away, the more proximal 203M appears to be the most plausible origin of the modulation of dimerization.

      In the revision we have more clearly outlined this speculation: “ Of the three additional mutations of Nδ relative to N:G215C, we speculate that D63G does not impact dimerization (as in N:D63G, Figure 5A), and that therefore either the distant D377Y and/or R203M might cause this reduction of helicity and oligomerization relative to N:G215C, noting that R203M is proximal to the L-rich region (215-235) reshaped by 215C. ”. Later we refer to this as “any potential inhibitory role suspected of the R203M mutation on self-association…”.

      (9) The description of LLPS formation lacks reference in the third result paragraph 6.

      Thank you. To improve the transition to this new paragraph in the results, we have inserted “As outlined in the introduction, …” and repeated the 8 references to the fact that N-protein undergoes LLPS. The two additional, separate references refer to just those published studies that examined the temperature-dependence of LLPS, which I believe is now clearer.

      (10) The authors did not test the interaction between the N-arm IDR mutation and linker IDR, it is not exponible that interaction promoted particle formation of No in the third result paragraph 8, which is over-interpreted from result 5B.

      We thank the Reviewer for raising this point. In fact, we did not want to imply a direct physical interaction (in terms of binding) between the N-arm IDR mutation and that in the linker. But clearly there are non-additive effects in particle formation since P13L/Δ31-33 inhibits slightly and R203K/G204R inhibits almost completely, whereas the combination of the two (constituting No) promotes particle formation. We have rephrased this to “alter the effect of”, avoiding the term “interact with” not to suggest a picture of direct binding and invoke instead the idea of epistatic interactions.

      (11) In the third result paragraph 9, why did the authors choose to examine the role of the N-arm mutations of the Omicron variants in greater detail? This reason should be added to the manuscript.

      Thank you for this suggestion. Naturally, we were curious how the defining N-arm mutations of Omicron variants could impact particle formation. Even though no obvious enhancement of self-association by either Omicron N-arm or linker mutations was observed at low micromolar concentrations in SV-AUC (Figure 5A), we knew from experience with the study of the leucine-rich transient helix in the linker IDR that even weak interfaces with mM Kd can be highly relevant in the context of multivalent assemblies (Science Advances, 2023). Therefore we followed the same roadmap and focused on IDR peptides with the goal to study them at higher concentrations that might reveal weak interactions.

      We have described this motivation as follows: “We were curious whether IDR mutations might alter particle formation through modulation of existing or introduction of new protein-protein interfaces. We focused on Omicron mutations as these are obligatory an all currently circulating strains, and specifically on N-arm mutations, which have recently been implicated in altered intramolecular interactions with NA-occupied NTD (Cubuk et al., 2023). Even though SV-AUC showed no indication of self-association of N:P13L/Δ31-33 at low micromolar concentrations, weak interactions with Kd > mM would not be detectable under these conditions yet could be highly relevant in the context of multi-valent complexes (Zhao et al., 2024). Following the roadmap used previously for the study of the weak self-association of the leucine-rich linker IDR (Zhao et al., 2023), we restricted the protein to the N-arm peptide such that it can be studied at much higher concentrations. To this end, we …”

      (12) Why were different proteins dissolved in either high-salt buffer or low-salt buffer for biophysical experiments? Did this affect the experimental results? Explanations and evidence are required.

      We appreciate this is an important point. Unfortunately, for practical reasons of available sample concentrations and quantities, it was not always possible to dialyze protein into both buffers. For example, the DSF data in Figure 4B show all proteins in low-salt buffer except N:R203K/G204R, which is in high-salt buffer. We had previously reported the absence of changes in Ti in DSF for Nref in the two buffers, which we have documented better in the revised manuscript by providing an additional Supplementary Figure S7: “As a buffer control, the difference in Ti for Nref in LS and HS buffer was measured and found to be within error of data acquisition (Supplementary Figure S7A).” This new Supplementary Figure provides an overlay of low-salt and high-salt DSF data for Nref, N:D63G, and No, which have variations in the Ti values for different buffers on the order of 0.1 °C. This is comparable to the precision of the measurement, and significantly smaller than the changes in Ti values between the different mutant protein species. Finally, we note that the one species for which we were unable to collect DSF data in low-salt buffer, N:R203K/G204R, was unremarkable relative to Nref, No, and N:P13L/Δ31-33.

      In the case of CD, the only species for which we could not collect spectra in low-salt buffer was No. Again, this spectrum was similar to the group including Nref, along with N:P13L/Δ31-33, and N:D63G. In the results we interpreted significant differences from Nref for N:G215C and N:R203K/G204R.

      Similarly, SV-AUC experiments were carried out in high-salt buffer, except Nref, Nδ , and N:G215C. In this case, we could observe a ≈ 5% difference in s-value for the same protein in different buffers, but the magnitude of this change is negligible compared to the ≈ 60-90% increase observed for altered oligomeric states. To clarify this we have inserted a sentence “Proteins for self-association studies were in buffer HS, except Nref, Nδ , and N:G215C were in LS, the latter causing a ≈5% increase in s-value (Supplementary Figure S7B).”, with the new Supplementary Figure S7B showing a comparison of sedimentation coefficient distributions of Nref and N:D63G in low- and high-salt buffers. Whether the small differences in s-values are indeed significant and reflective of salt-dependent conformational ensembles of IDRs will require a more detailed follow-up study, but is outside the scope of the present work.

      All other experiments were carried out with uniform buffer conditions for all protein species.

      (13) DLS data of N from other research suggests oligomers beyond dimer. Please address this discrepancy.

      Unfortunately several previous studies in the literature did not recognize the importance of eliminating nucleic acid contaminations in the N-protein preparations, and/or did not succeed in completely removing nucleic acid from the protein. We and others have repeatedly commented on this issue. For example, Tarczewska et al (IJBM 188 (2021) 391-403) clearly demonstrate this in much detail in a study dedicated to this problem.

      The clarify this point we have included a sentence in the paragraph describing the protein preparation “…the ratio of absorbance at 260 nm and 280 nm of ~0.50-0.55 confirmed absence of nucleic acid. The latter is important to eliminate higher order N-protein oligomers induced by nucleic acid binding (Carlson et al., 2020; Tarczewska et al., 2021; Zhao et al., 2021)” .

      In order to strengthen the statement in the Results that the ancestral N-protein is dimeric we have added additional references from other labs that have carried out detailed biophysical analyses: “As reported previously, the ancestral N-protein at micromolar concentrations in NA-free form is a tightly linked dimer sedimenting at ≈4 S , without significant populations of higher oligomers (Forsythe et al., 2021; Ribeiro-Filho et al., 2022; Tarczewska et al., 2021; Zhao et al., 2022, 2021).”

      Reviewer #2:

      The key novel finding of the work lies in the evidence that P31L promotes N-terminal interactions. The paper would be strengthened by additional studies of the impact of P31Lon the oligomerization of full-length N protein. The sedimentation analysis in Fig 6 shows that high concentrations of the N arm alone self-associate, while the analysis in Fig 5 argues that P31L does not have an effect on the oligomerization of the full-length protein. Perhaps there are specific conditions or mutation combinations that would provide evidence that P31L has an effect on protein behavior that might explain the prevalence of this mutation.

      We agree that the finding of P13L promoting N-terminal interactions is of great interest, and we thank the Reviewer for the suggestion to examine cross-correlations of N-arm mutations with other mutations as a tool to study its function and relevance.

      The observation of self-association in Figure 6 at high concentrations is not necessarily at odds with the absence of self-association at 100fold lower concentrations. Rather, it seems to show that the interaction mediated by the N-terminal mutation P13L is weak with an effective Kd in the mM range. It will likely not be possible to reach sufficiently high protein concentrations with the full-length protein to visualize the oligomerization of N-terminal IDR. But even if it was possible to concentrate the protein enough, very likely other assembly processes would take place, including LLPS, obscuring potential P13L interfaces. Nonetheless we believe the protein-protein interface created by the N-arm IDR is highly relevant in the context of multi-valent complexes, where entropic co-localization enhances the effective N-arm IDR concentration that then can provide additional binding energy and strengthen the assembly of multi-protein complexes.

      We are currently pursuing further experiments examining the properties and relevance of the N-arm mutations and intend to publish this in a separate study, not to distract from the thrust of the current work exploring of the extent of the biophysical phenotype space.

      The R203K/G204R mutations have a surprising impact on LLPS in Figure 7: it is not clear how such limited mutations would alter the many nonspecific, multivalent interactions that presumably lead to phase separation. The paper would benefit from a more extensive analysis of LLPS in this mutant and in the P31L mutant, perhaps by performing the analysis at various protein concentrations and times.

      Following this recommendation we have expanded the study of LLPS of Figure 7 by comparison of two different time points for Nref, N:R203K/G204R, and N:P13L in a new Supplementary Figure S6. We have also quantified the droplet distributions as shown in the new Supplementary Figure S5. Both clearly confirm the strong inhibitory effect of the R203K/G204R mutation on LLPS under our experimental conditions. What this shows is not that this protein could not undergo LLPS per se, but that the phase boundaries have shifted such that under the experimental conditions we applied LLPS does not occur yet. (In this context it is interesting to note that ≈50,000 genomes in the GISAID database have R203K/G204R as the sole N-protein mutation, without impact on viral viability.)

      That individual point-mutations in IDRs can have significant impact on LLPS has been observed previously for several other proteins. Examples include SPOP [Bouchard et al., Mol Cell 72 (2018) 19-36.e8], SHP2 [Zhu et al., Cell 183 (2020) 490-502.e18], FUS [Niaki et al., Mol Cell 77 (2020) 82-94.e4], and CAPRIN1 [Kim et al., PNAS 118 (2021) 1-11]. The latter work applies NMR and reveals that promotion of LLPS is not uniform but centered in hot-spot residues of CAPRIN1.

      While the precise molecular mechanism for LLPS of the N-protein is unclear, we can speculate how the effect of 203K/204R might be amplified. As shown by the coarse-grained MD simulations from Rozycki & Boura (Biophys. Chem. 2022), the linker IDR is highly flexible and the 203/204 residues make transient contacts to other residues throughout the linker as well as to distinct sites on the NTD. Furthermore, recent NMR data from the Blackledge lab (Botova et al., bioRxiv 2024, doi:10.1101/2024.02.22.579423) have revealed intra-molecular interactions, including a state where the L-rich (C-terminal) portion of the linker IDR interacts with a site on the distant NTD. (We have included a reference to this preprint in the discussion.) This intra-molecular contact observed in NMR must cause significant chain compaction and may thereby modulate the accessibility of portions of the linker IDR available to inter-molecular interactions contributing to LLPS. The residues 203/204 are in the middle between the SR-rich and L-rich region where bending of the chain must occur to allow for the intra-molecular contacts. The 203K/204R mutation may alter the dynamics or population of this intra-molecular bound state, especially considering the introduction of a bulky positively charged R replacing G204.

      In summary, considering the dynamics of intra-molecular contacts and considering precedent of several other disordered proteins, we believe it is not unreasonable that the local mutation in the IDR R203K/G204R may cause a significant shift in LLPS phase boundaries. We note that this mutant also shows a very distinct behavior in the temperature-dependent DLS, entirely lacking particle formation below 70 °C. This observation seems consistent with altered inter-molecular interactions.

      Reviewer #3:

      I have only a few minor specific comments:

      (1) Page 4, last paragraph - typo: "The large number of structural and non-structural N-protein functions poses the question of how they are conserved...". This either needs a colon or to be changed to "... poses the question of how they are conserved...".

      Thank you – we have changed this sentence accordingly.

      (2) Page 7, 2nd and 3rd paragraphs of "Physicochemical properties" section: why is Figure2B discussed before Figure 2A?

      Initially when we present the results of polarity and hydrophobicity we refer more generally to Figure 2, as the two properties are so closely related. Later, in the section on related coronaviruses we do refer once more to Figure 2. Here we begin this section by discussing Figure 2B since in this plot the symbols for the different viruses are most recognizable.

      (3) Page 11, lines 1-2: "Since this is a tell-tale of weak protein..." -> "tell-tale sign of ...".

      We thank the reviewer for pointing this out and have fixed this sentence.

      (4) Further down in the same paragraph, the meaning of "SV-AUC" should be spelled out at its first use.

      We have double checked that SV-AUC is spelled out at its first use.

      (5) Figures 1 and 2. Is there a good reason that the color scheme for the IDRs (magenta and cyan) is so close to the color scheme for the identifying mutations of Omicron and Delta (magenta and blue)? This initially led me to try to search for some connection, and it remains unclear to me if there is.

      We apologize for this confusion. This was indeed a poor color choice, and we have rectified this in the revised manuscript by changing the colors of the identifying mutations of Omicron and Delta to dashed green and dotted red, respectively, so that there is no connection to the shading of the IDRs. Thank you very much for pointing this out!

      (6) Figure 1: The physical limits of the subdomains, e.g. SR-rich, L-rich, C-arm1, and N3 could be more clearly delineated with lines, or some other visual representation.

      Once more, we thank the reviewer for pointing this out. We have revised Figure 1 to indicate the limits between these subdomains.

      (7) Figures 4, 5, and 6: are there any kind of error bars or confidence intervals on these measurements?

      We appreciate this concern and have addressed it in different ways for the different methods.

      For the spectra of intrinsic fluorescence in Figure 4A, we have now plotted an overlay of three acquired spectra, from which the experimental error as a function of wavelength may be assessed. It is clear that the differences between Nref and N:D63G are far greater than the measurement error.

      With regard to DSF, we have provide an error estimate of 0.3 °C for the Ti-values, a value that we have revised from the previously reported errors of sequential replicates to now include Ti variation observed with different preparations of the same protein over long time periods.

      For CD spectra we have included a new Supplementary Figure S3 that shows standard deviations of triplicate measurements as a function of wavelength. Since an overlay including errors for all species would be too crowded, we have created separate plots for all species in comparison with Nref. (On this occasion we discovered a 3% error in the magnitude of the Nref spectrum due to previously incorrect conversion to MRE, which we have now fixed.)

      In SV-AUC, for data with typical signal-noise ratio, the statistical error is very small due to the large number (> 104 ) of raw data points included in the calculation of each c(s) trace, which each data point carrying a statistical error that is usually better than 1%. Therefore, the dominant error is systematic. In the past we have carried out large studies quantifying the accuracy of the major peaks of the sedimentation coefficient distributions, and found they are typically ≈1% in s-value and 1-2% for relative peak areas. In the AUC methods section we have now included the sentence “Typical accuracy of c(s) peaks are on the order of ≈1% for peak s-values and ≈1-2% for relative peak areas (Zhao et al., 2015).”

      Finally, for the temperature-dependent DLS data we have to resort to the scatter in the temperature-dependent Rh-values. The calculated Rh-values can exhibit fluctuations once particles start to form and the distribution becomes highly polydisperse. As is characteristic for DLS under those conditions, individual Rh-values can be dominated by adventitious diffusion of few large particles into the laser focal spot. Although customarily autocorrelation functions can be filtered out through software filters (e.g., setting baseline and amplitude thresholds), this still presents the largest source of error in the Rh-values. These are systematic for the individual autocorrelation functions. We believe that the variation of Rh-values at similar temperatures outside the transition region provides a reasonable estimate for the experimental error.

      (8) Figure 7: My most major comment. It would be good to somehow quantify the differences between these images. The claim is made that the LLPS droplets are different sizes, or for the P13L/\Delta31-33 variant that droplets are coalescing or changing shape over time. It would be good to quantify this rather than rely on eyeballing the pictures.

      We are grateful to the Reviewer for this suggestion. As mentioned above, to improve the LLPS analysis we have now carried out segmentation of the images in Figure 7 to quantify the droplet numbers and areas. Histograms and statistical analyses are now provided in the new Supplementary Figure S5. In addition, we have added a comparison of the droplet numbers and sizes at two time-points for Nref, N:R203K/G204R, in addition to the previously shown N:P13L/Δ31-33, provided in the new Supplementary Figure S6. The results corroborate the previous conclusions, and depict how droplets in the N:P13L/Δ31-33 merge and grow in area more strongly than those from Nref.

    1. Author response:

      eLife assessment

      This study represents a fundamental contribution to our understanding of how gene expression levels are controlled in bacteria. Through a series of compelling and careful experiments, relying on a mutant that blocks DNA replication but permits growth, and using various methods, the authors reveal how genome concentration rapidly becomes limiting for growth when replication is inhibited. This work contributes to our understanding of the contributions and limiting roles of DNA, mRNA, and ribosomes for growth in bacteria, and will be of considerable interest within both systems biology and microbial physiology.

      Thank you!

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Mäkelä et al. presents compelling experimental evidence that the amount of chromosomal DNA can become limiting for the total rate of mRNA transcription and consequently protein production in the model bacterium Escherichia coli. Specifically, the authors demonstrate that upon inhibition of DNA replication the single-cell growth rate continuously decreases, in direct proportion to the concentration of active ribosomes, as measured indirectly by single-particle tracking. The decrease of ribosomal activity with filamentation, in turn, is likely caused by a decrease of the concentration of mRNAs, as suggested by an observed plateau of the total number of active RNA polymerases. These observations are compatible with the hypothesis that DNA limits the total rate of transcription and thus translation. The authors also demonstrate that the decrease of RNAp activity is independent of two candidate stress response pathways, the SOS stress response and the stringent response, as well as an anti-sigma factor previously implicated in variations of RNAp activity upon variations of nutrient sources.

      Remarkably, the reduction of growth rate is observed soon after the inhibition of DNA replication, suggesting that the amount of DNA in wild-type cells is tuned to provide just as much substrate for RNA polymerase as needed to saturate most ribosomes with mRNAs. While previous studies of bacterial growth have most often focused on ribosomes and metabolic proteins, this study provides important evidence that chromosomal DNA has a previously underestimated important and potentially rate-limiting role for growth.

      Thank you for the excellent summary of our work.

      Strengths:

      This article links the growth of single cells to the amount of DNA, the number of active ribosomes and to the number of RNA polymerases, combining quantitative experiments with theory. The correlations observed during depletion of DNA, notably in M9gluCAA medium, are compelling and point towards a limiting role of DNA for transcription and subsequently for protein production soon after reduction of the amount of DNA in the cell. The article also contains a theoretical model of transcription-translation that contains a Michaelis-Menten type dependency of transcription on DNA availability and is fit to the data. While the model fits well with the continuous reduction of relative growth rate in rich medium (M9gluCAA), the behavior in minimal media without casamino acids is a bit less clear (see comments below).

      At a technical level, single-cell growth experiments and single-particle tracking experiments are well described, suggesting that different diffusive states of molecules represent different states of RNAp/ribosome activities, which reflect the reduction of growth. However, I still have a few points about the interpretation of the data and the measured fractions of active ribosomes (see below).

      Apart from correlations in DNA-deplete cells, the article also investigates the role of candidate stress response pathways for reduced transcription, demonstrating that neither the SOS nor the stringent response are responsible for the reduced rate of growth. Equally, the anti-sigma factor Rsd recently described for its role in controlling RNA polymerase activity in nutrient-poor growth media, seems also not involved according to mass-spec data. While other (unknown) pathways might still be involved in reducing the number of active RNA polymerases, the proposed hypothesis of the DNA substrate itself being limiting for the total rate of transcription is appealing.

      Finally, the authors confirm the reduction of growth in the distant Caulobacter crescentus, which lacks overlapping rounds of replication and could thus have shown a different dependency on DNA concentration.

      Weaknesses:

      There are a range of points that should be clarified or addressed, either by additional experiments/analyses or by explanations or clear disclaimers.

      First, the continuous reduction of growth rate upon arrest of DNA replication initiation observed in rich growth medium (M9gluCAA) is not equally observed in poor media. Instead, the relative growth rate is immediately/quickly reduced by about 10-20% and then maintained for long times, as if the arrest of replication initiation had an immediate effect but would then not lead to saturation of the DNA substrate. In particular, the long plateau of a constant relative growth rate in M9ala is difficult to reconcile with the model fit in Fig 4S2. Is it possible that DNA is not limiting in poor media (at least not for the cell sizes studied here) while replication arrest still elicits a reduction of growth rate in a different way? Might this have something to do with the naturally much higher oscillations of DNA concentration in minimal medium?

      We note that the total RNAP activity (abundance x active fraction) was also significantly reduced in poor media (Figure 3 -- supplement 4G and H) similarly to rich medium (Figure 3H). This is consistent with DNA being limiting. The main difference between rich and poor medium conditions is that the total ribosome activity in poor media (Figure 2 -- supplement 4G and H) was less affected in comparison to rich media (Figure 2H). Our interpretation of these results is that while DNA is limiting in all medium conditions (as shown by the RNAP data), changes in ribosome activity or mRNA degradation can compensate for the reduction in transcription in poor media and hence maintain better scaling of growth rates under DNA limitation. We understand how our current presentation made it confusing. We will reorganize the text and figures to better explain our results and interpretations. 

      The authors argue that DNA becomes limiting in the range of physiological cell sizes, in particular for M9glCAA (Fig. 1BC). It would be helpful to know by how much (fold-change) the DNA concentration is reduced below wild-type (or multi-N) levels at t=0 in Fig 1B and how DNA concentration decays with time or cell area, to get a sense by how many-fold DNA is essentially 'overexpressed/overprovided' in wild-type cells.

      We will provide an estimate.

      Fig. 2: The distribution of diffusion coefficients of RpsB is fit to Gaussians on the log scale. Is this based on a model or on previous work or simply an empirical fit to the data? An exact analytical model for the distribution of diffusion constants can be found in the tool anaDDA by Vink, ..., Hohlbein Biophys J 2020. Alternatively, distributions of displacements are expressed analytically in other tools (e.g., in SpotOn).

      We use an empirical fit of Gaussian mixture model (GMM) of three states to the data and extract the fractions of molecules in each state. This avoids making too many assumptions on the underlying processes, e.g. a Markovian system with Brownian diffusion. The model in anaDDA (Vink et al.) is currently limited to two-transitioning states with a maximal step number of 8 steps per track for a computationally efficient solution (longer tracks are truncated). Using a short subset of the trajectories is less accurate than using the entire trajectory and because of this, we consider full tracks with at least 9 displacements. Meanwhile, Spot-On supports a three-state model but it is still based on a semi-analytical model with a pre-calculated library of parameters created by fitting of simulated data. Neither of these models considers the effect of cell confinement, which plays a major role on single-molecule diffusion in small-sized cells such as bacteria. For these reasons, we opted to use an empirical fit to the data. We note that the fractions of active ribosomes in WT cells grown in different media, which we extracted from these diffusion measurements, are consistent with estimates obtained by others using similar or different approaches (Forchhammer and Lindhal 1971; Mohapatra and Weisshaar, 2018; Sanamrad et al., 2014).

      The estimated fraction of active ribosomes in wild-type cells shows a very strong reduction with decreasing growth rate (down from 75% to 30%), twice as strong as measured in bulk experiments (Dai et al Nat Microbiology 2016; decrease from 90% to 60% for the same growth rate range) and probably incompatible with measurements of growth rate, ribosome concentrations, and almost constant translation elongation rate in this regime of growth rates. Might the different diffusive fractions of RpsB not represent active/inactive ribosomes? See also the problem of quantification above. The authors should explain and compare their results to previous work.

      We agree that our measured range is somewhat larger than the estimated range from Dai et al, 2016. However, they use different media, strains, and growth conditions. We also note that Dai et al did not make actual measurements of the active ribosome fraction. Instead, they calculate the “active ribosome equivalent” based on a model that includes growth rate, protein synthesis rate, RNA/protein abundance, and the total number of amino acids in all proteins in the cell. Importantly, our measurements show the same overall trend as Dai et al, 2016. Furthermore, our results are in quantitative agreements with previous experimental measurements that use ribosome profiling (Forchhammer and Lindhal 1971) or single-ribosome tracking (Mohapatra and Weisshaar, 2018; Sanamrad et al., 2014), which, we believe, validates our approach. We will clarify this point in the revised manuscript.

      To measure the reduction of mRNA transcripts in the cell, the authors rely on the fluorescent dye SYTO RNAselect. They argue that 70% of the dye signal represents mRNA. The argument is based on the previously observed reduction of the total signal by 70% upon treatment with rifampicin, an RNA polymerase inhibitor (Bakshi et al 2014). The idea here is presumably that mRNA should undergo rapid degradation upon rif treatment while rRNA or tRNA are stable. However, work from Hamouche et al. RNA (2021) 27:946 demonstrates that rifampicin treatment also leads to a rapid degradation of rRNA. Furthermore, the timescale of fluorescent-signal decay in the paper by Bakshi et al. (half life about 10min) is not compatible with the previously reported rapid decay of mRNA (24min) but rather compatible with the slower, still somewhat rapid, decay of rRNA reported by Hamouche et al.. A bulk method to measure total mRNA as in the cited Balakrishnan et al. (Science 2022) would thus be a preferred method to quantify mRNA. Alternatively, the authors could also test whether the mass contribution of total RNA remains constant, which would suggest that rRNA decay does not contribute to signal loss. However, since rRNA dominates total RNA, this measurement requires high accuracy. The authors might thus tone down their conclusions on mRNA concentration changes while still highlighting the compelling data on RNAp diffusion.

      Thank you for bringing the Hamouche et al 2022 paper to our attention. We will address this point in the revised manuscript.

      The proteomics experiments are a great addition to the single-cell studies, and the correlations between distance from ori and protein abundance is compelling. However, I was missing a different test, the authors might have already done but not put in the manuscript: If DNA is indeed limiting the initiation of transcription, genes that are already highly transcribed in non-perturbed conditions might saturate fastest upon replication inhibition, while genes rarely transcribed should have no problem to accommodate additional RNA polymerases. One might thus want to test, whether the (unperturbed) transcription initiation rate is a predictor of changes in protein composition. This is just a suggestion the authors may also ignore, but since it is an easy analysis, I chose to mention it here.

      Thank you for the suggestion. We will provide the suggested analysis in the revised manuscript.

      Related to the proteomics, in l. 380 the authors write that the reduced expression close to the ori might reflect a gene-dosage compensatory mechanism. I don't understand this argument. Can the authors add a sentence to explain their hypothesis?

      We apologize for the confusion. This will be addressed in the revised manuscript.

      In Fig. 1E the authors show evidence that growth rate increases with cell length/area. While this is not a main point of the paper it might be cited by others in the future. There are two possible artifacts that could influence this experiment: a) segmentation: an overestimation of the physical length of the cell based on phase-contrast images (e.g., 200 nm would cause a 10% error in the relative rate of 2 um cells, but not of longer cells). b) time-dependent changes of growth rate, e.g., due to change from liquid to solid or other perturbations. To test for the latter, one could measure growth rate as a function of time, restricting the analysis to short or long cells, or measuring growth rate for short/long cells at selected time points. For the former, I recommend comparison of phasecontrast segmentation with FM4-64-stained cell boundaries.

      As the reviewer notes, the small increase in relative growth was just a minor observation that does not affect our story whether it is biologically meaningful or the result of a technical artefact. But we agree with the reviewer that others might cite it in future works and thus should be interpreted with caution.

      An artefact associated with time-dependent changes (e.g. changing from liquid cultures to more solid agarose pads) is unlikely for two reasons. 1. We show that varying the time that cells spend on agarose pads relative to liquid cultures does not affect the cell size-dependent growth rate results (Figure 1 -- supplement 5B). 2. We show that the growth rate is stable from the beginning of the time-lapse with no transient effects upon cell placement on agarose pads for imaging (Figure 1 -- supplement 5B). These results were described in the Methods section where they could easily be missed. We will revise the text to discuss these controls more prominently in the Results section.

      As for cell segmentation, we have run simulations and agree with the reviewer that a small overestimation of cell area (which is possible with any cell segmentation methods including ours) could lead to a small increase in relative growth with increasing cell areas. Since the finding is not important to our story, we will simply alert the readers to the possibility that the observation may be due to a small cell segmentation bias.

      Reviewer #2 (Public Review):

      In this work, the authors uncovered the effects of DNA dilution on E. coli, including a decrease in growth rate and a significant change in proteome composition. The authors demonstrated that the decline in growth rate is due to the reduction of active ribosomes and active RNA polymerases because of the limited DNA copy numbers. They further showed that the change in the DNA-tovolume ratio leads to concentration changes in almost 60% of proteins, and these changes mainly stem from the change in the mRNA levels.

      Thank you for the support and accurate summary!

      Reviewer #3 (Public Review):

      Summary:

      Mäkelä et al. here investigate genome concentration as a limiting factor on growth. Previous work has identified key roles for transcription (RNA polymerase) and translation (ribosomes) as limiting factors on growth, which enable an exponential increase in cell mass. While a potential limiting role of genome concentration under certain conditions has been explored theoretically, Mäkelä et al. here present direct evidence that when replication is inhibited, genome concentration emerges as a limiting factor.

      Strengths:

      A major strength of this paper is the diligent and compelling combination of experiment and modeling used to address this core question. The use of origin- and ftsZ-targeted CRISPRi is a very nice approach that enables dissection of the specific effects of limiting genome dosage in the context of a growing cytoplasm. While it might be expected that genome concentration eventually becomes a limiting factor, what is surprising and novel here is that this happens very rapidly, with growth transitioning even for cells within the normal length distribution for E. coli. Fundamentally, it demonstrates the fine balance of bacterial physiology, where the concentration of the genome itself (at least under rapid growth conditions) is no higher than it needs to be.

      Weaknesses:

      One limitation of the study is that genome concentration is largely treated as a single commodity. While this facilitates their modeling approach, one would expect that the growth phenotypes observed arise due to copy number limitation in a relatively small number of rate-limiting genes. The authors do report shifts in the composition of both the proteome and the transcriptome in response to replication inhibition, but while they report a positional effect of distance from the replication origin (reflecting loss of high-copy, origin-proximal genes), other factors shaping compositional shifts and their functional effects on growth are not extensively explored. This is particularly true for ribosomal RNA itself, which the authors assume to grow proportionately with protein. More generally, understanding which genes exert the greatest copy number-dependent influence on growth may aid both efforts to enhance (biotechnology) and inhibit (infection) bacterial growth.

      We agree but feel that identifying the specific limiting genes is beyond the scope of the study. However, to examine other potential contributing factors and identify limiting gene candidates, we plan to carry out new correlation analyses between our proteomic/transcriptomic datasets and published genome-wide datasets that report various variables under unperturbed conditions (e.g., mRNA/protein concentration, mRNA degradation rates, fitness cost, transcription/translation initiation rates, and essentiality).

      Overall, this study provides a fundamental contribution to bacterial physiology by illuminating the relationship between DNA, mRNA, and protein in determining growth rate. While coarse-grained, the work invites exciting questions about how the composition of major cellular components is fine-tuned to a cell's needs and which specific gene products mediate this connection. This work has implications not only for biotechnology, as the authors discuss, but potentially also for our understanding of how DNA-targeted antibiotics limit bacterial growth.

      Good point about the DNA-targeted antibiotics. Thank you!

    1. Author response:

      Public Reviews: 

      Reviewer #1 (Public Review): 

      As a reviewer for this manuscript, I recognize its significant contribution to understanding the immune response to saprophytic Leptospira exposure and its implications for leptospirosis prevention strategies. The study is well-conceived, addressing an innovative hypothesis with potentially high impact. However, to fully realize its contribution to the field, the manuscript would benefit greatly from a more detailed elucidation of immune mechanisms at play, including specific cytokine profiles, antigen specificity of the antibody responses, and long-term immunity. Additionally, expanding on the methodological details, such as immunophenotyping panels, qPCR normalization methods, and the rationale behind animal model choice, would enhance the manuscript's clarity and reproducibility. Implementing functional assays to characterize effector T-cell responses and possibly investigating the microbiota's role could offer novel insights into the protective immunity mechanisms. These revisions would not only bolster the current findings but also provide a more comprehensive understanding of the potential for saprophytic Leptospira exposure in leptospirosis vaccine development. Given these considerations, I believe that after substantial revisions, this manuscript could represent a valuable addition to the literature and potentially inform future research and vaccine strategy development in the field of infectious diseases. 

      We have been interested in understanding how both pathogenic and non-pathogenic Leptospira species affect each other on a mammalian reservoir host. With the current study we continue to elucidate the immune mechanisms engaged by pathogenic Leptospira interrogans versus non-pathogenic L. biflexa, as a follow up to our previous work (Shetty et al, 2021 PMID: 34249775, and Kundu et al 2022 PMID 35392072). We found that both species engaged partially overlapping myeloid immune cells and inflammatory signatures of infection. For example, some chemokines were increased, and macrophage and dendritic cells were engaged at 24h post inoculation with both species of Leptospira (PMID: 34249775). Thus, we questioned whether this robust innate immune response raised to eliminate an immunogenic but rather non-pathogenic bacterium, could also help restrain L. interrogans pathogenesis. In this study we show that L. biflexa pre-exposure to L. interrogans challenge mediates improved kidney homeostasis, mitigates leptospirosis severity and leads to increased shedding of L. interrogans in urine. This suggests an interspecies symbiotic commensalistic process that facilitates survival of the pathogenic species. These findings have high impact on the lives of millions of people in areas endemic for leptospirosis that are naturally exposed to non-pathogenic Leptospira species.

      We will expand on the methodological details and will update the introduction and discussion to include answers to questions raised by the three reviewers to further clarify the importance and impact of our study.

      Reviewer #2 (Public Review): 

      Summary: 

      The authors try to achieve a method of protection against pathogenic strains using saprophytic species. It is undeniable that the saprophytic species, despite not causing the disease, activates an immune response. However, based on these results, using the saprophytic species does not significantly impact the animal's infection by a virulent species. 

      We separate concepts of exposure to a non-virulent bacterium that establishes a brief infection with engagement of an immune response (L. biflexa), from infection established by a virulent species of Leptospira that leads to pathogenesis (L. interrogans). While trying to understand how both pathogenic and non-pathogenic Leptospira species affect each other on a mammalian reservoir host, we previously found that L. biflexa induces immune responses that should affect immunity of populations naturally exposed to this spirochete. Thus, we designed this study to answer that question.

      Strengths: 

      Exposure to the saprophytic strain before the virulent strain reduces animal weight loss, reduces tissue kidney damage, and increases cellular response in mice.

      Weaknesses: 

      Even after the challenge with the saprophyte strain, kidney colonization and the release of bacteria through urine continue. Moreover, the authors need to determine the impact on survival if the experiment ends on the 15th. 

      Another novel and unexpected aspect of our findings in the single exposure experiment was that L. biflexa pre-exposure mediated a homeostatic environment in the kidney (lower ColA1, healthier renal physiology) that restrained pathogenesis of L. interrogans after challenge, which resulted in better health outcomes and increased shedding of L. interrogans in urine; in contrast, if the kidney is compromised (high ColA1) by L. interrogans (without L. biflexa pre-exposure) there was lower shedding L. interrogans in urine. Interestingly, this suggests an interspecies symbiotic commensalistic process that facilitates survival of the pathogenic species. Thus, these data suggest that higher shedding of L. interrogans in urine may not be a hallmark of increased disease, but rather it could be the opposite.

      We will include these concepts in the updated discussion.

      We don’t think that extending this experiment to d21 or d28 would add relevant data to our findings. We provide survival curves for both experiments up to d15 post infection.

      Reviewer #3 (Public Review): 

      Summary: 

      Kundu et al. investigated the effects of pre-exposure to a non-pathogenic Leptospira strain in the prevention of severe disease following subsequent infection by a pathogenic strain. They utilized a single or double exposure method to the non-pathogen prior to challenge with a pathogenic strain. They found that prior exposure to a non-pathogen prevented many of the disease manifestations of the pathogen. Bacteria, however, were able to disseminate, colonize the kidneys, and be shed in the urine. This is an important foundational work to describe a novel method of vaccination against leptospirosis. Numerous studies have attempted to use recombinant proteins to vaccinate against leptospirosis, with limited success. The authors provide a new approach that takes advantage of the homology between a non-pathogen and a pathogen to provide heterologous protection. This will provide a new direction in which we can approach creating vaccines against this re-emerging disease. 

      Strengths: 

      The major strength of this paper is that it is one of the first studies utilizing a live non-pathogenic strain of Leptospira to immunize against severe disease associated with leptospirosis. They utilize two independent experiments (a single and double vaccination) to define this strategy. This represents a very interesting and novel approach to vaccine development. This is of clear importance to the field. 

      The authors use a variety of experiments to show the protection imparted by pre-exposure to the non-pathogen. They look at disease manifestations such as death and weight loss. They define the ability of Leptospira to disseminate and colonize the kidney. They show the effects infection has on kidney architecture and a marker of fibrosis. They also begin to define the immune response in both of these exposure methods. This provides evidence of the numerous advantages this vaccination strategy may have. Thus, this study provides an important foundation for future studies utilizing this method to protect against leptospirosis. 

      Weaknesses: 

      Although they provide some evidence of the utility of pretreatment with a non-pathogen, there are some areas in which the paper needs to be clarified and expanded. 

      The authors draw their conclusions based on the data presented. However, they state the graphs only represent one of two independent experiments. Each experiment utilized 3-4 mice per group. In order to be confident in the conclusions, a power analysis needs to be done to show that there is sufficient power with 3-4 mice per group. In addition, it would be important to show both experiments in one graph which would inherently increase the power by doubling the group size, while also providing evidence that this is a reproducible phenotype between experiments. Overall, this weakens the strength of the conclusions drawn and would require additional statistical analysis or additional replicates to provide confidence in these conclusions. 

      We will take these suggestions into consideration and will address as many of these issues as possible in the revised manuscript.

      A direct comparison between single and double exposure to the non-pathogen is not able to be determined. The ages of mice infected were different between the single (8 weeks) and double (10 weeks) exposure methods, thus the phenotypes associated with LIC infection are different at these two ages. The authors state that this is expected, but do not provide a reasoning for this drastic difference in phenotypes. It is therefore difficult to compare the two exposure methods, and thus determine if one approach provides advantages over the other. An experiment directly comparing the two exposure methods while infecting mice at the same age would be of great relevance to and strengthen this work. 

      Both experiments need to be analyzed as separate but complementary as they provide different hind sights into L. interrogans pathogenesis and potential solutions to the problem. Optimal measurements of disease progression (weight loss, survival curves) require infection of mice at 8 weeks. Based on this, a new L. biflexa double exposure experiment would have to start when mice are 4 weeks old which is just after weaning, and before the mouse immune system is fully developed.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This is a valuable contribution to the electric fish community, and to studies of active sensing more generally, in that it provides evidence that a well-studied behavior (chirping) may serve in active sensing rather than communication. For the most part, the evidence is solid. In particular, the evidence showing increased chirping in more cluttered environments and the relationship between chirping and movement are convincing. Nevertheless, evidence to support the argument that chirps are mostly used for navigation rather than communication is incomplete.

      Thank you for the comment. In response to what seemed to be a generalized need for more evidence to support our hypothesis, we have extensively reviewed the manuscript, changed the existing figures and added new ones (3 new figures in the main text and 4 in the supplementary information section). Our edits include:

      (1) changes to the written text to remove categorical statements ruling out the possible communication function of chirps. When necessary, we have also added details on why we believe a social communication function of chirps could interfere with a role in electrolocation.

      (2) new experiments (and related figures) adding details on the behavioral correlates of chirping, on the effects of chirps on electric images (which are a way to represent current flow on the fish skin), and behavioral responses to ramp frequency playback EODs (used to test a continuous range of beat frequencies and fill the sampling gaps left by our experiments using real fish).

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors investigate the role of chirping in a species of weakly electric fish. They subject the fish to various scenarios and correlate the production of chirps with many different factors. They find major correlations between the background beat signals (continuously present during any social interactions) or some aspects of social and environmental conditions with the propensity to produce different types of chirps. By analyzing more specifically different aspects of these correlations they conclude that chirping patterns are related to navigation purposes and the need to localize the source of the beat signal (i.e. the location of the conspecific).

      We thank the Reviewer for the extensive feedback received. Hereby we respond to each of the points raised.

      We have better clarified that our intention is not to propose chirps as tools for “conspecific localization” intended as the pinpointing of its particular location. Instead, based on our observation of chirps being employed at very close ranges, we suggest that chirps may serve to assess other parameters related to “conspecific positioning” (which in a wide sense, it is still “electrolocation”), and that could be derived from the beat. These parameters might include size, relative orientation, or subtle changes in position during movement. While the experiments discussed in the manuscript do not provide a conclusive answer in this regard, we prioritize here the presentation of broader evidence for a different use of chirping. We are actively working on another manuscript that explores this aspect more in detail, but, due to space limitations, additional results had to be excluded.

      In the abstract we mention a role of chirps in the enhancement of “electrolocation”, but - as above mentioned - it is here meant only in a broad sense. In the introduction (at the very end) we propose chirps as self-directed signals (homeoactive sensing). In the result paragraph dedicated to the novel environment exploration experiment the following lines were added “Most chirps (90%) in fact are produced within a distance corresponding to 1% of the maximum field intensity (i.e. roughly 30 cm; Figure S12B), indicating that chirping occurs way below the threshold range for beat detection (i.e. roughly in the range of 60-120 cm, depending on the study; see appendix 1: Detecting beats at a distance) and likely does not represent a way to improve it”. We conclude this paragraph mentioning “This further corroborates the hypothesized role of chirps in beat processing.”. The last result paragraph (on chirping in cluttered environments) ends with “This supports the notion of chirps as self-referenced probing cues, potentially employed to optimize short-range aspects of conspecific electrolocation, such as conspecific size, orientation, and swimming direction - a hypothesis that will certainly be explored in future studies.”. In the discussion paragraph entitled “probing with chirps”, we do provide hints to possible mechanisms implied in the role of chirps in beat processing. As mentioned, we have planned to add further details in another manuscript, currently in preparation.

      The study provides a wealth of interesting observation of behavior and much of this data constitute a useful dataset to document the patterns of social interactions in these fish. Some data, in particular the high propensity to chirp in cluttered environments, raises interesting questions. Their main hypothesis is a useful addition to the debate on the function of these chirps and is worth being considered and explored further. However, the data they provide does not support strong conclusion statements arguing that these chirps are used for localization purposes and is even less convincing at rejecting previously established hypotheses on the communication purpose of the chirps.

      We intentionally framed our aims a bit provocatively to underscore that, to date, the role of chirps in social communication has been supported solely by correlative evidence. While the evidence we provide to support the role of chirps as probes is also correlative, it opens at the same time critical questions on the long assumed role of chirps in social communication. In fact, chirping is strongly dependent on fish reciprocal positioning, highly constrained by beat frequency, and patterned in such ways that - in our opinion - makes the existence of links between chirp types and internal states less likely, as suggested instead by the current view. Moreover, the use of different chirp types does not appear specific to any of the social contexts analyzed but is primarily explained by DF (beat frequency). This observation, coupled with the analysis of chirp transitions (more self-referenced than reflecting an actual exchange between subjects), leads us to hypothesize with greater confidence that chirp production may be more related to sensing the environment, rather than transmitting information about a specific behavioral state.

      Nevertheless, the Reviewer's comment is valid. We've tempered the study's conclusions by introducing the possibility of chirps serving both communication and electrolocation functions, as stated in the conclusion paragraph: "While our results do not completely dismiss the possibility of chirps serving a role in electrocommunication—probing cues could, for instance, function as proximity signals to signal presence, deter approaches, or coordinate behaviors like spawning (Henninger et al., 2018).". Nonetheless, we do emphasize that our hypothesis is more likely to apply - based on our data. We refrain from categorically excluding a communicative function for chirps (between subjects), but we hypothesize that this communication - if occurring - may contain the same type of information as the self-directed signaling implied by the “chirps as probes” idea (i.e. spatial information).

      In response to the Reviewer's feedback, we've revised the end of the introduction, removing suggestions of conclusiveness: "Finally, by recording fish in different conditions of electrical 'visibility,' we provide evidence supporting a previously neglected role of chirps: homeoactive sensing." (edit: the word “validating” has been removed to give a less “conclusive” answer to the open functional questions about chirping).

      I would suggest thoroughly revising the manuscript to provide a neutral description of the results and leaving any speculations and interpretations for the discussion where the authors should be careful to separate strongly supported hypotheses from more preliminary speculations. I detail below several instances where the argumentation and/or the analysis are flawed.

      Following to the reviewer’s comment, we have revised the manuscript to emphasize the following points: 1) the need for a revision of the current view on chirping, 2) our proposal of an alternative hypothesis based on correlations between chirping and behavior, which were previously unexplored, and 3) our acknowledgment that while we offer evidence supporting a probing role of chirps (e.g., lack of behavioral correlation, DF-dependency, stereotypy in repeated trials, modulation by clutter and distance), we do not present here conclusive evidence for chirps detecting specific details of conspecific positioning. Neither do we exclude categorically a role of chirps in social communication.

      They analyze chirp patterning and show that, most likely, a chirp by an individual is followed by a chirp in the same individual. They argue that it is rare that a chirp elicits a "response" in the other fish. Even if there are clearly stronger correlations between chirps in the same individual, they provide no statistical analysis that discards the existence of occasional "response" patterns. The fact that these are rare, and that the authors don't do an appropriate analysis of probabilities, leads to this unsupported conclusion.

      We employed cross-correlation indices, calculated and assessed with a 3 standard deviation symmetrical boundary (which is a statistically sound and strict criterion). Median values were utilized to depict trends in each group/pair. To support our findings, we added new experiments and new figures: 1) a correlation analysis between chirps and behaviors, providing more convincing evidence of how chirps are employed during "scanning" swimming activity (backward swimming); 2) a text mining approach to underscore chirp-behavior correlations, employing alternative and statistically more robust methods.

      One of the main pieces of evidence that chirps can be used to enhance conspecific localization is based on their "interference" measure. The measure is based on an analysis of "inter-peak-intervales". This in itself is a questionable choice. The nervous system encodes all parts of the stimulus, not just the peak, and disruption occurring at other phases of the beat might be as relevant. The interference will be mostly affected by the summed duration of intervals between peaks in the chirp AM. They do not explain why this varies with beat frequency. It is likely that the changes they see are simply an artifact of the simplistic measure. A clear demonstration that this measure is not adequate comes from the observation in Fig7E-H. They show that the interference value changes as the signal is weaker. This measure should be independent of the strength of the signal. The method is based on detecting peaks and quantifying the time between peaks. The only reason this measure could be affected by signal strength is if noisy recordings affect how the peak detection occurs. There is no way to argue that this phenomenon would happen the same way in the nervous system. Furthermore, they qualitatively argue that patterns of chirp production follow patterns of interference strength. No statistical demonstration is done. Even the qualitative appraisal is questionable. For example, they argue that there are relatively few chirps being produced for DFs of 60 or -60 Hz. But these are DF where they have only a very small sample size. The single pair of fish that they recorded at some of these frequencies might not have chirped by chance and a rigorous statistical analysis is necessary. Similarly, in Fig 5C they argue that the position of the chirps fall on areas of the graph where the interferences are strongest (darker blue) but this is far from obvious and, again, not proven.

      We would like to clarify that the estimation of the effects of chirps on the beat (referred to as “beat interference”) was not intended to serve as the primary evidence supporting a different use of chirping. In fact, all the experiments conducted prior to that calculation already provide substantial evidence supporting the hypothesis we have proposed. In an attempt to address the Reviewer’s concern and to avoid misleading interpretations, we moved this part now to the Supplementary Information (see now Figures S8 and S9), in agreement with the non crucial relevance of this approach. We also added the following statement to the result paragraph entitled “Chirps significantly interfere with the beat and enhance electric image contrast”: “Obviously, measuring chirp-triggered beat interferences by using an elementary outlier detection algorithm on the distribution of beat cycles does not reflect any physiological process carried out by the electrosensory system and can be therefore used only as an oversimplified estimate.”.

      Regarding the meaning of “beat interference” (as here estimated) from a perspective of brain physiology: chirp interference was calculated using the beat cycles as a reference. Beat peaks were used only to estimate beat cycle duration. Regardless of whether or not a beat peak is represented in the brain, beat cycle duration (estimated using the peaks) is the main determinant of p-unit rhythmic response to a beat. Regarding the effect of signal amplitude, this is also not very relevant. It is obvious that a chirp creates more - or less - interference based on the chirp FM and its duration (but also the sign of the DF and the magnitude of the amplitude modulation). If electroreceptor responses are entrained in waves of beat AMs and if “interference” is a measure of how such waves are scrambled, then “interference” is a measure of how chirps scramble waves of electroreceptor activity by affecting beat AMs.

      The reason why the interference fades with the signal (previous figure 7, now Figure S12) is because it is weighted on the signal strength (the signals used as carrier for chirps are recalculated based on real measurements of signal strength at different distances). Nonetheless, the Reviewer is right: mathematically speaking interference would not change at all because it is just the result of an outlier detection algorithm. This outlier detection is actually set to have a 1% threshold (percent of beat contrast).

      Regarding the comparison “chirps vs interference”, we did not make a statistical analysis because we wanted to just show a qualitative observation. Similar results can be obtained for slightly shorter or longer time windows, within certain limits of course (see added Figure S9, in the Supplementary Information). We hope that moving this analysis to the supplementary information makes it clear that this approach is not central to make our point.

      The Reviewer’s point on the DF sampling is correct, we have reconsidered the low chirping at 60Hz as potentially the result of sampling bias and edited the respective result paragraph.

      They relate the angle at which one fish produces chirps relative to the orientation of the mesh enclosing. They argue that this is related to the orientation of electric field lines by doing a qualitative comparison with a simplified estimate of field lines. To be convincing this analysis should include a quantitative comparison using the exact same body position of the two fish when the chirps are emitted.

      We agree with the Reviewer, this type of experiment would be much better suited to illustrate the correlations between chirping and reciprocal positioning in fish. What we can see is that chirping occurs at certain orientations more often than others. This could have something to do with either field geometry or with locomotion in the particular test environment we have used. As mentioned earlier, we are currently editing a second manuscript which will include the type of analysis/experiment the Reviewer is thinking of. We preferred to focus in this first study on the broader behavioral correlates of chirping. We removed the mention to the field current lines because - we agree - the argument is vague as presented here.

      They show that the very vast majority of chirps in Fig 6 occur when the fish are within a few centimeters (e.g. very large first bin in Fig6E-Type2). This is a situation when the other fish signal will be strongest and localization will be the easiest. It is hard to understand why the fish would need a mechanism to enhance localization in these conditions (this is the opposite of difficult conditions e.g. the "cluttered" environment).

      Agreed, in fact we do not explicitly propose chirps as means to improve “electrolocation” (this word is used only broadly in the abstract) but instead as probes to extract spatial information (e.g. shape, motion, orientation) from a beat source. In a broader sense, all these spatial parameters contribute to any given instance of "localization." Because we were unable to explore all these aspects in greater detail, we chose to maintain a broader perspective. If chirps contribute to a better resolution of fine spatial attributes of conspecific locations, it is reasonable to expect higher chirping rates in proximity to the target fish.

      The argumentation aimed at rejecting the well-established role of chirp in communication is weak at best. First, they ignored some existing data when they argue that there is no correlation between chirping and behavioral interactions. Particularly, Hupe and Lewis (2008) showed a clear temporal correlation between chirps and a decrease in bites during aggressive encounters. It could be argued that this is "causal evidence" (to reuse their wording) that chirps cause a decrease in attacks by the receiver fish (see Fig 8B of the Hupe paper and associated significant statistics). Also, Oboti et al. argue that social interactions involve "higher levels of locomotion" which would explain the use of chirps since they are used to localize. But chirps are frequent in "chirp chamber" paradigms where no movement is involved. They also point out that social context covaries with beat frequency and thus that it is hard to distinguish which one is linked to chirping propensity and then say that it is hard to disentangle this from "biophysical features of EOD fields affecting detection and localization of conspecific fish". But they don't provide any proof that beat frequency affects detection and localization so their argument is not clear. Last, they argue that tests in one species shouldn't be extrapolated to other species. But many of the studies arguing for the role of chirps in communication was done on brown ghost. In conclusion of this point, they do not provide any strong argument that rejects the role of chirps as a communication signal. A perspective that would be better supported by their data and consistent with past research would be to argue that, in addition to a role in communication, chirps could sometimes be used to help localize conspecifics.

      We did not intend to disregard the extensive body of literature supporting a role of chirps in social communication. Rather, the primary goal of this study was to present a valid alternative perspective to this prevailing view. The existence of a well-established hypothesis does not imply that new evidence cannot change it; it simply indicates that changing it may be challenging either because it's genuinely difficult or because the idea has not been thoroughly explored. Whatever the case may be, proposing new hypotheses, whether complementary or alternative to established theories, is a challenging undertaking for a single study. We judged that starting from broad correlations would be the most desirable approach.

      We did not ignore data from Hupé and Lewis 2008. We cited this study repeatedly and compared their findings to those of others, not only for the correlation chirp-behaviors but also for chirping distance considerations. However, following the Reviewer’s comment, we now cite this study in the context of the behavioral analysis recently added (data from the PSTH plots could possibly confirm the observation of lower chirps during attacks). We also cited the study by Triefenbach and Zakon 2008, which reports something along the same lines. See the statement: “Overall, these results provided mutually reinforcing evidence indicating that chirps are produced more often during locomotion or scanning-related motor activity and confirm previous reports of a lower occurrence of chirping during more direct aggressive contact (as shown also by Triefenbach and Zakon, 2008; Hupé and Lewis, 2008).”, in the result paragraph related to the behavioral correlates of chirping.

      In our study we make it clear how we distinguish causal evidence (i.e. providing evidence that A is required for B) from correlation (i.e. evidence for A simply occurring together with B). We also make it clear that we are not going to provide causal evidence but we are going to provide new evidence for correlations that were so far not considered, in order to propose a new unexplored function of chirps.

      The Reviewer's point on chirping during motion and while caged in a chirp chamber is valid. Indeed at first we were also puzzled by this finding. However, under the “chirps as probes” paradigm, chirping in a chirp-chamber can be explained by the need to obtain spatial information from an otherwise unreachable beat source (brown ghosts are typically exploring new environmental objects or conspecifics by actively swimming around them - something caged fish can’t do). So, eventually the observation of chirping under conditions of limited movement (such as in a chirp chamber experiment) is not in contradiction with our hypothesis, rather it can be used to support it. Further experiments are required - as rightfully pointed out - to evaluate the effects of beat frequency on beat detection. We added a note about this in the “probing with chirps” discussion paragraph.

      The Reviewer's comment regarding generalization is unclear. We acknowledge that most studies are conducted in brown ghosts, as stated in the abstract. Our intention was to highlight that insights gained from this species have been applied to broaden the understanding of chirps in other species. Specifically, the "behavioral meaning idea" of chirping has been extended to other gymnotiform species producing EOD frequency modulations .

      Our study's aim is not to dismiss the idea of chirps being used for communication but to present an alternative hypothesis and to provide supporting evidence. While our results may not align well with the communication theory, our intention is not dismissal but rather engaging in a discussion and exploration of alternative perspectives.

      The discussion they provide on the possible mechanism by which chirps could help with localization of the conspecific is problematic. They imply that chirps cause a stronger response in the receptors. For most chirps considered here, this is not true. For a large portion of the beat frequencies shown in this paper, chirps will cause a de-synchronization of the receptors with no increase in firing rate. They cannot argue that this represents an enhanced response. They also discuss a role for having a broader frequency spectrum -during the chirp- in localization by making a parallel with pulse fish. There is no evidence that a similar mechanism could even work in wave-type fish.

      We have already commented on the “localization” idea in our previous responses. The Reviewer is right in saying that we have provided only vague descriptions of the potential mechanisms implied by our hypothesis. The studies by Benda and others (2005, 2006) demonstrate a clear synchronizing effect of chirps on p-unit firing rates, especially at low DFs (at ranges similar to those considered in this study). This synchronization could lead to an enhanced response at the electroreceptor level, as described in these very studies, which in turn would result in a higher probability of firing in downstream neurons (E-cells in the ELL).

      As also reported within the same works, chirps may also exert an opposite effect on p-units (i.e. desynchronization). This is what happens for large chirps at high DFs. Desynchronization may cause temporary lapses of p-unit firing, which in turn may lead to increased activity of I-cells in the ELL (which are indeed specifically tuned to p-unit lack of activity).

      So, in general, if we consider both ON and OFF pyramidal cells (in the ELL) and small and large chirps, we could state that chirps can be potentially used to enhance the activity of peripheral electrosensory circuits through different mechanisms, contingent on the chirp type and beat frequency. Unfortunately, space constraints limited our ability to dig into these details in the present study.

      However, to address the Reviewer’s rightful point, we now mention this in the manuscript: Since the beat AMs generated by the chirps always trigger reliable responses in primary electrosensory circuits (pyramidal cells in the ELL respond to both increases and decreases in beat AM), any chirp-triggered AM causing a sudden change in p-unit firing could potentially amplify the downstream signal (Marsat and Maler, 2010) and thus enhance EI contrast.” (see result paragraph on beat interference and electric images).

      They write the whole paper as if males and females had been identified in their experiments. Although EOD frequency can provide some guess of the sex the method is unreliable. We can expect a non-negligible percentage of error in assigning sex.

      We agree and in fact, in the method section we state:

      “The limitation of this approach is that females cannot be distinguished from immature males with absolute certainty, since no post-mortem gonadal inspection was carried out.”

      to this we added:

      “Although a more accurate way to determine the sex of brown ghosts would be to consider other morphological features such as the shape of the snout, the body size, the occurrence of developing eggs, EOD frequency has been extensively used for this purpose.”

      Moreover, the consistent behavioral differences observed in low frequency fish, measured with those behavioral experiments aimed at assessing responses to playback stimuli and swimming behavior in novel environments, could also be caused by a younger age (as opposed to femaleness). However, the size ranges of our fish (an admittedly unreliable proxy of age) were all comparable, making this possibility perhaps less likely.

      Reviewer #2 (Public Review):

      Studying the weakly electric brown ghost knifefish, the authors provide evidence that 'chirps' (brief modulations in the frequency and amplitude of the ongoing electric signal) function in active sensing (specifically homeoactive sensing) rather than communication. This is a behavior that has been very well studied, including numerous studies on the sensory coding of chirps and the neural mechanisms for chirp generation. Chirps are largely thought to function in communication behavior, so this alternative function is a very exciting possibility that could have a great impact on the field. The authors do provide convincing evidence that chirps may function in homeoactive sensing. However, their evidence arguing against a role for chirps in communication is not as strong, and neglects a large body of research. Ultimately, the manuscript has great potential but suffers from framing these two possibilities as mutually exclusive and dismissing evidence in favor of a communicative function.

      We thank the Reviewer for the comment. Overall, we have edited the manuscript to soften our conclusions and avoid any strong categorical statement excluding the widely accepted role of chirps in social communication. We have added some new experiments with the aim to add more detail to the behavioral correlates of chirping and to the DF dependency of the production of different types of chirps. Nonetheless, based on our results, we are prone to conclude that the communication idea - although widely accepted - is not as well substantiated as it should be.

      Although we do not dismiss the bulk of literature supporting a role of chirps in social communication, we think that our hypothesis (i.e. decoding of spatial parameters from the beat) may be not fully compatible with the social communication hypothesis for the following reasons:

      (1) Chirp type dependency on DF makes chirps likely to be adaptive responses to beat frequency. While this idea is compatible with a role of chirps in the detection of beat parameters, their concurrent role in social communication would imply that chirps interacting at given beat frequencies (DFs) would communicate only (or mainly) by delivering a very limited range of “messages”. For instance, assuming type 2 chirps are related to aggression (as widely suggested), are female-male pairs - with larger DFs - interacting less aggressively than same sex pairs? Our experiments often suggested this is not the case. In addition, large DFs are not always indicative of opposite sex interactions, while they are very often characterized by the emission of large chirps. Not to mention that, despite the fact that opposite sex interactions in absence of breeding-like conditions, cannot be considered truly courtship-related, large chirps are often considered courtship signals, regardless of the reproductive state of the emitting fish.

      (2) Chirping is highly affected by locomotion (consider female/male pairs with or without mesh divider) and distance (as shown in the novel environment exploration experiment). While the involvement of both parameters is compatible with a role of chirps in active sensing, a role of chirps in social communication implies that such signaling would occur only when fish are in very close proximity to each other. In this case, the beat is therefore heavily distorted not only by fish position/locomotion but also by chirps. Which means that when fish are close to each other, the 2 different types of information relayed by the beat (electrolocation and electrocommunication) would certainly interfere (this idea has been better phrased in the Introduction paragraph).

      (3) In our playback experiments we could not see any meaningful matching (e.g. angry-chirp → angry-chirp or sexy-chirp → approach) between playback chirps and evoked chirps, raising doubts on the meaning associated so far with the different types. Considering that playback experiments are typically used to assess signal meaning based on how animals respond to them, this result is suggesting quite strongly that such meaning cannot be assigned to chirps.

      (4) In playback experiments in which the same stimulus is provided multiple times, chirp type transitions (i.e. emission of a different chirp type after a given chirp) become predictable (as shown in the added playback experiments using ramping signals). This confirms that the choice to emit a given chirp type has something to do with beat frequency (or a change in this parameter) and not a communication of internal states. It would be otherwise unclear how a fish could change its internal state so quickly - and so reliably - even in the span of a few seconds.

      Despite this evidence against a semantic content of chirps in the context of social communication, we conclude the manuscript reminding that we are not providing strong evidence dismissing the communication hypothesis, and that both could coexist (see the example of “proximity signals” in the mating context given in the concluding paragraph).

      (1) The specific underlying question of this study is not made clear in the abstract or introduction. It becomes apparent in reading through the manuscript that the authors seek to test the hypothesis that chirps function in active sensing (specifically homeoactive sensing). This should be made explicitly clear in both the abstract and introduction, along with the rationale for this hypothesis.

      In the abstract we state “Despite the success of this model in neuroethology over the past seven decades, the underlying logic of their electric communication remains unclear. This study re-evaluates this view, aiming to offer an alternative, and possibly complementary, explanation for why these freshwater bottom dwellers emit electric chirps.”. This statement is meant as a summary of our aims. However, in order to convey a clearer message, we have revised the whole manuscript to more explicitly articulate our objectives. In particular we stress that with our experiments we intend to provide correlative evidence for a different role of chirps (previously unexplored) with the idea to stimulate a discussion and possibly a revision of the current theory about the functional role of chirps.

      In the introduction we have added a paragraph explaining our aim and also why we think that communicating through chirps could potentially interfere with efficient electrolocation: “Since both chirps and positional parameters (such as size, orientation or motion) can only be detected as perturbations of the beat (Petzold et al., 2016; Yu et al., 2012; Fotowat et al., 2013), and via the same electroreceptors, the inputs relaying both types of information are inevitably interfering. Moreover, as the majority of chirps are produced within a short range (< 50 cm; Zupanc et al., 2006; Hupé and Lewis 2008; Henninger et al., 2018; see appendix 1) this interference is likely to occur consistently during social interactions.

      Under the communication-hypothesis, the assumption that chirps and beats are conveying different types of information (i.e. semantic value as opposed to position and related geometrical parameters) is therefore leaving this issue unresolved.”.

      (2) My biggest issue with this manuscript is that it is much too strong in dismissing evidence that chirping correlates with context. This is captured in this sentence in the introduction, "We first show that the choice of different chirp types does not significantly correlate with any particular behavioral or social context." This very strong conclusion comes up repeatedly, and I disagree with it, for the following reasons:

      In your behavioral observations, you found sex differences in chirping as well as differences between freely interacting and physically separated fish. Your model of chirp variability found that environmental experience, social experience, and beat frequency (DF) are the most important factors explaining chirp variability. Are these not all considered "behavioral or social context"? Beat frequency (DF) in particular is heavily downplayed as being a part of "context" but it is a crucial part of the context, as it provides information about the identity of the fish you're interacting with.

      In your playback experiments, fish responded differently to small vs. large DFs, males chirped more than females, type 2 chirps became more frequent throughout a playback, and rises tended to occur at the end of a playback. These are all examples of context-dependent behavior.

      We agree with the Reviewer’s comment and we think that probably we have been unclear in what the meaning of that statement was. We also agree with the Reviewer about what is defined as “context”, and that a given beat frequency (DF) can in the end represent a “behavioral context” as well. In order to make it clearer, we have rephrased this statement and changed it to: “We first show that the relative number of different chirp types in a given recording does not significantly correlate with any particular behavioral or social context.”. This new form refers specifically to the observation that - in all different social conditions examined - the relative amounts of different types of chirps is unchanged (see Figure S2). We thought the Reviewer maybe interpreted our statement as if we suggested that chirp type choice is random or unaffected by any social variable. We agree with the Reviewer that this is not the case. We also reported that sex differences in chirping are present, but we have emphasized they may have something to do with the propensity of the brown ghosts of either sex to swim/explore as opposed to seek refuge and wait (as suggested by our experiments in which FM pairs were either divided or freely interacting and our novel environment exploration experiments).

      We agree DF is important, in fact it is the 3rd most important factor explaining chirp variance in our model. In our fish pair recordings, we see a strong correlation of chirp total variance with tank experience (one naïve, one experienced, both fish equally experienced) and social context (novel to each other/familiar to each other, subordinate/dominant, breeding/non breeding, accessible/not accessible) although data clustering seems to better distinguish “divided” vs “freely moving” conditions (and sex may also play a role as well because of the reversal of sexual dimorphism in chirp rates in precisely this case) more than other variables. However, we do not see a specific effect of these variables on the proportion of different types of chirps in any recording (see Figure S2).

      We also edited the beginning of the first result paragraph and changed it to “Thus, if behavioral meaning can be attributed to different types of chirps, as posed by the prevailing view (e.g., Hagedorn and Heiligenberg, 1985; Larimer and MacDonald, 1968; Rose, 2004), one should be able to identify clear correlations between behavioral contexts characterizing different internal states and the relative amounts of different types of chirp”, to emphasize we are here assessing the meaning of different types of chirps (not of the total amount of chirping in general).

      Further, you only considered the identity of interacting fish or stimulated fish, not their behavior during the interaction or during playback. Such an analysis is likely beyond the scope of this study, but several other studies have shown correlations between social behavior and chirping. In the absence of such data here, it is too strong to claim that chirping is unrelated to context.

      We agree with the Reviewer, in fact this analysis was previously carried out but purposely left out in an attempt to limit the manuscript length. We have now made space for this experimental work which is now added (see the new Figure 6).

      In summary, it is simply too strong to say that chirping does not correlate with context. Importantly, however, this does not detract from your hypothesis that chirping functions in homeoactive sensing. A given EOD behavior could serve both communication and homeoactive sensing. I actually suspect that this is quite common in electric fish. The two are not mutually exclusive, and there is no reason for you to present them as such. I recommend focusing more on the positive evidence for a homeoactive function and less on the negative evidence against a communication function.

      We aimed to clarify that our reference was to the lack of correlation between "chirp type relative numbers" and the analyzed context. Regarding the communication function, we tempered negative statements. However, as this study stems from evidence within the established paradigm of "chirps as communication signals", and aims at proposing an alternative hypothesis, eliminating all references to it could undermine the study's purpose.

      (3) The results were generally challenging to follow. In the first 4 sections, it is not made clear what the specific question is, what the approach to addressing that question is, and what specific experiment was carried out (the last two sections of the results were much clearer). The independent variables (contexts) are not clearly established before presenting the results. Instead they are often mentioned in passing when describing the results. They come across as an unbalanced hodgepodge of multiple factors, and it is not made clear why they were chosen. This makes it challenging to understand why you did what you did, the results, and their implications. For each set of major results, I recommend: First, pose a clear question. Then, describe the general approach to answering that question. Next, describe the specifics of the experimental design, with a rationale that appeals to the general approach described. Finally, describe the specific results.

      The introductory sentences of the first result paragraphs have been edited, rendering the aim of the experiments more explicit.

      (4) Results: "We thus predicted that, if behavioral meaning can be attributed to different types of chirps, as posed by the prevailing view (e.g., Hagedorn and Heiligenberg, 1985; Larimer and MacDonald, 1968; Rose, 2004)..." It should be made clear why this is the prevailing view, and this description should likely be moved to the introduction. There is a large body of evidence supporting this view and it is important to be complete in describing it, especially since the authors seem to seek to refute it.

      We understand the Reviewer’s question and we tried to express in the introduction the main reasons for why this is the current view. We state “Different types of chirps are thought to carry different semantic content based on their occurrence during either affiliative or agonistic encounters (Larimer and MacDonald 1968; Bullock 1969; Hopkins 1974; Hagedorn and Heiligenberg 1985; Zupanc and Maler 1993; Engler et al. 2000; Engler and Zupanc 2001; Bastian et al., 2001).”. To this we added: “Although supported mainly by correlative evidence, this idea gained popularity because it is intuitive and because it matches well enough with the numerous behavioral observations of interacting brown ghosts.”.

      We believe the prevailing view is based on intuition and a series of basic observed correlations repeated throughout the years. The crystallization of this idea is not due to negligence but mainly to technical limitations existing at the time of the first recordings. In order to assess the role of chirps in behaving fish a tight and precise temporal control over synched video-EOD recordings is most likely necessary, and this is a technical feature probably available only much later than the 50-60ies, when electric communication was first described.

      (5) I am not convinced of the conclusion drawn by the analysis of chirp transitions. The transition matrices show plenty of 1-2 and 2-1 transitions occurring. Further, the cross-correlation analysis only shows that chirp timing between individuals is not phase-locked at these small timescales. It is entirely possible that chirp rates are correlated between interacting individuals, even if their precise timing is not.

      We agree with the Reviewer: chirp repertoires recorded in different social contexts are not devoid of reciprocal chirp transitions (i.e. fish 1 chirp - to - fish 2 chirp, or vice versa). Yet our point is to emphasize that their abundance is way more limited when compared to the self-referenced ones (i.e. 1-1 and 2-2). This is a fair concern and in order to further address this point, we have added a whole new set of analyses and new experiments (see chirp-behavior correlations, PSTHs and more analysis based on more solid statistical methods; see Figure 6).

      Reviewer #3 (Public Review):

      Summary:

      This important paper provides the best-to-date characterization of chirping in weakly electric fish using a large number of variables. These include environment (free vs divided fish, with or without clutter), breeding state, gender, intruder vs resident, social status, locomotion state and social and environmental experience, as well as with playback experiments. It applies state-of-the-art methods for reducing dimensionality and finding patterns of correlation between different kinds of variables (factor analysis, K-means). The exceptional strength of the evidence, collated from a large number of trials with many controls, leads to the conclusion that a number of commonly accepted truths about which variable affects chirping must be carefully rewritten or nuanced. Based on their extensive analyses, the authors suggest that chirps are mainly used as probes that help detect beats and objects.

      Strengths:

      The work is based on completely novel recordings using interaction chambers. The amount of new data and associated analyses is simply staggering, and yet, well organized in presentation. The study further evaluates the electric field strength around a fish (via modelling with the boundary element method) and how its decay parallels the chirp rate, thereby relating the above variables to electric field geometry.

      The main conclusions are that the lack of any significant behavioural correlates for chirping, and the lack of temporal patterning in chirp time series, cast doubt on a communication goal for most chirps. Rather, the key determinants of chirping are the difference frequency between two interacting conspecifics as well as individual subjects' environmental and social experience. These conclusions by themselves will be hugely useful to the field. They will also allow scientists working on other "communication" systems to at least reconsider, and perhaps expand the precise goal of the probes used in those senses. There are a lot of data summarized in this paper, and thorough referencing to past work. For example, the paper concludes that there is a lack of evidence for stereotyped temporal patterning of chirp time series, as well as of sender-received chirp transitions beyond the known increase in chirp frequency during an interaction.

      The alternative hypotheses that arise from the work are that chirps are mainly used as environmental probes for better beat detection and processing and object localization.

      The authors also advance the interesting idea that the sinusoidal frequency modulations caused by chirps are the electric fish's solution to the minute (and undetectable by neural wetware) echo-delays available to it, due to the propagation of electric fields at the speed of light in water.

      Weaknesses:

      My main criticism is that the alternative putative role for chirps as probe signals that optimize beat detection could be better developed. The paper could be clearer as to what that means precisely.

      We appreciate the Reviewer's kind comments. While we acknowledge that our exploration of chirp function in this study may be limited and not entirely satisfying, we made this decision due to space constraints, opting for a broader and diversified approach. We hope that future studies will build on these data and start filling the gaps. We are also working on another manuscript which is addressing this point more in detail.

      Nonetheless, we considered the Reviewer’s criticism and added not only a new figure (to show more explicitly what chirps can do to the perceived electric fields, as simulated by electric images) but also more descriptive parts explaining how we think chirps may act to improve the spatial resolution of beat processing (see the discussion paragraph “probing with chirps”). In this paragraph we rendered more clearly how chirps could improve beat processing by phase shifting EODs and recovering eventual blind-spots on the fish skin caused by disruptive EOD interferences (resulting in lower beat contrast). We also mention that enhancement of electrosensory input triggered by chirps, could be localized not only at the level of electroreceptors (consider the synchronizing effects small chirps have on p-units at low frequency beats) but also at the level of ON and OFF pyramidal cells in the ELL. Looked at from the perspective of these neurons, any chirp would enhance the activity of these input lines, yet in opposite ways.

      And there is an egg-and-chicken type issue as well, namely, that one needs a beat in order to "chirp" the beating pattern, but then how does chirping optimize the detection of the said beat? Perhaps the authors mean (as they wrote elsewhere in the paper) that the chirps could enhance electrosensory responses to the beat.

      According to the Reviewer’s comment, we have now revised several instances of the misleading phrasing identified.

      In the results on novel environment exploration: “If chirps enhance beat processing, for instance, chirping should occur within beat detection range but at a certain distance.”.

      “This, in turn, could be used to validate our beat-interference estimates as meaningfully related to beat processing.” and “In all this, rises may represent an exception as their locations are spread over larger distances and even in presence of obstacles potentially occluding the beat source (such as shelters, plants, or walls), all of which are conditions in which beat detection or beat processing could be more difficult (this, could be coherent with the production of rises right at the end of EOD playbacks; Figure S5).”

      Last result paragraph (clutter experiment): “Overall, these results indicate that chirping is significantly affected by the presence of environmental clutter partially disrupting - or simply obstructing - the processing of beat related information during locomotion”.

      In the probing with chirps discussion paragraph “In theory, chirps could also be used to improve electrolocation of objects as well (as opposed to the processing of the beat).”.

      In the conclusions: “optimizing the otherwise passive responses to the beat”.

      A second criticism is that the study links the beat detection to underwater object localization. I did not see a sufficiently developed argument in this direction, nor how the data provided support for this argument. It is certainly possible that the image on the fish's body of an object in the environment will be slightly modified by introducing a chirp on the waveform, as this may enhance certain heterogeneities of the object in relation to its environment. The thrust of this argument seems to derive more from the notion of Fourier analysis with pulse type fish (and radar theory more generally) that the higher temporal frequencies in the beat waveform induced by the chirp will enable a better spatial resolution of objects. It remains to be seen whether this is significant.

      The Reviewer is correct in noting that this point is not addressed in the manuscript. We introduced it as a speculative discussion point to mention alternative possibilities. These could be subject to further testing in future studies.

      I would also have liked to see a proposal for new experiments that could test these possible new roles.

      We have added clearer suggestions for future experiments throughout the discussion: these may be aimed at 1) improving playback experiments using more realistic copies of the brown ghost’s EODs (including harmonics), 2) assess fish reciprocal positioning during chirping in better detail and 3) test the use of chirping during target-reaching tasks in order to better assess the probing function of chirps.

      The authors should recall for the readers the gist of Bastian's 2001 argument that the chirp "can adjust the beat frequency to levels that are better detectable" in the light of their current. Further, at the beginning of the "Probing with chirps" section, the 3rd way in which chirps could improve conspecific localization mentions the phase-shifting of the EOD. The authors should clarify whether they mean that the tuberous receptors and associated ELL/toral circuitry could deal with that cue, or that the T_unit pathway would be needed?

      We thank the Reviewer for identifying this unclear point. We added reference to the p-units “Yet, this does not exclude the possibility that chirps could be used to briefly shift the EOD phase in order to avoid disruptive interferences caused by phase opposition (at the level of p-units)” in the above mentioned paragraph. We would prefer to omit a more detailed reference to t-units in order to avoid lengthy descriptions required to discuss the different electroreceptor types.

      On p.17 I don't understand what is meant by most chirps being produced, possibly aligned with the field lines, since field lines are everywhere. And what is one to conclude from the comparison of Fig.6D and 7A? Likewise it was not clear what is meant by chirps having a detectable effect on randomly generated beats.

      We agree on the valid point raised by the Reviewer and we have removed reference to current lines from the text.

      In the section on Inconsistencies between behaviour and hypothesized signal meaning, the authors could perhaps nuance the interpretation of the results further in the context of the unrealistic copy of natural stimuli using EOD mimics. In particular, Kelly et al. 2008 argued that electrode placement mattered in terms of representation of a mimic fish onto the body of a real fish, and thus, if I properly understand the set up here, the movement would cause the mimic to vary in quality. This may nevertheless be a small confounding issue.

      We agree with the Reviewer and added a comment at the beginning of the paragraph mentioned. “Nonetheless, it's plausible that playback stimuli, as employed in our study and others, may not faithfully replicate natural signals, thus potentially influencing the reliability of the observed behaviors. Future studies might consider replicating these findings using either natural signals or improved mimics, which could include harmonic components (excluded in this study).”

      Recommendations for the authors:

      8Reviewer #2 (Recommendations For The Authors):*

      (1) Abstract: "...is probably the most intensely studied species..." is a weak, unsupported, and unnecessary statement. Just state that it has been heavily studied, or is one of the most well-studied,...

      rephrased

      (2) Abstract: "...are thus used as references to specific internal states during recordings - of either the brain or the electric organ..." This was not clear to me.

      rephrased

      (3) Abstract: "...the logic underlying this electric communication..." It is not clear to me what the authors mean here by "logic".

      rephrased

      (4) I strongly recommend clearly defining homeoactive sensing and distinguishing it from allocative sensing when this term is first introduced in the introduction. This is not a commonly used term. Most readers likely think they understand what is meant by the term active sensing, however I recommend first defining it, and then distinguishing amongst these two different types of active sensing.

      rephrased

      (5) Introduction: "Together with a few other species (Rose, 2004),..." More than a few. There are hundreds of species with electric organs. It is certainly not a "unique" capability.

      rephrased

      (6) Introduction: "But the real advantage of active electrolocation can be appreciated in the context of social interaction." This is unclear. Why is this the "real advantage" of active electrolocation when an electrically silent fish could detect an electrically communicating fish just fine without interference? Active electrolocation is needed to detect objects that are not actively emitting an electric field. It is not needed to detect signaling individuals.

      rephrased

      (7) Introduction: why is active sensing using EODs limited to distances of 6-12 cm? Why does it not work at closer range?

      Here we meant to give a range based on published data. We rephrased it to “up to 12”.

      (8) Introduction: electric fields decay with the cubed of distance, as you show in appendix 1.

      rephrased

      (9) Introduction: it is not clear what is meant by "blurred EOD amplitude".

      rephrased (“noisy”)

      (10) Figure 2C is very challenging to interpret. I recommend spending more time in the manuscript walking the reader through this analysis and its presentation.

      We are grateful for the comment as we probably overlooked this point. We now added a small paragraph to explain these data in better detail.

      (11) Results: "This was done by calculating the ratio between the duration of the beat cycles affected by the chirp (beat interpeak intervals) and the total duration of the beat cycles detected within a fixed time window (roughly double the size of the maximum chirp duration, 700 ms)." This was not clear to me.

      We now rephrased to “Estimates of beat interference were made by calculating the ratio between the cumulative duration of the beat cycles affected by a given chirp (1 beat cycle corresponding to the beat comprised by two consecutive beat peaks, or - more simply - the beat inter-peak interval) over the cumulative duration of all the beat cycles within the time window used as a reference (700 ms; other analysis windows were tested Figure S9)” to clarify this method.

      (12) Results: "For each chirp, the interference values obtained for 4 different phases (90{degree sign} steps) were averaged." Why was this done?

      To consider an average effect across phases. Although it is true that chirp parameters may have a different impact on the beat, depending on EOD phase, including this parameter in our figure/s would have considerably increased the volume of data reported giving too much emphasis to an analysis we judged not crucially important. In addition, since we did not consider EOD phase in our recordings, we opted for an average estimate encompassing different phase values.

      (13) Discussion: "Third, observations in a few species are generalized to all other gymnotiforms without testing for species differences (Turner et al., 2007; Smith et al., 2013; Petzold et al., 2016)." I strongly disagree with this statement. First, the studies referenced here do explicitly compare chirps across species. Second, you only studied one species here, so it is not clear to me how this is a relevant concern in interpreting your findings.

      Here we have probably been unclear in the writing: the point we wanted to make is that the idea of chirps having semantic content has been generalized to other species without investigating the nature of their chirping with as much detail as done for brown ghosts.

      We have now rephrased the statement and changed it to: “Second, observations in a few species are generalized to all other gymnotiforms without testing whether chirping may have similar functions in other species (Turner et al., 2007; Smith et al., 2013; Petzold et al., 2016)”

      (14) Discussion: "The two beats could be indistinguishable (assuming that the mechanism underlying the discrimination of the sign of DF at low DFs, and thought to be the basis of the so called jamming avoidance response (JAR; Metzner, 1999), is not functional at higher DFs)." Why would you assume this?

      What we meant here is that it is unlikely that the two DFs are not discriminated by the same mechanisms implied in the JAR, even if the DF is higher than the levels at which usually JARs are detected (i.e. DF = 1-10 Hz?). To improve clarity, we rephrased this statement. “The two beats could be indistinguishable (assuming - perhaps not realistically - that the same mechanism involved in DF discrimination at lower DF values would not work in this case; Metzner, 1999)”.

      (15) Discussion: "...an idea which seems congruent with published electrophysiological studies..." How so?

      Rephrased to “Based on our beat interference estimates, we propose that the occurrence of the different types of chirps at more positive DFs (such as in male-to-female chirping) may be explained by their different effect on the beat (Figure 5D; Benda et al., 2006; Walz et al., 2013).”

      Reviewer #3 (Recommendations For The Authors):

      On p.2 there is a discrepancy between the quoted ranges for active sensing of objects, first 10-12 cm, and then 6-12 cm further down. And in the following paragraph right below this passage, electric fields are said to decay with the squared distance (appendix 1). That expression has a cos(theta) which is inversely proportional to the distance, and so one is really dealing, as expected for dipolar fields, with a drop-off that decays with the distance cubed.

      We thank the Reviewer for the comment, we have now corrected the mistake and added “cubed”. We also removed the imprecise reference to the range 6-12 cm, rephrased to “up to 12 cm”.

      At the end of the section on Inconsistencies..., it is not clear what "activity levels" refers to. It should also be made clearer at the outset, and reminded in this section too, that for the authors, behavioural context does not include social experience, which is somewhat counter-intuitive.

      We now specified we meant “locomotor activity levels”. Regarding the social experience we included it as “behavioral context”, we now made it clearer in the first result paragraph. We hope we resolved the confusion.

      The caption of Fig.8 could use more clarity in terms of what is being compared in (C) (and is "1*2p" a typo?)

      We corrected the typo and edited the figure to make the references more clear.

      The concept of "high self-correlation of chirp time series" is presented only in the Conclusion using those words. The word self-correlation is not used beforehand. This needs to be fixed so the reader knows clearly what is being referred to.

      Thank you for noting this. We have now changed the wording using the term “auto-correlation” and changed a statement at the beginning of the “interference” result paragraph accordingly, removing references to self-correlation.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      We thank the reviewers for their thorough re-evaluation of our revised manuscript. Addressing final issues they raised has improved the manuscript further. We sincerely appreciate the detailed explanations that the reviewers provided in the "recommendations for authors" section. This comprehensive feedback helped us identify the sources of ambiguity within the analysis descriptions and in the discussion where we interpreted the results. Below, you will find our responses to the specific comments and recommendations.

      Reviewer #1 (Recommendations):

      (1) I find that the manuscript has improved significantly from the last version, especially in terms of making explicit the assumptions of this work and competing models. I think the response letter makes a good case that the existence of other research makes it more likely that oscillators are at play in the study at hand (though the authors might consider incorporating this argumentation a bit more into the paper too). Furthermore, the authors' response that the harmonic analysis is valid even when including x=y because standard correlation analysis were not significant is a helpful response. The key issue that remains for me is that I have confusions about the additional analyses prompted by my review to a point where I find it hard to evaluate how and whether they demonstrate entrainment or not. 

      First, I don't fully understand Figure 2B and how it confirms the Arnold tongue slice prediction. In the response letter the authors write: "...indicating that accuracy increased towards the preferred rate at fast rates and decreased as the stimulus rate diverged from the preferred rate at slow rates". The figure shows that, but also more. The green line (IOI < preferred rate) indeed increases toward the preferred rate (which is IOI = 0 on the x-axis; as I get it), but then it continues to go up in accuracy even after the preferred rate. And for the blue line, performance also continues to go up beyond preferred rate. Wouldn't the Arnold tongue and thus entrainment prediction be that accuracy goes down again after the preferred rate has passed? That is to say, shouldn't the pattern look like this (https://i.imgur.com/GPlt38F.png) which with linear regression should turn to a line with a slope of 0?

      This was my confusion at first, but then I thought longer about how e.g. the blue line is predicted only using trials with IOI larger than the preferred rate. If that is so, then shouldn't the plot look like this? (https://i.imgur.com/SmU6X73.png). But if those are the only data and the rest of the regression line is extrapolation, why does the regression error vary in the extrapolated region? It would be helpful if the authors could clarify this plot a bit better. Ideally, they might want to include the average datapoints so it becomes easier to understand what is being fitted. As a side note, colours blue/green have a different meaning in 2B than 2D and E, which might be confusing. 

      We thank the reviewer for their recommendation to clarify the additional analyses we ran in the previous revision to assess whether accuracy systematically increased toward the preferred rate estimate. We realized that the description of the regression analysis led to misunderstandings. In particular, we think that the reviewer interpreted (1) our analysis as linear regression (based on the request to plot raw data rather than fits), whereas, in fact, we used logistic regression, and (2) the regression lines in Figure 2B as raw IOI values, while, in fact, they were the z-scored IOI values (from trials where stimulus IOI were faster than an individual’s preferred rate, IOI < preferred rate, in green; and from trials stimulus IOI were slower than an individual’s preferred rate, IOI > preferred rate, in blue), as the x axis label depicted. We are happy to have the opportunity to clarify these points in the manuscript. We have also revised Figure 2B, which was admittedly maybe a bit opaque, to more clearly show the “Arnold tongue slice”.  

      The logic for using (1) logistic regression with (2) Z-scored IOI values as the predictor is as follows. Since the response variable in this analysis, accuracy, was binary (correct response = 1, incorrect response = 0), we used a logistic regression. The goal was to quantify an acrosssubjects effect (increase in accuracy toward preferred rate), so we aggregated datasets across all participants into the model. The crucial point here is that each participant had a different preferred rate estimate. Let’s say participant A had the estimate at IOI = 400 ms, and participant B had an estimate at IOI = 600 ms. The trials where IOI was faster than participant A’s estimate would then be those ranging from 200 ms to 398 ms, and those that were slower would range from 402 ms to 998 ms. For Participant B, the situation would be different:  trials where IOI was faster than their estimate would range from 200 ms to 598 ms, and slower trials would range between 602 ms to 998 ms. For a fair analysis that assesses the accuracy increase, regardless of a participant’s actual preferred rate, we normalized these IOI values (faster or slower than the preferred rate). Zscore normalization is a common method of normalizing predictors in regression models, and was especially important here since we were aggregating predictors across participants, and the predictors ranges varied across participants. Z-scoring ensured that the scale of the sample (that differs between participant A and B, in this example) was comparable across the datasets. This is also important for the interpretation of Figure 2B. Since Z-scoring involves mean subtraction, the zero point on the Z-scaled IOI axis corresponds to the mean of the sample prior to normalization (for Participant A: 299 ms, for Participant B: 399 ms) and not the preferred rate estimate. We have now revised Figure 2B in a way that we think makes this much clearer.  

      The manuscript text includes clarification that the analyses included logistic regression and stimulus IOI was z-scored: 

      “In addition to estimating the preferred rate as stimulus rates with peak performance, we investigated whether accuracy increased as a function of detuning, namely, the difference between stimulus rate and preferred rate, as predicted by the entrainment models (Large, 1994; McAuley, 1995; Jones, 2018). We tested this prediction by assessing the slopes of mixed-effects logistic regression models, where accuracy was regressed on the IOI condition, separately for stimulus rates that were faster or slower than an individual’s preferred rate estimate. To do so, we first z-scored IOIs that were faster and slower than the participant’s preferred rate estimates, separately to render IOI scales comparable across participants.” (p. 7)

      While thinking through the reviewer’s comment, we realized we could improve this analysis by fitting mixed effects models separately to sessions’ data. In these models, fixed effects were z-scored IOI and ‘detuning direction’ (i.e., whether IOI was faster or slower than the participant’s preferred rate estimate). To control for variability across participants in the predicted interaction between z-scored IOI and direction, this interaction was added as a random effect. 

      “Ideally, they might want to include the average datapoints so it becomes easier to understand what is being fitted.”

      Although we agree with the reviewer that including average datapoints in a figure in addition to model predictions usually better illustrates what is being fitted than the fits alone, this doesn’t work super well for logistic regression, since the dependent variable is binary. To try to do a better job illustrating single-participant data though, we instead  fitted logistic models to each participant’s single session datasets, separately to conditions where z-scored IOI from fasterthan-preferred rate trials, and those from slower-than-preferred rate trials, predicted accuracy. From these single-participant models, we obtained slope values, we referred to as ‘relative detuning slope’, for each condition and session type. This analysis allowed us to illustrate the effect of relative detuning on accuracy for each participant. Figure 2B now shows each participant’s best-fit lines from each detuning direction condition and session.

      Since we now had relative detuning slopes for each individual (which we did not before), we took advantage of this to assess the relationship between oscillator flexibility and the oscillator’s behavior in different detuning situations (how strongly leaving the preferred rate hurt accuracy, as a proxy for the width of the Arnold tongue slice). Theoretically, flexible oscillators should be able to synchronize to wide range of rates, not suffering in conditions where detuning is large (Pikovsky et al., 2003). Conversely, synchronization of inflexible oscillators should depend strongly on detuning. To test whether our flexibility measure predicted this dependence on detuning, which is a different angle on oscillator flexibility, we first averaged each participant’s detuning slopes across detuning directions (after sign-flipping one of them). Then, we assessed the correlation between the average detuning slopes and flexibility estimates, separately from conditions where |-𝚫IOI| or |+𝚫IOI| predicted accuracy. The results revealed significant negative correlations (Fig. 2F), suggesting that performance of individuals with less flexible oscillators suffered more as detuning increased. Note that flexibility estimates quantified how much accuracy decreased as a function of trial-to-trial changes in stimulus rate (±𝚫IOI). Thus, these results show that oscillators that were robust to changes in stimulus rate were also less dependent on detuning to be able to synchronize across a wide range of stimulus rates. We are excited to be able to provide this extra validation of predictions made by entrainment models. 

      To revise the manuscript with the updated analysis on detuning:

      • We added the descriptions of the analyses to the Experiment 1 Methods section.

      Calculation of detuning slopes and their averaging procedure are in Preferred rate estimates:

      “In addition to estimating the preferred rate as stimulus rates with peak performance, we investigated whether accuracy increased as a function of detuning, namely, the difference between stimulus rate and preferred rate, as predicted by the entrainment models (Large, 1994; McAuley, 1995; Jones, 2018). We tested this prediction by assessing the slopes of mixed-effects logistic regression models, where accuracy was regressed on the IOI condition, separately for stimulus rates that were faster or slower than an individual’s preferred rate estimate. To do so, we first z-scored IOIs that were faster and slower than the participant’s preferred rate estimates, separately to render IOI scales comparable across participants. The detuning direction (i.e., whether stimulus IOI was faster or slower than the preferred rate estimate) was coded categorically. Accuracy (binary) was predicted by these variables (zscored IOI, detuning direction), and their interaction. The model was fitted separately to datasets from random-order and linear-order sessions, using the fitglme function in MATLAB. Fixed effects were z-scored IOI and detuning direction and random effect was their interaction. We expected a systematic increase in performance toward the preferred rate, which would result in a significant interaction between stimulus rate and detuning direction. To decompose the significant interaction and to visualize the effects of detuning, we fitted separate models to each participant’s single-session datasets, and obtained slopes from each direction condition, hereafter denoted as the ‘relative-detuning slope’. We treated relative-detuning slope as an index of the magnitude of relative detuning effects on accuracy. We then evaluated these models, using the glmval function in MATLAB to obtain predicted accuracy values for each participant and session. To visualize the relative-detuning curves, we averaged the predicted accuracies across participants within each session, separately for each direction condition (faster or slower than the preferred rate). To obtain a single value of relative-detuning magnitude for each participant, we averaged relative detuning slopes across direction conditions. However, since slopes from IOI > preferred rate conditions quantified an accuracy decrease as a function of detuning, we sign-flipped these slopes before averaging. The resulting average relative detuning slopes, obtained from each participant’s single-session datasets, quantified how much the accuracy increase towards preferred rate was dependent on, in other words, sensitive to, relative detuning.” (p. 7-8)

      • We added the information on the correlation analyses between average detuning slopes in Flexibility estimates.

      “We further tested the relationship between the flexibility estimates (𝛽 from models where |𝚫IOI| or |+𝚫IOI| predicted accuracy) and average detuning slopes (see Preferred rate estimates) from random-order sessions. We predicted that flexible oscillators (larger 𝛽) would be less severely affected by detuning, and thus have smaller detuning slopes. Conversely, inflexible oscillators (smaller 𝛽) should have more difficulty in adapting to a large range of stimulus rates, and their adaptive abilities should be constrained around the preferred rate, as indexed by steeper relative detuning slopes.” (p. 8)

      • We provided the results in Experiment 1 Results section.

      “Logistic models assessing a systematic increase in accuracy toward the preferred rate estimate in each session type revealed significant main effects of IOI (linear-order session: 𝛽 = 0.264, p < .001; random-order session: 𝛽 = 0.175, p < .001), and significant interactions between IOI and direction (linear-order session: 𝛽 = -0.444, p < .001; random-order session: 𝛽 = -0.364, p < .001), indicating that accuracy increased as fast rates slowed toward the preferred rate (positive slopes) and decreased again as slow rates slowed further past the preferred rate (negative slopes), regardless of the session type. Fig. 2B illustrates the preferred rate estimation method for an example participant’s dataset and shows the predicted accuracy values from models fitted to each participant’s single-session datasets. Note that the main effect and interaction were obtained from mixed effects models that included aggregated datasets from all participants, whereas the slopes quantifying the accuracy increase as a function of detuning (i.e., relative detuning slopes) were from models fitted to single-participant datasets.” (p. 9-10)

      “We tested the relationship between the flexibility estimates and single-participant relative detuning slopes from random-order sessions (Fig. 2B). The results revealed negative correlations between the relative detuning slopes and flexibility estimates, both with 𝛽 (r(23) =0.529, p = 0.007) from models where |-𝚫IOI| predicted accuracy (adapting to speeding-up trials), and 𝛽 (r(23) =-0.580, p = 0.002) from models where |+𝚫IOI| predicted accuracy (adapting to slowing-down trials). That is, the performance of individuals with less flexible oscillators suffered more as detuning increased. These results are shown in Fig. 2F.” (p. 10)

      • We modified Figure 2. In Figure 2B, there are now separate subfigures with the z-scored IOI faster (left) or slower (right) than the preferred rate predicting accuracy. We illustrated the correlations between average relative detuning slopes and flexibility estimates in Figure 2F. 

      Author response image 1.

      Main findings of Experiment 1. A Left: Each circle represents a single participant’s preferred rate estimate from the random-order session (x axis) and linear-order session (y axis). The histograms along the top and right of the plot show the distributions of estimates for each session type. The dotted and dashed lines respectively represent 1:2 and 2:1 ratio between the axes, and the solid line represents one-to-one correspondence. Right: permutation test results. The distribution of summed residuals (distance of data points to the closest y=x, y=2*x and y=x/2 lines) of shuffled data over 1000 iterations, and the summed residual from original data (dashed line) that fell below .008 of the permutation distribution. B Top: Illustration of the preferred rate estimation method from an example participant’s linear-order session dataset. Estimates were the stimulus rates (IOI) where smoothed accuracy (orange line) was maximum (arrow). The dotted lines originating from the IOI axis delineate the stimulus rates that were faster (left, IOI < preferred rate) and slower (right, IOI > preferred rate) than the preferred rate estimate and expand those separate axes, the values of which were Z-scored for the relative-detuning analysis. Bottom: Predicted accuracy, calculated from single-participant models where accuracy in random-order (purple) and linear-order (orange) sessions was predicted by z-scored IOIs that were faster than a participant’s preferred rate estimate (left), and by those that were slower (right). Thin lines show predicted accuracy from single-participant models, solid lines show the averages across participants and the shaded areas represent standard error of the mean. Predicted accuracy is maximal at the preferred rate and decreases as a function of detuning. C Average accuracy from random-order (left, purple) and linear-order (right, orange) sessions. Each circle represents a participant’s average accuracy. D Flexibility estimates. Each circle represents an individuals’ slope (𝛽) obtained from logistic models, fitted separately to conditions where |𝚫IOI| (left, green) or |+𝚫IOI| (right blue) predicted accuracy, with greater values (arrow’s direction) indicating better oscillator flexibility. The means of the distributions of 𝛽 from both conditions were smaller than zero (dashed line), indicating a negative effect of between-trial absolute rate change on accuracy. E Participants’ average bias from |𝚫IOI| (green), and |+𝚫IOI| (blue) conditions in random-order (left) and linear-order (right) sessions. Negative bias indicates underestimation of the comparison intervals, positive bias indicates the opposite. Box plots in C-E show median (black vertical line), 25th and 75th percentiles (box edges) and extreme datapoints (whiskers). In C and E, empty circles show outlier values that remained after data cleaning procedures. F Correlations between participants’ average relative detuning slopes, indexing the steepness of the increase in accuracy towards the preferred rate estimate (from panel B), and flexibility estimates from |-𝚫IOI| (top, green), and |+𝚫IOI| (bottom, blue) conditions (from panel C). Solid black lines represent the best-fit line, dashed lines represent 95% confidence intervals.

      • We discussed the results in General Discussion and emphasized that only entrainment models, compared to timekeeper models, predict a relationship between detuning and accuracy that is amplified by oscillator’s inflexibility: “we observed systematic increases in task accuracy (Experiment 1) toward the best-performance rates (i.e., preferred rate estimates), with the steepness of this increase being closely related to the effects of rate change (i.e., oscillator flexibility). Two interdependent properties of an underlying system together modulating an individual’s timing responses show strong support for the entrainment approach” (p. 24)

      “As a side note, colours blue/green have a different meaning in 2B than 2D and E, which might be confusing.” 

      Upon the reviewer’s recommendation, we changed the color scale across Figure 2, such that colors refer to the same set of conditions across all panels. 

      (2) Second, I don't understand the additional harmonic relationship analyses in the appendix, and I suspect other readers will not either. As with the previous point, it is not my view that the analyses are faulty or inadequate, it is rather that the lack of clarity makes it challenging to evaluate whether they support an entrainment model or not. 

      We decided to remove the analysis that was based on a circular approach, and we have clarified the analysis that was based on a modular approach by giving example cases: 

      “We first calculated how much the slower estimate (larger IOI value) diverts, proportionally from the faster estimate (smaller IOI value) or its multiples (i.e., harmonics) by normalizing the estimates from both sessions by the faster estimate. The outcome measure was the modulus of the slower, with respect to the faster estimate, divided by the faster estimate, described as mod(max(X), min(X))/min(X) where X = [session1_estimate session2_estimate]. An example case would be a preferred rate estimate of IOI = 603 ms from the linear-order session and an estimate of IOI = 295 ms from the random-order session. In this case, the slower estimate (603 ms) diverts from the multiple of the faster estimate (295*2 = 590 ms) by 13 ms, a proportional deviation of 4% of the faster estimate (295 ms). The outcome measure in this example is calculated as mod(603,295)/295 = 0.04.” (Supplementary Information, p. 2)

      Crucially, the ability of oscillators to respond to harmonically-related stimulus rates is a main distinction between entrainment and interval (timekeeper) models. In the current study, we found that each participant’s best-performance rates, the preferred rate estimates, had harmonic relationships. The additional analyses further showed that these harmonic relationships were not due to chance. This finding speaks against the interval (timekeeper) approaches and is maximally compatible with the entrainment framework. 

      Here are a number of questions I would like to list to sketch my confusion: 

      • The authors write: "We first normalized each participant's estimates by rescaling the slower estimate with respect to the faster one and converting the values to radians". Does slower estimate mean: "task accuracy in those trials in which IOI was slower than a participant's preferred frequency"? 

      Preferred rate estimates were stimulus rates (IOI) with best performance, as described in Experiment 1 Methods section. 

      “We conceptualized individuals' preferred rates as the stimulus rates where durationdiscrimination accuracy was highest. To estimate preferred rate on an individual basis, we smoothed response accuracy across the stimulus-rate (IOI) dimension for each session type, using the smoothdata function in Matlab. Estimates of preferred rate were taken as the smoothed IOI that yielded maximum accuracy” (p. 7). 

      The estimation method and the resulting estimate for an example participant was provided in Figure 2B. The updated figure in the current revision has this illustration only for linear-order session. 

      “Estimates were the stimulus rates (IOI) where smoothed accuracy (orange line) was maximum (arrow)” (Figure caption, p. 9).

      • "We reasoned that values with integer-ratio relationships should correspond to the same phase on a unit circle". What is values here; IOI, or accuracy values for certain IOIs? And why should this correspond to the same phase? 

      We removed the analysis on integer-ratio relationships that was based on a circular approach that the reviewer is referring to here. We clarified the analysis that was based on a modular approach and avoided using the term ‘values’ without specifying what values corresponded to.

      • Des "integer-ratio relationships" have to do with the y=x, y=x*2 and y=x/2 relationships of the other analyses?  

      Integer-ratio relationships indeed refer to y=x, y=x*2 and y=x/2 relationships. For example, if a number y is double of another number x (y = x*2), these values have an integer-ratio relationship, since 2 is an integer. This holds true also for the case where y = x/2 since x = y*2. 

      • Supplementary Figure S2c shows a distribution of median divergences resulting from the modular approach. The p-value is 0.004 but the dashed line appears to be at a much higher percentile of the distribution. I find this hard to understand. 

      We thank the reviewer for a detailed inspection of all figures and information in the manuscript. The reviewer’s comment led us to realize that this figure had an error. We updated the figure in Supplementary Information (Supplementary Figure S2). 

      Reviewer #2 (Public Review):

      To get a better understanding of the mechanisms underlying the behavioral observations, it would have been useful to compare the observed pattern of results with simulations done with existing biophysical models. However, this point is addressed if the current study is read along with this other publication of the same research group: Kaya, E., & Henry, M. J. (2024, February 5). Modeling rhythm perception and temporal adaptation: top-down influences on a gradually decaying oscillator.       https://doi.org/10.31234/osf.io/q9uvr 

      We agree with the reviewer that the mechanisms underlying behavioral responses can be better understood by modeling approaches. We thank the reviewer for acknowledging our computational modeling study that addressed this concern. 

      Reviewer #2 (Recommendations):

      I very much appreciate the thorough work done by the authors in assessing all reviewers' concerns. In this new version they clearly state the assumptions to be tested by their experiments, added extra analyses further strengthening the conclusions and point the reader to a neurocomputational model compatible with the current observations. 

      I only regret that the authors misunderstood the take home message of our Essay (Doelling & Assaneo 2021). Despite this being obviously out of the scope of the current work, I would like to take this opportunity to clarify this point. In that paper, we adopted a Stuart-Landau model not to determine how an oscillator should behave, but as an example to show that some behaviors usually used to prove or refute an underlying "oscillator like" mechanism can be falsified. We obviously acknowledge that some of the examples presented in that work are attainable by specific biophysical models, as explicitly stated in the essay: "There may well be certain conditions, equations, or parameters under which some of these commonly held beliefs are true. In that case, the authors who put forth these claims must clearly state what these conditions are to clarify exactly what hypotheses are being tested." 

      This work did not mean to delineate what oscillator is (or in not), but to stress the importance of explicitly introducing biophysical models to be tested instead of relying on vague definitions sometimes reflecting the researchers' own beliefs. The take home message that we wanted to deliver to the reader appears explicitly in the last paragraph of that essay: "We believe that rather than concerning ourselves with supporting or refuting neural oscillators, a more useful framework would be to focus our attention on the specific neural dynamics we hope to explain and to develop candidate quantitative models that are constrained by these dynamics. Furthermore, such models should be able to predict future recordings or be falsified by them. That is to say that it should no longer be sufficient to claim that a particular mechanism is or is not an oscillator but instead to choose specific dynamical systems to test. In so doing, we expect to overcome our looping debate and to ultimately develop-by means of testing many model types in many different experimental conditions-a fundamental understanding of cognitive processes and the general organization of neural behavior." 

      We appreciate the reviewer’s clarification of the take-home message from Doelling and Assaneo (2021). We concur with the assertions made in this essay, particularly regarding the benefits of employing computational modeling approaches. Such methodologies provide a nuanced and wellstructured foundation for theoretical predictions, thereby minimizing the potential for reductionist interpretations of behavioral or neural data.

      In addition, we would like to underscore the significance of delineating the level of analysis when investigating the mechanisms underlying behavioral or neural observations. The current study or Kaya & Henry (2024) involved no electrophysiological measures. Thus, we would argue that the appropriate level of analysis across our studies concerns the theoretical mechanisms rather than how these mechanisms are implemented on the neural (physical) level. In both studies, we aimed to explore or approximate the theoretical oscillator that guides dynamic attention rather than the neural dynamics underlying these theoretical processes. That is, theoretical (attentional) entrainment may not necessarily correspond to neural entrainment, and differentiating these levels could be informative about the parallels and differences between these levels. 

      References

      Doelling, K. B., & Assaneo, M. F. (2021). Neural oscillations are a start toward understanding brain activity rather than the end. PLoS Biol, 19(5), e3001234. https://doi.org/10.1371/journal.pbio.3001234  Jones, M. R. (2018). Time will tell: A theory of dynamic attending. Oxford University Press. 

      Kaya, E., & Henry, M. J. (2024). Modeling rhythm perception and temporal adaptation: top-down influences on a gradually decaying oscillator. PsyArxiv. https://doi.org/https://doi.org/10.31234/osf.io/q9uvr 

      Large, E. W. (1994). Dynamic representation of musical structure. The Ohio State University. 

      McAuley, J. D. (1995). Perception of time as phase: Toward an adaptive-oscillator model of rhythmic pattern processing Indiana University Bloomington]. 

      Pikovsky, A., Rosenblum, M., & Kurths, J. (2003). Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      We thank you for the time you took to review our work and for your feedback! 

      The major changes to the manuscript are:

      (1) We have added visual flow speed and locomotion velocity traces to Figure 5 as suggested.

      (2) We have rephrased the abstract to more clearly indicate that our statement regarding acetylcholine enabling faster switching of internal representations in layer 5 is speculative.

      (3) We have further clarified the positioning of our findings regarding the basal forebrain cholinergic signal in visual cortex in the introduction.

      (4) We have added a video (Video S1) to illustrate different mouse running speeds covered by our data.

      A detailed point-by-point response to all reviewer concerns is provided below.

      Reviewer #1 (Recommendations For The Authors):

      The authors have addressed most of the concerns raised in the initial review. While the paper has been improved, there are still some points of concern in the revised version. 

      Major comments

      (1) Page 1, Line 21: The authors claim, "Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, enabling faster switching between internal representations during locomotion." However, it is not clear which specific data or results support the claim of "switching between internal representations." ... 

      Authors' response: "... That acetylcholine enables a faster switching between internal representations in layer 5 is a speculation. We have attempted to make this clearer in the discussion. ..." 

      In the revised version, there is no new data added to directly support the claim - "Our results suggest acetylcholine ..., enabling faster switching between internal representations during locomotion" (in the abstract). The authors themselves acknowledge that this statement is speculative. The present data only demonstrate that ACh reduces the response latency of L5 neurons to visual stimuli, but not that ACh facilitates quicker transitions in neuronal responses from one visual stimulus to another. To maintain scientific rigor and clarity, I recommend the authors amend this sentence to more accurately reflect the findings. 

      This might be a semantic disagreement? We would argue both a gray screen and a grating are visual stimuli. Hence, we are not sure we understand what the reviewer means by “but not that ACh facilitates quicker transitions in neuronal responses from one visual stimulus to another”. We concur, our data only address one of many possible transitions, but it is a switch between distinct visual stimuli that is sped up by ACh. Nevertheless, we have rephrased the sentence in question by changing “our data suggest” to “based on this we speculate” - but are not sure whether this addresses the reviewer’s concern.  

      (2) Page 4, Line 103: "..., a direct measurement of the activity of cholinergic projection from basal forebrain to the visual cortex during locomotion has not been made." This statement is incorrect. An earlier study by Reimer et al. indeed imaged cholinergic axons in the visual cortex of mice running on a wheel. 

      Authors' response: "We have clarified this as suggested. However, we disagree slightly with the reviewer here. The key question is whether the cholinergic axons imaged originate in basal forebrain. While Reimer et al. 2016 did set out to do this, we believe a number of methodological considerations prevent this conclusion: ... Collins et al. 2023 inject more laterally and thus characterize cholinergic input to S1 and A1, ..."

      The authors pointed out some methodological caveats in previous studies that measured the BF input in V1, and I agree with them on several points. Nonetheless, the statement that "a direct measurement of the activity of cholinergic projection from basal forebrain to visual cortex during locomotion has not been made. ... Prior measurements of the activity of cholinergic axons in visual cortex have all relied on data from a cross of ChAT-Cre mice with a reporter line ..." (Page 4, Line 103) seems to be an oversimplification. In fact, contrary to what the authors noted, Collins et al. (2023) conducted direct imaging of BF cholinergic axons in V1 (Fig. 1) - "Selected axon segments were chosen from putative retrosplenial, somatosensory, primary and secondary motor, and visual cortices". They used a viral approach to express GCaMP in BF axons to bypass the limitations associated with the use of a GCaMP reporter mouse line - "Viral injections were used for BF- ACh studies to avoid imaging axons or dendrites from cholinergic projections not arising from the BF (e.g. cortical cholinergic interneurons)." The authors should reconsider the text. 

      The reason we think that our statement here was – while simplified – accurate, is that Collins et al. do record from cholinergic axons in V1, but they don’t show these data (they only show pooled data across all recordings sites). By superimposing the recording locations of the Collins paper on the Allen mouse brain atlas (Figure R1), we estimate that of the approximately 50 recording sites, most are in somatosensory and somatomotor areas of cortex, and only 1 appears to be in V1, something that is often missed as it is not really highlighted in that paper. If this is indeed correct, we would argue that the data in the Collins et al. paper are not representative of cholinergic activity in visual cortex (we fear only the authors would know for sure). Nevertheless, we have rephrased again. 

      Author response image 1.

      Overlay of the Collins et al. imaging sites (red dots, black outline and dashed circle) on the Allen mouse brain atlas (green shading). Very few (we estimate that it was only 1) of the recording sites appear to be in V1 (the lightest green area), and maybe an additional 4 appear to be in secondary visual areas.  

      Minor comments

      (1) It is unclear which BF subregion(s) were targeted in this study. 

      Authors' response: Thanks for pointing this out. We targeted the entire basal forebrain (medial septum, vertical and horizontal limbs of the diagonal band, and nucleus basalis) with our viral injections. ... We have now added the labels for basal forebrain subregions targeted next to the injection coordinates in the manuscript. 

      The authors provided the coordinates for their virus injections targeting the BF subregions - "(AP, ML, DV (in mm): ... ; +0.6, +0.6, -4.9 (nucleus basalis) ..." Is this the right coordinates for the nucleus basalis? 

      Thank you for catching this - this was indeed incorrect. The coordinates were correct, but our annotation of brain region was not (as the reviewer correctly points out, these coordinates are in the horizontal limb of the diagonal band, not the nucleus basalis). We have corrected this.

      Reviewer #2 (Recommendations For The Authors):

      Thank you for addressing most of the points raised in my original review. I still some concerns relating to the analysis of the data. 

      (1) I appreciate the authors point that getting mice to reliably during head-fixed recordings can require training. Since mice in this study were not trained to run, their low speed of locomotion limits the interpretation of the results. I think this is an important potential caveat and I have retained it in the public review. 

      This might be a misunderstanding. The Jordan paper was a bit of an outlier in that we needed mice to run at very high rates due to fact that our recording times was only minutes. Mice were chosen such that they would more or less continuously run, to maximize the likelihood that they would run during the intracellular recordings. This was what we tried to convey in our previous response. The speed range covered by the analysis in this paper is 0 cm/s to 36 cm/s. 36 cm/s is not far away from the top speed mice can reach on this treadmill (30 cm/s is 1 revolution of the treadmill per second). In our data, the top speed we measured across all mice was 36 cm/s. In the Jordan paper, the peak running speed across the entire dataset was 44 cm/s. Based on the reviewer’s comment, we suspect that the reviewer may be under the impression that 30 cm/s is a relatively slow running speed. To illustrate what this looks like we have made added a video (Video S1) to illustrate different running speeds. 

      (2) The majority of the analyses in the revised manuscript focus on grand average responses, which may mask heterogeneity in the underlying neural populations. This could be addressed by analysing the magnitude and latency of responses for individual neurons. For example, if I understand correctly, the analyses include all neurons, whether or not they are activated, inhibited, or unaffected by visual stimulation and locomotion. For example, while on average layer 2/3 neurons are suppressed by the grating stimulus (Figure 4A), presumable a subset are activated. Evaluating the effects of optogenetic stimulation and locomotion without analyzing them at the level of individual neurons could result in misleading conclusions. This could be presented in the form of a scatter plot, depicting the magnitude of neuronal responses in locomotion vs stationary condition, and opto+ vs no opto conditions. 

      We might be misunderstanding. The first part of the comment is a bit too unspecific to address directly. In cases in which we find the variability is relevant to our conclusions, we do show this for individual cells (e.g.the latencies to running onset are shown as histograms for all cells and axons in Figure S1). It is also unclear to us what the reviewer means by “Evaluating the effects of optogenetic stimulation and locomotion without analyzing them at the level of individual neurons could result in misleading conclusions”. Our conclusions relate to the average responses in L2/3, consistent with the analysis shown. All data will be freely available for anyone to perform follow-up analysis of things we may have missed. E.g., the specific suggestion of presenting the data shown in Figure 4 as a scatter plot is shown below (Figure R2). This is something we had looked at but found not to be relevant to our conclusions. The problem with this analysis is that it is difficult to estimate how much the different sources of variability contribute to the total variability observed in the data, and no interesting pattern is clearly apparent. All relevant and clear conclusions are already captured by the mean differences shown in Figure 4. 

      Author response image 2.

      Optogenetic activation of cholinergic axons in visual cortex primarily enhances responses of layer 5, but not layer 2/3 neurons. Related to Figure 4. (A) Average calcium response of layer 2/3 neurons in visual cortex to full field drifting grating in the absence or presence of locomotion. Each dot is the average calcium activity of an individual neuron during the two conditions. (B) As in A, but for layer 5 neurons. (C) As in A, but comparing the average response while the mice were stationary, to that while cholinergic axons were optogenetically stimulated. (D) As in C, but for layer 5 neurons. (E) Average calcium response of layer 2/3 neurons in visual cortex to visuomotor mismatch, without and with optogenetic stimulation of cholinergic axons in visual cortex. (F) As in E, but for layer 5 neurons. (G) Average calcium response of layer 2/3 neurons in visual cortex to locomotion onset in closed loop, without and with optogenetic stimulation of cholinergic axons in visual cortex. (H) As in G, but for layer 5 neurons.

      (3) To help the reader understand the experimental conditions in open loop experiments, please include average visual flow speed traces for each condition in Figure 5. 

      We have added the locomotion velocity and visual flow speeds to the corresponding conditions in Figure

    1. Author response: 

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Meissner-Bernard et al present a biologically constrained model of telencephalic area of adult zebrafish, a homologous area to the piriform cortex, and argue for the role of precisely balanced memory networks in olfactory processing.

      This is interesting as it can add to recent evidence on the presence of functional subnetworks in multiple sensory cortices. It is also important in deviating from traditional accounts of memory systems as attractor networks. Evidence for attractor networks has been found in some systems, like in the head direction circuits in the flies. However, the presence of attractor dynamics in other modalities, like sensory systems, and their role in computation has been more contentious. This work contributes to this active line of research in experimental and computational neuroscience by suggesting that, rather than being represented in attractor networks and persistent activity, olfactory memories might be coded by balanced excitation-inhibitory subnetworks.

      Strengths:

      The main strength of the work is in: (1) direct link to biological parameters and measurements, (2) good controls and quantification of the results, and (3) comparison across multiple models.

      (1) The authors have done a good job of gathering the current experimental information to inform a biological-constrained spiking model of the telencephalic area of adult zebrafish. The results are compared to previous experimental measurements to choose the right regimes of operation.

      (2) Multiple quantification metrics and controls are used to support the main conclusions and to ensure that the key parameters are controlled for - e.g. when comparing across multiple models.

      (3) Four specific models (random, scaled I / attractor, and two variant of specific E-I networks - tuned I and tuned E+I) are compared with different metrics, helping to pinpoint which features emerge in which model.

      Weaknesses:

      Major problems with the work are: (1) mechanistic explanation of the results in specific E-I networks, (2) parameter exploration, and (3) the functional significance of the specific E-I model.

      (1) The main problem with the paper is a lack of mechanistic analysis of the models. The models are treated like biological entities and only tested with different assays and metrics to describe their different features (e.g. different geometry of representation in Fig. 4). Given that all the key parameters of the models are known and can be changed (unlike biological networks), it is expected to provide a more analytical account of why specific networks show the reported results. For instance, what is the key mechanism for medium amplification in specific E/I network models (Fig. 3)? How does the specific geometry of representation/manifolds (in Fig. 4) emerge in terms of excitatory-inhibitory interactions, and what are the main mechanisms/parameters? Mechanistic account and analysis of these results are missing in the current version of the paper.

      We agree with the reviewer that a mechanistic analysis of manifold geometry is of high interest and we will address this issue in our revisions. We are currently exploring approaches to better understand how amplification of activity is controlled in E/I assemblies, and how geometric modifications can be described in terms of elementary excitatory and inhibitory interactions. We expect these approaches to provide new mechanistic insights into representational manifolds.

      (2) The second major issue with the study is a lack of systematic exploration and analysis of the parameter space. Some parameters are biologically constrained, but not all the parameters. For instance, it is not clear what the justification for the choice of synaptic time scales are (with E synaptic time constants being larger than inhibition: tau_syn_i = 10 ms, tau_syn_E = 30 ms). How would the results change if they are varying these - and other unconstrained - parameters? It is important to show how the main results, especially the manifold localisation, would change by doing a systematic exploration of the key parameters and performing some sensitivity analysis. This would also help to see how robust the results are, which parameters are more important and which parameters are less relevant, and to shed light on the key mechanisms.

      We varied neuronal and network parameters in the past and we are currently performing additional systematic parameter variations to further address this comment. Preliminary results indicate that networks with similar properties can be obtained with equal synaptic time constants and biophysical parameters for all E and I neurons, thus supporting the notion that representational geometry is determined primarily by connectivity. Results of parameter variations will be reported in the revised manuscript.

      (3) It is not clear what the main functional advantage of the specific E-I network model is compared to random networks. In terms of activity, they show that specific E-I networks amplify the input more than random networks (Fig. 3). But when it comes to classification, the effect seems to be very small (Fig. 5c). Description of different geometry of representation and manifold localization in specific networks compared to random networks is good, but it is more of an illustration of different activity patterns than proving a functional benefit for the network. The reader is still left with the question of what major functional benefits (in terms of computational/biological processing) should be expected from these networks, if they are to be a good model for olfactory processing and learning.

      One possibility for instance might be that the tasks used here are too easy to reveal the main benefits of the specific models - and more complex tasks would be needed to assess the functional enhancement (e.g. more noisy conditions or more combination of odours). It would be good to show this more clearly - or at least discuss it in relation to computation and function.

      We agree that further insights into potential benefits of manifold representations would be interesting. In the initial manuscript we performed analyses of pattern classification primarily to examine whether the structured E/I networks studied here can support pattern classification at all, given that they do not exhibit discrete attractor states or global pattern completion. As structured E/I networks still support pattern classification when activity is read out from neuronal subsets, we concluded that structured E/I networks are not in conflict with the general notion of pattern classification by autoassociation. In addition, manifold representations may support a variety of other computations that we discussed only superficially.  In the revised we are planning to address this issue in more depth by additional discussion and analyses. In particular, we are planning to address the hypothesis that manifold geometry provides a continuous distance metric to analyze relationships between inputs and relevant stimuli (learned odors) in the presence of irrelevant stimulus components (non-learned odors).

      Reviewer #2 (Public Review):

      Summary:

      The authors conducted a comparative analysis of four networks, varying in the presence of excitatory assemblies and the architecture of inhibitory cell assembly connectivity. They found that co-tuned E-I assemblies provide network stability and a continuous representation of input patterns (on locally constrained manifolds), contrasting with networks with global inhibition that result in attractor networks.

      Strengths:

      The findings presented in this paper are very interesting and cutting-edge. The manuscript effectively conveys the message and presents a creative way to represent high-dimensional inputs and network responses. Particularly, the result regarding the projection of input patterns onto local manifolds and continuous representation of input/memory is very Intriguing and novel. Both computational and experimental neuroscientists would find value in reading the paper.

      Weaknesses:

      Intuitively, classification (decodability) in discrete attractor networks is much better than in networks that have continuous representations. This could also be shown in Figure 5B, along with the performance of the random and tuned E-I networks. The latter networks have the advantage of providing network stability compared to the Scaled I network, but at the cost of reduced network salience and, therefore, reduced input decodability. The authors may consider designing a decoder to quantify and compare the classification performance of all four networks.

      As suggested by the reviewer, we will explicitly examine decodability by different types of networks in the revised manuscript.

      Networks featuring E/I assemblies could potentially represent multistable attractors by exploring the parameter space for their reciprocal connectivity and connectivity with the rest of the network. However, for co-tuned E-I networks, the scope for achieving multistability is relatively constrained compared to networks employing global or lateral inhibition between assemblies. It would be good if the authors mentioned this in the discussion. Also, the fact that reciprocal inhibition increases network stability has been shown before and should be cited in the statements addressing network stability (e.g., some of the citations in the manuscript, including Rost et al. 2018, Lagzi & Fairhall 2022, and Vogels et al. 2011 have shown this).

      We thank the reviewer for this comment and will revise the manuscript accordingly.

      Providing raster plots of the pDp network for familiar and novel inputs would help with understanding the claims regarding continuous versus discrete representation of inputs, allowing readers to visualize the activity patterns of the four different networks. (similar to Figure 1B).

      We will follow the suggestion by the reviewer and include raster plots of responses to both familiar and novel inputs in the revised manuscript.

      Reviewer #3 (Public Review):

      Summary:

      This work investigates the computational consequences of assemblies containing both excitatory and inhibitory neurons (E/I assembly) in a model with parameters constrained by experimental data from the telencephalic area Dp of zebrafish. The authors show how this precise E/I balance shapes the geometry of neuronal dynamics in comparison to unstructured networks and networks with more global inhibitory balance. Specifically, E/I assemblies lead to the activity being locally restricted onto manifolds - a dynamical structure in between high-dimensional representations in unstructured networks and discrete attractors in networks with global inhibitory balance. Furthermore, E/I assemblies lead to smoother representations of mixtures of stimuli while those stimuli can still be reliably classified, and allow for more robust learning of additional stimuli.

      Strengths:

      Since experimental studies do suggest that E/I balance is very precise and E/I assemblies exist, it is important to study the consequences of those connectivity structures on network dynamics. The authors convincingly show that E/I assemblies lead to different geometries of stimulus representation compared to unstructured networks and networks with global inhibition. This finding might open the door for future studies for exploring the functional advantage of these locally defined manifolds, and how other network properties allow to shape those manifolds.

      The authors also make sure that their spiking model is well-constrained by experimental data from the zebrafish pDp. Both spontaneous and odor stimulus triggered spiking activity is within the range of experimental measurements. But the model is also general enough to be potentially applied to findings in other animal models and brain regions.

      Weaknesses:

      I find the point about pattern completion a bit confusing. In Fig. 3 the authors argue that only the Scaled I network can lead to pattern completion for morphed inputs since the output correlations are higher than the input correlations. For me, this sounds less like the network can perform pattern completion but it can nonlinearly increase the output correlations. Furthermore, in Suppl. Fig. 3 the authors show that activating half the assembly does lead to pattern completion in the sense that also non-activated assembly cells become highly active and that this pattern completion can be seen for Scaled I, Tuned E+I, and Tuned I networks. These two results seem a bit contradictory to me and require further clarification, and the authors might want to clarify how exactly they define pattern completion.

      We believe that this comment concerns a semantic misunderstanding and apologize for any lack of clarity. The reviewer is correct that “pattern completion” in morphing experiments can be described as a nonlinear increase in output correlations in response to related inputs. This is different from the results obtained by simulated current injections because currents were targeted to subsets of assembly neurons and the analysis focused on firing rates within and outside assemblies. We referred to results of both experiments as “pattern completion” because this has been standard in the neurobiological and in the computer science literature, respectively. However, we agree that this can cause confusion and we will revise the manuscript to clarify this issue.

      The authors argue that Tuned E+I networks have several advantages over Scaled I networks. While I agree with the authors that in some cases adding this localized E/I balance is beneficial, I believe that a more rigorous comparison between Tuned E+I networks and Scaled I networks is needed: quantification of variance (Fig. 4G) and angle distributions (Fig. 4H) should also be shown for the Scaled I network. Similarly in Fig. 5, what is the Mahalanobis distance for Scaled I networks and how well can the Scaled I network be classified compared to the Tuned E+I network? I suspect that the Scaled I network will actually be better at classifying odors compared to the E+I network. The authors might want to speculate about the benefit of having networks with both sources of inhibition (local and global) and hence being able to switch between locally defined manifolds and discrete attractor states.

      As pointed out already in response to reviewer 1, we agree that the potential computational benefits of continuous manifold representations in comparison to discrete attractor states is an important point that merits further exploration and discussion. We are therefore planning to include a more in-depth discussion and to perform further analyses. The specific suggestions of the reviewer will be addressed.

      At a few points in the manuscript, the authors use statements without actually providing evidence in terms of a Figure. Often the authors themselves acknowledge this, by adding the term "not shown" to the end of the sentence. I believe it will be helpful to the reader to be provided with figures or panels in support of the statements.

      Thank you for this comment. We shall be happy to include additional data figures in the revised manuscript.

    1. Author response:

      eLife assessment

      The authors present an algorithm and workflow for the inference of developmental trajectories from single-cell data, including a mathematical approach to increase computational efficiency. While such efforts are in principle useful, the absence of benchmarking against synthetic data and a wide range of different single-cell data sets make this study incomplete. Based on what is presented, one can neither ultimately judge if this will be an advance over previous work nor whether the approach will be of general applicability.

      We thank the eLife editor for the valuable feedback. We wish to emphasize that both, benchmarking against other methods and validation on a synthetic dataset (“dyntoy”) are indeed presented in Supplementary Note, although we failed to sufficiently emphasize it in the main text. 

      We will extend the benchmarking to more TI methods and we will improve the results and discussion sections to present those facts more clearly to the reader.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors present tviblindi, a computational workflow for trajectory inference from molecular data at single-cell resolution. The method is based on (i) pseudo-time inference via expecting hitting time, (ii) sampling of random walks in a directed acyclic k-NN where edges are oriented away from a cell of origin w.r.t. the involved nodes' expected hitting times, and (iii) clustering of the random walks via persistent homology. An extended use case on mass cytometry data shows that tviblindi can be used elucidate the biology of T cell development.

      Strengths:

      - Overall, the paper is very well written and most (but not all, see below) steps of the tviblindi algorithm are explained well.

      - The T cell biology use case is convincing (at least to me: I'm not an immunologist, only a bioinformatician with a strong interest in immunology).

      We thank the reviewer for feedback and suggestions that we will accommodate, we respond point-by-point below

      Weaknesses:

      - The main weakness of the paper is that a systematic comparison of tviblindi against other tools for trajectory inference (there are many) is entirely missing. Even though I really like the algorithmic approach underlying tviblindi, I would therefore not recommend to our wet-lab collaborators that they should use tviblindi to analyze their data. The only validation in the manuscript is the T cell development use case. Although this use case is convincing, it does not suffice for showing that the algorithms's results are systematically trustworthy and more meaningful (at least in some dimension) than trajectories inferred with one of the many existing methods.

      We have compared tviblindi to several trajectory inference methods (Supplementary note section 8.2: Comparison to state-of-the-art methods, namely Monocle3 (v1.3.1) Cao et al. (2019), Stream (v1.1) Chen et al. (2019), Palantir (v1.0.0) Setty et al. (2019), VIA (v0.1.89) Stassen et al. (2021) and PAGA (scanpy==1.9.3) Wolf et al. (2019).) We will add thorough and systematic comparisons to the other algorithms mentioned by reviewers. We will include extended evaluation on publically available datasets.

      Also, we have successfully used tviblindi to investigate human B-cell development in primary immunodeficiency (manuscript in revisions), double negative T-cells development in ALPS (Autoimmune Lymphoproliferative Syndrome) by mass cytometry (project in progress).

      - The authors' explanation of the random walk clustering via persistent homology in the Results (subsection "Real-time topological interactive clustering") is not detailed enough, essentially only concept dropping. What does "sparse regions" mean here and what does it mean that "persistent homology" is used? The authors should try to better describe this step such that the reader has a chance to get an intuition how the random walk clustering actually works. This is especially important because the selection of sparse regions is done interactively. Therefore, it's crucial that the users understand how this selection affects the results. For this, the authors must manage to provide a better intuition of the maths behind clustering of random walks via persistent homology.

      In order to satisfy both reader types: the biologist and the mathematician, we explain the mathematics in detail in the Supplementary Note, section 4. We will improve the Results text to better point the reader to the mathematical foundations in the Supplementary Note.

      - To motivate their work, the authors write in the introduction that "TI methods often use multiple steps of dimensionality reduction and/or clustering, inadvertently introducing bias. The choice of hyperparameters also fixes the a priori resolution in a way that is difficult to predict." They claim that tviblindi is better than the original methods because "analysis is performed in the original high-dimensional space, avoiding artifacts of dimensionality reduction." However, in the manuscript, tviblindi is tested only on mass cytometry data which has a much lower dimensionality than scRNA-seq data for which most existing trajectory inference methods are designed. Since tviblindi works on a k-NN graph representation of the input data, it is unclear if it could be run on scRNA-seq data without prior dimensionality reduction. For this, cell-cell distances would have to be computed in the original high-dimensional space, which is problematic due to the very high dimensionality of scRNA-seq data. Of course, the authors could explicitly reduce the scope of tviblindi to data of lower dimensionality, but this would have to be stated explicitly.

      In the manuscript we tested the framework on the scRNA-seq data from Park et al 2020 (DOI: 10.1126/science.aay3224). To illustrate that tviblindi can work directly in the high-dimensional space, we applied the framework successfully on imputed 2000 dimensional data.

      The idea behind tviblindi is to be able to work without the necessity to use non-linear dimensionality reduction techniques, which reduce the dimensionality to a very low number of dimensions and whose effects on the data distribution are difficult to predict. On the other hand the use of (linear) dimensionality reduction techniques which effectively suppress noise in the data such as PCA is a good practice (see also response to reviewer 2). We will emphasize this in the revised version and add the results of the corresponding analysis.

      - Also tviblindi has at least one hyper-parameter, the number k used to construct the k-NN graphs (there are probably more hidden in the algorithm's subroutines). I did not find a systematic evaluation of the effect of this hyper-parameter.

      Detailed discussion of the topic is presented in the Supplementary Note, section 8.1, where Spearman correlation coefficient between pseudotime estimated using k=10 and k=50 nearest neighbors was 0.997.   The number k however does affect the number of candidate endpoints. But even when larger k causes spurious connection between unrelated cell fates, the topological clustering of random walks allows for the separation of different trajectories. We will expand the “sensitivity to hyperparameters section” also in response to reviewer 2.

      Reviewer #2 (Public Review):

      Summary:

      In Deconstructing Complexity: A Computational Topology Approach to Trajectory Inference in the Human Thymus with tviblindi, Stuchly et al. propose a new trajectory inference algorithm called tviblindi and a visualization algorithm called vaevictis for single-cell data. The paper utilizes novel and exciting ideas from computational topology coupled with random walk simulations to align single cells onto a continuum. The authors validate the utility of their approach largely using simulated data and establish known protein expression dynamics along CD4/CD8 T cell development in thymus using mass cytometry data. The authors also apply their method to track Treg development in single-cell RNA-sequencing data of human thymus.

      The technical crux of the method is as follows: The authors provide an interactive tool to align single cells along a continuum axis. The method uses expected hitting time (given a user input start cell) to obtain a pseudotime alignment of cells. The pseudotime gives an orientation/direction for each cell, which is then used to simulate random walks. The random walks are then arranged/clustered based on the sparse region in the data they navigate using persistent homology.

      We thank the reviewer for feedback and suggestions that we will accommodate, we respond point-by-point below.

      Strengths:

      The notion of using persistent homology to group random walks to identify trajectories in the data is novel.

      The strength of the method lies in the implementation details that make computationally demanding ideas such as persistent homology more tractable for large scale single-cell data.

      This enables the authors to make the method more user friendly and interactive allowing real-time user query with the data.

      Weaknesses:

      The interactive nature of the tool is also a weakness, by allowing for user bias leading to possible overfitting for a specific data.

      tviblindi is not designed as a fully automated TI tool (although it implements a fully automated module), but as a data driven framework for exploratory analysis of unknown data. There is always a risk of possible bias in this type of analysis - starting with experimental design, choice of hyperparameters in the downstream analysis, and an expert interpretation of the results. The successful analysis of new biological data involves a great deal of expert knowledge which is difficult to a priori include in the computational models.

      tvilblindi tries to solve this challenge by intentionally overfitting the data and keeping the level of resolution on a single random walk. In this way we aim to capture all putative local relationships in the data. The on-demand aggregation of the walks using the global topology of the data allows researchers to use their expert knowledge to choose the right level of detail (as demonstrated in the Figure 4 of the manuscript) while relying on the topological structure of the high dimensional point cloud. At all times tviblindi allows to inspect the composition of the trajectory to assess the variance in the development, possible hubs on the KNN-graph etc.

      The main weakness of the method is lack of benchmarking the method on real data and comparison to other methods. Trajectory inference is a very crowded field with many highly successful and widely used algorithms, the two most relevant ones (closest to this manuscript) are not only not benchmarked against, but also not sited. Including those that specifically use persistent homology to discover trajectories (Rizvi et.al. published Nat Biotech 2017). Including those that specifically implement the idea of simulating random walks to identify stable states in single-cell data (e.g. CellRank published in Lange et.al Nat Meth 2022), as well as many trajectory algorithms that take alternative approaches. The paper has much less benchmarking, demonstration on real data and comparison to the very many other previous trajectory algorithms published before it. Generally speaking, in a crowded field of previously published trajectory methods, I do not think this one approach will compete well against prior work (especially due to its inability to handle the noise typical in real world data (as was even demonstrated in the little bit of application to real world data provided).

      We provide comparisons of tviblindi and vaevictis in the Supplementary Note, section 8.2, where we compare it to Monocle3 (v1.3.1) Cao et al. (2019), Stream (v1.1) Chen et al. (2019), Palantir (v1.0.0) Setty et al. (2019), VIA (v0.1.89) Stassen et al. (2021) and PAGA (scanpy==1.9.3) Wolf et al. (2019). We use two datasets: artificial Dyntoy and real mass cytometry thymus+peripheral blood dataset. We thank the reviewer for suggesting specific methods.  CellRank was excluded from the benchmarking as it was originally designed for RNA-velocity data (not available in mass cytometry data), but will include recent upgrade CellRank2 (preprint at doi.org/10.1101/2023.07.19.549685) which offers more flexibility.

      We will add further benchmarking as suggested by the reviewer in the course of revisions.

      Beyond general lack of benchmarking there are two issues that give me particular concern. As previously mentioned, the algorithm is highly susceptible to user bias and overfitting. The paper gives the example (Figure 4) of a trajectory which mistakenly shows that cells may pass from an apoptotic phase to a different developmental stage. To circumvent this mistake, the authors propose the interactive version of tviblindi that allows users to zoom in (increase resolution) and identify that there are in fact two trajectories in one. In this case, the authors show how the author can fix a mistake when the answer is known. However, the point of trajectory inference is to discover the unknown. With so much interactive options for the user to guide the result, the method is more user/bias driven than data-driven. So a rigorous and quantitative discussion of robustness of the method, as well as how to ensure data-driven inference and avoid over-fitting would be useful.

      Local directionality in expression data is a challenge which is not, to our knowledge, solved. And we are not sure it can be solved entirely, even theoretically. The random walks passing “through” the apoptotic phase are biologically infeasible, but it is an (unbiased) representation of what the data look like based on the diffusion model. It is a property of the data (or of the panel design), which has to be interpreted properly rather than a mistake. Of note, except for Monocle3 (which does not provide the directionality) other tested methods did not discover this trajectory at all.

      The “zoom in” has in fact nothing to do with “passing through the apoptosis”. We show how the researcher can investigate the suggested trajectory to see if there is an additional structure of interest and/or relevance. This investigation is still data driven (although not fully automated). Anecdotally in this particular case this branching was discovered by an bioinformatician, who knew nothing about the presence of beta-selection in the data. 

      We show that the trajectory of apoptosis of cortical thymocytes consists of 2 trajectories corresponding to 2 different checkpoints (beta-selection and positive/negative selection). This type of structure, where 2 (or more) trajectories share the same path for most of the time, then diverge only to be connected at a later moment (immediately from the point of view of the beta-selection failure trajectory) is a challenge for TI algorithms and none of tested methods gave a correct result. More importantly there seems to be no clear way to focus on these kinds of structures (common origin and common fate) in TI methods.

      Of note, the “zoom in” is a recommended and convenient method to look for an inner structure, but it does not necessarily mean addition of further homological classes. Indeed, in this case the reason that the structure is not visible directly is the limitation of the dendrogram complexity (only branches containing at least 10% of simulated random walks are shown by default).

      In summary, tviblindi effectively handled all noise in the data that obscured biologically valid trajectories for other methods. We will improve the discussion of the robustness in the reviewed version. 

      Second, the paper discusses the benefit of tviblindi operating in the original high dimensions of the data. This is perhaps adequate for mass cytometry data where there is less of an issue of dropouts and the proteins may be chosen to be large independent. But in the context of single-cell RNA-sequencing data, the massive undersampling of mRNA, as well as high degree of noise (e.g. ambient RNA), introduces very large degree of noise so that modeling data in the original high dimensions leads to methods being fit to the noise. Therefore ALL other methods for trajectory inference work in a lower dimension, for very good reason, otherwise one is learning noise rather than signal. It would be great to have a discussion on the feasibility of the method as is for such noisy data and provide users with guidance. We note that the example scRNA-seq data included in the paper is denoised using imputation, which will likely result in the trajectory inference being oversmoothed as well.

      We agree with the reviewer. In our manuscript we wanted to showcase that tviblindi can directly operate in high-dimensional space (thousands of dimensions) and we used MAGIC imputation for this purpose. This was not ideal. More standard approach, which uses 30-50 PCs as input to the algorithm resulted in equivalent trajectories. We will add this analysis to the study.

      In summary, the fact that tviblindi scales well with dimensionality of the data and is able to work in the original space does not mean that it is always the best option. We will emphasize in the revised paper that we aim to avoid the non-linear dimensional reduction techniques as a data preprocessing tool, as the effect of the reduction is difficult to predict. We will also discuss the preprocessing of scRNA-seq data in greater detail.

      Reviewer #3 (Public Review):

      Summary:

      Stuchly et al. proposed a single-cell trajectory inference tool, tviblindi, which was built on a sequential implementation of the k-nearest neighbor graph, random walk, persistent homology and clustering, and interactive visualization. The paper was organized around the detailed illustration of the usage and interpretation of results through the human thymus system.

      Strengths:

      Overall, I found the paper and method to be practical and needed in the field. Especially the in-depth, step-by-step demonstration of the application of tviblindi in numerous T cell development trajectories and how to interpret and validate the findings can be a template for many basic science and disease-related studies. The videos are also very helpful in showcasing how the tool works.

      Weaknesses:

      I only have a few minor suggestions that hopefully can make the paper easier to follow and the advantage of the method to be more convincing.

      (1) The "Computational method for the TI and interrogation - tviblindi" subsection under the Results is a little hard to follow without having a thorough understanding of the tviblindi algorithm procedures. I would suggest that the authors discuss the uniqueness and advantages of the tool after the detailed introduction of the method (moving it after the "Connectome - a fully automated pipeline".

      We thank the reviewer for the suggestion and we will accommodate it to improve readability of the text.

      Also, considering it is a computational tool paper, inevitably, readers are curious about how it functions compared to other popular trajectory inference approaches. I did not find any formal discussion until almost the end of the supplementary note (even that is not cited anywhere in the main text). Authors may consider improving the summary of the advantages of tviblindi by incorporating concrete quantitative comparisons with other trajectory tools.

      We provide comparisons of tviblindi and vaevictis in the Supplementary Note, section 8.2, where we compare it to Monocle3 (v1.3.1) Cao et al. (2019), Stream (v1.1) Chen et al. (2019), Palantir (v1.0.0) Setty et al. (2019), VIA (v0.1.89) Stassen et al. (2021) and PAGA (scanpy==1.9.3) Wolf et al. (2019). We use two datasets: artificial Dyntoy and real mass cytometry thymus+peripheral blood dataset. We will also add CellRank2 into comparisons and we will strengthen the message of the benchmarking results in the Discussion section.

      (2) Regarding the discussion in Figure 4 the trajectory goes through the apoptotic stage and reconnects back to the canonical trajectory with counterintuitive directionality, it can be a checkpoint as authors interpret using their expert knowledge, or maybe a false discovery of the tool. Maybe authors can consider running other algorithms on those cells and see which tracks they identify and if the directionality matches with the tviblindi.

      We have indeed used the thymus dataset for comparison of all TI algorithms listed above. Except for Monocle 3 they failed to discover the negative selection branch (Monocle 3 does not offer directionality information). Therefore, a valid topological trajectory with incorrect (expert-corrected) directionality was partly or entirely missed by other algorithms.

      (3) The paper mainly focused on mass cytometry data and had a brief discussion on scRNA-seq. Can the tool be applied to multimodality data such as CITE-seq data that have both protein markers and gene expression? Any suggestions if users want to adapt to scATAC-seq or other epigenomic data?

      The analysis of multimodal data is the logical next step and is the topic of our current research. At this moment tviblindi cannot be applied directly to multimodal data. It is possible to use the KNN-graph based on multimodal data (such as weighted nearest neighbor graph implemented in Seurat) for pseudotime calculation and random walk simulation. However, we do not have a fully developed triangulation for the multimodal case yet.

    1. Author response:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript focuses on the role of the deubiquitinating enzyme UPS-50/USP8 in endosome maturation. The authors aimed to clarify how this enzyme drives the conversion of early endosomes into late endosomes. Overall, they did achieve their aims in shedding light on the precise mechanisms by which UPS-50/USP8 regulates endosome maturation. The results support their conclusions that UPS-50 acts by disassociating RABX-5 from early endosomes to deactivate RAB-5 and by recruiting SAND-1/Mon1 to activate RAB-7. This work is commendable and will have a significant impact on the field. The methods and data presented here will be useful to the community in advancing our understanding of endosome maturation and identifying potential therapeutic targets for diseases related to endosomal dysfunction. It is worth noting that further investigation is required to fully understand the complexities of endosome maturation. However, the findings presented in this manuscript provide a solid foundation for future studies.

      We thank this reviewer for the instructive suggestions and encouragement.

      Strengths:

      The major strengths of this work lie in the well-designed experiments used to examine the effects of UPS-50 loss. The authors employed confocal imaging to obtain a picture of the aftermath of the USP-50 loss. Their findings indicated enlarged early endosomes and MVB-like structures in cells deficient in USP-50/USP8.

      We thank this reviewer for the instructive suggestions and encouragement.

      Weaknesses:

      Specifically, there is a need for further investigation to accurately characterize the anomalous structures detected in the ups-50 mutant. Also, the correlation between the presence of these abnormal structures and ESCRT-0 is yet to be addressed, and the current working model needs to be revised to prevent any confusion between enlarged early endosomes and MVBs.

      Excellent suggestions. The EM imaging indeed revealed an increase in enlarged cellular vesicles containing various contents in usp-50 mutants. However, the detailed molecular features of these vesicles remain unclear. Therefore, we plan to utilize ESCRT components for double staining with early or late endosome markers. This will enable us to accurately characterize the anomalous structures detected in the usp-50 mutants.

      Reviewer #2 (Public Review):

      Summary:

      In this study, the authors study how the deubiquitinase USP8 regulates endosome maturation in C. elegans and mammalian cells. The authors have isolated USP8 mutant alleles in C. elegans and used multiple in vivo reporter lines to demonstrate the impact of USP8 loss-of-function on endosome morphology and maturation. They show that in USP8 mutant cells, the early endosomes and MVB-like structures are enlarged while the late endosomes and lysosomal compartments are reduced. They elucidate that USP8 interacts with Rabx5, a guanine nucleotide exchange factor (GEF) for Rab5, and show that USP8 likely targets specific lysine residue of Rabx5 to dissociate it from early endosomes. They also find that the localization of USP8 to early endosomes is disrupted in Rabx5 mutant cells. They observe that in both Rabx5 and USP8 mutant cells, the Rab7 GEF SAND-1 puncta which likely represents late endosomes are diminished, although Rabex5 is accumulated in USP8 mutant cells. The authors provide evidence that USP8 regulates endosomal maturation in a similar fashion in mammalian cells. Based on their observations they propose that USP8 dissociates Rabex5 from early endosomes and enhances the recruitment of SAND-1 to promote endosome maturation.

      We thank this reviewer for the instructive suggestions and encouragement.

      Strengths:

      The major highlights of this study include the direct visualization of endosome dynamics in a living multi-cellular organism, C. elegans. The high-quality images provide clear in vivo evidence to support the main conclusions. The authors have generated valuable resources to study mechanisms involved in endosome dynamics regulation in both the worm and mammalian cells, which would benefit many members of the cell biology community. The work identifies a fascinating link between USP8 and the Rab5 guanine nucleotide exchange factor Rabx5, which expands the targets and modes of action of USP8. The findings make a solid contribution toward the understanding of how endosomal trafficking is controlled.

      We thank this reviewer for the instructive suggestions and encouragement.

      Weaknesses:

      -The authors utilized multiple fluorescent protein reporters, including those generated by themselves, to label endosomal vesicles. Although these are routine and powerful tools for studying endosomal trafficking, these results cannot tell whether the endogenous proteins (Rab5, Rabex5, Rab7, etc.) are affected in the same fashion.

      Good suggestion. Indeed, to test whether the endogenous proteins (Rab5, Rabex5, Rab7, etc.) are affected in the same fashion as fluorescent protein reporters, we supplemented our approach with the utilization of endogenous markers. These markers, including Rab5, RAB-5, Rabex5, RABX-5, and EEA1 for early endosomes, as well as RAB-7, Mon1a, and Mon1b for late endosomes, were instrumental in our investigations (refer to Figure 3, Figure 6, Sup Figure 4, Sup Figure 5, and Sup Figure 7). Our comprehensive analysis, employing various methodologies such as tissue-specific fused proteins, CRISPR/Cas9 knock-in, and antibody staining, consistently highlights the critical role of USP8 in early-to-late endosome conversion.

      -The authors clearly demonstrated a link between USP8 and Rabx5, and they showed that cells deficient in both factors displayed similar defects in late endosomes/lysosomes. However, the authors didn't confirm whether and/or to which extent USP8 regulates endosome maturation through Rabx5. Additional genetic and molecular evidence might be required to better support their working model.

      Excellent point. We plan to conduct additional genetic analyses, including the construction of double mutants between usp-50 and various rabex-5 mutations, to further elucidate the extent to which USP8 regulates endosome maturation via Rabex5.

      Reviewer #3 (Public Review):

      Summary:

      The authors were trying to elucidate the role of USP8 in the endocytic pathway. Using C. elegans epithelial cells as a model, they observed that when USP8 function is lost, the cells have a decreased number and size in lysosomes. Since USP8 was already known to be a protein linked to ESCRT components, they looked into what role USP8 might play in connecting lysosomes and multivesicular bodies (MVB). They observed fewer ESCRT-associated vesicles but an increased number of "abnormal" enlarged vesicles when USP8 function was lost. At this specific point, it's not clear what the objective of the authors was. What would have been their hypothesis addressing whether the reduced lysosomal structures in USP8 (-) animals were linked to MVB formation? Then they observed that the abnormally enlarged vesicles, marked by the PI3P biosensor YFP-2xFYVE, are bigger but in the same number in USP8 (-) compared to wild-type animals, suggesting homotypic fusion. They confirmed this result by knocking down USP8 in a human cell line, and they observed enlarged vesicles marked by YFP-2xFYVE as well. At this point, there is quite an important issue. The use of YFP-2xFYVE to detect early endosomes requires the transfection of the cells, which has already been demonstrated to produce differences in the distribution, number, and size of PI3P-positive vesicles (doi.org/10.1080/15548627.2017.1341465). The enlarged vesicles marked by YFP-2xFYVE would not necessarily be due to the loss of UPS8. In any case, it appears relatively clear that USP8 localizes to early endosomes, and the authors claim that this localization is mediated by Rabex-5 (or Rabx-5). They finally propose that USP8 dissociates Rabx-5 from early endosomes facilitating endosome maturation.

      Weaknesses:

      The weaknesses of this study are, on one side, that the results are almost exclusively dependent on the overexpression of fusion proteins. While useful in the field, this strategy does not represent the optimal way to dissect a cell biology issue. On the other side, the way the authors construct the rationale for each approximation is somehow difficult to follow. Finally, the use of two models, C. elegans and a mammalian cell line, which would strengthen the observations, contributes to the difficulty in reading the manuscript.

      The findings are useful but do not clearly support the idea that USP8 mediates Rab5-Rab7 exchange and endosome maturation, In contrast, they appear to be incomplete and open new questions regarding the complexity of this process and the precise role of USP8 within it.

      We thank this reviewer for the insightful comments. Fluorescence-fused proteins serve as potent tools for visualizing subcellular organelles both in vivo and in live settings. Specifically, in epidermal cells of worms, the tissue-specific expression of these fused proteins is indispensable for studying organelle dynamics within living organisms. This approach is necessitated by the inherent limitations of endogenously tagged proteins, whose fluorescence signals are often weak and unsuitable for live imaging or genetic screening purposes. Acknowledging concerns raised by the reviewer regarding potential alterations in organelle morphology due to overexpression of certain fused proteins, we supplemented our approach with the utilization of endogenous markers. These markers, including Rab5, RAB-5, Rabex5, RABX-5, and EEA1 for early endosomes, as well as RAB-7, Mon1a, and Mon1b for late endosomes, were instrumental in our investigations (refer to Figure 3, Figure 6, Sup Figure 4, Sup Figure 5, and Sup Figure 7). Our comprehensive analysis, employing various methodologies such as tissue-specific fused proteins, CRISPR/Cas9 knock-in, and antibody staining, consistently highlights the critical role of USP8 in early-to-late endosome conversion. Specifically, we discovered that the recruitment of USP-50/USP8 to early endosomes is depending on Rabex5. However, instead of stabilizing Rabex5, the recruitment of USP-50/USP8 leads to its dissociation from endosomes, concomitantly facilitating the recruitment of the Rab7 GEF SAND-1/Mon1. In cells with loss-of-function mutations in usp-50/usp8, we observed enhanced RABX-5/Rabex5 signaling and mis-localization of SAND-1/Mon1 proteins from endosomes. Consequently, this disruption impairs endolysosomal trafficking, resulting in the accumulation of enlarged vesicles containing various intraluminal contents and rudimentary lysosomal structures.

      Through an unbiased genetic screen, verified by cultured mammalian cell studies, we observed that loss-of-function mutations in usp-50/usp8 result in diminished lysosome/late endosomes. To elucidate the underlying mechanisms, we investigated the formation of multivesicular bodies (MVBs), a process tightly linked to USP8 function. Extensive electron microscopy (EM) analysis indicated that MVB-like structures are largely intact in usp-50 mutant cells, suggesting that USP8/USP-50 likely regulate lysosome formation through alternative pathways in addition to their roles in MVB formation and ESCRT component function. USP8 is known to regulate the endocytic trafficking and stability of numerous transmembrane proteins. Interestingly, loss-of-function mutations in usp8 often lead to the enlargement of early endosomes, yet the mechanisms underlying this phenomenon remain unclear. Given that lysosomes receive and degrade materials generated by endocytic pathways, we hypothesized that the abnormally enlarged MVB-like vesicular structures observed in usp-50 or usp8 mutant cells correspond to the enlarged vesicles coated by early endosome markers. Indeed, in the absence of usp8/usp-50, the endosomal Rab5 signal is enhanced, while early endosomes are significantly enlarged. Given that Rab5 guanine nucleotide exchange factor (GEF), Rabex5, is essential for Rab5 activation, we further investigated its dynamics. Additional analyses conducted in both worm hypodermal cells and cultured mammalian cells revealed an increase of endosomal Rabex5 in response to usp8/usp-50 loss-of-function. Live imaging studies further demonstrated active recruitment of USP8 to newly formed Rab5-positive vesicles, aligning spatiotemporally with Rabex5 regulation. Through systematic exploration of putative USP-50 binding partners on early endosomes, we identified its interaction with Rabex5. Comprehensive genetics and biochemistry experiments demonstrated that USP8 acts through K323 site de-ubiquitination to dissociate Rabex5 from early endosomes and promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In summary, our study began with an unbiased genetic screen and subsequent examination of established theories, leading to the formulation of our own hypothesis. Through multifaceted approaches, we unveiled a novel function of USP8 in early-to-late endosome conversion.

    1. Author response:

      We would like to thank all the reviewers and editors for their thoughtful and detailed comments, critiques and suggestions. We will revise our manuscript in accordance with all the points raised by the reviewers. Here we summarize some of the main points that we intend to address in our revised manuscript.

      The reviewers noted that we were not sufficiently careful in identifying possible exogenous cues that the mice might be using to locate the cues and that we did not consider why such cues might be ineffective. As the reviewers point out, the mice may be ignoring the visual landmarks (and floor scratches) because they are not reliable cues and their relation to the food varies with the entrance the mice have used. In particular, a reviewer refers to papers that show that “in environments with 'unreliable' landmarks, place cells are not controlled by landmarks”. These papers were known to the authors but failed to make final cut of our extensive discussion. This important point will be thoroughly addressed.

      Another critical point was the mice were often doing thigmotaxis. The literature on thigmotaxis was known to us and we will now directly refer to this point. We do note that the final average start to food trajectory (TEV) is directly to the food. In other words, the thigmotaxic trajectories and “towards the center” trajectories effectively average out.

      There was a very cogent point about the difficulty of totally eliminating odor cues that we will now address. Finally, based on studies using a virtual reality environment, one reviewer questioned the use of “path integration” as a signal that encodes goal location. The relevance of path integration to spatial learning and performance is a very difficult issue that, to our knowledge, has never been entirely settled in the vast spatial learning literature. We do not think that our data can “settle’ this issue but will try to at least be explicit re the complexity of the path integration hypothesis as it applies to both our own data and the virtual reality literature. In particular, we will discuss the potential roles of optic flow versus proprioceptive and vestibular inputs to a putative path integration mechanism.

      Finally, the reviewers raised many important technical points re statistics reporting and how the figures are presented. In our revision, we will completely comply with all these helpful critiques.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife assessment

      Chang et al. provide glutamate co-expression profiles in the central noradrenergic system and test the requirement of Vglut2-based glutamatergic release in respiratory and metabolic activity under physiologically relevant gas challenges. Their experiments provide compelling evidence that conditional deletion of Vglut2 in noradrenergic neurons does not impact steadystate breathing or metabolic activity in room air, hypercapnia, or hypoxia. This study provides an important contribution to our understanding of how noradrenergic neurons regulate respiratory homeostasis in conscious adult mice.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Chang et al. provide glutamate co-expression profiles in the central noradrenergic system and test the requirement of Vglut2-based glutamatergic release in respiratory and metabolic activity under physiologically relevant gas challenges. Their experiments show that conditional deletion of Vglut2 in NA neurons does not impact steady-state breathing or metabolic activity in room air, hypercapnia, or hypoxia. Their observations challenge the importance of glutamatergic signaling from Vglut2 expressing NA neurons in normal respiratory homeostasis in conscious adult mice.

      Strengths:

      The comprehensive Vglut1, Vglut2, and Vglut3 co-expression profiles in the central noradrenergic system and the combined measurements of breathing and oxygen consumption are two major strengths of this study. Observations from these experiments provide previously undescribed insights into (1) expression patterns for subtypes of the vesicular glutamate transporter protein in the noradrenergic system and (2) the dispensable nature of Vglut2-dependent glutamate signaling from noradrenergic neurons to breathing responses to physiologically relevant gas challenges in adult conscious mice.

      Weaknesses:

      Although the cellular expression profiles for the vesicular glutamate transporters are provided, the study fails to document that glutamatergic-based signaling originating from noradrenergic neurons is evident at the cellular level under normal, hypoxic, and/or hypercapnic conditions. This limits the reader's understanding of why conditional Vglut2 knockdown is dispensable for breathing under the conditions tested.

      We thank the reviewers for their positive evaluation of our work. First, we would like to highlight that multiple studies have provided anatomical evidence of innervation of multiple cardio-respiratory nuclei by Vglut2+ noradrenergic fibers. Thus, the anatomical substrates are present for noradrenergic based Vglut2 signaling to either play a direct role in breathing control or, upon perturbation, to indirectly affect breathing through disrupted metabolic or cardiovascular control. We have included supplemental table 1 that summarizes central noradrenergic Vglut2+ innervations of respiratory and autonomic nuclei. Additionally, Ultrastructural evidence shows asymmetric synaptic contacts assuming glutamatergic transmission between C1 neurons and LC, A1, A2 and the dorsal motor nucleus of the vagus (DMV) (Milner et al., 1989; Abbott et al., 2012; Holloway et al., 2013; DePuy et al., 2013).

      Functionally, electrophysiological evidence showed that photostimulating C1 neurons activate LC, A1, A2 noradrenergic neurons monosynaptically by releasing glutamate (Holloway et al., 2013; DePuy et al., 2013) and optogenetic stimulation of LC neurons excite the downstream parabrachial nucleus (PBN) neurons by releasing glutamate. Thus, at least the glutamatergic signaling from C1 and LC noradrenergic neurons (two noradrenergic nuclei that have been shown to play a role in breathing control) is evident at the cellular level under normal conditions. Other evidence, highlighted in our manuscript, is more circumstantial.

      Reviewer #2 (Public Review):

      The authors characterized the recombinase-based cumulative fate maps for vesicular glutamate transporters (Vglut1, Vglut2 and Vglut3) expression and compared those maps to their real-time expression profiles in central NA neurons by RNA in situ hybridization in adult mice. Authors have revealed a new and intriguing expression pattern for Vglut2, along with an entirely uncharted co-expression domain for Vglut3 within central noradrenergic neurons. Interestingly, and in contrast to previous studies, the authors demonstrated that glutamatergic signaling in central noradrenergic neurons does not exert any influence on breathing and metabolic control either under normoxic/normocapnic conditions or after chemoreflex stimulation. Also, they showed for the first-time the Vglut3-expressing NA population in C2/A2 nuclei. In addition, they were also able to demonstrate Vglut2 expression in anterior NA populations, such as LC neurons, by using more refined techniques, unlike previous studies.

      A major strength of the study is the use of a set of techniques to investigate the participation of NA-based glutamatergic signaling in breathing and metabolic control. The authors provided a full characterization of the recombinase-based cumulative fate maps for Vglut transporters. They performed real-time mRNA expression of Vglut transporters in central NA neurons of adult mice. Further, they evaluated the effect of knocking down Vglut2 expression in NA neurons using a DBH-Cre; Vglut2cKO mice on breathing and control in unanesthetized mice. Finally, they injected the AAV virus containing Cre-dependent Td tomato into LC of v-Glut2 Cre mice to verify the VGlut2 expression in LC-NA neurons. A very positive aspect of the article is that the authors combined ventilation with metabolic measurements. This integration holds particular significance, especially when delving into the exploration of respiratory chemosensitivity. Furthermore, the sample size of the experiments is excellent.

      Despite the clear strengths of the paper, some weaknesses exist. It is not clear in the manuscript if the experiments were performed in males and females and if the data were combined. I believe that the study would have benefited from a more comprehensive analysis exploring the sex specific differences. The reason I think this is particularly relevant is the developmental disorders mentioned by the authors, such as SIDS and Rett syndrome, which could potentially arise from disruptions in central noradrenergic (NA) function, exhibit varying degrees of sex predominance. Moreover, some of the noradrenergic cell groups are sexually dimorphic. For instance, female Wistar rats exhibit a larger LC size and more LC-NA neurons than male subjects (Pinos et al., 2001; Garcia-Falgueras et al., 2005). More recently, a detailed transcriptional profiling investigation has unveiled the identities of over 3,000 genes in the LC. This revelation has highlighted significant sexual dimorphisms, with more than 100 genes exhibiting differential expression within LC-NA neurons at the transcript level. Furthermore, this investigation has convincingly showcased that these distinct gene expression patterns have the capacity to elicit disparate behavioral responses between sexes (Mulvey et al., 2018). Therefore, the authors should compare the fate maps, Vglut transporters in males and females, at least considering LC-NA neurons. Even in the absence of identified sex differences, this information retains significant importance.

      All experiments contained both males and females as described in the original submission. In our analysis of breathing and metabolism, sex was included in the analysis and no significant phenotypic difference was observed. For the fate map and in situ experiments, we did not see obvious differences in the expression patterns in the three glutamate transporters between females and males, though the group size is small. Though all the anatomical and phenotypic data in this manuscript are presented as combined graphs, we have differentially labeled our data points by sex. The reviewer does raise important questions regarding possible sexual dimorphisms in the central noradrenergic system and whether such dimorphisms may extend to glutamate transporter co-expression. Our thorough interrogation of respiratory-metabolic parameters fails to reveal any sex specific differences in control or experimental mice. Thus, it is unclear if any of the previously described and cited dimorphisms are functionally relevant in this setting. Given the large differences in the real time expression and cumulative fate maps of Vglut2, a worthwhile interrogation of differential glutamate transporter expression would be best served by longitudinal studies with large group sizes across age as it is not clear what underlies the dynamic VGlut2 expression changes. Such changes may at times be greater in males and other times in females, driven by experience or physiological challenges etc., but resulting in averaged cumulative fatemaps that are similar between sexes. Such a longitudinal quantitative study of real-time and fatemapped cell populations across the central NA system would be of a scale that is beyond the scope of this report, especially when no phenotypic changes have been observed in our respiratory data.

      An important point well raised by the authors is that although suggestive, these experiments do not definitively rule out that NA-Vglut2 based glutamatergic signaling has a role in breathing control. Subsequent experiments will be necessary to validate this hypothesis.

      As noted, we discuss that we only address requirement, not sufficiency, of NA Vglut2 in breathing. Functional sufficiency experiments usually involve increasing the relevant output. However, these experiments can lead to non-specific, pleiotropic effects that would be difficult to disambiguate, even if done with high cellular specificity. Viral or genetic overexpression of Vglut2 in NA neurons may be a feasible approach. Conditional ablation of TH or DBH with concurrent chemo or optogenetic stimulation may also be informative. These approaches would require significant investments in mouse model generation and suffer additional experimental limitations.

      An improvement could be made in terms of measuring body temperature. Opting for implanted sensors over rectal probes would circumvent the need to open the chamber, thereby preventing alterations in gas composition during respiratory measurements. Further, what happens to body temperature phenotype in these animals under different gas exposures? These data should be included in the Tables.

      While surgical implantation of sensors would provide a more direct assessment of temperature, it requires components that were not available at the time of the study and addresses a question (temperature changes during a time course of gas exposure) that go beyond the scope of the current work focused on respiratory response. As we have done for prior experiments (Martinez et al., 2019; Ray et al., 2011), the body temperature was measured immediately before and after measuring breathing only. Our flow through system using inline gas sensors (AEI P-61B CO2 sensor and AEI N-22M O2 sensor) ensure that gas challenges were constant and consistent across all measurements. Any disruption in gas composition would have been noted by our software analysis system, Breathe Easy, and the data rejected. We did not observe any such perturbations.

      Is it plausible that another neurotransmitter within NA neurons might be released in higher amounts in DBH-Cre; Vglut2 cKO mice to compensate for the deficiency in glutamate and prevent changes in ventilation?

      We agree that compensation is always a possibility at the synaptic, cellular, and circuit levels that may involve a variety of transcriptional, translational, cellular, and circuit mechanisms (i.e., synaptic strength). This could be interrogated by combining multiple conditional alleles and recombinase drivers for various transmitters and receptors, but would, in our experience, take multiple years for the requisite breeding to be completed.

      Continuing along the same line of inquiry is there a possibility that Vglut2 cKO from NA neurons not only eliminates glutamate release but also reduces NA release? A similar mechanism was previously found in VGLUT2 cKO from DA neurons in previous studies (Alsio et al., 2011; Fortin et al., 2012; Hnasko et al., 2010). Additionally, does glutamate play a role in the vesicular loading of NA? Therefore, could the lack of effect on breathing be explained by the lack of noradrenaline and not glutamate?

      These are all excellent points, but prior studies suggest that reductions in NA signaling would itself have an apparent effect (Zanella et al., 2006; Kuo et al., 2016). Although several studies showed that LC and C1 NA neurons co-release noradrenaline and glutamate, no direct evidence yet makes clear that glutamate facilitates NA release or vice versa. However, it would be of great interest to test if reduced or lack of NA compensated for loss of glutamate in the future. We do fully acknowledge that compensation in the manuscript that any number of compensatory events could be at play in these findings.

      Reviewer #3 (Public Review):

      Summary:

      The authors, Y Chang and colleagues, have performed elegant studies in transgenic mouse models that were designed to examine glutamatergic transmission in noradrenergic neurons, with a focus on respiratory regulation. They generated 3 different transgenic lines, in which a red fluorophore was expressed in dopamine-B-hydroxylase (DBH; noradrenergic and adrenergic neurons) neurons that did not express a vesicular glutamate transporter (Vglut) and a green fluorophore in DBH neurons that did express one of either Vglut1, Vglut2 or Vglut3.

      Further experiments generated a transgenic mouse with knockout of Vglut2 in DBH neurons. The authors used plethysmography to measure respiratory parameters in conscious, unrestrained mice in response to various challenges.

      Strengths:

      The distribution of the Vglut expression is broadly in agreement with other studies, but with the addition of some novel Vglut3 expression. Validation of the transgenic results, using in situ hybridization histochemistry to examine mRNA expression, revealed potential modulation of Vglut2 expression during phases of development. This dataset is comprehensive, wellpresented and very useful.

      In the physiological studies the authors observed that neither baseline respiratory parameters, nor respiratory responses to hypercapnea (5, 7, 10% CO2) or hypoxia (10% O2) were different between knockout mice and littermate controls. The studies are well-designed and comprehensive. They provide observations that are supportive of previous reports using similar methodology.

      Weaknesses:

      In relation to the expression of Vglut2, the authors conclude that modulation of expression occurs, such that in adulthood there are differences in expression patterns in some (nor)adrenergic cell groups. Altered sensitivity is provided as an explanation for different results between studies examining mRNA expression. These are likely explanations; however, the conclusion would really be definitive with inclusion of a conditional cre expressing mouse. Given the effort taken to generate this dataset, it seems to me that taking that extra step would be of value for the overall understanding of glutamatergic expression in these catecholaminergic neurons

      The seemingly dynamic Vglut2 expression pattern across the NA system is intriguing. As noted in our comments to reviewer 2, a robust age dependent interrogation would require a large magnitude study. The reviewer correctly points out that a temporally controlled recombinase fate mapping experiment would offer greater insight into the dynamic expression of Vglut2. We strongly agree with that idea and did work to develop a Vglut2-CreER targeted allele that, despite our many other successes in mouse genetic engineering (Lusk et al., 2022; Sun and Ray, 2016), did not succeed on the first attempt. We aim to complete the line in the near future so that we may better understand the Vglut2 expression pattern in central noradrenergic neurons in a time-specific manner and sex specific manner.

      The respiratory physiology is very convincing and provides clear support for the view that Vglut2 is not required for modulation of the respiratory parameters measured and the reflex responses tested. It is stated that this is surprising. However, comparison with the data from Abbott et al., Eur J Neurosci (2014) in which the same transgenic approach was used, shows that they also observed no change in baseline breathing frequency. Differences were observed with strong, coordinated optogenetic stimulation, but, as discussed in this manuscript, it is not clear what physiological function this is relevant to. It just shows that some C1 neurons can use glutamate as a signaling molecule. Further, Holloway et al., Eur J Neurosci (2015), using the same transgenic mouse approach, showed that the respiratory response to optogenetic activation of Phox2 expressing neurons is not altered in DBH-Vglut2 KO mice. The conclusion seems to be that some C1 neuron effects are reliant upon glutamatergic transmission (C1DMV for example), and some not.

      We agree that activation of C1 neurons may be sufficient to modulate breathing when artificially stimulated and that such stimulation relies on glutamatergic transmission for its effect. This is why we find our results surprising and important in clarifying for the field that glutamatergic signaling in noradrenergic cells is dispensable for breathing and hypoxic and hypercapnic responses under physiological conditions.

      Further contrast is made in this manuscript to the work of Malheiros-Lima and colleagues (eLife 2020) who showed that the activation of abdominal expiratory nerve activity in response to peripheral chemoreceptor activation with cyanide was dependent upon C1 neurons and could be attenuated by blockade of glutamate receptors in the pFRG - i.e. the supposition that glutamate release from C1 neurons was responsible for the function. However, it is interesting to observe that diaphragm EMG responses to hypercapnia (10% CO2) or cyanide, and the expiratory activation to hypercapnia, were not affected by the glutamate receptor blockade. Thus, a very specific response is affected and one that was not measured in the current study.

      As we mention above, we do not dispute that glutamate signaling can be manipulated to create a response in non-physiological conditions – we suggest that framing the interpretation around the glutamatergic role in a model that better matches physiological conditions should inform our interpretation. Furthermore, we do include an examination of expiratory flow – which was not impacted by loss of glutamatergic activity in NA neurons – which would be likely to have been impacted if abdominal expiratory nerve activity was modified.

      These previous published observations are consistent with the current study which provides a more comprehensive analysis of the role of glutamatergic contributions respiratory physiology. A more nuanced discussion of the data and acknowledgement of the differences, which are not actually at odds, would improve the paper and place the information within a more comprehensive model.

      Thank you for the comments. As noted in the original and extended discussion, we respectfully disagree with the perspective that our results align with prior results.

      Recommendations for the authors:

      The three reviewers believe this is an important study. They have numerous suggestions for improvement of the manuscript (outlined below), but no new experiments are required. The Editor requests some nomenclature changes as indicated in attachment 1.

      Reviewer #1 (Recommendations For The Authors):

      Abstract/Introduction: Although the need for this study is obvious, it is important that the authors explicitly communicate their working hypothesis < before the start of the work> to the reader. In the current form, it is unclear whether the authors aimed to test the hypothesis that glutamatergic signaling from noradrenergic neurons is important to breathing or whether to test the hypothesis that glutamatergic signaling from noradrenergic neurons is not important to breathing. If it is the latter-it is not important-then the study (related to the breathing measurements) is poorly justified and designed, as additional orthogonal approaches (e.g., actual measurements of glutamatergic signaling at the cellular level) are almost requisite. If the authors' hypothesis was originally based on existing literature suggesting that glutamatergic signaling from noradrenergic neurons is important to breathing, then the experimental design appropriate.

      Thank you for the suggestion. The working hypothesis has been added in the abstract (line 2425) and the introduction (line 92-94)), making clear that we initially hypothesized that glutamatergic signaling from noradrenergic neurons is important in breathing.

      Results: While the steady state measurements for breathing metrics are clearly important in defining how glutamatergic signaling may contribute to be pulmonary function, the role of glutamatergic signaling may have a greater role in the dynamics of patterns (i.e., regularity of the breathing rhythms) such traits can be described using SD1 and SD2 from Poincare maps, and/or entropy measurements. Such an analysis should be performed.

      Thank you for the suggestion. The dynamic patterns of respiratory rate (Vf), tidal volume (VT), minute ventilation (VE), inspiratory duration (TI), expiratory duration (TE), breath cycle duration (TTOT), inspiratory flow rate (VT/TI), expiratory flow rate (VT/TE) have been shown as Poincaré plots and quantified and tested using the SD1 and SD2 statistics in the supplemental figures of Figure 4-7.

      Results: Analyses of Inspiratory time (Ti) and flow rate (i.e., Tidal Volume / Ti) should be assessed and included.

      Thank you for the suggestion. Inspiratory duration (Ti), expiratory duration (TE), breath cycle duration (TTOT), inspiratory flow rate (VT/Ti), and expiratory flow rate (VT/TE) have been included in the Figures 4-7.

      Results/Methods: If similar analytical approaches were used in the current study as to that in Lusk et al. 2022, it appears that data was discontinuously sampled, rejecting periods of movement and only including periods of quiescent breathing. Were the periods of quiescent breathing different? Information should be provided to describe the total sampling duration included.

      For room air, the entire gas condition was used for data analysis. For hypercapnia (5% CO2, 7% CO2, 10% CO2), only the last 5 minutes of the gas challenge period was used for data analysis. For hypoxia (10% O2), we analyzed the breathing trace of three 5-minute epochs following initiation of the gas exposure separately, e.g., epoch 1 = 5-10min, epoch 2 = 10-15min, and epoch 3 = 15-20min. All breaths included as quiescent breathing were analyzed in the aggregate for each group and experimental condition, we did not compare individual periods of quiescent breathing within or across an animal(s)/group(s)/experimental condition(s). We have added the details in the Materials and Methods (line 637-642).

      Results: As mice were conscious in this study, were sniff periods (transient periods of fast breathing, i.e.,>8Hz) included in the analysis?

      No, only regular quiescent breathing periods were included in the analysis.

      Discussion: The authors need to discuss the limitations of their findings.

      • How should the reader interpret the findings? Concluding that glutamatergic signaling is dispensable implies that it occurs in room air, hypoxia, and hypercapnia.

      We have edited our discussion for clarity to highlight our conclusions that Vglut2-based glutamatergic signaling from noradrenergic neurons is ultimately dispensable for baseline breathing and hypercapnia and hypoxic chemoreflex in unanesthetized and unrestrained mice.

      • Assuming that glutamatergic signaling is active during the conditions tested, then the authors should discuss what may be the potential compensations.

      We have provided additional discussion surrounding potential compensatory events that may have taken place and could result in the unchanged phenotype in the experimental group.

      • The authors need to discuss how age and state of consciousness may play a role in their finds. The current discussion gives the impression that their findings are broadly applicable in all cases, but the lack of differences in this study may not hold true under different conditions.

      The study was done in adult (6–8-week-old) unanesthetized and unrestrained mice. In the discussion (line 472-474), we highlight that in our unpublished results, loss of NA-expressed Vglut2 does not change the survival curve in P7 neonate mice undergoing repeated bouts of autoresuscitation until death. Thus, we believed that Vglut2-based glutamatergic signaling in central NA neurons is dispensable for baseline breathing and the hypercapnic and hypoxic chemoreflexes in unanesthetized and unrestrained mice across different ages. Otherwise, we do not imply that we have interrogated any other aspects of breathing in our discussion.

      Methods: Further description of the analysis window for the respiratory metrics should be provided. Were breath values for each condition taken throughout the entire condition? This is particularly important for hypoxia, where the stereotypical respiratory response is biphasic.

      For room air, the entire gas condition was used for data analysis. For hypercapnia (5% CO2, 7% CO2, 10% CO2), only the last 5min of the gas challenge period was used for data analysis. For hypoxia (10% O2), we analyzed the breathing trace of three 5min time periods separately including 5-10min, 10-15min, and 15-20min during the hypoxic challenge as noted in our original manuscript, we graph and assess three 5min epochs during hypoxic exposure to capture the dynamic nature of the hypoxic ventilatory response. We have added the details in the Materials and Methods (line 637-642).

      Methods: How was consciousness determined?

      The conscious mice mentioned in the manuscript refer to the mice without anesthesia. We have replaced “awake” and “conscious” with “unanesthetized” in the text.

      Reviewer #2 (Recommendations For The Authors):

      Since no EEG/EMG recording was performed it would be more appropriate to remove "awake" and "conscious" throughout the manuscript and include the term "unanesthetized".

      Thank you for the suggestion. “Awake” and “conscious” have been replaced by “unanesthetized” in the text.

      Line 545: Why 32C? Isn't this temperature too high for animals?

      30-32°C is the thermoneutral zone for mice. It is the range of ambient temperature where mice can maintain a stable core temperature with their minimal metabolic rate (Gordon, 1985). Whole-body plethysmography uses the barometric technique to detect pressure oscillations caused by changes in temperature and humidity with each breathing act when an animal sits in a sealed chamber (Mortola et al., 2013). Thus, maintaining the chamber temperature near the thermoneutral zone during the plethysmography assay is required to maintain constancy in respiratory and metabolic parameters from trial to trial as well as to maintain linearity of ventilatory pressure changes due to humidification, rarefaction, and thermal expansion and contraction during inspiration and expiration (Ray et al., 2011). The chamber temperature that has been used for adult plethysmography has been set across a range 30-34°C (Hodges et al., 2008; Ray et al., 2011; Hennessy et al., 2017). We use 32°C in this manuscript which is consistent with previously published literature from other groups and our own work (Sun et al., 2017; Lusk et al., 2022).

      I would include the units of the physiological variables in the tables.

      Thank you for the suggestion. The units of the physiological variables have been added in all the tables.

      Reviewer #3 (Recommendations For The Authors):

      Why is the C3 group not considered in this study?

      The C3 adrenergic group, best characterized in rat, is only seen in rodents but not in many other species including primates (including human) (Kitahama et al., 1994). Thus, the C3 group is not the focus of this study where we aim to discuss if glutamate derived from noradrenergic neurons could be the potential therapeutic target of human respiratory disorders. The C3 adrenergic group is typically described as a population containing only about 30 neurons. We have added the fate map data and the adult expression pattern for the three vesicular glutamate transporters for the C3 group in the figure 1 and 2 supplements for reference.

      Sub CD/CV does not appear to be defined in the manuscript.

      Thank you for the point. The definition of sub CD/CV has been added in the text (line 126).

      The data on line 131-133 is interesting but could be described more effectively and clearly.

      Thank you for the suggestion. The text has been modified accordingly.

      The end of the paragraph at lines 140 onwards is rather repeated in the paragraph that starts at line 146.

      The repeated text has been removed accordingly.

      Whilst anterior and posterior are correct anatomical terms, for a quadraped, rostral and caudal are more widely used - particularly in the brainstem field. Is there a particular reason for using anterior/posterior?

      We followed the anatomical terminations in the Robertson et al. (2013) where they used anterior/posterior to describe C2/A2 and C1/A1.

      On the protocol lines include in Figure 4-7 it would be worth adding the test day. This seems a little strange. Why wait up to one week after the habituation to perform the stimulation. How many mice were left for each day between habituation and experimentation, and does this timing affect responses? Do mice forget the habituation after a period?

      Thank you for the point. We have added the test day for plethysmography in figures 4-7. After the 5 days of habituation, we began the plethysmography recordings on the sixth day. A maximum of 6 mice can be assayed for plethysmography per day due to the limited number of barometric flow through plethysmography and metabolic measurement systems we have. Thus, all animals were finished with plethysmography “within” one week of the last day of habituation. This protocol is consistent with our previous published work (Martinez et al., 2019; Lusk et al., 2022; Lusk et al., 2023). For the experiments in this manuscript, mice were assayed within 3 days after habituation. As noted in our methods and figures, each mouse is given as much as 40 mins to acclimate to the chamber (determined by directly observed quiet breathing) before data acquisition. We have no reason or evidence that indicates testing order and thus timing was a factor. The detailed explanation for the plethysmography protocol has been added in the material and methods section (line 606-625).

      Please state clearly that each mouse is only exposed to one gas mixture (what I interpret is the case), or could one mouse be exposed to several different stimuli?

      Each mouse is only exposed to one gas challenge (5% CO2, 7% CO2, 10% CO2, or 10% O2) in a testing period. Each testing period for an individual mouse was separated by 24hs to allow for a full recovery. The protocol is to put the mouse under room air for 45mins, switch to one gas challenge for 20mins, and switch back to room air for 20mins.

      With apologies if I missed this, but did each of the respiratory stimuli produce a statistically significant response in the control mice? For example, the response to 10%O2?

      Yes, each respiratory stimuli including 5/7/10% CO2 and 10% O2 produced a statistically significant response in both mutant and control mice. We have labeled the statistical significance in the Figures 4-7. Thank you for pointing this out.

      Line 312: Optogenetic stimulation induced an increase from 130 to 180 breaths per min (Abbott et al., EJN 2014). It is surprising that this is called "modest". Baseline respiratory frequency was presented.

      Thank you for the point. The word “modest” has been removed and the discussion has been changed accordingly (line 355-360).

      Line 338: This discussion is not sufficiently nuanced. It is the increased Dia amplitude (to KCN only, not 10%CO2 ) and the stimulation of active expiration, to both stimuli, that is blocked by kyn in pFRG. There is no effect of breathing frequency. The current study would not detect such differences in active expiration.

      Thank you for the suggestion. The discussion has been modified accordingly (line 382-388).

    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer #1:

      Summary:

      The authors study age-related changes in the excitability and firing properties of sympathetic neurons, which they ascribe to age-related changes in the expression of KCNQ (Kv7, "M-type") K+ currents in rodent sympathetic neurons, whose regulation by GPCRs has been most thoroughly studied for over 40 years.

      Strengths:

      The strengths include the rigor of the current-clamp and voltage-clamp experiments and the lovely, crisp presentation of the data, The separation of neurons into tonic, phasic and adapting classes is also interesting, and informative. The ability to successfully isolate and dissociate peripheral ganglia from such older animals is also quite rare and commendable! There is much useful detail here.

      Thank you for recognizing the effort we put on presenting the data and analyzing the neuronal populations. I also believe the ability to isolate neurons from old animals is worth communicating to the scientific community.

      Weaknesses:

      Where the manuscript becomes less compelling is in the rapamycin section, which does not provide much in the way of mechanistic insights. As such, the effect is more of an epi-phenomenon of unclear insight, and the authors cannot ascribe a signaling mechanism to it that is supported by data. Thus, this latter part rather undermines the overall impact and central advance of the manuscript. The problem is exacerbated by the controversial and anecdotal nature of the entire mTor/aging field, some of whose findings have very unfortunately had to be recently retracted.

      I would strongly recommend to the authors that they end the manuscript with their analysis of the role of M current/KCNQ channels in the numerous age-related changes in sympathetic neuron function that they elegantly report, and save the rapamycin, and possible mTor action, for a separate line of inquiry that the authors could develop in a more thorough and scholarly way.

      Whereas the description of the data are very nice and useful, the manuscript does not provide much in the way of mechanistic insights. As such, the effect is more of an epi-phenomenon of unclear insight, and the authors cannot ascribe changes in signaling mechanisms, such as that of M1 mAChRs to the phenomena that is supported by data.

      I appreciate the new comment. We had agreed that our rapamycin experiments did not allow to ascribe the mechanism to the signaling pathway of mTOR. The new comment mentions M1 mAChRs signaling as another potential signaling mechanism. Our work centered on determining whether aging altered the function of sympathetic motor neurons and defining the mechanism. We presented evidence showing that the mechanism is a reduction of the M-current. We did not attempt to identify the signaling mechanism linking aging to a reduction in M-current. Therefore, we agree with the reviewer that we do not provide further details on the mechanism and that that remains an open question. However, I find it harsh to say that “the effect is more of an epiphenomenon of unclear insight”. How could we possibly test that the effect of aging on the excitability of these neurons only arises as a secondary effect or that is not causal? How could we test for sufficiency and necessity of aging? How could we modify the state of aging to test for causality? We would have to reverse aging and show that the effect on the excitability is gone. And that is exactly what we tried to do with the rapamycin experiment.

      Reviewer #1 (Recommendations For The Authors):

      (1) The significance values greater than p < 0.05 do not add anything and distract focus from the results that are meaningful. Fig. 5 is a good example. What does p = 0.7 mean? Or p = 0.6? Does this help the reader with useful information?

      I thank Reviewer 1 for raising this question. We have attempted different versions of how we report p values, as we want to make sure to address rigor and transparency in reporting data. As corresponding author, I favor reporting p values for all statistical comparisons. To help the reader identifying what we considered statistically significant, we color coded the p values, with red for p-value<0.05 and black for p-value>0.05. As a reader, seeing a p-value=0.7 allows me to know that the authors performed an analysis comparing these conditions and found the mean not to be different. Not presenting the p-value makes me wonder whether the authors even analyzed those groups. In other words, I value more the ability to analyze the data seeing all p-values than not being distracted by not-significant p-values. This is just my preference.

      (2) Fig. 1 is not informative and should be removed.

      I thank Reviewer 1 for the suggestion. In previous drafts of the manuscript, this figure was included only as a panel. However, we decided it was better to guide the reader into the scope of our work. This is part of our scientific style and, therefore, we prefer to keep the figure.

      (3) The emphasis on a particular muscarinic agonist favored by many ion channel physiologists, oxotremorine, is not meaningful (lines 192, 198). The important point is stimulation of muscarinic AChRs, which physiologically are stimulated by acetylcholine. The particular muscarinic agonist used is unimportant. Unless mandated by eLife, "cholinergic type 1 muscarinic receptors" are usually referred to as M1 mAChRs, or even better is "Gq-coupled M1 mAChRs." I don't think that Kruse and Whitten, 2021 were the first to demonstrate the increase in excitability of sympathetic neurons from stimulation of M1 mAChRs. Please try and cite in a more scholarly fashion.

      A) I have modified lines 192 and 198 removing mention to oxotremorine.

      B) I have modified the nomenclature used to refer to cholinergic type 1 muscarinic receptors.

      C) I cited references on the role of M current on sympathetic motor neuron excitability. I also removed the reference (Kruse and Whitten, 2021) referring only on the temporal correlation between the decrease of KCNQ current with excitability.

      (4) The authors may want to use the term "M current" (after defining it) as the current produced by KCNQ2&3-containing channels in sympathetic neurons, and reserve "KCNQ" or "Kv7" currents as those made by cloned KCNQ/Kv7 channels in heterologous systems. A reason for this is to exclude currents KCNQ1-containing channels, which most definitely do not contribute to the "KCNQ" current in these cells. I am not mandating this, but rather suggesting it to conform with the literature.

      Thank you for the suggestion. I have modified the text to use the term M current. I maintain the use of KCNQ only when referring to KCNQ channel, such as in the section describing the abundance of KCNQ2.

      (5) The section in the text on "Aging reduces KCNQ current" is confusing. Can the authors describe their results and their interpretation more directly?

      I am not sure to understand the request. I assumed point 5 and 6 are related and decided to answer point 6.

      (6) Please explain the meaning of the increase in KCNQ2 abundance with age in Fig. 6G. How is this increase in KCNQ2 expression consistent with an increase in excitability? The explanation of "The decrease in KCNQ current and the increase in the abundance of KCNQ2 protein suggest a potential compensatory mechanism that occurs during aging, which we are actively investigating in an independent study." is rather odd, considering that the entire thesis of this paper is that changes in excitability and firing properties are underlied by changes in KCNQ2/3 channel expression/density. Suddenly, is this not the case?? What about KCNQ3? It would be very enlightening if the authors would just quantify the ratio of KCNQ2:KCNQ3 subunits in M-type channels in young and old mice using simple TEA dose/response curves (see Shapiro et al., JNS, 2000; Selyanko et al., J. Physiol., Hadley et al., Br. J. Pharm., 2001 and a great many more). It is also surprising that the authors did not assess or probe for differences in mAChR-induced suppression of M current between SCG neurons of young and old mice. This would seem to be a fundamental experiment in this line of inquiry.

      A. Please explain the meaning of the increase in KCNQ2 abundance with age in Fig. 6G. How is this increase in KCNQ2 expression consistent with an increase in excitability? The explanation of "The decrease in KCNQ current and the increase in the abundance of KCNQ2 protein suggest a potential compensatory mechanism that occurs during aging, which we are actively investigating in an independent study." is rather odd, considering that the entire thesis of this paper is that changes in excitability and firing properties are underlied by changes in KCNQ2/3 channel expression/density. Suddenly, is this not the case?? Our interpretation is that the decrease in M current is not caused by a decrease in the abundance of KCNQ (2) channels. We do not claim that changes in excitability are underlied by a reduction in the expression or density of KCNQ2 channels. On the contrary, our working hypothesis is that the reduction in M current is caused by changes in traffic, degradation, posttranslational modifications, or cofactors for KCNQ2 or KCNQ3 channels. We have modified the description in the results section to clarify this concept.

      B. What about KCNQ3? Unfortunately, we did not find an antibody to detect KCNQ3 channels. I have added a sentence to state this.

      C. KCNQ2:KCNQ3 subunits in M-type channels in young and old mice using simple TEA dose/response curves. This is a great idea. Thank you for the suggestion. Is this a necessary experiment for the acceptance of this manuscript?

      D. It is also surprising that the authors did not assess or probe for differences in mAChR-induced suppression of M current between SCG neurons of young and old mice. This would seem to be a fundamental experiment in this line of inquiry. Reviewer 1 is correct. We did not assess for differences in the suppression of M current by mAChR activation. We do not see the connection of this experiment with the scope of the current investigation.

      (7) Why do the authors use linopirdine instead of XE-991? Both are dirty drugs hardly specific to KCNQ channels at 25 uM concentrations, but linopirdine less so. The Methods section lists the source of XE991 used in the study, not linopirdine. Is there an error?

      A. Why do the authors use linopirdine instead of XE-991? After validation of KCNQ2/3 inhibition by Linopirdine, we found the effect on membrane potential recordings to be reproducible. Linopirdine has also been reported to be reversible. We wanted to assess reversibility on the excitability of young neurons. We did not find the effect to be reversible. We performed experiments applying XE-991 while recording the membrane potential. XE-991 did not show a clear effect. I was not surprised by this. It is very likely that the pharmacological inhibition of one channel leads to the activation of other channel types. This is highlighted in the work by Kimm, Khaliq, and Bean, 2015. “Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape.” In fact, it was quite remarkable that the aged and young phenotypes were mimicked by targeting KCNQ pharmacologically.

      B. Both are dirty drugs hardly specific to KCNQ channels at 25 uM concentrations, but linopirdine less so. I have added a sentence to point out that linopirdine is less potent than XE-991. It reads: “We want to point out that linopirdine is less potent than XE-991 and that it has been reported to activate TRPV1 channels (Neacsu and Babes, 2010). Despite this limitation, the application of linopirdine to young sympathetic motor neurons led to depolarization and firing of action potentials.”

      C. The Methods section lists the source of XE991 used in the study, not linopirdine. Is there an error? Thank you for pointing out this. I have added information for both retigabine and linopirdine in the Methods section, both were missing.

      (8) Can the authors use a more scientific explanation of RTG action than "activating KCNQ channels?" For instance, RTG induces both a negative-shift in the voltage-dependance of activation and a voltage-independent increase in the open probability, both of which differing in detail between KCNQ2 and KCNQ3 subunits. The authors are free to use these exact words. Thus, the degree of "activation" is very dependent upon voltage at any voltages negative to the saturating voltages for channel activation.

      I have modified the text to reflect your suggestion.

      (9) Methods: did the authors really use "poly-l-lysine-coated coverslips?" Almost all investigators use poly-D-lysine as a coating for mammalian tissue-culture cells and more substantial coatings such as poly-D-lysine + laminin or rat-tail collagen for peripheral neurons, to allow firm attachment to the coverslip.

      That is correct. We used poly-L-lysine-coated coverslips. Sympathetic motor neurons do not adhere to poly-D-Lysine.

      (10) As a suggestion, sampling M-type/KCNQ/Kv7 current at 2 kHz is not advised, as this is far faster than the gating kinetics of the channels. Were the signals filtered?

      It is correct. Currents were sampled at 2KHz. Data were low-pass filtered at 3 KHz. Our conditions are not far from what is reported by others. Some sample at 10KHz and even 50 KHz. Others do not report the sample frequency.

      Reviewer #2:

      Weaknesses:

      None, the revised version of the manuscript has addressed all my concerns.

      I am glad we were able to satisfy previous concerns.

      Reviewer #3:

      The main weakness is that this study is a descriptive tabulation of changes in the electrophysiology of neurons in culture, and the effects shown are correlative rather than establishing causality.

      Allow me to clarify our previous responses and determine how this aligns with your concerns. In the previous revision, Reviewer 3 wrote: “It is difficult to know from the data presented whether the changes in KCNQ channels are in fact directly responsible for the observed changes in membrane excitability.” And suggested to “use of blockers and activators to provide greater relevance.” I assumed these comments were the main concern and that doing such experiments was enough to satisfy the criticism. It is discouraging to see that our experiments did not satisfy the concerns of the reviewer of being correlative.

      If Reviewer 3 is referring to stablishing causality between aging and a reduction in M current, I would like to emphasize that such endeavor is complicated as there is not a clear experiment to solve that issue. Our best attempt was to reverse aging with rapamycin, but the recommendation was to remove those experiments.

      … but the specifics of the effects and relevance to intact preparations are unclear. Additional experiments in slice cultures would provide greater significance on the potential relevance of the findings for intact preparations.

      I apologize for missing this point in the previous revision. The proposed experiments will require an upward microscope coupled to an electrophysiology rig. Unfortunately, I do not have the equipment to do these experiments.

      Summary of recommendations from the three reviewers:

      Please make corrections as suggested by reviewer 1 to improve the manuscript. Specifically, reviewer 1 suggests making changes to p values in Figure 5,

      It is not clear what the suggested changes are. The comment from Reviewer 1 says: The significance values greater than p < 0.05 do not add anything and distract focus from the results that are meaningful. If the suggested change is to remove p values > 0.05, I have explained my rational for keeping those values. If the Journal has a specific format on how to report p-values, I will be happy to make appropriate changes.

      and the importance of citing original scholarly works related to effects of increase in excitability of sympathetic neurons by M1 receptors, and the terminology for M currents and KCNQ currents. These changes will improve the manuscript and are strongly recommended.

      I cited original papers on that area, and changed the terminology for M current. I kept KCNQ when referring to the channel protein or abundance.

      The section dealing with Aging Reduces KCNQ currents seems to contain a lot of extraneous information especially in the last part of the long paragraph and this section should be rewritten for improved clarity… and - the implications or lack thereof - of the correlation of KCNQ with AP firing rates.

      A. I removed extraneous information in that section. It now reads: Previous work by our group and others demonstrated that cholinergic stimulation leads to a decrease in M current and increases the excitability of sympathetic motor neurons at young ages \cite{RN67,RN68,RN69,RN71, RN72, RN73, RN74, RN75}. The molecular determinants of the M current are channels formed by KCNQ2 and KCNQ3 in these neurons \cite{RN76, RN77, RN70}. Thus, Figure 6A shows a voltage response (measured in current-clamp mode) and a consecutive M current recording (measured in voltage-clamp mode) in the same neuron upon stimulation of cholinergic type 1 muscarinic receptors. It illustrates the temporal correlation between the decrease of M current with the increase in excitability and firing of APs upon activation with oxotremorine. This strong dependence led us to hypothesize that aging decreases M current, leading to a depolarized RMP and hyperexcitability (Figure 6B). For these experiments, we measured the RMP and evoked activity using perforated patch, followed by the amplitude of M current using a whole-cell voltage clamp in the same cell. We also measured the membrane capacitance as a proxy for cell size. Interestingly, M current density was smaller by 29\% in middle age (7.5 ± 0.7 pA/pF) and by 55\% in old (4.8 ± 0.7 pA/pF) compared to young (10.6 ± 1.5 pA/pF) neurons (Figure 6C-D). The average capacitance was similar in young (30.8 ± 2.2 pF), middle-aged (27.4 ± 1.2 pF), and old (28.8 ± 2.3 pF) neurons (Figure 6E), suggesting that aging is not associated with changes in cell size of sympathetic motor neurons, and supporting the hypothesis that aging alters the levels of M current. Next, we tested the effect on the abundance of the channels mediating M current. Contrary to our expectation, we observed that KCNQ2 protein levels were 1.5 ± 0.1 -fold higher in old compared to young neurons (Figure 6F-G). Unfortunately, we did not find an antibody to detect consistently KCNQ3 channels. We concluded that the decrease in M current is not caused by a decrease in the abundance of KCNQ2 protein.

      B. and - the implications or lack thereof - of the correlation of KCNQ with AP firing rates. I am not sure to understand the request on the section of the correlation of KCNQ with AP firing rate. I divided the long paragraph.

      The apparent lack of correlation between KCNQ current and KCNQ2 protein needs to be better explained. This is a central part of the study and this result undercuts the premise of the paper.

      Indeed, total KCNQ2 protein abundance increases while M current decreases. We do not claim in our work that changes in excitability are caused by a reduction in the expression or density of KCNQ2 channels. On the contrary, our current working hypothesis is that the reduction in M current is caused by changes in traffic, degradation, posttranslational modifications, or cofactors for KCNQ2 or KCNQ3 channels. I have modified the description in the results section and discussion to clarify this concept.

      Additionally, the poor specificity of Linordipine for KCNQ should be pointed out in the limitations.

      I pointed this limitation. It reads: We want to point out that linopirdine is less potent than XE-991 and that it has been reported to activate TRPV1 channels (Neacsu and Babes, 2010). Despite this limitation, the application of linopirdine to young sympathetic motor neurons led to depolarization and firing of action potentials.

      Finally, the editor notes that the author response should not contain ambiguities in what was addressed in the revision. In the original summary of consolidated revisions that were requested, one clearly and separately stated point (point 4) was that experiments in slice cultures should be strongly considered to extend the significance of the work to an intact brain preparation. The author response letter seems to imply that this was done, but this is not the case. The author response seems to have combined this point with another separate point (point 3) about using KCNQ drugs, and imply that all concerns were addressed. Authors should be clear about what revisions were in fact addressed.

      As corresponding author, and direct responsible of the document provided for the reply to the reviewers, I apologize for my mistake. After reviewing this comment, I realized I did not respond to the Major points in the section of the Recommendations for the authors from Reviewer 3. I missed that entire section. My previous responses addressed the Public review of reviewer 3. When doing so, I did not separate the sentences, omitting the request on performing the experiment in slices.


      The following is the authors’ response to the original reviews.

      Reviewer #1

      Summary:

      The authors study age-related changes in the excitability and firing properties of sympathetic neurons, which they ascribe to age-related changes in the expression of KCNQ (Kv7, "M-type") K+ currents in rodent sympathetic neurons, whose regulation by GPCRs has been most thoroughly studied for over 40 years. The authors suggest the ingestion of rapamycin may partially reverse the age-related decrease in M-channel expression. With the rapamycin part included, it is unclear how this work will impact the field of age-related neuronal dysfunction, as the mechanistic information is not strong.

      Strengths:

      The strengths include the rigor of the current-clamp and voltage-clamp experiments, the lovely, crisp presentation of the data, and the expert statistics. The separation of neurons into tonic, phasic, and adapting classes is also interesting, and informative. The writing is also elegant, and crisp. The above is especially true of the manuscript up until the part dealing with the effects of rapamycin, which becomes less compelling.

      We appreciate the thoughtful comments and constructive feedback to improve the impact of the manuscript.

      Weaknesses:

      Where the manuscript becomes less compelling is in the rapamycin section, which does not provide much in the way of mechanistic insights. As such, the effect is more of an epi-phenomenon of unclear insight, and the authors cannot ascribe a signaling mechanism to it that is supported by data. Thus, this latter part rather undermines the overall impact and central advance of the manuscript. The problem is exacerbated by the controversial and anecdotal nature of the entire mTor/aging field, some of whose findings have very unfortunately had to be recently retracted.

      I would strongly recommend to the authors that they end the manuscript with their analysis of the role of M current/KCNQ channels in the numerous age-related changes in sympathetic neuron function that they elegantly report, and save the rapamycin, and possible mTor action, for a separate line of inquiry that the authors could develop in a more thorough and scholarly way.

      We agree with the reviewer in that we cannot ascribe a signaling mechanism to the reversibility observed with rapamycin. Therefore, we are following the recommendation of the reviewer and have removed the rapamycin section.

      We want to emphasize that, in the aging field, any advancement in the knowledge of how drugs such as rapamycin reverse age-associated phenotypes is of crucial importance. These drugs, commonly referred to as aging interventions, include rapamycin, calorie restriction, elamipretide, and metformin. We could have used any of these interventions. And yet, the cellular and molecular mechanisms for each one of these anti-aging drugs are unknown.

      We want to note that, although the nature of the mTOR field is controversial, the effect of rapamycin in extending lifespan and improving health is not. At least these authors have not been able to find retracted papers on that subject or notices from the NIA alerting on this issue. We kindly request the reviewer to provide the references related to rapamycin that were retracted so we can evaluate how that affects the rigor of the premise for our future work.

      As authors, we also find it important to note that we are confident of our observations regarding the effect of rapamycin, and that we are not removing this section because we are retracting our claims. We will use these data to continue our research of the mechanism behind the effect of aging on sympathetic motor neurons.

      Reviewer #2:

      Summary:

      This research shows compelling and detailed evidence showing that aging influences intrinsic membrane properties of peripheral sympathetic motor neurons such that they become more excitable. Furthermore, the authors present convincing evidence that the oral administration of the anti-aging drug Rapamycin partially reversed hyperexcitability in aged neurons. This study also investigates the molecular mechanisms underlying age-associated hyperexcitability in mouse sympathetic motor neurons. In that regard, the authors found an age-associated reduction of an outward current having properties similar to KCNQ2/Q3 potassium current. They suggested a reduction of KCNQ2/Q3 current density in aged neurons as a potential mechanism behind their overactivity.

      Strengths:

      Detailed and rigorous analysis of electrical responses of peripheral sympathetic motor neurons using electrophysiology (perforated patch and whole-cell recordings). Most of the conclusions of this paper are well supported by the data.

      We thank the reviewer for valuing our effort to present a detailed and rigorous analysis.

      Weaknesses:

      (1) The identity of the age-associated reduced current as KCNQ2/Q3 is not corroborated by pharmacology (blocking the current with the specific blocker XE-991).

      We have performed experiments using blockers of KCNQ channels. See responses below.

      (2) The manuscript does not include a direct test of the reduction of KCNQ current as the mechanism behind age-induced hyperexcitability.

      Thank you for raising this point. We have performed experiments blocking KCNQ channels with Linopiridine in young neurons and found that the pharmacological reduction of KCNQ current was enough to depolarize the cell and, in some cases, elicit the firing of action potentials. We present the results in a new figure. We also added the description in the Results section.

      Reviewer #3:

      This is a descriptive study of membrane excitability and Na+ and K+ current amplitudes of sympathetic motor neurons in culture. The main findings of the study are that neurons isolated from aged animals show increased membrane excitability manifested as increased firing rates in response to electrical stimulation and changes in related membrane properties including depolarized resting membrane potential, increased rheobase, and spontaneous firing. By contrast, neuron cultures from young mice show little to no spontaneous firing and relatively low firing rates in response to current injection. These changes in excitability correlate with significant reductions in the magnitude of KCNQ currents in aged neurons compared to young neurons. Treating cultures with the immunosuppressive drug, rapamycin, which has known antiaging effects in model animals appears to reverse the firing rates in aged neurons and enhance KCNQ current. The authors conclude that aging promotes hyperexcitability of sympathetic motor neurons.

      The electrophysiological cataloging of the neuronal properties is generally well done, and the experiments are performed using perforated patch recordings which preserve the internal constituents of neurons, providing confidence that the effects seen are not due to washout of regulators from the cells.

      The main weakness is that this study is a descriptive tabulation of changes in the electrophysiology of neurons in culture, and the effects shown are correlative rather than establishing causality. It is difficult to know from the data presented whether the changes in KCNQ channels are in fact directly responsible for the observed changes in membrane excitability.

      We appreciate the constructive criticism. In an attempt to assess whether changes in KCNQ are in fact directly responsible for the changes in membrane excitability, we have performed experiments blocking KCNQ channels with Linopirdine in young neurons and found that the pharmacological reduction of KCNQ current was enough to depolarize the cell and, in some cases, elicit the firing of action potentials. Conversely, we activated KCNQ channels in old neurons with retigabine and found that the pharmacological activation was enough to hyperpolarize the membrane potential and stop the firing of action potentials. This effect was reversible. These two experiments provide solid evidence to our statement that age-associated reduction of KCNQ activity is responsible for the hyperexcited state in sympathetic motor neurons. We present the results in a new figure (Figure 8). We also added the description in the Results section.

      Furthermore, a notable omission seems to be the analysis of Ca2+ currents which have been widely linked to alterations in membrane properties in aging.

      We thank the reviewer for the comment. We did omit to include data on our studies of calcium currents. We agree that the study of the effect of calcium currents is relevant as it can influence the afterhyperpolarization. Furthermore, we believe that potential effects on calcium currents need to be studied in relation to other physiological processes that depend on calcium, including excitation-transcription coupling, calcium handling, and neurotransmitter release. Adding this information to this manuscript would only contribute to the tabulation of effects that we observe in sympathetic motor neurons with aging. As our main goal was to determine the ion channels responsible for the hyperexcited state, voltage-gated calcium channels or other calcium sources could have reflected a more indirect mechanism as compared to changes in sodium or potassium currents. We will continue our investigation on calcium currents and report our observations in the future, but for now, we have decided to leave it out of this work.

      As well, additional experiments in slice cultures would provide greater significance on the potential relevance of the findings for intact preparations. Finally, experiments using KCNQ blockers and activators could provide greater relevance that the observed changes in KCNQ are indeed connected to changes in membrane excitability.

      We are happy to report that we have performed these experiments and that the results strengthen the conclusion that changes in KCNQ are connected to changes in membrane excitability.

      Recommendations for the authors:

      We recommend the following essential revisions summarized from the reviews:

      (1) Is the change in KCNQ current responsible for the altered membrane excitability? What happens to membrane excitability when KCNQ is partially blocked (see reviewer 2 comment below)? Conversely, what happens to the excitability of aged neurons if KCNQ is activated (e.g., with retigabine)? (see reviewer 3 comment below). Results of these important experiments are needed to support the argument that KCNQ underlies the alterations in firing and membrane excitability.

      We have responded to this point. Thank you for the suggested experiments. In summary, the new experiments show that blocking KCNQ channels in young neurons lead to depolarization, and in some cases, the firing of action potentials. Conversely, the activation of KCNQ channels in aged neurons leads to hyperpolarization and a cease of firing. We have added a new figure and reported the results in the Results section.

      (2) Rapamycin experiments are underdeveloped and weak. These should be further developed by examining the effects of KCNQ blockers to see if their effects on membrane excitability are reversed. Also, see comment 2 from reviewer 1.

      We have followed the recommendation by reviewer 1 and removed the section on rapamycin.

      (3) The study should examine voltage-gated calcium currents to determine potential changes in these currents with aging. See reviewer 3 comments.

      We thank the reviewer for the comment. We performed preliminary experiments and found that aging impacts calcium currents. However, we omitted to include the data. In our opinion, the changes in calcium currents are outside the scope of this work, as the changes could be related to physiological processes that go beyond the control of firing. Effects on calcium currents need to be studied in relation to other physiological processes that depend on calcium, including excitation-transcription coupling, calcium handling, and neurotransmitter release. The study of the relationship between changes in calcium currents and those physiological processes would require multiple experiments and detailed analysis. We will continue our investigation on calcium currents and report our observations in the future, but for now, we have decided to leave it out of this work.

      We have also edited suggestions in the Figures and Legends.

      (2) In Fig.4 panel H, Y-axis must be # AP at 100 pA.

      We corrected the axis in Figure 4H.

      (3) In Legend Fig. 5, the number of cells for each subpopulation (n) needs to be corrected. In plots F-I, n= 9, 7, and 3 seem to be the number of adapting cells for 12-, 64- and 115w-old, respectively, instead of the number of single, phasic, and old cells for 12-week-old mice. A similar correction seems to be needed for 64-week-old and 115-week-old.

      We corrected the n number in Figure 5.

      (4) In Figure 6 panel C, it would be helpful for a reader to align the voltage protocol depicted with the current shown.

      We have aligned the voltage protocol to the current traces.

      (5) In the legend of Figure 7, the description of panel A ends with "Magnitude of voltage step to elicit each trace is shown in black", however in panel A there is no voltage depiction. In the description of panel D, "N = X animals, n=x cells" must be corrected.

      We have modified the legend to clarify. It now reads: “Text at the right of each current trace corresponds to the voltage used to elicit that current.”

      New Figure 8

      Author response image 1.

      Pharmacological inhibition and activation of KCNQ channels mimic the age-dependent phenotype. A. Membrane potential recordings from two young neurons treated with 25 μM linopirdine during the time illustrated by the light gray box. No holding current was applied. B. Left: Summary of the resting membrane potential measured before (light orange) and after (dark orange) the application of linopirdine. Right: Summary of the depolarization produced by linopirdine calculated by subtracting the post-drug voltage from the pre-drug voltage (V). Data points are from N = 2 animals, n = 8 cells, 14-week-old mice. C. Membrane potential recordings from two aged neurons treated with 10 μM retigabine during the time illustrated by the light gray box. No holding current was applied. D. Left: Summary of the resting membrane potential measured before (light purple) and after (dark purple) the application of retigabine. Right: Summary of the hyperpolarization produced by retigabine calculated by subtracting the post-drug voltage from the pre-drug voltage (V). Data points are from N = 2 animals, n = 7 cells, 120-week-old mice. P-values are shown at the top of the graphs.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      In this important paper, Blin and colleagues develop a high-throughput behavioral assay to test spontaneous swimming and olfactory preference in individual Mexican cavefish larvae. The authors present compelling evidence that the surface and cave morphs of the fish show different olfactory preferences and odor sensitivities and that individual fish show substantial variability in their spontaneous activity that is relevant for olfactory behaviour. The paper will be of interest to neurobiologists working on the evolution of behaviour, olfaction, and the individuality of behaviour.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors posed a research question about how an animal integrates sensory information to optimize its behavioral outputs and how this process evolved. Their data (behavioral output analysis with detailed categories in response to the different odors in different concentrations by comparing surface and cave populations and their hybrid) partially answer this tough question. They built a new low-disturbance system to answer the question. They also found that the personality of individual fish is a good predictor of behavioral outputs against odor response. They concluded that cavefish evolved to specialize their response to alanine and histidine while surface fish are more general responders, which was supported by their data.

      Strengths:

      With their new system, the authors could generate clearer results without mechanical disturbances. The authors characterize multiple measurements to score the odor response behaviors, and also brought a new personality analysis. Their conclusion that cavefish evolved as a specialist to sense alanine and histidine among 6 tested amino acids was well supported by their data.

      Weaknesses:

      The authors posed a big research question: How do animals evolve the processes of sensory integration to optimize their behavioral outputs? I personally feel that, to answer the questions about how sensory integration generates proper (evolved) behavior, the authors at least need to show the ecological relevance of their response. For the alanine/histidine preference in cavefish, they need data for the alanine and other amino acid concentrations in the local cave water and compare them with those of surface water.

      We agree with the reviewer. This is why, in the Discussion section, we had written: “…Such significant variations in odor preferences or value may be adaptive and relate to the differences in the environmental and ecological conditions in which these different animals live. However, the reason why Pachón cavefish have become “alanine specialists” remains a mystery and prompts analysis of the chemical ecology of their natural habitat. Of note, we have not found an odor that would be repulsive for Astyanax so far, and this may relate to their opportunist, omnivorous and detritivore regime (Espinasa et al., 2017; Marandel et al., 2020).” This is also why we currently develop field work projects aimed at clarifying this question. However, such experiments and analyses are challenging, practically and technically. We hope we can reach some conclusions in the future.

      To complete the discussion we have also added an important hypothesis: “Alternatively, specialization for alanine may not need to be specific for an olfactory cue present only, or frequently, or in high amounts in caves. Bat guano for example, which is probably the main source of food in the Pachón cave, must contain many amino acids. Enhanced recognition of one of them - in the present case alanine but evolution may have randomly acted for enhanced recognition of another amino acid – should suffice to confer cavefish with augmented sensitivity to their main source of nutriment.”

      Also, as for "personality matters", I read that personality explains a large variation in surface fish. Also, thigmotaxis or wall-following cavefish individuals are exceeded to respond well to odorants compared with circling and random swimming cavefish individuals. However, I failed to understand the authors' point about how much percentages of the odorant-response variations are explained (PVE) by personality. Association (= correlation) was good to show as the authors presented, but showing proper PVE or the effect size of personality to predict the behavioral outputs is important to conclude "personality is matter"; otherwise, the conclusion is not so supported.

      From the above, I recommend the authors reconsider the title also their research questions well. At this moment, I feel that the authors' conclusions and their research questions are a little too exaggerated, with less supportive evidence.

      Thank you for this interesting suggestion, which we have fully taken into consideration. We have therefore now calculated and plotted PVE (the percentage of variation explained on the olfactory score) as a function of swimming speed or as a function of swimming pattern. The results are shown in modified Figure 8 of our revised ms and they suggest that the personality (here, swimming patterns or swimming speed) indeed predicts the olfactory response skills. Therefore, we would like to keep our title as we provide support for the fact that “personality matters”.

      Also, for the statistical method, Fisher's exact test is not appropriate for the compositional data (such as Figure 2B). The authors may quickly check it at https://en.wikipedia.org/wiki/Compositional_data or https://www.annualreviews.org/doi/pdf/10.1146/annurev-statistics-042720-124436.

      The authors may want to use centered log transformation or other appropriate transformations (Rpackage could be: https://doi.org/10.1016/j.cageo.2006.11.017). According to changing the statistical tests, the authors' conclusion may not be supported.

      Actually, in most cases, the distributions are so different (as seen by the completely different colors in the distribution graphs) that there is little doubt that swimming behaviors are indeed different between surface and cavefish, or between ‘before’ and ‘after’ odor stimulation. However, it is true that Fisher’s exact test is not fully appropriate because data can be considered as compositional type. For this kind of data, centered log transformation have been suggested. However, our dataset contains many zeros, and this is a case where log transformations have difficulty handling.

      To help us dealing with our data, the reviewer proposed to consider the paper by Greenacre (2021) (https://www.annualreviews.org/doi/pdf/10.1146/annurev-statistics-042720-124436). In his paper, Greenacre clearly wrote: "Zeros in compositional data are the Achilles heel of the logratio approach (LRA)."

      Therefore, we have now tested our data using CA (Correspondence Analysis), that can deal with table containing many zeros and is a trustable alternative to LRA (Cook-Thibeau, 2021; Greenacre, 2011).

      The results of CA analysis are shown in Supplemental figure 8 and they fully confirm the difference in baseline swimming patterns between morphs as well as changes (or absence of changes) in behavioral patterns after odor stimulation suggested by the colored bar plots in main figures, with confidence ellipses overlapping or not overlapping, depending on cases. Therefore, the CA method fully confirms and even strengthens our initial interpretations.

      Finally, we have kept our initial graphical representation in the ms (color-coded bar plots; the complete color code is now given in Suppl. Fig7), and CA results are shown in Suppl. Figure 8 and added in text.

      Reviewer #2 (Public Review):

      In their submitted manuscript, Blin et al. describe differences in the olfactory-driven behaviors of river-dwelling surface forms and cave-dwelling blind forms of the Mexican tetra, Astyanax mexicanus. They provide a dataset of unprecedented detail, that compares not only the behaviors of the two morphs but also that of a significant number of F2 hybrids, therefore also demonstrating that many of the differences observed between the two populations have a clear (and probably relatively simple) genetic underpinning.

      To complete the monumental task of behaviorally testing 425 six-week-old Astyanax larvae, the authors created a setup that allows for the simultaneous behavioral monitoring of multiple larvae and the infusion of different odorants without introducing physical perturbations into the system, thus biasing the responses of cavefish that are particularly fine-tuned for this sensory modality. During the optimization of their protocol, the authors also found that for cave-dwelling forms one hour of habituation was insufficient and a full 24 hours were necessary to allow them to revert to their natural behavior. It is also noteworthy that this extremely large dataset can help us see that population averages of different morphs can mask quite significant variations in individual behaviors.

      Testing with different amino-acids (applied as relevant food-related odorant cues) shows that cavefish are alanine- and histidine-specialists, while surface fish elicit the strongest behavioral responses to cysteine. It is interesting that the two forms also react differently after odor detection: while cave-dwelling fish decrease their locomotory activity, surface fish increase it. These differences are probably related to different foraging strategies used by the two populations, although, as the observations were made in the dark, it would be also interesting to see if surface fish elicit the same changes in light as well.

      Thank you for these nice comments.

      Further work will be needed to pinpoint the exact nature of the genetic changes that underlie the differences between the two forms. Such experimental work will also reveal how natural selection acted on existing behavioral variations already present in the SF population.

      Yes. Searching for genetic underpinnings of the sensory-driven behavioral differences is our current endeavor through a QTL study and we should be able to report it in the near future.

      It will be equally interesting, however, to understand what lies behind the large individual variation of behaviors observed both in the case surface and cave populations. Are these differences purely genetic, or perhaps environmental cues also contribute to their development? Does stochasticity provided by the developmental process has also a role in this? Answering these questions will reveal if the evolvability of Astyanax behavior was an important factor in the repeated successful colonization of underground caves.

      Yes. We will also access (at least partially) responses to most of these questions in our current QTL study.

      Reviewer #3 (Public Review):

      Summary:

      The paper explores chemosensory behaviour in surface and cave morphs and F2 hybrids in the Mexican cavefish Astyanax mexicanus. The authors develop a new behavioural assay for the longterm imaging of individual fish in a parallel high-throughput setup. The authors first demonstrate that the different morphs show different basal exploratory swimming patterns and that these patterns are stable for individual fish. Next, the authors test the attraction of fish to various concentrations of alanine and other amino acids. They find that the cave morph is a lot more sensitive to chemicals and shows directional chemotaxis along a diffusion gradient of amino acids. For surface fish, although they can detect the chemicals, they do not show marked chemotaxis behaviour and have an overall lower sensitivity. These differences have been reported previously but the authors report longer-term observations on many individual fish of both morphs and their F2 hybrids. The data also indicate that the observed behavior is a quantitative genetic trait. The approach presented will allow the mapping of genes' contribution to these traits. The work will be of general interest to behavioural neuroscientists and those interested in olfactory behaviours and the individual variability in behavioural patterns.

      Strengths:

      A particular strength of this paper is the development of a new and improved setup for the behavioural imaging of individual fish for extended periods and under chemosensory stimulation. The authors show that cavefish need up to 24 h of habituation to display a behavioural pattern that is consistent and unlikely to be due to the stressed state of the animals. The setup also uses relatively large tanks that allow the build-up of chemical gradients that are apparently present for at least 30 min.

      The paper is well written, and the presentation of the data and the analyses are clear and to a high standard.

      Thank you for these nice comments.

      Weaknesses:

      One point that would benefit from some clarification or additional experiments is the diffusion of chemicals within the behavioural chamber. The behavioural data suggest that the chemical gradient is stable for up to 30 min, which is quite surprising. It would be great if the authors could quantify e.g. by the use of a dye the diffusion and stability of chemical gradients.

      OK. We had tested the diffusion of dyes in our previous setup and we also did in the present one (not shown). We think that, due to differences of molecular weight and hydrophobicity between the tested dyes and the amino acid molecules we are using, their diffusion does not constitute a proper read-out of actual amino acid diffusion. We anticipate that amino acid diffusion is extremely complex in the test box, possibly with odor plumes diffusing and evolving in non-gradient patterns, in the 3 dimensions of the box, and potentially further modified by the fish swimming through it, the flow coming from the opposite water injection side and the borders of the box. This is the reason why we have designed the assay with contrasting “odor side” and “water control side”. Moreover, our question here is not to determine the exact concentration of amino acid to which the fish respond, but to compare the responses in cavefish, surface fish and F2 hybrids. Finally and importantly, we have performed dose/response experiments whereby varying concentrations have been presented for 3 of the 6 amino acids tested, and these experiments clearly show a difference in the threshold of response of the different morphs.

      The paper starts with a statement that reflects a simplified input-output (sensory-motor) view of the organisation of nervous systems. "Their brains perceive the external world via their sensory systems, compute information and generate appropriate behavioral outputs." The authors' data also clearly show that this is a biased perspective. There is a lot of spontaneous organised activity even in fish that are not exposed to sensory stimulation. This sentence should be reworded, e.g. "The nervous system generates autonomous activity that is modified by sensory systems to adapt the behavioural pattern to the external world." or something along these lines.

      Done

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      In addition to my comments in the "weakness" section above, here are my other comments.

      How many times fish were repeatedly assayed and what the order (alanine followed by cysteine, etc) was, is not clear (Pg 24, Materials and Methods). I am afraid that fish memorize the prior experience to get better/worse their response to the higher conc of alanine, etc. Please clarify this point.

      Many fish were tested in different conditions on consecutive days, indeed. Most often, control experiments (eg, water/nothing; water/water; nothing/nothing) were followed by odor testing. In such cases, there is no risk that fish memorize prior experience and that such previous experience interferes with response to odor. In other instances, fish were tested with a low concentration of one amino acid, followed by a high concentration of another amino acid, which is also on the safe side. Of note, on consecutive days, the odors were always perfused on alternate sides of the test box, to avoid possibility of spatial memory. Finally, in the few cases where increasing concentrations of the same amino acids were perfused consecutively, 1) they were perfused on alternate sides, 2) if the fish does not detect a low concentration below threshold / does not respond, then prior experience should not interfere for responding to higher concentrations, and 3) we have evidence (unpublished, current studies) that when a fish is given increasing concentrations of the same amino acid above detection threshold, then the behavioral response is stable and reproducible (eg does not decrease or increase).

      Minor points:

      Thygmotaxis and wall following.

      Classically, thigmotaxis and wall following are treated as the same (sharma et al., 2009; https://pubmed.ncbi.nlm.nih.gov/19093125/) but the authors discriminate it in thigmotaxis at X-axis and Y-axis because fish repeatedly swam back and forth on x-axis wall or y-axis wall. I understand the authors' point to discriminate WF and T but present them with more explanations (what the differences between them) in the introduction and result sections.

      Done

      Pg5 "genetic architecture" in the introduction.

      "Genetic architecture" analysis needs a more genomic survey, such as GWAS, QTL mapping, and Hi-C. Phenotype differences in F2 generation can be stated as "genetic factor(s)" "genetic component(s)", etc. please revise.

      Done

      Pg10 At the serine treatment, the authors concluded that "...suggesting that their detection threshold for serine is lower than for alanine." I believe that the 'threshold for serine is higher' according to the authors' data. Their threshold-related statement is correct in Pg21 "as SF olfactory concentration detection threshold are higher than CF,..." So the statement on page 10 is a just mistake, I think. Please revise.

      Done (mistake indeed)

      Pg11 After explaining Fig5, the statement "In sum, the responses of the different fish types to different concentrations of different amino acids were diverse and may reflect complex, case-bycase, behavioral outputs" does not convey any information. Please revise.

      OK. Done : “In sum, the different fish types show diverse responses to different concentrations of different amino acids.”

      For the personality analysis (Fig 7)

      The index value needs more explanation. I read the materials and methods three times but am still confused. From the equation, the index does not seem to exceed 1.0, unless the "before score" was a negative value, and the "after score" value was positive. I could not get why the authors set a score of 1.5 as the threshold for the cumulative score of these different behavior index values (= individual score). Please provide more description. Currently, I am skeptical about this index value in Fig 7.

      Done, in results and methods.

      Pg15 the discussion section

      Please discuss well the difference between the authors' finding (cavefish respond 10^-4M for position and surface fish responded 10^-4 for thig-Y; Fig 4AB), and those in Hinaux et al. 2016 (cavefish responded 10^-10M alanine but surface fish responded 10^-5M or higher). It seems that surface fish could respond to the low conc of alanine as cavefish do, which is opposed to the finding in Hinaux 2016.

      The increase in NbrtY at population level for surface fish with 10-4M alanine (~10-6M in box) was most probably due to only a few individuals. Contrarily to cavefish, all other parameters were unchanged in surface fish for this concentration. Moreover, at individual level, only 3.2% of surface fish had significant olfactory scores (to be compared to 81.3% for cavefish). Thus, we think that globally this result does not contradict our previous findings in Hinaux et al (2016), and solely represent the natural, unexplained variations inherent to the analysis of complex animal behaviors – even when we attempt to use the highest standards of controlled conditions.

      Of note, in the revised version, we have now included a full dose/response analysis for alanine concentration ranging from 10-2M to 10-10M, on cavefish. Alanine 10-5M has significant effects (now shown in Suppl Fig2 and indicated in text; a column has been added for 10-5M in Summary Table 1). Lower concentrations have milder effects (described in text) but confirm the very low detection threshold of cavefish for this amino acid.

      Pg19, "In sum, CF foraging strategy has evolved in response to the serious challenge of finding food in the dark"

      My point is the same as explained in the 'weakness' section above: how this behavior is effective in the cave life, if they conclude so? Please explain or revise this statement.

      The present manuscript reports on experiments performed in “artificial” and controlled laboratory conditions. We are fully aware that these conditions are probably distantly related to conditions encountered in the wild. Note that we had written in original version (page 20) “…for 6-week old juveniles in a rectangular box - but the link may be more elusive when considering a fish swimming in a natural, complex environment.” As the reviewer may know, we also perform field studies in a more ethological approach of animal behaviors, thus we may be able to discuss this point more accurately in the future.

      Pg20 "To our knowledge, this is the first time individual variations are taken into consideration in Astyanax behavioral studies."

      This is wrong. Please see Fernandes et al., 2022. (https://pubmed.ncbi.nlm.nih.gov/36575431/).

      OK. The sentence is wrong if taken in its absolute sense, i.e., considering inter-individual variations of a given parameter (e.g., number of neuromasts per individual or number of approaches to vibrating rod in Fernandez et al, 2022). In this same sense, Astyanax QTL studies on behaviors in the past also took into account variations among F2 individuals. Here, we wanted to stress that personality was taken into consideration. The sentence has been changed: “To our knowledge, this is the first time individual temperament is taken into consideration in Astyanax behavioral studies.”

      Figure 2B and others.

      The order of categories (R, R-TX, etc) should match in all columns (SF, F2, and CF). Currently, the category orders seem random or the larger ratio categories at the bottom, which is quite difficult to compare between SF, F2, and CF. Also, the writings in Fig 2A (times, Y-axis labels, etc), and the bargraphs' writings are quite difficult to read in Fig 2B, Fig 3B 4H, 5GN, 6EFG. Also, no need to show fish ID in Fig 2C in the current way, but identify the fish data points of the fish in Fig 2D (SF#40, CF#65, and F2#26) in Fig 2C if the authors want to show fish ID numbers in the boxplots. Fish ID numbers in other boxplot figures are recommended to be removed too.

      We have thought a lot on how to best represent the distributions of swimming patterns in graphs such as Fig 2B and others. The difficulty is due to the existence of many combinations (33 possibilities in total, see new Suppl Fig7), which are never the same in different plots/conditions because individual tested fish are different. We decided that that the best way was to represent, from bottom to top, the most used to the less used swimming patterns, and to use a color code that matches at best the different combinations. It was impossible to give the full color code on each figure, therefore it was simplified, and we believe that the results are well conveyed on the graphs. We would like to keep it as it is. To respond (partially) to the reviewer’s concern, we have now added a full color code description in a new Supplemental Figure 7 (associated to Methods).

      Size of lettering has been modified in all pattern graphs like Fig2A. Thanks for the suggestion, it reads better now.

      Finally, we would like to keep the fish ID numbers because this contributes to conveying the message of the paper, that individuality matters.

      Raw data files were not easy to read in Excel or LibreOffice. Please convert them into the csv format to support the rigor in the authors' conclusion.

      We do not understand this request. Our very large dataset must be analysed with R, not excel for stats or for plotting and pattern analysis. However, raw data files can be opened in excel with format conversion.

      Reviewer #2 (Recommendations For The Authors):

      I think most of the experimental procedures (with few exceptions, see below) are well-defined and nicely described, so the majority of my suggestions will be related to the visualization of the data. I think the authors have done a great job in presenting this complex dataset, but there are still some smaller tweaks that could be used to increase the legibility of the presented data.

      First and perhaps foremost, a better definition of the swimming pattern subsets is needed. I have no problem understanding the main behavioral types, but whereas the color codes for these suggest that there is continuous variance within each pattern, it is not clear (at least to me), what particular aspect(s) of the behaviors vary. Also, whereas the sidebars/legends suggest a continuum within these behaviors, the bar charts themselves clearly present binned data. I did not find a detailed description of how the binning was done. As this has been - according the Methods section - a manual process, more clarity about the details of the binning would be welcome. I would also suggest using binned color codes for the legends as well.

      Done, in Results and Methods. We hope it is now clear that there is no “continuum”, rather multiple combinations of discrete swimming patterns. The gradient aspect in color code in figures has been removed to avoid the idea of continuum. According to the chosen color code, WF is in red, R in blue, T in yellow and C in green. Then, combination are represented by colors in between, for example, R+WF is purple. We have now added a full color code description for the swimming patterns and their combinations in a new Supplemental Figure 7 (associated to Methods).

      Also, to better explain the definition of the swimming patterns and the graphical representation, it now reads (in Methods):

      “The determination of baseline swimming patterns and swimming patterns after odor injection was performed manually based on graphical representations such as in Figure 2A or Figure 3A. Four distinctive baseline behaviors clearly emerged: random swim (R; defined as haphazard swimming with no clear pattern, covering entirely or partly the surface of the arena), wall following (WF; defined as the fish continuously following along the 4 sides of the box and turning around it, in a clockwise or counterclockwise fashion), large or small circles (C; self explanatory), and thigmotactism (T, along the X- or the Y-axis of the box; defined as the fish swimming back and forth along one of the 4 sides of the box). On graphical representations of swimming pattern distributions, we used the following color code: R in blue, WF in red, C in green, T in yellow. Of note, many fish swam according to combination(s) of these four elementary swimming patterns (see descriptions in the legends of Supplemental figures, showing many examples). To fully represent the diversity and the combinations of swimming patterns used by individual fish, we used an additional color code derived from the “basic” color code described above and where, for example R+WF is purple. The complete combinatorial color code is shown in Suppl. Fig7.”

      It would be also easier to comprehend the stacked bar charts, presenting the particular swimming patterns in each population, if the order of different swimming patterns was the same for all the plots (e.g. the frequency of WF always presented at the bottom, R on the top, and C and T in the middle). This would bring consistency and would highlight existing differences between SF, CF, and F2s. Furthermore, such a change would also make it much easier to see (and compare) shifts in behaviors.

      We have thought a lot on how to best represent the distributions of swimming patterns in graphs such as Fig 2B and others. The difficulty is due to the existence of many combinations, which are never the same in different plots/conditions because the individual fish tested are different. We decided to keep it as it currently stands, because we think re-doing all the graphs and figures would not significantly improve the representation. In fact, we think that the differences between morphs (dominant blue in SF, dominant red in CF) and between conditions (bar charts next to each other) are easy to interpret at first glance in the vast majority of cases. Moreover, they are now completed by CA analyses (Suppl Figure 8).

      While the color coding of the timeline in the "3D" plots presented for individual animals is a nice feature, at the moment it is slightly confusing, as the authors use the same color palette as for the stacked bar charts, representing the proportionality of the particular swimming patterns. As the y-axis is already representing "time" here, the color coding is not even really necessary. If the authors would like to use a color scheme for aesthetic reasons, I would suggest using another palette, such as "grey" or "viridis".

      We would like to keep the graphical aspect of our figures as they are, for aesthetic reasons. To avoid confusion with stacked bar chart color code, we have added a sentence in Methods and in the legend of Figure 2, where the colors first appear:

      “The complete combinatorial color code is shown in Suppl. Figure 7. Of note, in all figures, the swimming pattern color code does not relate whatsoever with the time color code used in the 2D plus time representation of swimming tracks such as in Figure 2A”.

      I would also suggest changing the boxplots to violin-plots. Figure 7 clearly shows bimodality for F2 scores (something, as the authors themselves note, not entirely surprising given the probably poligenic nature of the trait), but looking at SF and CF scores I think there are also clear hints for non-normal distributions. If non-normal distribution of traits is the norm, violin-plots would capture the variance in the data in a more digestible way. (The existence of differently behaving cohorts within the population of both SF and CF forms would also help to highlight the large pre-existing variance, something that was probably exploited by natural selection as well, as mentioned briefly in the Discussion by the authors, too.)

      The bimodal distribution of scores shown by F2s in Figure 7B is indeed probably due to the polygenic nature of the trait. However, such distribution is rather the exception than the norm. Moreover, the boxplot representations we have used throughout figures include all the individual points, and outliers can be identified as they have the fish ID number next to them. This allows the reader to grasp the variance of the data. Again, redoing all graphs and figures would constitute a lot of work, for little gain in term of conveying the results. Therefore, we choose not to change the boxplot for violin plots.

      The summary data of individual scores in Table 1B shows some intriguing patterns, that warrant a bit further discussion, in my opinion. For example, we can see opposite trends in scores of SF and CF forms with increasing alanine concentration. Is there an easy explanation for this? Also, in the case of serine, the CF scores do not seem to respond in a dose-dependent manner and puzzlingly at 10^(-3)M serine concentration F2 scores are above those of both grandparental populations.

      That is true. However, we have no simple explanation for this. To begin responding to this question, we have now performed full dose/responses expts for alanine (concentrations tested from 10-2M to 10-10M on cavefish; confirm that CF are bona fide “alanine specialists”) and for serine (10-2M to 104M tested on both morphs; confirm that both morphs respond well to this amino acid). These complementary results are now included in text and figures (partially) and in the summary table 1.

      If anything is known about this, I would also welcome some discussion on how thigmotactic behavior, a marker of stress in SF, could have evolved to become the normal behavior of CF forms, with lower cortisol levels and, therefore lower anxiety.

      We actually think thigmotactism is a marker of stress in both morphs. See Pierre et al, JEB 2020, Figure S3A: in both SF and CF thigmotaxis behavior decreases after long habituation times. In our hands, the only difference between the two morphs is that surface fish (at 5 month of age) express stress by thigmotactism but also freezing and rapid erratic movements, while cavefish have a more restricted stress repertoire.

      This is why in the present paper we have carefully made the distinction between thigmotactism (= possible stress readout) and wall following (= exploratory behavior). Our finding that WF and large circles confers better olfactory response scores to cavefish is in strong support of the different nature of these two swimming patterns. Then, why is swimming along the 4 walls of a tank fundamentally different from swimming along one wall? The question is open, although the number of changes of direction is probably an important parameter: in WF the fish always swims forward in the same direction, while in T the fish constantly changes direction when reaching the corner of the tank – which is similar to erratic swim in stressed surface fish.

      Finally two smaller suggestions:

      • When referring to multiple panels on the same figure it would be better to format the reference as "Figure 4D-G" instead of "Figure 4DEFG";

      Done

      • On page 4, where the introduction reads as "although adults have a similar olfactory rosette with 2025 lamellae", in my opinion, it would be better to state that "while adults of the two forms have a similar olfactory rosette with 20-25 lamellae".

      Done

      Reviewer #3 (Recommendations For The Authors):

      Consider moving Figure 3 to be a supplement of Figure 4. This figure shows a water control and therefore best supplements the alanine experiment.

      We would like to keep this figure as a main figure: we consider it very important to establish the validity of our behavioral setup at the beginning of the ms, and to establish that in all the following figures we are recording bona fide olfactory responses.

      "sensory changes in mecano-sensory and gustatory systems " - mechano-sensory.

      Done

      Figure 2 legend: "(3) the right track is the 3D plus time (color-coded)" - shouldn't it be 2D plus time or 3D (x,y, time).

      True! Thanks for noting this, corrected.

      Figure 4 legend "E, Change in swimming patterns" should be H.

      Done

      "suggesting that their detection threshold for serine is lower than for alanine" - higher?

      Done

      In the behavioural plots, I assume that the "mean position" value represents the mean position along the X-axis of the chamber - this should be clarified and the axis label updated accordingly.

      That is correct and has been updated in Methods and Figures and legends.

      "speed, back and forth trips in X and Y, position and pattern changes (see Methods; Figure 7A)." - here it would be helpful to add an explanation like "to define an olfactory score for individual fish."

      This has been changed in Results and more detailed explanations on score calculations are now given in Methods.

      "possess enhanced mecanosensory lateral line" - mechanosensory.

      Done

    1. Author response:

      Reviewer #1 (Public Review):

      (1) Deleting ICP34.5 from the HSV construct has a very strong effect on HIV reactivation. Why is no eGFP readout given in Figure 1C as for WT HSV? The mechanism underlying increased activation by deleting ICP34.5 is only partially explored. Overexpression of ICP34.5 has a much smaller effect (reduction in reactivation) than deletion of ICP34.5 (strong activation); so the story seems incomplete.

      Thank you for your comment. (1) In Figure 1c, "HSV-wt" refers to the virus rescued from pBAC—GFP-HSV (as mentioned in the “Method” section), which carries GFP itself. Therefore, detecting GFP cannot distinguish between HSV infection and HIV reactivation. Hence, we assess the reactivation effect by measuring the mRNA levels of HIV LTR. (2) Our data indicate that overexpression of ICP34.5 inhibits the reactivation of the HIV latent reservoir, but this effect is not equivalent to the activation observed in HSV-1 with ICP34.5 deletion. There are some possible reasons: one is that the overexpression of ICP34.5 by lentivirus is randomly integrated into the genome of J-Lat cell line, which will potentially activate HIV latency to some extent. The other is that ICP34.5 mainly inhibited HIV reactivation through modulation of host NF-κB or HSF1 pathways, while PMA, TNF-a, and HSV-1 with deleted ICP34.5 can reactivate HIV latency by other mechanisms that have yet to be determined. Thereby, exerting a synergistic small inhibitory effect. We will further discuss this issue in the revised version. Thank you.

      (2) No toxicity data are given for deleting ICP34.5. How specific is the effect for HIV reactivation? An RNA seq analysis is required to show the effect on cellular genes.

      Thank you for your comment. We plan to conduct several experiments to demonstrate a reduction in HSV-1 replication after ICP34.5 deletion: (1) Detect the growth curve of HSV-1 deleted with ICP34.5 in Vero cells. The virus growth curve of HSV-1 with deleted ICP34.5 may be lower than that of wild-type HSV-1, which could demonstrate a reduction in HSV-1 replication after ICP34.5 deletion. (2) Detect the level of inflammatory factors in tumor cells after infection with HSV-1 deleted with ICP34.5.

      We believe that the effect is specific, as we previously tested poxviruses and adenoviruses and found no activation of the latent reservoir. We consider the activation observed with HSV-1 virus and HSV-1 with deleted ICP34.5 to be specific. We will supplement relevant data in the revised version.

      In addition, we will provide the corresponding RNA-seq data to assess its effect on cellular genes.

      (3) The primate groups are too small and the results to variable to make averages. In Figure 5, the group with ART and saline has two slow rebounders. It is not correct to average those with a single quick rebounder. Here the interpretation is NOT supported by the data.

      We agree with you that this is a pilot study of limited numbers of rhesus macaques. There were only 3 monkeys per group in this study, but our results were encouraging. Although the number of macaques was relatively limited, these nine macaques were distributed very carefully based on age, sex, weight and genotype. All SIV-infected macaques used in this study had a long history of SIV infection and had several courses of ART therapy, which mimics treatment of chronic HIV-1 infection in humans. These macaques were infected with SIVmac239 for more than 5 years, and highly pathogenic SIV-infected macaques have been well-validated as a stringent model to recapitulate HIV-1 pathogenesis and persistence during ART therapy in humans. Indeed, in our rhesus model, ART treatment effectively suppressed SIV infection to undetectable levels in plasma, and upon ART discontinuation, virus rapidly rebounded, which is very similar with that in ART-treated HIV patients. Our further studies will be expanded the scale of animals and then to preclinical and clinical study in our next projects. Thank you for your understanding.

      Discussion

      HSV vectors are mainly used in cancer treatment partially due to induced inflammation. Whether these are suitable to cure PLWH without major symptoms is a bit questionable to me and should at least be argued for.

      We will provide more data about the safety assessment of HSV-1 vector in SIV-infected macaques, and also further discuss the potential of inflammatory HSV vector in PLWH in the revised manuscript.

      Reviewer #2 (Public Review):

      (1) While the mechanism of ICP34.5 interaction and modulation of the NF-kB and HSF1 pathways are shown, this only proves ICP34.5 interactions but does not give away the mechanism of how the HSV-deltaICP-34.5 vector purges HIV-1 latency. What other components of the vector are required for latency reversal? Perhaps serial deletion experiments of the other ORFs in the HSV-deltaICP-34.5 vector might be revealing.

      We agree with your suggestion. In fact, we are currently further exploring some viral genes of HSV-1 that play a role in activation. We have found that the ICP0 gene of HSV-1 virus can activate HIV, and the specific mechanism is under investigation.

      (2) The efficacy of the HSV vaccine vectors was evaluated in Rhesus Macaque model animals. Animals were chronically infected with SIV (a parent of HIV), treated with ART, challenged with bi-functional HSV vaccine or controls, and discontinued treatment, and the resulting virus burden and immune responses were monitored. The animals showed SIV Gag and Env-specific immune responses, and delayed virus rebound (however rebound is still there), and below-detection viral DNA copies. What would make a more convincing argument to this reviewer will be data to demonstrate that after the bi-functional vaccine, the animals show overall reduction in the number of circulating latent cells. The feasibility of obtaining such a result is not clearly demonstrated.

      Thank you for your suggestion. We will plan to conduct IPDA experiments to further supplement data on the overall reduction in circulating latent cell numbers in animals.

      (3) The authors state that the reduced virus rebound detected following bi-functional vaccine delivery is due to latent genomes becoming activated and steady-state neutralization of these viruses by antibody response. This needs to be demonstrated. Perhaps cell-culture experiments from specimens taken from animals might help address this issue. In lab cultures one could create environments without antibody responses, under these conditions one would expect a higher level of viral loads to be released in response to the vaccine in question.

      We plan to use primary cells for related experiments to further validate the results of the cell experiments.

      (4) How do the authors imagine neutralizing HIV-1 envelope epitopes by a similar strategy? A discussion of this point may also help.

      Thank you for your comments. In fact, our study adopts the "shock and kill" strategy, with a focus on the "kill" aspect leaning towards T-cell therapy. Although the vaccine in the paper also utilizes Env antigen, we believe these antibodies are insufficient for neutralizing the mutated SIV virus. We strongly agree with your suggestion that in HIV/AIDS treatment, effective T-cell killing combined with broad-spectrum neutralizing antibodies would be more effective. This aligns with our findings, as our treatment has partially delayed viral rebound but with a relatively short duration of suppression. This may indicate insufficient killing activity. In future research, we will further consider the role of broad-spectrum neutralizing antibodies. Our revised manuscript will elaborate on this in the discussion section.

      (5) I thought the empty HSV-vector control also elicited somewhat delayed kinetics in virus rebound and neutralization, can the authors comment on why this is the case?

      We agree with you that the HSV-1 empty vector does exhibit somewhat a delayed rebound. The reason is that our treatment simultaneously utilizes both the HSV vector vaccine and ART therapy. Although the empty HSV-vector cannot elicit SIV-specific CTL response, it effectively activates the latent SIV reservoirs and then these activated virions can be partially killed by ART, Therefore, even without carrying antigens, the slight delay may be achieved.

    1. Author response:

      We would like to thank the eLife Editors and Reviewers for their positive assessment and constructive comments, and for the opportunity to revise our manuscript. We greatly appreciate the Reviewers’ recommendations and believe that they will further improve our manuscript.

      In revising the manuscript, our primary focus will be enhancing the clarity surrounding testing procedures and addressing corrections for multiple comparisons. Additionally, we intend to offer more explicit information about the statistical tests employed, along with the details about the number of models/comparisons for each test. We will also include an extended discussion on potential limitations of the dopaminergic receptor mapping methods used, addressing the Reviewers’ comments relating to the quality of PET imaging with different dopaminergic tracers in mesiotemporal regions such as the hippocampus. While the code used for connectopic mapping is publicly available through the ConGrads toolbox, we will provide the additional code we have used for data processing and analysis, visualization of hippocampal gradients, and the cortical projections. The data used in the current study is not publicly available due to ethical considerations concerning data sharing, but can be shared upon reasonable request from the senior author. Additional plans include clarifying and discussing which findings were successfully replicated, and addressing Reviewers’ suggestions for using other openly available cohorts for replication, and implementing alternative coordinate systems to quantify connectivity change along gradients.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript "comparative transcriptomics reveal a novel tardigrade specific DNA binding protein induced in response to ionizing radiation" aims to provide insights into the mediators and mechanisms underlying tardigrade radiation tolerance. The authors start by assessing the effect of ionizing radiation (IR) on the tardigrade lab species, H. exemplaris, as well as the ability of this organism to recover from this stress - specifically, they look at DNA double and single-strand breaks. They go on to characterize the response of H. exemplaris and two other tardigrade species to IR at the transcriptomic level. Excitingly, the authors identify a novel gene/protein called TDR1 (tardigrade DNA damage response protein 1). They carefully assess the induction of expression/enrichment of this gene/protein using a combination of transcriptomics and biochemistry - even going so far as to use a translational inhibitor to confirm the de novo production of this protein. TDR1 binds DNA in vitro and co-localizes with DNA in tardigrades.

      Reverse genetics in tardigrades is difficult, thus the authors use a heterologous system (human cells) to express TDR1 in. They find that when transiently expressed TDR1 helps improve human cell resistance to IR.

      This work is a masterclass in integrative biology incorporating a holistic set of approaches spanning next-gen sequencing, organismal biology, biochemistry, and cell biology. I find very little to critique in their experimental approaches.

      Strengths:

      (1) Use of trans/interdisciplinary approaches ('omics, molecular biology, biochemistry, organismal biology)

      (2) Careful probing of TDR1 expression/enrichment

      (3) Identification of a completely novel protein seemingly involved in tardigrade radio-tolerance.

      (4) Use of multiple, diverse, tardigrade species of 'omics comparison.

      Weaknesses:

      (1) No reverse genetics in tardigrades - all insights into TDR1 function from heterologous cell culture system.

      (2) Weak discussion of Dsup's role in preventing DNA damage in light of DNA damage levels measured in this manuscript.

      (3) Missing sequence data which is essential for making a complete review of the work.

      Overall, I find this to be one of the more compelling papers on tardigrade stress-tolerance I have read. I believe there are points still that the authors should address, but I think the editor would do well to give the authors a chance to address these points as I find this manuscript highly insightful and novel.

      We thank the reviewer for his comments.

      We agree that it will be important to further investigate the role of Dsup in radio-tolerance. We briefly mentioned this point in the discussion (p14). Our findings show that tardigrades undergo DNA damage at levels roughly similar to radio-sensitive organisms and therefore support a major role for DNA repair in the maintenance of genome integrity after exposure to IR. Nevertheless, we believe that more precise quantification of DNA damage may still reveal a contribution of genome protection to radio-tolerance of tardigrades compared to radio-sensitive organisms. Dsup loss of function experiments in tardigrades would clearly be the best way to assess this possibility. In the absence of experiments directly addressing the function of Dsup, we prefer to refrain from drawing any firm conclusion on prevention of DNA damage by Dsup and thus to keep a more open position. In any case, as discussed in the text, we note that Dsup has only been reported in Hypsibioidea and other molecular players, such as TDR1, are likely involved in radio-tolerance in other tardigrade species.

      The sequence data can be accessed at the NCBI SRA database with Bioproject ID PRJNA997229.

      Reviewer #3 (Public Review):

      Summary:

      This paper describes transcriptomes from three tardigrade species with or without treatment with ionizing radiation (IR). The authors show that IR produces numerous single-strand and double-strand breaks as expected and that these are substantially repaired within 4-8 hours. Treatment with IR induces strong upregulation of transcripts from numerous DNA repair proteins including Dsup specific to the Hypsobioidea superfamily. Transcripts from the newly described protein TDR1 with homologs in both Hypsibioidea and Macrobiotoidea supefamilies are also strongly upregulated. They show that TDR1 transcription produces newly translated TDR1 protein, which can bind DNA and co-localizes with DNA in the nucleus. At higher concentrations, TDR appears to form aggregates with DNA, which might be relevant to a possible function in DNA damage repair. When introduced into human U2OS cells treated with bleomycin, TDR1 reduces the number of double-strand breaks as detected by gamma H2A spots. This paper will be of interest to the DNA repair field and to radiobiologists.

      Strengths:

      The paper is well-written and provides solid evidence of the upregulation of DNA repair enzymes after irradiation of tardigrades, as well as upregulation of the TRD1 protein. The reduction of gamma-H2A.X spots in U2OS cells after expression of TRD1 supports a role in DNA damage.

      Weaknesses:

      Genetic tools are still being developed in tardigrades, so there is no mutant phenotype to support a DNA repair function for TRD1, but this may be available soon.

      We thank the reviewer for his comments.

      Reviewer #4 (Public Review):

      The manuscript brings convincing results regarding genes involved in the radio-resistance of tardigrades. It is nicely written and the authors used different techniques to study these genes. There are sometimes problems with the structure of the manuscript but these could be easily solved. According to me, there are also some points which should be clarified in the result sections. The discussion section is clear but could be more detailed, although some results were actually discussed in the results section. I wish that the authors would go deeper in the comparison with other IR-resistant eucaryotes. Overall, this is a very nice study and of interest to researchers studying molecular mechanisms of ionizing radiation resistance.

      I have two small suggestions regarding the content of the study itself.

      (1) I think the study would benefit from the analyses of a gene tree (if feasible) in order to verify if TDR1 is indeed tardigrade-specific.

      (2) It would be appreciated to indicate the expression level of the different genes discussed in the study, using, for example, transcript per millions (TPMs).Recommendations for the authors: please note that you control which revisions to undertake from the public reviews and recommendations for the authors

      We thank the reviewer for his comments.

      (1) To identify TDR1 homologous sequences in non-tardigrade species, we conducted extensive homology searches using multiple homology-based approaches (Blastp and Diamond against the NCBI non-redundant protein sequences (nr) database and hmmsearch against the EBI reference proteomes), which failed to identify TDR1 homologs in non-tardigrade ecdysozoans, thus strongly supporting that TDR1 is indeed tardigrade-specific.

      To be clearer in the manuscript, we now state the absence of hits for TDR1 in non-tardigrade ecdysozoans. Given the absence of homologs in non-tardigrade species, it is not possible to make a gene tree with non-tardigrade species.

      (2) To further document expression levels (which were already available from the Tables in the initial submission), we added MAplots (representing log2foldchange and logNormalized read counts) in the supplementary materials (Supp Figure 3 and Supp Figure 8). These additional figures clearly document that the DNA repair genes discussed in the main text and TDR1 are highly expressed genes after IR and after Bleomycin treatment.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      We thank the reviewer for his comments.

      (1) It has always seemed strange to me that tardigrades accumulate just as much DNA damage as any other organism when irradiated and yet their Dsup protein is supposed to shield and protect their DNA from damage. Perhaps this is an appropriate time for this idea to be reconsidered given the Dsup was NOT induced by IR in this study and the authors found that their animals incurred just as much damage as other biological systems. While Dsup is clearly not the focus of this manuscript, it is the protein most associated with tardigrade radio-tolerance and I would argue this new paper would call into question previous conclusions made about Dsup.

      We agree that it will be important to further investigate the role of Dsup in radio-tolerance. We briefly mentioned this point in the discussion (p14). Our findings show that tardigrades undergo DNA damage at levels roughly similar to radio-sensitive organisms and therefore support a major role for DNA repair in the maintenance of genome integrity after exposure to IR. Nevertheless, we believe that more precise quantification of DNA damage may still reveal a contribution of genome protection to radio-tolerance of tardigrades compared to radio-sensitive organisms. Dsup loss of function experiments in tardigrades would clearly be the best way to assess this possibility. In the absence of experiments directly addressing the function of Dsup, we prefer to refrain from drawing any firm conclusion on prevention of DNA damage by Dsup and thus to keep a more open position. In any case, as discussed in the text, we note that Dsup has only been reported in Hypsibioidea and other molecular players, such as TDR1, are likely involved in radio-tolerance in other tardigrade species.

      (2) While reverse genetics are difficult in tardigrades, they are not impossible, and RNAi can be used to good effect in these animals. In fact several authors on this manuscript have used RNAi to examine the necessity of genes in tardigrade stress tolerance in the past. Was an attempt made to RNAi TDR1? If not, why? With the large amount of work that the authors put into showing the sufficiency of TDR1 for increasing radiotolerance in cell culture, one would think looking at necessity in tardigrades would be of great interest. If RNAi was performed, what were the results? Even a negative result here is informative since a protein can be sufficient but not necessary for a function - if this were the case it would mean tardigrades have some redundant mechanism(s) for surviving radiation exposure beyond TDR1.

      We have attempted RNAi experiments targeting TDR1 or a mix of DNA repair genes (including XRCC5) and examined response to a bleomycin treatment of 2 weeks. Unfortunately, we could not distinguish any difference between uninjected animals and animals injected with TDR1 dsRNAs , or the mix of DNA repair genes dsRNAs. We concluded that, bleomycin treatment, that we used because it is much easier to perform than irradiation, was perhaps not the best way to assay a potential impact of RNAi on survival since it required long term treatment for several days during which the effect of RNAi may have waned. Another attempt was therefore made injecting with TDR1 or control GFP dsRNAs and exposing animals to a 2000Gy IR treatment. We noticed that the viability was lower after injection with GFP dsRNAs than with TDR1 dsRNAs (likely due to problems we had with the injection needle during injections). The next day, animals were irradiated and we observed after 24h that animals injected with GFP dsRNAs exhibited higher lethality rates than animals injected with TDR1 dsRNAs or uninjected animals. We found that this set of experiments were not conclusive. Our current experimental set up will make it difficult to distinguish lethality due to injections from lethality due to potentially decreased resistance to IR. In particular, many key controls are difficult to make (in particular, we could not confirm the efficiency of target gene knockdown, as it is very challenging given the low amount of biological material available and the poor expression of these genes without irradiation). From a practical point of view, performing these experiments is thus very challenging. We nevertheless agree that, in future work, further experimentation is needed to examine the impact of knock-down by RNAi of TDR1 or of other genes such as DNA repair genes or Dsup, in tardigrade DNA repair and survival after IR. Gene knock-out with CRISPR-Cas9 is a very promising alternative to RNAi given that studies in mutant lines will eliminate the confounding effect of lethality due to injections.

      (3) Regarding the U2OS experiments. I have several questions/points of clarification:

      a. Were survival/proliferation levels tested or only H2AX foci? I think that showing decreased H2AX foci (fewer double-stranded breaks) correlates with higher survival rates would be important.

      In the experiments reported in Figure 6, cells were transiently transfected with expression vectors and we did not examine the impact on survival rates. U2OS cells are resistant to high doses of Bleomycin and testing survival would require longer exposure at much higher concentrations (Buscemi et al, 2014, PMID: 25486478). In order to try and better address an impact on cell survival, we therefore generated populations of cells stably expressing the candidate tardigrade proteins fused to GFP. Despite trying different experiment conditions for treatment with Bleomycin, we could not detect a reproducibly significant benefit on cell survival for any of the tardigrade proteins tested, including RvDsup which was used as a positive control (since it was previously reported to improve cell survival in response to X-rays). One possibility is that the analysis should be performed in clones and not in populations of cells with heterogeneous expression levels of the tardigrade protein tested. For example, expression levels of the tardigrade protein needed to reduce the number of phospho-H2AX foci in response to DNA damage may interfere with cell division. We note that in the original Dsup paper, the benefit of RvDsup on cell survival was reported in specific transgenic clones. Experiments in different biological systems have also started to document toxic effects of RvDsup expression, illustrating the challenge, when performing experiments in heterologous systems, to achieve suitable expression levels of the tested protein. Trying to perform such a finer analysis, in our opinion, would go beyond the scope of our manuscript and will be best addressed in future studies. We are therefore careful in the text not to make any claim on the benefit of TDR1 expression on cell survival in response to Bleomycin in human cultured cells.

      (b) From the methods I am a bit confused as to how the images were treated/foci quantified. With the automatic segmentation and foci identification, is this done through the entire Z-series or a single layer? If the latter then I am not sure the results are meaningful, since we do not know how many foci might be present in other layers of the nuclei analyzed. If the former, please clarify this in the method since it is a very important consideration.

      We have acquired images throughout the entire Z-series and edited the text to make it more clear ; We now write: “ Z-stacks were maximum projected and analyzed with Zen Blue software (v2.3)...”. To limit the time needed for image analysis, we have generated an artificial image by projecting the entire Z-series into a single image and counted foci in that single maximum projection image. Although there are potential drawbacks, such as potentially only counting one focus when two foci are superposed along the Z axis, this approach overcomes the limitations of quantification from a single layer. We further ensured statistical robustness of the analysis by performing quantification from several independent fields of the labelled cells and several independent biological replicates (n>=3 as now specified in the legend of figure 6a).

      (c) RvDsup reduced levels of HXA1 foci in these experiments, however, HeDsup was not found to be enriched in the transcriptomic analysis performed here. Was there a reason HeDsup was not used in the cell-based experiments? One could argue that RvDsup is from a different species of tardigrade, but it is a bit concerning that an ortholog of a protein found NOT to be induced by radiation exposure seems to perform as well (if not better) than some versions of TDR1.

      RvDsup is the protein initially shown to increase survival of human HEK293 cells treated with X-rays and reduce the number of phospho-H2AX foci induced: it was therefore used as a positive control in our experiments. The sequence of HeDsup is only poorly similar to RvDsup (with 26% identity) and activity of HeDsup in cultured cells has not been reported before. We therefore believe that HeDsup is not well suited to provide a positive control for the experiments performed in our manuscript.

      (d) From the methods, it seems that cells were treated with Bleomycin and then immediately fixed without any sort of recovery time. In this short timeframe, the presence of TDR1 appears to be enough to deal with a substantial amount of double-stranded breaks (as evidenced by the reduced number of HXA1 foci). Does this make sense? How quickly could one expect DNA repair machinery to make significant progress in resolving damaged DNA? This response seems much faster than what was observed in tardigrades. Perhaps the authors to comment on this.

      Kinetic studies in human cells show extremely rapid repair of DNA double-strand breaks. Sensing of DNA double strand breaks by PARP proteins takes place within seconds after irradiation by IR (Pandey and Black, 2021, PMID: 33674152). NHEJ is then observed to take place by formation of 53BP1 foci within 15 minutes (Schultz et al, 2000, PMID: 11134068). The number of phospho-H2AX and 53BP1 foci peaks at 30 minutes and starts declining thereafter, showing that at a significant number of sites, DNA repair is proceeding very rapidly (by NHEJ). Although we are not aware of any studies of DNA repair kinetics in U2OS cells after addition of Bleomycin, DNA damage must be instantaneous and further take place during exposure to the drug in parallel to DNA repair, which would be expected to have similar kinetics than after irradiation with IR.

      In our experiments, several mechanisms may be involved in reducing the number of phospho-H2AX foci induced by Bleomycin, such as DNA protection (for Dsup expression) or stimulation of DNA repair (for RNF146 expression). For TDR1, the molecular mechanism involved remains to be determined. Given our finding that TDR1 can form aggregates with DNA, an additional possibility is that clustering of phospho-H2AX foci is induced.

      (4) I could not find the sequences of the TDR1 proteins studied here. I did find the cDNA sequence of HeTDR1 in the final supplementary file, but not the other TDR1 orthologs. In the place where it appeared the TDR1 sequences from other tardigrades should be there were very short segments of the HETDR1 sequence. All sequences of proteins used in this study should be easily accessible to the reader and reviewers as it is not possible to review this work without accessing the sequences.

      Our apologies for the inappropriate documentation of TDR1 sequences in the original manuscript. As requested, we have now included the TDR1 sequences in the Supplementary Table 4.

      (5) Likewise, the RNA sequence data is said to be deposited in NCBI under PRJNA997229, but I do not find this available on NCBI.

      The RNA sequence data was deposited in NCBI under the indicated reference before submission of the manuscript. The data has now been released and is fully available on NCBI.

      (6) A few typographical errors: e.g., Page 10 - sentence 4 has two periods ". ." or page 14 which has an open parenthesis that is not closed.

      These typos have been corrected in the revised manuscript.

      Reviewer #3 (Recommendations For The Authors):

      We thank the reviewer for his comments.

      In Figure 4C, what fraction of the 50 genes upregulated in all species and treatments are DNA repair genes? Is there any other notable commonality between these 50 genes? The bulk of upregulated genes are specific to a species and to treatment with IR or bleomycin. What fraction of DNA repair genes are specific to a species or treatment?

      The results in Figure 4C on the 50 putative orthologous genes upregulated in all species and treatments are further detailed in supp Figure 10. The legend to supp Figure 10 now provides the requested information: 14/50 genes are DNA repair genes and the other notable commonality is that 21/50 are “stress response genes”. We did not further breakdown the analysis to evaluate the fraction of DNA repair genes specific to a species or treatment. It will be interesting to gather data in more species to hed light on the evolutionary history of DNA repair gene regulation in response to IR.

      How does the suite of upregulated tardigrade DNA repair proteins after IR or bleomycin compare with DNA or repair proteins upregulated under similar treatments in human cells? Are they quantitatively or qualitatively different, or both?

      There is a great wealth of studies documenting genes differentially expressed in human cells in response to IR (e.g. Borras-Fresneda et al, 2016, PMID: 27245205; Rieger and Chu, 2004, PMID: 15356296; Budwoeth et al, 2012, PMID: 23144912 ; Rashi-Elkeles et al, 2011, PMID: 21795128; Jen and Cheung, 2003, PMID: 12915489...). Upregulation of DNA repair and cell cycle genes is commonly found. However, the number of DNA repair genes induced is always very limited and fold stimulation very modest compared to the massive upregulation observed in tardigrades.

      On page 14, please explain the acronym BER. Do the authors mean Base Excision Repair? Or something else?

      As assumed by the reviewer, the acronym BER stands for Base Excision Repair. The acronym has been removed from the main text and replaced by the full name.

      Reviewer #4 (Recommendations For The Authors):

      We thank the reviewer for his comments.

      Abstract:

      The abstract is fine. What was hard to grasp at the beginning is why TDR1 gene was named that way. It should be clearer that this study decided to further focus on that gene, one of the most overexpressed gene after IR, with an unknown function. Then maybe introduce that it was found to be unique to tardigrade and to interact with DNA. Therefore, it was named TDR1.

      Introduction:

      The introduction has been modified according to the suggestions of Reviewer#4 below. One of the suggested references, Nicolas et al 2023 from the Van Doninck lab, was published while our manuscript was under review and cannot be considered as background information for our study.

      1st paragraph:

      The study is on tardigrades, I found it strange that the first paragraph is on D. radiodurans. I think it is fine to mention what is known in bacteria and eucaryotes but we should already know what will be the main topic in the first paragraph of the introduction. Some details about D. radiodurans seem less important and distracting from the main topic (3D conformation).

      2nd paragraph:

      When mentioning radio-resistant eurcaryotes the authors do not mention the larvae of the anhydrobiotic insect Polypedilum vanderplanki. Stating that the mechanisms of resistance are poorly characterized should perhaps be nuanced. There are some recent studies on D. radiodurans (Ujaoney et al., 2017) the insect P. vanderplanki (Ryabova et al., 2017), tardigrades (Kamilari et al., 2019), and rotifers (Nicolas et al., 2023, Moris et al., 2023). Perhaps these papers are worth indicating that if mechanisms are not elucidated yet, recent studies suggest some actors involved in their resistance. Regarding the sentence stating that DNA repair rather than DNA protection plays a predominant role in the radio-resistance of bdelloid rotifers should also be nuanced. Indeed, many chaperones, antioxidants were mentioned to play a role in the radio-resistance of bdelloid rotifers (Moris et al., 2023). The authors mentioned the reference Hespeels et al., 2023 which is not found in their list of references, I am not sure which paper they refer to. The last sentence of the second paragraph does not mean much. I am not sure what the authors want to state with this. Perhaps they should specify if they mean that the function of many other genes overexpressed after IR remains unknown.

      Still, in the second paragraph, the authors focus on rotifers. They also do not mention what is known in the insect P. vanderplanki, which should be added. They still do not mention tardigrades. I think it is nice to first start with eucaryotes and then focus on tardigrades but as I mentioned before it would help to understand the aim of the paper if the first paragraph mentioned briefly the tardigrades and then could go into detail in the third paragraph.

      3rd paragraph:

      The sentence starting "with over 1400 species" best to remove from it "but they can differ in their resistance" and start the next sentence with that.

      4th paragraph:

      Very clear, we finally understand what is the focus of the manuscript.

      5th paragraph:

      Very clear. The authors should mention the names of the three studied species. Here, A. antarcticus is missing. The sentence "Further analyses in H. exemplaris... showed that TDR1 protein is present and upregulated". The authors should mention in which conditions the protein is upregulated. In that paragraph the authors mention phospho-H2AX: it might be good to introduce its functions before in the introduction (it is mentioned in the second sentence of the results: best to move it to the introduction).

      Results:

      There are a few sentences in this section which rather discuss the results than describe them. I think the manuscript might gain in quality if these interpretations of the results are moved into the discussion section. That would make the result section more concise and the discussion enriched.

      For instance, I suggest to move these sentences into the discussion:

      • "the finding of persistent DSBs in gonads at 72h.... likely explains...".

      • "suggesting that (i) DNA synthesis..."

      • " Phospho-H2AX....also suggested"

      • "Moreover, expression of TDR1-GFP..., supporting the potential role of TDR1 proteins..."

      • "our results suggest that RNF146 upreguation could contribute..."

      • "AMNP gene g12777 was shown to increase...Based on our results, it is possible that..."

      Interpretations mentioned here above were always introduced cautiously (-"suggesting that (i) DNA synthesis..." ; -" Phospho-H2AX....also suggested" ; -"Moreover, expression of TDR1-GFP..., supporting the potential role of TDR1 proteins..." ; -"our results suggest that RNF146 upreguation could contribute..." ). These cautious interpretations were usually important in deciding next steps of the work. We therefore believe it is important to mention these interpretations in the results section to clearly expose the milestones marking the progression of the study.

      For some results, they were directly discussed in the results section for the sake of concision (for example -"the finding of persistent DSBs in gonads at 72h.... likely explains..."; -"AMNP gene g12777 was shown to increase...Based on our results, it is possible that..." ) since, in our opinion, there was no need to mention them again in the main discussion.

      Some other parts could be good to be moved into the introduction:

      • "Previous studies have indicated that irradiation with IR increases expression of Rad51,..." none of the actors involved in DNA repair are mentioned in the introduction. Also, change resistant into resistance

      • "A. antarcticus ..., known for its resistant to high doses of UV....

      We have moved these parts to the introduction as recommended.

      It was in O. areolatus.... that the first demonstration..."

      This piece of information is somewhat anecdotical. We choose to keep it it here in the results section. This information on the radio-resistance of the species P. areolatus is only relevant at this specific step of the study because it encouraged us to consider that P. fairbanksi, which we isolated fortuitously, would be a good model species for studying radio-resistance of tardigrades.

      Here are some additional comments/suggestions on the result section:

      1st section

      • Remove the Gross et al., 2018 from the sentence "using confocal microscopy", it looks otherwise that these results are from their study, not yours.

      We have changed the text to make it clear that this is indeed a finding of Gross et al which was previously made in non-irradiated tardigrades. We replicated this finding, which showed that the protocol was working appropriately, and that we could use this control result for comparison with irradiated animals. We apologize for this confusion.

      The text now states: “Using confocal microscopy, we could detect DNA synthesis in replicating intestinal cells of control animals, as previously shown by (Gross et al. 2018).”

      2nd section

      • It is confusing what has been found induced by IR and/or by Bleomycin.

      • I think it might help if the authors first present what is induced after IR, then write if it is similar after Bleomycin. Especially since they start to do it in the first paragraph of that section. However, they only mention TDR1 in the second paragraph dedicated to Bleomycin treatment which is confusing as it is also overexpressed after IR. It is also not clear if RNF146 is also induced by Bleomycin.

      As recommended, the text presents first what is induced after IR and then what is induced by Bleomycin in the following paragraph. When reporting results with Bleomycin, we have provided a global assessment of what is common to both treatments in Supp Figure 3 and in Supp Table 3. In this figure, we also specifically highlighted several key genes of DNA repair induced by both treatments. These are also mentioned in the text (p8) to illustrate the point that many key DNA repair genes are common to both treatments. We have now added RNF146 to that list as recommended.

      • Regarding TDR1, it is not clear when introduced in the text as "promising candidate" why it is the case. It is clear in the figures but perhaps the authors should explain why they chose these genes for further analyses: high log2foldchange and expression level for instance. Regarding that last comment, it would be interesting to have an idea about the expression level of the genes with high log2foldchange. In Figures 2, 3, and 4 the pvalue and log2foldchange are represented but not the expression level (ideally Transcript per Millions). These values would give an additional idea on the importance of that gene. While looking at the figures, it is unclear why you did not further characterize other genes with high log2foldchange (some with even hints of their function): the mentioned RNF146, macroH2A1 (not even mentioned in the results), some genes unannotated in the figures with likely unknown functions,

      When selecting genes of interest, we did indeed take into account high expression levels. To more clearly document expression levels (which were already available from the Tables), we added MAplots (representing log2foldchange and logNormalized read counts) in the supplementary materials (Supp Figure 3 and Supp Figure 8).

      • It is also unclear at that stage why you named it "Tardigrade DNA damage response protein", as it is characterized as DNA repair/damage proteins by specific GO id or is it based on your downstream analyses, I think it might be worth to quickly mention the reason of that name.

      The name illustrates two points which were already characteristic at this point in time of the study i.e. 1) it is a tardigrade specific protein and 2) it is induced in response to DNA damage.

      • Regarding the BLAST analyses the protein was searched in C. elegans, D. melanogaster and H. sapiens. Why only these three species? What were the threshold evalues used for these analyses. As mentioned in the main comment, it would be worth searching species phylogenetically close to tardigrades to verify if it is well-tardigrade specific. Did you try to make a gene tree, after looking for a conserved domain (using hmmersearch)?

      As indicated in the methods section, the “Tardigrade-specific" annotation was determined by absence of hits after high-throughput alignment (with diamond using –ultrasensitive-option) on the NCBI nr database and absence of hits after blast search on C. elegans, D. melanogaster and H. sapiens proteomes as a complementary criterion (the latter blast search was primarily performed to enrich for functional annotations). Based on these criteria, TDR1 was annotated as “Tardigrade-specific”. As stated in the text, we also searched for TDR1 related sequences with 1) blastp (which is more sensitive than diamond) on the NCBI nr database and 2) HMMER on Reference Proteomes, and no hits were found among non-tardigrade ecdysozoans organisms, confirming TDR1 is specific to tardigrades. For Blast search for example, there were five hits in non-ecdysozoans organisms (two cephalochordates, one mollusc and two echinoderma). The blastp and HMMER results are now included in the revised supplementary material (Supp Table 5). These very few hits in species phylogenetically distant from tardigrades cannot be taken to support the existence of TDR1 genes outside tardigrades.

      To be clearer in the manuscript, we now state the absence of hits for TDR1 in non-tardigrade ecdysozoans. Given the absence of homologs in non-tardigrade species, it is not possible to make a gene tree with non-tardigrade species.

      • Page 9: "Proteins extracts from H. exemplaris... at 4h and 24h..." I think this sentence can be removed as this is mentioned again 2 paragraphs after: "...we conducted an unbiased proteome analysis... at 4h..." The log2foldchange threshold mentioned for the proteomic analyses is 0.3: why this threshold, was it chosen randomly?

      This is threshold is commonly used when considering log2foldchange with the technology used in our study, an isobaric multiplexed quantitative proteomic strategy which is known to compress ratios (Hogrebe et al. 2018).

      • Page 10:

      It would be good for more clarity to indicate at the beginning of the new section which species were investigated after IR or Bleomycin treatment.

      TDR1 homologs in the other tardigrade species were identified based on what? Best reciprocal hit?

      As indicated in the methods section of the manuscript, we searched for homologs in other tardigrade species by BLAST. A best reciprocal hit approach was not performed to try to determine which homologs might be orthologs. In particular, most TDR1 homologs identified are known from transcriptome assemblies and high-contiguity genome assemblies are needed to more confidently identify orthology (using synteny). The results of the BLASTP search are now provided as supplementary material (Supp Table 5).

      Preliminary experiments indicated that A. antarcticus and P. fairbanski survived exposure to 1000 Gy: is there a supplementary graph showing this?

      We have corrected the text to avoid any confusion. We have not rigorously examined the dose-dependent survival of P. fairbanksi in response to irradiation. Text was changed to: “We found by visual inspection of animals after IR that A. antarcticus and P. fairbanksi readily survived exposure to 1000 Gy.”

      • Page 11:

      "A set of 50 genes was upregulated in the three species": please be precise if only after IR.

      Done

      These genes cannot be the same as they are from different species. Did the author mean that they are coding for similar proteins? It might be good to give some more details even if the supplementary figure is mentioned.

      Obviously, these genes are putative orthologs. We have changed the text to:

      ” a set of 50 putative orthologous genes was upregulated in response to IR in all three species”

      Discussion:

      • General comment: the discussion is focused mainly on TDR1, it would be nice to also discuss the other results: DNA repair genes, RNF146.

      A whole paragraph is devoted to discussion of results on DNA repair genes and RNF146. We have extended that discussion following on the suggestion of the reviewer. In particular, we have explicitly mentioned the apparent paradox that XRCC5 and XRCC6, which are among the most highly stimulated genes at the mRNA level, only display modest upregulation at the protein level. Although further studies would be needed to examine the mechanisms involved, we propose that upregulation of RNF146, whose human homolog has been shown to drive degradation of PARylated XRCC5 and XRCC6 proteins in response to IR (Kang et al. 2011), may be responsible for higher degradation rates and may thus counterbalance increased levels of protein synthesis.

      • Pulse field electrophoresis would be nice to be performed. It has been used to assess DSBs in bdelloid rotifers, is it possible in tardigrades?

      As stated in the discussion, we believe that it would be challenging to perform pulse field electrophoresis in tardigrades. However, if possible, these experiments would certainly bring invaluable information to complement our analysis of DNA damage induced by IR.

      • "By comparative transcriptomics": please rephrase that sentence.

      • Proteins acting early in DNA repair: I am not sure I understand this sentence. Actors as ligases act not at the beginning of the repair pathways.

      Well noted. We have removed ligases from the list.

      • It is confusing that the authors mention NHEJ and double-strand break repair pathways as different pathways. There are 2 main pathways to repair DBSs: NHEJ and HR. It would be nice to add a reference to the sentence "PARP proteins act as sensors of DNA damage etc."

      A typo in the sentence gave rise to the misleading suggestion that NHEJ is not a double strand repair pathway. It has been corrected.

      A reference has been added for PARP proteins.

      • It would be nice if the authors can explain deeper their suggestion that degradation of DNA repair actors is essential for tardigrade IR resistance.

      We have expanded this part of the discussion and hope that it is clearer.

      “For XRCC5 and XRCC6, our studyestablished, by two independent methods, proteomics and Western blot analysies, that the stimulation at the protein level could be much more modest (6 and 20-fold at most (Supp Figure 6) than at the RNA level (420 and 90 fold respectively). This finding suggests that the abundance of DNA repair proteins does not simply increase massively to quantitatively match high numbers of DNA damages. Interestingly, in response to IR, the RNF146 ubiquitin ligase was also found to be strongly upregulated. RNF146 was previously shown to interact with PARylated XRCC5 and XRCC6 and to target them for degradation by the ubiquitin-proteasome system (Kang et al. 2011). To explain the lower fold stimulation of XRCC5 and XRCC6 at the protein levels, it is therefore tempting to speculate that, XRCC5 and XRCC6 protein levels (and perhaps that of other scaffolding complexes of DNA repair as well) are regulated by a dynamic balance of synthesis, promoted by gene overexpression, and degradation, made possible by RNF146 upregulation. Consistent with this hypothesis, we found that, similar to human RNF146 (Kang et al. 2011), He-RNF146 expression in human cells reduced the number of phospho-H2AX foci detected in response to Bleomycin (Figure 6).”

      • Page 15: Please add a reference for the sentence "Functional analysis of promotor sequences in transgenic tardigrades etc."

      The reference has been added to fix this omission.

      Material and Methods:

      Small comments:

      • 40 μm mesh: space missing

      • 100 μm mesh: space missing

      • (for Bleomycin)): parenthesis missing

      • remove "as indicated in the text"

      • The investigated time points after radiation need to be clearly stated in the method section. It is also unclear in the IR and Bleomycin section which tardigrades were treated with what. Not all were treated with Bleomycin.

      The small comments above have been fixed in the revised version of the manuscript.

      • Page 21: please precise the coverage of the RNA sequencing

      Statistics on mapping of RNAseq reads are now provided in Supp Table 10.

      • Page 22: Was any read trimming performed? Anything about the quality check of the reads?

      Trimming was conducted using trimmomatic (v0.39) and quality check using FastQC (v. ?) This information has been added to the Methods section.

      • Were the analyses confirmed by a second approach: for instance, EdgeR? Deseq2 and EdgeR do not always have the same results. For more robust analyses it is advised to use both.

      Differential transcriptome analyses were conducted with DESeq2 only. The robustness of our identification of differentially expressed genes in response to IR stems from performing comparative analyses in three different species, rather than from using two bioinformatics pipelines in a single species. We also note that benchmarking reported in the initial DEseq2 paper showed that identification of differentially expressed genes with large log fold changes (which, as reported in our manuscript, is characteristic of many DNA repair genes in response to IR) is very consistent between DEseq2 and EdgeR.

      Figures:

      • Figure 2: Legend vertical dotted line does not indicate log2foldchange value of 4 in all panels: it would be good to indicate for panels a and c as well.

      Figure 2has been improved following on the suggestions of the reviewer. Dotted lines now show log2foldchange value of 2 in all panels (ie Fold Change of 4 as mentioned in the main text).

      • Figure 2C: There are a few points with high log2foldchange which are not annotated: was it because nothing was found in the blast research? If yes, it would be good to indicate their functions. If not, it would be good to mention in the discussion that there are some genes with still unknown functions which might play an important role in the resistance of tardigrades to IR.

      The few points which are not annotated in figure 2c can now be found in Supp Table 3 Some of them have no hit in Blast search, some others such as BV898_09662 or BV898_07145 have hits on DNA repair genes as RBBP8/CtIP or XRCC6 respectively but are not annnotated as such by eggnog in KEGG pathway.

      • Figure 4C: Why not have included the response of P. fairbanski to bleomycin? I guess it was not done, but it is unclear in the results and methods sections.

      P.fairbanksi response to bleomycin wasn’t assessed as we didn’t get enough animals to run the study. The method section has been modified to precise this point.

    1. Author response:

      Reviewer #1 (Public Review):

      This study makes a substantial contribution to our understanding of the molecular evolutionary dynamics of microbial genomes by proposing a model that incorporates relatively frequent adaptive reversion mutations. In many ways, this makes sense from my own experience with evolutionary genomic data of microbes, where reversions are surprisingly familiar as evidence of the immense power of selection in large populations.

      One criticism is the reliance on one major data set of B. fragilis to test fits of these models, but this is relatively minor in my opinion and can be caveated by discussion of other relevant datasets for parallel investigation.

      We analyze data from 10 species of the Bacteroidales family, and we compare it to a dataset of Bacteroides fragilis. We have now added a reference to a recent manuscript from our group showing phenotypic alteration by reversion of a stop codon and further breaking of the same pathway through stop codons in other genes in Burkholderia dolosa on page 9, and have added a new analysis of codon usage in support of the reversion model on page 14.

      We have chosen not to analyze other species as there are no large data sets with rigorous and evenly-applied quality control across scales. We anticipate the reversion model would be able to fit the data in these cases. We now note that this work remains to be done in the discussion.

      Another point is that this problem isn't as new as the manuscript indicates, see for example https://journals.asm.org/doi/10.1128/aem.02002-20 .

      Loo et al puts forward an explanation similar to the purifying model proposed by Rocha et al, which we refute here. Quoting from Loo et al: “Our results confirm the observation that nonsynonymous SNPs are relatively elevated under shorter time periods and that purifying selection is more apparent over longer periods or during transmission.” While there is some linguistic similarity between the weak purifying model and our model of strong local adaptation model and strong adaptive reversion, we believe that the dynamical and predictive implications suggested by the reversion model are an important conceptual leap and correction to the literature. We now cite Loo et al and additional works cited therein. We have updated the abstract, introduction, and discussion to further emphasize the distinction of the reversion model from previous models: namely the implication of the reversion model that long-time scale dN/dS hides dynamics.

      Nonetheless, the paper succeeds by both developing theory and offering concrete parameters to illustrate the magnitudes of the problems that distinguish competing ideas, for example, the risk of mutational load posed in the absence of frequent back mutation.

      Reviewer #2 (Public Review):

      This manuscript asks how different forms of selection affect the patterns of genetic diversity in microbial populations. One popular metric used to infer signatures of selection is dN/dS, the ratio of nonsynonymous to synonymous distances between two genomes. Previous observations across many bacterial species have found dN/dS decreases with dS, which is a proxy for the divergence time. The most common interpretation of this pattern was proposed by Rocha et al. (2006), who suggested the excess in nonsynonymous mutations on short divergence times represent transient deleterious mutations that have not yet been purged by selection.

      In this study, the authors propose an alternative model based on the population structure of human gut bacteria, in which dN is dominated by selective sweeps of SNPs that revert previous mutations within local populations. The authors argue that contrary to standard population genetics models, which are based on the population dynamics of large eukaryotes, the large populations in the human gut mean that reversions may be quite common and may have a large impact on evolutionary dynamics. They show that such a model can fit the decrease of dN/dS in time at least as well as the purifying selection model.

      Strengths

      The main strength of the manuscript is to show that adaptive sweeps in gut microbial populations can lead to small dN/dS. While previous work has shown that using dN/dS to infer the strength of selection within a population is problematic (see Kryazhimskiy and Plotkin, 2008, cited in the paper) the particular mechanism proposed by the authors is new to my knowledge. In addition, despite the known caveats, dN/dS values are still routinely reported in studies of microbial evolution, and so their interpretation should be of considerable interest to the community.

      The authors provide compelling justification for the importance of adaptive reversions and make a good case that these need to be carefully considered by future studies of microbial evolution. The authors show that their model can fit the data as well as the standard model based on purifying selection and the parameters they infer appear to be plausible given known data. More generally, I found the discussion on the implications of traditional population genetics models in the context of human gut bacteria to be a valuable contribution of the paper.

      Thank you for the kind words and appreciation of the manuscript.

      Weaknesses

      The authors argue that the purifying selection model would predict a gradual loss in fitness via Muller's ratchet. This is true if recombination is ignored, but this assumption is inconsistent with the data from Garud, et al. (2019) cited in the manuscript, who showed a significant linkage decrease in the bacteria also used in this study.

      We now investigate the effect of recombination on the purifying selection model on page 8 and in Supplementary Figure S6. In short, we show that reasonable levels of recombination (obtained from literature r/m values) cannot rescue the purifying selection model from Muller’s ratchet when s is so low and the influx of new deleterious mutations is so high. We thank the reviewers for prompting this improvement.

      I also found that the data analysis part of the paper added little new to what was previously known. Most of the data comes directly from the Garud et al. study and the analysis is very similar as well. Even if other appropriate data may not currently be available, I feel that more could be done to test specific predictions of the model with more careful analysis.

      In addition to new analyses regarding recombination and compensatory mutations using the Garud et al data set, we have now added two new analyses, both using Bacteroides fragilis . First, we show that de novo mutations in Zhao & Lieberman et al dataset include an enrichment of premature stop codons (page 9). Second we show that genes expected to be under fluctuating selection in B. fragilis displays a significant closeness to stop codons, consistent with recent stop codons and reversions. We thank the reviewer for prompting the improvement.

      Finally, I found the description of the underlying assumptions of the model and the theoretical results difficult to understand. I could not, for example, relate the fitting parameters nloci and Tadapt to the simulations after reading the main text and the supplement. In addition, it was not clear to me if simulations involved actual hosts or how the changes in selection coefficients for different sites was implemented. Note that these are not simply issues of exposition since the specific implementation of the model could conceivably lead to different results. For example, if the environmental change is due to the colonization of a different host, it would presumably affect the selection coefficients at many sites at once and lead to clonal interference. Related to this point, it was also not clear that the weak mutation strong selection assumption is consistent with the microscopic parameters of the model. The authors also mention that "superspreading" may somehow make a difference to the probability of maintaining the least loaded class in the purifying selection model, but what they mean by this was not adequately explained.

      We apologize for leaving the specifics of the implementation from the paper and only accessible through the Github page and have corrected this. We have added a new section in the methods further detailing the reversion model and the specifics of how nloci and Tadapt (now tau_switch as of the edits) are implemented in the code.

      The possibility for clonal interference is indeed included in the simulation. Switching is not correlated with transmissions in our main figure simulations (Figure 4a). When we run simulations in which transmission and selection are correlated, the results remain essentially the same, barring higher variance at lower divergences (new Figure S10). We have now clarified these points in the results, and have also better clarified the selection only at transmission model in the main results.

      Reviewer #3 (Public Review):

      The diversity of bacterial species in the human gut microbiome is widely known, but the extensive diversity within each species is far less appreciated. Strains found in individuals on opposite sides of the globe can differ by as little as handfuls of mutations, while strains found in an individual's gut, or in the same household, might have a common ancestor tens of thousands of years ago. What are the evolutionary, ecological, and transmission dynamics that established and maintain this diversity?

      The time, T, since the common ancestor of two strains, can be directly inferred by comparing their core genomes and finding the fraction of synonymous (non-amino acid changing) sites at which they differ: dS. With the per-site per-generation mutation rate, μ, and the mean generation times roughly known, this directly yields T (albeit with substantial uncertainty of the generation time.) A traditional way to probe the extent to which selection plays a role is to study pairs of strains and compare the fraction of non-synonymous (amino acid or stop-codon changing) sites, dN, at which the strains differ with their dS. Small dN/dS, as found between distantly related strains, is attributed to purifying selection against deleterious mutations dominating over mutations that have driven adaptive evolution. Large dN/dS as found in laboratory evolution experiments, is caused by beneficial mutations that quickly arise in large bacterial populations, and, with substantial selective advantages, per generation, can rise to high abundance fast enough that very few synonymous mutations arise in the lineages that take over the population.

      A number of studies (including by Lieberman's group) have analyzed large numbers of strains of various dominant human gut species and studied how dN/dS varies. Although between closely related strains the variations are large -- often much larger than attributable to just statistical variations -- a systematic trend from dN/dS around unity or larger for close relatives to dN/dS ~ 0.1 for more distant relatives has been found in enough species that it is natural to conjecture a general explanation.

      The conventional explanation is that, for close relatives, the effects of selection over the time since they diverged has not yet purged weakly deleterious mutations that arose by chance -- roughly mutations with sT<1 -- while since the common ancestor of more distantly related strains, there is plenty of time for most of those that arose to have been purged.

      Torrillo and Lieberman have carried out an in-depth -- sophisticated and quantitative -- analysis of models of some of the evolutionary processes that shape the dependence of dN/dS on dS -- and hence on their divergence time, T. They first review the purifying selection model and show that -- even ignoring its inability to explain dN/dS > 1 for many closely related pairs -- the model has major problems explaining the crossover from dN/dS somewhat less than unity to much smaller values as dS goes through -- on a logarithmic scale -- the 10^-4 range. The first problem, already seen in the infinite-population-size deterministic model, is that a very large fraction of non-synonymous mutations would have to have deleterious s's in the 10^-5 per generation range to fit the data (and a small fraction effectively neutral). As the s's are naturally expected (at least in the absence of quantitative analysis to the contrary) to be spread out over a wide range on a logarithmic scale of s, this seems implausible. But the authors go further and analyze the effects of fluctuations that occur even in the very large populations: ~ >10^12 bacteria per species in one gut, and 10^10 human guts globally. They show that Muller's ratchet -- the gradual accumulation of weakly deleterious mutations that are not purged by selection - leads to a mutational meltdown with the parameters needed to fit the purifying selection model. In particular, with N_e the "effective population size" that roughly parametrizes the magnitude of stochastic birth-death and transition fluctuations, and U the total mutation rate to such deleterious mutations this occurs for U/s > log(sN_e) which they show would obtain with the fitted parameters.

      Torrillo and Lieberman promise an alternate model: that there are a modest number of "loci" at which conditionally beneficial mutations can occur that are beneficial in some individual guts (or other environmental conditions) at some times, but deleterious in other (or the same) gut at other times. With the ancestors of a pair of strains having passed through one too many individuals and transmissions, it is possible for a beneficial mutation to occur and rise in the population, only later to be reverted by the beneficial inverse mutation. With tens of loci at which this can occur, they show that this process could explain the drop of dN/dS from short times -- in which very few such mutations have occurred -- to very long times by which most have flipped back and forth so that a random pair of strains will have the same nucleotide at such sites with 50% probability. Their qualitative analysis of a minimally simple model of this process shows that the bacterial populations are plenty big enough for such specific mutations to occur many times in each individual's gut, and with modest beneficials, to takeover. With a few of these conditionally beneficial mutations or reversions occurring during an individuals lifetime, they get a reasonably quantitative agreement with the dN/dS vs dS data with very few parameters. A key assumption of their model is that genetically exact reversion mutations are far more likely to takeover a gut population -- and spread -- than compensatory mutations which have a similar phenotypic-reversion effect: a mutation that is reverted does not show up in dN, while one that is compensated by another shows up as a two-mutation difference after the environment has changed twice.

      Strengths:

      The quantitative arguments made against the conventional purifying selection model are highly compelling, especially the consideration of multiple aspects that are usually ignored, including -- crucially -- how Muller's ratchet arises and depends on the realistic and needed-to-fit parameters; the effects of bottlenecks in transmission and the possibility that purifying selection mainly occurs then; and complications of the model of a single deleterious s, to include a distribution of selective disadvantages. Generally, the author's approach of focusing on the simplest models with as few as possible parameters (some roughly known), and then adding in various effects one-by-one, is outstanding and, in being used to analyze environmental microbial data, exceptional.

      The reversion model the authors propose and study is a simple general one and they again explore carefully various aspects of it -- including dynamics within and between hosts -- and the consequent qualitative and quantitative effects. Again, the quantitive analysis of almost all aspects is exemplary. Although it is hard to make a compelling guess of the number of loci that are subject to alternating selection on the needed time-scales (years to centuries) they make a reasonable argument for a lower bound in terms of the number of known invertible promoters (that can genetically switch gene expression on and off).

      We are very grateful for the reviewer’s kind words and careful reading.

      Weaknesses:

      The primary weakness of this paper is one that the author's are completely open about: the assumption that, collectively, any of possibly-many compensatory mutations that could phenotypically revert an earlier mutation, are less likely to arise and takeover local populations than the exact specific reversion mutation. While detailed analysis of this is, reasonably enough, beyond the scope of the present paper, more discussion of this issue would add substantially to this work. Quantitatively, the problem is that even a modest number of compensatory mutations occurring as the environmental pressures change could lead to enough accumulation of non-synonymous mutations that they could cause dN/dS to stay large -- easily >1 -- to much larger dS than is observed. If, say, the appropriate locus is a gene, the number of combinations of mutations that are better in each environment would play a role in how large dN would saturate to in the steady state (1/2 of n_loci in the author's model). It is possible that clonal interference between compensatory and reversion mutations would result in the mutations with the largest s -- eg, as mentioned, reversion of a stop codon -- being much more likely to take over, and this could limit the typical number of differences between quite well-diverged strains. However, the reversion and subsequent re-reversion would have to both beat out other possible compensatory mutations -- naively less likely. I recommend that a few sentences in the Discussion be added on this important issue along with comments on the more general puzzle -- at least to this reader! -- as to why there appear to be so little adaptive genetic changes in core genomes on time scales of human lifetimes and civilization.

      We now directly consider compensatory mutations (page 14, SI text 3.2, and Supplementary Figure 12). We show that as long as true reversions are more likely than compensatory mutations overall, (adaptive) nonsynonymous mutations will still tend to revert towards their initial state and not contribute to asymptotic dN/dS, and show that true reversions are expected in a large swath of parameter space. Thank you for motivating this improvement!

      We note in the discussion that directional selection could be incorporated into the parameter alpha (assuming even more of the genome is deleterious) on page 16.

      An important feature of gut bacterial evolution that is now being intensely studied is only mentioned in passing at the end of this paper: horizontal transfer and recombination of core genetic material. As this tends to bring in many more mutations overall than occur in regions of a pair of genomes with asexual ancestry, the effects cannot be neglected. To what extent can this give rise to a similar dependence of dN/dS on dS as seen in the data? Of course, such a picture begs the question as to what sets the low dN/dS of segments that are recombined --- often from genetic distances comparable to the diameter of the species.

      We now discuss the effect of recombination on the purifying selection model on page 8 and in Supplementary Figure S6. In short, we now show that reasonable levels of recombination cannot rescue the purifying selection model from Muller’s ratchet when s is so low and the influx of new deleterious mutations is so high. We thank the reviewers for prompting this improvement

    1. Author response:

      Reviewer #1 (Public Review):

      1) Napthylamine (1NA), an industrial reagent used in the manufacturing of dyes and pesticides is harmful to humans and the environment. In the current manuscript, the authors report the successful isolation of a Pseudomonas strain from a former naphthylamine manufacturing site that is capable of degrading 1NA. Using genetic and enzymatic analysis they identified the initial stages of 1NA degradation and the enzymes responsible for downstream processing of 1,2-dihydroxynapthalene and Salicylate. The authors determined the molecular structure of NpaA1, the first enzyme in the pathway responsible for glutamylation of 1NA. NpaA1 has a border substrate specificity compared to previously characterized enzymes involved in aromatic amine degradation. They carried out structural comparison of NpaA1 with glutamine synthase structures, alfa-fold models of similar enzymes and put forth hypothesis to explain the broad substrate specificity of NpaA1.

      The manuscript is well written and easy to understand. The authors carried out careful genetic analysis to identify the genes/enzymes responsible for degradation of 1NA to catechol. They characterized the first enzyme in the pathway, NpaA1 which is responsible glutamylation of 1NA. and determined the molecular structure of apo-NpaA1, NpaA1 - AMPPNP complex and Npa1 - ADP - Met-Sox-P complex using X-ray crystallography.

      The proposed mechanism of broad substrate specificity of NpaA1, however, is based on comparison of 1NA docked NpaA1 structure with St-GS (Glutamate synthase) and Alphafold2 predicted model of AtdA1 from an aniline degrading strain of Acinetobacter sp. Lack of molecular structure or mutational studies to back the proposed mechanism makes it difficult to agree with the proposed mechanism.

      We appreciate your valuable comments. To further demonstrate that the structure of the aromatic amine binding tunnel and active pocket determines the broad substrate specificity of NpaA1, we have conducted additional experiments with several key residue mutants of the binding tunnel for naphthylamine and monocyclic aniline activities. The results provide a more detailed elucidation of the reasons for NpaA1's broad substrate specificity. Specific results and analyses are provided in the subsequent response.

      Reviewer #2 (Public Review):

      Microbial degradation of synthetic organic compounds is the basis of bioremediation. Biodegradation of 1NA has not been previously reported. The report describes a complete study of 1NA biodegradation by a new isolate Pseudomonas sp. strain JS3066. The study includes the enrichment and isolation of the 1NA-degrading bacterium Pseudomonas sp. strain JS3066, the identification of the genes and enzymes involved in 1NA degradation, and the detailed characterization of γ-glutamylorganoamide synthetase by using biochemical and structural analysis. In the discussion, the potential evolution of 1NA degradation pathway, the similarity and difference between γ-glutamylorganoamide synthetase and glutamine synthetase, and the significance were explained. The conclusions were well supported by the results presented.

      We deeply appreciate the reviewer’s comments on the manuscript. We have responded to the recommendations one by one in the later section.

    1. Author response:

      Reviewer #1 (Public Review):

      “… it remains unclear how ninein reduction causes bone defects …”

      We have added several control experiments that permit us to conclude that osteoblast numbers remain unaltered in the ninein-knockout embryos, and that bone abnormalities in vivo are caused by fusion defects of osteoclast precursor cells, whereas the proliferation, viability, or the adhesion of these precursor cells remain unaffected. For details, please see our comments below.

      “Discussion includes several unfounded potential mechanisms that really need to be thoroughly analyzed to gain a mechanistic understanding of the bone defects…”

      The new data back up our claim of fusion defects as a cause for limited osteoclast function. We have re-written parts of the discussion, to take into account our new findings.

      “Data showing normal osteoblasts in ninein-null mice was qualitative and requires further in-depth analysis and quantification of osteoblast …”

      To address this point, quantification of osteoblast numbers in tibiae at E16.5 and E18.5 was performed in control and ninein-deleted mouse embryos. The data are presented in the new Figures 3G and J.

      “In ninein knock-out mice, reduced TRAP+ve multinuclear cells were observed (Figure 6A and 6B). However, the magnitude of difference (about 5% decrease in multinucleated cells) is not consistent with the skeletal deformities reported in Figures 2-4, potentially suggesting the contribution of additional mechanisms.”

      We agree that the difference appears to be small at first glance, but nevertheless it remains statistically significant (a more than three-fold difference). We would like to recall that these observations (Fig. 6A) were performed at E14.5, i.e. at a stage when no ossification has occurred yet. We are looking at the first fusion events of myeloid precursors, likely derived from the fetal liver, that colonize the area of the first bone to form, and small differences in the number of functional osteoclasts may account for different timing of ossification. We think that differences in osteoclast fusion also account for the premature appearance of ossification centers for other skeletal elements, at later time points during development.

      “The fusion assay in Figure 6C needs further clarification. How was the syncytia perimeter defined to measure cell surface? The x-axis suggests that there are syncytia that contain up to 160 nuclei at day 3. How were the nuclei differentially stained and quantified?”

      We provide now additional information on the experimental approach in the revised manuscript, on pages 16-17 (Materials and Methods). For information: high numbers of syncytial nuclei in cultures were also observed by other groups in the past (Tiedemann et al., 2017, Front Cell Dev Biol. 5:54). In addition, we performed new experiments and quantified the fusion of osteoclast precursors by staining for actin and nuclei (new Figure 7C). This allowed us to quantify several additional parameters related to cell fusion (as initially performed in Raynaud-Messina et al., 2018, PNAS, 115:E2556-E2565).

      “Some text needs clarification. … What is the definition of "large syncytia"? Is the fusion index increase by day 5 diminished in later days? A graph of the syncytia size/ nuclei number or fusion index in the above-mentioned days will be helpful.”

      Information on the definition of “large syncytia” is now provided on page 10 (1st paragraph). We added further experimental details on osteoclast size for days 3, 4, and 5 in the supplemental Figures 7A and B. Most importantly, we performed additional assays of the fusion index by quantifying syncytial versus non-syncytial nuclei in a semi-automated manner. The new data are presented in Figure 7C, and the methods are explained on page 17. Together with our new analysis of cell proliferation, cell viability, and cell adhesion (Figure 7C, D, suppl. Fig. 7C-G), we provide now solid evidence for a fusion defect at the origin of impaired formation of ninein del/del osteoclasts.

      “Assessment of resorption was qualitative in Figure 6E and since the fusion deficiencies are transient, quantification of a corresponding resorption activity is needed. This should be described in the Materials and Methods section.”

      Quantifications of the bone resorption activities are now provided in the new Figure 7E, and a reference for the methods is provided on page 16.

      “Further experiments are needed to show connections between reduced centrosome clustering and reduced osteoclast formation as there is no evidence to date that suggest centrosome clustering is required for cell fusion. Multi-color live imaging and dynamic analysis can be used to determine if the ninein deficient cells show defective movement/migration/ fusion dynamics.”

      We agree that it is an important question, and studying potential links between centrosomal microtubule organization and osteoclast fusion is an ongoing project of the team. However, we estimate that in order to obtain conclusive results this will require 1-2 additional years of research activity, and we intend to present this as a separate project in the future. At the current point of our investigation, we think that providing a solid link between ninein, osteoclast fusion, and controlled timing of ossification, as shown in this manuscript, represents valuable progress to understand previously published bone abnormalities in patients with ninein mutations.

      “Quantification of the % of multinucleated osteoclasts that contain clustered and dispersed centrosomes is needed.”

      New quantification experiments on centrosome clustering are now provided in Figure 8H. These quantifications demonstrate that the potential of centrosome clustering is almost completely lost in osteoclasts without ninein.

      Reviewer #2 (Public Review):

      “Based on the decrease in the number of osteoclasts (Fig 5E, G, and also per coverslip after 2 days in culture), the authors suggest that the loss of ninein impacts osteoclast proliferation. First, proliferation can be directly quantified using Ki67 staining or EdU incorporation. Second, other interpretations are also plausible and can also be experimentally tested. These include less adhesion and attachment of the mutants to the coverslips, but perhaps more relevant in vivo is cell death of the ninein mutant osteoclasts. It has been established that the loss of centrosome function activates p53- dependent cell death and osteoclasts might be a vulnerable cell population. Quantifying p53 immunoreactivity and/or cell death in osteoclasts might help clarify the phenotype of osteoclast reduction.”

      In response to the reviewers, we have performed a series of new experiments that include

      1) A careful analysis of the fusion index, using a semi-automated approach, indicating significant differences in the fusion of precursor cells into osteoclasts (Fig. 7C).

      2) We have repeated the quantification of cell numbers prior to fusion and find variations between samples from different mice (also among mice of the same genotype), but we see on average comparable cell adhesion between samples from control mice and ninein-del/del mice. The data are provided in the supplemental Figure 7F. Moreover, we have quantified the expression of three main beta-integrins at the surface of control and ninein del/del osteoclast precursors (suppl. Fig. 7G), without detecting significant differences. Altogether, these data suggest the cell adhesion is comparable for the two genotypes.

      3) We have addressed the question of altered cell proliferation, by performing flow cytometry experiments and by quantifying the different cell cycle stages (Fig. 7D), and by quantifying Ki67 expression (suppl. Fig. 7C). We see no significant differences between samples from control and ninein-del/del mice.

      4) We have addressed the question of cell death, by performing Annexin V staining and flow cytometry (suppl. Fig. 7D), and by immunoblotting for cleaved caspase 3 and PARP (suppl. Fig. 7E). These experiments reveal no significant differences between the control and ninein del/del samples. Our data permit us to exclude cell death as a likely cause for the reduction of fused osteoclasts in the absence of ninein.

      Overall, the new experiments show that the defects in osteoclast formation from ninein-deleted samples are due to defects in cell fusion, but not in cell proliferation, cell adhesion or viability.

      Reviewer #3 (Public Review):

      “The authors put much emphasis on the centrosome in the Introduction session. However, it was not until Figure 7 did they show abnormal centriole clustering in osteoclasts. The introduction should include more background on osteoclast and osteoblast balance during skeletal development.”

      To address this, we included more background on the role of osteoclasts and osteoblasts in the revised introduction (page 4).

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Recommendations For The Authors):

      Results showing reactivation for near and far items separately are now included in Fig. 5 and convincingly suggest a simultaneous reactivation. For me, the open question remaining (see public) review is the degree to which the methods used here to show clustered vs sequential reactivation are mutually exclusive; and if the pre-selection of a time window of peak reactivation (based on all future items) biases the analyses towards clustered reactivation. The discussion would benefit from a brief discussion of these issues.

      We have added a brief discussion of the issues. However, we want to clarify a minor point of the public review: While our interpretation implies that replay and reactivation are probably mutually exclusive within a single retrieval event, it does not imply that strategies cannot vary within different retrieval events of the same participant. Nevertheless, we want to address this raised concern (that is, if we understand correctly, that replay events that are contained within the time window of the reactivation analysis could not be distinguished by the chosen methods) and have added it to the discussion.

      The corresponding sentence reads:

      “[…] Finally, we want to acknowledge that by selecting a time window for the clustered reactivation we cannot distinguish very fast replay events (<=30ms) from clustered reactivation if they are contained exactly within the specific reactivation analysis time window..

      Reviewer #2 (Recommendations For The Authors):

      Figure 5D shows the difference scores between near vs. distant items for learning and retrieval. Similar to Figure 5 from the first version of your paper, the difference score does not show whether reactivation of the near vs. distant items change from learning to retrieval. You could show this change in a 2 (near vs. distant) x 2 (learning vs. retrieval) box plot (corresponding to Figure 5A).

      We have added the requested plot as supplement 9 and referred to it in the figure description. However comparing absolute, raw probabilities between different blocks is tricky, as baseline probabilities are varying over time (e.g. due to shift in distance to sensors), therefore, differential reactivation might be better suited as it is a relative measure to compare between blocks.

      At the end of the results section, you state: "On average, differential reactivation probability increased from pre to post resting state (Figure 5D).". I would suggest providing some statistical comparison and the corresponding values.

      We have calculated and added respective p-value statistics of a T-Test and reported that the increase is only descriptive and not statistically significant.

    1. Author response:

      We thank both the reviewers for their thorough reading of our manuscript and insightful suggestions. We thank the editors for their assessment of our article. We will submit a revised manuscript that addresses several comments and include a point-by-point response to the reviewers.

      (1) With respect to how our data compares with previously published datasets, we will provide a table comparing cell numbers. Study differences such as read depth, strain of animals used (including pigmented vs albino), method of cell isolation (including drug exposure), and number of cells profiled raise a significant impediment to integration with previously published datasets. We would like to highlight that ours is the first SEC single cell study that uses pigmented mouse eyes on C57BL/6J background. Integrating with the albino mouse data (Thompson et al. 2021) hindered pathway analyses possibly due to the variable drop out of genes across studies that was likely impacted by differences in method of cell isolation and increased representation of stress response genes in their dataset. We also attempted an integrated analysis with published mouse data (Van Zyl et al. 2020) but did not obtain additional meaningful information due to their low SEC numbers.

      (2) The reviewers commented that our integration of single cell and single nuc data should be done with caution: we agree and had given careful consideration to the integration process. We will demonstrate the contribution of different samples and datasets to show how our datasets have integrated.

      (3) To address the purity of bulk RNA seq, we will add more details for isolation of SECs for bulk seq. The markers to distinguish the three cell types were informed by immunofluorescence. Using these markers, we performed FACS using gates that were well separated. We have provided a heatmap with hierarchical clustering based on Euclidean distance of the EC subtypes (Figure 1B) analyzed by bulk RNA seq in addition to number of DE genes between subtypes.

      (4) To address the immunostaining of NPNT and CCL21A, since both our antibodies are derived from the same species (goat), a co-labeling wasn’t possible. To be prudent, we used adjacent sections, flat-mounts, and RNAscope and provided further evidence of the anterior/posterior “bias” in supplemental figures. Although we agree on its importance, work with human tissue will be a focus of future work.

      (5) Regarding the reviewer’s comments on substructure and that profiling may still not be comprehensive, we agree that further even more comprehensive studies are still needed. Profiling more cells will determine the robustness of the detected cell state difference and will help to resolve the cause of substructure within clusters as due to either lack of completely comprehensive profiling of cell types/states or more stochastic differences. We will add a comment to the discussion.

    1. Author response:

      Reviewer #1:

      The phenomenon of stress-inducible mutagenesis in bacterial evolution remains a topic of heated debate. Consequently, the emergence of genetically encoded resistance may stem from either microevolution or the dissemination of pre-existing variants from polyclonal infections under drug pressure. We believe that the Introduction presents both of these hypotheses in a balanced manner to elucidate the rationale behind our mutation accumulation investigations.

      While we acknowledge the well-known existence of phenotypic antibiotic resistance, it's worth noting that conclusions regarding mutation rates are often drawn from fluctuation assays without confirmation of genetic-level changes. This discrepancy persists despite fluctuation assays accounting for both phenotypic and genotypic alterations. Combining genome sequencing with fluctuation assays underscores the importance of making this distinction.

      Thank you for the suggestion regarding improving the figures; we will incorporate these changes accordingly in the revised version. Additionally, we will address the rationale for using sub-lethal doses of antibiotics and compare our results with the referenced papers.

      Reviewer #2:

      Thank you for acknowledging the values of the manuscript and for the insightful suggestions for improvement. We agree on the necessity to directly connect the mutation accumulation experiments with the tolerance assay, and we have already initiated additional experiments to integrate into a revised version.

      We also agree with and have been aware of the notion that cell death affects the calculation of the mutation rate. However, the error in the estimation of the generation time leads to an overestimation of the mutation rate, which, in our case, reinforces the conclusion that no discernible increase in mutation rate occurs in our mutation accumulation experiment. In the revised version, we aim to address i) the source of variation in cell death degree and ii) its influence on calculations.

      The SNPs identified from the lineages of each treatment are compiled in the "unique muts.xls" file within the Figshare document bundle we included with the manuscript. We regret not providing a detailed reference to this in the manuscript; instead, the Figshare files were merely mentioned under the Data Availability section (No. 6) without specifics. As advised, we will create a supplementary table containing this data.

      Reviewer #3:

      Thank you for appreciating the manuscript's merits and for the instructive suggestions (also articulated in the specific comments). We agree that we should show the data on reduced colony growth on agar plates to demonstrate that the drug concentrations used in the study are relevant. We will include this in the revised version, as well as changes in response to all specific comments.

      We acknowledge that the observed upregulation of DNA repair enzymes and the low mutation rates under drug pressure represent correlative data. Therefore, we opted against presenting the qPCR results as a mechanistic explanation. In the manuscript, we carefully stated: "The observed upregulation of the relevant DNA repair enzymes might account for the low mutation rate even under drug pressure." We did not establish a mechanistic link or emphasize the repair activation in the title, abstract, or discussion. We recognize the necessity for a new series of targeted experiments to provide mechanistic explanations. In this paper, our aim is to convincingly demonstrate that antibiotic pressure did not induce the occurrence of new adaptive mutations.

    1. Author response:

      eLife assessment

      This paper presents a valuable optimization algorithm for determining the spatio-temporal organization of chromatin. The algorithm identifies the polymer model that best fits population averaged Hi-C data and makes predictions about the spatio-temoral organization of specific genomic loci such as the oncogenic Myc locus. While the algorithm will be of value to biologists and physicists working in the field of genome organization, the provided methodological details and evidence are incomplete to fully substantiate the conclusions. In particular, the following would be beneficial: analysis of single-cell data, the inclusion of loci beyond Myc, testing the dependence of results on the chosen parameters, providing more details on CTCF occupancy at loop anchors, and better substantiating the claim about predictions of single-cell heterogeneity.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors of this study aim to use an optimization algorithm approach, based on the established Nelder-Mead method, to infer polymer models that best match input bulk Hi-C contact data. The procedure infers the best parameters of a generic polymer model that combines loop-extrusion (LE) dynamics and compartmentalization of chromatin types driven by weak biochemical affinities. Using this and DNA FISH, the authors investigate the chromatin structure of the MYC locus in leukemia cells, showing that loop extrusion alone cannot explain local pathogenic chromatin rearrangements. Finally, they study the locus single-cell heterogeneity and time dynamics.

      Strengths:

      • The optimization method provides a fast computational tool that speeds up the parameter search of complex chromatin polymer models and is a good technical advancement.

      • The method is not restricted to short genomic regions, as in principle it can be applied genome-wide to any input Hi-C dataset, and could be potentially useful for testing predictions on chromatin structure.

      Weaknesses:

      (1) The optimization is based on the iterative comparison of simulated and Hi-C contact matrices using the Spearman correlation. However, the inferred set of the best-fit simulation parameters could sensitively depend on such a specific metric choice, questioning the robustness of the output polymer models. How do results change by using different correlation coefficients?

      This is an important question. We have tested several metrics in the process of building the fitting procedure. We will showcase side-by-side comparisons of the fitting results obtained using these different metrics in an upcoming version of the preprint.

      (2) The best-fit contact threshold of 420nm seems a quite large value, considering that contact probabilities of pairs of loci at the mega-base scale are defined within 150nm (see, e.g., (Bintu et al. 2018) and (Takei et al. 2021)).

      This is a good point. Unfortunately, there is no established standard distance cutoff to map distances to Hi-C contact frequency data. Indeed, previous publications have used anywhere between 120 nm to 500 nm (see e.g. (Cardozo Gizzi et al. 2019), (Cattoni et al. 2017) , (Mateo et al. 2019), (Hafner et al. 2022), (Murphy and Boettiger 2022), (Takei et al. 2021), (Fudenberg and Imakaev 2017) , (Wang et al. 2016), (Su et al. 2020), (Chen et al. 2022), (Finn et al. 2019)). We will include a supplementary table in the upcoming revised preprint listing these values to demonstrate the lack of consensus. This large variation could reflect different chromatin compaction levels across distinct model systems, and different spatial resolutions in DNA FISH experiments performed by different labs. The variance in the threshold choice is also likely partially explained by Hi-C experimental details, e.g. the enzyme used for digestion, which biases the effective length scale of interactions detected (Akgol Oksuz et al. 2021). Among commonly used restriction enzymes, HindIII has a relatively low cutting frequency which results in a lower sensitivity to short-range interactions; on the other hand, MboI has a higher cutting frequency which results in a higher sensitivity to short-range interactions (Akgol Oksuz et al. 2021). Because the Hi-C data we used for the Myc locus in (Kloetgen et al. 2020) was generated using HindIII, we chose a distance cutoff close to the larger end of published values (420 nm).

      (3) In their model, the authors consider the presence of LE anchor sites at Hi-C TAD boundaries. Do they correspond to real, experimentally found CTCF sites located at genomic positions, or they are just assumed? A track of CTCF peaks of the considered chromatin loci would be needed.

      We apologize this was not clear. The LE anchor sites in the simulation model were chosen because they correspond to experimental CTCF sites and ChIP-seq peaks located at the corresponding genomic positions. Representative CTCF ChIP-seq tracks from (Kloetgen et al. 2020) will be added to figure 2 in the revised preprint version to emphasize this point.

      (4) In the model, each TAD is assigned a specific energy affinity value. Do the different domain types (i.e., different colors) have a mutually attractive energy? If so, what is its value and how is it determined? The simulated contact maps (e.g., Figure 2C) seem to allow attractions between different blocks, yet this is unclear.

      Sorry this was not explicit. The attraction energy between a pair of monomers in the simulation is determined using the geometric mean of the affinities of the two monomers. This applies to both monomers within the same domain and in different domains. This detail will be clarified in the upcoming revised preprint.

      (5) To substantiate the claim that the simulations can predict heterogeneity across single cells, the authors should perform additional analyses. For instance, they could plot the histograms (models vs. experiments) of the TAD2-TAD4 distance distributions and check whether the models can recapitulate the FISH-observed variance or standard deviation. They could also add other testable predictions, e.g., on gyration radius distributions, kurtosis, all-against-all comparison of single-molecule distance matrices, etc,.

      We agree that heterogeneity prediction is a key advantage of the simulations. We do note that the histograms (models vs. experiments) of the TAD2-TAD4 distance distributions measured by FISH were plotted in Fig. 3C as empirical cumulative probability distributions (as is standard in the field), side by side with the simulation predictions. Simulations indeed recapitulate the variance observed by FISH. We also had emphasized this important point in the main text: “Importantly, not just the average distances, but the shape of the distance distribution across individual cells closely matches the predictions of the simulations in both cell types, further confirming that the simulations can predict heterogeneity across cells.”

      (6) The authors state that loop extrusion is crucial for enhancer function only at large distances. How does that reconcile, e.g., with Mach et al. Nature Gen. (2022) where LE is found to constrain the dynamics of genomically close (150kb) chromatin loci?

      This is an interesting question. In (Mach et al. 2022), the authors tracked the physical distance between two fluorescent labels positioned next to either anchor of a ~150 kb engineered topological domain using live-cell imaging. They found that abrogation of the loop anchors by ablation of the CTCF binding motifs, or knock-down of the cohesin subunit Rad21 resulted in increased physical distance between the loci. HMM Modeling of the distance over time traces suggests that the increased distance resulted from rarer and shorter contacts between the anchors. While this might seem at odds with the results of Fig. 4L, we note a key difference between the loci. While (Mach et al. 2022) observed the dynamics of the distance separating two CTCF loop anchors, in our model only the MYC promoter is proximal to a loop anchor, while the position of the second locus is varied, but remains far from the other anchor. The deletion of the CTCF sites at both anchors in (Mach et al. 2022) indeed results in a lowered sensitivity of the physical distance to Rad21 knock-down, reminiscent of the results of Fig. 4L in our work. This result demonstrates that loop extrusion disruption disproportionately impacts distances between loci close to loop anchors, consistent with Hi-C results (Rao et al. 2017; Nora et al. 2017). We therefore believe that the models in our work and (Mach et al. 2022) are not at odds, but simply reflect that loop extrusion perturbations impact distances between loop anchors the most. Enhancer-Promoter loops are generally distinct from CTCF-mediated loops (Hsieh et al. 2020, 2022). While (Mach et al. 2022) represents a landmark study in our understanding of the dynamics of genomic folding by loop extrusion, we therefore believe that the locus we chose here - which matches the endogenous MYC architecture - may more accurately represent Enhancer-Promoter dynamics than a synthetic CTCF loop. To better articulate the similarities between model predictions and differences between the two loci, we will simulate a locus matching that of (Mach et al. 2022) in the upcoming revised preprint, and test the sensitivity of contact frequency and duration to in silico cohesin knock-down. This will also serve to extend the generality of our conclusions to different categories of genomic architectures, and the text will be clarified accordingly.

      Reviewer #2 (Public Review):

      Summary:

      The authors Fu et al., developed polymer models that combine loop extrusion with attractive interactions to best describe Hi-C population average data. They analyzed Hi-C data of the MYC locus as an example and developed an optimization strategy to extract the parameters that best fit this average Hi-C data.

      Strengths:

      The model has an intuitive nature and the authors masterfully fitted the model to predict relevant biology/Hi-C methodology parameters. This includes loop extrusion parameters, the need for self-interaction with specific energies, and the time and distance parameters expected for Hi-C capture.

      Weaknesses:

      (1) We are no longer in the age in which the community only has access to population average Hi-C. Why was only the population average Hi-C used in this study?

      Can single-cell data: i.e. single-cell Hi-C/Dip-C data or chromatin tracing data (i.e. see Tan et al Science 2018 - for Dip-C, Bintu et al Science 2018, Su et al Cell 2020 for chromatin tracing, etc.) or even 2 color DNA FISH data (used here only as validation) better constrain these models? At the very least the simulations themselves could be used to answer this essential question.

      I am expecting that the single-cell variance and overall distributions of distances between loci might better constrain the models, and the authors should at least comment on it.

      We agree that it is possible to recapitulate single-cell Hi-C or chromatin tracing data with simulations, and that these data modalities have a superior potential to constrain polymer models because they provide an ensemble of single allele structures rather than population-averaged contact frequencies. However, these data remain out of reach for most labs compared to Hi-C. Our goal with this work was to provide an approachable method that anyone interested could deploy on their locus of choice, and reasoned that Hi-C currently remains the data modality available to most. We envision this strategy will help reach labs beyond the small number of groups expert in single cell chromatin architecture, and thus hopefully broaden the impact of polymer simulations in the chromatin organization field.

      Nevertheless, we do agree that the comparison of single-cell chromatin architectures to simulations is a fertile ground for future studies. We will include a brief discussion of the potential of single-cell architectures in an upcoming version of the manuscript.

      (2) The authors claimed "Our parameter optimization can be adapted to build biophysical models of any locus of interest. Despite the model's simplicity, the best-fit simulations are sufficient to predict the contribution of loop extrusion and domain interactions, as well as single-cell variability from Hi-C data. Modeling dynamics enables testing mechanistic relationships between chromatin dynamics and transcription regulation. As more experimental results emerge to define simulation parameters, updates to the model should further increase its power." The focus on the Myc locus in this study is too narrow for this claim. I am expecting at least one more locus for testing the generality of this model.

      We note that we used two distinct loci in the study, the MYC locus in leukemia vs T cells (Figs. 2-3) and a representative locus in experiments comparing WT CTCF with a mutant that leads to loss of a subset of CTCF binding sites (Fig. 1L). To further demonstrate generality, we will add to the upcoming revised preprint a demonstration of the simulation fitting to other loci acquired in different cell types.

      Akgol Oksuz, Betul, Liyan Yang, Sameer Abraham, Sergey V. Venev, Nils Krietenstein, Krishna Mohan Parsi, Hakan Ozadam, et al. 2021. “Systematic Evaluation of Chromosome Conformation Capture Assays.” Nature Methods 18 (9): 1046–55.

      Bintu, Bogdan, Leslie J. Mateo, Jun-Han Su, Nicholas A. Sinnott-Armstrong, Mirae Parker, Seon Kinrot, Kei Yamaya, Alistair N. Boettiger, and Xiaowei Zhuang. 2018. “Super-Resolution Chromatin Tracing Reveals Domains and Cooperative Interactions in Single Cells.” Science 362 (6413). https://doi.org/10.1126/science.aau1783.

      Cardozo Gizzi, Andrés M., Diego I. Cattoni, Jean-Bernard Fiche, Sergio M. Espinola, Julian Gurgo, Olivier Messina, Christophe Houbron, et al. 2019. “Microscopy-Based Chromosome Conformation Capture Enables Simultaneous Visualization of Genome Organization and Transcription in Intact Organisms.” Molecular Cell 74 (1): 212–22.e5.

      Cattoni, Diego I., Andrés M. Cardozo Gizzi, Mariya Georgieva, Marco Di Stefano, Alessandro Valeri, Delphine Chamousset, Christophe Houbron, et al. 2017. “Single-Cell Absolute Contact Probability Detection Reveals Chromosomes Are Organized by Multiple Low-Frequency yet Specific Interactions.” Nature Communications 8 (1): 1753.

      Chen, Liang-Fu, Hannah Katherine Long, Minhee Park, Tomek Swigut, Alistair Nicol Boettiger, and Joanna Wysocka. 2022. “Structural Elements Facilitate Extreme Long-Range Gene Regulation at a Human Disease Locus.” bioRxiv. https://doi.org/10.1101/2022.10.20.513057.

      Finn, Elizabeth H., Gianluca Pegoraro, Hugo B. Brandão, Anne-Laure Valton, Marlies E. Oomen, Job Dekker, Leonid Mirny, and Tom Misteli. 2019. “Extensive Heterogeneity and Intrinsic Variation in Spatial Genome Organization.” Cell 176 (6): 1502–15.e10.

      Fudenberg, Geoffrey, and Maxim Imakaev. 2017. “FISH-Ing for Captured Contacts: Towards Reconciling FISH and 3C.” Nature Methods 14 (7): 673–78.

      Hafner, Antonina, Minhee Park, Scott E. Berger, Elphège P. Nora, and Alistair N. Boettiger. 2022. “Loop Stacking Organizes Genome Folding from TADs to Chromosomes.” bioRxiv. https://doi.org/10.1101/2022.07.13.499982.

      Hsieh, Tsung-Han S., Claudia Cattoglio, Elena Slobodyanyuk, Anders S. Hansen, Xavier Darzacq, and Robert Tjian. 2022. “Enhancer-Promoter Interactions and Transcription Are Largely Maintained upon Acute Loss of CTCF, Cohesin, WAPL or YY1.” Nature Genetics 54 (12): 1919–32.

      Hsieh, Tsung-Han S., Claudia Cattoglio, Elena Slobodyanyuk, Anders S. Hansen, Oliver J. Rando, Robert Tjian, and Xavier Darzacq. 2020. “Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding.” Molecular Cell 78 (3): 539–53.e8.

      Kloetgen, Andreas, Palaniraja Thandapani, Panagiotis Ntziachristos, Yohana Ghebrechristos, Sofia Nomikou, Charalampos Lazaris, Xufeng Chen, et al. 2020. “Three-Dimensional Chromatin Landscapes in T Cell Acute Lymphoblastic Leukemia.” Nature Genetics 52 (4): 388–400.

      Mach, Pia, Pavel I. Kos, Yinxiu Zhan, Julie Cramard, Simon Gaudin, Jana Tünnermann, Edoardo Marchi, et al. 2022. “Cohesin and CTCF Control the Dynamics of Chromosome Folding.” Nature Genetics 54 (12): 1907–18.

      Mateo, Leslie J., Sedona E. Murphy, Antonina Hafner, Isaac S. Cinquini, Carly A. Walker, and Alistair N. Boettiger. 2019. “Visualizing DNA Folding and RNA in Embryos at Single-Cell Resolution.” Nature 568 (7750): 49–54.

      Murphy, Sedona, and Alistair Nicol Boettiger. 2022. “Polycomb Repression of Hox Genes Involves Spatial Feedback but Not Domain Compaction or Demixing.” bioRxiv. https://doi.org/10.1101/2022.10.14.512199.

      Nora, Elphège P., Anton Goloborodko, Anne-Laure Valton, Johan H. Gibcus, Alec Uebersohn, Nezar Abdennur, Job Dekker, Leonid A. Mirny, and Benoit G. Bruneau. 2017. “Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization.” Cell 169 (5): 930–44.e22.

      Nuebler, Johannes, Geoffrey Fudenberg, Maxim Imakaev, Nezar Abdennur, and Leonid A. Mirny. 2018. “Chromatin Organization by an Interplay of Loop Extrusion and Compartmental Segregation.” Proceedings of the National Academy of Sciences of the United States of America 115 (29): E6697–6706.

      Rao, Suhas S. P., Su-Chen Huang, Brian Glenn St Hilaire, Jesse M. Engreitz, Elizabeth M. Perez, Kyong-Rim Kieffer-Kwon, Adrian L. Sanborn, et al. 2017. “Cohesin Loss Eliminates All Loop Domains.” Cell 171 (2): 305–20.e24.

      Su, Jun-Han, Pu Zheng, Seon S. Kinrot, Bogdan Bintu, and Xiaowei Zhuang. 2020. “Genome-Scale Imaging of the 3D Organization and Transcriptional Activity of Chromatin.” Cell 182 (6): 1641–59.e26.

      Takei, Yodai, Shiwei Zheng, Jina Yun, Sheel Shah, Nico Pierson, Jonathan White, Simone Schindler, Carsten H. Tischbirek, Guo-Cheng Yuan, and Long Cai. 2021. “Single-Cell Nuclear Architecture across Cell Types in the Mouse Brain.” Science 374 (6567): 586–94.

      Wang, Siyuan, Jun-Han Su, Brian J. Beliveau, Bogdan Bintu, Jeffrey R. Moffitt, Chao-Ting Wu, and Xiaowei Zhuang. 2016. “Spatial Organization of Chromatin Domains and Compartments in Single Chromosomes.” Science 353 (6299): 598–602.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We would like to thank all of the reviewers for their helpful and the effort they made in reading and evaluating our manuscript. In response to them, we have made major changes to the text and figures and performed substantial new experiments. These new data and changes to the text and figures have substantially strengthened the manuscript. We believe that the manuscript is now very strong in both its impact and scope and we hope that reviewers will find it suitable for publication in eLife

      A point-by-point response to the reviewers' specific comments is provided below.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this report, Yu et al ascribe potential tumor suppressive functions to the non-core regions of RAG1/2 recombinases. Using a well-established BCR-ABL oncogene-driven system, the authors model the development of B cell acute lymphoblastic leukemia in mice and found that RAG mutants lacking non-core regions show accelerated leukemogenesis. They further report that the loss of non-core regions of RAG1/2 increases genomic instability, possibly caused by increased off-target recombination of aberrant RAG-induced breaks. The authors conclude that the non-core regions of RAG1 in particular not only increase the fidelity of VDJ recombination, but may also influence the recombination "range" of off-target joints, and that in the absence of the non-core regions, mutant RAG1/2 (termed cRAGs) catalyze high levels of off-target recombination leading to the development of aggressive leukemia.

      Strengths:

      The authors used a genetically defined oncogene-driven model to study the effect of RAG non-core regions on leukemogenesis. The animal studies were well performed and generally included a good number of mice. Therefore, the finding that cRAG expression led to the development of more aggressive BCR-ABL+ leukemia compared to fRAG is solid.

      Weaknesses:

      In general, I find the mechanistic explanation offered by the authors to explain how the non-core regions of RAG1/2 suppress leukemogenesis to be less convincing. My main concern is that cRAG1 and cRAG2 are overexpressed relative to fRAG1/2. This raises the possibility that the observed increased aggressiveness of cRAG tumors compared to fRAG tumors could be solely due to cRAG1/2 overexpression, rather than any intrinsic differences in the activity of cRAG1/2 vs fRAG1/2; and indeed, the authors allude to this possibility in Fig S8, where it was shown that elevated expression of RAG (i.e. fRAG) correlated with decreased survival in pediatric ALL. Although it doesn't mean the authors' assertions are incorrect, this potential caveat should nevertheless be discussed.

      We appreciate the valuable suggestions from the reviewer. BCR-ABL1+ B-ALL is characterized by halted early B-lineage differentiation. In BCR-ABL1+ B cells, RAG recombinases are highly expressed, leading to the inactivation of genes that encode essential transcription factors for B-lineage differentiation. This results in cells being trapped within the precursor compartment, thereby elevating RAG gene expression. Our interpretation of the data suggests that, in BCR-ABL1+ B-ALL mouse models, the high expression of both cRAG and fRAG and the deletion of the non-core regions influence the precision of RAG targeting within the genome. This causes more genomic damage in cRAG tumors than in fRAG tumors, consequently leading to the observed increased aggressiveness of cRAG tumors compared to fRAG tumors. We discussed the issues on Page 12, lines 295-307 in the revised manuscript.

      Some of the conclusions drawn were not supported by the data.

      (1) I'm not sure that the authors can conclude based on μHC expression that there is a loss of pre-BCR checkpoint in cRAG tumors. In fact, Fig. 2B showed that the differences are not statistically significant overall, and more importantly, μHC expression should be detectable in small pre-B cells (CD43-). This is also corroborated by the authors' analysis of VDJ rearrangements, showing that it has occurred at the H chain locus in cRAG cells.

      We appreciate the insightful comment from the reviewer. Upon reevaluation of the data presented in Fig. 2B, we identified and rectified certain errors. The revised analysis now shows that the differences in μHC expression are statistically significant. This significant expression of μHC in fRAG leukemic cells implies that these cells may progress further in differentiation, potentially acquiring an immune phenotype. These modifications have been incorporated into the manuscript on page 7, lines 153-156 in the revised manuscript.

      (2) The authors found a high degree of polyclonal VDJ rearrangements in fRAG tumor cells but a much more limited oligoclonal VDJ repertoire in cRAG tumors. They concluded that this explains why cRAG tumors are more aggressive because BCR-ABL induced leukemia requires secondary oncogenic hits, resulting in the outgrowth of a few dominant clones (Page 19, lines 381-398). I'm not sure this is necessarily a causal relationship since we don't know if the oligoclonality of cRAG tumors is due to selection based on oncogenic potential or if it may actually reflect a more restricted usage of different VDJ gene segments during rearrangement.

      Thank you for your insightful comments and questions regarding the relationship between the oligoclonality of V(D)J rearrangements and the aggressiveness of cRAG tumors. You raise an important point regarding whether the observed oligoclonality is a result of selective pressure favoring clones with specific oncogenic potential, or if it reflects inherent limitations in V(D)J segment usage during rearrangement in cRAG models. In our study, we observed a marked difference in the V(D)J rearrangement patterns between fRAG and cRAG tumor cells, with cRAG tumors exhibiting a more limited, oligoclonal repertoire. This observation led us to speculate that the aggressive nature of cRAG tumors might be linked to a selective advantage conferred by specific V(D)J rearrangements that cooperate with the BCR-ABL1 oncogene to drive leukemogenesis. However, we acknowledge that our current data do not definitively establish a causal relationship between oligoclonality and tumor aggressiveness. The restricted V(D)J repertoire in cRAG tumors could indeed be due to a more constrained rearrangement process, possibly influenced by the altered expression or function of RAG1/2 in the absence of non-core regions. This could limit the diversity of V(D)J rearrangements, leading to the emergence of a few dominant clones not necessarily because they have greater oncogenic potential, but because of a narrowed field of rearrangement possibilities.

      To address this question more thoroughly, future studies could examine the functional consequences of specific V(D)J rearrangements found in dominant cRAG tumor clones. This could include assessing the oncogenic potential of these rearrangements in isolation and in cooperation with BCR-ABL1, as well as exploring the mechanistic basis for the restricted V(D)J repertoire. Such studies would provide deeper insight into the interplay between RAG-mediated recombination, clonal selection, and leukemogenesis in BCR-ABL1+ B-ALL.

      We appreciate your feedback on this matter and agree that further investigation is required to unravel the precise relationship between V(D)J rearrangement diversity and leukemic progression in cRAG models. We have revised our discussion to reflect these considerations and to clarify the speculative nature of our conclusions regarding the link between oligoclonality and tumor aggressiveness. We added more discussion on this issue on Page 7, lines 166-170 in the revised manuscript.

      (3) What constitutes a cancer gene can be highly context- and tissue-dependent. Given that there is no additional information on how any putative cancer gene was disrupted (e.g., truncation of regulatory or coding regions), it is not possible to infer whether increased off-target cRAG activity really directly contributed to the increased aggressiveness of leukemia.

      We totally agree you raised the issues. In Supplementary Table 3, we have presented data on off-target gene disruptions, specifically in introns, exons, downstream regions, promoters, 3' UTRs, and 5' UTRs. However, this dataset alone does not suffice to conclusively determine whether the increased off-target activity of cRAG directly influences the heightened aggressiveness of leukemia. To bridge this knowledge gap, our future research will extend to include both knockout and overexpression experiments targeting these off-target genes.

      (4) Fig. 6A, it seems that it is really the first four nucleotide (CACA) that determines fRAG binding and the first three (CAC) that determine cRAG binding, as opposed to five for fRAG and four for cRAG, as the author wrote (page 24, lines 493-497).

      We thank the reviewer for the insightful comment. In response, we have revised the text to accurately reflect the nucleotide sequences responsible for RAG binding and cleavage. Specifically, we now clarify that the first four nucleotides (CACA) are crucial for fRAG binding and cleavage, while the initial three nucleotides (CAC) are essential for cRAG binding and cleavage. These updates have been made on page 10, lines 242-245 of the revised manuscript.

      (5) Fig S3B, I don't really see why "significant variations in NHEJ" would necessarily equate "aberrant expression of DNA repair pathways in cRAG leukemic cells". This is purely speculative. Since it has been reported previously that alt-EJ/MMEJ can join off target RAG breaks, do the authors detect high levels of microhomology usage at break points in cRAG tumors?

      We appreciate the reviewer's comment. Currently, we have not observed microhomology usage at breakpoints in cRAG tumors. We plan to address this aspect in a future, more detailed study. Regarding the 'aberrant expression of DNA repair pathways in cRAG leukemic cells, we acknowledge that this is speculative. Therefore, we have carefully rephrased this to 'suggesting a potential aberrant expression of DNA repair pathways in cRAG leukemic cells.' This modification is reflected on page 12, lines 290-291 of the revised manuscript.

      (6) Fig. S7, CDKN2B inhibits CDK4/6 activation by cyclin D, but I don't think it has been shown to regulate CDK6 mRNA expression. The increase in CDK6 mRNA likely just reflects a more proliferative tumor but may have nothing to do with CDKN2B deletion in cRAG1 tumors.

      We fully concur with the reviewer's comment. We have deleted this inappropriate part from the text.

      Insufficient details in some figures. For instance, Fig. 1A, please include statistics in the plot showing a comparison of fRAG vs cRAG1, fRAG vs cRAG2, cRAG1 vs cRAG2. As of now, there's a single p-value (0.0425) stated in the main text and the legend but why is there only one p-value when fRAG is compared to cRAG1 or cRAG2? Similarly, the authors wrote "median survival days 11-26, 10-16, 11-21 days, P < 0.0023-0.0299, Fig. S2B." However, it is difficult for me to figure out what are the numbers referring to. For instance, is 11-26 referring to median survival of fRAG inoculated with three different concentrations of GFP+ leukemic cells or is 11-26 referring to median survival of fRAG, cRAG1, cRAG2 inoculated with 10^5 cells? It would be much clearer if the authors can provide the numbers for each pair-wise comparison, if not in the main text, then at least in the figure legend. In Fig. 5A-B, do the plots depict SVs in cRAG tumors or both cRAG and fRAG cells? Also in Fig. 5, why did 24 SVs give rise to 42 breakpoints, and not 48? Doesn't it take 2 breaks to accomplish rearrangement? In Fig. 6B-C, it is not clear how the recombination sizes were calculated. In the examples shown in Fig. 4, only cRAG1 tumors show intra-chromosomal joins (chr 12), while fRAG and cRAG2 tumors show exclusively inter-chromosomal joins.

      We appreciate the reviewer's feedback and have made the following revisions:

      (1) The text has been adjusted to rectify the previously mentioned error in the figure legends (page 1, lines 5-6).

      (2) We have clarified the intended message in the revised text (page 6, lines 129-130) and the figure legend (page 4-5, lines 107-113) for greater precision.

      (3) Figure 5A-B now presents an overview of all structural variants (SVs) identified in both cRAG and fRAG cells, offering a comprehensive comparison.

      (4) Among the analyzed SVs, 24 generated a total of 48 breakpoints, with 41 occurring within gene bodies and the remaining 7 in adjacent flanking sequences. This informs our exon-intron distribution profile analysis.

      (5) We have defined recombination sizes as ‘the DNA fragment size spanning the two breakpoints’ for clarity (page 10, lines 251-252).

      (6) All off-target recombinations identified in the genome-wide analyses of fRAG, cRAG1, and cRAG2 leukemic cells were determined to be intra-chromosomal joins, highlighting their specific nature within the genomic context.

      Insufficient details on certain reagents/methods. For instance, are the cRAG1/2 mice of the same genetic background as fRAG mice (C57BL/6 WT)? On Page 23, line 481, what is a cancer gene? How are they defined? In Fig. 3C, are the FACS plots gated on intact cells? Since apoptotic cells show high levels of gH2AX, I'm surprised that the fraction of gH2AX+ cells is so much lower in fRAG tumors compared to cRAG tumors. The in vitro VDJ assay shown in Fig 3B is not described in the Method section (although it is described in Fig S5b). Fig. 5A-B, do the plots depict SVs in cRAG tumors or both cRAG and fRAG cells?

      We are grateful for the reviewer's feedback and have incorporated their insights as follows:

      (1) We clarify that both cRAG1/2 and fRAG mice share the same genetic background, specifically the C57BL/6 WT strain, ensuring consistency across experimental models.

      (2) We define a 'cancer gene' as one harboring somatic mutations implicated in cancer. To support our analysis, we refer to the Catalogue Of Somatic Mutations In Cancer (COSMIC) at http://cancer.sanger.ac.uk/cosmic. COSMIC serves as the most extensive repository for understanding the role of somatic mutations in human cancers.

      (3) Upon thorough review of the raw data for γ-H2AX and the fluorescence-activated cell sorting (FACS) plots gated on intact cells, we propose that the observed discrepancies might stem from the limited sensitivity of the γ-H2AX flow cytometry detection method. This insight prompts our commitment to employing more efficient detection methodologies in forthcoming studies.

      (4) Detailed procedures for the in vitro V(D)J recombination assay have been included in the Methods section (page 15, lines 384-388) to enhance the manuscript's comprehensiveness and reproducibility.

      (5) The presented plots offer a comprehensive overview of structural variants (SVs) identified in both cRAG and fRAG cells, providing a holistic view of the genomic landscape across different models.

      Reviewer #3 (Public Review):

      Summary:

      In the manuscript, the authors summarized and introduced the correlation between the non-core regions of RAG1 and RAG2 in BCR-ABL1+acute B lymphoblastic leukemia and off-target recombination which has certain innovative and clinical significance.

      Recommendations For The Authors:

      Reviewer #1 (Recommendations For The Authors):

      I would suggest that the authors tone down some of their conclusions, which are not necessarily supported by their own data. in addition, there are some minor mistakes in figure assembly/presentation. For instance, I believe that the axes labels in Fig. 1E were flipped. BrdU should be on y-axis and 7-AAD on the x-axis. Fig. 3B, the y-axis contains a typo, it should be "CD90.1..." and not "D90.1...". In Fig. 5C, the numbers seem to be flipped, with 93% corresponding to cRAG1 and 100% to cRAG2 (compare with the description on page 23, lines 474-475). Fig. 5C, y-axis, "hybrid" is a typo. Page 3, line 59: The abbreviation of RSS has already been described earlier (p4, line 53).

      We thank the reviewer for these suggestions. We carefully checked the raw data and corrected these mistakes in the revised manuscript.

      Page 3, line 63: "signal" segment (commonly referred to as signal ends), not "signaling" segment.

      We have changed “signaling segment” to “signal ends in the revised manuscript. (page 3, lines 54-55)

      Page 3, lines 64-65: VDJ recombination promotes the development of both B and T cells, and aberrant recombination can cause both B and T cell lymphomas.

      The statement about the role of V(D)J recombination in B and T cell development and its link to lymphomagenesis is grounded in a substantial body of research. Theoretical frameworks and empirical studies delineate how aberrations in the recombination process can lead to genomic instability, potentially triggering oncogenic events. This connection is extensively documented in immunology and oncology literature, illustrating the critical balance between necessary genetic rearrangements for immune diversity and the risk of malignancy when these processes are dysregulated (Thomson, et al.,2020; Mendes, et al.,2014; Onozawa and Aplan,2012).

      Page 4, line 72: "recombinant dispensability" is not a commonly used phrase. Do the authors mean the say that the non-core regions of RAG1/2 are not strictly required for VDJ recombination?

      We thank the reviewers for their insightful suggestion. We have revised the sentence to read, 'Although the non-core regions of RAG1/2 are not essential for V(D)J recombination, the evolutionary conservation of these regions suggests their potential significance in vivo, possibly affecting RAG activity and expression in both quantitative and qualitative manners.' This revision appears on page 3, lines 61-62, in the revised manuscript.

      Fig. 4. It would have been nice to show at least one more cRAG1 tumor circus plot.

      We appreciate the reviewer's comment and concur with the suggestion. In future sequencing experiments, we will consider including additional replicates. However, due to time and financial constraints, the current sequencing effort was limited to a maximum of three replicates.

      Reviewer #3 (Recommendations For The Authors):

      In the manuscript, the authors summarized and introduced the correlation between the non-core regions of RAG1 and RAG2 in BCR-ABL1+acute B lymphoblastic leukemia and off-target recombination which has certain innovative and clinical significance. The following issues need to be addressed by the authors.

      (1) Authors should check and review extensively for improvements to the use of English.

      We thank the reviewer for their comment. With assistance from a native English speaker, we have carefully revised the manuscript to enhance its readability.

      (2) Authors should revise the conclusion so that the above can be clearly reviewed and summarized.

      The conclusion has been partially revised in the revised manuscript.

      (3) The article should state that the experiment was independently repeated three times.

      The experiment was repeated under the same conditions three times and the information has been descripted in Statistics section on page 19, lines 473-475 in the revised manuscript.

      (4) The article will be more convincing if it uses references in the last 5 years.

      We are grateful to the reviewer for their guidance in enhancing our manuscript. We have incorporated additional references from the past five years in the revised version.

      (5) Additional experiments are suggested to elucidate the molecular mechanisms related to off-target recombination.

      We thank the reviewer for this suggestion. In future experiments, we plan to perform ChIP-seq analysis to investigate the relationship between chromatin accessibility and off-target effects, as well as to examine the impact of knocking out and overexpressing off-target genes on cancer development and progression.

      (6) It is suggested to further analyze the effect of the absence of non-core RAG region on the differentiation and development of peripheral B cells in mice by flow analysis and expression of B1 and B2.

      Thank you very much for highlighting this crucial issue. FACS analysis was performed, revealing that leukemia cells in peripheral B cells in mice did not express CD5. The data are presented as follows:

      Author response image 1.

      (7) Fig3A should have three biological replicates and the molecular weight should be labeled on the right side of the strip.

      Thank you for this suggestion. The experiment was independently repeated three times, and the molecular weights have been labeled on the right side of the bands in the revised version

      References:

      Mendes RD, Sarmento LM, Canté-Barrett K, Zuurbier L, Buijs-Gladdines JG, Póvoa V, Smits WK, Abecasis M, Yunes JA, Sonneveld E, Horstmann MA, Pieters R, Barata JT, Meijerink JP. 2014. PTEN microdeletions in T-cell acute lymphoblastic leukemia are caused by illegitimate RAG-mediated recombination events. BLOOD 124:567-578. doi:10.1182/blood-2014-03-562751

      Onozawa M, Aplan PD. 2012. Illegitimate V(D)J recombination involving nonantigen receptor loci in lymphoid malignancy. Genes Chromosomes Cancer 51:525-535. doi:10.1002/gcc.21942

      Thomson DW, Shahrin NH, Wang P, Wadham C, Shanmuganathan N, Scott HS, Dinger ME, Hughes TP, Schreiber AW, Branford S. 2020. Aberrant RAG-mediated recombination contributes to multiple structural rearrangements in lymphoid blast crisis of chronic myeloid leukemia. LEUKEMIA 34:2051-2063. doi:10.1038/s41375-020-0751-y

    1. Author response:

      The authors express their gratitude to the reviewers for their insightful comments.

      Reviewer #1: We are uncertain about the reference to an overjudgement of the recovery of spermatogonial stem cells, as we did not draw any conclusions on this in the current study. Additionally, we have received feedback mentioning the multitude and diversity of datasets as both a strength and a weakness. However, we would appreciate clarification on which datasets may have been insufficiently reviewed and how our selection of highlights may have introduced bias to the interpretation and conclusion of the study. It is important to note that we did not select any patients/ data; all patient data were incorporated into our results section. We acknowledge the need for clarification regarding our study population for the germ cell stainings. As stated in our Materials and Methods section, our current study population includes the cohort from our previous publication (Vereecke et al., 2020), supplemented by nine additional participants, totaling n=106 trans women. While Fig. 1C incorporates both previous and new data on germ cells, we understand the need to clarify this to avoid confusion. Additionally, we will include information on the Tanner stages of the trans women in our cohort (all G5), as well as details on the selection criteria for our controls and their Tanner stages. As briefly touched upon in the discussion, a marker such as delta-like homolog 1 would indeed be valuable to assess the presence of truly immature Leydig cells. Unfortunately, our attempts to optimize the immunofluorescence protocol for this marker were unsuccessful, resulting in a double staining instead of a triple staining for the Leydig cells. The suboptimal resolution of Fig.1 will be solved.

      Reviewer #2 raises concerns regarding the suitability of rejuvenated testicular tissue for research purposes. However, we emphasize that this tissue source holds significant value. Although there is a wide availability of adult testicular tissue (coming from prostate cancer patients or vasectomy reversal patients), we are especially looking for alternatives for the scarce prepubertal/ pubertal tissue for research on in vitro spermatogenesis. While we acknowledge that transgender tissue with severe hyalinization or without spermatogonia may not be suitable for such research, the abundance of transgender tissue without these issues emphasizes the value of this tissue source.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We would like to thank both Editors and reviewers for their valuable time, careful reading, and constructive comments. The comments have been highly valuable and useful for improving the quality of our study, as well as important in guiding the direction of our present and future research. In the revised manuscript, we have incorporated the necessary changes including additional experimental data as suggested; please find our detailed pointby-point response to the reviewer’s comments and the changes we have made in the manuscript as follows.

      Reviewer #1 (Public Review):

      In this work, the authors have explored how treating C. albicans fungal cells with EDTA affects their growth and virulence potential. They then explore the use of EDTA-treated yeast as a whole-cell vaccine in a mouse model of systemic infection. In general, the results of the paper are unsurprising. Treating yeast cells with EDTA affects their growth and the addition of metals rescues the phenotype. Because of the significant growth defects of the cells, they don't infect mice and you see reduced virulence. Injection with these cells effectively immunises the mice, in the same way that heatkilled yeast cells would. The data is fairly sound and mostly well-presented, and the paper is easy to follow. However, I feel the data is an incremental advance at best, and the immune analysis in the paper is very basic and descriptive.

      Strengths:

      Detailed analysis of EDTA-treated yeast cells

      Weaknesses:

      • Basic immune data with little advance in knowledge.

      • No comparison between their whole-cell vaccine and others tried in the field.

      • The data is largely unsurprising and not novel.

      Reply: Thank you so much for appreciating our effort to generate a whole cell anti-fungal vaccine by treating C. albicans cells with EDTA. Also, we appreciate your comment that the manuscript is sound and well-presented. However, we are afraid that the respected reviewer assumed the CAET cells as dead cells while they only divide relatively slower than the untreated cells. In the revised manuscript, we have presented additional evidence to show that CAET are live cells (Supp. Figs 2) and based on the new data, we expect a positive change in the reviewer’s opinion. Since CAET is a live strain, the data presented here is novel.

      Reviewer #2 (Public Review):

      Summary:

      Invasive fungal infections are very difficult to treat with limited drug options. With the increasing concern of drug resistance, developing an antifungal vaccine is a high priority. In this study, the authors studied the metal metabolism in Candida albicans by testing some chelators, including EDTA, to block the metal acquisition and metabolism by the fungus. Interestingly, they found EDTAtreated yeast cells grew poorly in vitro and non-pathogenic in vivo in a murine model. Mice immunized by EDTA-treated Candida (CAET) were protected against challenge with wild-type Candida cells. RNA-Seq analysis to survey the gene expression profile in response to EDTA treatment in vitro revealed upregulation of genes in metal homeostasis and downregulation of ribosome biogenesis. They also revealed an induction of both pro- and anti-inflammatory cytokines involved in Th1, Th2 and Th17 host immune response in response to CAET immunization. Overall, this is an interesting study with translational potential.

      Strengths:

      The main strength of the report is that the authors identified a potential whole-cell live vaccine strain that can provide full protection against candidiasis. Abundant data both on in vitro phenotype, gene expression profile, and host immune response have been presented.

      Weaknesses:

      A weakness is that the immune mechanism of CAET-mediated host protection remains unclear. The immune data is somewhat confusing. The authors only checked cytokines and chemokines in blood. The immune response in infected tissues and antibody response may be investigated.

      Reply: Thank you very much for appreciating our work and finding our strain to be a live whole-cell anti-fungal vaccine strain with translational potential. Since the current study focused on the identification and detailed characterizations of a non-genetically modified live-attenuated strain and determination of its safety and efficacy as a potential vaccine candidate in the preclinical model, we have excluded the possible immune mechanisms involving CAET. In a separate study, we are currently investigating both cellular and molecular mechanisms that provide protective immunity in CAET-vaccinated mice.

      Reviewer #3 (Public Review):

      Summary:

      The authors are trying to find a vaccine solution for invasive candidiasis.

      Strengths:

      The testing of the antifungal activity of EDTA on Candida is not new as many other papers have examined this effect. The novelty here is the use of this EDTA-treated strain as a vaccine to protect against a secondary challenge with wild-type Candida.

      Weaknesses:

      However, data presented in Figure 5 and Figure 6 are not convincing and need further experimental controls and analysis as the authors do not show a time-dependent effect on the CFU of their vaccine formulation. The methodology used is also an issue. As it stands, the impact is minor.

      Reply: Thank you so much for appreciating our efforts to develop a novel vaccine against fungal infections. We are extremely sorry for the lack of clarity in our writing related to Figs. 5 and 6, we have now modified the text and hope that the respected reviewer will find these convincing.

      Recommendations for the authors:

      Although the reviewers recognize the importance of the manuscript, they would like to see: 1) comparisons between their whole-cell vaccine and others tried in the field, 2) an investigation of the immune response in infected tissues and antibody response, and 3) more controls in Figures 5 and 6, and a time-dependent effect on the colony-forming units of their vaccine formulation. Please, address the questions and submit a revised version together with a rebuttal letter addressing point-by-point raised by each reviewer.

      Reply: (1) We are afraid that a comparative study of a live and heat-killed cell vaccines will mislead the information presented here. This is the only non-genetically modified antifungal vaccine candidate therefore a comparison with a dead strain at present is unwarranted. We have now added supporting data to confirm that, the survivability of C. albicans cells was unaffected at 6 hr of EDTA treatment (CAET, Supp. Fig. S2). (2) Since the current study focused on the identification and a detailed characterization of a non-genetically modified live attenuated strain and its safety and efficacy as a potential vaccine candidate in the preclinical model, we have excluded the possible immune mechanisms involving CAET. However, in a separate study, we are currently investigating both cellular and molecular mechanisms that provide protective immunity in CAET-vaccinated mice. (3) The results of Figs 5 and 6 were misinterpreted by the respected reviewer, please see the explanation below.

      Reviewer #1 (Recommendations For The Authors):

      Some specific comments/suggestions for the authors: (1) What was the viability of the yeast after EDTA treatment? Is the delayed growth response because many cells died and it takes a while for remaining viable cells to catch up? This is important to know because it may mean the dose given to mice is substantially different and that should be accounted for. Some PI staining of the cells after treatment would help.

      Reply: The growth curve assays (Fig. 1A and 1E) were initiated with O.D.600nm=0.5 of each cultures (~ 107 cells/mL) and the analyses suggested that the EDTA-treated C. albicans cells grew slower than the untreated cells. Fig. 1B and 1F further demonstrated that EDTA has minimal effect on the survival of the strain up to 8 hrs post-exposure. The proportion of the number of cells increased without and with metal chelators almost remained the same for this duration (0 – 8 hrs). Therefore, for subsequent analyses, 6 hr treatment was selected and such treated cells were considered as CAET, which were actively dividing live cells, albeit slower than untreated cells. As suggested and to strengthen our finding, a time dependent SYTOX Green and Propidium iodide staining of C. albicans cells without and with EDTA treatment was carried out and analysed by flow cytometry and microscopy, respectively. Both analyses revealed that the percentage of dead cells up to 12 hrs of without and with EDTA treatment remained the same. The new data has now been added in the revised version of the manuscript as Supplementary figure 2.

      Author response image 1.

      (2) In line with the above, what was the viability of the CAET cells after 3h in media? In the macrophage in vitro experiments, how do you know the reduced viability of the CAET cells is macrophage-specific? Did you run a control of CAET cells in media on their own to determine how CFU changed in macrophage-free conditions? Is the proliferation rates of untreated and CAET cells different? That would affect CFSE labelling and results. These experiments would work better with a GFP-expressing C. albicans strain, which is widely available. In the images in Figure 4c, it looks like there are more hyphae in CAET than untreated - was hyphal induction checked/measured? That's important to know because more hyphae usually means more clumping and this can affect CFU counts (giving the impression of less CFU when actually there is more). Because of all the issues above, I'm not fully convinced by the uptake/killing data.

      Reply: As explained in response 1, we used actively dividing WT and CAET cells, and equal number of these cells were CFSE labelled. As can be seen in Fig.4A, the rate of phagocytosis was the same in 1 hr of pre-culture, but in the subsequent time points the double-positive cells were reduced in the case of CAET cells and that is due to fungal killing by macrophages. Fungal cells were released from the macrophages by warm water treatment and CFU was determined. Fig. 4B suggested that at 1hr of co-culture, the CFU of both fungal cells (WT and CAET) were the same and the fungal clearance was observed at later time points. Thus, the reduced viability of CAET cells was macrophagespecific. EDTA has minimal effect on hyphal transition without and with the presence of serum and the new data has now been provided in the revised version (Supplementary Fig. 3).

      Author response image 2.

      (3) Pooled data should be shown for all animal experiments.

      Reply: Thank you for the suggestion, wherever it was meaningful pooled data for the animal experiments have now been provided.

      (4) Immune cell counts/analysis in the kidney and bone marrow would be hugely helpful and more relevant to understanding immune responses following immunisation/infection. I think a more interesting analysis for the authors to consider would be to immunise with heat-killed yeast vs EDTAtreated yeast and see if there is a qualitative difference or better protection, i.e. is the EDTA-treated whole-cell vaccine superior to the heat-killed version? That is a better question to address. As it stands, the data in the paper is not surprising.

      Reply: The studies on cellular and molecular mechanisms underlying protective immunity in CAETvaccinated mice are under progress in a separate study. This study mostly focused on the identification and detailed characterization of a non-genetically modified live-attenuated strain and its safety and efficacy as a potential vaccine candidate in a preclinical model. We are afraid that a comparison of a live cell (CAET) with a dead cell (heat-killed) will dilute the content of the manuscript and will not be meaningful. It is well accepted that the heat-killed C. albicans strain only provides partial short-lived protection to re-challenge (Refs-PMIDs: 12146759, and 9916097), thus, it does not warrant any comparison with CAET.

      Reviewer #2 (Recommendations For The Authors):

      Overall, this is a highly interesting study. I have the following specific comments for clarification.

      (1) In the introduction, the authors mentioned other anti-candida vaccines that are mostly effective against Candida infection by inducing neutralizing antibodies. However, in their CAET vaccine candidate, they only checked the cellular immunity in blood and found a balanced immune response (both pro- and anti-inflammatory responses are induced). How about the antibody production in these mice? It is a bit surprising that both untreated Candida infection and CAET Candida infection produced similar immune activation based on Figure 6, yet the CAET immunization provides protection. Some innate cell recruitment is higher in untreated Ca infection than the CAET infected mice (Figure 5F). The overall results on immune response characterization did not seem to explain why the CAET infection led to host protection while untreated Ca infection cannot. Characterizing infected tissue immune cell differentiation and cytokine production may offer some additional insights.

      Reply: We agree with you that in this manuscript we have not provided any mechanistic study on the protective immunity in CAET-vaccinated mice. This will be demonstrated in a subsequent study.

      (2) In Figure 5, some critical data seem to be missing in panels B and C. The CFU and histopathological images for CAET-treated mice challenged by Ca should also be shown there for comparison. Although they did show some data in Figure 5E and Figure S4, it is necessary to have that data in 5B and 5C from the same experiment. Figure S4 is a very busy figure and the images are quite small. It may be necessary to use arrows to point out what information authors want to emphasize.

      Reply: Fig 5 B and 5C showed the data for mice that succumbed to infection. Since the other mice (saline control groups, CAET infected, CAET vaccinated, and re-challenged groups) survived, they were not sacrificed; therefore, the CFU data was not collected. In addition, we wanted to see the longevity of these survived mice and after 1 year of observations, they were handed over to the animal house for clearance as per the institutional guidelines. However, Figure 5E and Figure S4 (now Fig. S6) included all the mice groups as they were sacrificed at various time points irrespective of humane end points. As suggested FigS6 has now been modified and fungal cells were denoted by yellow arrows.

      (3) EDTA-treated yeast cells showed poor growth but also had thicker cell walls with high chitin, glucan, and mannan levels. What leads to its clearance in vivo remains unclear, as usually, cells with thick cell wall structures and low metabolism are more resistant to stress, e.g., dormant cells. Macrophages were shown to contribute to CAET killing in a phagocytosis assay (Figure 4). Checking cytokines produced by macrophages during co-incubation may offer some insights. In all, additional discussion on what caused in vivo clearance would be helpful.

      Reply: Mechanistic study on the protective immune responses of CAET will be demonstrated in a separate study. As suggested, the discussion section now contains additional information emphasising the in vivo clearance of CAET cells in the 3rd paragraph of discussion section.

      (4) Long paragraphs in the discussion section could be divided into a bigger number of shorter paragraphs.

      Reply: Thank you for the suggestion, it has now been modified in the revised version (7 short paragraphs). To make it more comprehensive, some of the content has been removed.

      Reviewer #3 (Recommendations For The Authors):

      (1) It is unclear how many cells were treated with 250 micromolar of EDTA for 6 hours before preparing the inoculum. It seems that only the OD was measured before adding EDTA. This is not a very rigorous and reproducible method.

      Reply: In this manuscript, we have repeatedly used the same protocol to generate CAET cells for various analyses. The O.D.600nm= 0.5 culture is equivalent to 107 C. albicans cells per mL and this information has now been added in the revised manuscript.

      (2) Upon treatment with 250 micromolar of EDTA, cells were harvested and counted to prepare the inoculum (5x10e5) for injecting it in mice. However, it appears that CFU of the inoculum was not done. Based on data shown in Fig. 1B, 250 micromolar of EDTA does inhibit Candida cell replication. Thus, the authors may have counted dead cells and, thus, injected dead cells together with live cells for the CAET inoculum. Thus, mice receiving this inoculum may have been infected (and vaccinated) with a lower number of live Candida cells.

      Reply: Please see a similar response to reviewer #1. EDTA has minimal effect on the survival of C. albicans cells at 6 hr (also see supp. Fig. S2). We have already mentioned the CFU analysis of untreated and CAET cells in the methodology section related to inoculum preparation.

      (3) It is unclear if 6 hours of treatment with 250 micromolar of EDTA is enough to induce a block of Candida cell replication. In Figure 1B, the authors treated for 24h. The authors are encouraged to wash the cells after 6 hours of treatment and see if their cell division will recover upon removal of EDTA.

      Reply: Thank you for the suggestion. At 6 hr treatment, survivability of C. albicans cells was unaffected upon EDTA exposure. PI and SYTOX GREEN staining confirmed it (Supp. Fig. 2). Additionally, as suggested a rescue experiment was carried out by exogenous addition of divalent metals after 6 hr EDTA treatment and growth/CFU analyses were followed thereafter. A modified Fig. 1 A and B with new data has been provided.

      (4) The data shown in Figure 5A is extremely exciting. However, the number of mice in each group (n=6) is too low. Normally, 10 mice per group are used for virulence studies unless the authors provide a power analysis that 6 mice per group will be sufficient. Also, CFU data were only provided for Ca and saline-Ca groups (Fig. 5B) and not for the other groups. CFU data should be provided for all mice.

      Reply: Thank you for the suggestion and a statistical analysis of Fig. 5A was provided in the revised version. The rationale behind not including all mice groups in Fig. 5B is already explained in a response to reviewer #2.

      (5) It is unclear how the authors differentiate between CFU arising from CAET or from WT Candida.

      Reply: Since the Fig 5 E demonstrated that no CAET cells were detected in the kidney beyond 10 days of inoculation, in the re-challenged mice group (1CAET 2 Ca), the fungal cells those detected in the 3rd and 7th days were from the later inoculated cells (brown colour).

      (6) Figure 5E: it is unclear if a 1 saline-2 saline (Figure legend) or if 1 saline-2 Ca (text) group was included. If the latter, where are the CFU? It is impossible that 1 saline-2 Ca mice have no CFU.

      Reply: Thank you so much for pointing this out. The legend has now been modified that include 1saline-2saline and 1CAET-2Ca.

      (7) It seems that CFU is significantly present in the kidney in the 1 CAET - 2 Ca group at day 7 but not at day 3. How is this possible? This is an extremely invasive model of infection, and the authors are challenging intravenously 500,000 live Candida cells. If by the 3rd day, the authors detect no CFU, then how is it possible that CFUs are arising on day 7?

      Reply: We do detect fungal cells on 3rd day in 1CAET 2 WT mice group (~2000 cells), albeit much lower than in 7 days (~11200 cells). A Log10 scale graph has now been provided for better representation.

      (8) Most importantly, if the authors are not detecting CFU at day 3, then earlier time points (e.g. day 2, day 1, or even 12 hours post-challenge) must be analyzed. The authors should show that CFU from the organs is decreasing in a time-dependent manner. Also, all CFU should be shown as Log10.

      Reply: please see the previous response.

      (9) Fig. 6: because it is unclear if the mice were challenged with the same inoculum of live Candida cells (untreated and treated with EDTA), the different cytokine profiles between the two groups could be simply due to the different inoculum sizes and not to the effect of EDTA on Ca.

      Reply: please see the previous response as given also for Reviewer 1.

    1. Author response:

      Reviewer #1

      […] it seems that the readout units are not operating in continuous time, and that interval discrimination relies in part on external information. Specifically, the readout units only look at the spike counts during the window delta_t_w.

      In the first version of the review, the reviewer implied that each readout unit only receives input during a small window around the interval it represents. However, this is not the case. The small window that is depicted in Fig. 16 is a sliding window that is used to compute the states (i.e., an estimate of the instantaneous firing rate) at each point in time. The fact that the readout units indeed do operate in continuous time is apparent from Fig. 2A, showing the activity of all output units as a function of time: There is gradually changing activity with a peak at the represented interval. If each unit would only receive input during a window of a couple milliseconds, there would be a single peak of activity at the represented interval, and near-zero activity at any other time.

      This misunderstanding has been cleared out in the current version of the review (see last paragraph of review #1).

      Stimulus onset occurs at 1500 ms in order to allow the network to stabilize. Ideally, this value should be randomized across trials to ensure performance generalizes across initial states.

      This is a valid point which we will address in the revision. However, we note that experimentation with different onset values did not change the dynamics of the network systematically in previous studies (i.e., Hass et al., 2022).

      Why does StDev saturate? Is that because subjective time saturates as well?

      Indeed, the two phenomena are closely related. In section “Deviations from the scalar property and the origin on Vierordt’s law”, we discuss that both is caused by the broadening of the tuning curves of the readout units (Fig 1A) as the longest time constants of the network are exceeded.

      In the discussion, it would be nice to explain that dopaminergic modulation of subjective timing is not as universally observed as the linear psychophysical law or the scalar property, and I believe somewhat controversial (e.g., Ward, ..., Balsam, 2009).

      We are thankful for this advice and will adapt the discussion accordingly in the revision. Still, we note that dopaminergic modulation of subjective timing is one of the more robust effects observed in several time perception experiments.

      Reviewer #2:

      (1) Lack of Empirical Data: […] The paper would benefit from quantitative and qualitative simulations of results from specific, large-sample studies to anchor the model's predictions in concrete empirical evidence.

      While it is correct that this study does not attempt the replicate a concrete empirical study, we note that do compare the model's results with specific studies wherever possible. The comparison is done on the level of parameters of functional relationships: For the linear psychophysical law, we compare the slope and the indifference point of the model with those from experimental studies. For the scalar property, we compare the Weber fraction of the model to those computed from experiments. For dopaminergic modulation of subjective duration, no direct comparison with experimental data is possible, as the levels of modulation are estimated from in vitro experiments and cannot be directly compared with modulations in vivo. However, we discuss a range of qualitative observations in experiments that are reproduced (and explained) by the model.

      The above arguments notwithstanding, one can discuss whether the presentation of the experimental results and the comparison with the simulations is appropriate, and we do plan to extend this presentation in a revision.

      (2) Methodological Ambiguities: The training and testing procedures lack robust checks for generalization, leading to potential overfitting issues.

      It is correct that formal checks for generalization, such as cross-validation protocols, are missing, and we will include them in the revision. However, as we obtained a mechanistic understanding of how the model tells time, we are confident that our results are not due to overfitting.

      (3) Inadequate Visualization of Empirical Data: References to empirical data are vague and not directly visualized alongside model outputs. Future iterations should include empirical data, not general trends from psychophysics, in figures for a clear comparison.

      As mentioned above, the comparison between simulation and empirical data will be extended in a revision. However, we argue that the “general trends”, namely adherence of the model to the often-reported psychophysical regularities, are of greater importance compared to the replication of, e.g. one specific slope of the linear psychophysical law, which does vary a lot between experiments.

      (4) Limitations in Model Scope and Dynamics: […] Expanding the model limitations to consider isochronous pulse processing and the emergence of limit-cycle behaviors after prolonged stimulation would provide a more comprehensive understanding of the model's capabilities and limitations.

      The current research focuses on the estimation of a single duration rather than the processing of sequences of durations. Sequence processing is a vast field, and it has been argued that it comprises different mechanisms compared to duration estimation. Thus, we feel that including sequences processing would be beyond the scope of the already quite extensive paper. However, we will discuss a possible extension of the model to sequence processing in the revision.

      Additionally, the justification for using(N_{Poisson}\) as a proxy for more connections is unclear and warrants a more direct approach.

      We considered different means to vary the noise input into the network, including changes in the number of connections. We ultimately chose to vary the firing rate of a fixed number of Poisson input neurons. As the sum of the firing rates of N independent Poisson neurons with the same f is simply N*f and the synaptic contributions from each spike also linearly add up, this is equivalent to adding more Poisson neurons and thus, more connections.

      (5) Omissions and Redundancies: Certain omissions, such as the lack of a condition in Figure 7A or missing references to relevant models and reviews, detract from the paper's thoroughness.

      The reviewer refers to a condition where everything is ablated except NMDA. We will include such a condition in the revision. Regarding missing references, the reviewer requests including references that focus on sequence processing. While the focus of the current work is on estimating a single duration rather than a sequence of durations (see above), we will include a review on this topic as an outlook on this possible extension of the model.

      Moreover, some statements and terms like "internal clock" are used without a clear mechanistic definition within the model.

      We are thankful for this advice and will adapt the revision accordingly.

    1. Author response:

      The following is the authors’ response to the current reviews.

      eLife assessment

      This useful manuscript challenges the utility of current paradigms for estimating brain-age with magnetic resonance imaging measures, but presents inadequate evidence to support the suggestion that an alternative approach focused on predicting cognition is more useful. The paper would benefit from a clearer explication of the methods and a more critical evaluation of the conceptual basis of the different models. This work will be of interest to researchers working on brain-age and related models.

      Thank you so much for providing high-quality reviews on our manuscript. We revised the manuscript to address all of the reviewers’ comments and provided full responses to each of the comments below. Importantly, in this revision, we clarified that we did not intend to use Brain Cognition as an alternative approach as mentioned by the editor. This is because, by design, the variation in fluid cognition explained by Brain Cognition should be higher or equal to that explained by Brain Age. Here we made this point more explicit and further stated that the relationship between Brain Cognition and fluid cognition indicates the upper limit of Brain Age’s capability in capturing fluid cognition. By examining what was captured by Brain Cognition, over and above Brain Age and chronological age via the unique effects of Brain Cognition, we were able to quantify the amount of co-variation between brain MRI and fluid cognition that was missed by Brain Age. And such quantification is the third aim of this study.

      Reviewer #1 (Public Review):

      In this paper, the authors evaluate the utility of brain age derived metrics for predicting cognitive decline by performing a 'commonality' analysis in a downstream regression that enables the different contribution of different predictors to be assessed. The main conclusion is that brain age derived metrics do not explain much additional variation in cognition over and above what is already explained by age. The authors propose to use a regression model trained to predict cognition ('brain cognition') as an alternative suited to applications of cognitive decline. While this is less accurate overall than brain age, it explains more unique variance in the downstream regression.

      Importantly, in this revision, we clarified that we did not intend to use Brain Cognition as an alternative approach. This is because, by design, the variation in fluid cognition explained by Brain Cognition should be higher or equal to that explained by Brain Age. Here we made this point more explicit and further stated that the relationship between Brain Cognition and fluid cognition indicates the upper limit of Brain Age’s capability in capturing fluid cognition. By examining what was captured by Brain Cognition, over and above Brain Age and chronological age via the unique effects of Brain Cognition, we were able to quantify the amount of co-variation between brain MRI and fluid cognition that was missed by Brain Age.

      REVISED VERSION: while the authors have partially addressed my concerns, I do not feel they have addressed them all. I do not feel they have addressed the weight instability and concerns about the stacked regression models satisfactorily.

      Please see our responses to #3 below

      I also must say that I agree with Reviewer 3 about the limitations of the brain age and brain cognition methods conceptually. In particular that the regression model used to predict fluid cognition will by construction explain more variance in cognition than a brain age model that is trained to predict age. This suffers from the same problem the authors raise with brain age and would indeed disappear if the authors had a separate measure of cognition against which to validate and were then to regress this out as they do for age correction. I am aware that these conceptual problems are more widespread than this paper alone (in fact throughout the brain age literature), so I do not believe the authors should be penalised for that. However, I do think they can make these concerns more explicit and further tone down the comments they make about the utility of brain cognition. I have indicated the main considerations about these points in the recommendations section below.

      Thank you so much for raising this point. We now have the following statement in the introduction and discussion to address this concern (see below).

      Briefly, we made it explicit that, by design, the variation in fluid cognition explained by Brain Cognition should be higher or equal to that explained by Brain Age. That is, the relationship between Brain Cognition and fluid cognition indicates the upper limit of Brain Age’s capability in capturing fluid cognition. More importantly, by examining what was captured by Brain Cognition, over and above Brain Age and chronological age via the unique effects of Brain Cognition, we were able to quantify the amount of co-variation between brain MRI and fluid cognition that was missed by Brain Age. And this is the third goal of this present study.

      From Introduction:

      “Third and finally, certain variation in fluid cognition is related to brain MRI, but to what extent does Brain Age not capture this variation? To estimate the variation in fluid cognition that is related to the brain MRI, we could build prediction models that directly predict fluid cognition (i.e., as opposed to chronological age) from brain MRI data. Previous studies found reasonable predictive performances of these cognition-prediction models, built from certain MRI modalities (Dubois et al., 2018; Pat, Wang, Anney, et al., 2022; Rasero et al., 2021; Sripada et al., 2020; Tetereva et al., 2022; for review, see Vieira et al., 2022). Analogous to Brain Age, we called the predicted values from these cognition-prediction models, Brain Cognition. The strength of an out-of-sample relationship between Brain Cognition and fluid cognition reflects variation in fluid cognition that is related to the brain MRI and, therefore, indicates the upper limit of Brain Age’s capability in capturing fluid cognition. This is, by design, the variation in fluid cognition explained by Brain Cognition should be higher or equal to that explained by Brain Age. Consequently, if we included Brain Cognition, Brain Age and chronological age in the same model to explain fluid cognition, we would be able to examine the unique effects of Brain Cognition that explain fluid cognition beyond Brain Age and chronological age. These unique effects of Brain Cognition, in turn, would indicate the amount of co-variation between brain MRI and fluid cognition that is missed by Brain Age.”

      From Discussion:

      “Third, by introducing Brain Cognition, we showed the extent to which Brain Age indices were not able to capture the variation in fluid cognition that is related to brain MRI. More specifically, using Brain Cognition allowed us to gauge the variation in fluid cognition that is related to the brain MRI, and thereby, to estimate the upper limit of what Brain Age can do. Moreover, by examining what was captured by Brain Cognition, over and above Brain Age and chronological age via the unique effects of Brain Cognition, we were able to quantify the amount of co-variation between brain MRI and fluid cognition that was missed by Brain Age.

      From our results, Brain Cognition, especially from certain cognition-prediction models such as the stacked models, has relatively good predictive performance, consistent with previous studies (Dubois et al., 2018; Pat, Wang, Anney, et al., 2022; Rasero et al., 2021; Sripada et al., 2020; Tetereva et al., 2022; for review, see Vieira et al., 2022). We then examined Brain Cognition using commonality analyses (Nimon et al., 2008) in multiple regression models having a Brain Age index, chronological age and Brain Cognition as regressors to explain fluid cognition. Similar to Brain Age indices, Brain Cognition exhibited large common effects with chronological age. But more importantly, unlike Brain Age indices, Brain Cognition showed large unique effects, up to around 11%. As explained above, the unique effects of Brain Cognition indicated the amount of co-variation between brain MRI and fluid cognition that was missed by a Brain Age index and chronological age. This missing amount was relatively high, considering that Brain Age and chronological age together explained around 32% of the total variation in fluid cognition. Accordingly, if a Brain Age index was used as a biomarker along with chronological age, we would have missed an opportunity to improve the performance of the model by around one-third of the variation explained.”

      This is a reasonably good paper and the use of a commonality analysis is a nice contribution to understanding variance partitioning across different covariates. I have some comments that I believe the authors ought to address, which mostly relate to clarity and interpretation

      Reviewer #1 Public Review #1

      First, from a conceptual point of view, the authors focus exclusively on cognition as a downstream outcome. I would suggest the authors nuance their discussion to provide broader considerations of the utility of their method and on the limits of interpretation of brain age models more generally.

      Thank you for your comments on this issue.

      We now discussed the broader consideration in detail:

      (1) the consistency between our findings on fluid cognition and other recent works on brain disorders,

      (2) the difference between studies investigating the utility of Brain Age in explaining cognitive functioning, including ours and others (e.g., Butler et al., 2021; Cole, 2020, 2020; Jirsaraie, Kaufmann, et al., 2023) and those explaining neurological/psychological disorders (e.g., Bashyam et al., 2020; Rokicki et al., 2021)

      and

      (3) suggested solutions we and others made to optimise the utility of Brain Age for both cognitive functioning and brain disorders.

      From Discussion:

      “This discrepancy between the predictive performance of age-prediction models and the utility of Brain Age indices as a biomarker is consistent with recent findings (for review, see Jirsaraie, Gorelik, et al., 2023), both in the context of cognitive functioning (Jirsaraie, Kaufmann, et al., 2023) and neurological/psychological disorders (Bashyam et al., 2020; Rokicki et al., 2021). For instance, combining different MRI modalities into the prediction models, similar to our stacked models, often leads to the highest performance of age-prediction models, but does not likely explain the highest variance across different phenotypes, including cognitive functioning and beyond (Jirsaraie, Gorelik, et al., 2023).”

      “There is a notable difference between studies investigating the utility of Brain Age in explaining cognitive functioning, including ours and others (e.g., Butler et al., 2021; Cole, 2020, 2020; Jirsaraie, Kaufmann, et al., 2023) and those explaining neurological/psychological disorders (e.g., Bashyam et al., 2020; Rokicki et al., 2021). We consider the former as a normative type of study and the latter as a case-control type of study (Insel et al., 2010; Marquand et al., 2016). Those case-control Brain Age studies focusing on neurological/psychological disorders often build age-prediction models from MRI data of largely healthy participants (e.g., controls in a case-control design or large samples in a population-based design), apply the built age-prediction models to participants without vs. with neurological/psychological disorders and compare Brain Age indices between the two groups. On the one hand, this means that case-control studies treat Brain Age as a method to detect anomalies in the neurological/psychological group (Hahn et al., 2021). On the other hand, this also means that case-control studies have to ignore under-fitted models when applied prediction models built from largely healthy participants to participants with neurological/psychological disorders (i.e., Brain Age may predict chronological age well for the controls, but not for those with a disorder). On the contrary, our study and other normative studies focusing on cognitive functioning often build age-prediction models from MRI data of largely healthy participants and apply the built age-prediction models to participants who are also largely healthy. Accordingly, the age-prediction models for explaining cognitive functioning in normative studies, while not allowing us to detect group-level anomalies, do not suffer from being under-fitted. This unfortunately might limit the generalisability of our study into just the normative type of study. Future work is still needed to test the utility of brain age in the case-control case.”

      “Next, researchers should not select age-prediction models based solely on age-prediction performance. Instead, researchers could select age-prediction models that explained phenotypes of interest the best. Here we selected age-prediction models based on a set of features (i.e., modalities) of brain MRI. This strategy was found effective not only for fluid cognition as we demonstrated here, but also for neurological and psychological disorders as shown elsewhere (Jirsaraie, Gorelik, et al., 2023; Rokicki et al., 2021). Rokicki and colleagues (2021), for instance, found that, while integrating across MRI modalities led to age-prediction models with the highest age-prediction performance, using only T1 structural MRI gave age-prediction models that were better at classifying Alzheimer’s disease. Similarly, using only cerebral blood flow gave age-prediction models that were better at classifying mild/subjective cognitive impairment, schizophrenia and bipolar disorder.

      As opposed to selecting age-prediction models based on a set of features, researchers could also select age-prediction models based on modelling methods. For instance, Jirsaraie and colleagues (2023) compared gradient tree boosting (GTB) and deep-learning brain network (DBN) algorithms in building age-prediction models. They found GTB to have higher age-prediction performance but DBN to have better utility in explaining cognitive functioning. In this case, an algorithm with better utility (e.g., DBN) should be used for explaining a phenotype of interest. Similarly, Bashyam and colleagues (2020) built different DBN-based age-prediction models, varying in age-prediction performance. The DBN models with a higher number of epochs corresponded to higher age-prediction performance. However, DBN-based age-prediction models with a moderate (as opposed to higher or lower) number of epochs were better at classifying Alzheimer’s disease, mild cognitive impairment and schizophrenia. In this case, a model from the same algorithm with better utility (e.g., those DBN with a moderate epoch number) should be used for explaining a phenotype of interest. Accordingly, this calls for a change in research practice, as recently pointed out by Jirasarie and colleagues (2023, p7), “Despite mounting evidence, there is a persisting assumption across several studies that the most accurate brain age models will have the most potential for detecting differences in a given phenotype of interest”. Future neuroimaging research should aim to build age-prediction models that are not necessarily good at predicting age, but at capturing phenotypes of interest.”

      Reviewer #1 Public Review #2

      Second, from a methods perspective, there is not a sufficient explanation of the methodological procedures in the current manuscript to fully understand how the stacked regression models were constructed. I would request that the authors provide more information to enable the reader to better understand the stacked regression models used to ensure that these models are not overfit.

      Thank you for allowing us an opportunity to clarify our stacked model. We made additional clarification to make this clearer (see below). We wanted to confirm that we did not use test sets to build a stacked model in both lower and higher levels of the Elastic Net models. Test sets were there just for testing the performance of the models.

      From Methods: “We used nested cross-validation (CV) to build these prediction models (see Figure 7). We first split the data into five outer folds, leaving each outer fold with around 100 participants. This number of participants in each fold is to ensure the stability of the test performance across folds. In each outer-fold CV loop, one of the outer folds was treated as an outer-fold test set, and the rest was treated as an outer-fold training set. Ultimately, looping through the nested CV resulted in a) prediction models from each of the 18 sets of features as well as b) prediction models that drew information across different combinations of the 18 separate sets, known as “stacked models.” We specified eight stacked models: “All” (i.e., including all 18 sets of features), “All excluding Task FC”, “All excluding Task Contrast”, “Non-Task” (i.e., including only Rest FC and sMRI), “Resting and Task FC”, “Task Contrast and FC”, “Task Contrast” and “Task FC”. Accordingly, there were 26 prediction models in total for both Brain Age and Brain Cognition.

      To create these 26 prediction models, we applied three steps for each outer-fold loop. The first step aimed at tuning prediction models for each of 18 sets of features. This step only involved the outer-fold training set and did not involve the outer-fold test set. Here, we divided the outer-fold training set into five inner folds and applied inner-fold CV to tune hyperparameters with grid search. Specifically, in each inner-fold CV, one of the inner folds was treated as an inner-fold validation set, and the rest was treated as an inner-fold training set. Within each inner-fold CV loop, we used the inner-fold training set to estimate parameters of the prediction model with a particular set of hyperparameters and applied the estimated model to the inner-fold validation set. After looping through the inner-fold CV, we, then, chose the prediction models that led to the highest performance, reflected by coefficient of determination (R2), on average across the inner-fold validation sets. This led to 18 tuned models, one for each of the 18 sets of features, for each outer fold.

      The second step aimed at tuning stacked models. Same as the first step, the second step only involved the outer-fold training set and did not involve the outer-fold test set. Here, using the same outer-fold training set as the first step, we applied tuned models, created from the first step, one from each of the 18 sets of features, resulting in 18 predicted values for each participant. We, then, re-divided this outer-fold training set into new five inner folds. In each inner fold, we treated different combinations of the 18 predicted values from separate sets of features as features to predict the targets in separate “stacked” models. Same as the first step, in each inner-fold CV loop, we treated one out of five inner folds as an inner-fold validation set, and the rest as an inner-fold training set. Also as in the first step, we used the inner-fold training set to estimate parameters of the prediction model with a particular set of hyperparameters from our grid. We tuned the hyperparameters of stacked models using grid search by selecting the models with the highest R2 on average across the inner-fold validation sets. This led to eight tuned stacked models.

      The third step aimed at testing the predictive performance of the 18 tuned prediction models from each of the set of features, built from the first step, and eight tuned stacked models, built from the second step. Unlike the first two steps, here we applied the already tuned models to the outer-fold test set. We started by applying the 18 tuned prediction models from each of the sets of features to each observation in the outer-fold test set, resulting in 18 predicted values. We then applied the tuned stacked models to these predicted values from separate sets of features, resulting in eight predicted values.

      To demonstrate the predictive performance, we assessed the similarity between the observed values and the predicted values of each model across outer-fold test sets, using Pearson’s r, coefficient of determination (R2) and mean absolute error (MAE). Note that for R2, we used the sum of squares definition (i.e., R2 = 1 – (sum of squares residuals/total sum of squares)) per a previous recommendation (Poldrack et al., 2020). We considered the predicted values from the outer-fold test sets of models predicting age or fluid cognition, as Brain Age and Brain Cognition, respectively.”

      Note some previous research, including ours (Tetereva et al., 2022), splits the observations in the outer-fold training set into layer 1 and layer 2 and applies the first and second steps to layers 1 and 2, respectively. Here we decided against this approach and used the same outer-fold training set for both first and second steps in order to avoid potential bias toward the stacked models. This is because, when the data are split into two layers, predictive models built for each separate set of features only use the data from layer 1, while the stacked models use the data from both layers 1 and 2. In practice with large enough data, these two approaches might not differ much, as we demonstrated previously (Tetereva et al., 2022).

      Reviewer #1 Public Review #3

      Please also provide an indication of the different regression strengths that were estimated across the different models and cross-validation splits. Also, how stable were the weights across splits?

      The focus of this article is on the predictions. Still, it is informative for readers to understand how stable the feature importance (i.e., Elastic Net coefficients) is. To demonstrate the stability of feature importance, we now examined the rank stability of feature importance using Spearman’s ρ (see Figure 4). Specifically, we correlated the feature importance between two prediction models of the same features, used in two different outer-fold test sets. Given that there were five outer-fold test sets, we computed 10 Spearman’s ρ for each prediction model of the same features. We found Spearman’s ρ to be varied dramatically in both age-prediction (range=.31-.94) and fluid cognition-prediction (range=.16-.84) models. This means that some prediction models were much more stable in their feature importance than others. This is probably due to various factors such as a) the collinearity of features in the model, b) the number of features (e.g., 71,631 features in functional connectivity, which were further reduced to 75 PCAs, as compared to 19 features in subcortical volume based on the ASEG atlas), c) the penalisation of coefficients either with ‘Ridge’ or ‘Lasso’ methods, which resulted in reduction as a group of features or selection of a feature among correlated features, respectively, and d) the predictive performance of the models. Understanding the stability of feature importance is beyond the scope of the current article. As mentioned by Reviewer 1, “The predictions can be stable when the coefficients are not,” and we chose to focus on the prediction in the current article.

      Reviewer #1 Public Review #4

      Please provide more details about the task designs, MRI processing procedures that were employed on this sample in addition to the regression methods and bias correction methods used. For example, there are several different parameterisations of the elastic net, please provide equations to describe the method used here so that readers can easily determine how the regularisation parameters should be interpreted.

      Thank you for the opportunity for us to provide more methodical details.

      First, for the task design, we included the following statements:

      From Methods:

      “HCP-A collected fMRI data from three tasks: Face Name (Sperling et al., 2001), Conditioned Approach Response Inhibition Task (CARIT) (Somerville et al., 2018) and VISual MOTOR (VISMOTOR) (Ances et al., 2009).

      First, the Face Name task (Sperling et al., 2001) taps into episodic memory. The task had three blocks. In the encoding block [Encoding], participants were asked to memorise the names of faces shown. These faces were then shown again in the recall block [Recall] when the participants were asked if they could remember the names of the previously shown faces. There was also the distractor block [Distractor] occurring between the encoding and recall blocks. Here participants were distracted by a Go/NoGo task. We computed six contrasts for this Face Name task: [Encode], [Recall], [Distractor], [Encode vs. Distractor], [Recall vs. Distractor] and [Encode vs. Recall].

      Second, the CARIT task (Somerville et al., 2018) was adapted from the classic Go/NoGo task and taps into inhibitory control. Participants were asked to press a button to all [Go] but not to two [NoGo] shapes. We computed three contrasts for the CARIT task: [NoGo], [Go] and [NoGo vs. Go].

      Third, the VISMOTOR task (Ances et al., 2009) was designed to test simple activation of the motor and visual cortices. Participants saw a checkerboard with a red square either on the left or right. They needed to press a corresponding key to indicate the location of the red square. We computed just one contrast for the VISMOTOR task: [Vismotor], which indicates the presence of the checkerboard vs. baseline.”

      Second, for MRI processing procedures, we included the following statements.

      From Methods: “HCP-A provides details of parameters for brain MRI elsewhere (Bookheimer et al., 2019; Harms et al., 2018). Here we used MRI data that were pre-processed by the HCP-A with recommended methods, including the MSMALL alignment (Glasser et al., 2016; Robinson et al., 2018) and ICA-FIX (Glasser et al., 2016) for functional MRI. We used multiple brain MRI modalities, covering task functional MRI (task fMRI), resting-state functional MRI (rsfMRI) and structural MRI (sMRI), and organised them into 19 sets of features.”

      “ Sets of Features 1-10: Task fMRI contrast (Task Contrast) Task contrasts reflect fMRI activation relevant to events in each task. Bookheimer and colleagues (2019) provided detailed information about the fMRI in HCP-A. Here we focused on the pre-processed task fMRI Connectivity Informatics Technology Initiative (CIFTI) files with a suffix, “_PA_Atlas_MSMAll_hp0_clean.dtseries.nii.” These CIFTI files encompassed both the cortical mesh surface and subcortical volume (Glasser et al., 2013). Collected using the posterior-to-anterior (PA) phase, these files were aligned using MSMALL (Glasser et al., 2016; Robinson et al., 2018), linear detrended (see https://groups.google.com/a/humanconnectome.org/g/hcp-users/c/ZLJc092h980/m/GiihzQAUAwAJ) and cleaned from potential artifacts using ICA-FIX (Glasser et al., 2016).

      To extract Task Contrasts, we regressed the fMRI time series on the convolved task events using a double-gamma canonical hemodynamic response function via FMRIB Software Library (FSL)’s FMRI Expert Analysis Tool (FEAT) (Woolrich et al., 2001). We kept FSL’s default high pass cutoff at 200s (i.e., .005 Hz). We then parcellated the contrast ‘cope’ files, using the Glasser atlas (Gordon et al., 2016) for cortical surface regions and the Freesurfer’s automatic segmentation (aseg) (Fischl et al., 2002) for subcortical regions. This resulted in 379 regions, whose number was, in turn, the number of features for each Task Contrast set of features. “

      “ Sets of Features 11-13: Task fMRI functional connectivity (Task FC) Task FC reflects functional connectivity (FC ) among the brain regions during each task, which is considered an important source of individual differences (Elliott et al., 2019; Fair et al., 2007; Gratton et al., 2018). We used the same CIFTI file “_PA_Atlas_MSMAll_hp0_clean.dtseries.nii.” as the task contrasts. Unlike Task Contrasts, here we treated the double-gamma, convolved task events as regressors of no interest and focused on the residuals of the regression from each task (Fair et al., 2007). We computed these regressors on FSL, and regressed them in nilearn (Abraham et al., 2014). Following previous work on task FC (Elliott et al., 2019), we applied a highpass at .008 Hz. For parcellation, we used the same atlases as Task Contrast (Fischl et al., 2002; Glasser et al., 2016). We computed Pearson’s correlations of each pair of 379 regions, resulting in a table of 71,631 non-overlapping FC indices for each task. We then applied r-to-z transformation and principal component analysis (PCA) of 75 components (Rasero et al., 2021; Sripada et al., 2019, 2020). Note to avoid data leakage, we conducted the PCA on each training set and applied its definition to the corresponding test set. Accordingly, there were three sets of 75 features for Task FC, one for each task.

      Set of Features 14: Resting-state functional MRI functional connectivity (Rest FC) Similar to Task FC, Rest FC reflects functional connectivity (FC ) among the brain regions, except that Rest FC occurred during the resting (as opposed to task-performing) period. HCP-A collected Rest FC from four 6.42-min (488 frames) runs across two days, leading to 26-min long data (Harms et al., 2018). On each day, the study scanned two runs of Rest FC, starting with anterior-to-posterior (AP) and then with posterior-to-anterior (PA) phase encoding polarity. We used the “rfMRI_REST_Atlas_MSMAll_hp0_clean.dscalar.nii” file that was pre-processed and concatenated across the four runs. We applied the same computations (i.e., highpass filter, parcellation, Pearson’s correlations, r-to-z transformation and PCA) with the Task FC.

      Sets of Features 15-18: Structural MRI (sMRI)

      sMRI reflects individual differences in brain anatomy. The HCP-A used an established pre-processing pipeline for sMRI (Glasser et al., 2013). We focused on four sets of features: cortical thickness, cortical surface area, subcortical volume and total brain volume. For cortical thickness and cortical surface area, we used Destrieux’s atlas (Destrieux et al., 2010; Fischl, 2012) from FreeSurfer’s “aparc.stats” file, resulting in 148 regions for each set of features. For subcortical volume, we used the aseg atlas (Fischl et al., 2002) from FreeSurfer’s “aseg.stats” file, resulting in 19 regions. For total brain volume, we had five FreeSurfer-based features: “FS_IntraCranial_Vol” or estimated intra-cranial volume, “FS_TotCort_GM_Vol” or total cortical grey matter volume, “FS_Tot_WM_Vol” or total cortical white matter volume, “FS_SubCort_GM_Vol” or total subcortical grey matter volume and “FS_BrainSegVol_eTIV_Ratio” or ratio of brain segmentation volume to estimated total intracranial volume.”

      Third, for regression methods and bias correction methods used, we included the following statements:

      From Methods:

      “For the machine learning algorithm, we used Elastic Net (Zou & Hastie, 2005). Elastic Net is a general form of penalised regressions (including Lasso and Ridge regression), allowing us to simultaneously draw information across different brain indices to predict one target variable. Penalised regressions are commonly used for building age-prediction models (Jirsaraie, Gorelik, et al., 2023). Previously we showed that the performance of Elastic Net in predicting cognitive abilities is on par, if not better than, many non-linear and more-complicated algorithms (Pat, Wang, Bartonicek, et al., 2022; Tetereva et al., 2022). Moreover, Elastic Net coefficients are readily explainable, allowing us the ability to explain how our age-prediction and cognition-prediction models made the prediction from each brain feature (Molnar, 2019; Pat, Wang, Bartonicek, et al., 2022) (see below).

      Elastic Net simultaneously minimises the weighted sum of the features’ coefficients. The degree of penalty to the sum of the feature’s coefficients is determined by a shrinkage hyperparameter ‘α’: the greater the α, the more the coefficients shrink, and the more regularised the model becomes. Elastic Net also includes another hyperparameter, ‘l1 ratio’, which determines the degree to which the sum of either the squared (known as ‘Ridge’; l1 ratio=0) or absolute (known as ‘Lasso’; l1 ratio=1) coefficients is penalised (Zou & Hastie, 2005). The objective function of Elastic Net as implemented by sklearn (Pedregosa et al., 2011) is defined as:

      where X is the features, y is the target, and β is the coefficient. In our grid search, we tuned two Elastic Net hyperparameters: α using 70 numbers in log space, ranging from .1 and 100, and l_1-ratio using 25 numbers in linear space, ranging from 0 and 1.

      To understand how Elastic Net made a prediction based on different brain features, we examined the coefficients of the tuned model. Elastic Net coefficients can be considered as feature importance, such that more positive Elastic Net coefficients lead to more positive predicted values and, similarly, more negative Elastic Net coefficients lead to more negative predicted values (Molnar, 2019; Pat, Wang, Bartonicek, et al., 2022). While the magnitude of Elastic Net coefficients is regularised (thus making it difficult for us to interpret the magnitude itself directly), we could still indicate that a brain feature with a higher magnitude weights relatively stronger in making a prediction. Another benefit of Elastic Net as a penalised regression is that the coefficients are less susceptible to collinearity among features as they have already been regularised (Dormann et al., 2013; Pat, Wang, Bartonicek, et al., 2022).

      Given that we used five-fold nested cross validation, different outer folds may have different degrees of ‘α’ and ‘l1 ratio’, making the final coefficients from different folds to be different. For instance, for certain sets of features, penalisation may not play a big part (i.e., higher or lower ‘α’ leads to similar predictive performance), resulting in different ‘α’ for different folds. To remedy this in the visualisation of Elastic Net feature importance, we refitted the Elastic Net model to the full dataset without splitting them into five folds and visualised the coefficients on brain images using Brainspace (Vos De Wael et al., 2020) and Nilern (Abraham et al., 2014) packages. Note, unlike other sets of features, Task FC and Rest FC were modelled after data reduction via PCA. Thus, for Task FC and Rest FC, we, first, multiplied the absolute PCA scores (extracted from the ‘components_’ attribute of ‘sklearn.decomposition.PCA’) with Elastic Net coefficients and, then, summed the multiplied values across the 75 components, leaving 71,631 ROI-pair indices. “

      References

      Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gramfort, A., Thirion, B., & Varoquaux, G. (2014). Machine learning for neuroimaging with scikit-learn. Frontiers in Neuroinformatics, 8, 14. https://doi.org/10.3389/fninf.2014.00014

      Ances, B. M., Liang, C. L., Leontiev, O., Perthen, J. E., Fleisher, A. S., Lansing, A. E., & Buxton, R. B. (2009). Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation. Human Brain Mapping, 30(4), 1120–1132. https://doi.org/10.1002/hbm.20574

      Bashyam, V. M., Erus, G., Doshi, J., Habes, M., Nasrallah, I. M., Truelove-Hill, M., Srinivasan, D., Mamourian, L., Pomponio, R., Fan, Y., Launer, L. J., Masters, C. L., Maruff, P., Zhuo, C., Völzke, H., Johnson, S. C., Fripp, J., Koutsouleris, N., Satterthwaite, T. D., … on behalf of the ISTAGING Consortium, the P. A. disease C., ADNI, and CARDIA studies. (2020). MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide. Brain, 143(7), 2312–2324. https://doi.org/10.1093/brain/awaa160

      Bookheimer, S. Y., Salat, D. H., Terpstra, M., Ances, B. M., Barch, D. M., Buckner, R. L., Burgess, G. C., Curtiss, S. W., Diaz-Santos, M., Elam, J. S., Fischl, B., Greve, D. N., Hagy, H. A., Harms, M. P., Hatch, O. M., Hedden, T., Hodge, C., Japardi, K. C., Kuhn, T. P., … Yacoub, E. (2019). The Lifespan Human Connectome Project in Aging: An overview. NeuroImage, 185, 335–348. https://doi.org/10.1016/j.neuroimage.2018.10.009

      Butler, E. R., Chen, A., Ramadan, R., Le, T. T., Ruparel, K., Moore, T. M., Satterthwaite, T. D., Zhang, F., Shou, H., Gur, R. C., Nichols, T. E., & Shinohara, R. T. (2021). Pitfalls in brain age analyses. Human Brain Mapping, 42(13), 4092–4101. https://doi.org/10.1002/hbm.25533

      Cole, J. H. (2020). Multimodality neuroimaging brain-age in UK biobank: Relationship to biomedical, lifestyle, and cognitive factors. Neurobiology of Aging, 92, 34–42. https://doi.org/10.1016/j.neurobiolaging.2020.03.014

      Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53(1), 1–15. https://doi.org/10.1016/j.neuroimage.2010.06.010

      Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

      Dubois, J., Galdi, P., Paul, L. K., & Adolphs, R. (2018). A distributed brain network predicts general intelligence from resting-state human neuroimaging data. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1756), 20170284. https://doi.org/10.1098/rstb.2017.0284

      Elliott, M. L., Knodt, A. R., Cooke, M., Kim, M. J., Melzer, T. R., Keenan, R., Ireland, D., Ramrakha, S., Poulton, R., Caspi, A., Moffitt, T. E., & Hariri, A. R. (2019). General functional connectivity: Shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks. NeuroImage, 189, 516–532. https://doi.org/10.1016/j.neuroimage.2019.01.068

      Fair, D. A., Schlaggar, B. L., Cohen, A. L., Miezin, F. M., Dosenbach, N. U. F., Wenger, K. K., Fox, M. D., Snyder, A. Z., Raichle, M. E., & Petersen, S. E. (2007). A method for using blocked and event-related fMRI data to study “resting state” functional connectivity. NeuroImage, 35(1), 396–405. https://doi.org/10.1016/j.neuroimage.2006.11.051

      Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021

      Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., & Dale, A. M. (2002). Whole Brain Segmentation. Neuron, 33(3), 341–355. https://doi.org/10.1016/S0896-6273(02)00569-X

      Glasser, M. F., Smith, S. M., Marcus, D. S., Andersson, J. L. R., Auerbach, E. J., Behrens, T. E. J., Coalson, T. S., Harms, M. P., Jenkinson, M., Moeller, S., Robinson, E. C., Sotiropoulos, S. N., Xu, J., Yacoub, E., Ugurbil, K., & Van Essen, D. C. (2016). The Human Connectome Project’s neuroimaging approach. Nature Neuroscience, 19(9), 1175–1187. https://doi.org/10.1038/nn.4361

      Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R., Van Essen, D. C., & Jenkinson, M. (2013). The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage, 80, 105–124. https://doi.org/10.1016/j.neuroimage.2013.04.127

      Gordon, E. M., Laumann, T. O., Adeyemo, B., Huckins, J. F., Kelley, W. M., & Petersen, S. E. (2016). Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations. Cerebral Cortex, 26(1), 288–303. https://doi.org/10.1093/cercor/bhu239

      Gratton, C., Laumann, T. O., Nielsen, A. N., Greene, D. J., Gordon, E. M., Gilmore, A. W., Nelson, S. M., Coalson, R. S., Snyder, A. Z., Schlaggar, B. L., Dosenbach, N. U. F., & Petersen, S. E. (2018). Functional Brain Networks Are Dominated by Stable Group and Individual Factors, Not Cognitive or Daily Variation. Neuron, 98(2), 439-452.e5. https://doi.org/10.1016/j.neuron.2018.03.035

      Hahn, T., Fisch, L., Ernsting, J., Winter, N. R., Leenings, R., Sarink, K., Emden, D., Kircher, T., Berger, K., & Dannlowski, U. (2021). From ‘loose fitting’ to high-performance, uncertainty-aware brain-age modelling. Brain, 144(3), e31–e31. https://doi.org/10.1093/brain/awaa454

      Harms, M. P., Somerville, L. H., Ances, B. M., Andersson, J., Barch, D. M., Bastiani, M., Bookheimer, S. Y., Brown, T. B., Buckner, R. L., Burgess, G. C., Coalson, T. S., Chappell, M. A., Dapretto, M., Douaud, G., Fischl, B., Glasser, M. F., Greve, D. N., Hodge, C., Jamison, K. W., … Yacoub, E. (2018). Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects. NeuroImage, 183, 972–984. https://doi.org/10.1016/j.neuroimage.2018.09.060

      Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., Sanislow, C., & Wang, P. (2010). Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. American Journal of Psychiatry, 167(7), 748–751. https://doi.org/10.1176/appi.ajp.2010.09091379

      Jirsaraie, R. J., Gorelik, A. J., Gatavins, M. M., Engemann, D. A., Bogdan, R., Barch, D. M., & Sotiras, A. (2023). A systematic review of multimodal brain age studies: Uncovering a divergence between model accuracy and utility. Patterns, 4(4), 100712. https://doi.org/10.1016/j.patter.2023.100712

      Jirsaraie, R. J., Kaufmann, T., Bashyam, V., Erus, G., Luby, J. L., Westlye, L. T., Davatzikos, C., Barch, D. M., & Sotiras, A. (2023). Benchmarking the generalizability of brain age models: Challenges posed by scanner variance and prediction bias. Human Brain Mapping, 44(3), 1118–1128. https://doi.org/10.1002/hbm.26144

      Marquand, A. F., Rezek, I., Buitelaar, J., & Beckmann, C. F. (2016). Understanding Heterogeneity in Clinical Cohorts Using Normative Models: Beyond Case-Control Studies. Biological Psychiatry, 80(7), 552–561. https://doi.org/10.1016/j.biopsych.2015.12.023

      Molnar, C. (2019). Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. https://christophm.github.io/interpretable-ml-book/

      Nimon, K., Lewis, M., Kane, R., & Haynes, R. M. (2008). An R package to compute commonality coefficients in the multiple regression case: An introduction to the package and a practical example. Behavior Research Methods, 40(2), 457–466. https://doi.org/10.3758/BRM.40.2.457

      Pat, N., Wang, Y., Anney, R., Riglin, L., Thapar, A., & Stringaris, A. (2022). Longitudinally stable, brain‐based predictive models mediate the relationships between childhood cognition and socio‐demographic, psychological and genetic factors. Human Brain Mapping, hbm.26027. https://doi.org/10.1002/hbm.26027

      Pat, N., Wang, Y., Bartonicek, A., Candia, J., & Stringaris, A. (2022). Explainable machine learning approach to predict and explain the relationship between task-based fMRI and individual differences in cognition. Cerebral Cortex, bhac235. https://doi.org/10.1093/cercor/bhac235

      Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830.

      Poldrack, R. A., Huckins, G., & Varoquaux, G. (2020). Establishment of Best Practices for Evidence for Prediction: A Review. JAMA Psychiatry, 77(5), 534–540. https://doi.org/10.1001/jamapsychiatry.2019.3671

      Rasero, J., Sentis, A. I., Yeh, F.-C., & Verstynen, T. (2021). Integrating across neuroimaging modalities boosts prediction accuracy of cognitive ability. PLOS Computational Biology, 17(3), e1008347. https://doi.org/10.1371/journal.pcbi.1008347

      Robinson, E. C., Garcia, K., Glasser, M. F., Chen, Z., Coalson, T. S., Makropoulos, A., Bozek, J., Wright, R., Schuh, A., Webster, M., Hutter, J., Price, A., Cordero Grande, L., Hughes, E., Tusor, N., Bayly, P. V., Van Essen, D. C., Smith, S. M., Edwards, A. D., … Rueckert, D. (2018). Multimodal surface matching with higher-order smoothness constraints. NeuroImage, 167, 453–465. https://doi.org/10.1016/j.neuroimage.2017.10.037

      Rokicki, J., Wolfers, T., Nordhøy, W., Tesli, N., Quintana, D. S., Alnæs, D., Richard, G., de Lange, A.-M. G., Lund, M. J., Norbom, L., Agartz, I., Melle, I., Nærland, T., Selbæk, G., Persson, K., Nordvik, J. E., Schwarz, E., Andreassen, O. A., Kaufmann, T., & Westlye, L. T. (2021). Multimodal imaging improves brain age prediction and reveals distinct abnormalities in patients with psychiatric and neurological disorders. Human Brain Mapping, 42(6), 1714–1726. https://doi.org/10.1002/hbm.25323

      Somerville, L. H., Bookheimer, S. Y., Buckner, R. L., Burgess, G. C., Curtiss, S. W., Dapretto, M., Elam, J. S., Gaffrey, M. S., Harms, M. P., Hodge, C., Kandala, S., Kastman, E. K., Nichols, T. E., Schlaggar, B. L., Smith, S. M., Thomas, K. M., Yacoub, E., Van Essen, D. C., & Barch, D. M. (2018). The Lifespan Human Connectome Project in Development: A large-scale study of brain connectivity development in 5–21 year olds. NeuroImage, 183, 456–468. https://doi.org/10.1016/j.neuroimage.2018.08.050

      Sperling, R. A., Bates, J. F., Cocchiarella, A. J., Schacter, D. L., Rosen, B. R., & Albert, M. S. (2001). Encoding novel face-name associations: A functional MRI study. Human Brain Mapping, 14(3), 129–139. https://doi.org/10.1002/hbm.1047

      Sripada, C., Angstadt, M., Rutherford, S., Kessler, D., Kim, Y., Yee, M., & Levina, E. (2019). Basic Units of Inter-Individual Variation in Resting State Connectomes. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-018-38406-5

      Sripada, C., Angstadt, M., Rutherford, S., Taxali, A., & Shedden, K. (2020). Toward a “treadmill test” for cognition: Improved prediction of general cognitive ability from the task activated brain. Human Brain Mapping, 41(12), 3186–3197. https://doi.org/10.1002/hbm.25007

      Tetereva, A., Li, J., Deng, J. D., Stringaris, A., & Pat, N. (2022). Capturing brain‐cognition relationship: Integrating task‐based fMRI across tasks markedly boosts prediction and test‐retest reliability. NeuroImage, 263, 119588. https://doi.org/10.1016/j.neuroimage.2022.119588

      Vieira, B. H., Pamplona, G. S. P., Fachinello, K., Silva, A. K., Foss, M. P., & Salmon, C. E. G. (2022). On the prediction of human intelligence from neuroimaging: A systematic review of methods and reporting. Intelligence, 93, 101654. https://doi.org/10.1016/j.intell.2022.101654

      Vos De Wael, R., Benkarim, O., Paquola, C., Lariviere, S., Royer, J., Tavakol, S., Xu, T., Hong, S.-J., Langs, G., Valk, S., Misic, B., Milham, M., Margulies, D., Smallwood, J., & Bernhardt, B. C. (2020). BrainSpace: A toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets. Communications Biology, 3(1), 103. https://doi.org/10.1038/s42003-020-0794-7

      Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data. NeuroImage, 14(6), 1370–1386. https://doi.org/10.1006/nimg.2001.0931

      Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x


      The following is the authors’ response to the previous reviews.

      eLife assessment

      This useful manuscript challenges the utility of current paradigms for estimating brain-age with magnetic resonance imaging measures, but presents inadequate evidence to support the suggestion that an alternative approach focused on predicting cognition is more useful. The paper would benefit from a clearer explication of the methods and a more critical evaluation of the conceptual basis of the different models. This work will be of interest to researchers working on brain-age and related models.

      Thank you so much for providing high-quality reviews on our manuscript. We revised the manuscript to address all of the reviewers’ comments and provided full responses to each of the comments below. Importantly, in this revision, we clarified that we did not intend to use Brain Cognition as an alternative approach. This is because, by design, the variation in fluid cognition explained by Brain Cognition should be higher or equal to that explained by Brain Age. Here we made this point more explicit and further stated that the relationship between Brain Cognition and fluid cognition indicates the upper limit of Brain Age’s capability in capturing fluid cognition. By examining what was captured by Brain Cognition, over and above Brain Age and chronological age via the unique effects of Brain Cognition, we were able to quantify the amount of co-variation between brain MRI and fluid cognition that was missed by Brain Age. And such quantification is the third aim of this study.

      Public Reviews:

      Reviewer 1 (Public Review):

      In this paper, the authors evaluate the utility of brain-age-derived metrics for predicting cognitive decline by performing a 'commonality' analysis in a downstream regression that enables the different contribution of different predictors to be assessed. The main conclusion is that brain-age-derived metrics do not explain much additional variation in cognition over and above what is already explained by age. The authors propose to use a regression model trained to predict cognition ("brain-cognition") as an alternative suited to applications of cognitive decline. While this is less accurate overall than brain age, it explains more unique variance in the downstream regression.

      (1) I thank the authors for addressing many of my concerns with this revision. However, I do not feel they have addressed them all. In particular I think the authors could do more to address the concern I raised about the instability of the regression coefficients and about providing enough detail to determine that the stacked regression models do not overfit.

      Thank you Reviewer 1 for the comment. We addressed them in our response to Reviewer 1 Recommendations For The Authors #1 and #2 (see below).

      (2) In considering my responses to the authors revision, I also must say that I agree with Reviewer 3 about the limitations of the brain age and brain cognition methods conceptually. In particular that the regression model used to predict fluid cognition will by construction explain more variance in cognition than a brain age model that is trained to predict age. To be fair, these conceptual problems are more widespread than this paper alone, so I do not believe the authors should be penalised for that. However, I would recommend to make these concerns more explicit in the manuscript

      Thank you Reviewer 1 for the comment. We addressed them in our response to Reviewer 1 Recommendations For The Authors #3 (see below).

      Reviewer 2 (Public Review):

      In this study, the authors aimed to evaluate the contribution of brain-age indices in capturing variance in cognitive decline and proposed an alternative index, brain-cognition, for consideration.

      The study employs suitable methods and data to address the research questions, and the methods and results sections are generally clear and easy to follow.

      I appreciate the authors' efforts in significantly improving the paper, including some considerable changes, from the original submission. While not all reviewer points were tackled, the majority of them were adequately addressed. These include additional analyses, more clarity in the methods and a much richer and nuanced discussion. While recognising the merits of the revised paper, I have a few additional comments.

      (1) Perhaps it would help the reader to note that it might be expected for brain-cognition to account for a significantly larger variance (11%) in fluid cognition, in contrast to brain-age. This stems from the fact that the authors specifically trained brain-cognition to predict fluid cognition, the very variable under consideration. In line with this, the authors later recommend that researchers considering the use of brain-age should evaluate its utility using a regression approach. The latter involves including a brain index (e.g. brain-cognition) previously trained to predict the regression's target variable (e.g. fluid cognition) alongside a brain-age index (e.g., corrected brain-age gap). If the target-trained brain index outperforms the brain-age metric, it suggests that relying solely on brain-age might not be the optimal choice. Although not necessarily the case, is it surprising for the target-trained brain index to demonstrate better performance than brain-age? This harks back to the broader point raised in the initial review: while brain-age may prove useful (though sometimes with modest effect sizes) across diverse outcomes as a generally applicable metric, a brain index tailored for predicting a specific outcome, such as brain-cognition in this case, might capture a considerably larger share of variance in that specific context but could lack broader applicability. The latter aspect needs to be empirically assessed.

      Thank you so much for raising this point. Reviewer 1 (Public Review #2/Recommendations For The Authors #3) and Reviewer 3 (Recommendations for the Authors #1) made a similar observation. We now made changes to the introduction and discussion to address this concern (please see our responses to Reviewer 1 Recommendations For The Authors #3 below).

      Briefly, as in our 2nd revision, we did not intend to compare Brain Age with Brain Cognition since, by design, the variation in fluid cognition explained by Brain Cognition should be higher or equal to that explained by Brain Age. Here we made this point more explicit and further stated that the relationship between Brain Cognition and fluid cognition indicates the upper limit of Brain Age’s capability in capturing fluid cognition. By examining what was captured by Brain Cognition, over and above Brain Age and chronological age via the unique effects of Brain Cognition, we were able to quantify the amount of co-variation between brain MRI and fluid cognition that was missed by Brain Age. And such quantification is the third aim of this study.

      (2) Furthermore, the discussion pertaining to training brain-age models on healthy populations for subsequent testing on individuals with neurological or psychological disorders seems somewhat one-sided within the broader debate. This one-sidedness might potentially confuse readers. It is worth noting that the choice to employ healthy participants in the training model is likely deliberate, serving as a norm against which atypical populations are compared. To provide a more comprehensive understanding, referencing Tim Hans's counterargument to Bashyam's perspective could offer a more complete view (https://academic.oup.com/brain/article/144/3/e31/6214475?login=false).

      Thank you Reviewer 2 for bringing up this issue. We have now revised the paragraph in question and added nuances on the usage of Brain Age for normative vs. case-control studies. We also cited Tim Hahn’s article that explained the conceptual foundation of the use of Brain Age in case-control studies. Please see below. Additionally, we also made a statement about our study not being able to address issues about the case-control studies directly in the newly written conclusion (see Reviewer 3 Recommendations for the Authors #3).

      Discussion:

      “There is a notable difference between studies investigating the utility of Brain Age in explaining cognitive functioning, including ours and others (e.g., Butler et al., 2021; Cole, 2020, 2020; Jirsaraie et al., 2023) and those explaining neurological/psychological disorders (e.g., Bashyam et al., 2020; Rokicki et al., 2021). We consider the former as a normative type of study and the latter as a case-control type of study (Insel et al., 2010; Marquand et al., 2016). Those case-control Brain Age studies focusing on neurological/psychological disorders often build age-prediction models from MRI data of largely healthy participants (e.g., controls in a case-control design or large samples in a population-based design), apply the built age-prediction models to participants without vs. with neurological/psychological disorders and compare Brain Age indices between the two groups. On the one hand, this means that case-control studies treat Brain Age as a method to detect anomalies in the neurological/psychological group (Hahn et al., 2021). On the other hand, this also means that case-control studies have to ignore under-fitted models when applied prediction models built from largely healthy participants to participants with neurological/psychological disorders (i.e., Brain Age may predict chronological age well for the controls, but not for those with a disorder). On the contrary, our study and other normative studies focusing on cognitive functioning often build age-prediction models from MRI data of largely healthy participants and apply the built age-prediction models to participants who are also largely healthy. Accordingly, the age-prediction models for explaining cognitive functioning in normative studies, while not allowing us to detect group-level anomalies, do not suffer from being under-fitted. This unfortunately might limit the generalisability of our study into just the normative type of study. Future work is still needed to test the utility of brain age in the case-control case.”

      (3) Overall, this paper makes a significant contribution to the field of brain-age and related brain indices and their utility.

      Thank you for the encouragement.

      Reviewer 3 (Public Review):

      The main question of this article is as follows: "To what extent does having information on brain-age improve our ability to capture declines in fluid cognition beyond knowing a person's chronological age?" This question is worthwhile, considering that there is considerable confusion in the field about the nature of brain-age.

      (1) Thank you to the authors for addressing so many of my concerns with this revision. There are a few points that I feel still need addressing/clarifying related to 1) calculating brain cognition, 2) the inevitability of their results, and 3) their continued recommendation to use brain-age metrics.

      Thank you Reviewer 3 for the comment. We addressed them in our response to Reviewer 3 Recommendations For The Authors #1-3 (see below).

      Recommendations for the authors:

      Reviewer 1 (Recommendations For The Authors):

      (1) I do not feel the authors have fully addressed the concern I raised about the stacked regression models. Despite the new figure, it is still not entirely clear what the authors are using as the training set in the final step. To be clear, the problem occurs because of the parameters, not the hyperparameters (which the authors now state that they are optimising via nested grid search). in other words, given a regression model y = X*beta, if the X are taken to be predictions from a lower level regression model, then they contain information that is derived from both the training set at the test set for the model that this was trained on. If the split is the same (i.e. the predictions are derived on the same test set as is being used at the second level), then this can lead to overfitting. It is not clear to me whether the authors have done this or not. Please provide additional detail to clarify this point.

      Thank you for allowing us an opportunity to clarify our stacked model. We wanted to confirm that we did not use test sets to build a stacked model in both lower and higher levels of the Elastic Net models. Test sets were there just for testing the performance of the models. We made additional clarification to make this clearer (see below). Let us explain what we did and provide the rationales below.

      From Methods:

      “We used nested cross-validation (CV) to build these prediction models (see Figure 7). We first split the data into five outer folds, leaving each outer fold with around 100 participants. This number of participants in each fold is to ensure the stability of the test performance across folds. In each outer-fold CV loop, one of the outer folds was treated as an outer-fold test set, and the rest was treated as an outer-fold training set. Ultimately, looping through the nested CV resulted in a) prediction models from each of the 18 sets of features as well as b) prediction models that drew information across different combinations of the 18 separate sets, known as “stacked models.” We specified eight stacked models: “All” (i.e., including all 18 sets of features), “All excluding Task FC”, “All excluding Task Contrast”, “Non-Task” (i.e., including only Rest FC and sMRI), “Resting and Task FC”, “Task Contrast and FC”, “Task Contrast” and “Task FC”. Accordingly, there were 26 prediction models in total for both Brain Age and Brain Cognition.

      To create these 26 prediction models, we applied three steps for each outer-fold loop. The first step aimed at tuning prediction models for each of 18 sets of features. This step only involved the outer-fold training set and did not involve the outer-fold test set. Here, we divided the outer-fold training set into five inner folds and applied inner-fold CV to tune hyperparameters with grid search. Specifically, in each inner-fold CV, one of the inner folds was treated as an inner-fold validation set, and the rest was treated as an inner-fold training set. Within each inner-fold CV loop, we used the inner-fold training set to estimate parameters of the prediction model with a particular set of hyperparameters and applied the estimated model to the inner-fold validation set. After looping through the inner-fold CV, we, then, chose the prediction models that led to the highest performance, reflected by coefficient of determination (R2), on average across the inner-fold validation sets. This led to 18 tuned models, one for each of the 18 sets of features, for each outer fold.

      The second step aimed at tuning stacked models. Same as the first step, the second step only involved the outer-fold training set and did not involve the outer-fold test set. Here, using the same outer-fold training set as the first step, we applied tuned models, created from the first step, one from each of the 18 sets of features, resulting in 18 predicted values for each participant. We, then, re-divided this outer-fold training set into new five inner folds. In each inner fold, we treated different combinations of the 18 predicted values from separate sets of features as features to predict the targets in separate “stacked” models. Same as the first step, in each inner-fold CV loop, we treated one out of five inner folds as an inner-fold validation set, and the rest as an inner-fold training set. Also as in the first step, we used the inner-fold training set to estimate parameters of the prediction model with a particular set of hyperparameters from our grid. We tuned the hyperparameters of stacked models using grid search by selecting the models with the highest R2 on average across the inner-fold validation sets. This led to eight tuned stacked models.

      The third step aimed at testing the predictive performance of the 18 tuned prediction models from each of the set of features, built from the first step, and eight tuned stacked models, built from the second step. Unlike the first two steps, here we applied the already tuned models to the outer-fold test set. We started by applying the 18 tuned prediction models from each of the sets of features to each observation in the outer-fold test set, resulting in 18 predicted values. We then applied the tuned stacked models to these predicted values from separate sets of features, resulting in eight predicted values.

      To demonstrate the predictive performance, we assessed the similarity between the observed values and the predicted values of each model across outer-fold test sets, using Pearson’s r, coefficient of determination (R2) and mean absolute error (MAE). Note that for R2, we used the sum of squares definition (i.e., R2 = 1 – (sum of squares residuals/total sum of squares)) per a previous recommendation (Poldrack et al., 2020). We considered the predicted values from the outer-fold test sets of models predicting age or fluid cognition, as Brain Age and Brain Cognition, respectively.”

      Author response image 1.

      Diagram of the nested cross-validation used for creating predictions for models of each set of features as well as predictions for stacked models.

      Note some previous research, including ours (Tetereva et al., 2022), splits the observations in the outer-fold training set into layer 1 and layer 2 and applies the first and second steps to layers 1 and 2, respectively. Here we decided against this approach and used the same outer-fold training set for both first and second steps in order to avoid potential bias toward the stacked models. This is because, when the data are split into two layers, predictive models built for each separate set of features only use the data from layer 1, while the stacked models use the data from both layers 1 and 2. In practice with large enough data, these two approaches might not differ much, as we demonstrated previously (Tetereva et al., 2022).

      (2) I also do not feel the authors have fully addressed the concern I raised about stability of the regression coefficients over splits of the data. I wanted to see the regression coefficients, not the predictions. The predictions can be stable when the coefficients are not.

      The focus of this article is on the predictions. Still, as pointed out by reviewer 1, it is informative for readers to understand how stable the feature importance (i.e., Elastic Net coefficients) is. To demonstrate the stability of feature importance, we now examined the rank stability of feature importance using Spearman’s ρ (see Figure 4). Specifically, we correlated the feature importance between two prediction models of the same features, used in two different outer-fold test sets. Given that there were five outer-fold test sets, we computed 10 Spearman’s ρ for each prediction model of the same features. We found Spearman’s ρ to be varied dramatically in both age-prediction (range=.31-.94) and fluid cognition-prediction (range=.16-.84) models. This means that some prediction models were much more stable in their feature importance than others. This is probably due to various factors such as a) the collinearity of features in the model, b) the number of features (e.g., 71,631 features in functional connectivity, which were further reduced to 75 PCAs, as compared to 19 features in subcortical volume based on the ASEG atlas), c) the penalisation of coefficients either with ‘Ridge’ or ‘Lasso’ methods, which resulted in reduction as a group of features or selection of a feature among correlated features, respectively, and d) the predictive performance of the models. Understanding the stability of feature importance is beyond the scope of the current article. As mentioned by Reviewer 1, “The predictions can be stable when the coefficients are not,” and we chose to focus on the prediction in the current article.

      Author response image 2.

      Stability of feature importance (i.e., Elastic Net Coefficients) of prediction models. Each dot represents rank stability (reflected by Spearman’s ρ) in the feature importance between two prediction models of the same features, used in two different outer-fold test sets. Given that there were five outer-fold test sets, there were 10 Spearman’s ρs for each prediction model. The numbers to the right of the plots indicate the mean of Spearman’s ρ for each prediction model.

      (3) I also must say that I agree with Reviewer 3 about the limitations of the brain-age and brain-cognition methods conceptually. In particular that the regression model used to predict fluid cognition will by construction explain more variance in cognition than a brain-age model that is trained to predict age. This suffers from the same problem the authors raise with brain-age and I agree that this would probably disappear if the authors had a separate measure of cognition against which to validate and were then to regress this out as they do for age correction. I am aware that these conceptual problems are more widespread than this paper alone (in fact throughout the brain-age literature), so I do not believe the authors should be penalised for that. However, I do think they can make these concerns more explicit and further tone down the comments they make about the utility of brain-cognition.

      Thank you so much for raising this point. Reviewer 2 (Public Review #1) and Reviewer 3 (Recommendations for the Authors #1) made a similar observation. We now made changes to the introduction and discussion to address this concern (see below).

      Briefly, we made it explicit that, by design, the variation in fluid cognition explained by Brain Cognition should be higher or equal to that explained by Brain Age. That is, the relationship between Brain Cognition and fluid cognition indicates the upper limit of Brain Age’s capability in capturing fluid cognition. More importantly, by examining what was captured by Brain Cognition, over and above Brain Age and chronological age via the unique effects of Brain Cognition, we were able to quantify the amount of co-variation between brain MRI and fluid cognition that was missed by Brain Age. And this is the third goal of this present study.

      From Introduction:

      “Third and finally, certain variation in fluid cognition is related to brain MRI, but to what extent does Brain Age not capture this variation? To estimate the variation in fluid cognition that is related to the brain MRI, we could build prediction models that directly predict fluid cognition (i.e., as opposed to chronological age) from brain MRI data. Previous studies found reasonable predictive performances of these cognition-prediction models, built from certain MRI modalities (Dubois et al., 2018; Pat et al., 2022; Rasero et al., 2021; Sripada et al., 2020; Tetereva et al., 2022; for review, see Vieira et al., 2022). Analogous to Brain Age, we called the predicted values from these cognition-prediction models, Brain Cognition. The strength of an out-of-sample relationship between Brain Cognition and fluid cognition reflects variation in fluid cognition that is related to the brain MRI and, therefore, indicates the upper limit of Brain Age’s capability in capturing fluid cognition. This is, by design, the variation in fluid cognition explained by Brain Cognition should be higher or equal to that explained by Brain Age. Consequently, if we included Brain Cognition, Brain Age and chronological age in the same model to explain fluid cognition, we would be able to examine the unique effects of Brain Cognition that explain fluid cognition beyond Brain Age and chronological age. These unique effects of Brain Cognition, in turn, would indicate the amount of co-variation between brain MRI and fluid cognition that is missed by Brain Age.”

      From Discussion:

      “Third, by introducing Brain Cognition, we showed the extent to which Brain Age indices were not able to capture the variation in fluid cognition that is related to brain MRI. More specifically, using Brain Cognition allowed us to gauge the variation in fluid cognition that is related to the brain MRI, and thereby, to estimate the upper limit of what Brain Age can do. Moreover, by examining what was captured by Brain Cognition, over and above Brain Age and chronological age via the unique effects of Brain Cognition, we were able to quantify the amount of co-variation between brain MRI and fluid cognition that was missed by Brain Age.

      From our results, Brain Cognition, especially from certain cognition-prediction models such as the stacked models, has relatively good predictive performance, consistent with previous studies (Dubois et al., 2018; Pat et al., 2022; Rasero et al., 2021; Sripada et al., 2020; Tetereva et al., 2022; for review, see Vieira et al., 2022). We then examined Brain Cognition using commonality analyses (Nimon et al., 2008) in multiple regression models having a Brain Age index, chronological age and Brain Cognition as regressors to explain fluid cognition. Similar to Brain Age indices, Brain Cognition exhibited large common effects with chronological age. But more importantly, unlike Brain Age indices, Brain Cognition showed large unique effects, up to around 11%. As explained above, the unique effects of Brain Cognition indicated the amount of co-variation between brain MRI and fluid cognition that was missed by a Brain Age index and chronological age. This missing amount was relatively high, considering that Brain Age and chronological age together explained around 32% of the total variation in fluid cognition. Accordingly, if a Brain Age index was used as a biomarker along with chronological age, we would have missed an opportunity to improve the performance of the model by around one-third of the variation explained.”

      Reviewer #3 (Recommendations For The Authors):

      Thank you to the authors for addressing so many of my concerns with this revision. There are a few points that I feel still need addressing/clarifying related to: 1) calculating brain cognition, 2) the inevitability of their results, and 3) their continued recommendation to use brain age metrics.

      (1) I understand your point here. I think the distinction is that it is fine to build predictive models, but then there is no need to go through this intermediate step of "brain-cognition". Just say that brain features can predict cognition XX well, and brain-age (or some related metric) can predict cognition YY well. It creates a confusing framework for the reader that can lead them to believe that "brain-cognition" is not just a predicted value of fluid cognition from a model using brain features to predict cognition. While you clearly state that that is in fact what it is in the text, which is a huge improvement, I do not see what is added by going through brain-cognition instead of simply just obtaining a change in R2 where the first model uses brain features alone to predict cognition, and the second adds on brain-age (or related metrics), or visa versa, depending on the question. Please do this analysis, and either compare and contrast it with going through "brain-cognition" in your paper, or switch to this analysis, as it more directly addresses the question of the incremental predictive utility of brain-age above and beyond brain features.

      Thank you so much for raising this point. Reviewer 1 (Public Review #2/Recommendations For The Authors #3) and Reviewer 2 (Public Review #1) made a similar observation. We now made changes to the introduction and discussion to address this concern (see our responses to Reviewer 1 Recommendations For The Authors #3 above).

      Briefly, as in our 2nd revision, we made it explicitly clear that we did not intend to compare Brain Age with Brain Cognition since, by design, the variation in fluid cognition explained by Brain Cognition should be higher or equal to that explained by Brain Age. And, by examining what was captured by Brain Cognition, over and above Brain Age and chronological age via the unique effects of Brain Cognition, we were able to quantify the amount of co-variation between brain MRI and fluid cognition that was missed by Brain Age.

      We have thought about changing the name Brain Cognition into something along the lines of “predicted values of prediction models predicting fluid cognition based on brain MRI.” However, this made the manuscript hard to follow, especially with the commonality analyses. For instance, the sentence, “Here, we tested Brain Cognition’s unique effects in multiple regression models with a Brain Age index, chronological age and Brain Cognition as regressors to explain fluid cognition” would become “Here, we tested predicted values of prediction models predicting fluid cognition based on brain MRI unique effects in multiple regression models with a Brain Age index, chronological age and predicted values of prediction models predicting fluid cognition based on brain MRI as regressors to explain fluid cognition.” We believe, given our additional explanation (see our responses to Reviewer 1 Recommendations For The Authors #3 above), readers should understand what Brain Cognition is, and that we did not intend to compare Brain Age and Brain Cognition directly.

      As for the suggested analysis, “obtaining a change in R2 where the first model uses brain features alone to predict cognition, and the second adds on brain-age (or related metrics), or visa versa,” we have already done this in the form of commonality analysis (Nimon et al., 2008) (see Figure 7 below). That is, to obtain unique and common effects of the regressors, we need to look at all of the possible changes in R2 when all possible subsets of regressors were excluded or included, see equations 12 and 13 below.

      From Methods:

      “Similar to the above multiple regression model, we had chronological age, each Brain Age index and Brain Cognition as the regressors for fluid cognition:

      Fluid Cognitioni = β0 + β1 Chronological Agei + β2 Brain Age Indexi,j + β3 Brain Cognitioni + εi, (12)

      Applying the commonality analysis here allowed us, first, to investigate the addictive, unique effects of Brain Cognition, over and above chronological age and Brain Age indices. More importantly, the commonality analysis also enabled us to test the common, shared effects that Brain Cognition had with chronological age and Brain Age indices in explaining fluid cognition. We calculated the commonality analysis as follows (Nimon et al., 2017):

      Unique Effectchronological age = ΔR2chronological age = R2chronological age, Brain Age index, Brain Cognition – R2 Brain Age index, Brain Cognition

      Unique EffectBrain Age index = ΔR2Brain Age index = R2chronological age, Brain Age index, Brain Cognition – R2 chronological age, Brain Cognition

      Unique EffectBrain Cognition = ΔR2Brain Cognition = R2chronological age, Brain Age index, Brain Cognition – R2 chronological age, Brain Age Index

      Common Effectchronological age, Brain Age index = R2chronological age, Brain Cognition + R2 Brain Age index, Brain Cognition – R2 Brain Cognition – R2chronological age, Brain Age index, Brain Cognition

      Common Effectchronological age, Brain Cognition = R2chronological age, Brain Age Index + R2 Brain Age index, Brain Cognition – R2 Brain Age Index – R2chronological age, Brain Age index, Brain Cognition

      Common Effect Brain Age index, Brain Cognition = R2chronological age, Brain Age Index + R2 chronological age, Brain Cognition – R2 chronological age – R2chronological age, Brain Age index, Brain Cognition

      Common Effect chronological age, Brain Age index, Brain Cognition = R2 chronological age + R2 Brain Age Index + R2 Brain Cognition – R2chronological age, Brain Age Index – R2 chronological age, Brain Cognition – R2 Brain Age Index, Brain Cognition – R2chronological age, Brain Age index, Brain Cognition , (13)”

      (2) I agree that the solution is not to exclude age as a covariate, and that there is a big difference between inevitable and obvious. I simply think a further discussion of the inevitability of the results would be clarifying for the readers. There is a big opportunity in the brain-age literature to be as direct as possible about why you are finding what you are finding. People need to know not only what you found, but why you found what you found.

      Thank you. We agreed that we need to make this point more explicit and direct. In the revised manuscript, we had the statements in both Introduction and Discussion (see below) about the tight relationship between Brain Age and chronological age by design, making the small unique effects of Brain Age inevitable.

      Introduction:

      “Accordingly, by design, Brain Age is tightly close to chronological age. Because chronological age usually has a strong relationship with fluid cognition, to begin with, it is unclear how much Brain Age adds to what is already captured by chronological age.“

      Discussion:

      “First, Brain Age itself did not add much more information to help us capture fluid cognition than what we had already known from a person’s chronological age. This can clearly be seen from the small unique effects of Brain Age indices in the multiple regression models having Brain Age and chronological age as the regressors. While the unique effects of some Brain Age indices from certain age-prediction models were statistically significant, there were all relatively small. Without Brain Age indices, chronological age by itself already explained around 32% of the variation in fluid cognition. Including Brain Age indices only added around 1.6% at best. We believe the small unique effects of Brain Age were inevitable because, by design, Brain Age is tightly close to chronological age. Therefore, chronological age and Brain Age captured mostly a similar variation in fluid cognition.

      Investigating the simple regression models and the commonality analysis between each Brain Age index and chronological age provided additional insights….”

      (3) I believe it is very important to critically examine the use of brain-age and related metrics. As part of this process, I think we should be asking ourselves the following questions (among others): Why go through age prediction? Wouldn't the predictions of cognition (or another variable) using the same set of brain features always be as good or better? You still have not justified the use of brain-age. As I said before, if you are going to continue to recommend the use of brain-age, you need a very strong argument for why you are recommending this. What does it truly add? Otherwise, temper your statements to indicate possible better paths forward.

      Thank you Reviewer 3 for making an argument against the use of Brain Age. We largely agree with you. However, our work only focuses on one phenotype, fluid cognition, and on the normative situation (i.e., not having a case vs control group). As Reviewer 2 pointed out, Brain Age might still have utility in other cases, not studied here. Still, future studies that focus on other phenotypes may consider using our approach as a template to test the utility of Brain Age in other situations. We added the conclusion statement to reflect this.

      From Discussion:

      “Altogether, we examined the utility of Brain Age as a biomarker for fluid cognition. Here are the three conclusions. First, Brain Age failed to add substantially more information over and above chronological age. Second, a higher ability to predict chronological age did not correspond to a higher utility to capture fluid cognition. Third, Brain Age missed up to around one-third of the variation in fluid cognition that could have been explained by brain MRI. Yet, given our focus on fluid cognition, future empirical research is needed to test the utility of Brain Age on other phenotypes, especially when Brain Age is used for anomaly detection in case-control studies (e.g., Bashyam et al., 2020; Rokicki et al., 2021). We hope that future studies may consider applying our approach (i.e., using the commonality analysis that includes predicted values from a model that directly predicts the phenotype of interest) to test the utility of Brain Age as a biomarker for other phenotypes.”

      References

      Bashyam, V. M., Erus, G., Doshi, J., Habes, M., Nasrallah, I. M., Truelove-Hill, M., Srinivasan, D., Mamourian, L., Pomponio, R., Fan, Y., Launer, L. J., Masters, C. L., Maruff, P., Zhuo, C., Völzke, H., Johnson, S. C., Fripp, J., Koutsouleris, N., Satterthwaite, T. D., … on behalf of the ISTAGING Consortium, the P. A. disease C., ADNI, and CARDIA studies. (2020). MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide. Brain, 143(7), 2312–2324. https://doi.org/10.1093/brain/awaa160

      Butler, E. R., Chen, A., Ramadan, R., Le, T. T., Ruparel, K., Moore, T. M., Satterthwaite, T. D., Zhang, F., Shou, H., Gur, R. C., Nichols, T. E., & Shinohara, R. T. (2021). Pitfalls in brain age analyses. Human Brain Mapping, 42(13), 4092–4101. https://doi.org/10.1002/hbm.25533

      Cole, J. H. (2020). Multimodality neuroimaging brain-age in UK biobank: Relationship to biomedical, lifestyle, and cognitive factors. Neurobiology of Aging, 92, 34–42. https://doi.org/10.1016/j.neurobiolaging.2020.03.014

      Dubois, J., Galdi, P., Paul, L. K., & Adolphs, R. (2018). A distributed brain network predicts general intelligence from resting-state human neuroimaging data. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1756), 20170284. https://doi.org/10.1098/rstb.2017.0284

      Hahn, T., Fisch, L., Ernsting, J., Winter, N. R., Leenings, R., Sarink, K., Emden, D., Kircher, T., Berger, K., & Dannlowski, U. (2021). From ‘loose fitting’ to high-performance, uncertainty-aware brain-age modelling. Brain, 144(3), e31–e31. https://doi.org/10.1093/brain/awaa454

      Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., Sanislow, C., & Wang, P. (2010). Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. American Journal of Psychiatry, 167(7), 748–751. https://doi.org/10.1176/appi.ajp.2010.09091379

      Jirsaraie, R. J., Kaufmann, T., Bashyam, V., Erus, G., Luby, J. L., Westlye, L. T., Davatzikos, C., Barch, D. M., & Sotiras, A. (2023). Benchmarking the generalizability of brain age models: Challenges posed by scanner variance and prediction bias. Human Brain Mapping, 44(3), 1118–1128. https://doi.org/10.1002/hbm.26144

      Marquand, A. F., Rezek, I., Buitelaar, J., & Beckmann, C. F. (2016). Understanding Heterogeneity in Clinical Cohorts Using Normative Models: Beyond Case-Control Studies. Biological Psychiatry, 80(7), 552–561. https://doi.org/10.1016/j.biopsych.2015.12.023

      Nimon, K., Lewis, M., Kane, R., & Haynes, R. M. (2008). An R package to compute commonality coefficients in the multiple regression case: An introduction to the package and a practical example. Behavior Research Methods, 40(2), 457–466. https://doi.org/10.3758/BRM.40.2.457

      Pat, N., Wang, Y., Anney, R., Riglin, L., Thapar, A., & Stringaris, A. (2022). Longitudinally stable, brain‐based predictive models mediate the relationships between childhood cognition and socio‐demographic, psychological and genetic factors. Human Brain Mapping, hbm.26027. https://doi.org/10.1002/hbm.26027

      Poldrack, R. A., Huckins, G., & Varoquaux, G. (2020). Establishment of Best Practices for Evidence for Prediction: A Review. JAMA Psychiatry, 77(5), 534–540. https://doi.org/10.1001/jamapsychiatry.2019.3671

      Rasero, J., Sentis, A. I., Yeh, F.-C., & Verstynen, T. (2021). Integrating across neuroimaging modalities boosts prediction accuracy of cognitive ability. PLOS Computational Biology, 17(3), e1008347. https://doi.org/10.1371/journal.pcbi.1008347

      Rokicki, J., Wolfers, T., Nordhøy, W., Tesli, N., Quintana, D. S., Alnæs, D., Richard, G., de Lange, A.-M. G., Lund, M. J., Norbom, L., Agartz, I., Melle, I., Nærland, T., Selbæk, G., Persson, K., Nordvik, J. E., Schwarz, E., Andreassen, O. A., Kaufmann, T., & Westlye, L. T. (2021). Multimodal imaging improves brain age prediction and reveals distinct abnormalities in patients with psychiatric and neurological disorders. Human Brain Mapping, 42(6), 1714–1726. https://doi.org/10.1002/hbm.25323

      Sripada, C., Angstadt, M., Rutherford, S., Taxali, A., & Shedden, K. (2020). Toward a “treadmill test” for cognition: Improved prediction of general cognitive ability from the task activated brain. Human Brain Mapping, 41(12), 3186–3197. https://doi.org/10.1002/hbm.25007

      Tetereva, A., Li, J., Deng, J. D., Stringaris, A., & Pat, N. (2022). Capturing brain‐cognition relationship: Integrating task‐based fMRI across tasks markedly boosts prediction and test‐retest reliability. NeuroImage, 263, 119588. https://doi.org/10.1016/j.neuroimage.2022.119588

      Vieira, B. H., Pamplona, G. S. P., Fachinello, K., Silva, A. K., Foss, M. P., & Salmon, C. E. G. (2022). On the prediction of human intelligence from neuroimaging: A systematic review of methods and reporting. Intelligence, 93, 101654. https://doi.org/10.1016/j.intell.2022.101654

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This paper provides useful information about how the ionome of Arabidopsis thaliana adapts to very high CO2-levels, backed up by solid evidence and carefully designed studies. However, the broader claims of the paper about climate change and food security - heavily emphasized in the abstract, introduction, and discussion - are inappropriate, as there is no direct link to the presented work.

      We sincerely thank you for the work you have done in reviewing our manuscript. We very much appreciate your overall positive assessment of the experimental work as a whole, its value and robustness.

      In this revised version, we took on board the majority of your suggestions and your comments. In particular, we understood your critical point about overstating our objectives, which might in turn seem uncorrelated with our results. We fully agree with the comments that have been made on this point. Consequently, we have made substantial modifications and corrections in order to clarify our objectives and their implications: exploring in depth the natural variation of the shoot ionome response to elevated CO2, and generating a valuable resource allowing a better understanding of the genetic and molecular mechanisms involved in the regulation of plant mineral nutrition by the elevation of atmospheric CO2.

      We also made modifications in response to the other suggestions, including a clarification of the functional experiments carried out around the function of TIP2;2 in response to elevated CO2. Figure 7 now comprises the comparison between both ambient and elevated CO2 conditions, which is much more informative that what appeared in the previous version.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The study's abstract, introduction, and conclusions are not supported by the methods and results conducted. In fact, the results presented suggest that Arabidopsis could easily adapt to an extremely high CO2 environment.

      We understand the reviewer’s comment. Although our work is considered useful, robust and well designed, we agree with the reviewer's point. We have certainly overemphasized the significance of our work to address the issue of food security in response to rising atmospheric CO2, at the expense of the factual description of the results of our fundamental study of the mechanisms at the interface between CO2 and mineral nutrition. We have clarified this focus by modifying the text of the introduction, objectives and discussion. We hope that these modifications will enable readers to better appreciate the core of this work.

      Regarding the last part of the comment, our results do suggest that genetic variation could allow adaptation to rising atmospheric CO2, and our study does indeed aim to identify the extent and basis of this genetic variation.

      This study offers good evidence pointing to a genetic basis for Arabidopsis thaliana's response to elevated CO2 (eCO2) levels and its subsequent impact on the leaf ionome. The natural variation analyses in the study support the hypothesis that genetic factors, rather than local adaptation, guide the influence of eCO2 on the ionome of rosette leaves in Arabidopsis. However, the manuscript's claim regarding its role in "the development of biofortified crops adapted to a high-CO2 world" (line 23) is overstated, especially given the absence of any analysis on the influence of eCO2 on the seed ionome and Arabidopsis is a poor model for harvest index for any crop. The manuscript, in its current form, necessitates massive revisions, particularly in clarifying its broader implications and in providing more substantial evidence for some of its assertions.

      We thank the reviewer for this comment, and we would like to thank the reviewer for the positive appreciation for the identification of genetic basis for Arabidopsis thaliana's response to elevated CO2 and its subsequent impact on the leaf ionome. Nevertheless, it is true that the study of the leaf ionome is far from being able to lead to the development of biofortified plants. Some papers described that nutrient harvest index in Arabidopsis is a potential indicator of nutrient use efficiency (for instance, Masclaux-Daubresse and Chardon, Journal of Experimental Botany 2011 or Aranjuelo et al., Journal of Experimental Botany 2013). However, as we did not include any seed ionome data in the paper, we added clear mentions that our analyses were made on leaves (lines 56/57/250/319) and a comment in the discussion section to address this limitation (lines 325-328).

      Major Drawbacks and Questions:

      (1) Evidence for the Central Premise:

      The foundational premise of the study is the assertion that rising atmospheric CO2 levels result in a decline in plant mineral content. This phenomenon is primarily observed in C3 plants, with C4 plants seemingly less affected. The evidence provided on this topic is scant and, in some instances, contradicts the authors' own references. The potential reduction of certain minerals, especially in grains, can be debated. For instance, reduced nitrogen (N) and phosphorus (P) content in grains might not necessarily be detrimental for human and animal consumption. In fact, it could potentially mitigate issues like nitrogen emissions and phosphorus leaching. Labeling this as a "major threat to food security" (line 30) is exaggerated. While the case for microelements might be more compelling, the introduction fails to articulate this adequately. Furthermore, the introduction lacks any discussion on how eCO2 might influence nutrient allocation to grains, which would be crucial in substantiating the claim that eCO2 poses a threat to food security. A more comprehensive introduction that clearly delineates the adverse effects of eCO2 and its implications for food security would greatly enhance the manuscript.

      We partially agree with this comment. The decline in mineral status of C3 plants under conditions of elevated atmospheric CO2 has been widely described in the literature, and specifically documented for the cereal grains. While there are variations in this effect (depending on species, ecotype, cultivar), there is no debate about its acceptance. Here are just a few of the many works describing this effect, both on a global scale and at the level of the individual plant (Cotrufo MF (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology 4: 43-54; Loladze I (2014) Hidden shift of the ionome of plants exposed to elevated CO(2)depletes minerals at the base of human nutrition. eLife 3: e02245; Myers SS (2014) Increasing CO2 threatens human nutrition. Nature 510: 139-142; Poorter H (1997) The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant, Cell & Environment 20: 472-482 ; Soares JC (2019) Preserving the nutritional quality of crop plants under a changing climate: importance and strategies. Plant and Soil 443: 1-26; Stitt] M (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell & Environment 22: 583-621; Uddling J (2018) Crop quality under rising atmospheric CO2. Curr Opin Plant Biol 45: 262-267).

      In addition to this, the threat to food security posed by this alteration in plant mineral status has also been well described in the literature by several modeling approaches (Beach RH (2019) Combining the effects of increased atmospheric carbon dioxide on protein, iron, and zinc availability and projected climate change on global diets: a modelling study. Lancet Planet Health 3: e307-e317; Ebi KL (2019) Elevated atmospheric CO(2) concentrations and climate change will affect our food's quality and quantity. Lancet Planet Health 3: e283-e284; Medek DE (2017) Estimated Effects of Future Atmospheric CO2 Concentrations on Protein Intake and the Risk of Protein Deficiency by Country and Region. Environ Health Perspect 125: 087002; Smith MR (2018) Impact of anthropogenic CO2 emissions on global human nutrition. Nature Climate Change 8: 834-839; Weyant C (2018) Anticipated burden and mitigation of carbon-dioxide-induced nutritional deficiencies and related diseases: A simulation modeling study. PLoS Med 15: e1002586; Zhu C (2018) Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci Adv 4: eaaq1012). To reinforce this point, we have added a sentence and references (lines 30-33). Nevertheless, we understand the reviewer's comment on the nuance to be given to the intensity of this potential threat. We have therefore modified the text, replacing "major threat" by "significant threat" (lines 3 and 29).

      We also would like to answer the reviewer’s comment on the potential environmental benefit associated with reduced N and P content in grains (mitigation of N emissions and P leaching). Indeed, if this reduced N and P content results from a lowered use efficiency of soil nutrients by plants, as suggested by several studies (Bloom 2010, Cassan 2023, Gojon 2023 and references therein), this may at the opposite favor N oxides emission and P leaching from the soil.

      (2) Exaggerated Concerns:

      The paper begins with the concern that carbon fertilization will lead to carbon dilution in our foods. While we indeed face numerous genuine threats in the coming decades, this particular issue is manageable. The increase in CO2 alone offers many opportunities for boosting yield. However, the heightened heat and increased evapotranspiration will pose massive challenges in many environments.

      While there are indeed multiple threats that we are facing in the coming decades, we don't fully agree with this comment. At present, there's no evidence to say that the negative effect of CO2 on plant mineral content will be manageable. Furthermore, there is compelling evidence that altered mineral nutrition and mineral status of plants will be an important factor limiting the high CO2-induced increase in yield, as will be heat or increased evapotranspiration (see for instance Coskun et al (2016) Nutrient constraints on terrestrial carbon fixation: The role of Nitrogen. J. Plant Physiol. 203: 95-109; Jiang M (2020) Low phosphorus supply constrains plant responses to elevated CO2 : A meta-analysis. Glob Chang Biol 26: 5856-5873 ; Reich PB (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440: 922-925). Thus, although we do not negate the crucial importance of heat and water stress, we believe it is relevant to study the basic mechanisms responsible for the negative effect of CO2 on plant mineral composition.

      Figure 4 in fact suggests that 43% of the REGMAP panel (cluster 3) is already pre-adapted to very high CO2 levels. This suggests annual species could adapt very rapidly.

      We agree with the reviewer. However, this suggests that genetic variation exists in some ecotypes to support adaptation to elevated CO2. The purpose of this work is indeed to identify this genetic variation, in order to characterize the mechanisms behind.

      (3) Assumptions on CO2 Levels:

      The assumption of 900ppm seems to be based on a very extreme climate change scenario. Most people believe we will overshoot the 1.5°C scenario, however, it seems plausible that 2.5 to 3°C scenarios are more likely. This would correspond to around 500ppm of CO2. https://www.nature.com/articles/s41597-022-01196-7/tables/4

      We agree with the reviewer that the CO2 concentration we used corresponds to a high value in the IPCC projections. That said, this value is currently considered very plausible: the following figure (from Smith and Myers (2018) Nature Climate Change) shows that current CO2 emissions align with the IPCC's most extreme model (RCP 8.5), which would result in a CO2 concentration of around 900 ppm in 2100. Furthermore, nothing allows to exclude the 4°C scenario in the 6th IPCC report.

      Author response image 1.

      (4) Focus on Real Challenges:

      We have numerous real challenges, such as extreme heat and inconsistent rainfall, to address in the context of climate change. However, testing under extreme CO2 conditions and then asserting that carbon dilution will negatively impact nutrition is exaggerated.

      While we fully agree that several threats linked to climate change exist, and all deserve to be studied, we find it questionable to consider that the potential effect of high CO2 on the mineral nutrition of plants is not a real challenge. The mineral nutrition of plants is already a current major environmental challenge. This perspective seems to reflect the reviewer's personal opinion rather than an analysis of our work.

      In contrast, the FACE experiments are fundamental and are conducted at more realistic eCO2 levels. Understanding the interaction between a 20% increase in CO2 and new precipitation patterns is key for global carbon flux prediction.

      Again, we do not fully understand this comment, as the aim of our study was not to perform a global carbon flux prediction, but to unravel genes and mechanisms underlying the negative effect of elevated CO2 on the nutrient content of Arabidopsis rosettes. However, we agree with the reviewer’s comment and with the fact that FACE are useful facilities to explore the CO2 response in more natural environments, and we highlight the fact that the decrease in mineral status of C3 plants has been widely documented in FACE studies. FACE experiments do not facilitate, however, to conduct fully controlled experiments (temperature, rainfall, wind and light intensities are not controllable in FACE), that allow to disentangle the mechanisms by which elevated CO2 regulates the signaling pathways associated with the plant mineral composition. In the longer term, studying the mechanisms we have identified in a more global context of climate change could be highly relevant.

      As I look at the literature on commercial greenhouse tomato production, 1000ppm of eCO2 is common, but it also looks like the breeders and growers have already solved for flavor and nutrition under these conditions.

      Indeed, tomato is often cultivated in CO2-enriched greenhouses at 1000 ppm. According to the literature, this results in a 20-25% reduction in vitamin C or lycopene, and requires a significantly higher nitrogen and water intake to reach expected sugar levels (Doddrell H (2023) Horticulture Research). In addition, the negative effect of elevated CO2 on tomato nutrient content seems to have significant repercussions on nutrition-health properties (Boufeldja (2023), Molecules).

      Conclusion:

      While the study provides valuable insights into the genetic underpinnings of Arabidopsis thaliana's response to elevated CO2 levels, it requires an entirely revised writeup, especially in its abstract, broader claims and implications. The manuscript would benefit from a more thorough introduction, a clearer definition of its scope, and a clear focus on the limits of this study.

      We thank the reviewer for the comments made on our manuscript. In addition to the responses that we provide to these comments, we have modified the main text of the introduction, objectives and discussion to take these comments into consideration. We believe that this will significantly improve the manuscript.

      Reviewer #2 (Public Review):

      Strengths:

      The authors have conducted a large, well-designed experiment to test the response to eCO2. Overall, the experimental design is sound and appropriate for the questions about how a change in CO2 affects the ionome of Arabidopsis. Most of the conclusions in this area are well supported by the data that the authors present.

      We thank the reviewer for this positive appreciation.

      Weakness:

      While the authors have done good experiments, it is a big stretch from Arabidopsis grown in an arbitrary concentration of CO2 to relevance to human and animal nutrition in future climates. Arabidopsis is a great model plant, but its leaves are not generally eaten by humans or animals.

      We agree with the reviewer’s comment. We recognized that implying a direct contribution of our work to human nutrition in the future climates is overstated, as mentioned by the reviewer 1 as well. This was not an intentional overstatement, as we have always been convinced that our work contributed to the understanding of the basic mechanisms involved in the negative regulation of plant mineral nutrition by high CO2. We have significantly modified the text to correct any misunderstanding of our work’s implication.

      The authors don't justify their choice of a CO2 concentration. Given the importance of the parameter for the experiment, the rationale for selecting 900 ppm as elevated CO2 compared to any other concentration should be addressed. And CO2 is just one of the variables that plants will have to contend with in future climates, other variables will also affect elemental concentrations.

      We agree with this comment. We added a justification of the high CO2 concentration used in this work in the Material and Methods section (lines 343-344). You can also read the explanation of this choice in the response to the reviewer 1’s point 3.

      Given these concerns, I think the emphasis on biofortification for future climates is unwarranted for this study.

      Anew, we agree with this comment and we have significantly modified the text to correct any misunderstanding of our work’s implication.

      Additionally, I have trouble with these conclusions:

      -Abstract "Finally, we demonstrate that manipulating the function of one of these genes can mitigate the negative effect of elevated CO2 on the plant mineral composition."

      -Discussion "Consistent with these results, we show that manipulating TIP2;2 expressions with a knock-out mutant can modulate the Zn loss observed under high CO2."

      The authors have not included the data to support this conclusion as stated. They have shown that this mutant increases the Zn content of the leaves when compared to WT but have not demonstrated that this response is different than in ambient CO2. This is an important distinction: one way to ameliorate the reduction of nutrients due to eCO2 is to try to identify genes that are involved in the mechanism of eCO2-induced reduction. Another way is to increase the concentration of nutrients so that the eCO2-induced reduction is not as important (i.e. a 10% reduction in Zn due to eCO2 is not as important if you have increased the baseline Zn concentration by 20%). The authors identified tip2 as a target from the GWAS on difference, but their validation experiment only looks at eCO2.

      We thank the reviewer for this comment, and we agree with it. It is much more interesting, especially in the context of this paper, to analyze the function of a candidate gene not only in elevated CO2, but in both ambient and elevated CO2. Therefore, we added in Figure 7 data for the expression of TIP2;2 in contrasted haplotypes under ambient CO2, in comparison to those already presented under elevated CO2 (now Fig. 7C and 7D). This showed that TIP2;2 expression is lower in haplotype 0 also under ambient CO2. We also added in Figure 7 (Fig. 7E) the Zn level in WT and tip2;2-1 mutant under ambient CO2, in comparison to those already presented under elevated CO2. This showed that that the tip2;2-1 mutant line did not present any decrease in Zn shoot content in response to elevated CO2, in opposition to what is observed for the WT.

      We have added comments associated to these new results in the Results and Discussion sections and in the discussion section (lines 233-242 in the results section, and lines 310-314 in the discussion section).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Reviewer Comments on the Article's Approach to Ionome Analysis

      (1) Omission of Phosphorus from the Ionome:

      It's surprising that phosphorus (P) was not measured in the ionome. After nitrogen (N), P is often the most limiting mineral for plant development and yield, making it a significant component of the ionome. Why did the authors omit this crucial element?

      We agree with the reviewer that P is an important mineral for plant growth. The absence of data related to P content is due to feasibility constraints rather than oversight. The MP-AES instrument we used to analyze the ionome (except N and C, that we obtained from an Elementar Analyzer) would have required an extra-step and an extra-analysis to obtain data for macronutrient such as P or K. In the context of this large-scale experiment, we faced the necessity to compromise and proceed without these data.

      (2) Relationship Between Leaf Ionome and Seed:

      The manuscript lacks evidence demonstrating the relationship between the leaf ionome and the seed. This connection is vital to establish the study's aims as outlined in lines 20-24. If the central argument is that eCO2 threatens food security, it's essential for the authors to either:

      • Provide evidence that eCO2 induces changes in the ionome profiles of seeds.

      • Show that changes in the rosette leaf ionome lead to alterations in seed ionome profiles.

      We agree with the reviewer. Although we know that seed ionome composition of Arabidopsis model accession such as Columbia is indeed negatively affected by eCO2, we do not provide the data that support some of the terms used in lines 20-24. The correspondence between leaf and seed ionome in natural population under eCO2 is certainly a next question that we will address. Therefore, to align our stated objectives with our data, we have modified the sentence in lines 20-24. We also added a comment on this point lines on the discussion section (lines 324-328).

      (3) Analysis of Ionome in Rosette Leaves:

      Why did the authors choose to analyze the ionome specifically in rosette leaves? Is there a known correlation between the ionome profile in rosette leaves and seeds?

      See our answer to the above comment.

      (4) Experimental Design Comments:

      • The layout of the accession growouts, the methods of randomization, blocking, and controls/checks should be detailed.

      • Were BLUEs (Best Linear Unbiased Estimators) or BLUPs (Best Linear Unbiased Predictors) employed to account for experimental design conditions? If not, it's recommended that they be used.

      We thank the reviewer for this comment. A note on replicates has been added in the Method/Plant Material section. Concerning the BLUEs/BLUPs, although I am not familiar with their use, I do not think that these approaches are relevant in our experimental design. Indeed, we pooled 3 to 5 replicates for each accession to measure the ionome (as mentioned in the Method/Ionome analysis section – we realized this was perhaps not clear enough, and thus we reinforced this point in this section). Therefore, we do not have the variance data required to perform BLUEs/BLUPs.

      (5) Carbon Dilution Effect:

      The statement, "The first component of the PCA described a clear antagonistic trend between C content and the change of other mineral elements (Fig. 3B)..." suggests a well-understood carbon dilution effect. These results are anticipated and align with existing knowledge.

      We thank the reviewer for this comment. However, this sentence does not relate to the biomass dilution hypothesis referred to by the reviewer. Indeed, the composition of each mineral (C and others) is expressed as a percentage of biomass, not as an absolute value. Therefore, this reflects more a probable effect of the increase in carbon compounds (notably soluble sugars), which could influence mineral composition.

      (6) Heritability Estimates:

      The authors should report both the broad-sense heritability and an estimate of heritability based on a GRM or Kinship matrix.

      We thank the reviewer for this suggestion. We are skeptical of using a kinship matrix to estimate heritability in our study. Estimating narrow-sense heritability using a kinship matrix is conceptually based on the infinitesimal model of Fisher, thereby meaning that phenotypic variation is driven by hundreds to thousands of QTLs with small effects. If this is the case, GWAS conducted on several hundred (or even thousands) of genotypes will not be powerful enough to detect such QTLs. Accordingly, estimates of broad-sense heritability based on estimates of variance components can drastically differ from estimates of narrow-sense heritability based on the use of a kinship matrix, as illustrated in the study of Bergelson et al. (2019 Scientific Reports).

      (7) Application of the Breeder's Equation:

      It would be beneficial if the authors applied the breeder's equation to estimate the species' potential rate of response. Based on the allele frequency of the adapted cluster 3 (69 ecotypes or 43% frequency of Figure 3B), it seems plausible that the populations could adapt within 23 generations.

      We thank the reviewer for this suggestion. Indeed, it would be really interesting to test whether sub-populations could adapt in comparison with others, and over what period of time. It is nevertheless not possible to do so using the Breeder’s equation in our case, as this requires fitness data under conditions of ambient or elevated CO2 (i.e. production of seeds) to be applied, and we do not have these data at the level of the whole population.

      (8) Overall Quality:

      In general, the authors have executed a high-quality ionome mapping experiment. However, the abstract, introduction, and discussion should be entirely rewritten and reframed.

      We thank the reviewer for the positive evaluation of our experiment. As previously mentioned, we are for the most part in agreement with the comments made about the need to align our stated objectives with our experimental data and conclusions. To do so, we have rewritten part of the abstract, introduction and discussion. The details of these modifications are described in the responses made to each comment.

      Here's a line-by-line list of suggestions on writing:

      Line 30 would read better with a comma after thus (or by replacing thus with therefore and then a comma at the start of the sentence).

      Line 33 nevertheless would read better in between commas.

      Lines 45 - 48 sentence is too long, could probably divide it into two.

      Lines 90 - 94 are hard to interpret, recommend rephrasing for clarity.

      Line 130 - keep verbs in the past tense for consistency (ran instead of run).

      Line 194 - what do the authors mean by crossed? I'm inferring they looked at the intersection of DEGs with the list of genes identified by GWA mapping, probably should use a more concise word.

      There's a concurrent use of the adjective strong (Lines 80, 142, 144, 197, 245). I would advise using a more concise adjective or avoiding its use to let the reader form their own opinion on the data.

      Lines 174-176 the cited reference (No. 15) is incorrect. The study by Katz et al. (2022) does not provide information on the role of ZIF1 in zinc sequestration mechanisms under elevated CO2 conditions.

      We thank the reviewer for these detailed recommendations. We have corrected or rephrased the text according to these suggestions.

      Reviewer #2 (Recommendations For The Authors):

      Technical points:

      900 ppm as elevated CO2: Given the importance of the parameter for the experiment, the rationale for selection 900 ppm as elevated CO2 compared to any other concentration should be addressed.

      We acknowledge the reviewer's point and have previously addressed related aspects earlier in our response. In line with this, we have included a justification for this particular parameter in the Method section.

      The authors do not mention what genotype was used for their root/shoot RNAseq experiment.

      We thank the reviewer for this comment, and indeed, this information was not mentioned. This is now done, in the Method section.

      Line 125: Spelling error "REGMPA".

      This has been corrected.

      Line 338: Removal of outlier observations - "Prior to GWAS and multivariate analyses such as PCA or clustering, mineral composition measures were pre-processed to remove technical outliers". The authors should mention the exact number of outliers that were removed and what the explicit criteria were for removal.

      The number of outliers removed from each dataset is now indicated in Supplemental Table 7 (this is cited in the Method section). The explicit criteria used for this analysis is actually mentioned in the corresponding Method section: “the values positioned more than 5 median absolute deviations away from the median were removed from the dataset”.

      Line 379: "Lowly expressed genes with an average value across conditions under 25 reads were excluded from the analysis". Providing information about the number of the lowly expressed genes that were removed from the analysis can help with the interpretation of the likelihood of the candidates selected being correct.

      This is a standard procedure in RNAseq analysis. It avoids many false positives in the differential analysis of gene expression based on ratios (where a very small number in the denominator can lead to a very high variation in expression, of no real significance). For information, this step led to the removal of 11607 and 10121 genes for the shoot and root datasets.

      Line 384: It's not clear how many biological replicates were used.

      This has been corrected.

      Additional comment: We have also become aware of a confusion concerning one of the candidate genes located close to GWA peaks: line 180 of the first version, we mentioned CAX1 (AT1G16380) for its role on nutrient deficiency response. There are actually two genes annotated as CAX1 in TAIR (both are cation exchangers), but the one involved in nutrient deficiency response is AT2G38170. We therefore removed the sentence mentioning AT1G16380/CAX1 as a potential candidate gene.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their constructive comments and suggestions. We have prepared a revised manuscript with updated quantification of theta cycle skipping, new statistical comparisons of the difference between the two behavioral tasks, and general improvements to the text and figures.

      Reviewer #1 (Public Review):

      Summary

      The authors provide very compelling evidence that the lateral septum (LS) engages in theta cycle skipping.

      Strengths

      The data and analysis are highly compelling regarding the existence of cycle skipping.

      Weaknesses

      The manuscript falls short on in describing the behavioral or physiological importance of the witnessed theta cycle skipping, and there is a lack of attention to detail with some of the findings and figures:

      More/any description is needed in the article text to explain the switching task and the behavioral paradigm generally. This should be moved from only being in methods as it is essential for understanding the study.

      Following this suggestion, we have expanded the description of the behavioral tasks in the Results section.

      An explanation is needed as to how a cell can be theta skipping if it is not theta rhythmic.

      A cell that is purely theta skipping (i.e., always fires on alternating theta cycles and never on adjacent theta cycles) will only have enhanced power at half theta frequency and not at theta frequency. Such a cell will therefore not be considered theta rhythmic in our analysis. Note, however, that there is a large overlap between theta rhythmic and theta skipping cell populations in our data (Figure 3 - figure supplement 2), indicating that most cells are not purely theta skipping.

      The most interesting result, in my opinion, is the last paragraph of the entire results section, where there is more switching in the alternation task, but the reader is kind of left hanging as to how this relates to other findings. How does this relate to differences in decoding of relative arms (the correct or incorrect arm) during those theta cycles or to the animal's actual choice? Similarly, how does it relate to the animal's actual choice? Is this phenomenon actually behaviorally or physiologically meaningful at all? Does it contribute at all to any sort of planning or decision-making?

      We agree that the difference between the two behavioral tasks is very interesting. It may provide clues about the mechanisms that control the cycle-by-cycle expression of possible future paths and the potential impact of goal-directed planning and (recent) experience. In the revised manuscript, we have expanded the analysis of the differences in theta-cycle dynamics between the two behavioral tasks. First, we confirm the difference through a new quantification and statistical comparison. Second, we performed additional analyses to explore the idea that the alternation of non-local representations reflects the number of relevant paths available to the animal (Figure 11 – figure supplements 2 and 3), but this did not appear to be the case. However, these results provide a starting point for future studies to clarify the task dependence of the theta- cycle dynamics of spatial representations and to address the important question of behavioral/physiological relevance.

      The authors state that there is more cycle skipping in the alternation task than in the switching task, and that this switching occurs in the lead-up to the choice point. Then they say there is a higher peak at ~125 in the alternation task, which is consistent. However, in the final sentence, the authors note that "This result indicates that the representations of the goal arms alternate more strongly ahead of the choice point when animals performed a task in which either goal arm potentially leads to reward." Doesn't either arm potentially lead to a reward (but different amounts) in the switching task, not the alternation task? Yet switching is stronger in the alternation task, which is not constant and contradicts this last sentence.

      The reviewer is correct that both choices lead to (different amounts of) reward in the switching task. As written, the sentence that the reviewer refers to is indeed not accurate and we have rephrased it to: “This result indicates that the representations of the goal arms alternate more strongly ahead of the choice point when animals performed a task in which either goal arm potentially leads to a desirable high-value reward.”.

      Additionally, regarding the same sentence - "representations of the goal arms alternate more strongly ahead of the choice point when the animals performed a task in which either goal arm potentially leads to reward." - is this actually what is going on? Is there any reason at all to think this has anything to do with reward versus just a navigational choice?

      We appreciate the reviewer’s feedback and acknowledge that our statement needs clarification. At the choice point in the Y-maze there are two physical future paths available to the animal (disregarding the path that the animal took to reach the choice point) – we assume this is what the reviewer refers to as “a navigational choice”. One hypothesis could be that alternation of goal arm representations is present whenever there are multiple future paths available, irrespective of the animal’s (learned) preference to visit one or the other goal arm. However, the reduced alternation of goal arm representations in the switching task that we report, suggests that the animal’s recent history of goal arm visits and reward expectations likely do influence the theta-cycle representations ahead of the choice point. We have expanded our analysis to test if theta cycle dynamics differ for trials before and after a switch in reward contingency in the switching task, but there was no statistical difference in our data. We have rewritten and expanded this part of the results to make our point more clearly.

      Similarly, the authors mention several times that the LS links the HPC to 'reward' regions in the brain, and it has been found that the LS represents rewarded locations comparatively more than the hippocampus. How does this relate to their finding?

      Indeed, Wirtshafter and Wilson (2020) reported that lateral septum cells are more likely to have a place field close to a reward site than elsewhere in their double-sided T-maze. It is possible that this indicates a shift towards reward or value representations in the lateral septum. In our study we did not look at reward-biased cells and whether they are more or less likely to engage in theta cycle skipping. This could be a topic for future analyses. It should be noted that the study by Wirtshafter and Wilson (2020) reports that a reward bias was predominantly present for place fields in the direction of travel away from the reward site. These reward-proximate LS cells may thus contribute to theta-cycle skipping in the inbound direction, but it is not clear if these cells would be active during theta sweeps when approaching the choice point in the outbound direction.

      Reviewer #2 (Public Review)

      Summary

      Recent evidence indicates that cells of the navigation system representing different directions and whole spatial routes fire in a rhythmic alternation during 5-10 Hz (theta) network oscillation (Brandon et al., 2013, Kay et al., 2020). This phenomenon of theta cycle skipping was also reported in broader circuitry connecting the navigation system with the cognitive control regions (Jankowski et al., 2014, Tang et al., 2021). Yet nothing was known about the translation of these temporally separate representations to midbrain regions involved in reward processing as well as the hypothalamic regions, which integrate metabolic, visceral, and sensory signals with the descending signals from the forebrain to ensure adaptive control of innate behaviors (Carus-Cadavieco et al., 2017). The present work aimed to investigate theta cycle skipping and alternating representations of trajectories in the lateral septum, neurons of which receive inputs from a large number of CA1 and nearly all CA3 pyramidal cells (Risold and Swanson, 1995). While spatial firing has been reported in the lateral septum before (Leutgeb and Mizumori, 2002, Wirtshafter and Wilson, 2019), its dynamic aspects have remained elusive. The present study replicates the previous findings of theta-rhythmic neuronal activity in the lateral septum and reports a temporal alternation of spatial representations in this region, thus filling an important knowledge gap and significantly extending the understanding of the processing of spatial information in the brain. The lateral septum thus propagates the representations of alternative spatial behaviors to its efferent regions. The results can instruct further research of neural mechanisms supporting learning during goal-oriented navigation and decision-making in the behaviourally crucial circuits entailing the lateral septum.

      Strengths

      To this end, cutting-edge approaches for high-density monitoring of neuronal activity in freely behaving rodents and neural decoding were applied. Strengths of this work include comparisons of different anatomically and probably functionally distinct compartments of the lateral septum, innervated by different hippocampal domains and projecting to different parts of the hypothalamus; large neuronal datasets including many sessions with simultaneously recorded neurons; consequently, the rhythmic aspects of the spatial code could be directly revealed from the analysis of multiple spike trains, which were also used for decoding of spatial trajectories; and comparisons of the spatial coding between the two differently reinforced tasks.

      Weaknesses

      Possible in principle, with the present data across sessions, longitudinal analysis of the spatial coding during learning the task was not performed. Without using perturbation techniques, the present approach could not identify the aspects of the spatial code actually influencing the generation of behaviors by downstream regions.

      Reviewer #3 (Public Review)

      Summary

      Bzymek and Kloosterman carried out a complex experiment to determine the temporal spike dynamics of cells in the dorsal and intermediate lateral septum during the performance of a Y-maze spatial task. In this descriptive study, the authors aim to determine if inputting spatial and temporal dynamics of hippocampal cells carry over to the lateral septum, thereby presenting the possibility that this information could then be conveyed to other interconnected subcortical circuits. The authors are successful in these aims, demonstrating that the phenomenon of theta cycle skipping is present in cells of the lateral septum. This finding is a significant contribution to the field as it indicates the phenomenon is present in neocortex, hippocampus, and the subcortical hub of the lateral septal circuit. In effect, this discovery closes the circuit loop on theta cycle skipping between the interconnected regions of the entorhinal cortex, hippocampus, and lateral septum. Moreover, the authors make 2 additional findings: 1) There are differences in the degree of theta modulation and theta cycle skipping as a function of depth, between the dorsal and intermediate lateral septum; and 2) The significant proportion of lateral septum cells that exhibit theta cycle skipping, predominantly do so during 'non-local' spatial processing.

      Strengths

      The major strength of the study lies in its design, with 2 behavioral tasks within the Y-maze and a battery of established analyses drawn from prior studies that have established spatial and temporal firing patterns of entorhinal and hippocampal cells during these tasks. Primary among these analyses, is the ability to decode the animal's position relative to locations of increased spatial cognitive demand, such as the choice point before the goal arms. The presence of theta cycle skipping cells in the lateral septum is robust and has significant implications for the ability to dissect the generation and transfer of spatial routes to goals within and between the neocortex and subcortical neural circuits.

      Weaknesses

      There are no major discernable weaknesses in the study, yet the scope and mechanism of the theta cycle phenomenon remain to be placed in the context of other phenomena indicative of spatial processing independent of the animal's current position. An example of this would be the ensemble-level 'scan ahead' activity of hippocampal place cells (Gupta et al., 2012; Johnson & Redish, 2007). Given the extensive analytical demands of the study, it is understandable that the authors chose to limit the analyses to the spatial and burst firing dynamics of the septal cells rather than the phasic firing of septal action potentials relative to local theta oscillations or CA1 theta oscillations. Yet, one would ideally be able to link, rather than parse the phenomena of temporal dynamics. For example, Tingley et al recently showed that there was significant phase coding of action potentials in lateral septum cells relative to spatial location (Tingley & Buzsaki, 2018). This begs the question as to whether the non-uniform distribution of septal cell activity within the Y-maze may have a phasic firing component, as well as a theta cycle skipping component. If so, these phenomena could represent another means of information transfer within the spatial circuit during cognitive demands. Alternatively, these phenomena could be part of the same process, ultimately representing the coherent input of information from one region to another. Future experiments will therefore have to sort out whether theta cycle skipping, is a feature of either rate or phase coding, or perhaps both, depending on circuit and cognitive demands.

      The authors have achieved their aims of describing the temporal dynamics of the lateral septum, at both the dorsal extreme and the intermediate region. All conclusions are warranted.

      Reviewer #1 (Recommendations For The Authors)

      The text states: "We found that 39.7% of cells in the LSD and 32.4% of cells in LSI had significantly higher CSI values than expected by chance on at least one of the trajectories." The text in the supplemental figure indicates a p-value of 0.05 was used to determine significance. However, four trajectory categories are being examined so a Bonferroni correction should be used (significance at p<0.0125).

      Indeed, a p-value correction for multiple tests should be performed when determining theta cycle skipping behavior for each of the four trajectories. We thank the reviewer for pointing out this oversight. We have implemented a Holm-Sidak p-value correction for the number of tested trajectories per cell (excluding trajectories with insufficient spikes). As a consequence, the number of cells with significant cycle-skipping activity decreased, but overall the results have not changed.

      Figure 4 is very confusing as raster plots are displayed for multiple animals but it is unclear which animal the LFP refers to? The bottom of the plot is also referenced twice in the figure caption.

      We apologize for the confusion. We have removed this figure in the revised manuscript, as it was not necessary to make the point about the spatial distribution of theta cycle skipping. Instead, we show examples of spatially-resolved cycle skipping in Figure 4 (formerly Figure 5 - supplementary figures 1 and 2) and we have added a plot with the spatially-resolved cycle skipping index for all analyzed cells in Figure 5A.

      Figure 6 has, I think, an incorrect caption or figure. Only A and B are marked in the figure but A-G are mentioned in the caption but do not appear to correspond to anything in the figure.

      Indeed, the caption was outdated. This has now been corrected.

      Figure 8 is also confusing for several reasons: how is the probability scale on the right related to multiple semi-separate (top and middle) figures? In the top and bottom figures, it is not clear what the right and left sides refer to. It is also unclear why a probability of 0.25 is used for position (seems potentially low). The caption also mentions Figure A but there are no lettered "sub" figures in Figure 8.

      The color bar on the right applies to both the top plot (directional decoding) and the middle plot (positional decoding). However, the maximum probability that is represented by black differs between the top and middle plots. We acknowledge that a shared color bar may lead to confusion and we have given each of the plots a separate color bar.

      As for the maximum probability of 0.25 for position: this was a typo in the legend. The correct maximum value is 0.5. In general, the posterior probability will be distributed over multiple (often neighboring) spatial bins, and the distribution of maximum probabilities will depend on the number of spatial bins, the level of spatial smoothing in the decoding algorithm, and the amount of decodable information in the data. It would be more appropriate to consider the integrated probability over a small section of the maze, rather than the peak probability that is assigned to a single 5 cm bin. Also, note that a posterior probability of 0.5 is many times higher than the probability associated with a uniform distribution, which is in our case.

      The left and right sides of the plots represent two different journeys that the animal ran. On the left an outbound journey is shown, and on the right an inbound journey. We have improved the figure and the description in the legend to make this clearer.

      The reviewer is correct that there are no panels in Figure 8 and we have corrected the legend.

      Some minor concerns

      The introduction states that "a few studies have reported place cell-like activity in the lateral septum (Tingley and Buzsaki, 2018; Wirtshafter and Wilson, 2020, 2019)." However, notably and controversially, the Tingley study is one of the few studies to find NO place cell activity in the lateral septum. This is sort of mentioned later but the citation in this location should be removed.

      The reviewer is correct, Tingley and Buzsaki reported a spatial phase code but no spatial rate code. We have removed the citation.

      Stronger position/direction coding in the dLS consistent with prior studies and they should be cited in text (not a novel finding).

      Thank you for pointing out this omission. Indeed, a stronger spatial coding in the dorsal lateral septum has been reported before, for example by Van der Veldt et al. (2021). We now cite this paper when discussing these findings.

      Why is the alternation task administered for 30m but the switching task for 45m?

      The reason is that rats received a larger reward in the switching task (in the high-reward goal arm) and took longer to complete trials on average. To obtain a more-or-less similar number of trials per session in both tasks, we extended the duration of switching task sessions to 45 minutes. We have added this explanation to the text.

      Regarding the percentage of spatially modulated cells in the discussion, it is also worth pointing out that bits/sec information is consistent with previous studies.

      Thank you for the suggestion. We now point out that the spatial information in our data is consistent with previous studies.

      Reviewer #2 (Recommendations For The Authors)

      While the results of the study are robust and timely, further details of behavioural training, additional quantitative comparisons, and improvements in the data presentation would make the study more comprehensible and complete.

      Major comments

      (1) I could not fully comprehend the behavioural protocols. They require a clearer explanation of both the specific rationale of the two tasks as well as a more detailed presentation of the protocols. Specifically:

      (1.1) In the alternation task, were the arms baited in a random succession? How many trials were applied per session? Fig 1D: how could animals reach high choice accuracy if the baiting was random?

      We used a continuous version of the alternation task, in which the animals were rewarded for left→home→right and right→home→left visit sequences. In addition, animals were always rewarded on inbound journeys. There was no random baiting of goal arms. Perhaps the confusion stems from our use of the word “trial” to refer to a completed lap (i.e., a pair of outbound/inbound journeys). On average, animals performed 54 of such trials per 30-minute session in the alternation task. We have expanded the description of the behavioral tasks in the Results and further clarified these points in the Methods section.

      (1.2) Were they rewarded for correct inbound trials? If there was no reward, why were they considered correct?

      Yes, rats received a reward at the home platform for correct inbound trials. We have now explicitly stated this in the text.

      (1.3) In the switch alternation protocol, for how many trials was one arm kept more rewarding than the other, and how many trials followed after the rewarding value switch?

      A switch was triggered when rats (of their own volition) visited the high-reward goal arm eight times in a row. Following a switch, the animals could complete as many trials as necessary until they visited the new high- reward goal arm in eight consecutive trials, which triggered another switch. As can be seen in Figure 1D, at the population level, animals needed ~13 trials to fully commit to the high-reward goal arm following a switch. We have further clarified the switching task protocol in the Results and Methods sections.

      (1.4) What does the phrase "the opposite arm (as 8 consecutive visits)" exactly mean? Sounds like 8 consecutive visits signalled that the arm was rewarded (as if were not predefined in the protocol).

      The task is self-paced and the animals initially visit both goal arms, before developing a bias for the high- reward goal arm. A switch of reward size was triggered as soon as the animal visited the high-reward goal arm for eight consecutive trials. We have rewritten the description of the switching task protocol, including this sentence, which hopefully clarifies the procedure.

      (1.5) P. 15, 1st paragraph, Theta cycle skipping and alternation of spatial representations is more prominent in the alternation task. Why in the switching task, did rats visit the left and right arms approximately equally often if one was more rewarding than the other? How many switches were applied per recording session, and how many trials were there in total?

      Both the left and right goal arms were sampled more or less equally by the animals because both goal arms at various times were associated with a large reward following switches in reward values during sessions. The number of switches per session varied from 1 to 3. Sampling of both goal arms was also evident at the beginning of each session and following each reward value switch, before animals switched their behavior to the (new) highly rewarded goal arm. In Table 1, we have now listed the number of trials and the number of reward-value switches for all sessions.

      (1.6) Is the goal arm in figures the rewarded/highly rewarded arm only or are non-baited arms also considered here?

      Both left and right arms are considered goal arms and were included in the analyses, irrespective of the reward that was received (or not received).

      (2) The spatial navigation-centred behavioural study design and the interpretation of results highlight the importance of the dorsal hippocampal input to the LS. Yet, the recorded LSI cells are innervated by intermediate and ventral aspects of the hippocampus, and LS receives inputs from the amygdala and the prefrontal cortex, which together may together bring about - crucial for the adaptive behaviours regulated by the LS - reward, and reward-prediction-related aspects in the firing of LS cells during spatial navigation. Does success or failure to acquire reward in a trial modify spatial coding and cycle skipping of LSD vs. LSI cells in ensuing inbound and outbound trials?

      This is an excellent question and given the length of the current manuscript, we think that exploration of this question is best left for a future extension of our study.

      A related question: in Figure 10, it is interesting that cycle skipping is prominent in the goal arm for outbound switching trials and inbound trials of both tasks. Could it be analytically explained by task contingencies and behaviour (e.g. correct/incorrect trial, learning dynamics, running speed, or acceleration)?

      Our observation of cycle skipping at the single-cell level in the goal arms is somewhat surprising and, we agree with the reviewer, potentially interesting. However, it was not accompanied by alternation of representations at the population level. Given the current focus and length of the manuscript, we think further investigation of cycle skipping in the goal arm is better left for future analyses.

      (3) Regarding possible cellular and circuit mechanisms of cycle skipping and their relation to the alternating representations in the LS. Recent history of spiking influences the discharge probability; e.g. complex spike bursts in the hippocampus are associated with a post-burst delay of spiking. In LS, cycle skipping was characteristic for LS cells with high firing rates and was not uniformly present in all trajectories and arms. The authors propose that cycle skipping can be more pronounced in epochs of reduced firing, yet the opposite seems also possible - this phenomenon can be due to an intermittently increased drive onto some LS cells. Was there a systematic relationship between cycle skipping in a given cell and the concurrent firing rate or a recent discharge with short interspike intervals?

      In our discussion, we tried to explain the presence of theta cycle skipping in the goal arms at the single-cell level without corresponding alternation dynamics at the population level. We mentioned the possibility of a decrease in excitatory drive. As the reviewer suggests, an increase in excitatory drive combined with post- burst suppression or delay of spiking is an alternative explanation. We analyzed the spatial tuning of cells with theta cycle skipping and found that, on average, these cells have a higher firing rate in the goal arm than the stem of the maze in both outbound and inbound run directions (Figure 5 – figure supplement 1). In contrast, cells that do not display theta cycle skipping do not show increased firing in the goal arm. These results are more consistent with the reviewer’s suggested mechanism and we have updated the discussion accordingly.

      (4) Were the differences between the theta modulation (cycle skipping) of local vs. non-local representations (P.14, line 10-12, "In contrast...", Figure 9A) and between alternation vs. switching tasks (Figure 10 C,D) significantly different?

      We have added quantification and statistical comparisons for the auto- and cross-correlations of the local/non-local representations. The results indeed show significantly stronger theta cycle skipping of the non-local representations as compared to the local representations (Figure 10 - figure supplement 1A), a stronger alternation of non-local representations in the outbound direction (Figure 10 - figure supplement 1B), and significant differences between the two tasks (Figure 11E,F).

      (5) Regarding the possibility of prospective coding in LS, is the accurate coding of run direction not consistent with prospective coding? Can the direction be decoded from the neural activity in the start arm? Are the cycling representations of the upcoming arms near the choice point equally likely or preferential for the then- selected arm?

      The coding of run direction (outbound or inbound) is distinct from the prospective/retrospective coding of the goal arm. As implemented, the directional decoding model does not differentiate between the two goal arms and accurate decoding of direction with this model can not inform us whether or not there is prospective (or retrospective) coding. To address the reviewer’s comments, we performed two additional analyses. First, we analyzed the directional (outbound/inbound) decoding performance as a function of location in the maze (Figure 6 - figure supplement 3E). The results show that directional decoding performance is high in both stem and goal arms. Second, we analyzed how well we can predict the trajectory type (i.e., to/from the left or right goal arm) as a function of location in the maze, and separately for outbound and inbound trajectories (Figure 6 - figure supplement 3C,D). The results show that on outbound journeys, decoding the future goal arm is close to chance when the animals are running along the stem. The decoding performance goes up around the choice point and reaches the highest level when animals are in the goal arm.

      (6) Figure 10 seems to show the same or similar data as Figures 5 (A,B) and 9 (C,D).

      Figure 10 (figure 11 in revised manuscript) re-analyzes the same data as presented in Figures 5 and 9, but separates the experimental sessions according to the behavioral task. We now explicitly state this.

      Minor comments

      (1) If cycle skipping in the periodicity of non-local representations was more prominent in alternation than in the switching task, one might expect them to be also prominent in early trials of the switching task, when the preference of a more rewarding arm is not yet established. Was this the case?

      The reviewer makes an interesting suggestion. Indeed, if theta cycle skipping and the alternation of non-local representations reflect that there are multiple paths that the animal is considering, one may predict that the theta skipping dynamics are similar between the two tasks in early trials (as the reviewer suggests). Similarly, one may predict that in the switching task, the alternation of non-local representations is weaker immediately before a reward contingency switch (when the animal has developed a bias towards the goal arm with a large reward) as compared to after the switch.

      We have now quantified the theta cycle dynamics of spatial representations in the early trials in each session of both tasks (Figure 11 - figure supplement 2) and in the trials before and after each switch in the switching task (Figure 11 - figure supplement 3).

      The results of the early trial analysis indicate stronger alternation of non-local representations in the alternation task than in the switching task (consistent with the whole session analysis), which is contrary to the prediction.

      The pre-/post-switch analysis did not reveal a significant difference between the trials before and after a reward contingency switch. If anything, there was a trend towards stronger theta cycle skipping/alternation in the trials before a switch, which would be opposite to the prediction.

      These results do not appear to support the idea that the alternation of non-local representations reflects the number of relevant paths available to the animal. We have updated the text to incorporate these new data and discuss the implications.

      (2) Summary: sounds like the encoding of spatial information and its readout in the efferent regions are equally well established.

      Thank you for pointing this out.

      (3) Summary: "motivation and reward processing centers such as the ventral tegmental area." How about also mentioning here the hypothalamus, which is a more prominent output of the lateral septum than the VTA?

      We have now also mentioned the hypothalamus.

      (4) "lateral septum may contribute to the hippocampal theta" - readers not familiar with details of the medial vs. lateral septum research may misinterpret the modest role of LS in theta compared to MS.

      We have added “in addition to the strong theta drive originating from the medial septum” to make clear that the lateral septum has a modest role in hippocampal theta generation.

      (5) "(Tingley and Buzsáki, 2018) found a lack of spatial rate coding in the lateral septum and instead reported a place coding by specific phases of the hippocampal theta rhythm (Rizzi-Wise and Wang, 2021) " needs rephrasing.

      Thank you, we have rephrased the sentence.

      (6) Figure 4 is a bit hard to generalize. The authors may additionally consider a sorted raster presentation of the dataset in this main figure.

      We have removed this figure in the revised manuscript, as it was not necessary to make the point about the location of theta cycle skipping. Instead, we show examples of spatially-resolved cycle skipping in Figure 4 (formerly Figure 5 - supplementary figures 1 and 2), and, following the reviewer’s suggestion, we have added a plot with the spatially-resolved cycle skipping index for all analyzed cells (Figure 5A).

      (7) It would help if legends of Figure 5 (and related supplementary figures) state in which of the two tasks the data was acquired, as it is done for Figure 10.

      Thank you for the suggestion. The legends of Figure 4A,B (formerly Figure 5 – supplemental figures 1 and 2) and Figure 5 now include in which behavioral task the data was acquired.

      (8) Page 10, "Spatial coding...", 1st Citing the initial report by Leugeb and Mizumori would be appropriate here too.

      The reviewer is correct. We have added the citation.

      (9) The legend in Figure 6 (panels A-G) does not match the figure (only panels A,B). What is shown in Fig. 6B, the legend does not seem to fully match.

      Indeed, the legend was outdated. This has now been corrected.

      (10) 7 suppl., if extended to enable comparisons, could be a main figure. Presently, Figure 7C does not account for the confounding effect of population size and is therefore difficult to interpret without complex comparisons with the Supplementary Figure which is revealing per se.

      We thank the reviewer for their suggestion. We have changed Figure 7 such that it only shows the analysis of decoding performed with all LSD and LSI cells. Figure 7 – supplemental figure 1 has been transformed into main Figure 8, with the addition of a panel to show a statistical comparison between decoding performance in LSD and LSI with a fixed number of cells.

      (11) 14, line 10 there is no Figure 8A

      This has been corrected.

      (12) 15 paragraph 1, is the discussed here model the one from Kay et al?

      From Kay et al. (2020) and also Wang et al. (2020). We have added the citations.

      (13) Figure 5 - Figure Supplement 1 presents a nice analysis that, in my view, can merit a main figure. I could not find the description of the colour code in CSI panels, does grey/red refer to non/significant points?

      Indeed, grey/red refers to non-significant points and significant points respectively. We have clarified the color code in the figure legend. Following the reviewer’s suggestion, we have made Figure 5 Supplement 1 and 2 a main figure (Figure 4).

      (14) Figure 5 -Figure Supplement 2. Half of the cells (255 and 549) seems not to be representative of the typically high SCI in the goal arm in left and right inbound trials combined (Figure 5 A). Were the changes in CSI in the right and left inbound trials similar enough to be combined in Fig 5A? Otherwise, considering left and right inbound runs separately and trying to explain where the differences come from would seem to make sense.

      Figure 5 – figure supplement 2 is now part of the new main Figure 4. Originally, the examples were from a single session and the same cells as shown in the old Figure 4. However, since the old Figure 4 has been removed, we have selected examples from different sessions and both left/right trajectories that are more representative of the overall distribution. We have further added a plot with the spatially-resolved cycle skipping for all analyzed cells in Figure 5A.

      (15) In the second paragraph of the Discussion, dorso-ventral topography of hippocampal projections to the LS (Risold and Swanson, Science, 90s) could be more explicitly stated here.

      Thank you for the suggestion. We have now explicitly mentioned the dorsal-ventral topography of hippocampal-lateral septum projections and cite Risold & Swanson (1997).

      (16) Discussion point: why do the differences in spatial information of cells in the ventral/intermediate vs. dorsal hippocampus not translate into similarly prominent differences in LSI vs. LSD?

      In our data, we do observe clear differences in spatial coding between LSD and LSI. Specifically, cell activity in the LSD is more directional, has higher goal arm selectivity, and higher spatial information (we have now added statistical comparisons to Figure 6 – figure supplement 1). As a result, spatial decoding performance is much better for LSD cell populations than LSI cell populations (see updated Figure 8, with statistical comparison of decoding performance). Spatial coding in the LS is not as strong as in the hippocampus, likely because of the convergence of hippocampal inputs, which may give the impression of a less prominent difference between the two subregions.

      (17) Discussion, last paragraph: citation of the few original anatomical and neurophysiological studies would be fitting here, in addition to the recent review article.

      Thank you for the suggestion. We have added selected citations of the original literature.

      (18) Methods, what was the reference electrode?

      We used an external reference electrode that was soldered to a skull screw, which was positioned above the cerebellum. We have added this to the Methods section.

      (19) Methods, Theta cycle skipping: bandwidth = gaussian kerner parameter?

      The bandwidth is indeed a parameter of the Gaussian smoothing kernel and is equal to the standard deviation.

      Reviewer #3 (Recommendations For The Authors)

      Below I offer a short list of minor comments and suggestions that may benefit the manuscript.

      (A) I was not able to access the Open Science Framework Repository. Can this be rectified?

      Thank you for checking the OSF repository. The data and analysis code are now publicly available.

      (B) In the discussion the authors should attempt to flesh out whether they can place theta cycle skipping into context with left/right sweeps or scan ahead phenomena, as shown in the Redish lab.

      Thank you for the excellent suggestion. We have now added a discussion of the possible link between theta cycle skipping and the previously reported scan-ahead theta sweeps.

      (C) What is the mechanism of cycle skipping? This could be relevant to intrinsic vs network oscillator models. Reference should also be made to the Deshmukh model of interference between theta and delta (Deshmukh, Yoganarasimha, Voicu, & Knierim, 2010).

      We had discussed a potential mechanism in the discussion (2nd to last paragraph in the revised manuscript), which now includes a citation of a recent computational study (Chu et al., 2023). We have now also added a reference to the interference model in Deshmukh et al, 2010.

      (D) Little background was given for the motivation and expectation for potential differences between the comparison of the dorsal and intermediate lateral septum. I don't believe that this is the same as the dorsal/ventral axis of the hippocampus, but if there's a physiological justification, the authors need to make it.

      We have added a paragraph to the introduction to explain the anatomical and physiological differences across the lateral septum subregions that provide our rationale for comparing dorsal and intermediate lateral septum (we excluded the ventral lateral septum because the number of cells recorded in this region was too low).

      (E) It would help to label "outbound" and "inbound" on several of the figures. All axes need to be labeled, with appropriate units indicated.

      We have carefully checked the figures and added inbound/outbound labels and axes labels where appropriate.

      (F) In Figure 6, the legend doesn't match the figure.

      Indeed, the legend was outdated. This has now been corrected.

      (G) The firing rate was non-uniform across the Y-maze. Does this mean that the cells tended to fire more in specific positions of the maze? If so, how would this affect the result? Would increased theta cycle skipping at the choice point translate to a lower firing rate at the choice point? Perhaps less overdispersion of the firing rate (Fenton et al., 2010)?

      Individual cells indeed show a non-uniform firing rate across the maze. To address the reviewer’s comment and test if theta cycle skipping cells were active preferentially near the choice point or other locations, we computed the mean-corrected spatial tuning curves for cell-trajectory pairs with and without significant theta cycle skipping. This additional analysis indicates that, on average, the population of theta cycle skipping cells showed a higher firing rate in the goal arms than in the stem of the maze as compared to non-skipping cells for outbound and inbound directions (shown in Figure 5 - figure supplement 1).

      (H) As mentioned above, it could be helpful to look at phase preference. Was there an increased phase preference at the choice point? Would half-cycle firing correlate with an increased or decreased phase preference? Based on prior work, one would expect increased phase preference, at least in CA1, at the choice point (Schomburg et al., 2014). In contrast, other work might predict phasic preference according to spatial location (Tingley & Buzsaki, 2018). Including phase analyses is a suggestion, of course. The manuscript is already sufficiently novel and informative. Yet, the authors should state why phase was not analyzed and that these questions remain for follow-up analyses. If the authors did analyze this and found negative results, it should be included in this manuscript.

      We thank the reviewer for their suggestion. We have not yet analyzed the theta phase preference of lateral septum cells or other relations to the theta phase. We agree that this would be a valuable extension of our work, but prefer to leave it for future analyses.

      (I) One of the most important aspects of the manuscript, is that there is now evidence of theta cycle skipping in the circuit loop between the EC, CA1, and LS. This now creates a foundation for circuit-based studies that could dissect the origin of route planning. Perhaps the authors should state this? In the same line of thinking, how would one determine whether theta cycle skipping is necessary for route planning as opposed to a byproduct of route planning? While this question is extremely complex, other studies have shown that spatial navigation and memory are still possible during the optogenetic manipulation of septal oscillations (Mouchati, Kloc, Holmes, White, & Barry, 2020; Quirk et al., 2021). However, pharmacological perturbation or lesioning of septal activity can have a more profound effect on spatial navigation (Bolding, Ferbinteanu, Fox, & Muller, 2019; Winson, 1978). As a descriptive study, I think it would be helpful to remind the readers of these basic concepts.

      We thank the reviewer for their comment and for pointing out possible future directions for linking theta cycle skipping to route planning. Experimental manipulations to directly test this link would be very challenging, but worthwhile to pursue. We now mention how circuit-based studies may help to test if theta cycle skipping in the broader subcortical-cortical network is necessary for route planning. Given that the discussion is already quite long, we decided to omit a more detailed discussion of the possible role of the medial septum (which is the focus of the papers cited by the reviewer).

      Very minor points

      (A) In the introduction, "one study" begins the sentence but there is a second reference.

      Thank you, we have rephrased the sentence.

      (B) Also in the introduction, it could be helpful to have an operational definition of theta cycle skipping (i.e., 'enhanced rhythmicity at half theta frequency').

      We followed the reviewer’s suggestion.

      (C) The others should be more explicit in the introduction about their main question. Theta cycle skipping exists in CA1, and then import some of the explanations mentioned in the discussion to the introduction (i.e., attractors states of multiple routes). The main question is then whether this phenomenon, and others from CA1, translate to the output in LS.

      We have edited the introduction to more clearly state the main question of our study, following the suggestion from the reviewer.

      (D) There are a few instances of extra closing parentheses.

      We checked the text but did not find instances of erroneous extra closing parentheses. There are instances of nested parentheses, which may have given the impression that closing parentheses were duplicated.

      (E) The first paragraph of the Discussion lacks sufficient references.

      We have now added references to the first paragraph of the discussion.

      (F) At the end of the 2nd paragraph in the Discussion, the comparison is missing. More than what? It's not until the next reference that one can assume that the authors are referring to a dorsal/ventral axis. However, the physiological motivation for this comparison is lacking. Why would one expect a dorsal/intermediate continuum for theta modulation as there is along the dorsal/ventral axis of the hippocampus?

      Thank you for spotting this omission. We have rewritten the paragraph to more clearly make the parallel between dorsal-ventral gradients in the lateral septum and hippocampus and how this relates to the topographical connections between the two structures.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Recommendations For The Authors):

      In this revision the authors address some of the key concerns, including clarification of the balanced nature of the RL driven pitch changes and conducting analyses to control for the possible effects of singing quantity on their results. The paper is much improved but still has some sources of confusion, especially around Fig. 4, that should be fixed. The authors also start the paper with a statistically underpowered minor claim that seems unnecessary in the context of the major finding. I recommend the authors may want to restructure their results section to focus on the major points backed by sufficient n and stats.

      Major issues.

      (1) The results section begins very weak - a negative result based on n=2 birds and then a technical mistake of tube clogging re-spun as an opportunity to peak at intermittent song in the otherwise muted birds. The logic may be sound but these issues detract from the main experiment, result, analysis, and interpretation. I recommend re-writing this section to home in on, from the outset, the well-powered results. How much is really gained from the n=2 birds that were muted before ANY experience? These negative results may not provide enough data to make a claim. Nor is this claim necessary to motivate what was done in the next 6 birds. I recommend dropping the claim?

      We thank the reviewer for the recommendation. We moved the information to the Methods.

      (2) Fig. 4 is very important yet remains very confusing, as detailed below.

      Fig. 4a. Can the authors clarify if the cohort of WNd birds that give rise to the positive result in Fig 4 ever experienced the mismatch in the absence of ongoing DAF reinforcement pre-deafening? Fig4a does nor the next clearly specifies this. This is important because we know that there are day timescale delays in LMAN-dependent bias away from DAF and consolidation into the HVC-RA pathway (Andalman and Fee, 2009). Thus, if birds experienced mismatch pre-deafening in the absence of DAF, then an earnly learning phase in Area X could be set in place. Then deafening occurs, but these weight changes in X could result in LMAN bias that expresses only days later -independent of auditory feedback. Such a process would not require an internal model as the authors are arguing for here. It would simply arise from delays in implementing reinforcement-driven feedback. If the birds in Fig 4 always had DAF on before deafening, then this is not an issue. But if the birds had hours of singing with DAF off before deafening, and therefore had the opportunity to associate DA error signals with the targeted time in the song (e.g. pauses on the far-from-target renditions (Duffy et al, 2022), then the return-to-baseline would be expected to be set in place independent of auditory feedback. Please clarify exactly if the pitch-contingent DAF was on or off in the WNd cohort in the hours before deafening. In Fig. 3b it looks like the answer is yes but I cannot find this clearly stated in the text.

      We did not provide DAF-free singing experience to the birds in Fig. 4 before deafening. Thus, according to the reviewer, the concern does not apply.

      Note that we disagree with the reviewer’s premise that there is ‘day timescale delay in LMAN-dependent bias away from DAF and consolidation into the HVC-RA pathway’. More recent data reveals immediate consolidation of the anterior forebrain bias without a night-time effect (Kollmorgen, Hahnloser, Mante 2020; Tachibana, Lee, Kai, Kojima 2022). Thus, the single bird in (Andalman and Fee 2009) seems to be somewhat of an outlier.

      Hearing birds can experience the mismatch regardless of whether they experience DAF-free singing (provided their song was sufficiently shifted): even the renditions followed by white noise can be assessed with regards to their pitch mismatch, so that DAF imposes no limitation on mismatch assessment.

      We disagree with their claim that no internal model would be needed in case consolidation was delayed in Area X. If indeed, Area X stores the needed change and it takes time to implement this change in LMAN, then we would interpret the change in Area X as the plan that birds would be able to implement without auditory feedback. Because pitch can either revert (after DAF stops) or shift further away (when DAF is still present), there is no rigid delay that is involved in recovering the target, but a flexible decision making of implementing the plan, which in our view amounts to using a model.

      Fig 4b. Early and Late colored dots in legend are both red; late should be yellow? Perhaps use colors that are more distinct - this may be an issue of my screen but the two colors are difficult to discern.

      We used colors yellow to red to distinguish different birds and not early and late. We modified the markers to improve visual clarity: Early is indicated with round markers and late with crosses.

      Fig 4b. R, E, and L phases are only plotted for 4c; not in 4b. But the figure legend says that R, E and L are on both panels.

      In Fig. 4b E and L are marked with markers because they are different for different birds. In Fig. 4c the phases are the same for all birds and thus we labeled them on top. We additionally marked R in Fig. 4b as in Fig. 4c.

      Fig 4e. Did the color code switch? In the rest of Fig 4, DLO is red and WND is blue. Then in 4e it swaps. Is this a typo in the caption? Or are the colors switch? Please fix this it's very confusing.

      Thank you for pointing out the typo in the caption. We corrected it.

      The y axes in Fig 4d-e are both in std of pitch change - yet they have different ylim which make it visually difficult to compare by eye. Is there a reason for this? Can the authors make the ylim the same for fig 4d-e?.

      We added dashed lines to clarify the difference in ylim.

      Fig 4d-3 is really the main positive finding of the paper. Can the others show an example bird that showcases this positive result, plotted as in Fig 3b? This will help the audience clearly visualize the raw data that go into the d' analyses and get a more intuitive sense of the magnitude of the positive result.

      We added example birds to figure 4, one for WNd and one for dLO.

      Please define 'late' in Fig.4 legend.

      Done

      Minor

      Define NRP In the text with an example. Is an NRP of 100 where the birds was before the withdrawal of reinforcement?

      We added the sentence to the results:

      "We quantified recovery in terms of 𝑵𝑹𝑷 to discount for differences in the amount of initial pitch shift where 𝑵𝑹𝑷 = 𝟎% corresponds to complete recovery and 𝑵𝑹𝑷 = 𝟏𝟎𝟎% corresponds pitch values before withdrawal of reinforcement (R) and thus no recovery."

      Reviewer #3 (Recommendations For The Authors):

      The use of "hierarchically lower" to refer to the flexible process is confusing to me, and possibly to many readers. Some people think of flexible, top-down processes as being _higher_ in a hierarchy. Regardless, it doesn't seem important, in this paper, to label the processes in a hierarchy, so perhaps avoid using that terminology.

      We reformulated the paragraph using ‘nested processes’ instead of hierarchical processes.

      In the statement "a seeming analogous task to re-pitching of zebra finch song, in humans, is to modify developmentally learned speech patterns", a few suggestions: it is not clear whether "re-pitching" refers to planning or feedback-dependent learning (I didn't see it introduced anywhere else). And if this means planning, then it is not clear why this would be analogous to "humans modifying developmentally learned speech patterns". As you mentioned, humans are more flexible at planning, so it seems re-pitching would _not_ be analogous (or is this referring to the less flexible modification of accents?).

      We changed the sentence to:

      "Thus, a seeming analogous task to feedback-dependent learning of zebra finch song, in humans, is to modify developmentally learned speech patterns."

    1. Author response:

      We would first like to thank the editor for considering our findings for publication in eLife. Furthermore, we thank the reviewers and editors for their encouraging reviews and for providing helpful and insightful comments.

      Reviewer #1 (Public Review):

      Summary:

      The pituitary gonadotropins, FSH and LH, are critical regulators of reproduction. In mammals, synthesis and secretion of FSH and LH by gonadotrope cells are controlled by the hypothalamic peptide, GnRH. As FSH and LH are made in the same cells in mammals, variation in the nature of GnRH secretion is thought to contribute to the differential regulation of the two hormones. In contrast, in fish, FSH and LH are produced in distinct gonadotrope populations and may be less (or differently) dependent on GnRH than in mammals. In the present manuscript, the authors endeavored to determine whether FSH may be independently controlled by a distinct peptide, cholecystokinin (CCK), in zebrafish.

      Strengths:

      The authors demonstrated that the CCK receptor is enriched in FSH-producing relative to LH-producing gonadotropes, and that genetic deletion of the receptor leads to dramatic decreases in gonadotropin production and gonadal development in zebrafish. Also, using innovative in vivo and ex vivo calcium imaging approaches, they show that LH- and FSH-producing gonadotropes preferentially respond to GnRH and CCK, respectively. Exogenous CCK also preferentially stimulated FSH secretion ex vivo and in vivo.

      Weaknesses:

      The concept that there may be a distinct FSH-releasing hormone (FSHRH) has been debated for decades. As the authors suggest that CCK is the long-sought FSHRH (at least in fish), they must provide data that convincingly leads to such a conclusion. In my estimation, they have not yet met this burden. In particular, they show that CCK is sufficient to activate FSH-producing cells, but have not yet demonstrated its necessity. Their one attempt to do so was using fish in which they inactivated the CCK receptor using CRISPR-Cas9. While this manipulation led to a reduction in FSH, LH was affected to a similar extent. As a result, they have not shown that CCK is a selective regulator of FSH.

      Our conclusion regarding the necessity of CCK signaling for FSH secretion is based on the following evidence:

      (1) CCK-like receptors are expressed in the pituitary gland predominantly on FSH cells.

      (2) Application of CCK to pituitaries elicits FSH cell activation and FSH release, and, to a lesser degree, activation of LH cells.

      (3) Mutating the CCK-like receptor causes a decrease in fsh and lh mRNA synthesis.

      (4) Mutating the CCK-like receptor gives rise to a phenotype which is identical to that caused by mutation of both lh and fsh genes in zebrafish.

      (5) Mutating the FSH-specific CCK receptor in a different species of fish (medaka) also causes a complete shutdown of FSH production and phenocopies a fsh-mutant phenotype (Uehara et al, BioRxiv, DOI: 10.1101/2023.05.26.542428).

      Taken together, we believe that this data strongly supports the conclusion that CCK is necessary for FSH production and release from the fish pituitary. Admittedly, the overlapping effects of CCK on both FSH and LH cells in zebrafish (evident in both our calcium imaging experiments and the KO phenotype) complicates the interpretation of the phenotype. We speculate that the effect of CCK on LH cells in zebrafish can be caused either by paracrine signaling within the gland or by the effects of CCK on higher levels of the axis. In our revised manuscript we will make sure to highlight the overlapping effects of CCK on LH cells rather than portray it as a selective activator of FSH cells.

      Moreover, they do not yet demonstrate that the effects observed reflect the loss of the receptor's function in gonadotropes, as opposed to other cell types.

      Although there is evidence for the expression of CCK receptor in other tissues, we do show a direct decrease of FSH and LH expression in the gonadotrophs of the pituitary of the mutant fish; taken together with its significant expression in FSH cells, it is the most reasonable and forward explanation for the mutant phenotype. Unfortunately, unlike in mice, technologies for conditional knockout of genes in specific cell types are not yet available for our model and cell types. However, in the revised manuscript we will add a supplementary figure describing the distribution of this receptor in other tissues.

      It also is not clear whether the phenotypes of the fish reflect perturbations in pituitary development vs. a loss of CCK receptor function in the pituitary later in life. Ideally, the authors would attempt to block CCK signaling in adult fish that develop normally. For example, if CCK receptor antagonists are available, they could be used to treat fish and see whether and how this affects FSH vs. LH secretion.

      While the observed gonadal phenotype of the KO (sex inversion) should have a developmental origin since it requires a long time to manifest, the effect of the KO on FSH and LH cells is probably more acute.

      In the Discussion, the authors suggest that CCK, as a satiety factor, may provide a link between metabolism and reproduction. This is an interesting idea, but it is not supported by the data presented. That is, none of the results shown link metabolic state to CCK regulation of FSH and fertility. Absent such data, the lengthy Discussion of the link is speculative and not fully merited.

      In the revised manuscript, we will address this comment by either providing data to link cck with metabolic status or tuning down the Discussion of this topic.

      Also in the Discussion, the authors argue that "CCK directly controls FSH cells by innervating the pituitary gland and binding to specific receptors that are particularly abundant in FSH gonadotrophs." However, their imaging does not demonstrate innervation of FSH cells by CCK terminals (e.g., at the EM level).

      Innervation of the fish pituitary does not imply a synaptic-like connection between axon terminals and endocrine cells. In fact, such connections are extremely rare, and their functionality is unclear. Instead, the mode of regulation between hypothalamic terminals and endocrine cells in the fish pituitary is more similar to "volume transmission" in the CNS, i.e. peptides are released into the tissue and carried to their endocrine cell targets by the circulation or via diffusion.

      Moreover, they have not demonstrated the binding of CCK to these cells. Indeed, no CCK receptor protein data are shown.

      Our revised manuscript will include detailed experiments showing the activation of the receptor by its ligand. Unfortunately, no antibody is available against this fish- specific receptor (one of the caveats of working with fish models); therefore, we cannot present receptor protein data.

      The calcium responses of FSH cells to exogenous CCK certainly suggest the presence of functional CCK receptors therein; but, the nature of the preparations (with all pituitary cell types present) does not demonstrate that CCK is acting directly in these cells.

      We agree with the reviewer that there are some disadvantages in choosing to work with a whole-tissue preparation. However, we believe that the advantages of working in a more physiological context far outweigh the drawbacks as it reflects the natural dynamics more precisely. Since our transcriptome data as well as our ISH staining, show that the CCK receptor is exclusively expressed on FSH cells, it is improbable that the observed calcium response is mediated via a different pituitary cell type.

      Indeed, the asynchrony in responses of individual FSH cells to CCK (Figure 4) suggests that not all cells may be activated in the same way. Contrast the response of LH cells to GnRH, where the onset of calcium signaling is similar across cells (Figure 3).

      The difference between the synchronization levels of LH and FSH cells activity stems from the gap-junction mediated coupling between LH cells that does not exist between FSH cells (Golan et al 2016, DOI: 10.1038/srep23777). Therefore, the onset of calcium response in FSH cells is dependent on the irregular diffusion rate of the peptide within the preparation, whereas the tight homotypic coupling between LH cells generates a strong and synchronized calcium rise that propagates quickly throughout the entire population; we will make sure this is clear in the final revision.

      Finally, as the authors note in the Discussion, the data presented do not enable them to conclude that the endogenous CCK regulating FSH (assuming it does) is from the brain as opposed to other sources (e.g., the gut).

      We agree with the reviewer that, for now, we are unable to determine whether hypothalamic or peripheral CCK are the main drivers of FSH cells. While the strong innervation of the gland by CCK-secreting hypothalamic neurons strengthens the notion of a hypothalamic-releasing hormone and also fits with the dogma of the neural control of the pituitary gland in fish (Ball, 1981; doi: 10.1016/0016-6480(81)90243-4.), more experiments are required to resolve this question.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript builds on previous work suggesting that the CCK peptide is the releasing hormone for FSH in fishes, which is different than that observed in mammals where both LH and FSH release are under the control of GnRH. Based on data using calcium imaging as a readout for stimulation of the gonadotrophs, the researchers present data supporting the hypothesis that CCK stimulates FSH- containing cells in the pituitary. In contrast, LH-containing cells show a weak and variable response to CCK but are highly responsive to GnRH. Data are presented that support the role of CCK in the release of FSH. Researchers also state that functional overlap exists in the potency of GnRH to activate FSH cells, thus the two signalling pathways are not separate.

      The results are of interest to the field because for many years the assumption has been that fishes use the same signalling mechanism. These data present an intriguing variation where a hormone involved in satiation acts in the control of reproduction.

      Strengths:

      The strengths of the manuscript are that researchers have shed light on different pathways controlling reproduction in fishes.

      Weaknesses:

      Weaknesses are that it is not clear if multiple ligand/receptors are involved (more than one CCK and more than one receptor?). The imaging of the CCK terminals and CCK receptors needs to be reinforced.

      Reviewer consultation summary:

      • The data presented establish sufficiency, but not necessity of CCK in FSH regulation. The paper did not show that CCK endogenously regulates FSH in fish. This has not been established yet.

      This is a very important comment, also raised by reviewer 1. To avoid repetition, please see our detailed response to the comment above.

      • The paper presents the pharmacological effects of CCK on ex vivo preparations but does not establish the in vivo physiological function of the peptide. The current evidence for a novel physiological regulatory mechanism is incomplete and would require further physiological experiments. These could include the use of a CCK receptor antagonist in adult fish to see the effects on FSH and LH release, the generation of a CCK knockout, or cell-specific genetic manipulations.

      As detailed in the responses to the first reviewer,we cannot conduct conditional, cell- specific gene knockout in our model.

      • Zebrafish have two CCK ligands: ccka, cckb and also multiple receptors: cckar, cckbra and cckbrb. There is ambiguity about which CCK receptor and ligand are expressed and which gene was knocked out.

      In the revised manuscript, we will clarify which of the receptors are expressed and which receptor is targeted. We will also provide data showing the specificity of the receptors (both WT and mutant) to the ligands.

      • Blocking CCK action in fish (with receptor KO) affects FSH and LH. Therefore, the work did not demonstrate a selective role for CCK in FSH regulation in vivo and any claims to have discovered FSHRH need to be more conservative.

      We agree with the reviewer that the overlap in the effect of CCK measured in the calcium activation of cells and in the KO model does not allow us to conclude selectivity. In this context, it is crucial to highlight that CCK-R exhibits high expression on FSH cells but not on LH cells. Therefore, the effect of CCK on LH cells is likely paracrine rather than solely endocrine. We will tone down our claims of selectivity in the revised manuscript.

      • The labelling of the terminals with anti-CCK looks a lot like the background and the authors did not show a specificity control (e.g. anti-CCK antibody pre-absorbed with the peptide or anti-CCK in morphant/KO animals).

      We will update the colors of the image for better clarity. Also, The same antibody had been previously used to mark CCK-positive cells in the gut of the red drum fish (K.A. Webb, Jr. 2010; DOI: https://doi.org/10.1016/j.ygcen.2009.10.010), where a control (pre-absorbed with the peptide) experiment had been conducted.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      The authors have addressed my comments. As a final minor point, regarding comment 2, these condensates are likely viscoelastic rather than purely viscous. It is prudent to indicate that the data may refer to an apparent viscosity.

      We added the following text to the manuscript to highlight the viscoelastic nature of ELP condensates, and the relationship of reported values with the steady state viscosity. “It is worth noting that the reported values, although related, may not quantitatively represent the steady-state viscosity. This discrepancy arises from the slow relaxation timescale inherent in ELP condensates with viscoelastic properties.”

    1. Author response:

      We thank eLife and the reviewers for the thoughtful summary and valuable review of our manuscript. We largely agree with the summary and review and have provided our responses to the comments below. We believe BADGER is a significant new tool for identifying associated risk factors for complex diseases, and the associations we observed in the analysis provide insights into the genetic basis of Alzheimer's disease.

      Reviewer #1 (Public Review):

      The major aim of the paper was a method for determining genetic associations between two traits using common variants tested in genome-wide association studies. The work includes a software implementation and application of their approach. The results of the application of their method generally agree with what others have seen using similar AD and UKB data.

      The paper has several distinct portions. The first is a method for testing genetic associations between two or more traits using genome-wide association tests statistics. The second is a python implementation of the method. The last portion is the results of their method using GWAS from AD and UK Biobank.

      We thank the reviewer for the conclusion and positive comments.

      Regarding the method, it seems like it has similarities to LDSC, and it is not clear how it differs from LDSC or other similar methods. The implementation of the method used python 2.7 (or at least was reportedly tested using that version) that was retired in 2020. The implementation was committed between Wed Oct 3 15:21:49 2018 to Mon Jan 28 09:18:09 2019 using data that existed at the time so it was a bit surprising it used python 2.7 since it was initially going to be set for end-of-life in 2015. Anyway, trying to run the package resulted in unmet dependency errors, which I think are related to an internal package not getting installed. I would expect that published software could be installed using standard tooling for the language, and, ideally, software should have automated testing of key portions.

      We thank the reviewer for their comments. To clarify, the primary difference between our proposed method, BADGERS, and LDSC lies in their respective objectives and applications. LDSC is designed to estimate heritability and genetic correlations between traits by utilizing GWAS summary statistics, thereby aiding in the elucidation of the genetic architecture of complex traits and diseases. Conversely, BADGERS is specifically developed to explore causal relationships between risk factors, such as biomarkers, and diseases of interest. It employs genetic variants as variables to deduce causality, thereby addressing the challenges of confounding and reverse causation that are common in observational studies. Although BADGERS utilizes the LD reference panel derived from LDSC, the LD reference panel is used to obtain the predicted trait expression. The ultimate goal is to focus on linking biobank traits with Alzheimer’s disease and building causal relationships instead of identifying genetic architecture.

      Regarding the technical aspects mentioned, we acknowledge the concerns about the use of Python 2.7 and the issues encountered during the package installation. We are in the process of updating the software to ensure compatibility with current versions of Python and to enhance the installation process with standard tooling and automated testing for a more user-friendly experience. We have provided tests for each portion of the software so the user can test if the software is working properly.

      Regarding the main results, they find what has largely been shown by others using the same data or similar data, which add prima facie validity to the work The portions of the work dealing with AD subgroups, pathology, biomarkers, and cognitive traits of interest. I was puzzled why the authors suggested surprise regarding parental history and high cholesterol not associated with MCI or cognitive composite scores since the this would seem like the likely fallout of selection of the WRAP cohort. The discussion paragraph that started "What's more, environmental factors may play a big role in the identified associations." confused me. I think what the authors are referring to are how selection, especially in a biobank dataset, can induce correlations, which is not what I think of as an environmental effect.

      We thank the reviewer very much for their comment. We're glad that our findings align with existing research using similar data, increasing the validity of our work and the proposed BADGER algorithm. Your point about the lack of association between parental history, high cholesterol, and mild cognitive impairment (MCI) or cognitive composite scores in the WRAP cohort is well-taken. We agree that the selection criteria of the WRAP cohort may influence these findings, as it consists of individuals with a specific risk profile for Alzheimer's disease. This selection could indeed mitigate the observed association between these factors and cognitive outcomes, which we initially found surprising.

      Regarding the environmental factors, we appreciate your clarification and understand the confusion. Our intention was to discuss the potential for selection bias and confounding factors in biobank datasets for the identified associations, which might not necessarily be direct environmental effects.

      Overall, the work has merit, but I am left without a clear impression of the improvement in the approach over similar methods. Likewise, the results are interesting, but similar findings are described with the data that was used in the study, which are over 5 years old at the time of this review.

      We thank the reviewer a lot for their endorsement of the BADGER framework. We believe that our method, BADGER, improves on existing approaches by effectively linking genetic data with the detailed phenotypic information in biobanks and large disease GWAS. This enhances our ability to detect associations without needing individual-level data, offering clearer insights while reducing issues like reverse causality and confounding factors.

      Even though the IGAP dataset is over five years old, it remains one of the largest publicly available datasets for Alzheimer’s Disease. Likewise, the UK biobank is one of the largest publicly available human traits datasets, which researchers continue to use. These datasets' continued utility demonstrates their value in the research community. Additionally, the versatility of the BADGER framework makes it suitable for future research investigating the relationship between human traits and various diseases using different datasets.

      Reviewer #2 (Public Review):

      Summary:

      Yan, Hu, and colleagues introduce BADGERS, a new method for biobank-wide scanning to find associations between a phenotype of interest, and the genetic component of a battery of candidate phenotypes. Briefly, BADGERS capitalizes on publicly available weights of genetic variants for a myriad of traits to estimate polygenic risk scores for each trait, and then identify associations with the trait of interest. Of note, the method works using summary statistics for the trait of interest, which is especially beneficial for running in population-based cohorts that are not enriched for any particular phenotype (ie. with few actual cases of the phenotype of interest).

      Here, they apply BADGERS on Alzheimer's disease (AD) as the trait of interest, and a battery of circa 2,000 phenotypes with publicly available precalculated genome-wide summary statistics from the UK Biobank. They run it on two AD cohorts, to discover at least 14 significant associations between AD and traits. These include expected associations with dementia, cognition (educational attainment), and socioeconomic status-related phenotypes. Through multivariate modelling, they distinguish between (1) clearly independent components associated with AD, from (2) by-product associations that are inflated in the original bivariate analysis. Analyses stratified according to APOE inclusion show that this region does not seem to play a role in the association of some of the identified phenotypes. Of note, they observe overlap but significant differences in the associations identified with BADGERS and other Mendelian randomization (MR), hinting at BADGERS being more powerful than classical top variant-based MR approaches. They then extend BADGERS to other AD-related phenotypes, which serves to refine the hypotheses about the underlying mechanisms accounting for the genetic correlation patterns originally identified for AD. Finally, they run BADGERS on a pre-clinical cohort with mild cognitive impairment. They observe important differences in the association patterns, suggesting that this preclinical phenotype (at least in this cohort) has a different genetic architecture than general AD.

      We thank the reviewer a lot for the conclusion and positive comments.

      Strengths:

      BADGERS is an interesting new addition to a stream of attempts to "squeeze" biobank data beyond pure association studies for diagnosis. Increasingly available biobank cohorts do not usually focus on specific diseases. However, they tend to be data-rich, opening for deep explorations that can be useful to refine our knowledge of the latent factors that lead to diagnosis. Indeed, the possibility of running genetic correlation studies in specific sub-settings of interest (e.g. preclinical cohorts) is arguably the most interesting aspect of BADGERS. Classical methods like LDSC or two-sample MR capitalize on publicly available summary statistics from large cohorts, or having access to individual genotype data of large cohorts to ensure statistical power. Seemingly, BADGERS provides a balanced opportunity to dissect the correlation between traits of interest in settings with small sample size in which other methods do not work well.

      We thank the reviewer a lot for the conclusion and positive comments.

      Weaknesses:

      However, the increased statistical power is just hinted, and for instance, they do not explore if LDSC would have identified these associations. Although I suspect that is the case, this evidence is important to ensure that the abovementioned balance is right. Finally, as discussed by the authors, the reliance on polygenic risk scoring necessarily undermines the causality evidence gained through BADGERS. In this sense, BADGERS provides an alternative to strict instrumental-variable based analysis, which can be particularly useful to generate new mechanistic hypotheses.

      We thank the reviewer a lot for the comments. We understand the importance of comparing BADGER to other methods. The comparison with LDSC, while not directly relevant to BADGER’s causal inference aims, is indeed an interesting aspect to consider for future studies. In this paper, we focused on comparing BADGER with Mendelian Randomization (MR), which shares its causal inference objective.

      As a result, BADGERS identified a total of 48 traits that reached Bonferroni-corrected statistical significance. In contrast, MR-IVW only identified nine traits with Bonferroni-corrected statistical significance. Among these nine traits, seven were also identified by BADGERS. This demonstrates that BADGER holds higher power in detecting causal relationships.

      Regarding the use of polygenic risk scoring, we agree that it holds challenges in directly inferring causality. While BADGERS offers an innovative way to explore genetic correlations and can help generate new hypotheses about disease mechanisms, it does not replace the causal inferences that can be drawn from instrumental-variable-based analyses. Instead, it should be viewed as a complementary tool that can illuminate potential genetic relationships and guide further causal investigations.

      In summary, after 15 years of focus on diagnosis that would require having individual access to large patient cohorts, BADGERS can become an excellent tool to dig into trait heterogeneity, especially if it turns out to be more powerful than other available methodologies.

      We thank the reviewer a lot for the conclusion and positive comments.

    1. Author response:

      We thank the reviewers and editors for their time and effort reviewing and improving this manuscript. We also thank them for their support.

      Following the guidelines received by eLife we submit here the preliminary author’s response to the Public review with our planned changes to the manuscript.

      Reviewer 1.

      Comment 1. Issue on cross-reactivities of MafB antibodies.

      We are confident that our description of MafB V1 interneurons is correct despite some cross-reactivity with one of the antibodies used. We test all antibodies we use, and unfortunately, we found an inverse relationship between sensitivity and specificity with the two MafB antibodies used in this study. We chose for quantification the one with highest sensitivity, despite the presence of some cross-reactivity in interneurons other than the dorsal and ventral (Renshaw) V1 populations we focus on. The dorsal and ventral (Renshaw) V1 populations we describe here are also reactive with the more specific antibody (although with lower sensitivity) and both are neatly labeled in a MafB-GFP reporter mouse as described in Figure 3. We will add an image to the supplement with MafB-GFP V1 Interneurons at P5 showing the immunoreactivity of both MafB antibodies as suggested by the reviewer. We agree with the reviewer that this will give further support to the characterization of these populations by either immunocytochemical or genetic means at P5.

      Unfortunately, we cannot show lack of immunoreactivity for MafB antibodies in MafB GFP/GFP knockout mice at P5 because MafB global KOs die at birth as a result of respiratory failure. This is due to removal of inhibitory interneurons in brainstem centers critical for respiration (Blanchi at al. 2003 MafB deficiency causes defective respiratory rhythmogenesis and fatal central apnea at birth. Nat Neurosci. 6(10):1091-100. doi: 10.1038/nn1129. PMID: 14513037). This is why we used tissues from late embryos for testing antibody specificity in KO spinal cords. We will make this clearer in the text.

      Comment 2. Overlap of V1 clades with lineage labeled Foxp2-V1s at P5.

      We collected the data requested by the reviewer for P5 Foxp2-V1 interneurons and this will be added to an updated version of this figure. In comparison to the results with the OTP mouse, we only found marginal overlap at P5 with Renshaw cells, Pou6f2, and Sp8 V1s in our genetic intersection to label Foxp2-V1s. We apologize for not showing the data. We will make this clearer.

      Reviewer 2.

      Comment 1. Paper VERY hard to read.

      We will make every effort to make the paper more readable by moving methodological discussions to supplementary materials. We strive to keep our methods as rigorous, clean, and replicable as possible, and that sometimes requires lengthy explanations of the details and reasoning behind our approaches. We will make sure this does not distract from the principal scientific messages we want to convey. We agree with the reviewer that these should be emphasized over methodological detail, and we will correct any mistakes in the text that lead to confusion. Thank you for pointing out this problem that we hope to correct in a new version. Why focus on Foxp2 V1s? We focus in the Foxp2 population for several reasons: 1) This is the largest population of V1s, and it is the one with a close spatial association to motoneurons, in particular limb motoneurons; 2) Given previous results (Benito-Gonzalez and Alvarez, 2012, cited in bibliography) it likely includes many reciprocal inhibitory interneurons; 3) We do not have the mice for studying the Pou6f2 (or Sp8) population, but similar studies are now being carried out in the Bikoff lab.

      Comment 2. Lack of functional studies.

      Functional studies are currently being carried out, both during development of limb function in postnatal mice as well as in adult animals. These studies required the creation of several new animal models and reagents. As with the present manuscript, we thoroughly characterize all animals and methods. This takes time and space. These studies are beyond the goals and length of the current manuscript, but we agree with the reviewer that these are the critical next experiments that need to be performed. We are now finalizing studies on the role of Foxp2-V1 interneurons in the postnatal development of limb coordination and validating approaches for silencing them in the adult while also optimizing behavioral assays and recordings. The data presented here on Foxp2-V1 interneuron heterogeneity and relations with limb motoneurons gives the necessary context for raising stronger hypotheses and aiding in the interpretation of future results in functional studies.

      Synapse counts.

      We respectfully disagree with the reviewer’s comments on our synapse density estimates. To fully explain the reasons and prevent any ambiguity, we need to focus on detailed methodological aspects. We apologize for the lengthy response. Two major issues were raised:

      (1) Focus on the cell body.

      The issue pointed by the reviewer of potential synapses in distal dendrites from V1 subgroups not projecting proximally was already discussed in the text. The reason we focus on the cell body is because 1) it is not feasible to study the full dendritic arbor of so many different types of motoneurons and 2) it allows us to identify V1 subpopulations that likely exert stronger modulation of motoneuron firing by targeting the proximal somatodendritic membrane. The fact that synaptic organization on motoneurons is similar on cell bodies and proximal dendrites (first 100 µm) suggests that inputs from V1 clades other than Renshaw cells are likely further away, and therefore there is limited benefit to include analyses of proximal dendrites in these data. Additionally, dendrites would be difficult to consistently follow in Chat immunostained tissue. We are currently using novel viral approaches to obtain labeling of single motoneurons and their full dendritic trees for more in depth dendritic analyses in the mouse. The classical method based on single cell in vivo intracellular labeling using micropipettes is presently very low yield in the adult mouse. We are experienced with detailed single motoneuron dendritic arbor analyses in cat and rat motoneurons (Alvarez et al. 1997 Cell-type specific organization of glycine receptor clusters in the mammalian spinal cord. J Comp Neurol. 379(1):150-70; Alvarez et al., 1998 Distribution of 5-hydroxytryptamine-immunoreactive boutons on alpha-motoneurons in the lumbar spinal cord of adult cats. J Comp Neurol. 393(1):69-83; Rotterman et al., 2014. Normal distribution of VGLUT1 synapses on spinal motoneuron dendrites and their reorganization after nerve injury. J Neurosci. 34(10):3475-92. doi: 10.1523/JNEUROSCI.4768-13.2014). Based on this experience, we do not believe it is feasible to include similar analyses to compare all motor columns throughout 6 segments of the spinal cord in this study. We agree with the reviewer that these are important data sets that need to be collected and they are planned for future experiments. These analyses will address different questions than the ones posed and answered in our current manuscript.

      (2) Number of motoneurons analyzed.

      We disagree with the reviewer assessment that our conclusions might be biased because of the numbers of motoneurons analyzed. We sampled a total of 295 motoneurons in 5 different mice (117 LMC/HMC, 99 MMC, and 79 PGC motoneurons), and we used stringent methods for synapse detection. Due to a technical error, Mouse 3 lacked data in upper lumbar and Th13, but all other mice included data in almost all motor columns and segments. We disagree with the characterization that these are small samples. For full transparency, all motoneurons analyzed were identified in Figure 6D. Each of the nearly 300 motoneuron cell bodies was carefully reconstructed through several optical planes to obtain an accurate estimate of synapse density. More automatic methods in current use in the literature sometimes analyze larger samples, but our methods are designed to avoid methodological biases inherent to these automatic methods. We do not use image thresholding to extract synaptic contacts because they lack accuracy identifying single synapses. Thus, estimates using this technique frequently refer to coverage, not synapse density. In addition, it is hard to keep threshold criteria consistent across multiple optical planes to analyze enough section thickness to estimate a motoneuron surface. This is because tissue light diffraction alters thresholding levels continuously across optical planes. Thus, many authors present data as linear densities across a perimeter (in a single plane) measuring many cells in one field in one plane. We avoid cell body linear densities (or coverage) because they bias counts towards larger synapses that have higher probability of being present at any single confocal plane. Moreover, estimates along a surface reduces synapse sampling variability and better estimate synaptic coverage compared to estimates derived from analyzing single cross-sections. We also confirm each genetically labeled varicosity as a likely synapse by accumulation of VGAT. In this manner we restrict our counts to synaptic boutons and not axons or intervaricose regions. Previously, we used bassoon to show the accuracy of our methods (Wootz et al. 2013 Alterations in the motor neuron-Renshaw cell circuit in the Sod1(G93A) mouse model. J Comp Neurol. 521(7):1449-69. doi: 10.1002/cne.23266). That means that our densities are true synaptic densities, which are difficult to extract from automatic methods that estimate fluorescence coverage over larger samples of somatic profiles but fail to individualize synapses and frequently bias results. These bulk methods introduce significant confounds in data interpretation: Is higher coverage due to bigger synapses or more synapses? Do threshold structures represent true synapses or also include axons? To what extent does sub- or over-thresholding in different planes affect identification of structures in contact with the motoneuron surface? We avoid all these problems. Not surprisingly, a nested ANOVA demonstrated consistent significant differences among motor columns and segments.

      In summary, while more automatic methods allow larger samples, they disregard true synaptic densities and are based on thresholding methods with high variability in different motoneurons, optical planes and histological sections, thereby they require much larger numbers of motoneurons to overcome their many biases and sources of error. This is not our case. Our sample size is large enough considering the accuracy of our methods and data quality. This is demonstrated by consistency in statistical results across motor columns in different segments and mice.

      Comment 3. Possibility of anterograde transsynaptic labeling from primary afferents infected with rabies virus.

      This is a fair question that we did not clearly explain. The reviewer compares our results with those of Pimpinella et al., 2022. The methods used are different. To obtain anterograde tracing, these authors used Cre lines to achieve high levels of expression of TVA and RV glycoprotein in specific subtypes of sensory neurons including proprioceptors. Then EnVa-coated Rabies virus was injected directly inside the spinal cord for cell-type specificity. This method transynaptically labeled in the anterograde direction interneurons receiving inputs from specific types of sensory afferents, but the method does not have the muscle specificity required in our analyses. In our case, we used intramuscular injections at P5 of AAV1-G for transcomplementation with Rabies virus delta G injected in the same muscles later, at P15. In previous studies in which we used the RV-delta G virus without AAV1G, we analyzed motoneuron and primary afferent infection rates and found both to be considerably reduced with injection age. In our hands, there is almost no RV infection of primary afferents when Rabies virus is injected i.m. at P15, but there is some limited motoneuron infection remaining (that we used to our advantage in this paper to avoid primary afferent and developmental confounds).

      Unfortunately, these methodological studies are presently communicated only in abstract form (GomezPerez et al., 2015 and 2016; Program Nos. 242.08 and 366.06). Therefore, we will add to the supplementary information some images from serial sections to those illustrated in the paper and that will show a few “start” LG motoneurons that remained labeled at this survival time point and the lack of any dorsal horn primary afferent labeling. This is consistent with our yet unpublished data that is based on a larger number of animals and more extensive time courses.

      Comment 4. Temporal resolution of birth-dating.

      We agree with the reviewer, and that is the reason we explicitly discuss that temporal resolution is not perfect (we also add a few more caveats that affect temporal resolution beyond the reviewers’ comments). However, the method is good enough to differentiate temporal sequences of neurogenesis with close to 12-hour resolution, once enough animals are analyzed to compensate for methodological temporal overlaps. That is the reason for our Figure 1D.

      Reviewer 3

      Comment 1. Text is too long and main message buried in technical details.

      We agree and similar to our response to the first comment of Reviewer 2, we will revise the writing to make it more straightforward while moving some of the information on methods and technical discussion to supplementary materials. As demonstrated by reviewer 2 comments, methodological discussions are still important to best interpret the data presented in this paper.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents a valuable contribution to cardiac arrhythmia research by demonstrating long noncoding RNA Dachshund homolog 1 (lncDACH1) tunes sodium channel functional expression and affects cardiac action potential conduction and rhythms. Whereas the evidence for functional impact of lncDACH1 expression on cardiac sodium currents and rhythms is convincing, biochemical experiments addressing the mechanism of changes in sodium channel expression and subcellular localization are incomplete.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this study, the authors show that a long-non coding RNA lncDACH1 inhibits sodium currents in cardiomyocytes by binding to and altering the localization of dystrophin. The authors use a number of methodologies to demonstrate that lncDACH1 binds to dystrophin and disrupts its localization to the membrane, which in turn downregulates NaV1.5 currents. Knockdown of lncDACH1 upregulates NaV1.5 currents. Furthermore, in heart failure, lncDACH1 is shown to be upregulated which suggests that this mechanism may have pathophysiolgoical relevance.

      Strengths:

      (1) This study presents a novel mechanism of Na channel regulation which may be pathophysiologically important.

      (2) The experiments are comprehensive and systematically evaluate the physiological importance of lncDACH1.

      Weaknesses:

      (1). What is indicated by the cytoplasmic level of NaV1.5, a transmembrane protein? The methods do not provide details regarding how this was determined. Do you authors means NaV1.5 retained in various intracellular organelles?

      Thank you for the good suggestion. Our study showed that Nav1.5 was transferred to the cell membrane by the scaffold protein Dystropin in response to the regulation of LncDACH1, but not all Nav1.5 in the cytoplasm was transferred to the cell membrane. Therefore, the cytoplasmic level of Nav1.5 represents the Nav1.5 protein that is not transferred to the cell membrane but stays in the cytoplasm and various organelles within the cytoplasm when Nav1.5 is regulated by LncDACH1

      (2) What is the negative control in Fig. 2b, Fig. 4b, Fig. 6e, Fig. 7c? The maximum current amplitude in these seem quite different. -40 pA/pF in some, -30 pA/pF in others and this value seems to be different than in CMs from WT mice (<-20 pA/pF). Is there an explanation for what causes this variability between experiments and/or increase with transfection of the negative control? This is important since the effect of lncDACH1 is less than 50% reduction and these could fall in the range depending on the amplitude of the negative control.

      Thank you for the insightful comment. The negative control in Fig. 2b, Fig. 4b, Fig. 6e are primary cardiomyocytes transfected with empty plasmids. The negative control in Fig.7c are cardiomyocytes of wild-type mice injected with control virus. When we prepare cells before the patch-clamp experiments, the transfection efficiency of the transfection reagent used in different batches of cells, as well as the different cell sizes, ultimately lead to differences in CMS.

      (3) NaV1.5 staining in Fig. 1E is difficult to visualize and to separate from lncDACH1. Is it possible to pseudocolor differently so that all three channels can be visualized/distinguished more robustly?

      Thank you for the good suggestion. We have re-added color to the original image to distinguish between the three channels.

      Author response image 1.

      (4) The authors use shRNA to knockdown lncDACH1 levels. It would be helpful to have a scrambled ShRNA control.

      Thank you for the insightful comment. The control group we used was actually the scrambled shRNA, but we labeled the control group as NC in the article, maybe this has caused you to misunderstand.

      (5) Is there any measurement on the baseline levels of LncDACH1 in wild-type mice? It seems quite low and yet is a substantial increase in NaV1.5 currents upon knocking down LncDACH1. By comparison, the level of LncDACH1 seems to be massively upregulated in TAC models. Have the authors measured NaV1.5 currents in these cells? Furthermore, does LncDACH1 knockdown evoke a larger increase in NaV1.5 currents?

      Thank you for the insightful comment.

      (1).The baseline protein levels of LncDACH1 in wild-type mice and LncDACH1-CKO mice has been verified in a previously published article(Figure 3).(Hypertension. 2019;74:00-00. DOI: 10.1161/HYPERTENSIONAHA.119.12998.)

      Author response image 2.

      (2). We did not measure the Nav1.5 currents in cardiomyocytes of the TAC model mice in this artical, but in another published paper, we found that the Nav1.5 current in the TAC model mice was remarkably reduced than that in wild-type mice(Figure 4).(Gene Ther. 2023 Feb;30(1-2):142-149. DOI: 10.1038/s41434-022-00348-z)

      Author response image 3.

      This is consistent with our results in this artical, and our results show that LncDACH1 levels are significantly upregulated in the TAC model, then in the LncDACH1-TG group, the Nav1.5 current is significantly reduced after the LncDACH1 upregulation(Figure 3).

      Author response image 4.

      (6) What do error bars denote in all bar graphs, and also in the current voltage relationships?

      Thank you for the good comment. All the error bars represent the mean ± SEM. They represent the fluctuation of all individuals of a set of data based on the average value of this set of data, that is, the dispersion of a set of data.

      Reviewer #2 (Public Review):

      This manuscript by Xue et al. describes the effects of a long noncoding RNA, lncDACH1, on the localization of Nav channel expression, the magnitude of INa, and arrhythmia susceptibility in the mouse heart. Because lncDACH1 was previously reported to bind and disrupt membrane expression of dystrophin, which in turn is required for proper Nav1.5 localization, much of the findings are inferred through the lens of dystrophin alterations.

      The results report that cardiomyocyte-specific transgenic overexpression of lncDACH1 reduces INa in isolated cardiomyocytes; measurements in whole heart show a corresponding reduction in conduction velocity and enhanced susceptibility to arrhythmia. The effect on INa was confirmed in isolated WT mouse cardiomyocytes infected with a lncDACH1 adenoviral construct. Importantly, reducing lncDACH1 expression via either a cardiomyocyte-specific knockout or using shRNA had the opposite effect: INa was increased in isolated cells, as was conduction velocity in heart. Experiments were also conducted with a fragment of lnDACH1 identified by its conservation with other mammalian species. Overexpression of this fragment resulted in reduced INa and greater proarrhythmic behavior. Alteration of expression was confirmed by qPCR.

      The mechanism by which lnDACH1 exerts its effects on INa was explored by measuring protein levels from cell fractions and immunofluorescence localization in cells. In general, overexpression was reported to reduce Nav1.5 and dystrophin levels and knockout or knockdown increased them.

      Thank you for summarizing our work and thank you very much for your appreciation on our work.

      Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors report the first evidence of Nav1.5 regulation by a long noncoding RNA, LncRNA-DACH1, and suggest its implication in the reduction in sodium current observed in heart failure. Since no direct interaction is observed between Nav1.5 and the LncRNA, they propose that the regulation is via dystrophin and targeting of Nav1.5 to the plasma membrane.

      Strengths:

      (1) First evidence of Nav1.5 regulation by a long noncoding RNA.

      (2) Implication of LncRNA-DACH1 in heart failure and mechanisms of arrhythmias.

      (3) Demonstration of LncRNA-DACH1 binding to dystrophin.

      (4) Potential rescuing of dystrophin and Nav1.5 strategy.

      Thank you very much for your appreciation on our work.

      Weaknesses:

      (1) Main concern is that the authors do not provide evidence of how LncRNA-DACH1 regulates Nav1.5 protein level. The decrease in total Nav1.5 protein by about 50% seems to be the main consequence of the LncRNA on Nav1.5, but no mechanistic information is provided as to how this occurs.

      Thank you for the insightful comment.

      (1) The mechanism of the whole article is as mentioned in the discussion at the end of the article: LncDACH1 binds to dystrophin and thus inhibits membrane trafficking of Nav1.5, Dystrophin is a well-characterized Nav1.5 partner protein. It indirectly interacts with Nav1.5 via syntrophin, which binds with the C-terminus of dystrophin and with the SIV motif on the C-terminus of Nav1.5(Circ Res. 2006;99:407-414. doi: 10.1161/01.RES.0000237466.13252.5e)(Circulation.2014;130:147-160.doi:10.1161/CIRCULATIONAHA.113.007852).

      And we performed pulldown and RNA immunoprecipitation experiments to verify it (Figure 1).

      Author response image 5.

      2) Then we found that overexpression of lncDACH1 increased the ubiquitination of Nav1.5, which explains the downregulation of total Nav1.5 protein (Online Supplementary Figure 12).

      Author response image 6.

      3). Lastly,we found that lncDACH1 failed to pulldown Nav1.5 and anti-Nav1.5 did not precipitate lncDACH1( Supplementary Fig. 1).

      Author response image 7.

      These data indicated that lncDACH does not interact with Nav1.5 directly. It participates in the regulation of Nav1.5 by binding to dystrophin.Cytoplasmic Nav1.5 that failed to target on plasma membrane may be quickly distinguished and then degraded by these ubiquitination enzymes.

      (2) The fact that the total Nav1.5 protein is reduced by 50% which is similar to the reduction in the membrane reduction questions the main conclusion of the authors implicating dystrophin in the reduced Nav1.5 targeting. The reduction in membrane Nav1.5 could simply be due to the reduction in total protein.

      Thank you for the insightful comment. We do not rule out the possibility that the reduction in membrane Nav1.5 maybe be due to the reduction in total protein, but we don't think this is the main mechanism. Our data indicates that the membrane and total protein levels of Nav1.5 were reduced by 50%. However, the cytoplasmic Nav1.5 increased in the hearts of lncDACH1-TG mice than WT controls rather than reduced like membrane and total protein(Figure 1).

      Author response image 8.

      Therefore, we think the mian mechanism of the whole article is as mentioned in the discussion at the end of the article: LncDACH1 binds to dystrophin and thus inhibits membrane trafficking of Nav1.5.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) In Fig. 6E the error bars are only in one direction for cF-lncDACH1. It seems that this error overlaps for NC and cF-lncDACH1 at several voltages, yet it is marked as statistically significant. Also in Fig. 7C, what statistical test was used? Do the authors account for multiple comparisons?

      Thank you for the insightful comment.

      (1) We have recalculated the two sets of data and confirmed that there are indeed statistically significant between the two sets of data for NC and cF-lncDACH1 at In Fig. 6E, The overlaps in the picture may only be visually apparent.

      (2) The data in Fig. 7C are expressed as mean ± SEM. Statistical analysis was performed using unpaired Student’s t test or One-Way Analysis of Variance (ANOVA) followed by Tukey’s post-hoc analysis.

      (2) line 57, "The Western blot" remove "The"

      Sorry for the mistake. We have corrected it.

      (3) line 61, "The opposite data were collected" It is unclear what is meant by opposite.

      Sorry for the mistake. We have corrected it.

      (4) Lines 137-140. This sentence is complex, I would simplify as two sentences.

      Sorry for the mistake. We have corrected it.

      (5) Line 150, "We firstly validated" should be "we first validated"

      Sorry for the mistake. We have corrected it.

      (6) Line 181, "Consistently, the membrane" Is this statement meant to indicate that the experiments yielded a consistent results or that this statement is consistent with the previous one? In either case, this sentence should be reworded for clarification.

      Sorry for the mistake. We have corrected it.

      (7) Line 223, "In consistent, the ex vivo" I am not sure what In consistent means here.

      Thank you for the good suggestion. We mean that the results of ex vivo is consistent with the results of in vivo. We have corrected it to make it clearer.

      (8) Line 285. "a bunch of studies" could be rephrased as "multiple studies"

      Sorry for the mistake. We have corrected it.

      (9) Line 299 "produced no influence" Do you mean produced no change?

      Thank you for the good suggestion.As you put it,we mean it produced no change.

      (10) Line 325 "is to interact with the molecules" no need for "the molecules

      Sorry for the mistake. We have corrected it.

      (11) lines 332-335. This sentence is very confusing.

      Thank you for the insightful comment. We have corrected it.

      (12) Lines 341-342. It is unnecessary to claim primacy here.

      Thank you for the good suggestion. We have removed this sentence.

      (13) Line 373. "Sodium channel remodeling is commonly occured in" perhaps rephrase as occurs commonly

      Thank you for the insightful comment. We have corrected it.

      Reviewer #2 (Recommendations For The Authors):

      Critique

      (1) Aside from some issues with presentation noted below, these data provide convincing evidence of a link between lncDACH1 and Na channel function. The identification of a lncDACH1 segment conserved among mammalian species is compelling. The observation that lncDACH1 is increased in a heart failure model and provides a plausible hypothesis for disease mechanism.

      Thank you very much for your appreciation on our work.

      (2) Has a causal link between dystrophin and Na channel surface expression has been made, or is it an argument based on correlation? Is it possible to rule out a direct effect of lncDACH1 on Na channel expression? A bit more discussion of the limitations of the study would help here.

      Thank you for the insightful comment.

      (1). Dystrophin is a well-characterized Nav1.5 partner protein. It indirectly interacts with Nav1.5 via syntrophin, which binds with the C-terminus of dystrophin and with the SIV motif on the C-terminus of Nav1.5(Circ Res. 2006;99:407-414. doi: 10.1161/01.RES.0000237466.13252.5e)(Circulation.2014;130:147-160.doi:10.1161/CIRCULATIONAHA.113.007852).

      Author response image 9.

      (2).we performed pulldown and RNA immunoprecipitation experiments. The data showed that lncDACH1 failed to pulldown Nav1.5 and anti-Nav1.5 did not precipitate lncDACH1 (Online Supplementary Figure 11). These data indicated that lncDACH does not interact with Nav1.5 directly. ( Supplementary Fig. 1)

      Author response image 10.

      (3) What normalization procedures were used for qPCR quantification? I could not find these.

      Thank you for the good suggestion.The expression levels of mRNA were calculated using the comparative cycle threshold (Ct) method (2−ΔΔCt). Each data point was then normalized to ACTIN as an internal control in each sample. The final results are expressed as fold changes by normalizing the data to the values from control subjects. We have added the normalization procedures in the methods section of the article.

      (4) In general, I found the IF to be unconvincing - first, because the reported effects were not very apparent to me, but more importantly, because only exemplars were shown without quantification of a larger sample size.

      Thank you for the good suggestion. Accordingly, we quantified the immunostaining data. The data have been included in Supplementary Figure 2- 16.The sample size is labeled in the caption.

      Author response image 11.

      Fluorescence intensity of lncDACH1, dystrophin and Nav1.5 in isolated cardiomyocytes of lncDACH1-TG mice. a,b, Membrane levels of dystrophin (dys) and Nav1.5. N=9 for dys. N=8 for Nav1.5. P<0.05 versus WT group. c,d, Cytoplasm levels of dystrophin and Nav1.5. N=9. P<0.05 versus WT group. e, Fluorescence in situ hybridization (FISH) images of LncDACH1. N=10. *P<0.05 versus WT group. P-values were determined by unpaired t test.

      Author response image 12.

      Fluorescence intensity of dystrophin and Nav1.5 in cultured neonatal cardiomyocyte overexpressing lncDACH1. a,b, Membrane levels of dystrophin and Nav1.5. N=9. P<0.05 versus NC group. c,d, Cytoplasm levels of dystrophin and Nav1.5. N=9 for dys. N=12 for Nav1.5. P<0.05 versus NC group. P-values were determined by unpaired t test.

      Author response image 13.

      Fluorescence intensity of lncDACH1, dystrophin and Nav1.5 in isolated cardiomyocytes of lncDACH1-cKO mice. a,b, Membrane levels of dystrophin (dys) and Nav1.5. N=12 for dys. N=8 for Nav1.5. P<0.05 versus WT group. c,d, Distribution of cytoplasm levels of dystrophin and Nav1.5. N=12. P<0.05 versus WT group. e, Fluorescence in situ hybridization (FISH) images of LncDACH1 expression. N=8. *P<0.05 versus WT group. P-values were determined by unpaired t test.

      Author response image 14.

      Fluorescence intensity of dystrophin and Nav1.5 in cultured neonatal cardiomyocytes after knocking down of lncDACH1. a,b, Distribution of membrane levels of dystrophin and Nav1.5. N=11 for dys. N=8 for Nav1.5.P<0.05 versus NC group. c,d, Distribution of cytoplasm levels of dystrophin and Nav1.5. N=12 for dys. N=9 for Nav1.5.P<0.05 versus NC group. P-values were determined by unpaired t test.

      Author response image 15.

      Fluorescence intensity of dystrophin and Nav1.5 in isolated cardiomyocytes overexpressing cF-lncDACH1. a,b, Membrane levels of dystrophin (dys) and Nav1.5. N=9 for dys. N=7 for Nav1.5. P<0.05 versus NC group. c,d, Cytoplasm levels of dystrophin and Nav1.5. N=6 for dys. N=7 for Nav1.5. P<0.05 versus NC group. P-values were determined by unpaired t test.

      Author response image 16.

      Fluorescence intensity of dystrophin and Nav1.5 in cultured neonatal cardiomyocytes overexpressing cF-lncDACH1. a,b, Membrane levels of dystrophin and Nav1.5. N=10 for dys. N=11 for Nav1.5. P<0.05 versus NC group. c,d, Cytoplasm levels of dystrophin and Nav1.5. N=7 for dys. N=6 for Nav1.5.P<0.05 versus NC group. P-values were determined by unpaired t test.

      Author response image 17.

      Fluorescence intensity of Nav1.5 in human iPS differentiated cardiomyocytes overexpressing cF-lncDACH1. a, Membrane levels of Nav1.5. N=8 for Nav1.5. P<0.05 versus NC group. b, Cytoplasm levels of Nav1.5. N=10 for Nav1.5.P<0.05 versus NC group. P-values were determined by unpaired t test.

      (5) More information on how the fractionation kit works would be helpful. How are membrane v. cytoplasm fractions identified?

      a. I presume the ER is part of the membrane fraction? When Nav1.5 is found in the cytoplasmic fraction, what subcompartment is it in - the proteasome?

      b. In the middle panel of A - is the dystrophin signal visible on the WB for WT? I assume the selected exemplar is the best of the blots and so this raises concerns. Much is riding on the confidence with which the fractions report "membrane" v "cytoplasm."

      Thank you for the insightful comment.

      (1). How the fractionation kit works:

      The kit utilizes centrifuge column technology to obtain plasma membrane structures with native activity and minimal cross-contamination with organelles without the need for an ultracentrifuge and can be used for a variety of downstream assays. Separation principle: cells/tissues are sensitized by Buffer A, the cells pass through the centrifuge column under the action of 16000Xg centrifugation, the cell membrane is cut to make the cell rupture, and then the four components of nucleus, cytoplasm, organelle and plasma membrane will be obtained sequentially through differential centrifugation and density centrifugation, which can be used for downstream detection.

      Author response image 18.

      (2). How are membrane v. cytoplasm fractions identified:

      The membrane proteins and cytosolic proteins isolated by the kit, and then the internal controls we chose when performing the western blot experiment were :membrane protein---N-cadherin cytosolic protein---β-Actin

      Most importantly, when we incubate either the primary antibody of N-cadherin with the PVDF membrane of the cytosolic protein, or the primary antibody of the cytosolic control β-Actin with the PVDF membrane of the membrane protein, the protein bands cannot be obtained in the scan results

      Author response image 19.

      (6) More detail in Results, figures, and figure legends will assist the reader.

      a. In Fig. 5, it would be helpful to label sinus rhythm vs. arrhythmia segments.

      Thank you for the good suggestion. We've marked Sinus Rhythm and Arrhythmia segments with arrows

      Author response image 20.

      b. Please explain in the figure legend what the red bars in 5A are

      Thank you for the insightful comment. We've added the explanation to the figure legend .The red lines in the ECG traces indicate VT duration.

      c. In 5C, what the durations pertain to.

      Thank you for the good suggestion. 720ms-760ms refers to the duration of one action potential, with 720ms being the peak of one action potential and 760ms being the peak of another action potential.The interval duration is not fixed, in this artical, we use 10ms as an interval to count the phase singularities from the Consecutive phase maps. Because the shorter the interval duration, the larger the sample size and the more convincing the data.

      d. In the text, please define "breaking points" and explain what the physiological underpinning is. Define "phase singularity."

      Thank you for the insightful comment. Cardiac excitation can be viewed as an electrical wave, with a wavefront corresponding to the action potential upstroke (phase 0) and a waveback corresponding to rapid repolarization (phase 3). Normally, Under normal circumstances, cardiac conduction is composed of a sequence of well-ordered action potentials, and in the results of optical mapping experiments, different colors represent different phases.when a wave propagates through cardiac tissue, wavefront and waveback never touch.when arrhythmias occur in the heart, due to factors such as reenfrant phenomenon, the activation contour will meet the refractory contour and waves will break up, initiating a newly spiral reentry. Corresponding to the optical mapping result graph, different colors representing different time phases (including depolarization and repolarization) come together to form a vortex, and the center of the vortex is defined as the phase singularity.

      (7) In reflecting on why enhanced INa is not proarrhythmic, it is noted that the kinetics are not altered. I agree that is key, but perhaps the consequence could be better articulated. Because lncDACH1 does not alter Nav1.5 gating, the late Na current may not be enhanced to the same effect as observed with LQT gain-of-function Nav1.5 mutations, in which APD prolongation is attributed to gating defects that increase late Na current.

      Thank you for the good suggestion. Your explanation is very brilliant and important for this article. We have revised the discussion section of the article and added these explanations to it.

      Reviewer #3 (Recommendations For The Authors):

      (1) Experiments to specifically address the reduction in total Nav1.5 protein should be included.

      Thank you for the insightful comment. We examined the ubiquitination of Nav1.5. We found that overexpression of lncDACH1 increased the ubiquitination of Nav1.5, which explains the downregulation of total Nav1.5 protein (Online Supplementary Figure 12).

      Author response image 21.

      (2) Experiments to convincingly demonstrate that LncRNA-DACH1 regulates Nav1.5 targeting via dystrophin are missing. As it is, total reduction in Nav1.5 seems to be the explanation as to why there is a decrease in membrane Nav1.5.

      Thank you for the insightful comment. we performed pulldown and RNA immunoprecipitation experiments. The data showed that lncDACH1 can pulldown dystrophin(Figure 1),but failed to pulldown Nav1.5 and anti-Nav1.5 did not precipitate lncDACH1( Supplementary Fig. 1). These data indicated that lncDACH does not interact with Nav1.5 directly. It participates in the regulation of Nav1.5 by binding to dystrophin.

      Author response image 22.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #2 (Public Review):

      In this revised manuscript Aguillon and collaborators convincingly demonstrating that CLK is required for free-running behavioral rhythms under constant conditions in the Cnidarian Nematostella. The results also convincingly show that CLK impacts rhythmic gene expression in this organism. This original work thus demonstrates that CLK was recruited very early during animal evolution in the circadian clock mechanism to optimize behavior and gene expression with the time-of-day. The manuscript could still benefit from some improvements so that it is more accessible for a wide readership.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      Aguillon and collaborators have deeply revised, and in the progress significantly improved the presentation of their interesting results with the first Cnidarian circadian gene mutant. Results are now very convincingly demonstrating that CLK is required for free-running behavioral rhythms under constant conditions. The results also now more convincingly show that CLK impact rhythmic gene expression, although interpretation of the transcriptomics data is not straightforward. I think there is still improvements that are needed to make the manuscript more accessible. We authors need to keep in mind that a broad audience will read their report, not just chronobiologists. I have listed below several issues that I think should be addressed, and some editing suggestions.

      General comment to Editor and Reviewers:

      We are genuinely grateful to both reviewers and editors about all the feedback which helped us to make the best of our data, to question our analysis to the point we redefined our approach and end up with a great article we are proud of it. Only the name of authors is visible on the article, and considering how much the reviewing system help to improve the research it seems almost unfair. As such, we thank all of you and really appreciate the new eLife system. Bravo all.

      Abstract:

      (1) Line 40" It should read "transcript levels" instead of "transcription". There is no measurement of transcription rates in this manuscript, only mRNA levels.

      Modified accordingly.

      (2) Line 41: the authors mention "constant light". Does this refer to previous work? Their data in Figure 4 were in constant darkness, not in LL.

      Modified accordingly.

      (3) Line 46 and throughout the manuscript, the allelic nomenclature is not standard. 1-/- seems to indicate there are two different alleles. Since the allele might not be a null, I would suggest simply using 1/1, or perhaps delta/delta since the mutation results in a truncates CLK.

      NvClk1-/- became NvClkΔ/Δ. Except in the .xls supplementary table were the mutant kept the NvClk-/- nomenclature. It is not possible to replace only part of a word with a different font, here generating delta sign would require to do it one by one.

      (4) The last sentence of the abstract needs to be rephrased, as it suggests that CLK evolved to maintain circadian rhythms under constant conditions. Constant conditions very rarely exist on Earth, and thus cannot be an evolutionary driving force. Different explanations have been proposed on why a self-sustained clock is the evolutionary solution to timekeeping, but the purpose of the clock and of clock genes is not to maintain oscillations in constant conditions. Actually, this sentence conflicts with the title.

      Modified to: the Clock gene has evolved in cnidarians to sustain 24-hour rhythmic physiology and behavior in absence of diel environmental conditions. From my actual understanding, you are right, the purpose of clock gene is not to maintain oscillation in constant conditions (this is simply the result of the experiment), but to synchronize the physiology to the day/night rhythm, and surely to sustain 24h oscillations in case the environment challenges the perception of the diel cues. The DD or LL is just an artificial experimental design to reveal the endogenous time-keeping pacemaker.

      Results:

      (1) Line 148 and elsewhere in the MS: I would not use the word "lower" or "higher" to qualify acrophases. I would suggest advanced/delayed or earlier/later.

      Modified accordingly.

      (2) Line 157-9: The introductory sentence does not clearly present the rationale for the 6/6 experiments.

      We modified the paragraph accordingly: The presence of a 24-hour rhythm of NvClkΔ/Δ polyps under LD conditions could be attributed to either a direct light-response or the partial functioning of the circadian clock due to the nature of the mutation….

      (3) At the end of the behavior section, or perhaps at the end of each paragraph in this section, it would be helpful to have a summary of the results and more clearly explain their interpretation. The authors need to guide the readers, particularly non-chronobiologist, so that they can understand what the really neat data that were obtained mean. For example, what does it mean that the acrophase is different between mutant and wild-type, why are Clk mutants rhythmic under LD12/12 or 6/6, etc.

      We added a conclusion sentence to help non-specialist to understand each result.

      (4) Line 172 and elsewhere" "true rhythmic genes" sounds odd to me. Either they are, or they are not rhythmic.

      Modified to “rhythmic genes.”

      (5) Paragraph starting with line 184: I do not follow what is important about the number of genes per time cluster. What does it tell us, beyond the simple fact that less genes are rhythmic in the Clk mutants?

      We rewrote the result paragraph to make it clearer why we performed this clustering analysis. This clustering analysis became Extended Data Fig.2 with modification of the figures (see my comments in your review about Figure 3).

      (6) Line 197: The authors need to explain what they saw with circadian clock genes and their expression in CLk mutants. In some case, amplitude increased in LD. This surprising observation deserves some explanations. "Complex regulatory effect" is too vague.

      We replaced the vague “complex regulatory effect” by a more thorough description of the figure 3.a.

      (7) Line 198-203: Again, help the reader understand the significance of these observations.

      We rewrote the paragraph to help the reader to better understand the significance of these observations.

      Discussion:

      (1) Line 236-40. Careful with the use of -/-, which implies that an allele is a null. The first CLk mutants in mammals and flies, which the authors refer to. were actually dominant negatives.

      I went over the citations we used for this paragraph and this first mutation in fly dClkar is null, no dominant negative. Flies are still rhythmic in the dark. Unless there is an older mutation? However, you right the first mutation identified in mouse was a dominant-negative with loss of rhythmicity, while the gene deletion did not show any effect on the behavior, suggesting compensation by a paralog. I removed two references which were not relevant to the discussion.

      (2) Line 265-268 are not very clear. Do the authors mean that the lack of overlap for non-cricadian pacemaker genes is because of different experimental conditions? What would be those differences? It is reassuring that the Leach/Reitzel study and the present share pacemaker genes as rhythmic, but it is also surprising that there is almost no overlap beyond these genes. How robust are those other rhythms compared to circadian clock genes?

      We revised this paragraph and raised major points regarding the raising condition of our polyps between labs and their potential genetic differences which could explain these differences.

      (3) Line 270. I am not sure "compensation" is the right word, since there is no overlap between the rhythmic genes in mutants under LD and wild-type under either LD or DD. Also, saying on line 273 that the transcriptional pattern is not fully reproduced is a rather striking understatement, given the absence of rhythm gene overlap

      We rewrote the paragraph accordingly. We replaced by “alternative way to drive rhythmicity under LD condition”.

      (4) Line 279. The authors mention the possibility of false positives. Based on the FDR, is there more rhythmic genes than by chance?

      The possibility of false-positive is a risk to consider when you do not perform multiple-testing. We added within the results paragraph the number of rhythmic genes identified with BH.Q or p.adj. which both are the multiple testing for each algorithm (RAIN and JTK) we used.

      (5) Line 279-82. The references to the Ray study is rather obscure. What is the point the authors are trying to make here?

      Eventually, we removed the reference from this article and modify the paragraph of the discussion. Indeed, the discussion around the Ray study did not gave an interesting direction to discuss our results and analysis approach.

      (6) Line 284: define BHQ and p.adj

      Defined and referenced.

      (7) The way Lines 283-288 are worded do not provide a good rationale for how transcriptional rhythms were analyzed. The idea to combine two different approaches (JTK and RAIN) to be selective with rhythmicity was great. The authors need however to justify these choices in a more convincing manner. The goal is to detect rhythmic genes in a reliable manner, irrespective of the number of rhythmic genes observed Also, explaining the choice of methodology belongs to the result section.

      We explained our choice of methodology and moved it to the result section as suggested.

      (8) Line 292-3. There are known mechanisms that explain how transcriptional time clusters are generated. In particular, the use of interlocked feedback loop with antiphase peaks of transcriptions is well documented. Actually, it seems to me the clustering shown in Fig 4 might hint at such a mechanism.

      Indeed you are right the clustering shown in Fig 3 (former Fig 4) revealed such mechanism.

      Figures:

      Figure 2: Define relative amplitude

      We added the definition of the relative amplitude within the results. If this is what you asked for?

      Figure 3: Some of the cycles look odd (first row of graphs in panel C). Why would the first and last data point be so different in three of these graphs?

      We decided to modify this figure as we realized it was not informative and not objective enough, as we selected among multiple patterns few “representatives”. In the new figure we combined the cluster analysis to the behavior. Thus, readers can now pick a cluster according to a specific behavior activity level (or ZT/CT) and reach in supp. Table 4 the “genes of potential interest”. However generally speaking this figure does not explain more the consequences of the mutation, so we moved it into the Extended data Fig.2

      Figure4: define the color coding in the correlation panels (blue to red)

      These values from -1 to 1 are the Pearson correlation values. Now indicated on the figure with the color coding legend.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study provides an important cell atlas of the gill of the mussel Gigantidas platifrons using a single nucleus RNA-seq dataset, a resource for the community of scientists studying deep sea physiology and metabolism and intracellular host-symbiont relationships. The work, which offers solid insights into cellular responses to starvation stress and molecular mechanisms behind deep-sea chemosymbiosis, is of relevance to scientists interested in host-symbiont relationships across ecosystems.

      Public Reviews:

      Reviewer #1 (Public Review):

      Wang et al have constructed a comprehensive single nucleus atlas for the gills of the deep sea Bathymodioline mussels, which possess intracellular symbionts that provide a key source of carbon and allow them to live in these extreme environments. They provide annotations of the different cell states within the gills, shedding light on how multiple cell types cooperate to give rise to the emergent functions of the composite tissues and the gills as a whole. They pay special attention to characterizing the bacteriocyte cell populations and identifying sets of genes that may play a role in their interaction with the symbiotes.

      Wang et al sample mussels from 3 different environments: animals from their native methane-rich environment, animals transplanted to a methane-poor environment to induce starvation, and animals that have been starved in the methane-poor environment and then moved back to the methane-rich environment. They demonstrated that starvation had the biggest impact on bacteriocyte transcriptomes. They hypothesize that the upregulation of genes associated with lysosomal digestion leads to the digestion of the intracellular symbiont during starvation, while the non-starved and reacclimated groups more readily harvest the nutrients from symbiotes without destroying them.

      Strengths:

      This paper makes available a high-quality dataset that is of interest to many disciplines of biology. The unique qualities of this non-model organism and the collection of conditions sampled make it of special interest to those studying deep sea adaptation, the impact of environmental perturbation on Bathymodioline mussels populations, and intracellular symbiotes. The authors do an excellent job of making all their data and analysis available, making this not only an important dataset but a readily accessible and understandable one.

      The authors also use a diverse array of tools to explore their data. For example, the quality of the data is augmented by the use of in situ hybridizations to validate cluster identity and KEGG analysis provides key insights into how the transcriptomes of bacteriocytes change.

      The authors also do a great job of providing diagrams and schematics to help orient non-mussel experts, thereby widening the audience of the paper.

      Thank the reviewer for the valuable feedback on our study. We are grateful that the reviewers found our work to be interesting and we appreciate their thorough evaluation of our research. Their constructive comments will be considered as we continue to develop and improve our study.

      Weaknesses:

      One of the main weaknesses of this paper is the lack of coherence between the images and the text, with some parts of the figures never being referenced in the body of the text. This makes it difficult for the reader to interpret how they fit in with the author's discussion and assess confidence in their analysis and interpretation of data. This is especially apparent in the cluster annotation section of the paper.

      We appreciate the feedback and suggestions provided by the reviewer, and we have revised our manuscript to make it more accessible to general audiences.

      Another concern is the linking of the transcriptomic shifts associated with starvation with changes in interactions with the symbiotes. Without examining and comparing the symbiote population between the different samples, it cannot be concluded that the transcriptomic shifts correlate with a shift to the 'milking' pathway and not other environmental factors. Without comparing the symbiote abundance between samples, it is difficult to disentangle changes in cell state that are due to their changing interactions with the symbiotes from other environmental factors.

      We are grateful for the valuable feedback and suggestions provided by the reviewer. Our keen interest lies in understanding symbiont responses, particularly at the single-cell level. However, it's worth noting that existing commercial single-cell RNA-seq technologies rely on oligo dT priming for reverse transcription and barcoding, thus omitting bacterial gene expression information from our dataset. We hope that advancements in technology will soon enable us to perform an integrated analysis encompassing both host and symbiont gene expression.

      Additionally, conclusions in this area are further complicated by using only snRNA-seq to study intracellular processes. This is limiting since cytoplasmic mRNA is excluded and only nuclear reads are sequenced after the organisms have had several days to acclimate to their environment and major transcriptomic shifts have occurred.

      We appreciate the comments shared by the reviewer and agree that scRNA-seq provides more comprehensive transcriptional information by targeting the entire mRNA of the cell. However, we would like to highlight that snRNA-seq has some unique advantages over scRNA-seq. Notably, snRNA-seq allows for simple snap-freezing of collected samples, facilitating easier storage, particularly for samples obtained during field trips involving deep-sea animals and other ecologically significant non-model animal samples. Additionally, unlike scRNA-seq, snRNA-seq eliminates the need for tissue dissociation, which often involves prolonged enzymatic treatment of deep-sea animal tissue/cells under atmospheric pressure. This process can potentially lead to the loss of sensitive cells or alterations in gene expression. Moreover, snRNA-seq procedures disregard the size and shape of animal cells, rendering it a superior technology for constructing the cell atlas of animal tissues. Consequently, we assert that snRNA-seq offers flexibility and represents a suitable choice for the research objects of our current research.

      Reviewer #2 (Public Review):

      Wang, He et al. shed insight into the molecular mechanisms of deep-sea chemosymbiosis at the single-cell level. They do so by producing a comprehensive cell atlas of the gill of Gigantidas platifrons, a chemosymbiotic mussel that dominates the deep-sea ecosystem. They uncover novel cell types and find that the gene expression of bacteriocytes, the symbiont-hosting cells, supports two hypotheses of host-symbiont interactions: the "farming" pathway, where symbionts are directly digested, and the "milking" pathway, where nutrients released by the symbionts are used by the host. They perform an in situ transplantation experiment in the deep sea and reveal transitional changes in gene expression that support a model where starvation stress induces bacteriocytes to "farm" their symbionts, while recovery leads to the restoration of the "farming" and "milking" pathways.

      A major strength of this study includes the successful application of advanced single-nucleus techniques to a non-model, deep-sea organism that remains challenging to sample. I also applaud the authors for performing an in situ transplantation experiment in a deep-sea environment. From gene expression profiles, the authors deftly provide a rich functional description of G. platifrons cell types that is well-contextualized within the unique biology of chemosymbiosis. These findings offer significant insight into the molecular mechanisms of deep-sea host-symbiont ecology, and will serve as a valuable resource for future studies into the striking biology of G. platifrons.

      The authors' conclusions are generally well-supported by their results. However, I recognize that the difficulty of obtaining deep-sea specimens may have impacted experimental design. In this area, I would appreciate more in-depth discussion of these impacts when interpreting the data.

      Thank the reviewer for their valuable feedback on our study. We're grateful that the reviewers found our work interesting, and we appreciate their thorough evaluation of our research. We'll consider their constructive comments as we continue to develop and improve our study.

      Because cells from multiple individuals were combined before sequencing, the in situ transplantation experiment lacks clear biological replicates. This may potentially result in technical variation (ie. batch effects) confounding biological variation, directly impacting the interpretation of observed changes between the Fanmao, Reconstitution, and Starvation conditions. It is notable that Fanmao cells were much more sparsely sampled. It appears that fewer cells were sequenced, resulting in the Starvation and Reconstitution conditions having 2-3x more cells after doublet filtering. It is not clear whether this is due to a technical factor impacting sequencing or whether these numbers are the result of the unique biology of Fanmao cells. Furthermore, from Table S19 it appears that while 98% of Fanmao cells survived doublet filtering, only ~40% and ~70% survived for the Starvation and Reconstitution conditions respectively, suggesting some kind of distinction in quality or approach.

      There is a pronounced divergence in the relative proportions of cells per cell type cluster in Fanmao compared to Reconstitution and Starvation (Fig. S11). This is potentially a very interesting finding, but it is difficult to know if these differences are the expected biological outcome of the experiment or the fact that Fanmao cells are much more sparsely sampled. The study also finds notable differences in gene expression between Fanmao and the other two conditions- a key finding is that bacteriocytes had the largest Fanmao-vs-starvation distance (Fig. 6B). But it is also notable that for every cell type, one or both comparisons against Fanmao produced greater distances than comparisons between Starvation and Reconstitution (Fig. 6B). Again, it is difficult to interpret whether Fanmao's distinctiveness from the other two conditions is underlain by fascinating biology or technical batch effects. Without biological replicates, it remains challenging to disentangle the two.

      As highlighted by the reviewer, our experimental design involves pooling multiple biological samples within a single treatment state before sequencing. We acknowledge the concern regarding the absence of distinct biological replicates and the potential impact of batch effects on result interpretation. While we recognize the merit of conducting multiple sequencing runs for a single treatment to provide genuine biological replicates, we contend that batch effects may not exert a strong influence on the observed patterns.

      In addition, we applied a bootstrap sampling algorithm to assess whether the gene expression patterns within a cluster are more similar than those between clusters. This algorithm involves selecting a portion of cells per cluster and examining whether this subset remains distinguishable from other clusters. Our assumption was that if different samples exhibited distinct expression patterns due to batch effect, the co-assignment probabilities of a cluster would be very low. This expectation was not met in our data, as illustrated in Fig. S2. The lack of significantly low co-assignment probabilities within clusters suggests that batch effects may not exert a strong influence on our results.

      Indeed, we acknowledge a noticeable shift in the expression patterns of certain cell types, such as the bacteriocyte. However, this is not universally applicable across all cell types. For instance, the UMAP figure in Fig. 6A illustrates a substantial overlap among basal membrane cell 2 from Fanmao, Starvation, and Reconstitution treatments, and the centroid distances between the three treatments are subtle, as depicted in Fig. 6B. This consistent pattern is also observed in DEPC, smooth muscle cells, and the food groove ciliary cells.

      The reviewer also noted variations in the number of cells per treatment. Specifically, Fanmao sequencing yielded fewer than 10 thousand cells, whereas the other two treatments produced 2-3 times more cells after quality control (QC). It is highly probable that the technician loaded different quantities of cells into the machine for single-nucleus sequencing—a not uncommon occurrence in this methodology. While loading more cells may increase the likelihood of doublets, it is crucial to emphasize that this should not significantly impact the expression patterns post-QC. It's worth noting that overloading samples has been employed as a strategic approach to capture rare cell types, as discussed in a previous study (reference: 10.1126/science.aay0267).

      The reviewer highlighted the discrepancy in cell survival rates during the 'doublet filtering' process, with 98% of Fanmao cells surviving compared to approximately 40% and 70% for the Starvation and Reconstitution conditions, respectively. It's important to clarify that the reported percentages reflect the survival of cells through a multi-step QC process employing various filtering strategies.

      Post-doublet removal, we filtered out cells with <100 or >2500 genes and <100 or >6000 unique molecular identifiers (UMIs). Additionally, genes with <10 UMIs in each data matrix were excluded. The observed differences in survival rates for Starvation and Reconstitution cells can be attributed to the total volume of data generated in Illumina sequencing. Specifically, we sequenced approximately 91 GB of data for Fanmao, ~196 GB for Starvation, and ~249 GB for Reconstitution. As a result, the qualified data obtained for Starvation and Reconstitution conditions was only about twice that of Fanmao due to the limited data volume.

      The reviewer also observed a divergence in the relative proportions of cells per cell type cluster in Fanmao compared to Reconstitution and Starvation, as depicted in Fig. S1. This discrepancy may hold true biological significance, presenting a potentially intriguing finding. However, our discussion on this pattern was rather brief, as we acknowledge that the observed differences could be influenced by the sample preparation process for dissection and digestion. It is crucial to consider that cutting a slightly different area during dissection may result in variations in the proportion of cells obtained. While we recognize the potential impact of this factor, we do not think that the sparsity of sampling alone could significantly affect the relative proportions of cells per cell type.

      In conclusion, we acknowledge the reviewer's suggestion that sequencing multiple individual samples per treatment condition would have been ideal, rather than pooling them together. However, the homogenous distribution observed in UMAP and the consistent results obtained from bootstrap sampling suggest that the impact of batch effects on our analyses is likely not substantial. Additionally, based on our understanding, the smaller number of cells in the Fanmao sample should not have any significant effect on the resulting different proportion of cells or the expression patterns per each cluster.

      Reviewer #3 (Public Review):

      Wang et al. explored the unique biology of the deep-sea mussel Gigantidas platifrons to understand the fundamental principles of animal-symbiont relationships. They used single-nucleus RNA sequencing and validation and visualization of many of the important cellular and molecular players that allow these organisms to survive in the deep sea. They demonstrate that a diversity of cell types that support the structure and function of the gill including bacteriocytes, specialized epithelial cells that host sulfur-oxidizing or methane-oxidizing symbionts as well as a suite of other cell types including supportive cells, ciliary, and smooth muscle cells. By performing experiments of transplanting mussels from one habitat which is rich in methane to methane-limited environments, the authors showed that starved mussels may consume endosymbionts versus in methane-rich environments upregulated genes involved in glutamate synthesis. These data add to the growing body of literature that organisms control their endosymbionts in response to environmental change.

      The conclusions of the data are well supported. The authors adapted a technique that would have been technically impossible in their field environment by preserving the tissue and then performing nuclear isolation after the fact. The use of single-nucleus sequencing opens the possibility of new cellular and molecular biology that is not possible to study in the field. Additionally, the in-situ data (both WISH and FISH) are high-quality and easy to interpret. The use of cell-type-specific markers along with a symbiont-specific probe was effective. Finally, the SEM and TEM were used convincingly for specific purposes in the case of showing the cilia that may support water movement.

      We appreciate the valuable feedback provided by the reviewer on our study. It is encouraging to know that our work was found to be interesting and that they conducted a thorough evaluation of our research. We will take their constructive comments into account as we strive to develop and enhance our study. Thank the reviewer for all the input.

      The one particular area for clarification and improvement surrounds the concept of a proliferative progenitor population within the gill. The authors imply that three types of proliferative cells within gills have long been known, but their study may be the first to recover molecular markers for these putative populations. The markers the authors present for gill posterior end budding zone cells (PEBZCs) and dorsal end proliferation cells (DEPCs) are not intuitively associated with cell proliferation and some additional exploration of the data could be performed to strengthen the argument that these are indeed proliferative cells. The authors do utilize a trajectory analysis tool called Slingshot which they claim may suggest that PEBZCs could be the origin of all gill epithelial cells, however, one of the assumptions of this analysis is that differentiated cells are developed from the same precursor PEBZC population.

      However, these conclusions do not detract from the overall significance of the work of identifying the relationship between symbionts and bacteriocytes and how these host bacteriocytes modulate their gene expression in response to environmental change. It will be interesting to see how similar or different these data are across animal phyla. For instance, the work of symbiosis in cnidarians may converge on similar principles or there may be independent ways in which organisms have been able to solve these problems.

      We are grateful for the valuable comments and suggestions provided by the reviewer. All suggestions have been carefully considered, and the manuscript has been revised accordingly. We particularly value the reviewer's insights regarding the characterization of the G. platifrons gill proliferative cell populations. In a separate research endeavor, we have conducted experiments utilizing both cell division and cell proliferation markers on these proliferative cell populations. While these results are not incorporated into the current manuscript, we would be delighted to share our preliminary findings with the reviewer. Our preliminary results indicate that the proliferative cell populations exhibit positivity for cell proliferation markers and contain a significant number of mitotic cells..

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Further experiments are needed to link the changes in transcriptomes of Bathymodioline mussels in the different environmental conditions to changes in their interactions with symbiotes. For example, quantifying the abundance and comparing the morphology of symbiotes between the environmental conditions would lend much support for shifting between milking and farming strategies. Without analyzing the symbiotes and comparing them across populations, it is difficult to comment on the mechanisms of interactions between symbiotes and the hosts. Without this analysis, this data is better suited towards comments about the general effect of environmental perturbation and stress on gene expression in these mussels.

      We appreciate the reviewer’s comments. We are also very curious about the symbiont responses, especially at the single-cell level. However, all the current commercial single-cell RNA-seq technologies are based on oligo dT priming for reverse transcription and barcoding. Therefore, the bacterial gene expression information is omitted from our dataset. Hopefully, with the development of technology, we could conduct an integrated analysis of both host and symbiont gene expression soon.

      Additionally, clarification is needed on which types of symbiotes are being looked at. Are they MOX or SOX populations? Are they homogenous? What are the concentrations of sulfur at the sampled sites?

      We thank you for your valuable comments and suggestions. Gigantidas platifrons harbors a MOX endosymbiont population characterized by a single 16S rRNA phylotype. We apologize for any confusion resulting from our previous wording. To clarify, we have revised lines 57-59 of our introduction

      In the text and images, consider using standardized gene names and leaving out the genome coordinates. This would greatly help with readability. Also, be careful to properly follow gene naming and formatting conventions (ie italicizing gene names and symbols).

      We appreciate the reviewer’s insightful comments. In model animals, gene nomenclature often stems from forward genetic approaches, such as the identification of loss-of-function mutants. These gene names, along with their protein products, typically correspond to unique genome coordinates. Conversely, in non-model invertebrates (e.g., Gigantidas platifrons of present study), gene prediction relies on a combination of bioinformatics methods, including de novo prediction, homolog-based prediction, and transcriptomics mapping. Subsequently, the genes are annotated by identifying their best homologs in well-characterized databases. Given that different genes may encode proteins with similar annotated functions, we chose to include both the gene ID (genome coordinates) and the gene name in our manuscript. This dual labeling approach ensures that our audience receives accurate and comprehensive information regarding gene identification and annotation.

      Additionally, extending KEGG analysis to the atlas annotation section could help strengthen the confidence of annotations. For example, when identifying bacteriocyte populations, the functional categories of individual marker genes (lysosomal proteases, lysosomal traffic regulators, etc) are used to justify the annotation. Presenting KEGG support that these functional categories are upregulated in this population relative to others would help further support how you characterize this cluster by showing it's not just a few specific genes that are enriched in this cell group, but rather an overall functionality.

      We appreciate the valuable suggestion provided by the reviewer. Indeed, incorporating KEGG analysis into the atlas annotation section could further enhance the confidence in our annotations. However, in our study, we encountered some limitations that impeded us from conducting a comprehensive KEGG enrichment analysis.

      Firstly, the number of differentially expressed genes (DEGs) that we identified for certain cell populations was relatively small, making it challenging to meet the threshold required for meaningful KEGG enrichment analysis. For instance, among the 97 marker genes identified for the Bacteriocyte cluster, only two genes, Bpl_scaf_59648-4.5 (lysosomal alpha-glucosidase-like) and Bpl_scaf_52809-1.6 (lysosomal-trafficking regulator-like isoform X1), were identified as lysosomal genes. To generate reliable KEGG enrichments, a larger number of genes is typically required.

      Secondly, single-nucleus sequencing, as employed in our study, tends to yield a relatively smaller number of genes per cell compared to bulk RNA sequencing. This limited gene yield can make it challenging to achieve sufficient gene representation for rigorous KEGG enrichment analysis.

      Furthermore, many genes in the genome still lack comprehensive annotation, both in terms of KEGG and GO annotations. In our dataset, out of the 33,584 genes obtained through single-nuclei sequencing, 26,514 genes have NO KEGG annotation, and 25,087 genes have NO GO annotation. This lack of annotations further restricts the comprehensive application of KEGG analysis in our study.

      The claim that VEPCs are symbiote free is not demonstrated. Additional double in situs are needed to show that markers of this cell type localize in regions free of symbiotes.

      We appreciate your comments and suggestions. In Figure 5B, our results demonstrate that the bacteriocytes (green fluorescent signal) are distant from the VEPCs, which are located around the tip of the gill filaments (close to the food groove). We have revised our Figure 5B to make it clear.

      Additionally, it does not seem like trajectory analysis is appropriate for these sampling conditions. Generally, to create trajectories confidently, more closely sampled time points are needed to sufficiently parse out the changes in expression. More justification is needed for the use of this type of analysis here and a discussion of the limitations should be mentioned, especially when discussing the hypotheses relating to PEBZCs, VEPCs, and DEPCs.

      We greatly appreciate your thoughtful commentary. It is important to acknowledge that in the context of a developmental study, incorporating more closely spaced time points indeed holds great value. In our ongoing project investigating mouse development, for instance, we have implemented time points at 24-hour intervals. However, in the case of deep-sea adult animals, we hypothesized a slower transcriptional shift in such extreme environment, which led us to opt for a time interval of 3-7 days. Examining the differential expression profiles among the three treatments, we observed that most cell types exhibited minimal changes in their expression profiles. For the cell types strongly impacted by in situ transplantation, their expression profiles per cell type still exhibited highly overlap in the UMAP analysis (Figure 6a), thus enabling meaningful comparisons. Nevertheless, we recognize that our sampling strategy may not be flawless. Additionally, the challenging nature of conducting in situ transplantation in 1000-meter depths limited the number of sampling occasions available to us. We sincerely appreciate your input and understanding.

      Finally, more detail should be added on the computational methods used in this paper. For example, the single-cell genomics analysis protocol should be expanded on so that readers unfamiliar with BD single-cell genomics handbooks could replicate the analysis. More detail is also needed on what criteria and cutoffs were used to calculate marker genes. Also, please be careful to cite the algorithms and software packages mentioned in the text.

      Acknowledged, thank you for highlighting this. In essence, the workflow closely resembles that of the 10x Genomics workflow (despite the use of a different software, i.e., Cell Ranger). We better explain the workflow below, and also noting that this information may no longer be relevant for newer users of BD or individuals who are not acquainted with BD, given that the workflow underwent a complete overhaul in the summer of 2023.

      References to lines

      Line 32: typo "..uncovered unknown tissue heterogeny" should read "uncovering" or "and uncovered")

      Overall abstract could include more detail of findings (ex: what are the "shifts in cell state" in line 36 that were observed)

      We apologize for the mistakes, and have revised the manuscript accordingly.

      Line 60: missing comma "...gill filament structure, but also"

      We apologize for the mistakes, and have revised the manuscript accordingly.

      Line 62-63: further discussion here, or in the relevant sections of the specific genes identified in the referenced bulk RNA-seq project could help strengthen confidence in annotation

      We appreciate the comment, and have revised the manuscript accordingly.

      Line 112: what bootstrapping strategy? Applied to what?

      This is a bootstrap sampling algorithm to assess the robustness of each cell cluster developed in a recent biorxiv paper. (Singh, P. & Zhai, Y. Deciphering Hematopoiesis at single cell level through the lens of reduced dimensions. bioRxiv, 2022.2006.2007.495099 (2022). https://doi.org:10.1101/2022.06.07.495099)

      Lines 127-129: What figures demonstrate the location of the inter lamina cells? Are there in situs that show this?

      We apologize for any errors; the referencing of figures in the manuscript has been revised for clarity

      Lines 185-190: does literature support these as markers of SMCs? Are they known smooth muscle markers in other systems?

      We characterized the SMCs by the expression of LDL-associated protein, angiotensin-converting enzyme-like protein, and the "molecular spring" titin-like protein, all of which are commonly found in human vascular smooth muscle cells. Based on this analysis, we hypothesize that these cells belong to the smooth muscle cell category.

      Line 201: What is meant by "regulatory roles"?

      In this context, we are discussing the expression of genes encoding regulatory proteins, such as SOX transcription factors and secreted-frizzled proteins.

      Line 211: which markers disappeared? What in situs show this?

      We apologize for the mistakes, and have revised the manuscript accordingly.

      Line 211: typo, "role" → "roll"

      We apologize for the mistakes, and have revised the manuscript accordingly.

      Line 214: what are these "hallmark genes"

      We apologize for the mistakes, here we are referring to the genes listed in figure 4B. We have revised the manuscript accordingly.

      Line 220: are there meristem-like cells in metazoans? If so, this would be preferable to a comparison with plants.

      In this context, we are discussing the morphological characteristics of gill proliferative cell populations found in filibranch bivalves. These populations, namely PEPC, VEPC, and DEPC, consist of cells exhibiting morphological traits akin to those of plant cambial-zone meristem cells. These cells typically display small, round shapes with a high nucleus-to-plasma ratio. We acknowledge that while these terms are utilized in bivalve studies (citations below), they lack the robust support seen in model systems backed by molecular biology evidences. The present snRNA-seq data, however, may offer valuable cell markers for future comprehensive investigations.

      Leibson, N. L. & Movchan, O. T. Cambial zones in gills of Bivalvia. Mar. Biol. 31, 175-180 (1975). https://doi.org:10.1007/BF00391629

      Wentrup, C., Wendeberg, A., Schimak, M., Borowski, C. & Dubilier, N. Forever competent: deep-sea bivalves are colonized by their chemosynthetic symbionts throughout their lifetime. Environ. Microbiol. 16, 3699-3713 (2014). https://doi.org:10.1111/1462-2920.12597

      Cannuel, R., Beninger, P. G., McCombie, H. & Boudry, P. Gill Development and its functional and evolutionary implications in the blue mussel Mytilus edulis (Bivalvia: Mytilidae). Biol. Bull. 217, 173-188 (2009). https://doi.org:10.1086/BBLv217n2p173

      Line 335: what is slingshot trajectory analysis? Does this differ from the pseudotime analysis?

      Slingshot is an algorithm that uses the principal graph of the cells to infer trajectories. It models trajectories as curves on the principal graph, capturing the progression and transitions between different cellular states.

      Both Slingshot and pseudotime aim to infer cellular trajectories. Slingshot focuses on capturing branching patterns which is fully compatible with the graph generated using dimensionality reduction such as UMAP and PHATE, while pseudotime analysis aims to order cells along a continuous trajectory. It does not rely on dimensionality reduction graphs. We used both in the MS for different purposes.

      Line 241: introduce FISH methodology earlier in the paper, when in situ images are first referenced

      We appreciate the comment, and have revised the manuscript accordingly.

      Line 246-249: can you quantify the decrease in signal or calculate the concentration of symbiotes in the cells? Was 5C imaged whole? This can impact the fluorescent intensity in tissues of different thicknesses.

      We appreciate your comment. In Figure 5C, most of the typical gill filament region is visible (the ventral tip of the gill filament, and the mid part of the gill filament) except for the dorsal end. The gill filament of bathymodioline mussels exhibits a simple structure: a single layer of bacteriocytes grow on the basal membrane. Consequently, the gill slices have a fairly uniform thickness (with two layers of bacteriocytes and one layer of interlamina cells in between), minimizing any potential impact on fluorescent intensity. As of now, detailed quantification of intracellular symbionts may necessitate continuous TEM or ultra-resolution confocal sections to 3D reconstruct the bacteriocytes, which may exceed the scope of the current study. Therefore, fluorescent intensity remains the only method available to us for estimating bacterial density/distribution across the gill filament.

      Line 249: What is meant by 'environmental gradient?'

      Here we are refereeing the gases need for symbiont’s chemosynthesis. We have revised the manuscript to make it clear.

      Lines 255-256: Were the results shown in the TEM images previously known? Not clear what novel information is conveyed in images Fig 5 C and D

      In the Fig 5 C and D, we’ve delivered a high-quality SEM TEM image of a typical bacteriocyte, showcasing its morphology and subcellular machinery with clarity. These electron microscopy images offer the audience a comprehensive introduction to the cellular function of bacteriocytes. Additionally, they serve as supportive evidence for the bacteriocytes' snRNA-seq data.

      Line 295-296: Can you elaborate on what types of solute carrier genes have been shown to be involved with symbioses?

      We appreciate the comment, and have revised the manuscript accordingly. The putative functions of the solute carriers could be found in Figure 5I.

      Line 297-301: Which genes from the bulk RNA-seq study? Adding more detail and references in cluster annotation would help readers better understand the justifications.

      We appreciate the comment, and have revised the manuscript accordingly.

      Line 316 -322: Can you provide the values of the distances?

      We also provide values in the main text, in addition to the Fig6b. We also provide a supplementary Table (Supplementary Table S19).

      Line 328: What are the gene expression patterns?

      We observed genes that are up- and down-regulated in Starvation and reconstitution.

      LIne 334-337: A visualization of the different expression levels of the specific genes in clusters between sites might be helpful to demonstrate the degree of difference between sites.

      We have prepared a new supplementary file showing the different expression levels.

      Line 337: Citation needed

      We appreciate the comment. Here, we hypothesize the cellular responds based on the gene’s function and their expression patterns.

      Line 402-403: Cannot determine lineages from data presented. Need lineage tracing over time to determine this

      We acknowledge the necessity of conducting lineage tracing over time to validate this hypothesis. Nonetheless, in practical terms, it is difficult to obtain samples for testing this. Perhaps, it is easier to use their shallow sea relatives to test this hypothesis. However, in practice, it is very difficult.

      413-414: What are the "cell-type specific responses to environmental change"? It could be interesting to present these results in the "results and discussion" section

      These results are shown in Supplementary Figure S8.

      Line 419-424: Sampling details might go better earlier on in the paper, when the sampling scheme is introduced.

      We appreciate the comments. Here, we are discussing the limitations of our current study, not sampling details.

      Line 552: What type of sequencing? Paired end? How long?

      We conducted 150bp paired-end sequencing.

      556-563: More detail here would be useful to readers not familiar with the BD guide. Also be careful to cite the software used in analysis!

      The provided guide and handbook elucidate the intricacies of gene name preparation, data alignment to the genome, and the generation of an expression matrix. It is worth mentioning that we relied upon outdated versions of the aforementioned resources during our data analysis phase, as they were the only ones accessible to us at the time. However, we have since become aware of a newer pipeline available this year, rendering the information presented here of limited significance to other researchers utilizing BD.

      Many thanks for your kind reminding. We have now included a reference for STAR. All other software was cited accordingly. There are no scholarly papers or publications to refer to for the BD pipeline that we can cite.

      Line 577-578: How was the number of clusters determined? What is meant by "manually combine the clusters?" If cells were clustered by hand, more detail on the method is needed, as well as direct discussion and justification in the body of the paper.

      It would be more appropriate to emphasize the determination of cell types rather than clusters. The clusters were identified using a clustering function, as mentioned in the manuscript. It's important to note that the clustering function (in our case, the FindClusters function of Seurat) provides a general overview based on diffuse gene expression. Technically speaking, there is no guarantee that one cluster corresponds to a single cell type. Therefore, it is crucial to manually inspect the clustering results to assign clusters to the appropriate cell types. In some cases, multiple clusters may be assigned to the same cell type, while in other cases, a single cluster may need to be further subdivided into two or more cell types or sub-cell types, depending on the specific circumstances.

      For studies conducted on model species such as humans or mice, highly and specifically expressed genes within each cluster can be compared to known marker genes of cell types mentioned in previous publications, which generally suffices for annotation purposes. However, in the case of non-model species like Bathymodioline mussels, there is often limited information available about marker genes, making it challenging to confidently assign clusters to specific cell types. In such situations, in situ hybridisation proves to be incredibly valuable. In our study, WISH was employed to visualise the expression and morphology of marker genes within clusters. When WISH revealed the expression of marker genes from a cluster in a specific type of cell, we classified that cluster as a genuine cell type. Moreover, if WISH demonstrated uniform expression of marker genes from different clusters in the same cell, we assigned both clusters to the same cell type.

      We expanded the description of the strategy in the Method section.

      LIne 690-692: When slices were used, what part of the gill were they taken from?

      We sectioned the gill around the mid part which could represent the mature bacteriocytes.

      References to figures:

      General

      Please split the fluorescent images into different channels with an additional composite. It is difficult to see some of the expression patterns. It would also make it accessible to colorblind readers.

      We appreciate the comments and suggestions from the reviewer. We have converted our figures to CMYK colour which will help the colorblind audiences to read our paper.

      Please provide the number of replicates for each in situ and what proportion of those displayed the presented pattern.

      We appreciate the reviewer’s comments. We have explained in the material and methods part of the manuscript.

      Figure 2.C' is a fantastic summary and really helps the non-mussel audience understand the results. Adding schematics like this to Figures 3-5 would be helpful as well.

      We value the reviewer's comments. We propose that Figures 3K, 4C, and 5A-D could offer similar schematic explanations to assist the audience.

      Figure 2:

      Figures 2.C-F, 2.C', 2.H-J are not referenced in the text. Adding in discussions of them would help strengthen your discussions on the cluster annotation

      We appreciate the reviewer's comments. We have revise the manuscript accordingly.

      In 2.B. 6 genes are highlighted in red and said to be shown in in situs, but only 5 are shown.

      We apology for the mistake. We didn’t include the result 20639-0.0 WISH in present study. We have changed the label to black.

      Figure 3:

      FIg 2C-E not mentioned.

      We appreciate the reviewer's comments. We have revise the manuscript accordingly.

      In 3.B 8 genes are highlighted in red and said to be shown in in situs. Only 6 are.

      The result of the WISH were provided in Supplementary Figures S4 and S5.

      FIgure 3.K is not referenced in the legend.

      We appreciate the comment, and have revised the manuscript accordingly.

      Figure 4:

      In Figure D, it might be helpful to indicate the growth direction.

      We appreciate the comment, and have revised the manuscript accordingly by adding an arrow in panel D to indicate growth direction.

      4F: A double in situ with the symbiote marker is needed to demonstrate the nucleolin-like positive cells are symbiote free.

      We appreciate the comment. The symbiont free region could be found in Figure 5A.

      Figure 5:

      In 5.A, quantification of symbiote concentration would help support your conclusion that they are denser around the edges.

      We appreciate the comment, as we mentioned above, detailed quantification of intracellular symbionts may necessitate continuous TEM or ultra-resolution confocal sections to 3D reconstruct the bacteriocytes, which may exceed the scope of the current study. Therefore, fluorescent intensity remains the only method available to us for estimating bacterial density/distribution across the gill filament.

      In 5.D, the annotation is not clear. Adding arrows like in 5.C would be helpful.

      We appreciate the comment, and have revised the manuscript accordingly.

      A few genes in 5.F are not mentioned in the paper body when listing other genes. Mentioning them would help provide more support for your clustering.

      We appreciate the comment, and have revised the manuscript accordingly.

      Is 5.I meant to be color coded with the gene groups from 5.F? Color Coding the gene names, rather than organelles or cellular structures might portray this better and help visually strengthen the link between the diagram and your dot plot.

      We appreciate the suggestions. We've experimented with color-coding the gene names, but some colors are less discernible against a white background.

      Figure 6:

      6.B Is there a better way to visualize this data? The color coding is confusing given the pairwise distances. Maybe heatmaps?

      We attempted a heatmap, as shown in the figure below. However, all co-authors agree that a bar plot provides clearer visualization compared to the heatmap. We agree that the color scheme maya be confusing because they use the same color as for individual treatment. So we change the colors.

      Author response image 1.

      Figure 6.D: Why is the fanmao sample divided in the middle?

      Fig6C show that single-cell trajectories include branches. The branches occur because cells execute alternative gene expression programs. Thus, in Fig 6D, we show changes for genes that are significantly branch dependent in both lineages at the same time. Specifically, in cluster 2, the genes are upregulated during starvation but downregulated during reconstitution. Conversely, genes in cluster 1 are downregulated during starvation but upregulated during reconstitution. It's of note that Fig 6D displays only a small subset of significantly branch-dependent genes.

      FIgure 6.D: Can you visualize the expression in the same format as in figures 2-5?

      We appreciate the comments from the reviewer. As far as we know, this heatmap are the best format to demonstrate this type of gene expression profile.

      Supplementary Figure S2:

      Please provide a key for the cell type abbreviations

      We appreciate the comment, and have added the abbreviations of cell types accordingly.

      Supplementary Figures S4 and S5:

      What part of the larger images are the subsetted image taken from?

      We appreciate the comment, these images were taken from the ventral tip and mid of the gill slices, respectively. We have revised the figure legends to make it clear.

      Supplemental Figure S7:

      If clusters 1 and 2 show genes up and downregulated during starvation, what do clusters 4 and 3 represent?

      Cluster 1: Genes that are obviously upregulated during Starvation, and downregulated during reconstitution; luster4: genes are downregulated during reconstitution but not obviously upregulated during Starvation.

      Cluster 2 show genes upregulated during reconstitution, and cluster 3 obviously downregulated during Starvation.

      Author response table 1.

      Supplemental Figure S8:

      This is a really interesting figure that I think shows some of the results really well! Maybe consider moving it to the main figures of the paper?

      We appreciate the comments and suggestions. We concur with the reviewer on the significance of the results presented. However, consider the length of this manuscript, we have prioritized the inclusion of the most pertinent information in the main figures. Supplementary materials containing additional figures and details on the genes involved in these pathways are provided for interested readers.

      Supplemental Figure S11:

      Switching the axes might make this image easier for the reader to interpret. Additionally, calculating the normalized contribution of each sample to each cluster could help quantify the extent to which bacteriocytes are reduced when starving.

      Thank you for the insightful suggestion, which we have implemented as detailed below. We acknowledge the importance of understanding the changes in bacteriocyte proportions across different treatments. However, it's crucial to note that the percentage of cells per treatment is highly influenced by factors such as the location of digestion and sequencing, as previously mentioned.

      Author response image 2.

      Reviewer #2 (Recommendations For The Authors):

      The following are minor recommendations for the text and figures that may help with clarity:

      Fig. 3K: This figure describes water flow induced by different ciliary cells. It is not clear what the color of the arrows corresponds to, as they do not match the UMAP (i.e. the red arrow) and this is not indicated in the legend. Are these colours meant to indicate the different ciliary cell types? If so it would be helpful to include this in the legend.

      We appreciate the reviewer's comments and suggestions. The arrows indicate the water flow that might be agitated by the certain types of cilium. We have revised our figure and figure legends to make it clear.

      Line 369: The incorrect gene identifier is given for the mitochondrial trifunctional enzyme. This gene identifier is identical to the one given in line 366, which describes long-chain-fatty-acid-ligase ACSBG2-like (Bpl_scaf_28862-1.5).

      We appreciate the reviewer's comments and suggestions. We have revised our manuscript accordingly.

      Line 554: The Bioproject accession number (PRJNA779258) does not appear to lead to an existing page in any database.

      We appreciate the reviewer's comments and suggestions. We have released this Bioproject to the public.

      Line 597-598: it would be helpful to know the specific number of cells that the three sample types were downsampled to, and the number of cells remaining in each cluster, as this can affect the statistical interpretation of differential expression analyses.

      The number of cells per cluster in our analysis ranged from 766 to 14633. To mitigate potential bias introduced by varying cell numbers, we implemented downsampling, restricting the number of cells per cluster to no more than 3500. This was done to ensure that the differences between clusters remained less than 5 times. We experimented with several downsampling strategies, exploring cell limits of 4500 and 2500, and consistently observed similar patterns across these variations.

      Data and code availability:

      The supplementary tables and supplementary data S1 appear to be the final output of the differential expression analyses. Including the raw data (e.g. reads) and/or intermediate data objects (e.g. count matrices, R objects), in addition to the code used to perform the analyses, may be very helpful for replication and downstream use of this dataset. As mentioned above, the Bioproject accession number appears to be incorrect.

      We appreciate the reviewer's comments and suggestions. Regarding our sequencing data, we have deposited all relevant information with the National Center for Biotechnology Information (NCBI) under Bioproject PRJNA779258. Additionally, we have requested the release of the Bioproject. Furthermore, as part of this round of revision, we have included the count matrices for reference.

      Reviewer #3 (Recommendations For The Authors):

      As noted in the public review, my only major concerns are around the treatment of progenitor cell populations. I am sympathetic to the challenges of these experiments but suggest a few possible avenues to the authors.

      First, there could be some demonstration that these cells in G. platifrons are indeed proliferative, using EdU incorporation labeling or a conserved epitope such as the phosphorylation of serine 10 in histone 3. It appears in Mytilus galloprovincialis that proliferating cell nuclear antigen (PCNA) and phospho-histone H3 have previously been used as good markers for proliferative cells (Maiorova and Odintsova 2016). The use of any of these markers along with the cell type markers the authors recover for PEBZCs for example would greatly strengthen the argument that these are proliferative cells.

      If performing these experiments would not be currently possible, the authors could use some computation approaches to strengthen their arguments. Based on conserved cell cycle markers and the use of Cell-Cycle feature analysis in Seurat could the authors provide evidence that these progenitors occupy the G2/M phase at a greater percentage than other cells? Other than the physical position of the cells is there much that suggests that these are proliferative? While I am more convinced by markers in VEPCs the markers for PEBZCs and DEPCs are not particularly compelling.

      While I do not think the major findings of the paper hinge on this, comments such as "the PBEZCs gave rise to new bacteriocytes that allowed symbiont colonization" should be taken with care. It is not clear that the PBEZCs are proliferative and there does not seem to be any direct evidence that PBEZCs (or DEPCs or VEPCS for that manner) are the progenitor cells through any sort of labeling or co-expression studies.

      We appreciate the comments and suggestions from the reviewer. We have considered all the suggestions and have revised the manuscript accordingly. We especially appreciate the reviewer’s suggestions about the characterisations of the G. platifrons gill proliferative cell populations. In a separate research project, we have tested both cell division and cell proliferation markers on the proliferation cell populations. Though we are not able to include these results in the current manuscript, we are happy to share our preliminary results with the reviewer. Our results demonstrate the proliferative cell populations, particularly the VEPCs, are cell proliferation marker positive, and contains high amount of mitotic cells.

      Author response image 3.

      Finally, there is a body of literature that has examined cell proliferation and zones of proliferation in mussels (such as Piquet, B., Lallier, F.H., André, C. et al. Regionalized cell proliferation in the symbiont-bearing gill of the hydrothermal vent mussel Bathymodiolus azoricus. Symbiosis 2020) or other organisms (such as Bird, A. M., von Dassow, G., & Maslakova, S. A. How the pilidium larva grows. EvoDevo. 2014) that could be discussed.

      We appreciate the comments and suggestions from the reviewer. We have considered all the suggestions and have revised the manuscript accordingly (line 226-229).

      Minor comments also include:

      Consider changing the orientation of diagrams in Figure 2C' in relationship to Figure 2C and 2D-K.

      We appreciate the comments and suggestions from the reviewer. The Figure 2 has been reorganized.

      For the diagram in Figure 3K, please clarify if the arrows drawn for the direction of inter lamina water flow is based on gene expression, SEM, or some previous study.

      We are grateful for the reviewer's valuable feedback and suggestions. The arrows in the figure indicate the direction of water flow that could be affected by specific types of cilium. Our prediction is based on both gene expression and SEM results. To further clarify this point, we have revised the figure legend of Fig. 3.

      Please include a label for the clusters in Figure 5E for consistency.

      We have revised our Figure 5E to keep our figures consistent.

      Please include a note in the Materials and Methods for Monocle analysis in Figure 6.

      We conducted Monocle analyses using Monocle2 and Monocle 3 in R environment. We have revised our material and methods with further information of Figure 6.

      In Supplement 2, the first column is labeled PEBC while the first row is labeled PEBZ versus all other rows and columns have corresponding names. I am guessing this is a typo and not different clusters?

      We appreciate the great effort of the reviewer in reviewing our manuscript. We have corrected the typo in the revised version.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1) The authors' findings are primarily rooted in a series of well-conducted in vitro experiments using two CML cell lines, K562 and MEG-01. While the findings are interesting and novel, further work to corroborate these findings in primary CML samples would have greatly strengthened the potential real-world relevance of these discoveries. The authors appear to have some PBMCs from primary CML patients and a BM sample from a Ph+ ALL in which they performed western blot analyses (Fig 1). Couldn't these samples have been used to at least confirm some of the key discoveries? For example, the neddylation of BCR-ABL, or; sensitivity of primary leukemic cells to RAPSYN knockdown, and/or; phosphorylation of RAPSYN by SRC?

      We agree with your points and really appreciate your comments. To demonstrate the clinical relevance, we have conducted a series of experiments to address your concerns.

      (1) after a thorough optimization on the transduction process, we have managed to show that shRNA-mediated gene silencing of RAPSYN impaired the growth of primary CML samples. These additional data are presented as Figure 1D in the revised manuscript with its corresponding figure legend and description, lines 136-141.

      (2) we have invested tremendous time and effort to deal with “key discoveries” regardless of the almost impossible task with a great technical difficulty. With 5 mL (ethical approval) of PBMCs on hands, we have finally managed to confirm BCR-ABL neddylation by IP from two newly acquired CML patients. The results are as presented in Figure 2F in the revised manuscript with its corresponding figure legend and description, lines 186-187.

      (2) The authors initially interrogated a fairly dated (circa 2009) microarray-based primary dataset to show that the increase in RAPSYN is primarily a post-transcriptional event, as mRNA levels are not different between healthy and CML samples. It would be interesting to see whether differences might be more readily seen in more recent RNA-seq datasets from CML patients, given the well-known differences in sensitivity between the two platforms. Additionally, I wonder if there would be transcriptional signatures of increased NEDDylation (or RAPSYN-induced NEDDylation) that could be interrogated in primary samples? Furthermore, there are proteomics datasets of CML cells made resistant to TKIs (through in vitro selection experiments) that could be interrogated for independent validation of the authors' discoveries. For example: from K562 cells, PMID: 30730747 or PMID: 34922009).

      Thank you very much for your constructive comments. Based on your suggestion, we have 1) analyzed mRNA level of RAPSYN in RNA-seq datasets GSE13159 (2009), GSE138883 (2020) and GSE140385 (2020), indicating no difference between CML patients and healthy donors. We have included the results in Figure1-figure supplementary 1A and in the revised manuscript (lines 123-127); 2) examined the RNA levels of RAPSYN-related neddylation enzymes, including E1 (NAE1), E2 (UBE2M), NEDD8 and NEDP1 in these databases, and no significant differences of these neddylation-related genes were found between CML patients and healthy donors as well (Supplementary Figure 2C, lines 168-172).

      We have also analyzed the proteomics datasets from PMID: 30730747 and PMID: 34922009 according to your suggestion. Unfortunately, no information on RAPSYN expression is available in these datasets. To avoid potential negligence, we have examined all CML-related proteomics datasets from 2002 to 2024, still resulting in no information about protein expression of RAPSYN. Consequently, our finding on the higher expression of RAPSYN in the PBMCs of Ph+ patients in this study appears to be an observation for the first time. And we believe that our results should be more clinically relevant than those, if any, from the cells by in vitro selection.

      Reviewer #2 (Public Review):

      Most of the conclusions drawn in this paper are well supported by data, but some aspects of the data need to be clarified and extended:

      (1) The authors propose that targeting RAPSYN in Ph+ leukemia could have a high therapeutic index, suggesting that inhibition of RAPSYN may lead to cytotoxicity in Ph+ leukemia with high specificity and minimal side effects. To substantiate this assertion, the authors should investigate the impact on cell viability upon RAPSYN knockdown in non-Ph leukemic cell lines or HS-5 cells (similar to Figure 1C), despite their lower RAPSYN protein levels.

      We appreciate your valuable comments. When we used shRNA to knockdown the expression of RAPSYN in HS-5 cells, it did not affect the cell growth of HS-5 cells. We have included the data in Figure 1C, modified its figure legend, and added corresponding description, lines 136-141.

      (2) The authors intriguingly show that the protein levels of RAPSYN are significantly enriched in Ph+ patient samples and cell lines (Figure 1A, B), even though the mRNA levels remain unchanged (Supplementary Figure 1 A-C). This observation merits a clear explanation in the context of the presented results. The data in the manuscript does imply a feedforward loop mechanism (Figure 7), where BCR-ABL activates SRC, which subsequently stabilizes RAPSYN, which in turn helps protect BCR-ABL from c-CBL-mediated degradation. If this is the working hypothesis, it would be beneficial for the reader to see supporting evidence.

      Thank you very much for pointing out the issue. We have realized the inappropriateness of Figure 7, which was originally placed as a summarizing figure. To avoid potential confusion and misleading, this figure has been deleted, which does not affect the results and conclusions of this study. In addition, the differences on mRNA levels and protein expressions have been responded to Reviewer #1.

      (3) The authors present compelling evidence to suggest that RAPSYN may possess direct NEDD8-ligase activity on BCR-ABL. To strengthen this claim, it may be valuable to conduct further assays involving a ligase-deficient mutant, such as C366A, beyond its use in Figure 2J. Incorporating this mutant into the in vitro assay illustrated in Figure 2K, for instance, could offer substantial validation for the claim. In addition, showing whether the ligase-deficient mutant is capable of phenocopying the phosphorylation-mutant Y336F, as showcased in Figures 5E, F, and 6D, F, would be beneficial.

      We are grateful to your comments. In the manuscript, we have provided sufficient data to support the direct neddylation of BCR-ABL by RAPSYN, as you commented “The authors present compelling evidence to suggest that RAPSYN may possess direct NEDD8-ligase activity on BCR-ABL.”. Cys366 was previously demonstrated as the catalytic residue essential for E3 activity of RAPSYN (Li et al. 2016, PMID: 27839998), and the phosphorylation at Phe336 was thoroughly verified by site-directed mutagenesis and the treatments of SRC-specific inhibitor saracatinib in present cellular experiments. Therefore, while we fully respect your opinions, we do not think it would be necessary to perform tedious in vitro reactions for expected negative results, which was the reason for us not to conduct enzymatic reactions with known inactive mutants, such as C366A and Y336F, in the first place.

      (4) The observations presented in Figures 6 C-G require additional clarification. Notably, there are discrepancies in relative cell viability effects in K562 cells, and to some extent in MEG-01 cells, under conditions that are indicated as being either identical or highly similar. For instance, this inconsistency is observable when comparing the left panels of Figure 6C and 6D in the case of NC overexpression + shSRC#2, and the left panels of Figure 6E and 6G with NC overexpression or shNC, respectively. Listing potential causes of these discrepancies would strengthen the overall validity of the findings and their subsequent interpretation.

      Thank you for your comments and apologize for the confusion. To make a meaningful comparison, we have revised the method part “Preparation of stable RAPSYNWT, RAPSYNY336F or SRC expression cell lines” (lines 625-627) and reorganized Figure 6 to reflect the differences on the negative controls. In fact, we first used LV6 (EF-1a/Puro; OE-NC1) vector for the overexpression of RAPSYNWT and SRC. Due to low expression level with LV6 and long period of time for subsequent selection, we switched to LV18 (CMV/Puro; OE-NC2) for the overexpression of RAPSYNY336F. Since the sensitivities of K562/MEG01-OE-NC cells to shSRC transduction in Figure 6C (now revised to K562/MEG01-OE-NC1) and 6D (now revised to K562/MEG01-OE-NC2) were noticeably different, we have separated RAPSYNWT and RAPSYNY336F cells as 6C and 6D with their own corresponding empty vector as negative control, instead of merging the results into a single figure with one negative control of OE-NC. In addition, given the fact that K562/MEG01 cells reacted differently upon saracatinib treatments after transduction with the empty vector, we have also distinguished the negative controls as OE-NC1 in Figure 6E, OE-NC2 in Figure 6F and shNC in Figure 6G. Afterall, the transduction of K562/MEG01 cells with different expression vectors and viral particles caused the discrepancies in the experiments of cell viability, which has been clarified by reorganizing Figure 6 in the revision.

      (5) Throughout the manuscript, immunoblots which showcase immunoprecipitations of BCR-ABL or His-BCR-ABL depict poly-neddylation (e.g. Figures 2E-M, 3D-G, and 5A-E) and poly-ubiquitination (e.g. Figures 3D-G) patterns/smears where these patterns seem to extend below the molecular weight of BCR-ABL. To enhance clarity, it would be valuable for the authors to provide an explanation in the text or the figure legend for this observation. Is it reflective of potential degradation of BCR-ABL or is there another explanation behind it?

      Thank you for your valuable comments. After carefully checking original immunoblots, we have ascertained that the protein band of BCR-ABL was at 250 KDa and the smear bands appeared to be higher than 250 KDa were likely caused by the conjugation of NEDD8 (neddylation) or Ubiquitin (ubiquitination) onto BCR-ABL. Regarding the molecular weight of modified BCR-ABL lower than expected, whether it is a common feature as previously reported (Mao, J., et al, 2010, PMID: 21118980) or possible degradation during the modification process or sample preparation requires further investigation. We have corrected the labeling of figures in the revised manuscript.

      Reviewer #1 (Recommendations For The Authors):

      (1) It would really nail the real-world relevance of these nice findings if the authors are able to confirm some aspects of their cell line-based discoveries in publicly available 'omics datasets generated from primary CML samples. I have suggested some of these in the public review as well.

      Alternatively, if they are able to investigate samples from murine CML models (eg. BALB/c CML models), it would represent a step towards real-world relevance.

      Thank you very much for your constructive comments. According to your suggestion, we have examined and analyzed RAPSYN mRNA and protein in updated and publicly available datasets as replied in the public response.

      (2) The Discussion repeats some of the information already presented in the Introduction (for example, lines 311-327 of the merged document, or lines 349-358). I would urge the authors to instead expand more about how RAPSYN might be upregulated at the post-transcriptional level, or its potential post-translational regulation by SRC-mediated phosphorylation.

      Thanks for your constructive suggestion. We have re-written this part according to your suggestion and marked in red color in the revised manuscript, lines 319-325 and lines 351-378.

      (3) There are instances of clunky phrases/grammatical mistakes in the manuscript which detract from its readability (eg: lines 142-143: "...empty body transduced shRAPSN#3 or K562 cells into...."; lines 163-164: "Despite AChR subunits α7, M2, M3, and M4 were expressed in all tested cells, no change..."; line 178: "Preeminent BCR-ABL neddylation was detected in..."). A closer proof-reading of the final manuscript is advisable.

      We appreciate the valuable comments. We have made changes for improvement, which is marked in red color in the revised manuscript, lines 145-147, lines 166-168 and line 185.

      (4) The western blot in Fig 5C (particularly the control "OE-NC" of K562) looks drastically different from the corresponding control lanes in Figs 5A and 5B. Similarly, the cell viability curves presented in Fig 6D and 6F (for both K562 and MEG-01, control conditions) look very different from the corresponding curves in Figs 6A and 6B.

      We appreciate for your valuable comments. Because we accidently used the imagines with different exposure time, the western blots in Fig 5C (particularly the control "OE-NC" of K562) look very different from corresponding control lanes in Figs 5A and 5B. We have replaced images with the same exposure time in the revised manuscript.

      For readers to clearly understand, we have revised the method part “Preparation of stable RAPSYNWT, RAPSYNY336F or SRC expression cell lines” (lines 625-627) and related figure legends to reflect the differences.

      We have publicly responded the discrepancy on cell viability.

      Reviewer #2 (Recommendations For The Authors):

      In reviewing your study, I must insist that the completeness and robustness of your work would significantly benefit from a more exhaustive listing of the antibodies used for immunoblotting and immunoprecipitation within the Materials and Methods section. A number of antibodies have been accounted for, however, crucial ones targeting BCR-ABL, c-CBL, Ubiquitin, NEDD8, HA, Myc, and others appear to be omitted. To maintain rigorous scientific standards, I strongly encourage you to include these.

      We appreciate your comments. We have carefully checked the section of Methods and added detailed information of antibodies for Immunoblotting and Immunoprecipitation in the revised manuscript, lines 502-516.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife assessment

      The authors have made important contributions to our understanding of the pathogenesis of erectile dysfunction (ED) in diabetic patients. They have identified the gene Lbh, expressed in pericytes of the penis and decreased in diabetic animals. Overexpression of Lbh appears to counteract ED in these animals. The authors also confirm Lbh as a potential marker in cavernous tissues in both humans and mice. While solid evidence supports Lbh's functional role as a marker gene, further research is needed to elucidate the specific mechanisms by which it exerts its effects. This work is of interest to those working in the fields of ED and angiogenesis.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this study, the researchers aimed to investigate the cellular landscape and cell-cell interactions in cavernous tissues under diabetic conditions, specifically focusing on erectile dysfunction (ED). They employed single-cell RNA sequencing to analyze gene expression patterns in various cell types within the cavernous tissues of diabetic individuals. The researchers identified decreased expression of genes associated with collagen or extracellular matrix organization and angiogenesis in several cell types, including fibroblasts, chondrocytes, myofibroblasts, valve-related lymphatic endothelial cells, and pericytes. They also discovered a newly identified marker, LBH, that distinguishes pericytes from smooth muscle cells in mouse and human cavernous tissues. Furthermore, the study revealed that pericytes play a role in angiogenesis, adhesion, and migration by communicating with other cell types within the corpus cavernosum. However, these interactions were found to be significantly reduced under diabetic conditions. The study also investigated the role of LBH and its interactions with other proteins (CRYAB and VIM) in maintaining pericyte function and highlighted their potential involvement in regulating neurovascular regeneration. Overall, the manuscript is well-written and the study provides novel insights into the pathogenesis of ED in patients with diabetes and identifies potential therapeutic targets for further investigation.

      Comments on revised version:

      For Figure 4, immunofluorecent staining of LBH following intracavernous injections with lentiviruses is required to justify overexpression and tissue specificity.

      We agree with this claims. Therefore, we have performed the immunofluorecent staining of LBH in cavernous tissues after infection with LBH O/E lentiviruses. And we found the LBH expression is significantly decreased in DM or DM+NC groups, however, after infection with LBH O/E lentiviruses, the LBH expression is significantly increased, shown as Supplementary Fig. 10. (Please see revised ‘Result’ and ‘Supplementary Fig. 10’)

      Reviewer #3 (Public Review):

      Bae et al. described the key roles of pericytes in cavernous tissues in diabetic erectile dysfunction using both mouse and human single-cell transcriptomic analysis. Erectile dysfunction (ED) is caused by dysfunction of the cavernous tissue and affects a significant proportion of men aged 40-70. The most common treatment for ED is phosphodiesterase 5 inhibitors; however, these are less effective in patients with diabetic ED. Therefore, there is an unmet need for a better understanding of the cavernous microenvironment, cell-cell communications in patients with diabetic ED, and the development of new therapeutic treatments to improve the quality of life.

      Pericytes are mesenchymal-derived mural cells that directly interact with capillary endothelial cells (ECs). They play a vital role in the pathogenesis of erectile function as their interactions with ECs are essential for penile erection. Loss of pericytes has been associated with diabetic retinopathy, cancer, and Alzheimer's disease and has been investigated in relation to the permeability of cavernous blood vessels and neurovascular regeneration in the authors' previous studies. This manuscript explores the mechanisms underlying the effect of diabetes on pericyte dysfunction in ED. Additionally, the cellular landscape of cavernous tissues and cell type-specific transcriptional changes were carefully examined using both mouse and human single-cell RNA sequencing in diabetic ED. The novelty of this work lies in the identification of a newly identified pericyte (PC)-specific marker, LBH, in mouse and human cavernous tissues, which distinguishes pericytes from smooth muscle cells. LBH not only serves as a cavernous pericyte marker, but its expression level is also reduced in diabetic conditions. The LBH-interacting proteins (Cryab and Vim) were further identified in mouse cavernous pericytes, indicating that these signaling interactions are critical for maintaining normal pericyte function. Overall, this study demonstrates the novel marker of pericytes and highlights the critical role of pericytes in diabetic ED.

      Comments on revised version:

      Bae and colleagues substantially improved the data quality and revised their manuscript "Pericytes contribute to pulmonary vascular remodeling via HIF2a signaling". While these revisions clarify some of the concerns raised, others remain. In my view, the following question must be addressed.

      In my prior question on #3, I completely disagree with the statement that "identified cells with pericyte-like characteristics in the walls of large blood vessels". The staining that authors provided for LBH, was clearly stained for SMCs, not pericytes. Per Fig 2E, the authors are correct that LBH is colocalized with SMA+ cells( SMCs). However, the red signal from LBH clearly stains endothelial cells. In the rest of 2E and 2D, LBH is CD31- and their location suggests LBH stained for SMCs in the Aorta, Kidney vasculature, Dorsal vein, and Dorsal Artery.

      We respect the reviewer's comments and provide further justification for the reviewer's concerns. We first performed double staining of LBH and CD31 on dorsal artery and dorsal vein tissues. We found that LBH-expressing cells are completely different from CD31-expressing cells (Figrue 2D, indicated by arrows, and Supplementary Fig. 10A) and that expression is higher in veins than in arteries. This is consistent with previous understanding. In addition, in the double staining of LBH and α-SMA, we also found that there was no overlap between LBH-expressing cells and α-SMA-expressing smooth muscle cells in the cavernosum tissues, but there was some overlap in dorsal artery and dorsal vein (Figrue 2E, indicated by arrows). This may indicate that LBH is expressed slightly different types of blood vessels. This requires further experiments to prove in the future. In addition, to avoid confusion among other readers. We modify our previous discussion regarding the identification of cells with pericyte-like characteristics in the walls of large blood vessels. We removed the associated immunofluorescence staining in the aorta and kidneys replaced them with dorsal artery and dorsal vein (Please see revised ‘Result’ and ‘Figure 2’ and ‘Supplementary Fig. 10A’)

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this work, Qiu and colleagues examined the effects of preovulatory (i.e., proestrous or late follicular phase) levels of circulating estradiol on multiple calcium and potassium channel conductances in arcuate nucleus kisspeptin neurons. Although these cells are strongly linked to a role as the "GnRH pulse generator," the goal here was to examine the physiological properties of these cells in a hormonal milieu mimicking late proestrus, the time of the preovulatory GnRH-LH surge. Computational modeling is used to manipulate multiple conductances simultaneously and support a role for certain calcium channels in facilitating a switch in firing mode from tonic to bursting. CRISPR knockdown of the TRPC5 channel reduced overall excitability, but this was only examined in cells from ovariectomized mice without estradiol treatment. The patch clamp experiments are comprehensive and overall solid but a direct demonstration of the role of these conductances in being necessary for surge generation (or at least having a direct physiological consequence on surge properties) is lacking, substantially reducing the impact of the findings.

      Strengths:

      (1) Examination of multiple types of calcium and potassium currents, both through electrophysiology and molecular biology.

      (2) Focus on arcuate kisspeptin neurons during the surge is relatively conceptually novel as the anteroventral periventricular nucleus (AVPV) kisspeptin neurons have received much more attention as the "surge generator" population.

      (3) The modeling studies allow for direct examination of manipulation of single and multiple conductances, whereas the electrophysiology studies necessarily require examination of each current in isolation. The construction of an arcuate kisspeptin neuron model promises to be of value to the reproductive neuroendocrinology field.

      We thank the reviewer for recognizing our comprehensive examination of Kiss-ARH neurons through electrophysiological, molecular and computational modeling of their activity during the preovulatory surge, which as the reviewer pointed out is “conceptually novel.” We will bolster our argument that Kiss1-ARH neurons transition from synchronized firing to burst firing with the E2-mediated regulation of channel expression with the addition of new experiments. We will address the weaknesses as follows:

      Weaknesses:

      (1) The novelty of some of the experiments needs to be clarified. This reviewer's understanding is that prior experiments largely used a different OVX+E2 treatment paradigm mimicking periods of low estradiol levels, whereas the present work used a "high E2" treatment model. However, Figures 10C and D are repeated from a previous publication by the same group, according to the figure legend. Findings from "high" vs. "low" E2 treatment regimens should be labeled and clearly separated in the text. It would also help to have direct comparisons between results from low E2 and high E2 treatment conditions.

      We will revise Figures 10C and 10D to include new findings on Tac2 and Vglut2 expression in OVX and E2-treated Kiss1ARH. We did show the previously published data (Qiu, eLife 2018) to contrast with Figures 10E, F showing the downregulation of TRPC5 and GIRK2 channels following E2 treatment. Most importantly, our E2 treatment regime is clearly stated in the Methods and is exactly the same that was used previously (Qiu, eLife 2016 and Qiu, eLife 2018) for the induction of the LH surge in OVX mice (Bosch, Molecular and Cellular Endocrinology 2013) .

      (2) In multiple places, links are made between the changes in conductances and the transition from peptidergic to glutamatergic neurotransmission. However, this relationship is never directly assessed. The data that come closest are the qPCR results showing reduced Tac2 and increased Vglut2 mRNA, but in the figure legend, it appears that these results are from a prior publication using a different E2 treatment regimen.

      In the revised Figure 1, we will now include a clear depiction of the transition from synchronized firing driven by NKB signaling in OVX females to burst firing driven by glutamate in E2-treated females. We have used the same E2 treatment paradigm as previously published (Qiu, eLife 2018).

      (3) Similarly, no recordings of arcuate-AVPV glutamatergic transmission are made so the statements that Kiss1ARH neurons facilitate the GnRH surge via this connection are still only conjecture and not supported by the present experiments.

      Using a horizontal hypothalamic slice preparation, we have shown that Kiss1-ARH neurons excite GnRH neurons via Kiss1ARH glutaminergic input to Kiss1AvPV neurons (summarized in Fig. 12, Qiu, eLife 2016). We do not think that it is necessary to repeat these experiments in the current manuscript.

      (4) Figure 1 is not described in the Results section and is only tenuously connected to the statement in the introduction in which it is cited. The relevance of panels C and D is not clear. In this regard, much is made of the burst firing pattern that arises after E2 treatment in the model, but this burst firing pattern is not demonstrated directly in the slice electrophysiology examples.

      We will revised Figure 1 to include new whole-cell, current clamp recordings documenting the burst firing in response to glutamate in E2-treated, OVX females.

      (5) In Figure 3, it would be preferable to see the raw values for R1 and R2 in each cell, to confirm that all cells were starting from a similar baseline. In addition, it is unclear why the data for TTA-P2 is not shown, or how many cells were recorded to provide this finding.

      Before initiating photo-stimulation for each Kiss1-ARH neuron, we adjust the resting membrane potential to -70 mV, as noted in each panel in Figure 3, through current injections. We will include new findings on the effects of the T-channel blocker TTA-P2 on slow EPSP in the revised Figure 3. The number of cells tested with each calcium channel blocker is depicted in each of the bar graphs summarizing the effects of the blockers.

      (6) In Figure 5, panel C lists 11 cells in the E2 condition but panel E lists data from 37 cells. The reason for this discrepancy is not clear.

      In Figure 5E, we measured the L-, N-, P/Q and R channel currents after pretreatment with TTA-P2 to block the T-type current, whereas in Figure 5C, we measured the current without TTA-P2.

      (7) In all histogram figures, it would be preferable to have the data for individual cells superimposed on the mean and SEM.

      In all revised Figures we will include the individual data points for the individual neurons.

      (8) The CRISPR experiments were only performed in OVX mice, substantially limiting interpretation with respect to potential roles for TRPC5 in shaping arcuate kisspeptin neuron function during the preovulatory surge.

      The TRPC5 channels are most important for generating slow EPSPs when expression of NKB is high in the OVX state. Conversely, the glutamatergic response becomes more significant when the expression of NKB and TRPC5 channel are muted. Therefore, the CRISPR experiments were specifically conducted in OVX mice to maximize the effects.

      (9) Furthermore, there are no demonstrations that the CRISPR manipulations impair or alter the LH surge.

      In this manuscript, our focus is on the cellular electrophysiological activity of the Kiss1ARH neurons in ovx and E2-treated females. Exploration of CRISPR manipulations related to the LH surge is certainly slated for future experiments, but these in vivo experiments are beyond the scope of these comprehensive cellular electrophysiological and molecular studies.

      (10) The time of day of slice preparation and recording needs to be specified in the Methods.

      We will provide the times of slice preparation and recordings in the revised Methods and Materials.

      Reviewer #2 (Public Review):

      Summary:

      Kisspeptin neurons of the arcuate nucleus (ARC) are thought to be responsible for the pulsatile GnRH secretory pattern and to mediate feedback regulation of GnRH secretion by estradiol (E2). Evidence in the literature, including the work of the authors, indicates that ARC kisspeptin coordinate their activity through reciprocal synaptic interactions and the release of glutamate and of neuropeptide neurokinin B (NKB), which they co-express. The authors show here that E2 regulates the expression of genes encoding different voltage-dependent calcium channels, calcium-dependent potassium channels, and canonical transient receptor potential (TRPC5) channels and of the corresponding ionic currents in ARC kisspeptin neurons. Using computer simulations of the electrical activity of ARC kisspeptin neurons, the authors also provide evidence of what these changes translate into in terms of these cells' firing patterns. The experiments reveal that E2 upregulates various voltage-gated calcium currents as well as 2 subtypes of calcium-dependent potassium currents while decreasing TRPC5 expression (an ion channel downstream of NKB receptor activation), the slow excitatory synaptic potentials (slow EPSP) elicited in ARC kisspeptin neurons by NKB release and expression of the G protein-associated inward-rectifying potassium channel (GIRK). Based on these results, and on those of computer simulations, the authors propose that E2 promotes a functional transition of ARC kisspeptin neurons from neuropeptide-mediated sustained firing that supports coordinated activity for pulsatile GnRH secretion to a less intense firing in glutamatergic burst-like firing pattern that could favor glutamate release from ARC kisspeptin. The authors suggest that the latter might be important for the generation of the preovulatory surge in females.

      Strengths:

      The authors combined multiple approaches in vitro and in silico to gain insights into the impact of E2 on the electrical activity of ARC kisspeptin neurons. These include patch-clamp electrophysiology combined with selective optogenetic stimulation of ARC kisspeptin neurons, reverse transcriptase quantitative PCR, pharmacology, and CRIPR-Cas9-mediated knockdown of the Trpc5 gene. The addition of computer simulations for understanding the impact of E2 on the electrical activity of ARC kisspeptin cells is also a strength.

      The authors add interesting information on the complement of ionic currents in ARC kisspeptin neurons and on their regulation by E2 to what was already known in the literature. Pharmacological and electrophysiological experiments appear of the highest standards. Robust statistical analyses are provided throughout, although some experiments (illustrated in Figures 7 and 8) do have rather low sample numbers.

      The impact of E2 on calcium and potassium currents is compelling. Likewise, the results of Trpc5 gene knockdown do provide good evidence that the TRPC5 channel plays a key role in mediating the NKB-mediated slow EPSP. Surprisingly, this also revealed an unsuspected role for this channel in regulating the membrane potential and excitability of ARC kisspeptin neurons.

      We thank the reviewer for recognizing that the “pharmacological and electrophysiological experiments appear of the highest standards” and “the addition of the computer modeling for understanding the impact of E2 on the electrical activity of ARC kisspeptin cells is also a strength. However, we agree with the reviewer that we need to provide a direct demonstration of “burst-like” firing of Kiss1-ARH neurons. We will address the weaknesses as follows:

      Weaknesses:

      The manuscript also has weaknesses that obscure some of the conclusions drawn by the authors.

      One has to do with the fact that "burst-like" firing that the authors postulate ARC kisspeptin neurons transition to after E2 replacement is only seen in computer simulations, and not in slice patch-clamp recordings. A more direct demonstration of the existence of this firing pattern, and of its prominence over neuropeptide-dependent sustained firing under conditions of high E2 would make a more convincing case for the authors' hypothesis.

      We will provide a more direct demonstration of the existence of this firing pattern in the whole-cell current clamp experiments in the revised Figure 1.

      In addition, and quite importantly, the authors compare here two conditions, OVX versus OVX replaced with high E2, that may not reflect the physiological conditions (the diestrous [low E2] and proestrous [high E2] stages of the estrous cycle) under which the proposed transition between neuropeptide-dependent sustained firing and less intense burst firing might take place. This is an important caveat to keep in mind when interpreting the authors' findings. Indeed, that E2 alters certain ionic currents when added back to OVX females, does not mean that the magnitude of these ionic currents will vary during the estrous cycle.

      We have published that the magnitude of the slow EPSP, which is TRPC5 channel mediated, varies throughout the estrous cycle and the similarity to that found in OVX compared to E2-treated, OVX females (Figure 2, Qiu, eLife 2016). Moreover, TRPC5 channel mRNA expression, similar to the peptides, is downregulated by an E2 treatment (Figure 10 this manuscript) that mimics proestrus levels of the steroid (Bosch, Mol Cell Endocrinology 2013). Furthermore, the magnitude of ionic currents is directly proportional to the number of ion channels expressed in the plasma membrane, which we have found correlates with mRNA expression. Therefore, it is likely that the magnitude of these ionic currents will vary during the estrous cycle.

      Lastly, the results of some of the pharmacological and genetic experiments may be difficult to interpret as presented. For example, in Figure 3, although it is possible that blockade of individual calcium channel subtypes suppresses the slow EPSP through decreased calcium entry at the somato-dendritic compartment to sustain TRPC5 activation and the slow depolarization (as the authors imply), a reasonable alternative interpretation would be that at least some of the effects on the amplitude of the slow EPSP result from suppression of presynaptic calcium influx and, thus, decreased neurotransmitter and neuropeptide secretion. Along the same lines, in Figure 12, one possible interpretation of the observed smaller slow EPSPs seen in mice with mutant TRPC5 could be that at least some of the effect is due to decreased neurotransmitter and neuropeptide release due to the decreased excitability associated with TRPC5 knockdown.

      The reviewer raises a good point, but our previous findings clearly demonstrate that chelating intracellular calcium with BAPTA in whole-cell current clamp recordings abolishes the slow EPSP and persistent firing (Qiu, J. Neurosci 2021), which we have noted is the rationale for dissecting out the contribution of T, R, N, L and P/Q calcium channels to the slow EPSP in our current studies (revised Figure 3 will include the effects of T-channel blocker).

      However, to further bolster the argument for the post-synaptic contribution of the calcium channels to the slow EPSP and eliminate the potential presynaptic effects of calcium channel blockers on the postsynaptic slow EPSP amplitude, which may result from reduced presynaptic calcium influx and subsequently decreased neurotransmitter release, we will utilized an additional strategy. Specifically, we will measure the response to the externally administered TACR3 agonist senktide under conditions in which the extracellular calcium influx, as well as neurotransmitter and neuropeptide release, are blocked (new Figure 3).

    1. Author response:

      eLife assessment

      Unlocking the potential of molecular genetic tools (optogenetics, chemogenetics, sensors, etc.) for the study of systems neuroscience in nonhuman primates requires the development of effective regulatory elements for cell-type specific expression to facilitate circuit dissection. This study provides a valuable building block, by carefully characterizing the laminar expression profile of two viral vectors, one designed for general GABA+ergic neurons and the second for parvalbumin+ cell-type selective expression in the marmoset primary visual cortex. The authors provide solid evidence for the first enhancer S5E2 and incomplete evidence for the second one, h56D. This study contributes to our understanding of these tools but is limited by the understandably small number of animals used.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Federer et al. tested AAVs designed to target GABAergic cells and parvalbumin-expressing cells in marmoset V1. Several new results were obtained. First, AAV-h56D targeted GABAergic cells with >90% specificity, and this varied with serotype and layer. Second, AAV-PHP.eB.S5E2 targeted parvalbumin-expressing neurons with up to 98% specificity. Third, the immunohistochemical detection of GABA and PV was attenuated near viral injection sites.

      Strengths:

      Vormstein-Schneider et al. (2020) tested their AAV-S5E2 vector in marmosets by intravenous injection. The data presented in this manuscript are valuable in part because they show the transduction pattern produced by intraparenchymal injections, which are more conventional and efficient.

      Our manuscript additionally provides detailed information on the laminar specificity and coverage of these viral vectors, which was not investigated in the original studies.

      Weaknesses:

      The conclusions regarding the effects of serotype are based on data from single injection tracks in a single animal. I understand that ethical and financial constraints preclude high throughput testing, but these limitations do not change what can be inferred from the measurements. The text asserts that "...serotype 9 is a better choice when high specificity and coverage across all layers are required". The data presented are consistent with this idea but do not make a strong case for it.

      We are aware of the limitations of our results on the AAV-h56D. We agree with the Reviewer that a single injection per serotype does not allow us to make strong statements about differences between the 3 serotypes. Therefore, in the revised version of the manuscript we will temper our claims about such differences and use more caution in the interpretation of these data. Despite this weakness, we feel that these data still demonstrate high efficiency and specificity across cortical layers of transgene expression in GABA cells using the h56D promoter, at least with two of the 3 AAV serotypes we tested. We feel that in itself this is sufficiently useful information for the primate community, worthy of being reported. Due to cost, time and ethical considerations related to the use of primates, we chose not to perform additional experiments to determine precise differences among serotypes. Thus, for example, while it is possible that had we replicated these experiments, serotype 7 would have proven equally efficient and specific as the other two serotypes, we felt answering this question did not warrant additional experiments in this precious species.

      A related criticism extends to the analysis of injection volume on viral specificity. Some replication was performed here, but reliability across injections was not reported. My understanding is that individual ROIs were treated as independent observations. These are not biological replicates (arguably, neither are multiple injection tracks in a single animal, but they are certainly closer). Idiosyncrasies between animals or injections (e.g. if one injection happened to hit one layer more than another) could have substantial impacts on the measurements. It remains unclear which results regarding injection volume or serotype would hold up had a large number of injections been made into a large number of marmosets.

      For the AAV-S5E2, we made a total of 7 injections (at least 2 at the same volume), all of which, irrespective of volume, resulted in high specificity and efficiency for PV interneurons. Our conclusion is that larger volumes are slightly less specific, but the differences are minimal and do not warrant additional injections. Additionally, all of our injections involved all cortical layers, and the ROIs we selected for counts encompassed reporter protein expression across all layers. To provide a better sense of the reliability of the results across injections, in the revised version of the manuscript we will provide a supplementary table with results for each injection case separately.

      Reviewer #2 (Public Review):

      This is a straightforward manuscript assessing the specificity and efficiency of transgene expression in marmoset primary visual cortex (V1), for 4 different AAV vectors known to target transgene expression to either inhibitory cortical neurons (3 serotypes of AAV-h56D-tdTomato) or parvalbumin (PV)+ inhibitory cortical neurons in mice. Vectors are injected into the marmoset cortex and then postmortem tissue is analyzed following antibody labeling against GABA and PV. It is reported that: "in marmoset V1 AAV-h56D induces transgene expression in GABAergic cells with up to 91-94% specificity and 80% efficiency, depending on viral serotype and cortical layer. AAV-PHP.eB-S5E2 induces transgene expression in PV cells across all cortical layers with up to 98% specificity and 86-90% efficiency."

      These claims are largely supported but slightly exaggerated relative to the actual values in the results presented. In particular, the overall efficiency for the best h56D vectors described in the results is: "Overall, across all layers, AAV9 and AAV1 showed significantly higher coverage (66.1{plus minus}3.9 and 64.9%{plus minus}3.7)". The highest coverage observed is just in middle layers and is also less than 80%: "(AAV9: 78.5%{plus minus}9.1; AAV1: 76.9%{plus minus}7.4)".

      In the abstract, we indeed summarize the overall data and round up the decimals, and state that these parentages are upper bound and that they vary by serotype and layer, while in the Results we report the detailed counts with decimals. To clarify this, in the revised version of the Abstract we will change 80% to 79% and emphasize even more clearly the dependence on serotype and layer. We will amend this sentence of the Abstract as follows: “We show that in marmoset V1 AAV-h56D induces transgene expression in GABAergic cells with up to 91-94% specificity and 79% efficiency, but this depends on viral serotype and cortical layer.”

      For the AAV-PHP.eB-S5E2 the efficiency reported in the abstract ("86-90%) is also slightly exaggerated relative to the results: "Overall, across all layers coverage ranged from 78%{plus minus}1.9 for injection volumes >300nl to 81.6%{plus minus}1.8 for injection volumes of 100nl."

      Indeed, the numbers in the Abstract are upper bounds, for example efficiency in L4A/B with S5E2 reaches 90%. To further clarify this important point, in the revised abstract we will state ”AAV-PHP.eB-S5E2 induces transgene expression in PV cells across all cortical layers with up to 98% specificity and 86-90% efficiency, depending on layer”.

      These data will be useful to others who might be interested in targeting transgene expression in these cell types in monkeys. Suggestions for improvement are to include more details about the vectors injected and to delete some comments about results that are not documented based on vectors that are not described (see below).

      Major comments:

      Details provided about the AAV vectors used with the h56D enhancer are not sufficient to allow assessment of their potential utility relative to the results presented. All that is provided is: "The fourth animal received 3 injections, each of a different AAV serotype (1, 7, and 9) of the AAV-h56D-tdTomato (Mehta et al., 2019), obtained from the Zemelman laboratory (UT Austin)." At a minimum, it is necessary to provide the titers of each of the vectors. It would also be helpful to provide more information about viral preparation for both these vectors and the AAVPHP.eB-S5E2.tdTomato. Notably, what purification methods were used, and what specific methods were used to measure the titers?

      We thank the Reviewer for this comment. In the revised version of the manuscript, we will provide a Table with titers of each viral vector injected as well as more information regarding viral preparation methods. In fact, the methods for viral preparation and purification are detailed in the original publications so we feel it may be sufficient to cite the original papers?

      The first paragraph of the results includes brief anecdotal claims without any data to support them and without any details about the relevant vectors that would allow any data that might have been collected to be critically assessed. These statements should be deleted. Specifically, delete: "as well as 3 different kinds of PV-specific AAVs, specifically a mixture of AAV1-PaqR4-Flp and AAV1-h56D-mCherry-FRT (Mehta et al., 2019), an AAV1-PV1-ChR2-eYFP (donated by G. Horwitz, University of Washington)," and delete "Here we report results only from those vectors that were deemed to be most promising for use in primate cortex, based on infectivity and specificity. These were the 3 serotypes of the GABA-specific pAAV-h56D-tdTomato, and the PV-specific AAVPHP.eB-S5E2.tdTomato." These tools might in fact be just as useful or even better than what is actually tested and reported here, but maybe the viral titer was too low to expect any expression.

      This data is indeed anecdotal, and while we could delete it from the manuscript, as suggested by the Reviewer, we feel it could be useful information for the scientific community. It could prevent other labs from wasting resources, animals and time, particularly, as some of these vectors have been reported to be selective and efficient in the primate cortex, which we have not been able to confirm. We made several injections in several animals of those vectors that failed either to infect a sufficient number of cells or turned out to be poorly specific. Therefore, the negative results have been consistent. But we agree with the Reviewer that our negative results could have depended on factors such as titer. In the revised version of the manuscript, we will provide a supplementary Methods section in which we will report the specifics of the vectors that failed in our hands (i.e. number of injections made in how many animals, volumes, survival time, and titers).

      Based on the description in the Methods it seems that no antibody labeling against TdTomato was used to amplify the detection of the transgenes expressed from the AAV vectors. It should be verified that this is the case - a statement could be added to the Methods.

      That is indeed the case. We used no immunohistochemistry to enhance the reporter proteins as this was unnecessary. The native / non-emplified tdT signal was strong.

      Reviewer #3 (Public Review):

      Summary:

      Federer et al. describe the laminar profiles of GABA+ and of PV+ neurons in marmoset V1. They also report on the selectivity and efficiency of expression of a PV-selective enhancer (S5E2). Three further viruses were tested, with a view to characterizing the expression profiles of a GABA-selective enhancer (h56d), but these results are preliminary.

      Strengths:

      The derivation of cell-type specific enhancers is key for translating the types of circuit analyses that can be performed in mice - which rely on germline modifications for access to cell-type specific manipulation - in higher-order mammals. Federer et al. further validate the utility of S5E2 as a PV-selective enhancer in NHPs.

      Additionally, the authors characterize the laminar distribution pattern of GABA+ and PV+ cells in V1. This survey may prove valuable to researchers seeking to understand and manipulate the microcircuitry mediating the excitation-inhibition balance in this region of the marmoset brain.

      Weaknesses:

      Enhancer/promoter specificity and efficiency cannot be directly compared, because they were packaged in different serotypes of AAV.

      The three different serotypes of AAV expressing reporter under the h56D promoter were only tested once each, and all in the same animal. There are many variables that can contribute to the success (or failure) of a viral injection, so observations with an n=1 cannot be considered reliable.

      This is an important point that was also brought up by the Reviewer 1, which we thoroughly addressed in our comments. For clarity and convenience, we copied our response to Reviewer 1 below:.

      We are aware of the limitations of our results on the AAV-h56D. We agree with the Reviewer that a single injection per serotype does not allow us to make strong statements about differences between the 3 serotypes. Therefore, in the revised version of the manuscript we will temper our claims about such differences and use more caution in the interpretation of these data. Despite this weakness, we feel that these data still demonstrate high efficiency and specificity across cortical layers of transgene expression in GABA cells using the h56D promoter, at least with two of the 3 AAV serotypes we tested. We feel that in itself this is sufficiently useful information for the primate community, worthy of being reported. Due to cost, time and ethical considerations related to the use of primates, we chose not to perform additional experiments to determine precise differences among serotypes. Thus, for example, while it is possible that had we replicated these experiments, serotype 7 would have proven equally efficient and specific as the other two serotypes, we felt answering this question did not warrant additional experiments in this precious species.

      The language used throughout conflates the cell-type specificity conferred by the regulatory elements with that conferred by the serotype of the virus.

      In the revised version of the manuscript we will correct ambiguous language.

    1. Author response:

      The following is the authors’ response to the original reviews.

      General responses to the weaknesses of this work:

      The two reviewers mentioned two major weaknesses of this work:

      (1) The one unexplained step in this intricately described mechanism is how HSCB functions to promote TACC3 degradation. It appears that the proteasome is involved since MG-132 reverses the effect of HSCB deficiency, but no other details are provided. Does HSCB target TACC3 for ubiquitination somehow? Future studies will be required to understand this portion of the mechanism.

      We totally agree that the detailed mechanisms through which HSCB promotes TACC3 degradation should be clarified. We tried to find the ubiquitin ligases involved in this regulatory process but could not identify such a key protein so far. We also investigated whether HSCB itself is a ubiquitin ligase but found that the protein does not possess this activity. We therefore consider this weakness another limitation of this research and have added one sentence to the penultimate paragraph of the Discussion section to address this issue.

      (2) This study only uses cell models. The significance of this work may be broadened by further studies using animal models.

      We totally agree that in vivo models should be adopted to validate the major findings of this study. As we stated in the penultimate paragraph of the Discussion section, we did not have access to biological samples from the patient harboring the HSCB mutation. Additionally, HSCB constitutive knockout mice died during the embryonic stage, while conditional knockout did not cause embryonic death but resulted in almost no erythroid cells in the bone marrow. Therefore, we were not able to further validate our findings in in vivo models.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      • Figure 3A - Should include FOG1 on the total cell lysate blots to show if total FOG1 is changing or only the cytoplasmic/nuclear ratio. This is shown later but would be good to include here.

      We would like to thank the reviewer for the nice suggestion. We have added the blots for total FOG1 to updated Figure 3A as requested.

      • Figures 3C and 4F - Should include the qPCR results from control cultures on the graphs (EPO + CRISPR NC and shNC, respectively).

      We would like to thank the reviewer for the good suggestion. We have added the control groups for all qPCR assays to the updated figures throughout the study.

      • Figure 4 - The addition of genetic manipulation of TACC3 to confirm its role in the cytoplasmic retention of FOG1 and failed erythroid differentiation in HSCB-deficient cells would strengthen the conclusions of this figure.

      We would like to thank the reviewer for the good suggestion. We initially tried to knock down TACC3 expression through siRNAs to confirm its role in the cytoplasmic retention of FOG1. However, we found that siRNAs that worked well in untreated K562 and erythroid progenitor cells as well as several other cell lines had poor efficiency of knocking down gene expression upon HSCB deficiency. This happened not only to siRNAs targeting TACC3, but also to those targeting several other genes. Interestingly, gene overexpression plasmids worked especially well in HSCB-deficient cells. We were not able to explain these phenomena and chose to use an inhibitor of TACC3 to study its functional implications in this research.

      • Text should be added to discuss the implications of this work for the lineage-specifying function of GATA-1. There are papers by John Crispino and Alan Cantor/Stu Orkin using the FOG-binding mutant of GATA-1 that implicate FOG1-dependent GATA-1 activity as Meg/Ery specifying, whereas FOG1-independent GATA-1 activity promotes mast cell or eosinophil fate. This work suggests that GATA1-expressing myeloid progenitors where FOG1 is kept cytoplasmic (no EPO signaling) would be driven towards the mast cell fate.

      We would like to thank the reviewer for the valuable suggestion. We have added a new paragraph in the Discussion section of the updated manuscript to discuss the implication of this work for the lineage-specifying function of GATA-1.

      Reviewer #2 (Recommendations For The Authors):

      Minor comments:

      (1) In the model provided in Figure 7H, HSCB and FOG1 bind TACC3 simultaneously. However based on the data provided in Figure 6B and other figures, it seems that their interactions are more likely to be mutually exclusive. Is there a possibility that, besides inducing the degradation of TACC3, the binding of HSCB can inhibit the interaction between TACC3 and FOG1?

      We would like to thank the reviewer for the insightful comment. According to the data presented in the updated Figure 5F, TACC3 can simultaneously bind with HSCB and FOG1 in E 2-day HSCs. That is why we depict the simultaneous binding pattern in the model provided in Figure 7H. However, we agree that there is a possibility that the binding of HSCB can inhibit the interaction between TACC3 and FOG1 and have mentioned this possibility in the “Phosphorylation of HSCB by PI3K was necessary for its functionalization during human erythropoiesis” subsection of the “Results” section in the updated manuscript.

      (2) Whether the decreased TACC3 protein abundance (Figure 5D) during erythroblast differentiation is mainly due to the effect of HSCB. Can silencing of HSCB block this reduction?

      We would like to thank the reviewer for the great question. We have analyzed the protein abundance of TACC3 in HSCB-deficient hematopoietic stem cells induced for erythropoiesis for 0, 2 and 4 days and summarized the results as a new Figure 5E. According to the results, TACC3 protein abundance in HSCB-deficient hematopoietic stem cells exhibited no obvious change when the cells were induced for erythropoiesis for 0, 2 and 4 days. These results suggest that the decreased TACC3 protein abundance during early erythroblast differentiation was indeed due to the effect of HSCB. We only investigated the effect of HSCB on TACC3 abundance in early erythroid progenitors because, as shown in Figure 1, HSCB-deficient hematopoietic stem cells stopped differentiation at an early phase of their erythropoiesis. We have also mentioned these data in the “HSCB facilitated FOG1 nuclear translocation by binding with and mediating the proteasomal degradation of TACC3 upon activation of the EPO/EPOR signaling” subsection of the “Results” section in the updated manuscript.

      (3) This study shows that HSCB can be phosphorylated by PI3K, and this modification is important for its role in regulating FOG1 distribution. Does the phosphorylation of HSCB also affect its function in ISC biogenesis?

      We would like to thank the reviewer for the instructive question. We have analyzed the mitochondrial and cytosolic aconitase activities in wortmannin-treated K562 and E 2-day HSCs and their respective controls. The results have been summarized as a new Figure S5. According to the results, wortmannin treatment did not significantly affect mitochondrial and cytosolic aconitase activities. Therefore, it seems that HSCB phosphorylation does not affect its function in ISC biogenesis. We have also mentioned these data in the “Phosphorylation of HSCB by PI3K was necessary for its functionalization during human erythropoiesis” subsection of the “Results” section in the updated manuscript.

      (4) The method of isolation of nuclear fraction needs to be provided in the "Materials and Methods" section.

      We would like to thank the reviewer for the thoughtful suggestion. We have added the required information to the “Nuclear proteomics analysis” subsection of the "Materials and Methods" section in the updated manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      Following small molecule screens, this study provides convincing evidence that 7,8 dihydroxyflavone (DHF) is a competitive inhibitor of pyridoxal phosphatase. These results are important since they offer an alternative mechanism for the effects of 7,8 dihdroxyflavone in cognitive improvement in several mouse models. This paper is also significant due to the interest in the protein phosphatases and neurodegeneration fields.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Zink et al set out to identify selective inhibitors of the pyridoxal phosphatase (PDXP). Previous studies had demonstrated improvements in cognition upon removal of PDXP, and here the authors reveal that this correlates with an increase in pyridoxal phosphate (PLP; PDXP substrate and an active coenzyme form of vitamin B6) with age. Since several pathologies are associated with decreased vitamin B6, the authors propose that PDXP is an attractive therapeutic target in the prevention/treatment of cognitive decline. Following high throughput and secondary small molecule screens, they identify two selective inhibitors. They follow up on 7, 8 dihydroxyflavone (DHF). Following structure-activity relationship and selectivity studies, the authors then solve a co-crystal structure of 7,8 DHF bound to the active site of PDXP, supporting a competitive mode of PDXP inhibition. Finally, they find that treating hippocampal neurons with 7,8 DHF increases PLP levels in a WT but not PDXP KO context. The authors note that 7,8 DHF has been used in numerous rodent neuropathology models to improve outcomes. 7, 8 DHF activity was previously attributed to activation of the receptor tyrosine kinase TrkB, although this appears to be controversial. The present study raises the possibility that it instead/also acts through modulation of PLP levels via PDXP, and is an important area for future work.

      Strengths:

      The strengths of the work are in the comprehensive, thorough, and unbiased nature of the analyses revealing the potential for therapeutic intervention in a number of pathologies.

      Weaknesses:

      Potential weaknesses include the poor solubility of 7,8 DHF that might limit its bioavailability given its relatively low potency (IC50= 0.8 uM), which was not improved by SAR. However, the compound has an extended residence me and the co-crystal structure could aid the design of more potent molecules and would be of interest to those in the pharmaceutical industry. The images related to crystal structure could be improved.

      Reviewer #2 (Public Review):

      Summary:

      In this study, the authors performed a screening for PDXP inhibitors to identify compounds that could increase levels of pyridoxal 5'- phosphate (PLP), the co-enzymatically active form of vitamin B6. For the screening of inhibitors, they first evaluated a library of about 42,000 compounds for activators and inhibitors of PDXP and secondly, they validated the inhibitor compounds with a counter-screening against PGP, a close PDXP relative. The final narrowing down to 7,8-DHF was done using PLP as a substrate and confirmed the efficacy of this flavonoid as an inhibitor of PDXP function. Physiologically, the authors show that, by acutely treating isolated wild-type hippocampal neurons with 7,8-DHF they could detect an increase in the ratio of PLP/PL compared to control cultures. This effect was not seen in PDXP KO neurons.

      Strengths:

      The screening and validation of the PDXP inhibitors have been done very well because the authors have performed crystallographic analysis, a counter screening, and mutation analysis. This is very important because such rigor has not been applied to the original report of 7,8 DHF as an agonist for TrkB. Which is why there is so much controversy on this finding.

      Weaknesses:

      As mentioned in the summary report the study may benefit from some in vivo analysis of PLP levels following 7,8-DHF treatment, although I acknowledge that it may be challenging because of the working out of the dosage and timing of the procedure.

      Reviewer #3 (Public Review):

      This is interesting biology. Vitamin B6 deficiency has been linked to cognitive impairment. It is not clear whether supplements are effective in restoring functional B6 levels. Vitamin B6 is composed of pyridoxal compounds and their phosphorylated forms, with pyridoxal 5-phosphate (PLP) being of particular importance. The levels of PLP are determined by the balance between pyridoxal kinase and phosphatase activities. The authors are testing the hypothesis that inhibition of pyridoxal phosphatase (PDXP) would arrest the age-dependent decline in PLP, offering an alternative therapeutic strategy to supplements. Published data illustrating that ablation of the Pdxp gene in mice led to increases in PLP levels and improvement in learning and memory trials are consistent with this hypothesis.

      In this report, the authors conduct a screen of a library of ~40k small molecules and identify 7,8dihydroxyflavone (DHF) as a candidate PDXP inhibitor. They present an initial characterization of this micromolar inhibitor, including a co-crystal structure of PDXP and 7,8-DHF. In addition, they demonstrate that treatment of cells with 7,8 DHP increases PLP levels. Overall, this study provides further validation of PDXP as a therapeutic target for the treatment of disorders associated with vitamin B6 deficiency and provides proof-of-concept for inhibition of the target with small-molecule drug candidates.

      Strengths include the biological context, the focus on an interesting and under-studied class of protein phosphatases that includes several potential therapeutic targets, and the identification of a small molecule inhibitor that provides proof-of-concept for a new therapeutic strategy. Overall, the study has the potential to be an important development for the phosphatase field in general.

      Weaknesses include the fact that the compound is very much an early-stage screening hit. It is an inhibitor with micromolar potency for which mechanisms of action other than inhibition of PDXP have been reported. Extensive further development will be required to demonstrate convincingly the extent to which its effects in cells are due to on-target inhibition of PDXP.

      Recommendations for the authors:

      There is general agreement that the study represents an advance regarding the mechanisms of pyridoxal phosphatase and 7,8 DHF. From the reviewers' comments, several major questions and considerations are raised, followed by their detailed remarks:

      (1) More analysis of the solubility and dose of 7,8 DHF with regard to the 50% inhibition and the salt bridge of the B protomer, as raised by the reviewers.

      (2) Is there a possible involvement of another phosphatase?

      (3) Does 7,8 DHF cause an effect upon TrkB tyrosine phosphorylation?

      We thank the Reviewers and Editors for their fair and constructive comments and suggestions. We have performed additional experiments to address these questions and considerations. In addition, we have generated two new high-resoling (1.5 Å) crystal structures of human PDXP in complex with 7,8-DHF that substantially expand our understanding of 7,8-DHF-mediated PDXP inhibition. The scientist who performed this work for the revision of our manuscript has been added as an author (shared first authorship).

      We believe that the insights gained from these new data have further strengthened and improved the quality of our manuscript. Together, our data provide compelling evidence that 7,8-dihydroxyflavone is a direct and competitive inhibitor of pyridoxal phosphatase.

      Please find our point-by-point responses to the Public Reviews that are not addressed in the Recommendations for the Authors, and the Recommendations for the Authors below.

      Reviewer #2:

      As mentioned in the summary report the study may benefit from some in vivo analysis of PLP levels following 7,8-DHF treatment, although I acknowledge that it may be challenging because of the working out of the dosage and timing of the procedure.

      We agree that an in vivo analysis of PLP levels following 7,8-DHF treatment could be informative for the further evaluation of a possible mechanistic link between the reported effects of this compound and PDXP/vitamin B6. However, we currently do not have a corresponding animal experimentation permission in place and are unlikely to obtain such a permit within a reasonable me frame for this revision.

      Recommendations For The Authors:

      Reviewer #1:

      The work is already well-written, comprehensive, and convincing.

      Suggestions that could improve the manuscript.

      (1) Include a protein tyrosine phosphatase (PTP) in the selectivity analysis. One possibility is that 7,8 DHF acts on a PTP (such as PTP1B), leading to TrkB activation by preventing dephosphorylation. I note that a previous study has looked at SAR for flavones with PTP1B (PMID: 29175190), which is worth discussion.

      We thank the reviewer for bringing this interesting possibility to our attention. We were not aware of the SAR study for flavonoids with PTP1B by Proenca et al. but have now tested the effect of 7,8-DHF on PTP1B, referring to this paper. As shown in Figure 2d, PTP1B was not inhibited by 7,8-DHF at a concentration of 5 or 10 µM. At the highest tested concentration of 40 µM, 7,8-DHF inhibited PTP1B merely by ~20%. For comparison, compound C13 (3-hydroxy-7,8-dihydroxybenzylflavone-3’,4’dihydroxymethyl-phenyl), which emerged as the most active flavonoid in the SAR study by Proenca et al. inhibited PTP1B with an IC50 of 10 µM. Consistent with the results of these authors, our finding confirms that less polar substituents, such as O-benzyl groups at positions 7 and 8, and O-methyl groups at positions 3’ and 4’ of the flavone scaffold, are important for the ability of flavonoids to effectively inhibit PTP1B. We conclude that PTP1B inhibition by 7,8-DHF is unlikely to be a primary contributor to the reported cellular and in vivo effects of this flavone.

      In addition to PTP1B, we have now additionally tested the effect of 7,8-DHF on the serine/threonine protein phosphatase calcineurin/PP2B, the DNA/RNA-directed alkaline phosphatase CIP, and three other metabolite-directed HAD phosphatases, namely NANP, NT5C1A and PNKP. PP2B, CIP and NANP were not inhibited by 7,8-DHF. Similar to PTP1B, PNKP activity was attenuated (~30%) only at 40 µM 7,8-DHF. In contrast, 7,8-DHF effectively inhibited NT5C1A (IC50 ~10 µM). NT5C1A is an AMP hydrolase expressed in skeletal muscle and heart. To our knowledge, a role of NT5C1A in the brain has not been reported. Based on currently available information, the inhibition of NT5C1A therefore appears unlikely to contribute to 7,8-DHF effects in the brain.

      The results of these experiments are shown in the revised Figure 2d. Taken together, the extended selectivity analysis of 7,8-DHF on a total of 12 structurally and functionally diverse protein- and nonprotein-directed phosphatases supports our initial conclusion that 7,8-DHF preferentially inhibits PDXP.

      (2) Line 144: It is unclear how fig 2c supports the statement here. Remove call out for clarity.

      Our intention was to highlight the fact that 7,8-DHF concentrations >12.5 µM could not be tested in the BLI assay (shown in Figure 2c) due to 7,8-DHF solubility issues under these experimental conditions. However, since this is discussed in the text, but not directly visible in Figure 2c, we agree with the Reviewer and have removed this call out.

      (3) Figure 3a. It is difficult to see the pink 7,8 DHF on top of the pink ribbon backbone. A better combination of colours could be used. Likewise in Figure 3b it is pink on pink again.

      We have improved the combination of colors to enhance the visibility of 7,8-DHF and have consistently color-coded murine and the new human PDXP structures throughout the manuscript.

      (4) Figure 3c and d. These are the two protomers I believe, but the colour coding is not present in 3c where the ribbon is now gray. Please choose colours that can be used to encode protomers throughout the figure.

      Please see response to point 3 above.

      (5) Figure 3f. I think this is the same protomer as 3c but a 180-degree rotation. Could this be indicated, or somehow lined up between the two figures for clarity? It would also be useful to have 3e in the same orientation as 3f, to better visualise the overlap with PLP binding. PLP and 7,8 DHF could be labelled similarly to the amino acids in 3f (the colour coding here is helpful).

      Please see response to point 3 above. We have substantially revised the structural figures and have used consistent color coding and the same perspective of 7,8-DHF in the PDXP active sites.

      (6) Figure 3g. The colours of the bars relating to specific mutations do not quite match the colours in Figure 3f, which I think was the aim and is very helpful.

      We have adapted the colours of the residues in Figure 3f (now Fig. 3b and additionally Fig. 3 – figure supplement 1e) so that they exactly match the colours of the bars in Figure 3g (now Fig. 3d).

      Reviewer #2:

      No further comments.

      Reviewer #3:

      Page 4: The authors describe 7,8DHF as a "selective" inhibitor of PDXP - in my opinion, they do not have sufficient data to support such a strong assertion. Reports that 7,8DHF may act as a TRK-B-agonist already highlight a potential problem of off-target effects. Does 7,8DHF promote tyrosine phosphorylation of TRK-B in their hands? The selectivity panel presented in Figure 2, focusing on 5 other HAD phosphatases, is much too limited to support assertions of selectivity.

      We agree with the Reviewer that our previous selectivity analysis with six HAD phosphatases was limited. To further explore the phosphatase target spectrum of 7,8-DHF, we have now analyzed six other enzymes: three other non-HAD phosphatases (the tyrosine phosphatase PTP1B, the serine/threonine protein phosphatase PP2B/calcineurin, and the DNA/RNA-directed alkaline phosphatase/CIP) and three other non-protein-directed C1/C0-type HAD phosphatases (NT5C1A, NANP, and PNKP). The C1-capped enzymes NT5C1A and NANP were chosen because we previously found them to be sensitive to small molecule inhibitors of the PDXP-related phosphoglycolate phosphatase PGP (PMID: 36369173). PNKP was chosen to increase the coverage of C0-capped HAD phosphatases (previously, only the C0-capped MDP1 was tested).

      We found that calcineurin, CIP and NANP were not inhibited by up to 40 µM 7,8-DHF. The activities of PTP1B or PNKP activity were attenuated (by ~20 or 30%, respectively) only at 40 µM 7,8-DHF. In contrast, 7,8-DHF effectively inhibited NT5C1A (IC50 ~10 µM). We have previously found that NT5C1A was sensitive to small-molecule inhibitors of the PDXP paralog PGP, although these molecules are structurally unrelated to 7,8-DHF (PMID: 36369173). NT5C1A is an AMP hydrolase expressed in skeletal muscle and heart (PMID: 12947102). To our knowledge, a role of NT5C1A in the brain has not been reported. Based on currently available information, the inhibition of NT5C1A therefore appears unlikely to contribute to 7,8-DHF effects in the brain. The results of these experiments are shown in the revised Figure 2d. Taken together, the extended selectivity analysis of 7,8-DHF on a total of 12 structurally and functionally diverse protein- and non-protein-directed phosphatases supports our initial conclusion that 7,8-DHF preferentially inhibits PDXP. To nevertheless avoid any overstatement, we have now also replaced “selective” by “preferential” in this context throughout the manuscript.

      We have not tested if 7,8-DHF promotes tyrosine phosphorylation of TRK-B. Being able to detect 7,8- DHF-induced TRK-B phosphorylation in our hands would not exclude an additional role for PDXP/vitamin B6-dependent processes. Not being able to detect TRK-B phosphorylation may indicate absence of evidence or evidence of absence. This would neither conclusively rule out a biological role for 7,8-DHF-induced TRK-B phosphorylation in vivo, nor contribute further insights into a possible involvement of vitamin B6-dependent processes in 7,8-DHF induced effects.

      Page 6: The authors report that they obtained only two PDXP-selective inhibitor hits from their screen; 7,8DHF and something they describe as FMP-1. For the later, they state that it "was obtained from an academic donor, and its structure is undisclosed for intellectual property reasons". In my opinion, this is totally unacceptable. This is an academic research publication. If the authors wish to present data, they must do so in a manner that allows a reader to assess their significance; in the case of work with small molecules that includes the chemical structure. In my opinion, the authors should either describe the compound fully or remove mention of it altogether.

      We are unable to describe “FMP-1” because its identity has not been disclosed to us. The academic donor of this molecule informed us that they were not able to permit release of any details of its structure or general structural class due to an emerging commercial interest.

      We mentioned FMP-1 simply to highlight the fact that the screening campaign yielded more than one inhibitor. FMP-1 was also of interest due its complete inhibition of PDXP phosphatase activity.

      Because the structure of this molecule is unknown to us, we have now removed any mention of this compound in the manuscript. For the same reason, we have removed the mention of the inhibitor hits “FMP-2” and “FMP-3” in Figure 2 – figure supplement 1 and Figure 2 – figure supplement 2. The number of PDXP inhibitor hits in the manuscript has been adapted accordingly.

      Page 7: The observed plateau at 50% inhibition requires further explanation. It is not clear how poor solubility of the compound explains this observation. For example, the authors state that "due to the aforementioned poor solubility of 7,8DHF, concentrations higher than 12.5µM could not be evaluated". Yet on page 8, they describe assays against the specificity panel at concentrations of compound up to 40µM. Do the analogues of 7,8DHF (Fig 2b) result in >50% inhibition at higher concentrations? Further explanation and data on the solubility of the compounds would be of benefit.

      We currently do not have a satisfactory explanation for the apparent plateau of ~50% PDXP inhibition by 7,8-DHF. Resolving this question will likely require other approaches, including computational chemistry such as molecular dynamics simulations, and we feel that this is beyond the scope of the present manuscript.

      We previously speculated that the limited solubility of 7,8-DHF may counteract a complete enzyme inhibition if higher concentrations of this molecule are required. Specifically, we referred to Todd et al. who have performed HPLC-UV-based solubility assays of 7,8-DHF (ref. 35). These authors found that immediately after 7,8-DHF solubilization, nominal 7,8-DHF concentrations of 5, 20 or 50 µM resulted in 0.5, 3.0 or 13 µM of 7,8-DHF in solution of (i.e., 10, 15 or 26% of the respective nominal concentration). Seven hours later, 46, 26 or 26% of the respective nominal 7,8-DHF concentrations were found in solution. Hence, above a nominal concentration of 5 µM, 7,8-DHF solubility does not increase linearly with the input concentration, but plateaus at ~20% of the nominal concentration. This phenomenon could potentially contribute to the apparent plateau of human or murine PDXP inhibition by 7,8-DHF in vitro.

      However, experiments performed during the revision of our manuscript show that they HAD phosphatase NT5C1A can be effectively inhibited by 7,8-DHF with an IC50-value of 10 µM (see revised Fig. 2). Together with the fact that the activity of the PDXP-Asn61Ser variant can be completely inhibited by 7,8-DHF (see Fig. 3d), we conclude that the reason for the observed plateau of PDXP inhibition is likely to be primarily structural, with Asn61 impeding 7,8-DHF binding. We have therefore removed the mention of the limited solubility of 7,8-DHF here. On p.14, we now say: “These data also suggest that Asn61 contributes to the limited efficacy of 7,8-mediated PDXP inhibition in vitro.”

      The solubility of 7,8-DHF is dependent on the specific assay and buffer conditions. In BLI experiments, interference patterns caused by binding of 7,8-DHF in solution to biotinylated PDXP immobilized on the biosensor surface are measured. In phosphatase selectivity assays, phosphatases are in solution, and the effect of 7,8-DHF on the phosphatase activity is measured via the quantification of free inorganic phosphate.

      In BLI experiments, we observed that the sensorgrams obtained with the highest tested 7,8-DHF concentration (25 µM) showed the same curve shapes as the sensorgrams obtained with 12.5 µM 7,8-DHF. This contrasts with the expected steeper slope of the curves at 25 µM vs. 12.5 µM 7,8-DHF. The same behavior was observed for the reference sensors (i.e., the SSA sensors that were not loaded with PDXP, but incubated with 7,8-DHF at all employed concentrations for referencing against nonspecific binding of 7,8-DHF to the sensors). The sensorgrams at 25 µM 7,8-DHF were therefore not included in the analysis (this is now specified in the Materials and Methods BLI section on p.27). To clarify this point, we now state that “As a result of the poor solubility of the molecule, a saturation of the binding site was not experimentally accessible” (p.7).

      In contrast, the phosphatase selectivity assays described on p.8 could be performed with nominal 7,8-DHF concentrations of up to 40 µM. Although the effective 7,8-DHF concentration in solution is expected to be lower (see ref. 35 and discussed above), the limited solubility of 7,8-DHF in phosphatase assays does not prevent the quantification of free inorganic phosphate. Nevertheless, we cannot exclude some interference with this absorbance-based assay (e.g., due to turbidity caused by insoluble compound). Indeed, 5,6-dihydroxyflavone and 5,6,7-trihydroxyflavone caused an apparent increase in PDXP activity at concentrations above 10 µM (see Figure 2b), which may be related to compound solubility issues. Alternatively, these flavones may activate PDXP at higher concentrations.

      We have tested the 7,8-DHF analogue 3,7,8,4’-tetrahydroxyflavone at concentrations of 70 and 100 µM. At concentrations >100 µM, the DMSO concentration required for solubilizing the flavone interferes with PDXP activity. PDXP inhibition by 3,7,8,4’-tetrahydroxyflavone was slightly increased at 70 µM compared to 40 µM (by ~18%) but plateaued between 70 and 100 µM. These results are now mentioned in the text (p.7): “The efficacy of PDXP inhibition by 3,7,8,4’-tetrahydroxyflavone was not substantially increased at concentrations >40 µM (relative PDXP activity at 40 µM: 0.46 ± 0.05; at 70 µM: 0.38 ± 0.15; at 100 µM: 0.37 ± 0.09; data are mean values ± S.D. of n=6 experiments).”

      Page 9: The authors report that PDXP crystallizes as a homodimer in which 7,8DHF is bound only to one protomer. Is the second protomer active? Does that contribute to the 50% inhibition plateau? If Arg62 is mutated to break the salt bridge, does inhibition go beyond 50%?

      We have no way to measure the activity of the second, inhibitor-free protomer in murine PDXP. We know that PDXP functions as a constitutive homodimer, and based on our current understanding, both protomers are active. We have previously shown that the experimental monomerization of PDXP (upon introduction of two-point mutants in the dimerization interface) strongly reduces its phosphatase activity. Specifically, PDXP homodimerization is required for an inter-protomer interaction that mediates the proper positioning of the substrate specificity loop. Thus, homodimerization is necessary for effective substrate coordination and -dephosphorylation (PMID: 24338687).

      In the murine structure, we observed that 7,8-DHF binding to the second subunit (the B-protomer) is prevented by a salt bridge between Arg62 and Asp14 of a symmetry-related A-protomer in the crystal lace (i.e., this is not a salt bridge between Arg62 in the B-protomer and Asp14 in the A-protomer of a PDXP homodimer). As suggested, we have nevertheless tested the potential role of this salt bridge for the sensitivity of the PDXP homodimer to 7,8-DHF.

      The mutation of Arg62 is not suitable to answer this question, because this residue is involved in the coordination of 7,8-DHF (see Figure 3b), and the PDXP-Arg62Ala mutant is inhibitor resistant (see Figure 3d). We have therefore mutated Asp14, which is not involved in 7,8-DHF coordination. As shown in the new Figure 3 – figure supplement 1d, the 7,8-DHF-mediated inhibition of PDXPAsp14Ala again reached a plateau at ~50%. This result suggests that while an Arg62-Asp14 salt bridge is stabilized in the murine crystal, it is not a determinant of the active site accessibility of protomer B in solution.

      To address this important question further, we have now also generated co-crystals of human PDXP bound to 7,8-DHF, and refined two structures to 1.5 Å. We found that in human PDXP, both protomers bind 7,8-DHF. These new, higher resolution data are now shown in the revised Figure 3 and its figure supplements, and we have moved the panels referring to the previously reported murine PDXP structure to the Figure 3 – figure supplement 1. Thus, both protomers of human PDXP, but only one protomer of murine PDXP bind 7,8-DHF in the crystal structure, yet the 7,8-DHFmediated inhibition of human and murine PDXP plateaus at ~50% under the phosphatase assay conditions (see Figure 2a). We conclude that 7,8-DHF binding efficiency in the PDXP crystal does not necessarily reflect its inhibitory efficiency in solution.

      Taken together, these data indicate that the apparent partial inhibition of murine and human PDXP phosphatase activity by 7,8-DHF in our in vitro assays is not explained by an exclusive binding of 7,8DHF to just one protomer of the homodimer.

      Page 10-12; Is it possible to generate a mutant form of PDXP in which activity is maintained but inhibition is attenuated - an inhibitor-resistant mutant form of PDXP? Can such a mutant be used to assess on-target vs off-target effects of 7,8DHF in cells?

      This is an excellent point, and we agree with the Reviewer that such an approach would provide further evidence for cellular on-target activity of 7,8-DHF. Indeed, the verification of the PDXP-7,8DHF interaction sites has led to the generation of catalytically active, inhibitor-resistant PDXP mutants, such as Tyr146Ala and Glu148Ala (Fig. 3d). However, the biochemical analysis of such mutants in primary hippocampal neurons is a very difficult task.

      Primary hippocampal neurons are derived from pooled, isolated hippocampi of mouse embryos and are subsequently differentiated for 21 days in vitro. The resulting cellular yield is typically low and variable, and the viability (and contamination of the respective cultures with e.g. glial cells) varies from batch to batch. Although such cell preparations are suitable for electrophysiological or immunocytochemical experiments, they are far from ideal for biochemical studies. A meaningful experiment would require the efficient expression of a catalytically active, but inhibitor-resistant PDXP-mutant in PDXP-KO neurons. In parallel, PDXP-KO cells reconstituted with PDXP-WT (at phosphatase activity levels comparable with the PDXP mutant cells) would be needed for comparison. Unfortunately, the generation of (a) sufficient numbers of (b) viable cells that (c) efficiently express (d) functionally comparable levels of PDXP-WT or -mutant for downstream analysis (PLP/PL-levels upon inhibitor treatment) is currently not possible for us.

      Human iPSC-derived (hippocampal) spheroids are at present no alternative, due to the necessity of generating PDXP-KO lines first, and the difficulties with transfecting/transducing them. Such a system would require extensive validation. We have attempted to use SH-SY5Y cells (a metastatic neuroblastoma cell line), but PDXK expression in these cells is modest and they produce too little PLP. We therefore feel that this question is beyond the scope of our current study.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This is an interesting study that performs scRNA-Seq on infected and uninfected wounds. The authors sought to understand how infection with E. faecalis influences the transcriptional profile of healing wounds. The analysis demonstrated that there is a unique transcriptional profile in infected wounds with specific changes in macrophages, keratinocytes, and fibroblasts. They also speculated on potential crosstalk between macrophages and neutrophils and macrophages and endothelial cells using NicheNet analysis and CellChat. Overall the data suggest that infection causes keratinocytes to not fully transition which may impede their function in wound healing and that the infection greatly influenced the transcriptional profile of macrophages and how they interact with other cells.

      Strengths:

      It is a useful dataset to help understand the impact of wound infection on the transcription of specific cell types. The analysis is very thorough in terms of transcriptional analysis and uses a variety of techniques and metrics.

      Weaknesses:

      Some drawbacks of the study are the following. First, the fact that it only has two mice per group, and only looks at one time point after wounding decreases the impact of the study. Wound healing is a dynamic and variable process so understanding the full course of the wound healing response would be very important to understand the impact of infection on the healing wound. Including unwounded skin in the scRNA-Seq would also lend a lot more significance to this study. Another drawback of the study is that mouse punch biopsies are very different than human wounds as they heal primarily by contraction instead of reepithelialization like human wounds. So while the conclusions are generally supported the scope of the work is limited.

      Thank you for your thoughtful review and acknowledgment of the thoroughness of our analysis.

      First, the fact that it only has two mice per group, and only looks at one time point after wounding decreases the impact of the study.

      We acknowledge your concerns regarding the limitations of our study, particularly regarding the small number of mice per group and the examination of only one time point post-wounding. We agree that a more comprehensive analysis across multiple time points would provide a deeper understanding of the temporal changes induced by infection. While our primary focus in this study was to elucidate the foundational responses to bacteria-infected wounds, we attempted to augment our analysis by incorporating publicly available datasets of similar nature. However, these datasets lacked power in terms of cell number and populations. Nonetheless, we have bolstered our analysis by applying a crossentropy test on the integrated dataset and reporting its significance (Figure S1F), ensuring the robustness of our single-cell RNA sequencing datasets.

      Including unwounded skin in the scRNA-Seq would also lend a lot more significance to this study.

      We also recognize the significance of comparing infected wounds to unwounded skin to establish a baseline for transcriptional changes. While we attempted to incorporate publicly available unwounded skin samples into our analysis, we encountered limitations in the number of cells, particularly within the immune population. This constraint is addressed in the Limitations section of the manuscript.

      Another drawback of the study is that mouse punch biopsies are very different than human wounds as they heal primarily by contraction instead of re-epithelialization like human wounds.

      Regarding the concern about differences between murine and human wound healing mechanisms, we took measures during tissue isolation to mitigate this issue, extracting incisions of the wounds rather than contracted tissues. Despite the primary mode of wound closure in mice being contraction, we believe our analysis still offers valuable insights into cellular responses to infection relevant to human wound healing.

      We appreciate your constructive criticism of our study. Despite these constraints, we believe our work provides valuable insights into the transcriptional changes induced by infection in healing wounds.

      Reviewer #2 (Public Review):

      Summary:

      The authors have performed a detailed analysis of the complex transcriptional status of numerous cell types present in wounded tissue, including keratinocytes, fibroblasts, macrophages, neutrophils, and endothelial cells. The comparison between infected and uninfected wounds is interesting and the analysis suggests possible explanations for why infected wounds are delayed in their healing response.

      Strengths:

      The paper presents a thorough and detailed analysis of the scRNAseq data. The paper is clearly written and the conclusions drawn from the analysis are appropriately cautious. The results provide an important foundation for future work on the healing of infected and uninfected wounds.

      Weaknesses:

      The analysis is purely descriptive and no attempt is made to validate whether any of the factors identified are playing functional roles in wound healing. The experimental setup is analyzing a single time point and does not include a comparison to unwounded skin.

      We are thankful for your acknowledgment of the thoroughness of our analysis and the cautious nature of our conclusions.

      The analysis is purely descriptive, and no attempt is made to validate whether any of the factors identified are playing functional roles in wound healing.

      Regarding your concern about the purely descriptive nature of our analysis and the lack of functional validation of identified factors, we agree on the importance of understanding the functional roles of transcriptional changes in wound healing. To address this limitation, we plan to conduct functional experiments, such as perturbation assays or in vivo validation studies, to validate the roles of specific factors identified in our analysis.

      The experimental setup is analyzing a single time point and does not include a comparison to unwounded skin.

      We acknowledge the importance of comparing wounded tissue to unwounded skin to establish a baseline for understanding transcriptional changes. This point is noted and acknowledged in the limitations section of our manuscript.

      We appreciate your feedback and assure you that we will consider your suggestions in future iterations of our research.

      Recommendations For The Authors:

      We are grateful for the positive overall assessment of our revised work by the reviewers. Critical comments on specific aspects of our work are listed verbatim below followed by our responses.

      Reviewer 1 (Recommendations for the Authors):

      (1) The figures are a bit cluttered and hard to parse out. The different parts of the figure seem to be scattered all over the place with no consistent order.

      Thank you for your feedback regarding the figures in our manuscript. We acknowledge your concern that some panels may appear cluttered and challenging to navigate. In response, we made concerted efforts to declutter certain panels, taking into account page size constraints and ensuring a minimum font size for readability.

      (2) I didn't really understand what the last sentence on page 6 meant. Is this meant to say that these could be biomarkers of infection?

      We thank the reviewer for noting this lack of clarity. We revised the statement.

      Updated manuscript (lines 111-113)

      “Overall, the persistent E. faecalis infection contributed to higher Tgfb1 expression, whilst Pdgfa levels remained low, correlating with delayed wound healing.”

      (3) >(3) A reference on page 19 didn't format correctly.

      We thank the reviewer for catching the typos. We corrected the reference formatting.

      Updated manuscript (lines 503-505)

      “We confirm the immune-suppressive role of E. faecalis in wound healing, consistent with previous findings in different experimental settings (Chong et al., 2017; Kao et al., 2023; Tien et al., 2017).”

      (4) The title doesn't really address the scope of the finding which goes beyond immunomodulatory.

      The reviewer is correct! We therefore revised the title to cover all aspects of the study as:

      “Decoding the complexity of delayed wound healing following Enterococcus faecalis infection”

      Reviewer 2 (Recommendations for the Authors):

      (1) On page 6, the expression of Tgfb1 is described as "aggravated" by wounding alone. I am not sure whether this means Tgfb1 levels are increased or decreased. It appears from the data that it is increased, which was confusing to me since I interpreted "aggravated" as meaning decreased. So perhaps a different more straightforward word could be used to describe the data.

      We modified this ambiguous statement to:

      Updated manuscript (lines 105-106)

      “By contrast, wounding alone resulted in higher transforming growth factor beta 1 (Tgfb1) expression.”

      (2) On page 7, the authors state that "cells from infected wounds...demonstrated distinct clustering patterns compared to cells from uninfected wounds (Figure S1F)" but when I look at the data in this figure, I cannot really see a difference. Perhaps the differences could be more clearly highlighted?

      Thank you for pointing out this issue. We appreciate the reviewer's comment. We utilized the crossentropy test for statistical comparison, employing UMAP embedding space data. While the data underwent batch correction based on infection status, the UMAP plots for each condition may appear visually similar. However, it's important to note that the number of cells per clusters between the infected and uninfected conditions varies significantly. This aspect influences the selection of points (cells) and their nearest neighbours for statistical testing within each cluster in the embedding space. To address this concern, we have included a table indicating the number of cells per cell type alongside the plot (Figure S1F), providing additional context for the interpretation of our results.

      Author response table 1.

      Author response image 1.

      (3) On page 8, Zeb2hi cells are described as "immunosuppressive" and yet the genes are highlighted to express in include Cxcl2 and IL1b which I would classify as inflammatory, not immunosuppressive. Can the authors be a bit more clear on why they describe the phenotype of these cells as "immunosuppressive"?

      We agree with the reviewer that this is a bit counterintuitive. Conventionally, CXCL2 is thought to be chemoattractant for neutrophil recruitment. However, the infection-specific keratinocyte cluster expressing Cxcl2, Il1b, Wfdc17 along with Zeb2 and Thbs1 indicate their myeloid-derived suppressor cell-like features, which play immunosuppressive roles during infection and in cancer (Alshetaiwi et al., 2020; Siriwach et al., 2022; Veglia et al., 2021).

      Updated manuscript (lines 159-163)

      “As the barrier to pathogens, keratinocytes secrete a broad range of cytokines that can induce inflammatory responses (Alshetaiwi et al., 2020; Siriwach et al., 2022; Veglia et al., 2021). However, Zeb2hi keratinocytes co-expressing Cxcl2, Il1b, and Wfdc17, indicate myeloidderived suppressor cell-like phenotype which implies an immunosuppressive environment (Hofer et al., 2021; Veglia et al., 2021).”

      (4) On pages 8-9, Keratinocytes are described to express MHC class II. I find this quite unexpected since class II is usually thought to be expressed primarily by APCs such as DCs and B cells. Is there a precedent for keratinocytes to express class II? The authors should acknowledge that this is unexpected and in need of further validation, or support the claim with references in which class II expression has been previously observed on keratinocytes (and is thus not unexpected)

      Although MHC class II expression is predominantly on immune cells, an antigen-presenting role for keratinocytes has been reported in many studies (Banerjee et al., 2004; Black et al., 2007; Carr et al., 1986; Gawkrodger et al., 1987; Jiang et al., 2020; Li et al., 2022; Oh et al., 2019; Tamoutounour et al., 2019). Therefore, antigen-presenting role of keratinocytes is known and expected, and we think that this should be further investigated in in the context of wound infection.

      Updated manuscript (lines 177-179)

      “These genes are associated with the major histocompatibility complex (MHC) class II, suggesting a self-antigen presenting keratinocyte population, which have a role in costimulation of T cell responses (Meister et al., 2015; Tamoutounour et al., 2019).”

      REFERENCES

      Alshetaiwi, H., Pervolarakis, N., McIntyre, L. L., Ma, D., Nguyen, Q., Rath, J. A., Nee, K., Hernandez, G., Evans, K., Torosian, L., Silva, A., Walsh, C., & Kessenbrock, K. (2020). Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Science Immunology, 5(44), eaay6017. https://doi.org/10.1126/sciimmunol.aay6017

      Banerjee, G., Damodaran, A., Devi, N., Dharmalingam, K., & Raman, G. (2004). Role of keratinocytes in antigen presentation and polarization of human T lymphocytes. Scandinavian Journal of Immunology, 59(4), 385–394. https://doi.org/10.1111/j.0300-9475.2004.01394.x

      Black, A. P. B., Ardern-Jones, M. R., Kasprowicz, V., Bowness, P., Jones, L., Bailey, A. S., & Ogg, G. S. (2007). Human keratinocyte induction of rapid effector function in antigen-specific memory CD4+ and CD8+ T cells. European Journal of Immunology, 37(6), 1485–1493. https://doi.org/10.1002/eji.200636915

      Carr, M. M., McVittie, E., Guy, K., Gawkrodger, D. J., & Hunter, J. A. (1986). MHC class II antigen expression in normal human epidermis. Immunology, 59(2), 223–227.

      Gawkrodger, D. J., Carr, M. M., McVittie, E., Guy, K., & Hunter, J. A. (1987). Keratinocyte expression of MHC class II antigens in allergic sensitization and challenge reactions and in irritant contact dermatitis. The Journal of Investigative Dermatology, 88(1), 11–16. https://doi.org/10.1111/1523-1747.ep12464641

      Jiang, Y., Tsoi, L. C., Billi, A. C., Ward, N. L., Harms, P. W., Zeng, C., Maverakis, E., Kahlenberg, J. M., & Gudjonsson, J. E. (2020). Cytokinocytes: The diverse contribution of keratinocytes to immune responses in skin. JCI Insight, 5(20), e142067, 142067. https://doi.org/10.1172/jci.insight.142067

      Li, D., Cheng, S., Pei, Y., Sommar, P., Kärner, J., Herter, E. K., Toma, M. A., Zhang, L., Pham, K., Cheung, Y. T., Liu, Z., Chen, X., Eidsmo, L., Deng, Q., & Xu Landén, N. (2022). Single-Cell Analysis Reveals Major Histocompatibility Complex II‒Expressing Keratinocytes in Pressure Ulcers with Worse Healing Outcomes. The Journal of Investigative Dermatology, 142(3 Pt A), 705–716. https://doi.org/10.1016/j.jid.2021.07.176

      Oh, S., Chung, H., Chang, S., Lee, S.-H., Seok, S. H., & Lee, H. (2019). Effect of Mechanical Stretch on the DNCB-induced Proinflammatory Cytokine Secretion in Human Keratinocytes. Scientific Reports, 9(1), 5156. https://doi.org/10.1038/s41598-019-41480-y

      Siriwach, R., Ngo, A. Q., Higuchi, M., Arima, K., Sakamoto, S., Watanabe, A., Narumiya, S., & Thumkeo, D. (2022). Single-cell RNA sequencing identifies a migratory keratinocyte subpopulation expressing THBS1 in epidermal wound healing. iScience, 25(4), 104130. https://doi.org/10.1016/j.isci.2022.104130

      Tamoutounour, S., Han, S.-J., Deckers, J., Constantinides, M. G., Hurabielle, C., Harrison, O. J., Bouladoux, N., Linehan, J. L., Link, V. M., Vujkovic-Cvijin, I., Perez-Chaparro, P. J., Rosshart, S. P., Rehermann, B., Lazarevic, V., & Belkaid, Y. (2019). Keratinocyte-intrinsic MHCII expression controls microbiota-induced Th1 cell responses. Proceedings of the National Academy of Sciences of the United States of America, 116(47), 23643–23652. https://doi.org/10.1073/pnas.1912432116

      Veglia, F., Sanseviero, E., & Gabrilovich, D. I. (2021). Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nature Reviews. Immunology, 21(8), 485–498. https://doi.org/10.1038/s41577-020-00490-y

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #3 (Public Review):

      Summary:

      It has been proposed in the literature, that the ATP release channel Panx1 can be activated in various ways, including by tyrosine phosphorylation of the Panx1 protein. The present study reexamines the commercial antibodies used previously in support of the phosphorylation hypothesis and the presented data indicate that the antibodies may recognize proteins unrelated to Panx1. Consequently, the authors caution about the use and interpretation of results obtained with these antibodies.

      Strengths:

      The manuscript by Ruan et al. addresses an important issue in Panx1 research, i.e. the activation of the channel formed by Panx1 via protein phosphorylation. If the authors' conclusions are correct, the previous claims for Panx1 phosphorylation on the basis of the commercial anti-phospho-Panx1 antibodies would be in question.

      This is a very detailed and comprehensive analysis making use of state-of-the-art techniques, including mass spectrometry and phos-tag gel electrophoresis.

      In general, the study is well-controlled as relating to negative controls.

      The value of this manuscript is, that it could spawn new, more function-oriented studies on the activation of Panx1 channels.

      Weaknesses:

      Although the manuscript addresses an important issue, the activation of the ATP-release channel Panx1 by protein phosphorylation, the data provided do not support the firm conclusion that such activation does not exist. The failure to reproduce published data obtained with commercial anti-phospho Panx1 antibodies can only be of limited interest for a subfield.

      (1) The title claiming that "Panx1 is NOT phosphorylated..." is not justified by the failure to reproduce previously published data obtained with these antibodies. If, as claimed, the antibodies do not recognize Panx1, their failure cannot be used to exclude tyrosine phosphorylation of the Panx1 protein. There is no positive control for the antibodies.

      The full title of our manuscript is “Human Pannexin 1 Channel is NOT Phosphorylated by Src Tyrosine Kinase at Tyr199 and Tyr309”. The major conclusion of our manuscript shall not be extended to the claim that “Panx1 is NOT phosphorylated”. This is by no means our conclusion. In fact, the LC-MS/MS data from both ours and others have shown that PANX1 is phosphorylated at both serine and tyrosine sites1. However, we provided solid evidence that Tyr199 and Tyr309 of human PANX1 are not effective substrate of the Src kinase.

      We did provide several positive controls for the antibodies in our study. We showed that the anti-PANX1 and anti-Src antibodies unambiguously recognized PANX1 and Src, respectively (Figure 3A), and that a pan-specific phosphotyrosine antibody (P-Tyr-100) unambiguously recognized phosphorylated Src (Figure 3A)—as expected—but did not recognize PANX1. In addition, we demonstrated that the two antibodies in question (anti-PANX1-pY198 and anti-PANX1-pY308) did produce signals in our western blot analysis, but we provided compelling evidence that the bands produced by these antibodies do not correspond to PANX1 (Figure 2B).

      (2) The authors claim that exogenous SRC expression does not phosphorylate Y198. DeLalio et al. 2019 show that Panx1 is constitutively phosphorylated at Y198, so an effect of exogenous SRC expression is not necessarily expected.

      We have unambiguously identified peptide fragments containing non-phosphorylated Y198 in our LC-MS/MS experiment, none corresponds to a phosphorylated Y198. Therefore, our LC-MS/MS data doesn’t support the notion that Panx1 is constitutively phosphorylated at Y198.

      (3) The authors argue that the GFP tag of Panx1at the COOH terminus does not interfere with folding since the COOH modified (thrombin cleavage site) Panx1 folds properly, forming an amorphous glob in the cryo-EM structure. However, they do not show that the COOH-modified Panx1 folds properly. It may not, because functional data strongly suggest that the terminal cysteine dives deep into the pore. For example, the terminal cysteine, C426, can form a disulfide bond with an engineered cysteine at position F54 (Sandilos et al. 2012).

      Our manuscript included results of using a non-GFP tagged PANX1 construct (Figure 2-figure supplement 1). We didn’t notice any difference for PANX1 phosphorylation between GFP-tagged and non-GFP-tagged PANX1. Therefore, the folding of the C-terminal tail of PANX1 doesn’t affect the conclusion of our study.

      (4) The authors dismiss the additional arguments for tyrosine phosphorylation of Panx1 given by the various previous studies on Panx1 phosphorylation. These studies did not, as implied, solely rely on the commercial anti-phospho-Panx1 antibodies, but also presented a wealth of independent supporting data. Contrary to the authors' assertion, in the previous papers the pY198 and pY308 antibodies recognized two protein bands in the size range of glycosylated and partial glycosylated Panx1.

      We didn’t dismiss additional arguments for the Src-dependent PANX1 regulation. In fact, in the discussion of our manuscript, we acknowledged the fact that Src may still be involved in PANX1 regulation, but probably through indirect mechanisms. In the two previous studies2,3, it’s unclear if the multimeric bands detected by pY198/pY308 antibodies correspond to glycosylated PANX1 or not, as the authors did not overlay the protein markers with their blots. In particular, the migration pattern of PANX1 changes across different western blot images from DeLalio et al2. It’s also worth noting that none of these “independent supporting data” in the two previous studies provided direct evidence that Src can phosphorylate pY198/pY308.

      (5) A phosphorylation step triggering channel activity of Panx1 would be expected to occur exclusively on proteins embedded in the plasma membrane. The membrane-bound fraction is small in relation to the total protein, which is particularly true for exogenously expressed proteins. Thus, any phosphorylated protein may escape detection when total protein is analyzed. Furthermore, to be of functional consequence, only a small fraction of the channels present in the plasma membrane need to be in the open state. Consequently, only a fraction of the Panx1 protein in the plasma membrane may need to be phosphorylated. Even the high resolution of mass spectroscopy may not be sufficient to detect phosphorylated Panx1 in the absence of enrichment processes.

      We agree with the reviewer that only plasma membrane-residing Panx1 phosphorylation is functionally relevant. Interestingly, however, previous studies actually analyzed total protein from cell lysate and concluded that PANX1 is phosphorylated at Y198 and Y3082,3. This has motivated our analysis, in which we found that the phosphorylation events cannot be detected when using whole cell lysate. Therefore, we have also conducted an electrophysiology experiment by comparing conditions with/without active Src kinase (Figure 7). Our result indicates that PANX1 current is not affected by the presence of Src. This result suggests that even if there might be minor Src kinase phosphorylation beyond detection limit of western blot or mass spectrometry, they may not be functionally significant as well.

      (6) In the electrophysiology experiments described in Figure 7, there is no evidence that the GFP-tagged Panx1 is in the plasma membrane. Instead, the image in Figure 7a shows prominent fluorescence in the cytoplasm. In addition, there is no evidence that the CBX-sensitive currents in 7b are mediated by Panx1-GFP and are not endogenous Panx1. Previous literature suggests that the hPanx1 protein needs to be cleaved (Chiu et al. 2014) or mutated at the amino terminus (Michalski et al 2018) to see voltage-activated currents, so it is not clear that the currents represent hPANX1 voltage-activated currents.

      Our previous analysis has already shown that endogenous current of non-transfected cells is not sensitive to CBX4. Therefore, the CBX-sensitive current in cells overexpressed PANX1 is from PANX1-GFP. It should be noted that when protein is overexpressed, it tends to accumulate at different intracellular membranes during protein synthesis/maturation. However, this doesn’t affect a portion of the protein to be trafficked to the plasma membrane. In the paper from Michalski et al 2018, it was shown that WT human/mouse PANX1 displayed voltage-dependent activation5. Although the current is relatively small, it is clearly distinguishable from non-transfected HEK and CHO cells. This voltage-dependent activation is also sensitive to CBX, consistent with our measurement (Figure 7)4. When GS is introduced at the N-terminus, the voltage-dependent activation of human/mouse PANX1 is significantly boosted, likely due to the altered NTH conformation resulting from the N-terminal extension.

      Recommendations for the authors:

      Reviewer #3 (Recommendations For The Authors):

      Literature quotes are still problematic. Why are secondary papers quoted instead of the original work? At least quote reviews by authors who published the original findings.

      We appreciate the reviewer pointing this out. We have carefully checked our references and made sure that the original literature is cited.

      Why does wtPanx1 run close to the 37 kD marker (Figure 2 supplement 1) instead of close to 50 kD as shown in the previous papers using the pY198 and pY308 antibodies?

      It is a common observation that membrane proteins migration in SDS-PAGE gel doesn’t correlate with their formula molecular weight, also known as “gel shifting”6–8. The molecular mechanism of this phenomenon remains complex. Therefore, simply relying on protein molecular standard could not unambiguously identify PANX1 protein band. This is an issue for identifying PANX1 band, especially in light of the fact that some antibodies may not be very specific (see Figure 6B). In our experiment, we have correlated the in-gel fluorescence and western blot signal which allowed us to determine the protein band corresponding to PANX1. It is worth noting that in Figure S3 of DeLalio 2019, the PANX1 is detected at 37 kDa2. However, in many other panels of the paper, PANX1 is detected at close to 50 kDa (for example, Figure S2B).

      Figure 6, supplement 1: why are there oligomers observed in the absence of crosslinking? Why is there no shift in the size of the "oligomers" in response to glycosidase F?

      It is common to observe multimeric membrane proteins, including PANX1, forming oligomeric bands in SDS-PAGE gels, likely because they are not fully denatured or disassembled. PANX1 also contains several free cysteines, which may non-specifically crosslink subunits. There is actually a small shift for the 75 kDa band (dimer) in Figure 6, supplement 1. For higher molecular weight bands, this small shift may not be apparent due to the limited resolution of the gel.

      A positive control for the antibodies used is missing. The authors argue that such controls are not available, since these commercial antibodies are "proprietary".

      We did provide several positive controls for the antibodies in our study. We showed that the anti-PANX1 and anti-Src antibodies unambiguously recognized PANX1 and Src, respectively (Figure 3A), and that a pan-specific phosphotyrosine antibody (P-Tyr-100) unambiguously recognized phosphorylated Src (Figure 3A)—as expected—but did not recognize PANX1. In addition, we demonstrated that the two antibodies in question (anti-PANX1-pY198 and anti-PANX1-pY308) did produce signals in our western blot analysis, but we provided compelling evidence that the bands produced by these antibodies do not correspond to PANX1 (Figure 2B).

      Unfortunately, the epitopes that Millipore Sigma used to generate anti-PANX1-pY198 and anti-PANX1-pY308 are not available. The description of the immunogen from Millipore Sigma website states that “A linear peptide corresponding to 12 amino acids surrounding phospho-Tyr198 of murine Pannexin-1” and “A linear peptide corresponding to 13 amino acids surrounding phosphotyrosine 308 of rat pannexin-1”. However, these immunogen peptides are not available for us to purchase.

      References

      (1) Nouri-Nejad, D. et al. Pannexin 1 mutation found in melanoma tumor reduces phosphorylation, glycosylation, and trafficking of the channel-forming protein. Mol Biol Cell 32, (2021).

      (2) DeLalio, L. J. et al. Constitutive SRC-mediated phosphorylation of pannexin 1 at tyrosine 198 occurs at the plasma membrane. Journal of Biological Chemistry 294, (2019).

      (3) Weilinger, N. L. et al. Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity. Nat Neurosci 19, (2016).

      (4) Ruan, Z., Orozco, I. J., Du, J. & Lü, W. Structures of human pannexin 1 reveal ion pathways and mechanism of gating. Nature 584, (2020).

      (5) Michalski, K., Henze, E., Nguyen, P., Lynch, P. & Kawate, T. The weak voltage dependence of pannexin 1 channels can be tuned by N-terminal modifications. Journal of General Physiology 150, (2018).

      (6) Rath, A., Cunningham, F. & Deber, C. M. Acrylamide concentration determines the direction and magnitude of helical membrane protein gel shifts. Proc Natl Acad Sci U S A 110, (2013).

      (7) Rath, A. & Deber, C. M. Correction factors for membrane protein molecular weight readouts on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem 434, (2013).

      (8) Rath, A., Glibowicka, M., Nadeau, V. G., Chen, G. & Deber, C. M. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci U S A 106, (2009).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1:

      Summary:

      The evolution of non-shivering thermogenesis is of fundamental importance to understand. Here, in small mammals, the contractile apparatus of the muscle is shown to increase energy expenditure upon a drop in ambient temperature. Additionally, in the state of torpor, small hibernators did not show an increase in energy expenditure under the same challenge.

      Strengths:

      The authors have conducted a very well-planned study that has sampled the muscles of large and small hibernators from two continents. Multiple approaches were then used to identify the state of the contractile apparatus, and its energy expenditure under torpor or otherwise.

      Weaknesses:

      There was only one site of biopsy from the animals used (leg). It would be interesting to know if non-shivering thermogenesis is something that is regionally different in the animal, given the core body and distal limbs have different temperatures.

      We thank the reviewer for their time and effort in reviewing our manuscript. Furthermore, we agree that it would be of interest to perform similar experiments upon different muscle sites in these animals. This is of particular interest as in some mammals, such as mice, distal limbs do not shiver and therefore non-shivering thermogenesis may play a more prominent role in heat regulation. A paper from Aydin et al., demonstrated that when shivering muscles (soleus) were prevented undergoing non-shivering thermogenesis via knock-out of UCP1 and were then exposed to cold temperatures, the force production of these muscles was significantly reduced due to prolonged shivering [1]. These results do suggest that even in shivering muscle, non-shivering thermogenesis plays a key role in the generation of heat for survival and for the maintenance of muscle performance. Furthermore, there is evidence from garden dormice that muscle temperature during torpor is slightly warmer than abdominal temperature and slighter cooler that heart temperature which is 7-8°C than abdominal suggesting the existence of non-shivering thermogenesis in skeletal and cardiac muscles (Giroud et al. in prep) [2]. We have added this information and reference into our discussion to reflect this important point (Discussion, paragraph 6, “As the biopsies which were used…”).

      Reviewer #2:

      Summary:

      The authors utilized (permeabilized) fibers from muscle samples obtained from brown and black bears, squirrels, and Garden dormice, to provide interesting and valuable data regarding changes in myosin conformational states and energetics during hibernation and different types of activity in summer and winter. Assuming that myosin structure is similar between species then its role as a regulator of metabolism would be similar and not different, yet the data reveal some interesting and perplexing differences between the selected hibernating species.

      Strengths:

      The experiments on the permeabilized fibers are complementary, sophisticated, and well-performed, providing new information regarding the characteristics of skeletal muscle fibers between selected hibernating mammalian species under different conditions (summer, interarousal, and winter).

      The studies involve complementary assessments of muscle fiber biochemistry, sarcomeric structure using X-ray diffraction, and proteomic analyses of posttranslational modifications.

      Weaknesses:

      It would be helpful to put these findings on permeabilized fibers into context with the other anatomical/metabolic differences between the species to determine the relative contribution of myosin energetics (with these other contributors) to overall metabolism in these different species, including factors such as fat volume/distribution.

      We thank the reviewer for the time and effort they have put into reviewing our paper and are grateful for the helpful suggestions which we believe, enhances our work (please see below for detailed answers to critics).

      Reviewer #3:

      Summary and strengths:

      The manuscript, "Remodelling of skeletal muscle myosin metabolic states in hibernating mammals", by Lewis et al, investigates whether myosin ATP activity may differ between states of hibernation and activity in both large and small mammals. The study interrogates (primarily) permeabilized muscle strips or myofibrils using several state-of-the-art assays, including the mant-ATP assay to investigate ATP utilization of myosin, X-ray diffraction of muscles, proteomics studies, metabolic tests, and computational simulations. The overall data suggests that ATP utilization of myosin during hibernation is different than in active conditions.

      A clear strength of this study is the use of multiple animals that utilize two different states of hibernation or torpor. Two large animal hibernators (Eurasian Brown Bear, American Black Bear) represent large animal hibernators that typically undergo prolonged hibernation. Two small animal hibernators (Garden Dormouse, 13 Lined Ground Squirrel) undergo torpor with more substantial reductions in heart rate and body temperature, but whose torpor bouts are interrupted by short arousals that bring the animals back to near-summer-like metabolic conditions.

      Especially interesting, the investigators analyze the impact that body temperature may have on myosin ATP utilization by performing assays at two different temperatures (8 and 20 degrees C, in 13 Lined Ground Squirrels).

      The multiple assays utilized provide a more comprehensive set of methods with which to test their hypothesis that muscle myosins change their metabolic efficiency during hibernation.

      We thank this reviewer for the effort and time they have put into carefully reviewing our manuscript and have taken on board their valuable suggestions to improve our manuscript (please see below for detailed answers to critics).

      Suggestions and potential weaknesses:

      While the samples and assays provide a robust and comprehensive coverage of metabolic needs and testing, the data is less categorical. Some of these may be dependent on sample size or statistical analysis while others may be dependent on interpretation.

      (1) Statistical Analysis

      (1a) The results of this study often cannot be assessed properly due to a lack of clarity in the statistical tests.

      For example, the results related to the large animal hibernators (Figure 1) do not describe the statistical test (in the text of the results, methods, or figure legends). (Similarly for figure 6 and Supplemental Figure 1). Further, it is not clear whether or when the analysis was performed with paired samples. As the methods described, it appears that the Eurasian Brown Bear data should be paired per animal.

      We thank the reviewer for these important points and have added information upon the statistical tests used where previously missing in each figure legend. Details on the statistical testing used for figure 6 are listed in the methods section, paragraph 18, “All statistical analysis of TMT derived protein expression data…”

      (1b) The statistical methods state that non-parametric testing was utilized "where data was unevenly distributed". Please clarify when this was used.

      We have now clariid all statistical tests used in the figure legends.

      (1c) While there are two different myosin isoforms, the isoform may be considered a factor. It is unclear why a one-way ANOVA is generally used for most of the mant-ATP chase data.

      The reviewer is right, in our analysis, we haven’t considered ‘myosin isoforms’ as a factor. One of the main reasons for that is because we have decided to treat fibres expressing different myosin heavy chain isoforms as totally separated entities (not interconnected).

      (1d) While the technical replicates on studies such as the mant-ATP chase assay are well done, the total biological replicates are small. A consideration of the sample power should be included.

      Unfortunately, obtaining additional biological samples from these unique species is challenging. Hence, we have added a statement in the Discussion section. This statement focuses on the potential benefits of increasing sample size to increase statistical power (Discussion, paragraph 2, “In contrast to our study hypothesis…”

      (1e) An analysis of the biological vs statistical significance should be considered, especially for the mant-ATP chase data from the American Black Bear, where there appear to be shifts between the summer and winter data.

      We agree that it is important to be careful when drawing conclusions from data only based on p-values. We agree that the modest differences observed in these data on American Black bear, whilst not significant, are worth noting and we have added these considerations into the manuscript (Discussion, paragraph 2, “In contrast to our study hypothesis…).

      (2) Consistency of DRX/SRX data.

      (2a) The investigators performed both mant-ATP chase and x-ray diffraction studies to investigate whether myosin heads are in an "on" or "off" state. The results of these two studies do not appear to be fully consistent with each other, which should not be a surprise. The recent work of Mohran et al (PMID 38103642) suggests that the mant-ATP-predicted SRX:DRX proportions are inconsistent with the position of the myosin heads. The discussion appears to lack a detailed assessment of this prior work and lack a substantive assessment contrasting the differing results of the two assays in the current study. i.e. why the current study's mant-ATP chase and x-ray diffraction results differ.

      Prior works on skeletal muscle (observing discrepancies between Mant-ATP chase assay and X-ray diffraction) are rather scarce. Adding a comprehensive discussion about this may be beyond the scope of current study and would distract the reader from the main topic. For this reason, we have not added any section. Note that, we have other manuscripts in preparation that are specifically dedicated to the discrepancy.

      (2b) The discussion of the current study's x-ray diffraction data relating to the I_1,1/I_1,0 ratio and how substantially different this is to the M6 results merits discussion. i.e. how can myosin both be more primed to contract during IBA versus torpor (according to intensity ratio), but also have less mass near the thick filament (M6).

      The I1,1/I1,0 ratio indicates a subtle mass shift towards the myosin thick filament whilst the M6 spacing shows a more compliant thick filament. These results are not incompatible and rely on interpretation of the X-ray diffraction patterns. To avoid any confusion and avoid distracting the reader from the main topic, we have decided not to speculate there.

      (3) Possible interactions with Heat Shock Proteins

      Heat Shock Proteins (HSPs), such as HSP70, have been shown to be differential during torpor vs active states. A brief search of HSP and myosin reveals HPSs related to thick filament assembly and Heat Shock Cognate 70 interacting with myosin binding protein C. Especially given the author's discussion of protein stability and the potential interaction with myosin binding protein C and the SRX state, the limitation of not assessing HSPs should be discussed. (While HSP's relation to thick filament assembly might conceivably modify the interpretation of the M3 x-ray diffraction results, this reviewer acknowledges that possibility as a leap.)

      The reviewer raises an interesting and potentially important of the potential impact of HSP and their interaction with the thick filament during hibernation. We have added a section into the discussion of this manuscript regarding this, with particular impact upon the HSP70 acting as a chaperone for myosin binding protein, however we feel that it is important to point out that HSPs have only been shown to interact with MYBPC3, a cardiac isoform of this protein which is not present in skeletal muscle [3]. (Discussion, paragraph 5, “Of potential further interest to the regulation of myosin…”).

      Despite the above substantial concerns/weaknesses, this reviewer believes that this manuscript represents a valuable data set.

      Other comments related to interpretation:

      (4) The authors briefly mention the study by Toepfer et al [Ref 25] and that it utilizes cardiac muscles. There would benefit from increased discussion regarding the possible differences in energetics between cardiac and skeletal muscle in these states.

      As this manuscript focuses solely on skeletal muscle. We believe that introducing comparisons between cardiac and skeletal muscles would confuse the reader. These types of muscles have very different regulations of SRX/DRX as an example. Note that we are preparing a manuscript focusing on cardiac muscle and hibernation.

      (5) The author's analysis of temperature is somewhat limited.

      (5a) First, the authors use 20 degrees C (room temperature), not 37 degrees C, a more physiologic body temperature for large mammals. While it is true that limbs are likely at a lower temperature, 20 degrees C seems substantially outside of a normal range. Thus, temperature differences may have been minimized by the author's protocol.

      The authors agree that the experimental set up to perform these single fiber studies at slightly higher temperatures may have been more beneficial to replicate the physiological conditions of these hind leg muscle in the analyzed animals. However, previous work has shown that the resting myosin dynamics are in fact stable at temperatures between 20-30 degrees Celsius in type I, type II and cardiac mammalian muscle fibers [4].

      (5b) Second, the authors discuss the possibility of myosin contributing to non-shivering thermogenesis. The magnitude of this impact should be discussed. The suggestion of myosin ATP utilization also implies that there is some basal muscle tone (contraction), as the myosin ATPase utilizes ATP to release from actin, before binding and hydrolyzing again. Evidence of this tone should be discussed.

      The reviewer is raising an interesting point and it would indeed be interesting to assess the magnitude of the impact and whether a basal muscle tone exists. Assessing the magnitude of the impact, is not an easy task and would require very advanced simulations which we are not experts in unfortunately. As for basal muscle tone, this is difficult to say as myosin is not actually binding to actin but hydrolyzing ATP at a faster pace during hibernation. We then think that the relation between our data and basal muscle tone is unclear. Hence, we have decided not to discuss these points in the manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      This is a very interesting paper. I have some minor suggestions to help improve it.

      Is there any way to estimate the contribution of contractile apparatus to energy expenditure in reference to what is being generated at SERCA in the resting muscle under the various states examined?

      This is an interesting idea however, as far as we know, this would be challenging experimentally (in the hibernating mammals) and difficult to achieve in a reliable manner.

      It is important to emphasize that while BAT has been traditionally seen to be the site of NST, the skeletal muscle is very important, especially in large mammals, where BAT is going to be a very small % of the body and unlikely to be able to adequately provide heat. The addition of the contractile apparatus to SERCA as a heat generator at rest is very important -- also, the activation of ryanodine receptor Ca2+ to increase the local [Ca2+] at SERCA to generate heat has also recently been shown and should be mentioned (Meizoso-Huesca et al 2022, PNAS; Singh et al 2023, PNAS) alongside the work of Bal et al 2012 etc...

      We have included these mechanisms and references into the manuscript discussion [5, 6]. Discussion, paragraph 4, “A critical difference between the large hibernators…”

      Are you able to report the likely proportion of type II fibers in the muscles you have sampled?

      The fiber type breakdown for all animals used in this study is reported in supplementary table 1.

      The sampling of muscle from the legs of live animals is sensible and convenient. Is it possible different muscles in the body have different levels of NST, changes in energy expenditure in torpor, and other states?

      As discussed in the public review we have added to the discussion of this manuscript to reflect upon this important point of potentially different results from different muscle sites in these animals.

      Reviewer #2 (Recommendations For The Authors):

      Is it likely that the proportion of fast and slow myosin-heavy chains within the selected sample of myofibers from the different mammals contributes to the overall differences in the energetics of different conformational states? In living animals, how does the relative contribution of the energetics from different muscle fiber types compare with the contribution from other organs to the overall regulation of metabolism during activities in summer, winter, or periods of intermittent arousal?

      Fiber types in mammals can be vastly different between species as well as having a considerable amount of plasticity to change within each species upon specific stimuli. Furthermore, some mammals also have specific myosin heavy chain isoforms which have considerable expression, for example, myosin heavy chain 2B which is expressed in rodents such as mice but not larger mammals such as humans.

      In the manuscript, we demonstrate that there is no significant change in the ATP usage by myosin in resting muscle in any of the species which we examined (Fig 1 F, L; Fig 2 E, J). The relatively high mitochondrial density of type I fibers when compared to type II fibers may contribute to a higher overall requirement of energy storage primarily via lipid oxidation. However, mitochondrial respiration is heavily suppressed during hibernation, so questions remain over the overall energy demand in hibernating muscle beyond myosin [7]. The fact that myosin ATP demand is relatively preserved in hibernating muscle suggests that skeletal muscle may be a relatively energy-demanding organ even during hibernation, we speculate in the manuscript this may be due to the requirement of maintaining muscular tone and function during this period of prolonged immobilization. This may be of relevance when one considers the almost complete shutdown of organs involved with food intake and breakdown such as the stomach and liver during hibernation. Furthermore, heart rate and breathing rates are vastly suppressed. Altogether, whilst is it difficult at this point to make an accurate estimate of energy demands between the different organs of hibernators, our data points to skeletal muscle to be a relatively high energy demand organ during these periods. When considering the difference between fiber type, again our data suggests that both type I and type II fibers have relatively similar energy demands during hibernation.

      The supplementary data are quite revealing as to how the myosin isoform composition is stable in some species but highly plastic in others in response to the same environmental/metabolic challenges. Why is the myosin heavy chain isoform (I and II) composition stable for brown bears but not for black bears between summer and winter? This is very interesting. For the Ground squirrel, there is remarkable plasticity between myosin heavy chain isoforms ( I and II) between summer, interbout arousal, and torpor. Yet in the Garden Dormouse, the myosin heavy chain isoform (I and II) composition is stable between these three activity states. The inconsistencies between and within species are perplexing and worthy of closer interrogation.

      The measurements and role of myosin energetics in different conformational states are interesting but need to be explained in context with other metabolic regulators for these hibernating mammals, especially because some species show remarkable plasticity whereas others show remarkable stability. For example, compare brown and black bears which show differences in the response of myosin composition the activity, interbout arousal, and torpor. Ground squirrels show remarkable plasticity in myosin isoform composition between activity states (and likely metabolic differences), but the Garden Dormouse has a remarkably stable myosin isoform composition during the three metabolic/environmental challenges. What mechanisms facilitate these modifications in some but not other mammals, even those of similar size? The differences are very interesting, worthy of follow-up, and may well contribute to further understanding the significance of the energetics of different myosin conformational states.

      We agree that the changes seen between these species are very interesting and worthy of further investigation. What would be of further interest would be to look at methods which would allow for even deeper phenotyping, such as single fiber proteomics, to allow for the assessment of the percentage of hybrid fibers and fibers undergoing any fiber type switch during hibernating periods. Our results do observe a modest, albeit not significant, increase in the number of type I muscle fibers in 13-lined ground squirrels and Garden dormice during torpor which is consistent with previous studies[8]. Previous studies have demonstrated that lower temperatures may promote a shift towards more oxidative type I muscle fibers in mammals[9]. This could be an explanation for why we see this specifically in the smaller hibernators, however as we demonstrate and discuss, these lower temperatures are vital for the survival of these smaller mammals during hibernation so it would be inconsistent to hypothesize that these shifts are for heat-production purposes. Further studies are warranted to understand the relevance of these shifts further, particularly those with a higher sample size. It would also be on interest to examine fiber type percentages during the progression these long hibernating periods to observe if these changes are progressive.

      As for the triggers and mechanisms which facilitate these changes to myosin dynamics, this is of current investigation by the field. One which may be of particular relevance to the changes seen during hibernation would that of steroid hormones previous research has demonstrated that steroid hormone levels in make and female bears change differentially[10]. This may be of relevance as the steroid hormone estradiol has been shown to slow the resting myosin ATP turnover via the binding of myosin RLC[11]. Considering these studies, future work which looks at hibernating animals of each sex as different groups may be fruitful.

      Reviewer #3 (Recommendations For The Authors):

      i. PDF Pg 8- Results- 'Myosin temperature sensitivity is lost in relaxed skeletal muscles fibers of hibernating Ictidomys tridecemlineatus.': An extra comma appears to be placed between "temperature, decrease".

      ii. PDF Pg 9- Results- 'Hyper-phosphorylation of Myh2 predictably stabilizes myosin backbone in hibernating Ictidomys tridecemlineatus.' (last paragraph): A parenthesis needs to be closed upon the first reference to "supplemental figures 2 and 3".

      iii. PDF Pg 15- Methods- 'Samples collection and cryo-preservation'- The authors use the term "individuals" in the 2nd line. Consider using "subjects".

      iv. PDF Pg 15- Methods- 'Samples collection and cryo-preservation' (2nd paragraph)- define "subadult" in approximate months or years.

      v. PDF Pg 15- Methods- 'Samples collection and cryo-preservation' (2nd paragraph)- The authors state that brown bears were located in "February and again ... in late June". Was this order of operations always held? If so, a comment about how the potential ageing from the hibernation (especially if sub-adult transitions to adulthood in this period) should be included.

      All samples were collected during the subadult period of the lifespan of each bear and therefore we do not think that there would be a potential aging affect observed considering the lifespan of this species to be 20-30 years.

      vi. PDF Pg 15- Methods- 'Samples collection and cryo-preservation' (3rd paragraph)- The justification for deprivation of feeding of black bears 24 hours prior to euthanasia should be included. A comment on how this might impact post-translational modifications or gene expression should be included.

      Animals are starved prior to prevent aspiration during euthanasia. Considering these samples are to be compared to animals which have not consumed food or water for five months the impact relative impact on PTMs and gene expression would be considered negligible.

      vii. PDF Pg 17- Methods- 'Mant-ATP chase experiments' (just after normalized fluorescence equation): The "Where" may be lowercase.

      viii. PDF Pg 17- Methods- 'Mant-ATP chase experiments' (last paragraph): The protocol for myosin staining, along with the antibody identification (source, catalog number) should be included.

      ix. PDF Pg 18- Methods- 'Post-translational Modification Peptide mapping': Define the makeup of the acrylamide gel and/or the source and catalog number.

      x. PDF Pg 18- Methods- 'Post-translational Modification Peptide mapping': The authors state that "Gel bands were washed..." Please specify which protein bands and if multiple bands (i.e. multiple isoforms) were isolated.

      We thank this reviewer for their careful reading of our manuscript, we have made the changes above as relevant.

      Reference list

      (1) Aydin, J., et al., Nonshivering thermogenesis protects against defective calcium handling in muscle. Faseb j, 2008. 22(11): p. 3919-24.

      (2) Stickler, S., Regional body temperatures and fatty acid compositions in hibernating garden dormice: a focus on cardiac adaptions. 2022, Vienna: Vienna. p. v, 49 Seiten, Illustrationen.

      (3) Glazier, A.A., et al., HSC70 is a chaperone for wild-type and mutant cardiac myosin binding protein C. JCI Insight, 2018. 3(11).

      (4) Walklate, J., et al., Exploring the super-relaxed state of myosin in myofibrils from fast-twitch, slow-twitch, and cardiac muscle. Journal of Biological Chemistry, 2022. 298(3).

      (5) Meizoso-Huesca, A., et al., Ca<sup>2+</sup> leak through ryanodine receptor 1 regulates thermogenesis in resting skeletal muscle. Proceedings of the National Academy of Sciences, 2022. 119(4): p. e2119203119.

      (6) Singh, D.P., et al., Evolutionary isolation of ryanodine receptor isoform 1 for muscle-based thermogenesis in mammals. Proceedings of the National Academy of Sciences, 2023. 120(4): p. e2117503120.

      (7) Staples, J.F., K.E. Mathers, and B.M. Duffy, Mitochondrial Metabolism in Hibernation: Regulation and Implications. Physiology, 2022. 37(5): p. 260-271.

      (8) Xu, R., et al., Hibernating squirrel muscle activates the endurance exercise pathway despite prolonged immobilization. Exp Neurol, 2013. 247: p. 392-401.

      (9) Yu, J., et al., Effects of Cold Exposure on Performance and Skeletal Muscle Fiber in Weaned Piglets. Animals (Basel), 2021. 11(7).

      (10) Frøbert, A.M., et al., Differential Changes in Circulating Steroid Hormones in Hibernating Brown Bears: Preliminary Conclusions and Caveats. Physiol Biochem Zool, 2022. 95(5): p. 365-378.

      (11) Colson, B.A., et al., The myosin super-relaxed state is disrupted by estradiol deficiency. Biochemical and biophysical research communications, 2015. 456(1): p. 151-155.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1:

      Comments on revised version:

      The authors have satisfactorily addressed my concerns.

      I suggest some minor edits, however. Line 747 does not mention MARK3 and neither does the figure 8 legend (just MARK2). It would be helpful if the authors could include references to the papers reporting the shown structures in the Figure 8 legend

      We have added MARK3 and related references in the revised Figure 8 legend.

      Reviewer #2:

      I would recommend that the catalog numbers from the different antibodies used in the study, mainly CST and Invitrogen are depicted in material and methods (see Methods/Recombinant proteins and general reagents).

      Thank you for the comment. We have now added the antibody catalog numbers in the revised methods section.

      I have one remark related to question number 5 (my question was not clear enough). I meant if the authors did look at the functional relevance of the residues implicated in the identified salt-bridge network/tethers. What happens to the proteins functionally when you mutate those residues? (represented on Fig. 8).

      Otherwise, the authors have satisfactorily addressed my concerns.

      Yes, we have analyzed the stability of the salt bridge interaction in the context of cysteine mutations, and our findings are described in the results section titled “Cysteine mutations alter critical structural interactions required for kinase allosteric regulation Figure 6)”. However, we have not performed mutational analysis of the salt bridge residues as we feel this would be beyond the scope of the current study.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review): Weaknesses:

      However, the molecular mechanisms leading to NPC dysfunction and the cellular consequences of resulting compartmentalization defects are not as thoroughly explored. Results from complementary key experiments using western blot analysis are less impressive than microscopy data and do not show the same level of reduction. The antibodies recognizing multiple nucleoporins (RL1 and Mab414) could have been used to identify specific nucleoporins that are most affected, while the selection of Nup98 and Nup107 is not well explained.

      The results for the Western blots are less impressive than single nuclei imaging analysis because the protocol for isolating brain nuclei is heterogeneous and includes non-neuronal cells. For this reason, we selected specific nucleoporins for Western blot studies to complement the nonspecificity of pan-NPC antibodies for which the detection is based on the glycosylated moieties. We reasoned that a combination of pan-NPC and select NUPs will give the strongest complementary validation for the mutant phenotype. We have discussed the rationale of NUP selection in discussion. In brief, we selected NUP107 as it is a major component of the Yscaffold complex and is a long-lived subunit of the NPCs (Boehmer et al., 2003; D'Angelo et al., 2009). NUP98 is a mobile nucleoporin and is associated with the central pore, nuclear basket and cytoplasmic filaments. Both NUPs have been implicated in degenerative disorders. (Eftekharzadeh et al., 2018; Wu et al., 2001).

      There is also no clear hypothesis on how Aβ pathology may affect nucleoporin levels and NPC function. All functional NCT experiments are based on reporters or dyes, although one would expect widespread mislocalization of endogenous proteins, likely affecting many cellular pathways.

      We agree that the interaction between Aβ pathology and the NPC remains a work in progress. We decided to rigorously characterize Aβ-mediated deficits in App KI neurons – using different approaches and in more than one animal model – before moving on to explore mechanisms in subsequent studies, which we think deserves more extensive experiments. We seek your understanding and have included in the discussion, possible mechanisms for direct and indirect Aβ-mediated disruption of NPCs. We have also included an additional study to show the disruption in the localization of an endogenous nucleocytoplasmic protein – CRTC1 (cAMP Regulated Transcriptional Coactivator), which is CREB coactivator responsive to neural activity. We observed under basal and also in tetrodotoxin-silenced conditions, there is much higher CRTC1 in the nucleus in App KI neurons relative to WT. This reflects the compromised permeability barrier that we observed via FRAP studies. (Supplementary Figure S15).

      The second part of this manuscript reports that in App KI neurons, disruption in the permeability barrier and nucleocytoplasmic transport may enhance activation of key components of the necrosome complex that include receptor-interacting kinase 3 (RIPK3) and mixed lineage kinase domain1 like (MLKL) protein, resulting in an increase in TNFα-induced necroptosis. While this is of potential interest, it is not well integrated in the study. This potential disease pathway is not shown in the very simple schematic (Fig. 8) and is barely mentioned in the Discussion section, although it would deserve a more thorough examination.

      The study of necroptosis is meant to showcase a single cellular pathway that requires nucleocytoplasmic transport for activation that is compromised and is relevant for AD. We agree there is much more to explore in this pathway but feel is outside the scope of this study. We have included a new illustration that models how damage to NPCs and permeability barrier results in enhanced vulnerability of App KI neurons for necroptosis (Supplemental figure S12).

      Reviewer #2 (Public Review):

      (1) Adding statistics and comparisons between wild-type changes at different times/ages to determine if the nuclear pore changes with time in wild-type neurons. The images show differences in the Nuclear pore in neurons from the wild-type mice, with time in culture and age. However, a rigorous statistical analysis is lacking to address the impact of age/development on NUP function. Although the authors state that nuclear pore transport is reported to be altered in normal brain aging, the authors either did not design their experiments to account for the normal aging mechanisms or overlooked the analysis of their data in this light.

      All our quantifications and statistical comparisons in neuron cocultures are time-matched between WT and App KI neurons, and thus independent of age and maturity of the neurons in culture. The accelerated loss of NUP expression is evident across all time groups. However, we cannot compare across age groups in cultured neurons as the time-matched WT and App KI samples for each time point were processed and imaged separately as neurons matured over time (Fig. 1B-C). An experiment must be done simultaneously across all age groups to compare agerelated effects for WT and App KI neurons in order to account for time-dependent changes. Given the unique challenges of studying “aging” in culture systems, we opted to be more conservative in our interpretation of the results and as such, we were careful to describe the accelerated nuclear pore deficits in App KI neurons relative to time-matched WT expression and speculate its relationship to normal brain aging only in the discussion section. We seek your understanding in this matter. That said, we are able to capture the decline of the NPC in histology of brain sections and observed a statistically significant drop in WT NUP levels in animal sections across age groups where we quantified and compared the raw nuclear intensities from brain sections that were processed and imaged simultaneously across independent experiments (Fig. 1D-E). We have included a statement in the results section to highlight that point.

      (2) Add experiments to assess the contribution of wild-type beta-amyloid accumulation with aging. It was described in 2012 (Guix FX, Wahle T, Vennekens K, Snellinx A, Chávez-Gutiérrez L, Ill-Raga G, Ramos-Fernandez E, Guardia-Laguarta C, Lleó A, Arimon M, Berezovska O, Muñoz FJ, Dotti CG, De Strooper B. 2012. Modification of γ-secretase by nitrosative stress links neuronal ageing to sporadic Alzheimer's disease. EMBO Mol Med 4:660-673, doi:10.1002/emmm.201200243) and 2021 (Burrinha T, Martinsson I, Gomes R, Terrasso AP, Gouras GK, Almeida CG. 2021. Upregulation of APP endocytosis by neuronal aging drives amyloid-dependent synapse loss. J Cell Sci 134. doi:10.1242/jcs.255752), 28 DIV neurons are senescent and accumulate beta-amyloid42. In addition, beta-amyloid 42 accumulates normally in the human brain (Baker-Nigh A, Vahedi S, Davis EG, Weintraub S, Bigio EH, Klein WL, Geula C. 2015. Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer's disease. Brain 138:1722-1737. doi:10.1093/brain/awv024), thus, it would be important to determine if it contributes to NUP dysfunction. Unfortunately, the authors tested the Abeta contribution at div14 when wild-type Abeta accumulation was undetected. It would enrich the paper and allow the authors to conclude about normal aging if additional experiments were performed, namely, treating 28Div neurons with DAPT and assessing if NUP is restored.

      Your point is well-noted. We are intrigued at the potential contribution of WT Aβ to the decline in NUPs and NPC but decided to focus on mutant Aβ for this manuscript. We have observed negligible MOAB2-positive Aβ signals in WT neurons across all age groups (data not shown) but acknowledge the potential contributions of aging toward a reduction in NPC function. Instead, we have included a section in the discussion to highlight the aging-related expression of Aβ in WT neurons and a subset of the citations above to indicate a possible link with normal decay of NPCs.

      Reviewer #3 (Public Review):

      Weaknesses:

      (1) It does not consider the relationship of the findings here to other published work on the intraneuronal perinuclear and nuclear accumulation of amyloid in other transgenic mouse models and in humans.

      We have updated the discussion to further elaborate on intraneuronal and perinuclear accumulation of amyloid and how that relates to our NPC phenotype.

      (2) It appears to presume that soluble, secreted Abeta is responsible for the effect rather than the insoluble amyloid fibrils.

      At present, our data cannot fully discount the role of fibrils or other forms of Aβ causing the NPC deficits, but our studies do show that external presence of Aβ (e.g. addition of synthetic oligomeric Aβ or App KI conditioned media) leads to intracellular accumulation and NPC dysfunction. We are aware that endogenous formation of fibrils could also contribute to the NPC dysfunction but refrained from drawing any conclusions without further studies. We have stated this in the discussion.

      (5) It is not clear when the alteration in NUP expression begins in the KI mice as there is no time at which there is no difference between NUP expression in KI and Wt and the earliest time shown is 2 months. If NUP expression is decreased from the earliest times at birth, then this makes the significance of the observation of the association with amyloid pathology less clear.

      The phenotype we observed early in neuronal cultures and in very young animals is subtle and in all our studies, the severity of the NUP phenotypes consistently correlates with elevated intracellular Aβ. We expect that by looking at earlier/younger neurons, the deficits will not be present. However, neurons before DIV7 are immature, and hence we chose not to include those in our observations. In animals, we observed Aβ expression in neuronal soma in young mice (2 mo.), but it is not clear when the deficits manifests and how early to look. While the NUP expression is reduced at an early stage, we speculate in discussion that cellular homeostatic mechanisms can compensate for any compromised nuclear functions and to maintain viability to the point where age-dependent degradation of cellular mechanisms will eventually lead to progression of AD.

      Reviewer #1 (Recommendations For The Authors):

      While the App KI model is suitable for modeling one key aspect of human AD, the use of the term "AD neurons" throughout the manuscript is misleading and should be avoided when describing experiments with "App KI neurons".

      Noted and corrected.

      The claim that Aβ pathology causes NPC dysfunction via reduced nucleoporin protein expression would be stronger if it was better supported by biochemical evidence based on western blots (WBs) to complement the strong microscopy data. The results shown in Figure 2H show a very weak effect compared to microscopy data that does not appear to match the quantification (e.g. Lamin-B1 staining appears reduced after 2 months in WB but not the graph). It is also not clear why nuclear fractionation is required. WB analyses with RL1 and MAB414 (that recognizes multiple FG-Nupsin ICCs and WBs) would help identify Nups that are most affected by Aβ pathology.

      The weaker Western blot results is due to the heterogeneity of the nuclei we isolated from the whole brain which includes non-neuronal cells. We reasoned that isolating the nuclear fraction would give us a cleaner Western blot with fewer background bands as the input lysate is more specific. We also decided to use antibodies against specific NUPs as a way to complement the pan-NPC antibodies that detect glycosylation-enriched epitopes in the nucleus. We reasoned that Western blot identification of individual subunits should provide complementary and stronger evidence for the reduction of NUPs at the peptide level. Overall, we used four different nuclear pore antibodies (RL1, Mab414, NUP98, NUP107) to demonstrate the same mutant phenotype in App KI neurons.

      While the observed NCT defects are discussed in detail, the authors do not present any potential mechanisms to be tested, how intracellular Aβ may impact NPCs. Does Aβ pathology affect nucleoporin expression or stability?

      We have observed the presence of Aβ adjacent to the nuclear membrane and also in the cytosol via high resolution confocal microscopy (Supplementary Figure S14). Our primary goal in this paper is to provide convincing evidence – using different assays and in more than one mouse model – for the reduction of NUPs and lower NPC counts. We feel mechanistic details of Aβdriven NPC disruption requires more extensive experimentation more suitable for subsequent publications.

      The very simple schematic just represents the loss of compartmentalization, without illustrating more complex concepts. It would also be improved by representing the outer and inner nuclear membrane fusing around the NPCs with a much wider perinuclear space between the membranes. As shown now, the nuclear envelope almost looks like a single membrane, while >60kDa proteins are shown at a similar size as the 125MDa NPC.

      We have updated the illustration along with a new schematic for necroptosis (Supplementary Figure S12). We have refrained from giving specific details of the damage to the nuclear pore complex because it is not yet clear the nature of these deficits.

      Misspelling of "Hoechst" as "Hochest" in several figures (Fig. 1, 2, S5, S7).

      Noted and corrected

      Reviewer #2 (Recommendations For The Authors):

      (1) Additional data analysis is required concerning the wild-type controls. The figures show clear differences in the wild-type neurons with time in culture (referring to figures 1A, 1B, 1C; 2A, 2B, 2C, 2D,6E, 6F, 6G, s4) and in different ages (2E, 2F, 2G, 5B, 5C, 5D). The data analysis is shown for knockin vs the time-matched wild-type condition. The effect of time in wild-type neurons/mice should also be analyzed. All the data is suggested to be normalized to 7 DIV/2month wild-type neurons/mice. Were these experiments done with different time points of the same culture? This would be the best to conclude on the effect of time.

      We have noted a decline of NUPs in WT neurons over time in primary cultures and in animal sections. This is not surprising since the NPC and nuclear signaling pathways deteriorate with age (Liu and Hetzer, 2022; Mertens et al., 2015). However, we are unable to do a direct comparison across age groups in cultured neurons as the time-matched WT and App KI neuronal samples for each time point were processed and imaged separately as neurons matured over time (Fig. 1B-C). Hence, we perform statistical analysis for each time-matched WT and App KI neurons. To be clear, multiple independent experiments across different cultures were performed at each time point. Given the inherent challenges of studying aging in culture systems, we opted to be more conservative in our interpretation of the results and as such, we were careful to describe the accelerated nuclear pore deficits in App KI neurons relative to WT levels without inferring the effect of time and speculate its relationship to normal brain aging only in the discussion section. That said, we are able to capture the decline of the nuclear pore complex across different age groups in histology of brain sections where we observed a drop in WT NUP levels in animal sections when we quantified and compared the raw nuclear intensities from brain sections that were processed and imaged simultaneously across independent experiments (Fig. 1D-E).

      Similarly, in Figure 2H, why aren't 2 months compared with 14 months? Why were these ages chosen? 2 months is a young adult, and 14 months is a middle-aged adult. To conclude, aging should have included an age between 18 and 24 months old.

      As with cultures, we isolated age-matched WT and App KI animals separately. We chose 2 to 14 months as they represent young and middle-aged adults as we wanted to showcase the nuclear pore deficits induced by the presence of Aβ without drawing a conclusion on the effects of age or time. That said, we do show histology of brain sections at 18 months of age with individual NUPs. We agree that the temporal aspects of NPC loss in WT neurons is interesting, however, given our experimental parameters, we cannot draw conclusions across different age groups at the moment.

      In Figure 3, statistics between wild type should have been included.

      Similar to the above comment, samples were processed and imaged independently across different groups, hence we cannot compare the datapoints across time.

      (4) Additional quantification: The intensity of MOAB2 at 2 and 13 months should be measured as in Figure 3C.

      Intracellular Aβ signal in 2-mo. old App KI mice is diffuse throughout the soma but in older animals, they are punctate. This observation was similarly described by Lord et al. for tgAPPArcSwe mice (Lord et al., 2006). We have included a confocal micrograph of MOAB-2 immunocytochemistry of a 13-mo. App KI brain section in supplemental figures (Supplementary Figure S13). We found it challenging to differentiate whether the signal is localized intracellularly or as an extracellular aggregate. Regardless, the differences in the quality and uneven distribution of Aβ signal makes any direct comparison of soma intensity across the different age groups harder to interpret in the context of the mutant phenotype.

      (5) Additional experiments: Because primary neurons differentiate, mature, and age with time in culture, they are required to control for the developmental stage of your cultures. Analyzing neuronal markers such as doublecortin for neuronal precursors, MAP2 (or Tau) for dendritic/axonal maturation, synapsin for synaptic maturation, and accumulation of senescenceassociated beta-galactosidase (SA-Beta-Gal) as an aging marker.

      As part of the maintenance of cultures, we stain cultures for axodendritic markers (e.g. MAP2), glial cell distribution (e.g GFAP) and excitatory vs. inhibitory neuronal subpopulations (e.g. Gad65) and synaptic markers (e.g. PSD95) to ensure that growth, survival and viability of neurons are not compromised (data not shown). These markers for maturity are routinely tracked to ensure proper development. We also test the health of the cultures (e.g. apoptosis, necrosis) and to look for cytoskeletal disruption or fragmentation for neuronal processes.

      (6) Additional methods: The quantification of Abeta intensity in Figure 3 is not clearly explained in the methods. Was the intensity measured per field, per cell body?

      The quantifications for Aβ are done for each MAP2-positive cell body and have included that statement in the methods.

      (7) Missing in discussion integration and references to these papers:

      a. Mertens J, Paquola ACM, Ku M, Hatch E, Böhnke L, Ladjevardi S, McGrath S, Campbell B, Lee H, Herdy JR, Gonçalves JT, Toda T, Kim Y, Winkler J, Yao J, Hetzer MW, Gage FH. 2015. Directly Reprogrammed Human Neurons Retain Aging-Associated Transcriptomic Signatures and Reveal Age-Related Nucleocytoplasmic Defects. Cell Stem Cell 17:705-718. doi:10.1016/j.stem.2015.09.001

      b. Guix FX, Wahle T, Vennekens K, Snellinx A, Chávez-Gutiérrez L, Ill-Raga G, Ramos-Fernandez E, Guardia-Laguarta C, Lleó A, Arimon M, Berezovska O, Muñoz FJ, Dotti CG, De Strooper B. 2012. Modification of γ-secretase by nitrosative stress links neuronal ageing to sporadic Alzheimer's disease. EMBO Mol Med 4:660-673. doi:10.1002/emmm.201200243

      c. Burrinha T, Martinsson I, Gomes R, Terrasso AP, Gouras GK, Almeida CG. 2021. Upregulation of APP endocytosis by neuronal aging drives amyloid-dependent synapse loss. J Cell Sci 134. doi:10.1242/jcs.255752),

      Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer's disease. Brain 138:1722-1737. doi:10.1093/brain/awv024).

      We have cited a subset of the papers in the discussion section and also expanded the discussion to include the possibility of time-dependent changes for Aβ expression in WT neurons.

      Reviewer #3 (Recommendations For The Authors):

      Specific comments:

      (1) Fig. 1D,E. Fig. 2E, F. This shows the change in NUP IR with time for the APP-KI, but there is also a difference between Wt and KI from the earliest time shown. How early is this difference apparent? From birth? The study should go back to the earliest time possible as the timing of the staining for NUP is important to correlate this with other events of intraneuronal Abeta and amyloid IR. Is the difference between 4 and 7-month ko mice in Figures 2G and 2F statistically significant? If not, perhaps we need a larger N to determine the timing accurately.

      The point is well taken. We have not examined the WT and App KI brains before 2-mo. of age. At this early time point, the extracellular amyloid deposits are very low but intracellular Aβ can be readily detected in neuronal soma. We expect that as the animal ages, the Aβ inside cells will directly impact the NPC mutant phenotype, but it is unclear how early this phenotype manifests in animals and when we should look. To be clear, in less mature neurons (DIV7), the phenotype is very subtle and can only be observed via high resolution microscopy. The differences between 4-7 mo. old animals (Fig. 2F and G) in terms of severity of the reduction cannot be assessed as the age-matched animals for each time point were processed separately, but at each time point, we observed a significant reduction of NPC relative to WT. Nevertheless, in Figure 1E, we performed immunohistochemistry experiments with pan-NPC antibodies and quantified raw intensities to show a difference between 4/7-mo. with 13-mo. old animals.

      (2) Similarly, the increase in Abeta IR is only shown for cultured neurons and only a single time point of 2 months is shown for CA1 in KI brain. Since a major point is that the decrease in NUP IR is correlated with an increase in Abeta IR, a more convincing approach would be to stain for both simultaneously in KI brain, especially since Abeta IR is quite sensitive to conformational variation between APP, Abeta, and aggregated forms and whether they are treated with denaturants for "antigen retrieval". The entire brain hemisphere should be shown as the pathology is not limited to CA1. There are many different Abeta antibodies that are specific to the amyloid state so it should be possible to come up with a set of antibodies and conditions that work for both Abeta and NUP staining.

      The intracellular Aβ signal in 2-mo. old App KI mice is diffuse throughout the soma but in older animals, they are punctate. We have included a confocal micrograph of MOAB-2 immunocytochemistry of a 13-mo. App KI brain section (Supplementary Figure S13). We did not quantify Aβ as it was challenging to differentiate if the signal is intracellular Aβ or amyloid β plaques. Regardless, the differences in the quality and uneven distribution of Aβ signal makes any direct comparison of soma intensity across the different age groups much harder to interpret.

      (3) Figure 3A. The staining with MOAB 2 and 82E1 appears qualitatively different with 82E1 exhibiting larger perinuclear puncta. Both antibodies appear to stain puncta inside the nucleus consistent with previously published reports of intranuclear amyloid IR. If these are flattened images, then 3D Z stacks should be shown to clarify this. Figure 3H shows what appears to be Abeta immunofluorescence quantitation in DAPT-treated cells, but the actual images are apparently not shown. The details of this experiment aren't clear or what antibody is used, but this may not be Abeta as many APP fragments that are not Abeta also react with antibodies like MOAB2.

      Since 82E1 detects a larger epitope (aa1-16 as compared to 1-4 in MOAB-2), it is possible some forms of Aβ are differentially detected inside the cell. MOAB-2 is shown to detect the different forms of Aβ40 and 42, with a stronger selectivity for the latter. However, it is not known to react with APP or APP/CTFs (Youmans et al., 2012). DAPT-treated cells were processed and imaged as with other experiments in figure 3 using MOAB-2 antibodies to detect Aβ. We have included that information in the figure legends.

      The way we image the cell is to collect LSM800 confocal stacks and use IMARIS software to render the nucleus in a 3D object prior to quantifying the intensity or coverage. In this way, we are capturing and quantifying the entire volume of the nucleus and not just a single plane. The majority of signal for MOAB-2 positive Aβ are punctate signals in the cytosol with a subset adjacent to the nucleus (Supplementary Figure 14; Airyscan; single plane). We also detected MOAB-2 signals coming from within the nucleus. The nature of this interaction between Aβ and the nuclear membrane/perinuclear space/nucleoplasm remains unclear.

      (4) P20 L12. "We demonstrate an Aβ-driven loss of NUP expression in hippocampal neurons both in primary cocultures and in AD mouse models" It isn't clear that exogenous or extracellular Abeta drives this in living animals. All the data that demonstrate this is derived from cell culture and things may be very different (eg. Soluble Abeta concentration) in vivo. It is OK to speculate that the same thing happens in vivo, but to say it has been demonstrated in vivo is not correct.

      We have rewritten the opening statement in the paragraph to narrowly define our observations in the context of App KI. We understand the caveats of our studies in primary cultures, but we have done our due diligence to study the phenomenon in different assays, using at least four different nuclear pore antibodies, and in more than one mouse model to show the deficits. We mentioned Aβ-driven loss but did not conclude which Aβ peptide (e.g. 40 vs. 42) or form (e.g. fibrillar) that drives the deficits. However, we have shown some data that oligomers and not monomers as well as extracellular Aβ can accumulate in the soma and trigger NPC deficits. We also state in the discussion that other possible mechanisms of action, mainly via indirect interactions of Aβ with the cell, could result in the deficits.

      (5) P21, L21 "Inhibition of γ-secretase activity prevented cleavage of mutant APP and generation of Aβ, which led to the partial restoration of NUP levels". What the data actually shows is that treatment of the cells with DAPT led to partial restoration of NUP levels. Other studies have shown that DAPT is a gamma secretase inhibitor, so it is reasonable to suspect that the effect to gamma secretase activity, but the substrates and products are assumed rather than measured, so a little caution is a good idea here. For example, CTF alpha is also a substrate, producing P3, which is not considered abeta. The products Abeta and P3 also typically are secreted, where they can be further degraded. Abeta and P3 can also aggregate into amyloid, so whether the effect is really due to Abeta per se as a monomer or Abeta-containing aggregates isn't clear.

      The point is noted. DAPT inhibition of -secretase can impact more than one substate as the complex can cleave multiple substrates. However, we have measured Aβ intensity which increases with DAPT, and while a singular experiment is insufficient to show direct Aβ involvement, we have performed other experiments that show a correlation of Aβ levels inside the soma and the degree of NPC reduction. This includes the direct application of synthetic Aβ42 oligomers. We agree the data cannot fully exclude the involvement of other -secretase cleavage products, but we feel there is strong enough evidence that Aβ – in whatever form - is at least partially if not, the main driver that promote these deficits.

      (6) Discussion. The authors point to "intracellular Abeta" as a potential causative agent for decreased NUP expression and function and cite a number of papers reporting intracellular Abeta. (D'Andrea et al., 2001; Iulita et al., 2014; Kimura et al., 2003; LaFerla et al., 1997; Oddo et al., 2003b; Takahashi et al., 2004; Wirths et al., 2001). Most of these papers report immunoreactivity with Abeta antibodies and argue about whether this is really Abeta40 or 42 and not APP or APP-CTF immunoreactivity. What is missing from these papers and the discussion in this manuscript is that this is not just soluble Abeta, but Abeta amyloid of the same type that ends up in plaques because it has the same immunoreactivity with Abeta amyloid fibril-specific antibodies and even the classical anti-Abeta antibodies 6E10 and 4G8 after antigen retrieval as shown in papers by Pensalfini, et al., 2014 and Lee, et al., 2022 (1,2) who describe the evolution of neuritic plaques and their amyloid core beginning inside neurons. The term "dystrophic neurite" is a misnomer because the structures that resemble "neurites" morphologically are actually autophagic vesicles packed with Abeta and APP immunoreactive material which has the detergent insolubility properties of amyloid plaques. See (1,2). The apparent intranuclear IR of MOAB2 and 82E1 mentioned in comment 3 is relevant here. In Lee et al., the 3D serial section EM reconstruction of one of these neurons with perinuclear and nuclear amyloid shows abundant amyloid fibrils in the remnant of the nucleus. The nuclear envelope appears to break down as evidenced by the redistribution of NeuN immunoreactivity (Pensalfini et al.,) and other nuclear markers and the EM evidence (Lee et al.,). These papers are also improperly cited as evidence for a hypothetical intracellular source for soluble Abeta.

      We have devoted a section of the discussion to highlight some of these findings in the context of Pensalfini et al. 2014 and Lee et al. 2022. Lee et al. tested multiple animal strains to observe the Panthos structures but did not use the App KI mouse model. Since none of our experiments directly tested their observations (e.g. perinuclear fibrils or acidity of autophagic vesicles) in App KI, we decided to take a more conservative approach in our interpretations by framing the NPC deficits without specifying the nature of the intracellular Aβ. We note in discussion that it is entirely possible that App KI animals also show the same Panthos phenotypes and the perinuclear accumulation of Aβ which results in damaged NUPs. To do that, the Panthos phenotype must first be established in App KI mice.

      (7) The authors also cite the work of Ditaranto et al., 2001 and Ji et al., 2002 for Aβ-induced lysosomal leakage from these vesicular structures but overlook the original publications on Abeta-induced lysosomal leakage by Yang et al., (3) who further show that this is correlated with aggregation of Abeta42 upon internalization which also leads to the co-aggregation of APP and APP-CTFs in a detergent-insoluble form (4) and pulse-chase studies demonstrate that metabolically-labeled APP ultimately ends up as insoluble Abeta that have "ragged" N-termini (5). This work seems relevant to the results reported here as the perinuclear amyloid that the authors report here is likely to be the same insoluble, aggregated APP and APP-CTF-containing amyloid as that reported in references 1 and 2.

      We have included the literature references in the discussion, highlighting the possibility of lysosomal leakage contributing to the NPC damage.

      Minor points.

      (1) P2, L28 "permeability barrier facilities passive" should be 'facilitates'.

      (2) P7, L24 "homogenate and grounded for 5 additional strokes" One of the peculiarities of English is that the past tense of grind is ground. Grounded means something else.

      (3) P8, L9 "For synthetic Aβ experiments," Abeta what? 42? 40? It makes a difference and if it is Abeta42, you should be specific in the rest of the text where it is used.

      (4) P11, L14. "To determine if Aβ can trigger changes in nuclear structure and function" It seems a little early to start by presupposing that it is Abeta that triggers changes in nuclear structure and function. It sounds like you are starting out with a bias.

      (5) P11, L16,17 "While Aβ pathology is robustly detected in App KIs" At some point in the manuscript, either here or in the introduction, it would be useful to include a couple of sentences about what the pathology is in these mice along with the timing of the development of the pathology to compare with the results presented here. There are several types of amyloid deposits, "neuritic" plaques, diffuse plaques, and cerebrovascular amyloid. This is important because the early "neuritic" plaques are intraneuronal at least early on before the neuron dies. See (1,2).

      (6) P19, L10. "LMB is an inhibitor or CRM-1 mediated" should be of

      All minor points have been addressed in the manuscript and figures.

      References

      (1) Pensalfini, A., Albay, R., 3rd, Rasool, S., Wu, J. W., Hatami, A., Arai, H., Margol, L., Milton, S., Poon, W. W., Corrada, M. M., Kawas, C. H., and Glabe, C. G. (2014) Intracellular amyloid and the neuronal origin of Alzheimer neuritic plaques. Neurobiol Dis 71C, 53-61

      (2) Lee, J. H., Yang, D. S., Goulbourne, C. N., Im, E., Stavrides, P., Pensalfini, A., Chan, H., Bouchet-Marquis, C., Bleiwas, C., Berg, M. J., Huo, C., Peddy, J., Pawlik, M., Levy, E., Rao, M., Staufenbiel, M., and Nixon, R. A. (2022) Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Abeta in neurons, yielding senile plaques. Nat Neurosci 25, 688-701

      (3) Yang, A. J., Chandswangbhuvana, D., Margol, L., and Glabe, C. G. (1998) Loss of endosomal/lysosmal membrane impermeability is an early event in amyloid Aß1-42 pathogenesis. J. Neurosci. Res. 52, 691-698

      (4) Yang, A. J., Knauer, M., Burdick, D. A., and Glabe, C. (1995) Intracellular A beta 1-42 aggregates stimulate the accumulation of stable, insoluble amyloidogenic fragments of the amyloid precursor protein in transfected cells. J Biol Chem 270, 14786-14792

      (5) Yang, A., Chandswangbhuvana, D., Shu, T., Henschen, A., and Glabe, C. G. (1999) Intracellular accumulation of insoluble, newly synthesized Aßn-42 in APP transfected cells that have been treated with Aß1-42. J. Biol. Chem. 274, 20650-20656

      References

      Boehmer, T., Enninga, J., Dales, S., Blobel, G., and Zhong, H. (2003). Depletion of a single nucleoporin, Nup107, prevents the assembly of a subset of nucleoporins into the nuclear pore complex. Proc Natl Acad Sci U S A 100, 981-985.

      D'Angelo, M.A., Raices, M., Panowski, S.H., and Hetzer, M.W. (2009). Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136, 284-295.

      Eftekharzadeh, B., Daigle, J.G., Kapinos, L.E., Coyne, A., Schiantarelli, J., Carlomagno, Y., Cook, C., Miller, S.J., Dujardin, S., Amaral, A.S., et al. (2018). Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer's Disease. Neuron 99, 925-940 e927.

      Liu, J., and Hetzer, M.W. (2022). Nuclear pore complex maintenance and implications for agerelated diseases. Trends Cell Biol 32, 216-227.

      Lord, A., Kalimo, H., Eckman, C., Zhang, X.Q., Lannfelt, L., and Nilsson, L.N. (2006). The Arctic Alzheimer mutation facilitates early intraneuronal Abeta aggregation and senile plaque formation in transgenic mice. Neurobiol Aging 27, 67-77.

      Mertens, J., Paquola, A.C., Ku, M., Hatch, E., Bohnke, L., Ladjevardi, S., McGrath, S., Campbell, B., Lee, H., Herdy, J.R., et al. (2015). Directly Reprogrammed Human Neurons Retain Aging-Associated Transcriptomic Signatures and Reveal Age-Related Nucleocytoplasmic Defects. Cell stem cell 17, 705-718.

      Wu, X., Kasper, L.H., Mantcheva, R.T., Mantchev, G.T., Springett, M.J., and van Deursen, J.M. (2001). Disruption of the FG nucleoporin NUP98 causes selective changes in nuclear pore complex stoichiometry and function. Proc Natl Acad Sci U S A 98, 3191-3196.

      Youmans, K.L., Tai, L.M., Kanekiyo, T., Stine, W.B., Jr., Michon, S.C., Nwabuisi-Heath, E., Manelli, A.M., Fu, Y., Riordan, S., Eimer, W.A., et al. (2012). Intraneuronal Abeta detection in 5xFAD mice by a new Abeta-specific antibody. Molecular neurodegeneration 7, 8.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank both reviewers for their supportive comments. Reviewer 1 has suggested a different data processing strategy to better resolve subunits at the CALHM4/CALHM2 interface:

      I recommend an alternative data processing strategy. First, refine particles with 2-4 CALHM4 subunits with symmetry imposed. This is followed by symmetry expansion, signal subtraction of two adjacent subunits, and subsequent classification and refinement of the subtracted particles. This approach, while not guaranteed, can potentially provide a clearer definition of CALHM2 and CALHM4 interfaces and show whether CALHM2 subunits adopt different conformations based on their proximity to CALHM4 subunits.

      We have followed the recommended strategy in an attempt to improve the resolution and better resolve the structural heterogeneity in CALHM2/4 channels. To this end, we have combined symmetry expansion and partial signal subtraction, as suggested by the reviewer. Initially, a symmetrized (C11) 3.4 Å consensus map of undecameric CALHM2/4 channels bound to sybodies SbC2 and SbC4 was used. The particles of this reconstruction were subjected to symmetry expansion (C11) followed by signal subtraction of nine adjacent subunits. Next, we performed focused, alignment-free 3D classification of the remaining two subunits followed by refinement of these classes, leading to the classification of CALHM subunit pairs. The majority of the classes feature well-resolved CALHM2 pairs, consistent with the original approach (Author response image 1A). A minority of the classes contain CALHM4 subunits, revealing heterogeneity similar to regions of CALHM4 subunits observed in the non-symmetrized channel reconstruction (Author response image 1B). Unfortunately, this approach thus did not improve resolution or facilitate a more accurate subunit assignment. Consequently, we decided not to include these attempts in our manuscript. The resubmitted version thus contains only small corrections compared to the previous version.

      Author response image 1.

      Classification of subunit pairs of undecameric CALHM2/4 channels bound to sybodies SbC2 and SbC4 after the processing combining symmetry expansion and partial signal subtraction. (A) Classes showing CALHM2 subunit pairs. (B) Classes showing subunits at interfaces to CALHM4.

  2. Apr 2024
    1. Author response:

      The following is the authors’ response to the original reviews.

      We would like to express our gratitude to the reviewers for their suggestions and critiques as we continually strive to enhance the quality of the manuscript. We improved it, by incorporating the reviewers’ suggestions, changing the content and numbering of figures (Figs 1, 3S1 were edited; 4 figures were moved to supplemental materials), and adding several analyses suggested by the reviewers along with accompanying figures (1S2, 1S3) and tables (1 and 2). These analyses include investigating the link between freezing behavior and 44-kHz calls as well as their sound mean power and duration. Also, we have introduced detailed information regarding the experiments performed as well as expanded the description and discussion of the results section. Finally, we added the information about 44-kHz calls reported by another group – which was inspired by our findings.

      Below is the point-by-point response to the reviewers’ comments.

      Reviewer #1 (Public Review):

      Olszyński and colleagues present data showing variability from canonical "aversive calls", typically described as long 22 kHz calls rodents emit in aversive situations. Similarly long but higher-frequency (44 kHz) calls are presented as a distinct call type, including analyses both of their acoustic properties and animals' responses to hearing playback of these calls. While this work adds an intriguing and important reminder, namely that animal behavior is often more variable and complex than perhaps we would like it to be, there is some caution warranted in the interpretation of these data. The authors also do not provide adequate justification for the use of solely male rodents. With several reported sex differences in rat vocal behaviors this means caution should be exercised when generalizing from these findings.

      We fully agree that our data should be interpreted with caution and we followed the Reviewer’s suggestions along these lines (see below). Also, we appreciate the suggestion to explore the prevalence of 44-kHz calls in female subjects, which would indeed represent an important and intriguing extension of our research. However, due to present financial constraints, we can only plan such experiments. To address the comment, we have added the sentence: “Here we are showing introductory evidence that 44-kHz vocalizations are a separate and behaviorally-relevant group of rat ultrasonic calls. These results require further confirmations and additional experiments, also in form of repetition, including research on female rat subjects.”

      It is important to note that the data presented in the current manuscript originates primarily from previously conducted experiments. These earlier experiments employed male subjects only; it was due to established evidence indicating that the female estrus cycle significantly influences ultrasonic vocalization (Matochik et al., 1992). Adhering to controls for the estrus cycle would require a greater number of female subjects than males, which would not only increase animal suffering but also escalate the demands of human labor and financial costs.

      Firstly, the authors argue that the shift to higher-frequency aversive calls is due to an increase in arousal (caused by the animals having received multiple aversive foot shocks towards the end of the protocols). However, it cannot be ruled out that this shift would be due to factors such as the passage of time and increase in fatigue of the animals as they make vocalizations (and other responses) for extended periods of time. In fact the gradual frequency increase reported for 22 kHz calls and the drop in 44 kHz calls the next day in testing is in line with this.

      Answer: We would like to point out that the “increased-arousal” hypothesis, declared in the manuscript, is only a hypothesis – as reflected by the wording used. However, we changed the beginning of the sentence in question from “It could be argued” to “We would like to propose a hypothesis” to emphasize the speculative aspect of the proposed explanation behind the increase of 44-kHz ultrasonic emissions.

      Also, we do agree that other factors could contribute to the increased emission of 44kHz calls. These factors could include: heightened fear, stress/anxiety, annoyance/anger, disgust/boredom, grief/sadness, despair/helplessness, and weariness/fatigue. We are listing these potential factors in the discussion. Also, we added: “It is not possible, at this stage, to determine which factors played a decisive role. Please note that the potential contribution of these factors is not mutually exclusive”. However, we propose a list of arguments supporting the idea that 44-kHz vocalizations communicate an increased negative emotional state. Among these arguments were the conclusions drawn from additional analyses – mostly inspired by the fatigue hypothesis proposed by the Reviewer #1. In particular, we investigated changes in the sound mean power and duration of 22-kHz and 44-kHz calls. Specifically, we showed that the mean power of 44-kHz vocalizations did not change, and was higher than that of 22-kHz vocalizations (Fig. 1S2EF).

      Finally, the Reviewer #1 listed “the gradual frequency increase reported for 22 kHz calls and the drop in 44 kHz calls the next day” as arguments for the fatigue hypothesis. We do not agree that the “increase” should be interpreted as a sign of fatigue [Producing and maintaining higher frequency calls require greater effort from the vocalizer, on which we elaborated in the manuscript], also we are not sure what “drop in 44 kHz calls” the Reviewer is referring to [We assume it refers to less 44-kHz calls during testing vs. training; we suppose that the levels of arousal are lower in the test due to shorter session time and lack of shocks, which additionally contributes to fear extinction].

      Secondly, regarding the analysis where calls were sorted using DBSCAN based on peak frequency and duration, it is not surprising that the calls cluster based on frequency and duration, i.e. the features that are used to define the 44 kHz calls in the first place. Thus presenting this clustering as evidence of them being truly distinct call types comes across as a circular argument.

      Answer: The DBSCAN sorting results were to convey that when changing the clustering ε value, the degree of cluster separation, the 44-kHz vocalizations remained distinct from the 22-kHz and various short-call clusters that merged. In other words: 44-kHz calls remained separate from long 22-kHz, short 22-kHz and 50-kHz vocalizations, which all consolidated into one common cluster. As a result, in this mathematical analysis, 44-kHz vocalizations remained distinct without applying human biases. Additionally, frequency and duration are the two most common features used to define all types of calls (Barker et al., 2010; Silkstone & Brudzynski, 2019a, 2019b; Willey & Spear, 2013). In summary, we did not expect the analysis to isolate out the 44-kHz calls, and we were surprised by this result.

      The sparsity of calls in the 30-40 kHz range (shown in the individual animal panels in Figure 2C) could in theory be explained by some bioacoustics properties of rat vocal cords, without necessarily the calls below and above that range being ethologically distinct.

      Answer: We respectfully disagree with the argument regarding sparsity. It is important to note that, during prolonged fear conditioning experiments, we observed an increased incidence of 44-kHz calls (Fig. 1E-G) of up to >19% (Fig. 1S2AB) of the total ultrasonic vocalizations during specific inter-trial intervals. Also, it is possible that in observed experimental circumstances almost every fifth call could be attributed to the vocal apparatus as an artifact of its functioning (assuming we are interpreting the Reviewer’s argument correctly). While we do not believe this to be the case, we acknowledge the importance of considering such a hypothesis.

      The behavioral response to call playback is intriguing, although again more in line with the hypothesis that these are not a distinct type of call but merely represent expected variation in vocalization parameters. Across the board animals respond rather similarly to hearing 22 kHz calls as they do to hearing 44 kHz calls, with occasional shifts of 44 kHz call responses to an intermediate between appetitive and aversive calls. This does raise interesting questions about how, ethologically, animals may interpret such variation and integrate this interpretation in their responses. However, the categorical approach employed here does not address these questions fully.

      Answer: We are unsure of the Reviewer’s critique in this paragraph and will attempt to address it to the best of our understanding. Our finding of up to >19% of long seemingly aversive, 44-kHz calls, at a frequency in the define appetitive ultrasonic range (usually >32 kHz) is unexpected rather than “expected”. We would agree that aversive call variation is expected, but not in the appetitive frequency range.

      Kindly note the findings by Saito et al. (2019), which claim that frequency band plays the main role in rat ultrasonic perception. It is possible that the higher peak frequency of 44kHz calls may be a strong factor in their perception by rats, which is, however, modified by the longer duration and the lack of modulation.

      Also, from our experience, it is quite challenging to demonstrate different behavioral responses of naïve rats to pre-recorded 22-kHz (aversive) vs. 50-kHz (appetitive) vocalizations. Therefore, to demonstrate a difference in response to two distinct, potentially aversive, calls, i.e., 22-kHz vs. 44-kHz calls, to be even more difficult (as to our knowledge, a comparable experiment between short vs. long 22-kHz ultrasonic vocalizations, has not been done before).

      Therefore, we do not take lightly the surprising and interesting finding that “animals respond rather similarly to hearing 22 kHz calls as they do to hearing 44 kHz calls, with occasional shifts of 44 kHz call responses to an intermediate between appetitive and aversive calls”. We would rather put this description in analogous words: “the rats responded similarly to hearing 44-kHz calls as they did to hearing aversive 22-kHz calls, especially regarding heartrate change, despite the 44-kHz calls occupying the frequency band of appetitive 50-kHz vocalizations” and “other responses to 44-kHz calls were intermediate, they fell between response levels to appetitive vs. aversive playback” – which we added to the Discussion.

      Finally, we acknowledge that our findings do not present a finite and complete picture of the discussed aspects of behavioral responses to the presented ultrasonic stimuli (44-kHz vocalizations). Therefore, we have incorporated the Reviewer’s suggestion in the discussion. The added sentence reads: “Overall, these initial results raise further questions about how, ethologically, animals may interpret the variation in hearing 22-kHz vs. 44-kHz calls and integrate this interpretation in their responses.”

      In sum, rather than describing the 44kHz long calls as a new call type, it may be more accurate to say that sometimes aversive calls can occur at frequencies above 22 kHz. Individual and situational variability in vocalization parameters seems to be expected, much more so than all members of a species strictly adhering to extremely non-variable behavioral outputs.

      Answer: The surprising fact that there are presumably aversive calls that are beyond the commonly applied thresholds, i.e. >32 kHz, while sharing some characteristics with 22-kHz calls, is the main finding of the current publication. Whether they be finally assigned as a new type, subtype, i.e. a separate category or become a supergroup of aversive calls with 22-kHz vocalizations is of secondary importance to be discussed with other researchers of the field of study.

      However, we would argue – by showing a comparison – that 22-kHz calls occur at durations of <300 ms and also >300 ms, and are, usually, referred to in literature as short and long 22-kHz vocalizations, respectively (not introduced with a description that “sometimes 22kHz calls can occur at durations below 300 ms”). These are then regarded and investigated as separate groups or classes usually referred to as two different “types” (e.g., Barker et al., 2010) or “subtypes” (e.g., Brudzynski, 2015). Analogously, 44-kHz vocalizations can also be regarded as a separate type or a subtype of 22-kHz calls. The problem with the latter is that 22-kHz vocalizations are traditionally and predominantly defined by 18–32 kHz frequency bandwidth (Araya et al., 2020; Barroso et al., 2019; Browning et al., 2011; Brudzynski et al., 1993; Hinchcliffe et al., 2022; Willey & Spear, 2013).

      Reviewer #2 (Public Review):

      Olszyński et al. claim that they identified a "new-type" ultrasonic vocalization around 44 kHz that occurs in response to prolonged fear conditioning (using foot-shocks of relatively high intensity, i.e. 1 mA) in rats. Typically, negative 22-kHz calls and positive 50-kHz calls are distinguished in rats, commonly by using a frequency threshold of 30 or 32 kHz. Olszyński et al. now observed so-called "44-kHz" calls in a substantial number of subjects exposed to 10 tone-shock pairings, yet call emission rate was low (according to Fig. 1G around 15%, according to the result text around 7.5%).

      Answer: We are thankful for praising the strengths. Please note Figure 1G referred to 10-trial Wistar rats during delay fear conditioning session in which 44-kHz constituted 14.1% of ultrasonic vocalizations. The 7.5% number in results refers to the total of vocalizations analyzed across all animal groups used in fear conditioning experiments. These values have been updated in the current version of the manuscript. Also, please note – 44-kHz calls constituted up to 19.4% of calls, on average, in one of the ITI during fear conditioning session. However, the prevalence of aversive calls and of 44-kHz vocalizations in particular varied. It varied between individual rats; we added the text: “for n = 3 rats, 44-kHz vocalizations accounted for >95% of all calls during at least one ITI (e.g., 140 of total 142, 222 of 231, and 263 of 265 tallied 44-kHz calls), and in n = 9 rats, 44-kHz vocalizations constituted >50% of calls in more than one ITI.” See also further for the description of the array of experiments analyzed and the prevalence/percentage of 44-kHz calls encountered (Tab. 1, Fig. 1S3).

      Weaknesses: I see a number of major weaknesses.

      While the descriptive approach applied is useful, the findings have only focused importance and scope, given the low prevalence of "44 kHz" calls and limited attempts made to systematically manipulate factors that lead to their emission. In fact, the data presented appear to be derived from reanalyses of previously conducted studies in most cases and the main claims are only partially supported. While reading the manuscript, I got the impression that the data presented here are linked to two or three previously published studies (Olszyński et al., 2020, 2021, 2023). This is important to emphasize for two reasons:

      (1) It is often difficult (if not impossible) to link the reported data to the different experiments conducted before (and the individual experimental conditions therein). While reanalyzing previously collected data can lead to important insight, it is important to describe in a clear and transparent manner what data were obtained in what experiment (and more specifically, in what exact experimental condition) to allow appropriate interpretation of the data. For example, it is said that in the "trace fear conditioning experiment" both single- and grouphoused rats were included, yet I was not able to tell what data were obtained in single- versus group-housed rats. This may sound like a side aspect, however, in my view this is not a side aspect given the fact that ultrasonic vocalizations are used for communication and communication is affected by the social housing conditions.

      Answer: Preparing the current manuscript, we indeed used data collected during fear conditioning experiments which were described previously (Olszyński et al., 2021; Olszyński et al., 2022). Please note, however, that vocalization behavior during the fear conditioning itself was not the main subject of these publications. Our previous publications (Olszyński et al., 2020; Olszyński et al., 2021; Olszyński et al., 2022) present primarily ultrasonic-vocalization data from playback-part of experiments whereas here we analyze recordings obtained during fear conditioning experiments, thus we are analyzing new parts, i.e., not yet analyzed, of previously published studies. Also, we have performed additional experiments.

      In the first version of the current manuscript, we did not attempt to demonstrate exactly which calls were recorded in which conditions as the focus was to demonstrate that 44-kHz calls were emitted in several different fear-conditioning experiments. Also, as the experiments were not performed simultaneously and are results from different experimental situations, we would prefer to not compare these results directly.

      However, in the current version of the manuscript, we have introduced an additional reference system, based on Tab. 1, to more clearly indicate which rats have been employed in each analysis, e.g. the group of “Wistar rats that undergone 10 trials of fear conditioning” are described as “Tab. 1/Exp. 1-3/#2,4,8,13; n = 46”, i.e., these are the rats listed in rows 2, 4, 8, and 13 of Tab. 1.

      We have also tried to unify the analyses, in terms of rats used, as much as possible. Finally, we have also introduced Fig. 1S3 to demonstrate the prevalence of 44-kHz calls in all experiments analyzed with the note that “the experiments were not performed in parallel”.

      Regarding the Reviewer’s concerns about analyzing single- and pair-housed rats together. We have examined ultrasonic vocalizations emitted and freezing behavior in these two groups.

      • Ultrasonic vocalizations; when comparing the number of vocalizations, their duration, peak frequency and latency to first occurrence, equally for all types of calls and divided into types (short 22-kHz, long 22-kHz, 44-kHz, 50-kHz), the only difference was observed in peak frequency in 50-kHz vocalizations (50.7 ± 2.8 kHz for paired vs. 61.8 ± 3.1 kHz for single rats; p = 0.0280, Mann-Whitney). Since 50-kHz calls are not the subject of the current publication, we did not investigate this difference further. Also, this difference was not observed during playback experiments (Olszyński et al., 2020, Tab. 1).

      • Freezing. There were no differences between single- and pair-housed groups in freezing behavior, both in the time before first shock presentation and during fear conditioning training (Mann-Whitney).

      In summary, since the two groups did not differ in relevant ultrasonic features and freezing, we decided to present the results obtained from these rats together. However, we agree with the Reviewer, and it is possible that social housing conditions may in fact affect the emission of 44-kHz vocalizations, which could be a subject of another project – involving, e.g., larger experimental groups observed under hypothesis-oriented and defined conditions.

      (2) In at least two of the previously published manuscripts (Olszyński et al., 2021, 2023), emission of ultrasonic vocalizations was analyzed (Figure S1 in Olszyński et al., 2021, and Fig. 1 in Olszyński et al., 2023). This includes detailed spectrographic analyses covering the frequency range between 20 and 100 kHz, i.e. including the frequency range, where the "newtype" ultrasonic vocalization, now named "44 kHz" call, occurs, as reflected in the examples provided in Fig. 1 of Olszyński et al. (2023). In the materials and methods there, it was said: "USV were assigned to one of three categories: 50-kHz (mean peak frequency, MPF >32 kHz), short 22-kHz (MPF of 18-32 kHz, <0.3 s duration), long 22-kHz (MPF of 18-32 kHz, >0.3 s duration)". Does that mean that the "44 kHz" calls were previously included in the count for 50-kHz calls? Or were 44 kHz calls (intentionally?) left out? What does that mean for the interpretation of the previously published data? What does that mean for the current data set? In my view, there is a lack of transparency here.

      Answer: As mentioned above, we indeed used data collected during fear conditioning experiments which were described previously (Olszyński et al., 2021; Olszyński et al., 2022). However, in these publications, ultrasonic vocalizations emitted during playback experiments were the main subject, while the ultrasonic calls emitted during fear conditioning (performed before the playback) were only analyzed in a preliminary way. As a result, the 44-kHz vocalizations analyzed in the current manuscript were not included in the previous analyses. In particular, in Olszyński et al. (2021), we counted the overall number of ultrasonic vocalizations before fear conditioning session to determine the basal ultrasonic emissions (Fig. S1). Then, our next article (Olszyński et al., 2022), we analyzed again the number of all ultrasonic vocalizations before fear conditioning (Fig. S1) and restricted the analysis of vocalizations during fear conditioning to 22-kHz calls (Tab. S1 and S2).

      Also, we re-reviewed all the data used in our previous playback publications. Overall, 44-kHz calls were extremely rare in playback parts of the experiments. There were no 44-kHz calls in the playback data used in Olszyński et al. (2022) and Olszyński et al. (2020). In Olszyński et al. (2021), one rat produced eight 44-kHz calls. These 44-kHz calls constituted 0.03% of all vocalizations analyzed in the experiment (8/24888) and were included in the total number of calls analyzed (but not in the 50-kHz group), they were not described in further detail in that publication.

      Moreover, whether the newly identified call type is indeed novel is questionable, as also mentioned by the authors in their discussion section. While they wrote in the introduction that "high-pitch (>32 kHz), long and monotonous ultrasonic vocalizations have not yet been described", they wrote in the discussion that "long (or not that long (Biały et al., 2019)), frequency-stable high-pitch vocalizations have been reported before (e.g. Sales, 1979; Shimoju et al., 2020), notably as caused by intense cholinergic stimulation (Brudzynski and Bihari, 1990) or higher shock-dose fear conditioning (Wöhr et al., 2005)" (and I wish to add that to my knowledge this list provided by the authors is incomplete). Therefore, I believe, the strong claims made in abstract ("we are the first to describe a new-type..."), introduction ("have not yet been described"), and results ("new calls") are not justified.

      Answer: We would argue that 44-kHz vocalizations were indeed reported but not described. As far as we are concerned, an in-depth analysis of the properties and experimental circumstance of emission of long, high-frequency calls has not yet been performed. These researchers have observed, at least to a degree, similar calls to the ones we observed – as we mentioned in the discussion section. However, since these reported 44-kHz vocalizations were not fully described, we can only guess that they may be similar to ours. We speculate that perhaps like us, these researchers unknowingly recorded 44-kHz calls in their experiments and may also be able to describe them more extensively when re-analyzing their data as we have done here.

      Possibly, it was difficult to find reports on vocalizations, similar to the 44-kHz calls that we observed, because of the canonical and accepted definitions of ultrasonic vocalization types. Biały et al. (2019) allocated them as a part of 22-kHz group, perhaps because their calls were often of a step variation having both low and high components. Shimoju et al. (2020) grouped them along with 50-kHz vocalizations because they appeared during stroking rats held vertically; this procedure was compared to tickling which usually elicits appetitive calls.

      The Reviewer #2 states there are other publications to complete the list. We are aware of other articles authored by the same team as Shimoju et al. (2020) with different first authors. However, they are reporting similar findings to the cited article. Otherwise, we would gladly cite a more complete list of publications showing atypical, long, monotonous highfrequency vocalizations, similar to those observed in our experiments. Therefore, we would argue that ultrasonic vocalizations which were long, flat, high in frequency, and repeatedly occurring in a defined behavioral situation, have not been reported before. However, concerning the strong claims of novelty of our finding, we toned them down where we found this was warranted.

      In general, the manuscript is not well written/ not well organized, the description of the methods is insufficient, and it is often difficult (if not impossible) to link the reported data to the experiments/ experimental conditions described in the materials and methods section.

      Answer: The description of the methods has been adjusted and expanded. We added the requested link to each particular experiment as a formula “Tab. 1/Exp. nos./# nos.” which shows, each time, which experiments and experimental groups were analyzed. The list of the experiments and groups is found in the Tab. 1.

      For example, I miss a clear presentation of basic information: 1) How many rats emitted "44 kHz" calls (in total, per experiment, and importantly, also per experimental condition, i.e. single- versus group-housed)?

      Answer: We now clearly show which experiments were performed and how many animals were tested in each condition (Tab. 1), while the prevalence of 44-kHz calls amongst experimental conditions and animal groups is shown in Fig. 1S3. Also, we included information regarding the number of animals and treatment of each group of rats when reporting results. For example, we are stating that:

      (1a) “53 of all 84 conditioned Wistar rats (Tab. 1/Exp. 1-3/#2,4,6-8,13, Figs 1B, 1E, 1S1BC) displayed” 44-kHz vocalizations – as a general assessment; these numbers are different from those in the first version of the Ms, when we are mentioning Wistar rats conditioned 6 or 10 times only.

      (1b) “From this group of rats (n = 46), n = 41 (89.1%) emitted long 22-kHz calls, and 32 of them (69.6%) emitted 44-kHz calls” – this time referring only to 10-times conditioned Wistar rats as the biggest group that could be analyzed together (Figs 1F, 1G, 1S2A).

      (1c) “for n = 3 rats, 44-kHz vocalizations accounted for >95% of all calls during at least one ITI (e.g., 140 of total 142, 222 of 231, and 263 of 265 tallied 44-kHz calls), and in n = 9 rats, 44kHz vocalizations constituted >50% of calls in more than one ITI.”

      (2) Out of the ones emitting "44 kHz" calls, what was the prevalence of "44 kHz" calls (relative to 22- and 50-kHz calls, e.g. shown as percentage)?

      Answer: The prevalence of 44-kHz vocalizations in all investigated experiments and groups is shown in Fig. 1S3CD. Also, more information regarding the percentage of 44-kHz calls was demonstrated in Fig. 1S2AB where we calculated the distribution of 44-kHz calls to 22-kHz calls in Wistar rats, in 10-trial fear conditioning, across the length of the session.

      Additionally, the values are listed in the sentence regarding all Wistar rats which underwent 10 trials of fear conditioning: “these vocalizations were less frequent following the first trial (1.2 ± 0.4% of all calls), and increased in subsequent trials, particularly after the 5th (8.8 ± 2.8%), through the 9th (19.4 ± 5.5%, the highest value), and the 10th (15.5 ± 4.9%) trials, where 44-kHz calls gradually replaced 22-kHz vocalizations in some rats (Fig. 1F, 1S2B, Video 1; comp Fig. 1D vs. 1E).”

      (3) How did this ratio differ between experiments and experimental conditions?

      Answer: The prevalence of 44-kHz vocalizations in all experimental conditions is shown in Fig. 1S3. However, the direct comparison of results obtained in different conditions was not the goal of the present work. Also, we would argue, that such direct comparisons of results of different experiments would not be allowed. These experiments were done with different groups of animals, at different times, with different timetables of experimental manipulations.

      However, we are comfortable to state that:

      • There were more 44-kHz vocalizations during fear conditioning training than testing in all fear-conditioned Wistar rats;

      • We observed more 44-kHz vocalizations in Wistar rats compared to SHR.

      (4) Was there a link to freezing? Freezing was apparently analyzed before (Olszyński et al., 2021, 2023) and it would be important to see whether there is a correlation between "44-kHz" calls and freezing. Moreover, it would be important to know what behavior the rats are displaying while such "44-kHz" calls are emitted? (Note: Even not all 22-kHz calls are synced to freezing.) All this could help to substantiate the currently highly speculative claims made in the discussion section ("frequency increases with an increase in arousal" and "it could be argued that our prolonged fear conditioning increased the arousal of the rats with no change in the valence of the aversive stimuli"). Such more detailed analyses are also important to rule out the possibility that the "new-type" ultrasonic vocalization, the so-called "44 kHz" call, is simply associated with movement/ thorax compression.

      Answer: We analyzed freezing behavior and its association with ultrasonic emissions. The emission of 44-kHz vocalizations was associated with freezing. The results are now described and presented in the manuscript, i.e., Tab. 2, its legend and the description in Results: “Freezing during the bins of 22-kHz calls only (p < 0.0001, for both groups) and during 44-kHz calls only bins (p = 0.0003) was higher than during the first 5 min baseline freezing levels of the session. Also, the freezing associated with emissions of 44-kHz calls only was higher than during bins with no ultrasonic vocalizations (p = 0.0353), and it was also 9.9 percentage points higher than during time bins with only long 22-kHz vocalizations, but the difference was not significant (p = 0.1907; all Wilcoxon)” and “To further investigate this potential difference, we measured freezing during the emission of randomly selected single 44-kHz and 22-kHz vocalizations. The minimal freezing behavior detection window was reduced to compensate for the higher resolution of the measurements (3, 5, 10, or 15 video frames were used). There was no difference in freezing during the emission of 44-kHz vs. 22-kHz vocalizations for ≥150ms-long calls (3 frames, p = 0.2054) and for ≥500-ms-long calls (5 frames, p = 0.2404; 10 frames, p = 0.4498; 15 frames, p = 0.7776; all Wilcoxon, Tab. 2B).”

      Please note, that the general observation that "frequency increases with an increase in arousal" is not our claim but a general rule derived from large body of observations and proposed by the others (Briefer et al., 2012); we changed the wording of this statement to: “frequency usually increases with an increase in arousal (Briefer et al., 2012)”.

      The figures currently included are purely descriptive in most cases - and many of them are just examples of individual rats (e.g. majority of Fig. 1, all of Fig. 2 to my understanding, with the exception of the time course, which in case of D is only a subset of rats ("only rats that emitted 44-kHz calls in at least seven ITI are plotted" - is there any rationale for this criterion?)), or, in fact, just representative spectrograms of calls (all of Fig. 3, with the exception of G, all of Fig. 4).

      Answer: Please note, the former figures 2, 4, 6, and 8 have been now moved to supplementary figures 1S1, 2S1, 3S1, and 4S1 – to better organize the presentation of data. Figures 1, 3, 5, 7 are now 1, 2, 3, 4 respectively. In regards to presenting data from individual rats, this was to show the general patterns of ultrasonic-calls distributions observed. Showing the full data set as seen in Fig. 5A (now Fig. 3A) would obscure the readability of the graph without using mathematical clustering techniques such as DBSCAN.

      Concerning the Reviewer’s #2 question regarding the criterion of “minimum seven ITI”, we selected the highest vocalizers by taking animals above the 75th percentile of the number of ITI with 44-kHz calls. However, in the current version of the manuscript, we decided to omit this part of the analysis and the accompanying part of the figure, since it did not provide any additional informative value (apart from employing questionable criterion).

      Moreover, the differences between Fig. 5 and Fig. 6 are not clear to me. It seems Fig. 5B is included three times - what is the benefit of including the same figure three times?

      Answer: We hope that designating Fig. 6 as supplementary to Fig. 5 (now Figs 3S1 and 3, respectively) will make interpreting them more streamlined. Fig. 6A (now Fig. 3S1A) is a more detailed look on information presented in Fig. 5B (now Fig. 3B) with spectrogram images of ultrasonic vocalizations from different areas of the plot. Also, Fig. 3B (former Fig. 5B) was removed from Fig. 3S1B (former Fig. 6B).

      A systematic comparison of experimental conditions is limited to Fig. 7 and Fig. 8, the figures depicting the playback results (which led to the conclusion that "the responses to 44-kHz aversive calls presented from the speaker were either similar to 22-kHz vocalizations or in between responses to 22-kHz and 50-kHz playbacks", although it remains unclear to me why differences were seen b e f o r e the experimental manipulation, i.e. the different playback types in Fig. 8B).

      Answer: There were indeed instances of such before-differences. Such differences were observed in our previous studies (Olszyński et al., 2020, Tabs S9-12; Olszyński et al., 2021, Tabs S7; Olszyński et al., 2022, Tabs S4, S9, S13, S17, S18) and were most likely due to analyzing multiple comparisons. However, we think that the carry-over effect, mentioned by the Reviewer #2 (see below), also played a role.

      Related to that, I miss a clear presentation of relevant methodological aspects: 1) Why were some rats single-housed but not the others?

      Answer: As stated before, data were collected from our previous experiments and the observation of 44-kHz vocalizations in fear conditioning was an emergent discovery as we decided to analyze ultrasonic recordings from fear conditioning procedures. Single-housed animals were part of our experiment comparing fear conditioning and social situation on the perception of ultrasonic playback as described in Olszyński et al. (2020). Aside from this experiment, all other rats were housed in pairs.

      (2) Is the experimental design of the playback study not confounded? It is said that "one group (n = 13) heard 50-kHz appetitive vocalization playback while the other (n = 16) 22-kHz and 44kHz aversive calls". How can one compare "44 kHz" calls to 22- and 50-kHz calls when "44 kHz" calls are presented together with 22-kHz calls but not 50-kHz calls? What about carry-over effects? Hearing one type of call most likely affects the response to the other type of call. It appears likely that rats are a bit more anxious after hearing aversive 22-kHz calls, for example. Therefore, it would not be very surprising to see that the response to "44 kHz" calls is more similar to 22-kHz calls than 50-kHz calls.

      Of note, in case of the other playback experiment it is just said that rats "received appetitive and aversive ultrasonic vocalization playback" but it remains unclear whether "44 kHz" calls are seen as appetitive or aversive. Later it says that "rats were presented with two 10-s-long playback sets of either 22-kHz or 44-kHz calls, followed by one 50-kHz modulated call 10-s set and another two playback sets of either 44-kHz or 22-kHz calls not previously heard" (and wonder what data set was included in the figures and how - pooled?). Again, I am worried about carry-over effects here. This does not seem to be an experimental design that allows to compare the response to the three main call types in an unbiased manner.

      Answer: We apologize for being confounding and brief in our original description of the playback experiments. We wanted to avoid confusion associated with including several additional playback signals (please note some are not related to the current comparisons and include different 50-kHz ultrasonic subtypes and two different subtypes of short 22-kHz calls). We lengthened the description of these playback experiments in the current version.

      In general, including more than one type of ultrasonic calls as playback has a risk of a carry-over effect as well as a habituation effect (the responses become weak). However, it greatly reduces the number of required animals. Finally, regarding the first experiment, we chose 3 playbacks to compare the rats’ reactions, as this was the most conservative choice we thought of.

      We would like to highlight that we wanted to compare specifically the rats’ responses to 22-kHz vs. 44-kHz playback (as well as the effects of playback of different subtypes 50-kHz calls, which is not the subject of the current work). Therefore, we would argue, that the design of both experiments is actually unbiased regarding this key comparison (responses to 22-kHz vs. 44-kHz playback). In both experiments, 22-kHz and 44-kHz playbacks were included in the same sequences of stimuli and counterbalanced regarding their order (i.e., taking into account possible carry-over effects), and presented to the same rats. We regarded the group of rats that heard 50-kHz recordings as a baseline/control, since we know from previous playback studies what reactions to expect from rats exposed to these vocalizations (and 22-kHz playback), while in the second experiment, we reduced the 50-kHz playback to one set in order to minimize possible habituation to multiple playbacks.

      We agree that the design of both experiments does not allow for full comparison of the effects of aversive playbacks to 50-kHz playback. Also, we agree that some carry-over effects could play a role. It was mentioned in the discussion: ”Please factor in potential carryover effects (resulting from hearing playbacks of the same valence in a row) in the differences between responses to 50-kHz vs. 22/44-kHz playbacks, especially, those observed before the signal (Fig. 4AB).” However, we would still argue that the observed lack of difference in heartrate response (Fig. 4A) and the differences regarding the number of 50-kHz calls emitted (e.g., Fig. 4S1F) are void of the constraints raised by the Reviewer #2.

      We acknowledge that our studies do not give a complete picture of 44-kHz ultrasonic perception in relation to other ultrasonic bands and, given the possibility, we would like to perform more in-depth and focused experiments to study this aspect of 44-kHz calls in the future.

      Finally, regarding the second experiment, the description of the rats now includes that they “received 22-kHz, 44-kHz, and 50-kHz ultrasonic vocalization playback”, while the description of the experiment itself includes: “Responses to the pairs of playback sets were averaged”.

      Of note, what exactly is meant by "control rats" in the context of fear conditioning is also not clear to me. One can think of many different controls in a fear conditioning experiment.

      More concrete information is needed.

      Answer: This information was included in our previous publications. However, it was now provided in the method section of the current version of the manuscript. In general, control rats were subjected to the same procedures but did not receive electric shocks.

      Literature included in the answers

      Araya, E. I., Baggio, D. F., Koren, L. O., Andreatini, R., Schwarting, R. K. W., Zamponi, G. W., & Chichorro, J. G. (2020). Acute orofacial pain leads to prolonged changes in behavioral and affective pain components. Pain, 161(12), 2830-2840. https://doi.org/10.1097/j.pain.0000000000001970

      Barker, D. J., Root, D. H., Ma, S., Jha, S., Megehee, L., Pawlak, A. P., & West, M. O. (2010). Dose-dependent differences in short ultrasonic vocalizations emitted by rats during cocaine self-administration. Psychopharmacology (Berl), 211(4), 435-442. https://doi.org/10.1007/s00213-010-1913-9

      Barroso, A. R., Araya, E. I., de Souza, C. P., Andreatini, R., & Chichorro, J. G. (2019). Characterization of rat ultrasonic vocalization in the orofacial formalin test: Influence of the social context. Eur Neuropsychopharmacol, 29(11), 1213-1226. https://doi.org/10.1016/j.euroneuro.2019.08.298

      Biały, M., Podobinska, M., Barski, J., Bogacki-Rychlik, W., & Sajdel-Sulkowska, E. M. (2019). Distinct classes of low frequency ultrasonic vocalizations in rats during sexual interactions relate to different emotional states. Acta Neurobiol Exp (Wars), 79(1), 1-12. https://www.ncbi.nlm.nih.gov/pubmed/31038481

      Briefer, E. F., Padilla de la Torre, M., & McElligott, A. G. (2012). Mother goats do not forget their kids' calls. Proc Biol Sci, 279(1743), 3749-3755. https://doi.org/10.1098/rspb.2012.0986

      Browning, J. R., Browning, D. A., Maxwell, A. O., Dong, Y., Jansen, H. T., Panksepp, J., & Sorg, B. A. (2011). Positive affective vocalizations during cocaine and sucrose self administration: a model for spontaneous drug desire in rats. Neuropharmacology, 61(1-2), 268-275. https://doi.org/10.1016/j.neuropharm.2011.04.012

      Brudzynski, S. M. (2015). Pharmacology of Ultrasonic Vocalizations in adult Rats: Significance, Call Classification and Neural Substrate. Curr Neuropharmacol, 13(2), 180-192. https://doi.org/10.2174/1570159x13999150210141444

      Brudzynski, S. M., & Bihari, F. (1990). Ultrasonic vocalization in rats produced by cholinergic stimulation of the brain. Neurosci Lett, 109(1-2), 222-226. https://doi.org/10.1016/0304-3940(90)90567-s

      Brudzynski, S. M., Bihari, F., Ociepa, D., & Fu, X. W. (1993). Analysis of 22 kHz ultrasonic vocalization in laboratory rats: long and short calls. Physiol Behav, 54(2), 215-221. https://doi.org/10.1016/0031-9384(93)90102-l

      Hinchcliffe, J. K., Jackson, M. G., & Robinson, E. S. (2022). The use of ball pits and playpens in laboratory Lister Hooded male rats induces ultrasonic vocalisations indicating a more positive affective state and can reduce the welfare impacts of aversive procedures. Lab Anim, 56(4), 370-379. https://doi.org/10.1177/00236772211065920

      Matochik, J. A., White, N. R., & Barfield, R. J. (1992). Variations in scent marking and ultrasonic vocalizations by Long-Evans rats across the estrous cycle. Physiol Behav, 51(4), 783-786. https://doi.org/10.1016/0031-9384(92)90116-j

      Olszyński, K. H., Polowy, R., Małż, M., Boguszewski, P. M., & Filipkowski, R. K. (2020). Playback of Alarm and Appetitive Calls Differentially Impacts Vocal, Heart-Rate, and Motor Response in Rats. iScience, 23(10), 101577. https://doi.org/10.1016/j.isci.2020.101577

      Olszyński, K. H., Polowy, R., Wardak, A. D., Grymanowska, A. W., & Filipkowski, R. K. (2021). Increased Vocalization of Rats in Response to Ultrasonic Playback as a Sign of Hypervigilance Following Fear Conditioning. Brain Sci, 11(8). https://doi.org/10.3390/brainsci11080970

      Olszyński, K. H., Polowy, R., Wardak, A. D., Grymanowska, A. W., Zieliński, J., & Filipkowski, R. K. (2022). Spontaneously hypertensive rats manifest deficits in emotional response to 22-kHz and 50-kHz ultrasonic playback. Prog Neuropsychopharmacol Biol Psychiatry, 120, 110615. https://doi.org/10.1016/j.pnpbp.2022.110615

      Saito, Y., Tachibana, R. O., & Okanoya, K. (2019). Acoustical cues for perception of emotional vocalizations in rats. Scientific Reports, 9(1), 10539.

      Sales, G. D. (1979). Strain Differences in the Ultrasonic Behavior of Rats (Rattus norvegicus) Am Zool, 19(2), 513-527. https://www.jstor.org/stable/3882331

      Shimoju, R., Shibata, H., Hori, M., & Kurosawa, M. (2020). Stroking stimulation of the skin elicits 50-kHz ultrasonic vocalizations in young adult rats. J Physiol Sci, 70(1), 41. https://doi.org/10.1186/s12576-020-00770-1

      Silkstone, M., & Brudzynski, S. M. (2019a). The antagonistic relationship between aversive and appetitive emotional states in rats as studied by pharmacologically-induced ultrasonic vocalization from the nucleus accumbens and lateral septum. Pharmacology Biochemistry and Behavior, 181, 77-85. https://doi.org/10.1016/j.pbb.2019.04.009

      Silkstone, M., & Brudzynski, S. M. (2019b). Intracerebral injection of R-(-)-Apomorphine into the nucleus accumbens decreased carbachol-induced 22-kHz ultrasonic vocalizations in rats. Behavioural Brain Research, 364, 264-273. https://doi.org/10.1016/j.bbr.2019.01.044

      Willey, A. R., & Spear, L. P. (2013). The effects of pre-test social deprivation on a natural reward incentive test and concomitant 50 kHz ultrasonic vocalization production in adolescent and adult male Sprague-Dawley rats. Behav Brain Res, 245, 107-112. https://doi.org/10.1016/j.bbr.2013.02.020

      Wöhr, M., Borta, A., & Schwarting, R. K. (2005). Overt behavior and ultrasonic vocalization in a fear conditioning paradigm: a dose-response study in the rat. Neurobiol Learn Mem, 84(3), 228-240. https://doi.org/10.1016/j.nlm.2005.07.004

      Recommendations For The Authors:

      Reviewer #1 (Recommendations For The Authors):

      Additional considerations:

      The discussion of the "perfect fifth" and the proposition that this observation could be evidence of an evolutionary mechanism underlying it is rather far-fetched, especially for being presented in the Results section (with no supporting non-anecdotal evidence).

      Answer: We agree with the Reviewer #1. The text was modified, the word “evolutionary” was deleted. Instead, we expended on the possible reason for prevalence of the perfect fifth in the current version of the manuscript; we added that the prevalence of the perfect fifth: “could be explained by the observation that all physical objects capable of producing tonal sounds generate harmonic vibrations, the most prominent being the octave, perfect fifth, and major third (Christensen, 1993, discussed in Bowling and Purves, 2015).”

      It is not clear why Sprague-Dawleys were used as "receivers" in the playback experiment, when presumably the calls were recorded from Wistars and SHRs. While this does not critically impact the conclusions, within the species rats should be able to respond appropriately to calls made by rats of different genetic backgrounds, it adds an unnecessary source of variance.

      Answer: Sprague-Dawley rats were used to test another normotensive strain of rats. Regarding the Reviewer’s main point – we beg to differ as we think that it is worth testing playback stimuli in different strains. Diverging the stimuli between different rat strains would add unnecessary variance and it seemed logical to use the same recordings to test effects in different strains. Please note that finally, in spite of this additional variance, the results of both playback experiments are, in general, similar – which may point to a universal effect of 44-kHz playback across rat strains.

      It is pertinent to note that for the trace fear conditioning experiment, the rats had previously been exposed to a vocalization playback experiment. While such a pre-exposure is unlikely to be a very strong stressor, the possibility for it to influence the vocal behaviors of these rats in later experiments cannot be ruled out. It is also not clear what the control rats in this experiment experienced (home cage only?), nor what they were used for in analyses.

      Answer: In the current version of the manuscript, we have described in greater detail all the experiments performed and analyzed. We would like to emphasize that both delay and trace fear conditioning experiments with radiotelemetric transmitters were not performed specifically to elicit any particular response during fear conditioning, rather that our observation of 44-kHz vocalizations emerged as a result of re-examining the audio recordings. As a result, this work summarizes our observations of 44-kHz calls from several different experiments. It is relevant to note, that 44-kHz vocalizations were observed “in rats which were exposed to vocalization playback experiment”, in rats before the playback experiments as well as in naïve rats, without transmitters implemented, trained in fear conditioning (Tab. 1/Exp. 1-3).

      Our main message is that 44-kHz vocalizations were present in several experiments, with different conditions and subjects, while we are not attempting to compare in detail the results across the different experiments. In other words, we agree that pre-exposure to playback (and even more likely – transmitters implantation) could influence, but are not necessary, for 44-kHz ultrasonic emissions by the rats. To demonstrate this, we added a prolonged fear conditioning group with naïve Wistar rats (Exp. 3) to verify the emission of 44kHz calls in the absence of those experimental factors.

      We modified the methods section to clarify the circumstances under which these discoveries were made, such as including the information regarding the control rats in trace fear conditioning. In particular we mention that: “Control rats were subjected to the exact same procedures but did not receive the electric shock at the end of trace periods”.

      For Figure 1A-E, only example call distributions from individual rats are shown. It would perhaps be more informative to see the full data set displayed in this manner, with color/shape codes distinguishing individuals if desired.

      Answer: Please note the Fig. 1S1 shows more examples of ultrasonic call distribution. Showing all the data would make it more difficult to read and interpret. The problem is partly amended in Fig. 3A.

      It is not clear what is presented in Figure 2D vs. E, i.e. panel D is shown only for "selected rats" but the legend does not clarify how and why these rats were selected. It is also not clear why the legend reports p-values for both Friedman and Wilcoxon tests; the latter is appropriate for paired data which seems to be the case when the question is whether the call peak frequency alters across time, but the Friedman assumes non-paired input data.

      Answer: The question refers to the current Fig. 1S2C panel (former Fig. 2E panel) and the former Fig. 2D panel. The latter was not included in the current version of the manuscript, since both reviewers opposed the presentation of “selected rats” only (see above). The full description of the Fig. 1S2C panel is now in the results section together with p-values for Friedman and Wilcoxon test. We used the latter to investigate the difference between the first and the last ITI (selected paired data), while the Friedman to investigate the presence of change within the chain of ten ITI – since it is a suitable test for a difference between two or more paired samples.

      Reviewer #2 (Recommendations For The Authors):

      The weaknesses listed in the public review need to be addressed.

      Answer: We have done our best to address the weaknesses.

      Notes: 1) Page and line numbers would have been useful.

      Answer: We are including a separate manuscript version with page and line numbers.

      .(2) English language needs to be improved.

      Answer: The text has been checked by two native English speakers (one with a scientific background). Both only identified minor changes to improve the text which we applied.

      (3) I am a bit unsure whether the comment about the Star Wars movie (1997) and the Game of Thrones series (2011) is supposed to be a joke.

      Answer: These are indeed two genuine examples of the perfect fifth in human music that we hope are easily recognizable and familiar to readers. Parts of the same examples of the perfect fifth can also heard in the rat voice files provided.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      During the last decades, extensive studies (mostly neglected by the authors), using in vitro and in vivo models, have elucidated the five-step mechanism of intoxication of botulinum neurotoxins (BoNTs). The binding domain (H chain) of all serotypes of BoNTs binds polysialogangliosides and the luminal domain of a synaptic vesicle protein (which varies among serotypes). When bound to the synaptic membrane of neurons, BoNTs are rapidly internalized by synaptic vesicles (SVs) via endocytosis. Subsequently, the catalytic domain (L chain) translocates, a process triggered by the acidification of these organelles. Following translocation, the disulfide bridge connecting the H chain with the L chain is reduced by the thioredoxin reductase/thioredoxin system, and it is refolded by the chaperone Hsp90 on SV's surface. Once released into the cytosol, the L chains of different serotypes cleave distinct peptide bonds of specific SNARE proteins, thereby disrupting neurotransmission. In this study, Yeo et al. extensively revise the neuronal intoxication model, suggesting that BoNT/A follows a more complex intracellular route than previously thought. The authors propose that upon internalization, BoNT/A-containing endosomes are retro-axonally trafficked to the soma. At the level of the neuronal soma, this serotype then traffics to the endoplasmic reticulum (ER) via the Golgi apparatus. The ER SEC61 translocon complex facilitates the translocation of BoNT/A's LC from the ER lumen into the cytosol, where the thioredoxin reductase/thioredoxin system and HSP complexes release and refold the catalytic L chain. Subsequently, the L chain diffuses and cleaves SNAP25 first in the soma before reaching neurites and synapses. Strengths:

      I appreciate the authors' efforts to confirm that the newly established methods somehow recapitulate aspects of the BoNTs mechanism of action, such as toxin binding and uptake occurring at the level of active synapses. Furthermore, even though I consider the SNAPR approach inadequate, the genome-wide RNAi screen has been well executed and thoroughly analyzed. It includes well-established positive and negative controls, making it a comprehensive resource not only for scientists working in the field of botulinum neurotoxins but also for cell biologists studying endocytosis more broadly. Weaknesses:

      I have several concerns about the authors' main conclusions, primarily due to the lack of essential controls and validation for the newly developed methods used to assess toxin cleavage and trafficking into neurons. Furthermore, there is a significant discrepancy between the proposed intoxication model and existing studies conducted in more physiological settings. In my opinion, the authors have omitted over 20 years of work done in several labs worldwide (Montecucco, Montal, Schiavo, Rummel, Binz, etc.). I want to emphasize that I support changes in biological dogma only when these changes are supported by compelling experimental evidence, which I could not find in the present manuscript.

      We thank the reviewer for his reading and comments and for pointing out the discrepancy between our proposed model and the existing model. However, we respectfully disagree with the phrase of “extensive studies have elucidated the five-steps mechanism of intoxication…”. This sentence and the following imply that the model is well-established and demonstrated. It also highlights how the reviewer is convinced about this previous model.

      We contest this model for theoretical reasons and contest the strength of evidences that support it. We previously included references to previous work showing that the model is also being challenged by others. In light of the reviewer’s comments, we incluced more references in the introduction and we also explicit our main theoretical concern in the introduction:

      “Arguably, the main problem of the model is its failure to propose a thermodynamically consistent explanation for the directional translocation of a polypeptidic chain across a biologial membrane. Other known instances of polypeptide membrane translocation such as the co-translational translocation into the ER indicate that it is an unfavorable process, which consumes significant energy (Alder and Theg 2003). ”

      We also added the following text in the Discussion to address with the reviewer’s concerns: “Our study contradicts the long-established model of BoNT intoxication, which is described in several reviews specifically dedicated to the subject 1–4. In short, these reviews support the notion that BoNT are molecular machines able to mediate their own translocation across membranes; this notion has convinced some cell biologists interested in toxins and retrograde traffic, who describe BoNT mode of translocation in their reviews 5,6.

      But is this notion well supported by data? A careful examination of the primary literature reveals that early studies indeed report that BonTs form ion channels at low pH values 7,8. These studies have been extended by the use of patch-clamp 9,10. These works and others lead to various suppositions on how the toxin forms a channel and translocate the LC 1,11 .

      However, only a single study claims to reconstitute in vitro the translocation of BonT LC across membranes 12. In this paper, the authors report using a system of artificial membranes separating two aqueous compartments. They load the toxin in the cis compartment and measure the protease activity in the trans compartment after incubation. However, when the experimental conditions described are actually converted in terms of molarity, it appears that the cis compartment was loaded at 10e-8M BonT and that the reported translocated protease activity is equivalent to 10e-17 M (Figure 3D, 12). Thus, in this experiment, about 1 LC molecule in 100 millions has crossed the membrane. Such extremely low transfert rate does not tally with the extreme efficiency of intoxication in vivo, even while taking into account the difference between artificial and biological membranes.

      In sum, a careful analysis of the primary literature indicate that while there is ample evidence that BoNTs have the ability to affect membranes and possibly create ion channels, there is actually no credible evidence that these channels mediate translocation of the LC. As mentioned earlier, it is not clear how such a self-translocation mechanism would function thermodynamically. By contrast, our model proposes a mechanism without a thermodynamic problem, is consistent with current knowledge about other protein toxins, such as PE, Shiga and Ricin, and can help explain previously puzzling features of BonT effects. It is worth noting that a similar self-translocation model was proposed for other protein toxins such as Pseudomonas exotoxin, which have similar molecular organisation as BonT (68). However, it has since been demonstrated that the PE toxins require cellular machinery, in particular in the ER, for intoxication (21,69,70).”

      Reviewer #2 (Public Review):

      Summary:

      The study by Yeo and co-authors addresses a long-lasting issue about botulinum neurotoxin (BoNT) intoxication. The current view is that the toxin binds to its receptors at the axon terminus by its HCc domain and is internalized in recycled neuromediator vesicles just after the release of the neuromediators. Then, the HCn domain assists the translocation of the catalytic light chain (LC) of the toxin through the membrane of these endocytic vesicles into the cytosol of the axon terminus. There, the LC cleaves its SNARE substrate and blocks neurosecretion. However, other views involving kinetic aspects of intoxication suggest that the toxin follows the retrograde axonal transport up to the nerve cell body and then back to the nerve terminus before cleaving its substrate.

      In the current study, the authors claim that the BoNT/A (isotype A of BoNT) not only progresses to the cell body but once there, follows the retrograde transport trafficking pathway in a retromer-dependent fashion, through the Golgi apparatus, until reaching the endoplasmic reticulum. Next, the LC dissociates from the HC (a process not studied here) and uses the translocon Sec61 machinery to retro-translocate into the cytosol. Only then, does the LC traffic back to the nerve terminus following the anterograde axonal transport. Once there, LC cleaves its SNARE substrate (SNAP25 in the case of BoTN/A) and blocks neurosecretion.

      To reach their conclusion, Yeo and co-authors use a combination of engineered tools: a cell line able to differentiate into neurons (ReNcell VN), a reporter dual fluorescent protein derived from SNAP25, the substrate of BoNT/A (called SNAPR), the use of either native BoNT/A or a toxin to which three fragment 11 of the reporter fluorescent protein Neon Green (mNG) are fused to the N-terminus of the LC (BoNT/A-mNG11x3), and finally ReNcell VN transfected with mNG1-10 (a protein consisting of the first 10 beta strands of the mNG).

      SNAPR is stably expressed all over in the ReNcell VN. SNAPR is yellow (red and green) when intact and becomes red only when cleaved by BoNT/A LC, the green tip being degraded by the cell. When the LC of BoNT/A-mNG11x3 reaches the cytosol in ReNcell VN transfected by mNG1-10, the complete mNG is reconstituted and emits a green fluorescence.

      In the first experiment, the authors show that the catalytic activity of the LC appears first in the cell body of neurons where SNAPR is cleaved first. This phenomenon starts 24 hours after intoxication and progresses along the axon towards the nerve terminus during an additional 24 hours. In a second experiment, the authors intoxicate the ReNcell VN transfected by mNG1-10 using the BoNT/A-mNG11x3. The fluorescence appears also first in the soma of neurons, then diffuses in the neurites in 48 hours. The conclusion of these two experiments is that translocation occurs first in the cell body and that the LC diffuses in the cytosol of the axon in an anterograde fashion.

      In the second part of the study, the authors perform a siRNA screen to identify regulators of BoNT/A intoxication. Their aim is to identify genes involved in intracellular trafficking of the toxin and translocation of the LC. Interestingly, they found positive and negative regulators of intoxication. Regulators could be regrouped according to the sequential events of intoxication.

      Genes affecting binding to the cell-surface receptor (SV2) and internalization. Genes involved in intracellular trafficking. Genes involved in translocation such as reduction of the disulfide bond linking the LC to the HC and refolding in the cytosol. Genes involved in signaling such as tyrosine kinases and phosphatases. All these groups of genes may be consistent with the current view of BoNT intoxication within the nerve terminus. However, two sets of genes were particularly significant to reach the main conclusion of the work and definitely constitute an original finding important to the field. One set of genes consists of those of the retromer, and the other relates to the Sec61 translocon. This should indicate that once endocytosed, the BoNT traffics from the endosomes to the Golgi apparatus, and then to the ER. Ultimately, the LC should translocate from the ER lumen to the cytosol using the Sec61 translocon. The authors further control that the SV2 receptor for the BoNT/A traffics along the axon in a retromer-dependent fashion and that BoNT/A-mNG11x3 traverses the Golgi apparatus by fusing the mNG1-10 to a Golgi resident protein.

      Strengths:

      The findings in this work are convincing. The experiments are carefully done and are properly controlled. In the first part of the study, both the activity of the LC is monitored together with the physical presence of the toxin. In the second part of the work, the most relevant genes that came out of the siRNA screen are checked individually in the ReNcell VN / BoNT/A reporter system to confirm their role in BoNT/A trafficking and retro-translocation.

      These findings are important to the fields of toxinology and medical treatment of neuromuscular diseases by BoNTs. They may explain some aspects of intoxication such as slow symptom onset, aggravation, and appearance of central effects.

      Weaknesses:

      The findings antagonize the current view of the intoxication pathway that is sustained by a vast amount of observations. The findings are certainly valid, but their generalization as the sole mechanism of BoNT intoxication should be tempered. These observations are restricted to one particular neuronal model and engineered protein tools. Other models such as isolated nerve/muscle preparations display nerve terminus paralysis within minutes rather than days. Also, the tetanus neurotoxin (TeNT), whose mechanism of action involving axonal transport to the posterior ganglia in the spinal cord is well described, takes between 5 and 15 days. It is thus possible that different intoxication mechanisms co-exist for BoNTs or even vary depending on the type of neurons.

      Although the siRNA experiments are convincing, it would be nice to reach the same observations with drugs affecting the endocytic to Golgi to ER transport (such as Retro-2, golgicide or brefeldin A) and the Sec61 retrotranslocation (such as mycolactone). Then, it would be nice to check other neuronal systems for the same observations.

      We thank the reviewer for the careful reading and comments of our manuscript. The reference to “a vast amount of observation” is a similar argument to the Reviewer 1 and used to suggest that our study may not be applicable as a general mechanism.

      We respectfully disagree as described above and posit on the contrary that the model we propose is much more likely to be general than the model presented in current reviews for the several reasons cited (see added text in Introduction and Discussion). While we agree that more work is needed to confirm the proposed mechanisms of BonT translocation in other models, these experiments fall outside the perimeter of our study.

      The fact that nerve/muscle preparations of BonT activity have relatively fast kinetics does not pose a contradiction to our model. Our model reveals primarily the requirement for trafficking to the ER membranes. This ER targeting requires trafficking through the Golgi complex, in turn explaining the requirement for trafficking to the soma of neurons in the experimental system we used. However, in neuronal cells in vivo, Golgi bodies can be found along the lenght of the axon, thus BonT may not always require trafficking to the soma of the affected cells. The time required for intoxication could thus vary greatly depending on the neuronal structural organisation.

      TenT is proposed to transfer from excitatory neurons into inhibitory neurons before exerting its action. While the detailed mechanism of this fascinating mechanism remain to be explored, it clearly falls beyond the purview of this manuscript.

      Regarding the use of drugs, we agree that it would be a nice addition; unfortunately we are unable to perform such experiments at this stage. Setting up a large scale siRNA screen for BonT mechanism of action is challenging as it requires a special facility with controlled access and police authorisation (in Singapore) given the high toxicity of this molecule. Unfortunately, the authorisations have now lapsed.

      Reviewer #3 (Public Review): Summary:

      The manuscript by Yao et al. investigates the intracellular trafficking of Botulinum neurotoxin A (BoNT/A), a potent toxin used in clinical and cosmetic applications. Contrary to the prevailing understanding of BoNT/A translocation into the cytosol, the study suggests a retrograde migration from the synapse to the soma-localized Golgi in neurons. Using a genome-wide siRNA screen in genetically engineered neurons, the researchers identified over three hundred genes involved in this process. The study employs organelle-specific split-mNG complementation, revealing that BoNT/A traffics through the Golgi in a retromer-dependent manner before moving to the endoplasmic reticulum (ER). The Sec61 complex is implicated in the retro-translocation of BoNT/A from the ER to the cytosol. Overall, the research challenges the conventional model of BoNT/A translocation, uncovering a complex route from synapse to cytosol for efficient intoxication. The findings are based on a comprehensive approach, including the introduction of a fluorescent reporter for BoNT/A catalytic activity and genetic manipulations in neuronal cell lines. The conclusions highlight the importance of retrograde trafficking and the involvement of specific genes and cellular processes in BoNT/A intoxication.

      Strengths:

      The major part of the experiments are convincing. They are well-controlled and the interpretation of their results is balanced and sensitive.

      Weaknesses:

      To my opinion, the main weakness of the paper is in the interpretation of the data equating loss of tGFP signal (when using the Red SNAPR assay) with proteolytic cleavage by the toxin. Indeed, the first step for loss of tGFP signal by degradation of the cleaved part is the actual cleavage. However, this needs to be degraded (by the proteasome, I presume), a process that could in principle be affected (in speed or extent) by the toxin.

      We thank the reviewer for his comments and careful reading of our manuscript.

      Regarding the read-out of the assay, we agree that the assay could be sensitive to alteration in the protein degradation pathway. We have added the following sentence in the Discussion to take it into account:

      “As noted by one reviewer, the assay may be sensitive to perturbation in the general rate of protein degradation, a consideration to keep in mind when evaluating the results of large scale screens.”

      While this may be valid for some hits in the general list, it is important to note that the main hits have been shown to affect toxin trafficking by an independent, orthogonal assay based on the split GFP reconstitution.

      Recommendations to authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) To assess the activity of BoNT/A in neurons, Yeo et al. have generated a neuronal stem line referred to as SNAPR. This cell line stably expresses a chimeric reporter protein that consists of SNAP25 flanked at its N-terminus with a tagRFPT and at its C-terminus with a tagGFP. After exposure to BoNT/A, SNAP25 is cleaved and, the C-terminal tGFP-containing moiety is rapidly degraded. I have many doubts about the validity of the described method. Indeed, BoNT/A activity is analysed in an indirect way by quantifying the degradation of the GFP moiety generated after toxin cleavage (Fig. 2). In this regard, the authors should consider that their approach is dependent, not only on the toxin's metalloprotease activity but also on the functionality of the proteasome in neurons. Therefore, considering the current dataset, it is impossible to rule out the possibility that the progression of GFP signal loss from the soma to the neurite terminals may be attributed to the different proteasome activity in these compartments. Is it conceivable that the GFP fragment generated upon toxin cleavage degrades more rapidly in the soma in comparison to axonal terminals? This alternative explanation could challenge the conclusion drawn in Fig. 2.

      The reviewer’s alternative explanation disregards the experiments performed with the split-GFP complementation approach, which indicate translocation in the soma first. The split GFP reporter is not dependent on the proteasome activity. It also disregard the genetic data implicating many genes involved in membrane retrograde traffic, which are also not consistent with the hypothesis of the reviewer. These genes depletions not only affect SNAPR degradation but also BoNT/A-mNG11 trafficking: thus, their effect cannot be attributed to an completely hypothetical spatial heterogeneous distribution of the proteasome.

      For this reason, I strongly suggest using a more physiological approach that does not depend on proteasomal degradation or on the expression of the sensor in neurons. The authors should consider performing a time course experiment following intoxication and staining BoNT/A-cleaved SNAP25 by using specific antibodies (see Antonucci F. et al., Journal of Neuroscience, 2008 or Rheaume C. et al., Toxins 2015).

      For the above reason, we do not agree with the pressing importance of confirming by a third method using specific antibodies; especially considering that BonT is very difficult to detect in cells when incubated at physiological levels. By the way, the cited paper, by Antonucci F; et al. documents long distance retrograde traffic of BonT/A, which is in line with our data.

      An alternative approach could involve the use of microfluidic devices that physically separate axons from cell bodies. Such a separation will allow us to test the authors' primary conclusion that SNAP25 is initially cleaved in the soma. The suggested experiments will also rule out potential overexpression artifacts that could influence the authors' conclusions when using the newly developed SNAPR approach. Without these additional experiments, the authors' main conclusion that SNAP25 is cleaved first in the neuronal soma rather than at the nerve terminal is inadequate.

      As discussed above we disagree about the doubts raised by the reviewer: we present three types of evidences (SNAPR, split GFP and genetic hits) and they all point in the same direction. Thus, we respectfully doubt that a fourth approach would convince this reviewer. To note, we have attempted to use microfluidics devices as suggested by the reviewer, however, the Ren-VM neurons were not able to extend axons long enough across the device.

      (2) To detect BoNT/A translocation into the cytosol, the authors have used a complementation assay by intoxicating ReNcell VM cell expressing a cytosolic HA-tagged split monomeric NeonGreen (Cyt-mNG1-10) with an engineered BoNT/A, where the catalytic domain (LC) was fused to mNG1-11. When drawing conclusions regarding the detection of cytosolic LC in the neuronal soma, the authors should highlight the limitations of this assay and explicitly describe them to the readers. Firstly, the authors need to investigate whether the addition of mNG1-11 to the LC affects the translocation process itself (by comparing with a WT, not tagged, LC).

      Additionally, from the data shown in Fig. 2C, it is evident that the Cyt-mNG1-10 is predominantly expressed in the cytosol and less detected in neurites. This raises the question of whether there might be a bias for the cell soma in this assay. To address this important concern, I suggest quantifying MFI per cell (Fig. 2D) taking into consideration the amount of HA-tagged Cyt-mNG1-10. Furthermore, I strongly suggest targeting mNG1-10 to synapses and performing a similar time course experiment to observe when LC translocation occurs at nerve terminals. Alternative experiments, to prove that BoNT/A requires retrograde trafficking before it can translocate, may be done to repeat the experiments shown in Fig. 2D in the presence of inhibitors (or by KD some of the hits identified as microtubule stabilizers) that should interfere with BoNT/A trafficking to the neuronal somata. Without these additional experiments, the authors' main conclusion that the BoNT/A catalytic domain is first detected in the neuronal soma rather than at the nerve terminal is very preliminary.

      Similarly as for the SNAPR assay, the reviewer is raising the level of doubt to very high levels. We respect his thoroughness and eagerness to question the new model. However, we note that a similar level of scrutiny does not apply to the prevalent competitive model. Indeed, the data supporting the self-translocation model is based on a single in vitro experiment published in one panel as we have explain din the discussion (see above).

      (3) In the genome-wide RNAi screening, rather than solely assessing SV2 surface levels, it would have been beneficial to directly investigate BoNT/A binding to the neuronal membrane. For instance, this could have been achieved by using a GFP-tagged HC domain of BoNT/A. At present, the authors cannot exclude the possibility that among the 135 hits that did not affect SV2 levels, some might still inhibit BoNT/A binding to the neuronal surface. These concerns, already exemplified by B4CALT4 (which is known to be involved in the synthesis of GT1b), should be explicitly addressed in the main text.

      We agree with the reviewer that perturbation of binding of BonT is possible. We added the following text:

      “Network analysis reveals regulators of signaling, membrane trafficking and thioreductase redox state involved in BoNT/A intoxication

      Among the positive regulators of the screen, 135 hits did not influence significantly surface SV2 levels and are thus likely to function in post-endocytic processes (Supplementary Table 2). However, we cannot formerly exclude that they could affect binding of BonT to the cell surface independently of SV2.”

      (4) The authors should clearly state which reagents they have tried to use in order to explain the challenges they faced when directly testing the trafficking of BoNT/A. The accumulation of Dendra-SV2 bulbous structures at the neurite tips in VPS35-depleted cells could be interpreted as a sign of neuronal stress/death. Have the authors investigated other proteins that do not undergo retro-axonal trafficking in a retromer-dependent manner? This control is essential. In this regard, the use of a GFP-tagged HC domain of BoNT/A could prove to be quite helpful.

      We tried multiple commercially available antibodies against BonT but we could not get a very good signal. The postdoc in charge of this project has now gone to greener pastures and we are not in the capacity to provide the details corresponding to these antibodies. We di dnot observe significant cell death after VPS-35 knockdown at the time of the experiment, however longe rterm treatment might result in toxicity indeed.

      (5) Considering my concerns related to the SNAPR system and the complementation assay to study SNAP25 cleavage and BoNT/A trafficking, I suggest validating some of their major hits (ex. VPS34 and Sec61) by performing WB or IF analysis to examine the cleavage of endogenous SNAP25. Furthermore, the authors should test VPS35 depletion in the context of the experiments performed in Fig. 6G-H, by validating that this protein is essential for BoNT/A retrograde trafficking.

      The reviewer concerns are well noted but as discussed above, the two systems we used are completely orthogonal. Thus, for the reviewer’s concerns to be valid, it would have to be two completely independent artefacts giving rise to the same result. The alternative explanation is that BonT/A translocates in the soma. The Ockham razor principle dictates that the simplest explanation is the likeliest.

      (6) The introduction and the discussion section of this paper completely disregard more than 20 years of research conducted by several labs worldwide (Montecucco, Montal, Schiavo, Rummel, Binz, etc). The authors should make an effort to contextualize their data within the framework of these studies and address the significant discrepancies between their proposed intoxication model and existing research that clearly demonstrates BoNTs translocating upon the endocytic retrieval of SVs at presynaptic sites. Nevertheless, even assuming that the model proposed by the authors is accurate, numerous questions emerge. One such question is: How can the authors explain the exceptional toxicity of botulinum neurotoxin in an ex vivo neuromuscular junction preparation devoid of neuronal cell bodies (see Cesare Montecucco and Andreas Rummel's seminal studies)?

      Please see above in the answer to public reviews.

      (7) Scale bars should be added to all representative pictures.

      This has been done. Thank you for the thorough reading of our manuscript.

      Reviewer #2(Recommendations For The Authors):*

      (1) The title overstates the results. It may be indicated "in differenciated ReNcell VM".

      Title changed to: “Botulinum toxin intoxication requires retrograde transport and membrane translocation at the ER in RenVM neurons”

      (2) In the provided manuscript there are two Figure 2 and no Figure 3. This made the reading and understanding extremely difficult and should be corrected. As a result, the Figure legends do not fit the numbering. There are also discrepancies between some Figure panels (A, B, C, etc), the text, and the Legends. All this needs to be carefully checked.

      We apologize for the confusion as the manuscript as followed multiple rounds of revisions. We have carefully verified labels and legends.

      (3) The BoNT/A-mNG11x3 may introduce some bias that could be discussed. Would these additional peptides block LC translocation from synaptic vesicles in the nerve termini? In addition, the mNG peptides that are unfolded before complementation may direct LC towards Sec61. These aspects should be discussed.

      The comment would be valid if BoNT/A-mNG11x3 was the only approach used in the paper, however the SNAPR reporter is used with native BonT and shows data consistent with the split GFP approach.

      (4) In the Figure about SV2 (Fig 3 or 4): The authors did not locate SV2. The cells seem not to have the same differentiated phenotype as in Figure 1 and Figure 2/3A.

      We apologized above for the mislabeling. It is not clear what is the question here.

      (5) The authors should check whether BoNT/A wt cleaves the endogeneous SNAP25 by western blot for instance in the original ReNcell VN before SNAPR engineering. This should be compared with wt SNAP25 cleavage by the BoNT/A-LC-mNG.

      It is likely that BoNT/A-LC-mNG11 should have similar activity as it is only adding a small peptide at the end of the LC. At any rate, it is not clear why this is so important since both molecules translocate in the cytosol, with the same kinetics and in the same subcellular locale.

      (6) Perhaps I did not understand. How can the authors exclude that what is observed is the kinetic overproduction of the reporter substrate SNAPR?

      The authors could use SLO toxin (PNAS 98, 3185-3190, 2001) to permeabilize the cells all along their body and axon to introduce BoNT/A or LC (wt) and observe synchronized SNAPR cleavage throughout the cells.

      The concept mentioned here is not very clear to us. The reviewer is proposing that the SNAPR is produced much more efficiently at the tips of the neurites and thus its cleavage takes longer to be detected and is apparent first in the soma?? With all due respect, this is a strange hypothesis, at odds with what we know of protein dynamics in the neurons (i.e. most proteins are largely made in the soma and transported or diffuse into the neurites).

      Again, the two orthogonal approaches: split GFP and SNAPR reporter use different constructs and methods, yet converge on similar results. Perhaps, the incredulity of the reviewer might be more productively directed at the current data “demonstrating” the translocation of LC in the synaptic button?

      (7) The authors could also use an essay on neurotransmitter release monitoring by electrophysiology measurements to check the functional consequences of the kinetic diffusion of LC activity along the axon. Can the authors exclude that some toxin molecules translocate from the endocytic vesicles and block neurotransmission within minutes or a few hours?

      It is well established that inhibition of neurotransmission does not occur within minutes in vivo and in vitro, but rather within hours or even days. This kinetic delay is experienced by many patients and is one of the key argument against the current model of self-translocation at the synaptic vesicle level.

      Minor remarks

      Thank you for pointing out all these.

      (1) Please check typos. There are many. Check space before the parenthesis, between numbers and h (hours), reference style etc.

      Thank you. We have reviewed the text and try to eliminate all these instances.

      (2) Line 90: The C of HC should be capitalized.

      Fixed

      (3) Line 107: add space between "neurons(Donato".

      Fixed

      (4) Line 109: space "72 h".

      Fixed

      (5) Line 115: a word is missing ? ...to show retro-axonal... ? Please clarify this sentence.

      Fixed

      (6) Figure 1E: does nm refer to nM (nanomolar)? Please correct. No mention of panel F.

      Fixed

      (7) Line 161: do you mean ~16 µm/h? Please correct.

      Fixed

      (8) Line 168, words are missing.

      Fixed, thank you

      We verified that Cyt-mNG1-10 was expressed using the HA tag, the expression was homogeneously distributed in differentiated neurons and we observed no GFP signal (Figure2C).

      (9) Line 171: Isn't mNG 11 the eleventh beta strand of the neon green fluorescent protein, not alpha helix? Otherwise, can the authors confirm it acquires the shape of an alpha helix? Same at line 326.

      We have corrected the mistake; thanks for pointing it out.

      (10) Figure 2 is doubled. The legend of Fig 2 refers to Figure 3. There is no legend for Figure 2. Then, some figures are shifted in their numbering.

      Fixed

      (11) The fluorescence in the cell body must appear before the fluorescence in the axon due to higher volume. Please discuss.

      The fluorescence progresses in the neurites extensions in a centripetal fashion. The volume of the neurite near the cell body is not significantly different from the end of the neurite. Thus the fluorescence data is consistent with translocation in soma and not with an effect due to higher volume in the soma.

      (12) Figure 2D, right: the term intoxication is improper for this experiment. Rather, it is the presence of the BoNT/A-mNG11 that is detected. I believe the authors should be particularly careful about the use of terms: intoxication means blockade of neurosecretion, SNAPR cleavage means activity etc.

      While the reviewer is correct that it is the presence of BoNT/A-mNG11 that is detected, it remains that it is an active toxin, so the neurons are effectively intoxicated; as they are when we use the wild type toxin. We do not imply that we are measuring intoxication, but simply that the neurons are put into contact with a toxin.

      (13) Line 196: Should we read TXNRD1 is required for BoNT/A LC translocation? TXNRD1 in the current model of translocation is located in the cytoplasm and is supposed to play a role in the cleavage of the disulfide bond linking LC to HC. In the model proposed by this study, LC is translocated through the Sec61 translocon. In this case, I would assume that the protein disulfide isomerase (PDI) in the endoplasmic reticulum would reduce the LC-HC disulfide bond. In that case, TXNRD1 would not be required anymore. Please discuss.

      Why should we assume that a PDI is involved in the reduction of the LC-HC disulfide bond? In our previous studies on A-B toxins (PE and Ricin), different reduction systems seemed to be at play. There is no conceptual imperative to assume reduction in the ER because the Sec61 translocon is implicated. Reduction might occur on the cytosolic side by TXNRD1 or the effect of this reductase could be indirect.

      (14) The legend of Figure 4 (in principle Figure 5?) is not matching with the panels and panel entries are missing (Figure 4F in particular).

      Fixed

      (15) Figure 6 panels E and H, please match colors with legend (grey and another color).

      Not clear

      (16) Please indicate BoNT/A construct concentrations in all Figure legends.

      Done

      (17) Line 416: isn't SV2 also involved in epilepsy?

      Yes it is.

      (18) Line 433: as above, shouldn't the disulfide bond linking LC to HC be cleaved by PDI in the ER in this model (as for other translocating bacterial toxins) rather than by thioredoxin reductases in the cytoplasm? Please discuss.

      See above

      (19) Identification of vATPase in the screen could be consistent with the endocytic vesicle acidification model of translocation.

      Yes

      (20) Did the authors add KCl in screening controls without toxins? This should be detailed in the Materials and Methods. Could there be a KCl effect on the cells? KCl exposure for 48 hours may be highly stressful for cells. The KCl exposure should last only several minutes for toxin entry.

      We did not observe significant cell detah with the cell culture conditions used. Cell viability was controlled at multiple stages using nuclei number for instance

      Reviewer #3 (Recommendations For The Authors):

      Main comments: (1) In Figure 1B: could you devise a means to prevent proteosomal degradation of the tGFP cleaved part to assess whether this is formed?

      We have also used a FRET assay after tintoxication and obtained similar results

      (2) Line 152: Where it reads "was not surprising", maybe I missed something, but to me, this is indeed surprising. If the toxin is rapidly internalized and translocated (therefore, it is able to cleave SNAP25), the fact that tGFP requires 48 hours to be degraded seems surprising to me. Or does it mean that the toxin also slows down the degradation of the tGFP fragment? So, how can you differentiate between the effect being on cleavage of the fragment or in tGFP degradation?

      The reviewer is correct, the “not” was a typo due to re-writting; the long delay between adding the toxin and observing cleavage was suprising indeed. Our interpretation is that it is trafficking that takes time, indeed, the split-GFP data kinetics indicates that the toxin takes about 48h to fill up the entire cytosol (Fig. 2D).

      (3) Regarding the effect of Sec61G knockdown, is it possible that the observed effects are indirect and not due to the translocon being directly responsible for translocating the protein?

      As discussed in the last part of the results,Sec61 knock-down results in block of intoxication, but does not prevent BonT from reaching the lumen of the ER (Figure 6G,H). Thus, Sec61 is “is instrumental to the translocation of BoNT/A LC into the neuronal cytosol at the soma.”

      Minor comments:

      (1) Fig. 3E: in the legend I think one of the NT3+ should be NT3-.

      Yes, thanks for spotting it

      (2) Would you consider adding Figure S4 as a main figure?

      Thanks for the suggestion

      (3) Please, check that all microscopy image panels have scale bars.

      Done

      (4) Figure 6B (bottom panes): why does it seem that there is a lot of mNeonGreen positive signal in regions that are not positive for HA? Shouldn't complementation keep HA in the complemented protein.

      Our assumption i sthat there is an excess of receptor protein (HA tag) over reconstituted protein (GFP protein) given the relatively low concentration of toxin being internalized and translocated Refs: (1) Pirazzini M, Azarnia Tehran D, Leka O, Zanetti G, Rossetto O, Montecucco C. On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments. Biochim Biophys Acta. 2016 Mar;1858(3):467–474. PMID: 26307528

      (2) Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol Rev. 2017 Apr;69(2):200–235. PMCID: PMC5394922

      (3) Dong M, Masuyer G, Stenmark P. Botulinum and Tetanus Neurotoxins. Annu Rev Biochem. Annual Reviews; 2019 Jun 20;88(1):811–837.

      (4) Rossetto O, Pirazzini M, Fabris F, Montecucco C. Botulinum Neurotoxins: Mechanism of Action. Handb Exp Pharmacol. 2021;263:35–47. PMCID: 6671090

      (5) Williams JM, Tsai B. Intracellular trafficking of bacterial toxins. Curr Opin Cell Biol. 2016 Aug;41:51–56. PMCID: PMC4983527

      (6) Mesquita FS, van der Goot FG, Sergeeva OA. Mammalian membrane trafficking as seen through the lens of bacterial toxins. Cell Microbiol. 2020 Apr;22(4):e13167. PMCID: PMC7154709

      (7) Hoch DH, Romero-Mira M, Ehrlich BE, Finkelstein A, DasGupta BR, Simpson LL. Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1692–1696. PMCID: PMC397338

      (8) Donovan JJ, Middlebrook JL. Ion-conducting channels produced by botulinum toxin in planar lipid membranes. Biochemistry. 1986 May 20;25(10):2872–2876. PMID: 2424493

      (9) Fischer A, Montal M. Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10447–10452. PMCID: PMC1965533

      (10) Fischer A, Nakai Y, Eubanks LM, Clancy CM, Tepp WH, Pellett S, Dickerson TJ, Johnson EA, Janda KD, Montal M. Bimodal modulation of the botulinum neurotoxin protein-conducting channel. Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1330–1335. PMCID: PMC2635780

      (11) Fischer A, Montal M. Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J Biol Chem. 2007Oct 5;282(40):29604–29611. PMID: 17666397

      (12) Koriazova LK, Montal M. Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nature structural biology. 2003. p. 13–18. PMID: 12459720

      (13) Moreau D, Kumar P, Wang SC, Chaumet A, Chew SY, Chevalley H, Bard F.Genome-wide RNAi screens identify genes required for Ricin and PE intoxications. Dev Cell. 2011 Aug 16;21(2):231–244. PMID: 21782526

      (14) Bassik MC, Kampmann M, Lebbink RJ, Wang S, Hein MY, Poser I, Weibezahn J, Horlbeck MA, Chen S, Mann M, Hyman AA, Leproust EM, McManus MT, Weissman JS. A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell. 2013 Feb 14;152(4):909–922. PMCID: PMC3652613

      (15) Tian S, Muneeruddin K, Choi MY, Tao L, Bhuiyan RH, Ohmi Y, Furukawa K, Furukawa K, Boland S, Shaffer SA, Adam RM, Dong M. Genome-wide CRISPR screens for Shiga toxins and ricin reveal Golgi proteins critical for glycosylation. PLoS Biol. 2018 Nov;16(11):e2006951. PMCID: PMC6258472

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      (1) Importantly, it would be useful to have provided more detailed information on the structure and histological properties of the murine cysts and how such findings relate to human lung cysts. Also, the authors should examine whether there is any information on Bmpr1a in human cyst formation (i.e GWAS data).

      We fully agree that it is important to examine Bmpr1a in human cyst pathology. Unfortunately, there is no GWAS data on this. From the published RNA-seq data, which were obtained from postnatal lung specimen of congenital pulmonary airway malformation (CPAM) patients, “integrated suppression of BMP signaling pathway” was reported although altered expression of BMPR1A was not presented. We speculate that (1) BMPR1A is critical in embryonic development and a germline deficiency of BMPR1A may lead to early embryonic lethality prior to lung formation as supported by mouse data; (2) As suggested by our previously published study related to TGF-beta signaling and prenatal pulmonary cysts (Miao et al., Am J Physiol Lung Cell Mol Physiol 2021), dysregulation of BMPR1A-mediated signaling in a particular time window of fetal lung development may be sufficient to cause cyst formation, so that BMPR1A alteration may not be persistent to postnatal lung specimens.

      (2) Throughout the paper, there is a lack of quantification for the histological findings. Littermate controls should also be clearly defined genetically,

      We thank the reviewer for this suggestion and acknowledge the importance of quantitative measurement for the changes. We now add quantitative data on branching number and size of the airway tips to define the difference between wild-type and Bmpr1a CKO mouse lungs in Fig.1. “The littermate controls were the mice without any gene deletion due to lack of transgenes Tbx4-rtTA and/or TetO-Cre”, which is now added in Materials and Methods.

      (3) Figure 1 suppl: "Doxycycline" is misspelled.

      This has been corrected.

      (4) Figure1c Suppl: Hard to discern clear-cut expression of Bmpr1a protein in mesenchyme in WT. Comparable images with similar sizes of airways should be used.

      To provide a clearer comparison of Bmpr1a expression patterns between Bmpr1a CKO and control lungs, we enlarge the fluorescent stained lungs presented in Supplemental Figure 1C as suggested by the editor. Additionally, dotted lines have been added to delineate the airway boundaries from the surrounding mesenchyme to better visualize the Bmpr1a distribution in lung mesenchyme. Bmpr1a expression in fetal lung mesenchyme is easily detected at E15.5 when significant dilation of airways is presented in Bmpr1a CKO lung. It is rare to have comparable sizes of peripheral airways in the Bmpr1a CKO lung at this point.

      (5) Figure 2a: Expression of several genes studied and altered should be identified on scatter plot.

      As suggested by the reviewer, we now highlight the related genes, including Acta2, Myocd, Eln, Bmp4, Sox2, etc., in the scatter plot. In addition, we also highlight these critical genes in the heatmap (Fig. 2B and Fig. 7B).

      (6) Figure 2c: Authors should also consider staining for other smooth muscle markers.

      We now include a panel of Myh11 immunostaining in Figure 2E. Myh11 is another common marker for smooth muscle cells. Lack of Myh11 staining in Bmpr1a CKO lung airways further supports our conclusion that loss of mesenchymal Bmpr1a leads to defective airway smooth muscle growth.

      (7) Figure 3: ELN expression should be defined in a clear quantitative manner.

      We have presented RNA-seq data, Real-time PCR results, immunostaining, and western blot data for in vivo samples. Additionally, we have included in vitro experiment illustrating that Bmp4 induces Eln expression, suggesting that BMP signaling regulates Eln expression. We believe that these datasets collectively support our conclusion.

      (8) Figure 4: Additional information on p38 dependent signaling (Including in vivo studies) would potentially help to understand key molecular events and perhaps could help to address key mechanistic events, including their location and identity.

      We sincerely appreciate the insightful suggestion from the reviewer. While the study of p38-dependent signaling is definitely important to dissect the entire mechanisms, we are not going to include such experiments in this manuscript due to time constraints associated with in vivo studies.

      (9) Figure 6: Would be helpful to know whether Bmpr1a receptor is expressed in Myocd KO.

      Bmpr1a expression is not changed in Myocd KO lungs, which is now included as Figure 6C. Together with other data, this suggests that Myocd is a downstream target directly mediating Bmpr1a-regulated airway smooth muscle development.

      (10) Figure 7: Not clear how these findings, though interesting, relate to the body of studies and the pathogenesis of cyst formation. Other points: 1) The authors should re-examine/repeat co-staining in the KO mouse lung (right 2 images in the top group of 4) for Foxj1, Sox2, and CDH (right 2 images, Figure 7A). For one thing, the cadherin stain in the 2 KO images seems localized to the lumen. Secondly, the pattern of cadherin staining looks exactly the same in both KO images, suggesting an error and/or duplication 2) authors should place arrows on the heat map showing the location of SPC, Sox2, Sox9, and FoxJ1 bands 3) figure 7D graph needs numbers on y axis.

      Fig.7 provides an additional potential mechanism by which deficient Bmp signaling leads to abnormally increased Bmp ligand expression, which disrupts the formation of epithelial proximal-distal axis, and results in cystic defects. Further in vivo experiments are needed to test this, which is beyond the scope of this paper.

      The E-cadherin staining signal in the lumen is caused by the tissue section positioned at an interface between lumen and the apical membrane of the lining epithelial cells where the E-cadherin is localized.

      Triple immunostaining of E-Cadherin, Sox2, and FoxJ1 was performed for the same tissue section (upper two panels of Figure 7A) as these antibodies were derived from different species, but the images are presented in two different combinations for simplicity and clarity. For the lower two panels of Figure 7A, double immunostaining of Sox9/E-Cadherin and Spc/E-Cadherin were performed separately on different tissue sections due to both anti-Sox9 and anti-Spc antibodies were produced from rabbits.

      The genes listed in the heatmap are canonical and putative marker genes for differential lung epithelial cell lineages, such as Scgb1a1 for Clara cells and FoxJ1 for ciliated cells. Therefore, progenitor cell marker Sox2 and Sox9 were not included. In the updated heatmap, four widely acknowledged epithelial cell markers—Scgb1a1, FoxJ1, Sftpb, and Sftpc have been distinguished by utilizing a distinct font color (red) to enhance their visibility.

      Label for the y axis of Fig.7D is now added.

      Reviewer #2 (Public Review):

      (1) The authors may be aware that a recent paper (https://doi.org/10.1038/s41598-022-24858-3) reported on transcriptional changes seen in human CPAM. It would seem that some of the molecular changes seen in human CPAM move in the opposite direction of what is reported in mice lacking mesenchymal Bmrp1a. Perhaps the authors could comment on these differences in the discussion and whether they potentially explain the etiology of CPAM or branching morphogenesis in general.

      We thank the reviewer for referring this paper regarding human CPAM study. CPAM has a variety of histopathology. The type 1 CPAM is assumed to develop from more proximal bronchial/bronchiolar airways while type 2 CPAM is developed from relatively distal bronchiolar airways. In that publication, surgical resected lung specimens were collected from type 1 CPAM patients postnatally (0.5-1 year), in which the cysts were lined with ciliated pseudostratified columnar epithelial cells. Gene expression was compared between cystic lung tissues and adjacent non-cystic lung tissues. Interestingly, integrated suppression of BMP signaling pathway was shown by their data analysis. In our mouse model, the histopathology appears as human type 2 CPAM, such as back-to-back cysts lining with a simple layer of epithelial cells. Therefore, several factors could explain the differences between their published data and our study at the molecular level: (1) Different types of CPAM based on the histopathology; (2) Different sampling time points, developing cysts at fetal stage in mouse sample vs. developed cysts in postnatal huma samples; (3) Different comparison of diseased and normal tissues: separate normal lungs vs. cystic lungs in mice while in human cystic tissues vs. non-cystic tissues in the same lungs. We now include this reference in the Discussion.

      (2) Figure 4 shows that BMP4 increases SMADs, p38, and several muscle genes in mesenchymal cells. Figure 5 extends this finding with a clever strategy to label airway and vascular smooth muscle with different fluorescent molecules used to isolate different types of mesenchymal cells. It shows that non-vascular smooth muscle cells but not perivascular smooth muscles are responsive to BMP4 signaling as defined by increased expression of Myh11. Are there cell-restricted responses to the other genes shown in Figure 4? Given the lack of SMAD signaling and the increase seen in p38 signaling, would blocking p38 signaling influence the BMP responsiveness of these nonvascular smooth muscle cells?

      We thank the reviewer for this constructive comment. As we have addressed above, we will leave p38-mediated signaling and cyst formation to next step study due to time constraints associated with these studies.

      (3) Figure 6 shows that mesenchymal loss of Myocd causes a deficiency of airway smooth muscle cells, but this was not sufficient to create cysts. Did the authors ever check to see if it changed Sox2-Sox9 staining in the airway epithelium?

      There is no significant change in Sox2 expression in proximal airway epithelia of Myocd CKO lungs as detected by immunostaining. The result was not included in this manuscript.

      (4) Figure 7 shows that mesenchymal loss of Bmpr1a proximalizes the distal airway as defined by loss of Sox2 and FoxJ1 (a ciliated marker) and gain in (Sox9 and SP-C) staining. But Club cells expressing Scgb1a1 and Cyp2F2 are the predominant epithelial cells in the distal airway. The transcriptomics data in panel B shows expression of these genes is less in the mutant mice. Does this mean they fail to generate Club cells or there is just less expression per cell? In other words, what are the primary epithelial cells present in the airways of mice with loss of mesenchymal Bmpr1a?

      As shown in the heatmap of Fig.7b, the dysregulated gene expression in the Bmpr1a CKO extends beyond the featured epithelial cell markers, encompassing alterations in numerous putative marker genes. For example, several putative Club cell markers in addition to Scgb1a1 and Cyp2F2 were reduced in the Bmpr1a CKO lungs, suggesting a compromised differentiation of Club cells. Additionally, we observed upregulations of some molecular markers for distal progenitors and differentiated cells in the proximal region of airways, again suggesting a significant disruption in epithelial differentiation in the Bmpr1a CKO lungs. These abnormal cells can be further defined by a single cell transcriptomic approach in future.

      Recommendations for Authors:

      Reviewer #1 (Recommendations For The Authors):

      As discussed above, there may be an issue with the histological images and staining in 2 images in Figure 7A. The precise images, problems and suggestions to resolve the issue are in the Review.

      Please see our response to Reviewer 1 above.

      Reviewer #2 (Recommendations For The Authors):

      Minor Weaknesses:

      (1) Please enlarge the fluorescent stained lungs presented in Supplemental Figure 1C.

      We have revised this panel accordingly.

      (2) Figure 1D and E show that loss of Bmpr1a does not change proliferation or apoptosis on E15.5. Was that also seen through E18.5?

      We thank the reviewer for the thoughtful question about proliferation and apoptosis at later embryonic stages. Our focus here was to elucidate the mechanisms underlying abnormal branching morphogenesis and lung cyst initiation that occur prior to E15.5 in our model. Measuring the dynamic changes in cell proliferation and apoptosis at later timepoints will help to understand cyst progression, which will be our next focus.

      (3) BMP inhibitors used in Figure 4 show that BMP signaling regulates mesenchymal myogenesis independent of SMAD. But the experiments don't show how the inhibitors impact the control cells.

      We have examined the effects of the BMPR1 inhibitor LDN on the control cells. At the same dose (200 nM) and serum-free culture condition, LDN did not affect the basal level of BMP signaling (data not included) but blocked exogeneous BMP4-induced signaling elevation (Fig.4E).

      (4) Bmpr1a was deleted by administering doxycycline to pregnant dams prior to lung bud formation. It caused cystic disorders by disrupting proximal airspace. Could the authors speculate on why it does not impact tracheal and bronchiolar development? In other words, does the TBX4 promoter not target these cells? Do these cells not express Bmpr1a?

      The Tbx4 enhancer does target mesenchymal cells surrounding the trachea and bronchioles. Deletion of Bmpr1a in tracheal mesenchymal cells result in disruption of tracheal cartilage formation and smooth muscle differentiation. These phenotypes are evident in the gross view of lungs from E15.5 and later (Fig.1A). However, our manuscript is focusing on the phenotype of prenatal lung cysts, and we have chosen not to include complex data on tracheal development.

    1. Author response:

      We would like to thank the reviewers for their helpful comments. We note that both reviews are strongly supportive with comments including, “a biophysical tour de force” (rev #1), “the study is exemplary” (rev #2), and “represents a roadmap for future work” (rev #2). Below we respond to each reviewer comment.

      Reviewer #1

      This study provides a detailed and quantitative description of the allosteric mechanisms resulting in the paradoxical activation of BRAF kinase dimers by certain kinase inhibitors. The findings provide a much needed quantiative basis for this phenomenon and may lay the foundation for future drug development efforts aimed at the important cancer target BRAF. The study builds on very evidence obtained by multiple independent biophysical methods.

      Summary:

      The authors quantitatively describe the complex binding equilibria of BRAF and its inhibitors resulting in some cases in the paradoxical activation of BRAF dimer when bound to ATP competitive inhibitors. The authors use a biophysical tour de force involving FRET binding assays, NMR, kinase activity assays and DEER spectroscopy.

      We are gratified by the reviewer’s supportive summary.

      Strengths:

      The strengths of the study are the beautifully conducted assays that allow for a thorough characterization of the allostery in this complex system. Additionally, the use of F-NMR and DEER spectroscopy provide important insights into the details of the process. The resulting model for binding of inhibitors and dimerization (Fig.4) is very helpful.

      Weaknesses:

      This is a complex system and its communication is inherently challenging. It might be of interest to the broader readership to understand the implications of the model for drug development and therapy.

      We agree with the reviewer that this is a complicated system. With regard to inhibitor development, a key insight is that designing aC-in state inhibitors that avoid paradoxical activation may be non-trivial because these molecules not only induce dimers but also tend to bind the second dimer subunit more weakly than the first, due to allosteric asymmetry and/or inherently different affinities for each RAF isoform. We feel the full implications for future therapeutic development are an extensive topic that is beyond the scope of our work, which is focused on the properties of current inhibitors.

      Recommendations for the author:

      The experimental work, analysis and resulting model are excellent. I had some difficulty following the complex model in some instances and it may be useful to review the description of the model and see whether it can be made more palatable to the broader readership. I think it would be useful to discuss the model presented in reference 40 (Kholodenko) and to compare it to the presented model here.

      We regret any confusion with regards to the nature of the model. Our analysis was built upon the model developed by Boris Kholodenko as reported in his 2015 Cell Reports paper. This formed the theoretical framework that combined with our experimental data allowed us to parameterize this model to obtain experimental values for the equilibrium constants and allosteric coupling factors.

      Reviewer #2

      This manuscript combines elegant biophysical solution measurements to address paradoxical kinase activation by Type II BRAF inhibitors. The novel findings challenge prevailing models, through experiments that are rigorous and carefully controlled. The study is exemplary in the breadth of strategies it uses to address protein kinase dynamics and inhibitor allostery.

      Summary:

      This manuscript uses FRET, 19F-NMR and DEER/EPR solution measurements to examine the allosteric effects of a panel of BRAF inhibitors (BRAFi). These include first-generation aC-out BRAFi, and more recent Type I and Type II aC-in inhibitors. Intermolecular FRET measurements quantify Kd for BRAF dimerization and inhibitor binding to the first and second subunits. Distinct patterns are found between aC-in BRAFi, where Type I BRAFi bind equally well to the first and second subunits within dimeric BRAF. In contrast, Type II BRAFi show stronger affinity for the first subunit and weaker affinity for the second subunit, an effect named "allosteric asymmetry". Allosteric asymmetry has the potential for Type II inhibitors to promote dimerization while favoring occupancy of only one subunit (BBD form), leading to enrichment of an active dimer.

      Measurements of in vitro BRAF kinase activity correlate amazingly well with the calculated amounts of the half site-inhibited BBD forms with Type II inhibitors. This suggests that the allosteric asymmetry mechanism explains paradoxical activation by this class of inhibitors. DEER/EPR measurements further examine the positioning of helix aC. They show systematic outward movement of aC with Type II inhibitors, relative to the aC-in state with Type I inhibitors, and further show that helix aC adopts multiple states and is therefore dynamic in apo BRAF. This makes a strong case that negative cooperativity between sites in the BRAF dimer can account for paradoxical kinase activation by Type II inhibitors by creating a half site-occupied homodimer, BBD. In contrast, Type I inhibitors and aC-out inhibitors do not fit this model, and are therefore proposed to be explained by previous proposed models involving negative allostery between subunits in BRAF-CRAF heterodimers, RAS priming, and transactivation.

      Strengths:

      This study integrates orthogonal spectroscopic and kinetic strategies to characterize BRAF dynamics and determine how it impacts inhibitor allostery. The unique combination of approaches presented in this study represents a road map for future work in the important area of protein kinase dynamics. The work represents a worthy contribution not only to the field of BRAF regulation but protein kinases in general.

      Weaknesses:

      Some questions remain regarding the proposed model for Type II inhibitors and its comparison to Type I and aC-out inhibitors that would be useful to clarify. Specifically, it would be helpful to address whether the activation of BRAF by Type II inhibitors, while strongly correlated with BBD model predictions in vitro, also depends on CRAF via BRAF-CRAF in cells and therefore overlaps with the mechanisms of paradoxical activation by Type I and aC-out inhibitors.

      We agree with the reviewer that this is a worthy question to be pursued. However, given the substantial experimental effort required for such an endeavor, and the highly supportive nature of the reviewer comments, including that “This is a strong manuscript that I feel is well above the bar for publication”, we believe this effort is more appropriate for a future study.

      This is a strong manuscript that I feel is well above the bar for publication. Nevertheless, it is recommended that the authors consider addressing the following points in order to support their major conclusions.

      (1) Fig 3D shows similar effects of Type II and Type I inhibitors in the biphasic increase of cellular pMEK/pERK. From this, the authors argue that Type II inhibitors are explained by negative allostery in the BRAF homodimer (based on Fig 2E), while Type I inhibitors are not. But it seems possible that despite the terrific correlation between BBD and BRAF kinase activities measured in vitro, CRAF is still important to explain pathway activation in cells. It also seems conceivable that the calculated %BBD between different Type II inhibitors may not correlate as well with their effects on pathway activation in cells. These possibilities should be addressed.

      We agree with the reviewer that it is likely that CRAF contributes to paradoxical activation by type II inhibitors in cells. It is also likely that other cellular factors such as RAS-priming and membrane recruitment play a role in activation. However, we note that for the type II inhibitors there is good agreement between the biophysical predictions and the concentration regimes in which activation is observed in cells, suggesting that these predictions are capturing a key part of the activation process that occurs in cells.

      (2) In Fig 2A, is it possible to report the activity of dimeric BRAF-WT in the absence of inhibitor? This would help confirm that the maximal activity measured after titrating inhibitor is indeed consistent with the predicted %BBD population, which would be expected to have half of the specific activity of BB.

      In principle, it is possible to determine the catalytic activity of apo dimers (BB) by combining our model predictions for the concentration of BB dimers and our activity measurements. However, because the activity assays are performed at nanomolar kinase concentrations, whereas the baseline dimerization affinity of BRAF is in the micromolar range, the observed activity of apo BRAF arises from a small subpopulation of dimers (on the order of 4 percent under the conditions of our experiments) and is therefore difficult to define accurately. As a result, we deemed it more suitable to compare our results to published activity measurements derived from 14-3-3-activated dimers which should represent fully dimerized BRAF. This analysis, as reported in Figure 2E, suggests that the BBD activity is approximately half of that of BB.

      (3) The 19F-NMR experiments make a good case for broadening of the helix aC signal in the BRAF dimer. From this, the study proposes that after inhibitor binds one subunit, the second unoccupied subunit retains dynamics. It would be useful to address this experimentally, if possible. For example, can the 19F-NMR signal be measured in the presence of inhibitor, to support the prediction that the unoccupied subunit is indeed dynamic and samples multiple conformations as in apo BRAF?

      We agree with the reviewer that it would be interesting to determine the dynamic response of BRAF to inhibitor binding. However, this is a challenging undertaking due to the biochemical heterogeneity that occurs at sub saturating inhibitor concentrations. For example, at any given inhibitor concentration, BRAF exists as a mixture of monomers, apo dimers, dimers with one inhibitor molecule, and dimers with two inhibitor molecules bound. This makes it challenging to relate the 19F NMR signal to a single biochemical state. Addressing this would require a substantial experimental effort that we feel is beyond the scope of this study.

    1. Author response:

      Reviewer 1:

      The paper “Quantifying gliding forces of filamentous cyanobacteria by self-buckling” combines experiments on freely gliding cyanobacteria, buckling experiments using two-dimensional V-shaped corners, and micropipette force measurements with theoretical models to study gliding forces in these organisms. The aim is to quantify these forces and use the results to perhaps discriminate between competing mechanisms by which these cells move. A large data set of possible collision events are analyzed, bucking events evaluated, and critical buckling lengths estimated. A line elasticity model is used to analyze the onset of buckling and estimate the effective (viscous type) friction/drag that controls the dynamics of the rotation that ensues post-buckling. This value of the friction/drag is compared to a second estimate obtained by consideration of the active forces and speeds in freely gliding filaments. The authors find that these two independent estimates of friction/drag correlate with each other and are comparable in magnitude. The experiments are conducted carefully, the device fabrication is novel, the data set is interesting, and the analysis is solid. The authors conclude that the experiments are consistent with the propulsion being generated by adhesion forces rather than slime extrusion. While consistent with the data, this conclusion is inferred.

      We thank the reviewer for the positive evaluation of our work.

      Summary:

      The paper addresses important questions on the mechanisms driving the gliding motility of filamentous cyanobacteria. The authors aim to understand these by estimating the elastic properties of the filaments, and by comparing the resistance to gliding under a) freely gliding conditions, and b) in post-buckled rotational states. Experiments are used to estimate the propulsion force density on freely gliding filaments (assuming over-damped conditions). Experiments are combined with a theoretical model based on Euler beam theory to extract friction (viscous) coefficients for filaments that buckle and begin to rotate about the pinned end. The main results are estimates for the bending stiffness of the bacteria, the propulsive tangential force density, the buckling threshold in terms of the length, and estimates of the resistive friction (viscous drag) providing the dissipation in the system and balancing the active force. It is found that experiments on the two bacterial species yield nearly identical values of f (albeit with rather large variations). The authors conclude that the experiments are consistent with the propulsion being generated by adhesion forces rather than slime extrusion.

      We appreciate this comprehensive summary of our work.

      Strengths of the paper:

      The strengths of the paper lie in the novel experimental setup and measurements that allow for the estimation of the propulsive force density, critical buckling length, and effective viscous drag forces for movement of the filament along its contour – the axial (parallel) drag coefficient, and the normal (perpendicular) drag coefficient (I assume this is the case, since the post-buckling analysis assumes the bent filament rotates at a constant frequency). These direct measurements are important for serious analysis and discrimination between motility mechanisms.

      We thank the reviewer for this positive assessment of our work.

      Weaknesses:

      There are aspects of the analysis and discussion that may be improved. I suggest that the authors take the following comments into consideration while revising their manuscript.

      The conclusion that adhesion via focal adhesions is the cause for propulsion rather than slime protrusion is consistent with the experimental results that the frictional drag correlates with propulsion force. At the same time, it is hard to rule out other factors that may result in this (friction) viscous drag - (active) force relationship while still being consistent with slime production. More detailed analysis aiming to discriminate between adhesion vs slime protrusion may be outside the scope of the study, but the authors may still want to elaborate on their inference. It would help if there was a detailed discussion on the differences in terms of the active force term for the focal adhesion-based motility vs the slime motility.

      We appreciate this critical assessment of our conclusions. Of course we are aware that many different mechanisms may lead to similar force/friction characteristics, and that a definitive conclusion on the mechanism would require the combination of various techniques, which is beyond the scope of this work. Therefore, we were very careful in formulating the discussion of our findings, refraining, in particular, from a singular conclusion on the mechanism but instead indicating “support” for one hypothesis over another, and emphasizing “that many other possibilities exist”.

      The most common concurrent hypotheses for bacterial gliding suggest that either slime extrusion at the junctional pore complex [A1], rhythmic contraction of fibrillar arrays at the cell wall [A2], focal adhesion sites connected to intracellular motor-microtubule complexes [A3], or modified type-IV pilus apparati [A4] provide the propulsion forces. For the slime extrusion hypothesis, which is still abundant today, one would rather expect an anticorrelation of force and friction: more slime extrusion would generate more force, but also enhance lubrication. The other hypotheses are more conformal to the trend we observed in our experiments, because both pili and focal adhesion require direct contact with a substrate. How contraction of fibrilar arrays would micromechanically couple to the environment is not clear to us, but direct contact might still facilitate force transduction. Please note that these hypotheses were all postulated without any mechanical measurements, solely based on ultra-structural electron microscopy and/or genetic or proteomic experiments. We see our work as complementary to that, providing a mechanical basis for evaluating these hypotheses.

      We agree with the referee that narrowing down this discussion to focal adhesion should have been avoided. We rewrote the concluding paragraph (page 8):

      “…it indicates that friction and propulsion forces, despite being quite vari able, correlate strongly. Thus, generating more force comes, inevitably, at the expense of added friction. For lubricated contacts, the friction coefficient is proportional to the thickness of the lubricating layer (Snoeijer et al., 2013 ), and we conjecture active force and drag both increase due to a more intimate contact with the substrate. This supports mechanisms like focal adhesion (Mignot et al., 2007 ) or a modified type-IV pilus (Khayatan et al., 2015 ), which generate forces through contact with extracellular surfaces, as the underlying mechanism of the gliding apparatus of filamentous cyanobacteria: more contacts generate more force, but also closer contact with the substrate, thereby increasing friction to the same extent. Force generation by slime extrusion (Hoiczyk and Baumeister, 1998 ), in contrast, would lead to the opposite behavior: More slime generates more propulsion, but also reduces friction. Besides fundamental fluid-mechanical considerations (Snoeijer et al., 2013 ), this is rationalized by two experimental observations: i. gliding velocity correlates positively with slime layer thickness (Dhahri et al., 2013 ) and ii. motility in slime-secretion deficient mutants is restored upon exogenous addition of polysaccharide slime. Still we emphasize that many other possibilities exist. One could, for instance, postulate a regulation of the generated forces to the experienced friction, to maintain some preferred or saturated velocity.”

      Can the authors comment on possible mechanisms (perhaps from the literature) that indicate how isotropic friction may be generated in settings where focal adhesions drive motility? A key aspect here would probably be estimating the extent of this adhesion patch and comparing it to a characteristic contact area. Can lubrication theory be used to estimate characteristic areas of contact (knowing the radius of the filament, and assuming a height above the substrate)? If the focal adhesions typically cover areas smaller than this lubrication area, it may suggest the possibility that bacteria essentially present a flat surface insofar as adhesion is concerned, leading to a transversely isotropic response in terms of the drag. Of course, we will still require the effective propulsive force to act along the tangent.

      We thank the referee for suggesting to estimate the dimensions of the contact region. Both pili and focal adhesion sites would be of sizes below one micron [A3, A4], much smaller than the typical contact region in the lubricated contact, which is on the order of the filament radius (few microns). So indeed, isotropic friction may be expected in this situation [A5] and is assumed frequently in theoretical work [A6–A8]. Anisotropy may then indeed be induced by active forces [A9], but we are not aware of measurements of the anisotropy of friction in bacterial gliding.

      For a more precise estimate using lubrication theory, rheology and extrusion rate of the secreted polysaccharides would have to be known, but we are not aware of detailed experimental characterizations.

      We extended the paragraph in the buckling theory on page 5 regarding the assumption of isotropic friction:

      “We use classical Kirchhoff theory for a uniform beam of length L and bending modulus B, subject to a force density ⃗b = −f ⃗t− η ⃗v, with an effective active force density f along the tangent ⃗t, and an effective friction proportional to the local velocity ⃗v, analog to existing literature (Fily et al., 2020; Chelakkot et al., 2014; Sekimoto et al., 1995 ). Presumably, this friction is dominated by the lubrication drag from the contact with the substrate, filled by a thin layer of secreted polysaccharide slime which is much more viscous than the surrounding bulk fluid. Speculatively, the motility mechanism might also comprise adhering elements like pili (Khayatan et al., 2015 ) or foci (Mignot et al., 2007 ) that increase the overall friction (Pompe et al., 2015 ). Thus, the drag due to the surrounding bulk fluid can be neglected (Man and Kanso, 2019 ), and friction is assumed to be isotropic, a common assumption in motility models (Fei et al., 2020; Tchoufag et al., 2019; Wada et al., 2013 ). We assume…”

      We also extended the discussion regarding the outcome of isotropic friction (page 7):

      “…Thus we plot f/v over η in Figure 4 D, finding nearly identical values over about two decades. Since f and η are not correlated with v0, this is due to a correlation between f and η. This relation is remarkable in two aspects: On the one hand, it indicates that friction is mainly isotropic. This suggests that friction is governed by an isotropic process like bond friction or lubrication from the slime layer in the contact with the substrate, the latter being consistent with the observation that mutations deficient of slime secretion do not glide but exogenous addition of slime restores motility (Khayatan et al., 2015 ). In contrast, hydrodynamic drag from the surrounding bulk fluid (Man and Kanso, 2019 ), or the internal friction of the gliding apparatus would be expected to generate strongly anisotropic friction. If the latter was dominant, a snapping-like transition into the buckling state would be expected, rather than the continuously growing amplitude that is observed in experiments. On the other hand, it indicates that friction and propulsion forces…”

      I am not sure why the authors mention that the power of the gliding apparatus is not rate-limiting. The only way to verify this would be to put these in highly viscous fluids where the drag of the external fluid comes into the picture as well (if focal adhesions are on the substrate-facing side, and the upper side is subject to ambient fluid drag). Also, the friction referred to here has the form of a viscous drag (no memory effect, and thus not viscoelastic or gel-like), and it is not clear if forces generated by adhesion involve other forms of drag such as chemical friction via temporary bonds forming and breaking. In quasi-static settings and under certain conditions such as the separation of chemical and elastic time scales, bond friction may yield overall force proportional to local sliding velocities.

      We agree with the referee that the origin of the friction is not easily resolved. Lubrication yields an isotropic force density that is proportional to the velocity, and the same could be generated by bond friction. Importantly, both types of friction would be assumed to be predominantly isotropic. We explicitly referred to lubrication drag because it has been shown that mutations deficient of slime extrusion do not glide [A4].

      Assuming, in contrast, that in free gliding, friction with the environment is not rate limiting, but rather the internal friction of the gliding apparatus, i.e., the available power, we would expect a rather different behavior during early-buckling evolution. During early buckling, the tangential motion is stalled, and the dynamics is dominated by the growing buckling amplitude of filament regions near the front end, which move mainly transversely. For geometric reasons, in this stage the (transverse) buckling amplitude grows much faster than the rear part of the filament advances longitudinally. Thus that motion should not be impeded much by the internal friction of the gliding apparatus, but by external friction between the buckling parts of the filament and the ambient. The rate at which the buckling amplitude initially grows should be limited by the accumulated compressive stress in the filament and the transverse friction with the substrate. If the latter were much smaller than the (logitudinal) internal friction of the gliding apparatus, we would expect a snapping-like transition into the buckled state, which we did not observe.

      In our paper, we do not intend to evaluate the exact origin of the friction, quantifying the gliding force is the main objective. A linear force-velocity relation agrees with our observations. A detailed analysis of friction in cyanobacterial gliding would be an interesting direction for future work.

      To make these considerations more clear, we rephrased the corresponding paragraph on page 7 & 8:

      “…Thus we plot f/v over η in Figure 4 D, finding nearly identical values over about two decades. Since f and η are not correlated with v0, this is due to a correlation between f and η. This relation is remarkable in two aspects: On the one hand, it indicates that friction is mainly isotropic. This suggests that friction is governed by an isotropic process like bond friction or lubrication from the slime layer in the contact with the substrate, the latter being consistent with the observation that mutations deficient of slime secretion do not glide but exogenous addition of slime restores motility (Khayatan et al., 2015 ). In contrast, hydrodynamic drag from the surrounding bulk fluid (Man and Kanso, 2019 ), or the internal friction of the gliding apparatus would be expected to generate strongly anisotropic friction. If the latter was dominant, a snapping-like transition into the buckling state would be expected, rather than the continuously growing amplitude that is observed in experiments. On the other hand, it indicates that friction and propulsion forces…”

      For readers from a non-fluids background, some additional discussion of the drag forces, and the forms of friction would help. For a freely gliding filament if f is the force density (per unit length), then steady gliding with a viscous frictional drag would suggest (as mentioned in the paper) f ∼ v! L η||. The critical buckling length is then dependent on f and on B the bending modulus. Here the effective drag is defined per length. I can see from this that if the active force is fixed, and the viscous component resulting from the frictional mechanism is fixed, the critical buckling length will not depend on the velocity (unless I am missing something in their argument), since the velocity is not a primitive variable, and is itself an emergent quantity.

      We are not sure what “f ∼ v! L η||” means, possibly the spelling was corrupted in the forwarding of the comments.

      We assumed an overdamped motion in which the friction force density ff (per unit length of the filament) is proportional to the velocity v0, i.e. ff ∼ η v0, with a friction coefficient η. Overdamped means that the friction force density is equal and opposite to the propulsion force density, so the propulsion force density is f ∼ ff ∼ η v0. The total friction and propulsion forces can be obtained by multiplication with the filament length

      L, which is not required here. In this picture, v0 is an emergent quantity and f and η are assumed as given and constant. Thus, by observing v0, f can be inferred up to the friction coefficient η. Therefore, by using two descriptive variables, L and v0, with known B, the primitive variable η can be inferred by logistic regression, and f then follows from the overdamped equation of motion.

      To clarify this, we revised the corresponding section on page 5 of the paper:

      “The substrate contact requires lubrication from polysaccharide slime to enable bacteria to glide (Khayatan et al., 2015 ). Thus we assume an over- damped motion with co-linear friction, for which the propulsion force f and the free gliding velocity v0 of a filament are related by f = η v0, with a friction coefficient η. In this scenario, f can be inferred both from the observed Lc ∼ (f/B)−1/3 and, up to the proportionality coefficient η, from the observed free gliding velocity. Thus, by combining the two relations, one may expect also a strong correlation between Lc and v0. In order to test this relation for consistency with our data, we include v0 as a second regressor, by setting x = (L−Lc(v0))/∆Lc in Equation 1, with Lc(v0) = (η v0/(30.5722 B))−1/3, to reflect our expectation from theory (see below). Now, η rather than f is the only unknown, and its ensemble distribution will be determined in the regression. Figure 3 E,F show the buckling behavior…”

      Reviewer 2:

      In the presented manuscript, the authors first use structured microfluidic devices with gliding filamentous cyanobacteria inside in combination with micropipette force measurements to measure the bending rigidity of the filaments.

      Next, they use triangular structures to trap the bacteria with the front against an obstacle. Depending on the length and rigidity, the filaments buckle under the propulsive force of the cells. The authors use theoretical expressions for the buckling threshold to infer propulsive force, given the measured length and stiffnesses. They find nearly identical values for both species, f ∼ (1.0 ± 0.6) nN/µm, nearly independent of the velocity.

      Finally, they measure the shape of the filament dynamically to infer friction coefficients via Kirchhoff theory. This last part seems a bit inconsistent with the previous inference of propulsive force. Before, they assumed the same propulsive force for all bacteria and showed only a very weak correlation between buckling and propulsive velocity. In this section, they report a strong correlation with velocity, and report propulsive forces that vary over two orders of magnitude. I might be misunderstanding something, but I think this discrepancy should have been discussed or explained.

      We regret the misunderstanding of the reviewer regarding the velocity dependence, which indicates that the manuscript should be improved to convey these relations correctly.

      First, in the Buckling Measurements section, we did not assume the same propulsion force for all bacteria. The logistic regression yields an ensemble median for Lc (and thus an ensemble median for f ), along with the width ∆Lc of the distribution (and thus also the width of the distribution of f ). Our result f ∼ (1.0 ± 0.6) nN/µm indicates the median and the width of the distribution of the propulsion force densities across the ensemble of several hundred filaments used in the buckling measurements. The large variability of the forces found in the second part is consistently reflected by this very wide distribution of active forces detected in the logistic regression in the first part.

      We did small modifications to the buckling theory paragraph to clarify that in the first part, a distribution of forces rather than a constant value is inferred (page 6)

      “Inserting the population median and quartiles of the distributions of bending modulus and critical length, we can now quantify the distribution of the active force density for the filaments in the ensemble from the buckling measurements. We obtain nearly identical values for both species, f ∼ (1.0±0.6) nN/µm, where the uncertainty represents a wide distribution of f across the ensemble rather than a measurement error.”

      The same holds, of course, when inferring the distribution of the friction coefficients (page 5):

      “The substrate contact requires lubrication from polysaccharide slime to enable bacteria to glide (Khayatan et al., 2015 ). Thus we assume an over- damped motion with co-linear friction, for which the propulsion force f and the free gliding velocity v0 of a filament are related by f = η v0, with a friction coefficient η. In this scenario, f can be inferred both from the observed Lc ∼ (f/B)−1/3 and, up to the proportionality coefficient η, from the observed free gliding velocity. Thus, by combining the two relations, one may expect also a strong correlation between Lc and v0. In order to test this relation for consistency with our data, we include v0 as a second regressor, by setting x = (L−Lc(v0))/∆Lc in Equation 1, with Lc(v0) = (η v0/(30.5722 B))−1/3, to reflect our expectation from theory (see below). Now, η rather than f is the only unknown, and its ensemble distribution will be determined in the regression. Figure 3 E,F show the buckling behavior…”

      The (naturally) wide distribution of force (and friction) leads to a distribution of Lc as well. However, due to the small exponent of 1/3 in the buckling threshold Lc ∼ f 1/3, the distribution of Lc is not as wide as the distributions of the individually inferred f or η. This is visualized in panel G of Figure 3, plotting Lc as a function of v0 (v0 is equivalent to f , up to a proportionality coefficient η). The natural length distribution, in contrast, is very wide. Therefore, the buckling propensity of a filament is most strongly characterized by its length, while force variability, which alters Lc of the individual, plays a secondary role.

      In order to clarify this, we edited the last paragraph of the Buckling Measurements section on page 5 of the manuscript:

      “…Within the characteristic range of observed velocities (1 − 3 µm/s), the median Lc depends only mildly on v0, as compared to its rather broad distribution, indicated by the bands in Figure 3 G. Thus a possible correlation between f and v0 would only mildly alter Lc. The natural length distribution (cf. Appendix 1—figure 1 ), however, is very broad, and we conclude that growth rather than velocity or force distributions most strongly impacts the buckling propensity of cyanobacterial colonies. Also, we hardly observed short and fast filaments of K. animale, which might be caused by physiological limitations (Burkholder, 1934 ).”

      Second, in the Profile analysis section, we did not report a correlation between force and velocity. As can be seen in Figure 4—figure Supplement 1, neither the active force nor the friction coefficient, as determined from the analysis of individual filaments, show any significant correlation with the velocity. This is also written in the discussion (page 7):

      We see no significant correlation between L or v0 and f or η, but the observed values of f and η cover a wide range (Figure 4 B, C and Figure 4—figure Supplement 1 ).

      Note that this is indeed consistent with the logistic regression: Using v0 as a second regressor did not significantly reduce the width of the distribution of Lc as compared to the simple logistic regression, indicating that force and velocity are not strongly correlated.

      In order to clarify this in the manuscript, we modified that part (page 7):

      “…We see no significant correlation between L or v0 and f or η, but the observed values of f and η cover a wide range (Figure 4 B,C and Figure 4— figure Supplement 1 ). This is consistent with the logistic regression, where using v0 as a second regressor did not significantly reduce the width of the distribution of critical lengths or active forces. The two estimates of the friction coefficient, from logistic regression and individual profile fits, are measured in (predominantly) orthogonal directions: tangentially for the logistic regression where the free gliding velocity was used, and transversely for the evolution of the buckling profiles. Thus we plot f/v over η in Figure 4 D, finding nearly identical values over about two decades. Since f and η are not correlated with v0, this is due to a correlation between f and η. This relation is remarkable in two aspects: On the one hand, it indicates that friction is mainly isotropic…”

      From a theoretical perspective, not many new results are presented. The authors repeat the well-known calculation for filaments buckling under propulsive load and arrive at the literature result of buckling when the dimensionless number (f L3/B) is larger than 30.6 as previously derived by Sekimoto et al in 1995 [1] (see [2] for a clamped boundary condition and simulations). Other theoretical predictions for pushed semi-flexible filaments [1–4] are not discussed or compared with the experiments. Finally, the Authors use molecular dynamics type simulations similar to [2–4] to reproduce the buckling dynamics from the experiments. Unfortunately, no systematic comparison is performed.

      [1]        Ken Sekimoto, Naoki Mori, Katsuhisa Tawada, and Yoko Y Toyoshima. Symmetry breaking instabilities of an in vitro biological system. Physical review letters, 75(1):172, 1995.

      [2]       Raghunath Chelakkot, Arvind Gopinath, Lakshminarayanan Mahadevan, and Michael F Hagan. Flagellar dynamics of a connected chain of active, polar, brownian particles. Journal of The Royal Society Interface, 11(92):20130884, 2014.

      [3]       Rolf E Isele-Holder, Jens Elgeti, and Gerhard Gompper. Self-propelled worm-like filaments: spontaneous spiral formation, structure, and dynamics. Soft matter, 11(36):7181–7190, 2015.

      [4]       Rolf E Isele-Holder, Julia J¨ager, Guglielmo Saggiorato, Jens Elgeti, and Gerhard Gompper. Dynamics of self-propelled filaments pushing a load. Soft Matter, 12(41):8495–8505, 2016.

      We thank the reviewer for pointing us to these publications, in particular the work by Sekimoto we were not aware of. We agree with the referee that the calculation is straight forward (basically known since Euler, up to modified boundary conditions). Our paper focuses on experimental work, the molecular dynamics simulations were included mainly as a consistency check and not intended to generate the beautiful post-buckling patterns observed in references [2-4]. However, such shapes do emerge in filamentous cyanobacteria, and with the data provided in our manuscript, simulations can be quantitatively matched to our experiments, which will be covered by future work.

      We included the references in the revision of our manuscript, and a statement that we do not claim priority on these classical theoretical results.

      Introduction, page 2:

      “…Self-Buckling is an important instability for self-propelling rod-like micro-organisms to change the orientation of their motion, enabling aggregation or the escape from traps (Fily et al., 2020; Man and Kanso, 2019; Isele-Holder et al., 2015; Isele-Holder et al., 2016 ). The notion of self-buckling goes back to work of Leonhard Euler in 1780, who described elastic columns subject to gravity (Elishakoff, 2000 ). Here, the principle is adapted to the self-propelling, flexible filaments (Fily et al., 2020; Man and Kanso, 2019; Sekimoto et al., 1995 ) that glide onto an obstacle. Filaments buckle if they exceed a certain critical length Lc ∼ (B/f)1/3, where B is the bending modulus and f the propulsion force density…”

      Buckling theory, page 5:

      “…The buckling of gliding filaments differs in two aspects: the propulsion forces are oriented tangentially instead of vertically, and the front end is supported instead of clamped. Therefore, with L < Lc all initial orientations are indifferently stable, while for L > Lc, buckling induces curvature and a resultant torque on the head, leading to rotation (Fily et al., 2020; Chelakkot et al., 2014; Sekimoto et al., 1995 ). Buckling under concentrated tangential end-loads has also been investigated in literature (de Canio et al., 2017; Wolgemuth et al., 2005 ), but leads to substantially different shapes of buckled filaments. We use classical Kirchhoff theory for a uniform beam of length L and bending modulus B, subject to a force density ⃗b = −f ⃗t − η ⃗v, with an effective active force density f along the tangent ⃗t, and an effective friction proportional to the local velocity ⃗v, analog to existing literature (Fily et al., 2020; Chelakkot et al., 2014; Sekimoto et al., 1995 )…”

      Further on page 6:

      “To derive the critical self-buckling length, Equation 5 can be linearized for two scenarios that lead to the same Lc: early-time small amplitude buckling and late-time stationary rotation at small and constant curvature (Fily et al., 2020; Chelakkot et al., 2014 ; Sekimoto et al., 1995 ). […] Thus, in physical units, the critical length is given by Lc = (30.5722 B/f)1/3, which is reproduced in particle based simulations (Appendix Figure 2 ) analogous to those in Isele-Holder et al. (2015, 2016).”

      Discussion, page 7 & 8:

      “…This, in turn, has dramatic consequences on the exploration behavior and the emerging patterns (Isele-Holder et al., 2015, 2016; Abbaspour et al., 2021; Duman et al., 2018; Prathyusha et al., 2018; Jung et al., 2020 ): (L/Lc)3 is, up to a numerical prefactor, identical to the flexure number (Isele-Holder et al., 2015, 2016; Duman et al., 2018; Winkler et al., 2017 ), the ratio of the Peclet number and the persistence length of active polymer melts. Thus, the ample variety of non-equilibrium phases in such materials (Isele-Holder et al., 2015, 2016; Prathyusha et al., 2018; Abbaspour et al., 2021 ) may well have contributed to the evolutionary success of filamentous cyanobacteria.”

      Reviewer 3:

      Summary:

      This paper presents novel and innovative force measurements of the biophysics of gliding cyanobacteria filaments. These measurements allow for estimates of the resistive force between the cell and substrate and provide potential insight into the motility mechanism of these cells, which remains unknown.

      We thank the reviewer for the positive evaluation of our work. We have revised the manuscript according to their comments and detail our replies and modifications next to the individual points below.

      Strengths:

      The authors used well-designed microfabricated devices to measure the bending modulus of these cells and to determine the critical length at which the cells buckle. I especially appreciated the way the authors constructed an array of pillars and used it to do 3-point bending measurements and the arrangement the authors used to direct cells into a V-shaped corner in order to examine at what length the cells buckled at. By examining the gliding speed of the cells before buckling events, the authors were able to determine how strongly the buckling length depends on the gliding speed, which could be an indicator of how the force exerted by the cells depends on cell length; however, the authors did not comment on this directly.

      We thank the referee for the positive assessment of our work. Importantly, we do not see a significant correlation between buckling length and gliding speeds, and we also do not see a correlation with filament length, consistent with the assumption of a propulsion force density that is more or less homogeneously distributed along the filament. Note that each filament consists of many metabolically independent cells, which renders cyanobacterial gliding a collective effort of many cells, in contrast to gliding of, e.g., myxobacteria.

      In response also to the other referees’ comments, we modified the manuscript to reflect more on the absence of a strong correlation between velocity and force/critical length. We modified the Buckling measurements section on page 5 of the paper:

      “The substrate contact requires lubrication from polysaccharide slime to enable bacteria to glide (Khayatan et al., 2015 ). Thus we assume an over-damped motion with co-linear friction, for which the propulsion force f and the free gliding velocity v0 of a filament are related by f = η v0, with a friction coefficient η. In this scenario, f can be inferred both from the observed Lc ∼ (f/B)−1/3 and, up to the proportionality coefficient η, from the observed free gliding velocity. Thus, by combining the two relations, one may expect also a strong correlation between Lc and v0. In order to test this relation for consistency with our data, we include v0 as a second regressor, by setting x = (L−Lc(v0))/∆Lc in Equation 1, with Lc(v0) = (η v0/(30.5722 B))−1/3, to reflect our expectation from theory (see below). Now, η rather than f is the only unknown, and its ensemble distribution will be determined in the regression. Figure 3 E, F show the buckling behavior…”

      Further, we edited the last paragraph of the Buckling measurements section on page 5 of the manuscript:

      “Within the characteristic range of observed velocities (1 − 3 µm/s), the median Lc depends only mildly on v0, as compared to its rather broad distribution, indicated by the bands in Figure 3 G. Thus a possible correlation between f and v0 would only mildly alter Lc. The natural length distribution (cf. Appendix 1—figure 1 ), however, is very broad, and we conclude that growth rather than velocity or force distributions most strongly impacts the buckling propensity of cyanobacterial colonies. Also, we hardly observed short and fast filaments of K. animale, which might be caused by physiological limitations (Burkholder, 1934 ).”

      We also rephrased the corresponding discussion paragraph on page 7:

      “…Thus we plot f/v over η in Figure 4 D, finding nearly identical values over about two decades. Since f and η are not correlated with v0, this is due to a correlation between f and η. This relation is remarkable in two aspects: On the one hand, it indicates that friction is mainly isotropic. This suggests that friction is governed by an isotropic process like bond friction or lubrication from the slime layer in the contact with the substrate, the latter being consistent with the observation that mutations deficient of slime secretion do not glide but exogenous addition of slime restores motility (Khayatan et al., 2015 ). In contrast, hydrodynamic drag from the surrounding bulk fluid (Man and Kanso, 2019 ), or the internal friction of the gliding apparatus would be expected to generate strongly anisotropic friction. If the latter was dominant, a snapping-like transition into the buckling state would be expected, rather than the continuously growing amplitude that is observed in experiments. On the other hand, it indicates that friction and propulsion forces…”

      Weaknesses:

      There were two minor weaknesses in the paper.

      First, the authors investigate the buckling of these gliding cells using an Euler beam model. A similar mathematical analysis was used to estimate the bending modulus and gliding force for Myxobacteria (C.W. Wolgemuth, Biophys. J. 89: 945-950 (2005)). A similar mathematical model was also examined in G. De Canio, E. Lauga, and R.E Goldstein, J. Roy. Soc. Interface, 14: 20170491 (2017). The authors should have cited these previous works and pointed out any differences between what they did and what was done before.

      We thank the reviewer for pointing us to these references. The paper by Wolgemuth is theoretical work, describing A-motility in myxobacteria by a concentrated propulsion force at the rear end of the bacterium, possibly stemming from slime extrusion. This model was a little later refuted by [A3], who demonstrated that focal adhesion along the bacterial body and thus a distributed force powers A-motility, a mechanism that has by now been investigated in great detail (see [A10]). The paper by Canio et al. contains a thorough theoretical analysis of a filament that is clamped at one end and subject to a concentrated tangential load on the other. Since both models comprise a concentrated end-load rather than a distributed propulsion force density, they describe a substantially different motility mechanism, leading also to substantially different buckling profiles. Consequentially, these models cannot be applied to cyanobacterial gliding.

      We included both citations in the revision and pointed out the differences to our work in the introduction (page 2):

      “…A few species appear to employ a type-IV-pilus related mechanism (Khayatan et al., 2015; Wilde and Mullineaux, 2015 ), similar to the better- studied myxobacteria (Godwin et al., 1989; Mignot et al., 2007; Nan et al., 2014; Copenhagen et al., 2021; Godwin et al., 1989 ), which are short, rod-shaped single cells that exhibit two types of motility: S (social) motility based on pilus extension and retraction, and A (adventurous) motility based on focal adhesion (Chen and Nan, 2022 ) for which also slime extrusion at the trailing cell pole was earlier postulated as mechanism (Wolgemuth et al., 2005 ). Yet, most gliding filamentous cyanobacteria do not exhibit pili and their gliding mechanism appears to be distinct from myxobacteria (Khayatan et al., 2015 ).”

      And in Buckling theory, page 5:

      “….The buckling of gliding filaments differs in two aspects: the propulsion forces are oriented tangentially instead of vertically, and the front end is supported instead of clamped. Therefore, with L < Lc all initial orientations are indifferently stable, while for L > Lc, buckling induces curvature and a resultant torque on the head, leading to rotation (Fily et al., 2020; Chelakkot et al., 2014; Sekimoto et al., 1995 ). Buckling under concentrated tangential end-loads has also been investigated in literature (de Canio et al., 2017; Wolgemuth et al., 2005 ), but leads to substantially different shapes of buckled filaments.”

      The second weakness is that the authors claim that their results favor a focal adhesion-based mechanism for cyanobacterial gliding motility. This is based on their result that friction and adhesion forces correlate strongly. They then conjecture that this is due to more intimate contact with the surface, with more contacts producing more force and pulling the filaments closer to the substrate, which produces more friction. They then claim that a slime-extrusion mechanism would necessarily involve more force and lower friction. Is it necessarily true that this latter statement is correct? (I admit that it could be, but is it a requirement?)

      We thank the referee for raising this interesting question. Our claim regarding slime extrusion is based on three facts: i. mutations deficient of slime extrusion do not glide, but start gliding as soon as slime is provided externally [A4]. ii. A positive correlation between speed and slime layer thickness was observed in Nostoc [A11]. iii. The fluid mechanics of lubricated sliding contacts is very well understood and predicts a decreasing resistance with increasing layer thickness.

      We included these considerations in the revision of our manuscript (page 8):

      “…it indicates that friction and propulsion forces, despite being quite variable, correlate strongly. Thus, generating more force comes, inevitably, at the expense of added friction. For lubricated contacts, the friction coefficient is proportional to the thickness of the lubricating layer (Snoeijer et al., 2013 ), and we conjecture active force and drag both increase due to a more intimate contact with the substrate. This supports mechanisms like focal adhesion (Mignot et al., 2007 ) or a modified type-IV pilus (Khayatan et al., 2015 ), which generate forces through contact with extracellular surfaces, as the underlying mechanism of the gliding apparatus of filamentous cyanobacteria: more contacts generate more force, but also closer contact with the substrate, thereby increasing friction to the same extent. Force generation by slime extrusion (Hoiczyk and Baumeister, 1998 ), in contrast, would lead to the opposite behavior: More slime generates more propulsion, but also reduces friction. Besides fundamental fluid-mechanical considerations (Snoeijer et al., 2013 ), this is rationalized by two experimental observations: i. gliding velocity correlates positively with slime layer thickness (Dhahri et al., 2013 ) and ii. motility in slime-secretion deficient mutants is restored upon exogenous addition of polysaccharide slime. Still we emphasize that many other possibilities exist. One could, for instance, postulate a regulation of the generated forces to the experienced friction, to maintain some preferred or saturated velocity.”

      Related to this, the authors use a model with isotropic friction. They claim that this is justified because they are able to fit the cell shapes well with this assumption. How would assuming a non-isotropic drag coefficient affect the shapes? It may be that it does equally well, in which case, the quality of the fits would not be informative about whether or not the drag was isotropic or not.

      The referee raises another very interesting point. Given the typical variability and uncertainty in experimental measurements (cf. error Figure 4 A), a model with a sightly anisotropic friction could be fitted to the observed buckling profiles as well, without significant increase of the mismatch. Yet, strongly anisotropic friction would not be consistent with our observations.

      Importantly, however, we did not conclude on isotropic friction based on the fit quality, but based on a comparison between free gliding and early buckling (Figure 4 D). In early buckling, the dominant motion is in transverse direction, while longitudinal motion is insignificant, due to geometric reasons. Thus, independent of the underlying model, mostly the transverse friction coefficiont is inferred. In contrast, free gliding is a purely longitudinal motion, and thus only the friction coefficient for longitudinal motion can be inferred. These two friction coefficients are compared in Figure 4 D. Still, the scatter of that data would allow to fit a certain anisotropy within the error margins. What we can exclude based on out observation is the case of a strongly anisotropic friction. If there is no ab-initio reason for anisotropy, nor a measurement that indicates it, we prefer to stick with the simplest

      assumption. We carefully chose our wording in the Discussion as “mainly isotropic” rather

      than “isotropic” or “fully isotropic”.

      We added a small statement to the Discussion on page 7 & 8:

      “... Thus we plot f/v over η in Figure 4 D, finding nearly identical values over about two decades. Since f and η are not correlated with v0, this is due to a correlation between f and η. This relation is remarkable in two aspects: On the one hand, it indicates that friction is mainly isotropic. This suggests that friction is governed by an isotropic process like bond friction or lubrication from the slime layer in the contact with the substrate, the latter being consistent with the observation that mutations deficient of slime secretion do not glide but exogenous addition of slime restores motility (Khayatan et al., 2015 ). In contrast, hydrodynamic drag from the surrounding bulk fluid (Man and Kanso, 2019 ), or the internal friction of the gliding apparatus would be expected to generate strongly anisotropic friction. If the latter was dominant, a snapping-like transition into the buckling state would be expected, rather than the continuously growing amplitude that is observed in experiments. On the other hand, it indicates that friction and propulsion forces ...”

      Recommendations for the authors

      The discussion regarding how the findings of this paper imply that cyanobacteria filaments are propelled by adhesion forces rather than slime extrusion should be improved, as this conclusion seems questionable. There appears to be an inconsistency with a buckling force said to be only weakly dependent on the gliding velocity, while its ratio with the velocity correlates with a friction coefficient. Finally, data and source code should be made publicly available.

      In the revised version, we have modified the discussion of the force generating mechanism according to the reviewer suggestions. The perception of inconsistency in the velocity dependence of the buckling force was based on a misunderstanding, as we detailed in our reply to the referee. We revised the corresponding section to make it more clear. Data and source code have been uploaded to a public data repository.

      Reviewer #2 (recommendations for the authors)

      Despite eLife policy, the authors do not provide a Data Availability Statement. For the presented manuscript, data and source code should be provided “via trusted institutional or third-party repositories that adhere to policies that make data discoverable, accessible and usable.” https://elifesciences.org/inside-elife/51839f0a/for-authors-updates- to-elife-s-data-sharing-policies

      Most of the issues in this reviewer’s public review should be easy to correct, so I would strongly support the authors to provide an amended manuscript.

      We added the Data Availability Statement in the amended manuscript.

      References

      [A1] E. Hoiczyk and W. Baumeister. “The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria”. In: Curr. Biol. 8.21 (1998), pp. 1161–1168. doi: 10.1016/s0960-9822(07)00487-3.

      [A2] N. Read, S. Connell, and D. G. Adams. “Nanoscale Visualization of a Fibrillar Array in the Cell Wall of Filamentous Cyanobacteria and Its Implications for Gliding Motility”. In: J. Bacteriol. 189.20 (2007), pp. 7361–7366. doi: 10.1128/jb.00706- 07.

      [A3] T. Mignot, J. W. Shaevitz, P. L. Hartzell, and D. R. Zusman. “Evidence That Focal Adhesion Complexes Power Bacterial Gliding Motility”. In: Science 315.5813 (2007), pp. 853–856. doi: 10.1126/science.1137223.

      [A4] Behzad Khayatan, John C. Meeks, and Douglas D. Risser. “Evidence that a modified type IV pilus-like system powers gliding motility and polysaccharide secretion in filamentous cyanobacteria”. In: Mol. Microbiol. 98.6 (2015), pp. 1021–1036. doi: 10.1111/mmi.13205.

      [A5] Tilo Pompe, Martin Kaufmann, Maria Kasimir, Stephanie Johne, Stefan Glorius, Lars Renner, Manfred Bobeth, Wolfgang Pompe, and Carsten Werner. “Friction- controlled traction force in cell adhesion”. In: Biophysical journal 101.8 (2011), pp. 1863–1870.

      [A6] Hirofumi Wada, Daisuke Nakane, and Hsuan-Yi Chen. “Bidirectional bacterial gliding motility powered by the collective transport of cell surface proteins”. In: Physical Review Letters 111.24 (2013), p. 248102.

      [A7] Jo¨el Tchoufag, Pushpita Ghosh, Connor B Pogue, Beiyan Nan, and Kranthi K Mandadapu. “Mechanisms for bacterial gliding motility on soft substrates”. In: Proceedings of the National Academy of Sciences 116.50 (2019), pp. 25087–25096.

      [A8] Chenyi Fei, Sheng Mao, Jing Yan, Ricard Alert, Howard A Stone, Bonnie L Bassler, Ned S Wingreen, and Andrej Kosmrlj. “Nonuniform growth and surface friction determine bacterial biofilm morphology on soft substrates”. In: Proceedings of the National Academy of Sciences 117.14 (2020), pp. 7622–7632.

      [A9] Arja Ray, Oscar Lee, Zaw Win, Rachel M Edwards, Patrick W Alford, Deok-Ho Kim, and Paolo P Provenzano. “Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration”. In: Nature communications 8.1 (2017), p. 14923.

      [A10] Jing Chen and Beiyan Nan. “Flagellar motor transformed: biophysical perspectives of the Myxococcus xanthus gliding mechanism”. In: Frontiers in Microbiology 13 (2022), p. 891694.

      [A11] Samia Dhahri, Michel Ramonda, and Christian Marliere. “In-situ determination of the mechanical properties of gliding or non-motile bacteria by atomic force microscopy under physiological conditions without immobilization”. In: PLoS One 8.4 (2013), e61663.

    1. Author response:

      We extend our gratitude to the two reviewers and the editors at eLife for their meticulous examination of our manuscript, as well as for their valuable feedback and positive assessment. We are particularly pleased to observe in both the reviews and the editorial evaluation the recognition of the importance of our findings. Through this provisional response, we wish to convey to the editors, reviewers, and the readership of eLife our intention to enhance the paper by incorporating a detailed description of the sections pertaining to MAD analysis, data interpretation with combined HS-AFM and PCA methods, and specific portions of the discussions. This will involve editing the manuscript accordingly and providing separate explanations in the "author response”. We acknowledge that such additions will strengthen the comprehensiveness of our work and render it more self-contained.

      Moreover, in alignment with the recommendations from the review team, we will provide a thorough discussion of published data and offer a clearer explanation of our utilized methods, thereby providing a more robust foundation for our conclusions.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      I will summarize my comments and suggestions below.

      (1) Abstract:

      "Non-catalytic (pseudo)kinase signaling mechanisms have been described in metazoans, but information is scarce for plants." To the best of my understanding EFR is an active protein kinase in vitro and in vivo and cannot be considered a pseudokinase. Consider rephrasing.

      We rephrased to: “Non-catalytic signaling mechanisms of protein kinase domains have been described in metazoans, but information is scarce for plants.”

      (2) Page 4: It should be noted, that while membrane associated Rap-RiD systems have been used in planta to activate receptor kinase intracellular domains by promoting interaction with a co-receptor kinase domain, this system does not resemble the actual activation mechanism in the plasma membrane. This would be worth discussing when introducing the system. For example, the first substrates of the RK signaling complex may also be membrane associated and not freely diffuse in solution, which may be important for enzyme-substrate interaction.

      We inserted on page 4: “The RiD system was previously applied in planta, maintaining membrane-association by N-terminal myristoylation (Kim et al., 2021). For the in vitro experiments, the myristoylation sites were excluded to facilitate the production of recombinant protein.”

      (3) Page 4 and Fig 1: The catalytic Asp in BRI1 is D1027 and not D1009 (https://pubmed.ncbi.nlm.nih.gov/21289069/). Please check and prepare the correct mutant protein if needed.

      We clarified this in the text by stating that we mutated the HRD-aspartate to asparagine in all our catalytic-dead mutants: “Kinase-dead variants with the catalytic residue (HRD-aspartate) replaced by asparagine (EFRD849N and BRI1D1009N), had distinct effects […]”. D1027 in BRI1 is the DFG-Asp, which was not mutated in our study.

      (4) Page 4 and Fig 1: Is BIK1 a known component of the BR signaling pathway and a direct BRI1 substrate? Or in other words how specific is the trans-phosphorylation assay? In my opinion, a more suitable substrate for BRI1/BAK1 would be BSK1 or BSK3 (for example https://pubmed.ncbi.nlm.nih.gov/30615605/).

      Kinase-dead BIK1 is a reported substrate of BRI1. We clarified this in the results section by inserting: “BIK1 was chosen as it is reported substrate of both, EFR/BAK1 and BRI1/BAK1 complexes (Lin et al., 2013).”

      (5) Fig. 1B Why is BIK1 D202N partially phosphorylated in the absence of Rap? I would suggest to add control lanes showing BRI1, EFR, FLS2, BAK1 and BIK1 in isolation. Given that a nice in vitro activation system with purified components is available, why not compare the different enzyme kinetics rather than band intensities at only 1 enzyme : substrate ratio?

      BIK1 D202N is partially phosphorylated due to the presence of active BAK1 that is capable of transphosphorylating BIK1 D202N as it has been reported in a previous study: (DOI: 10.1038/s41586-018-0471-x).

      (6) Page 4 and Fig 1: Is the kinase dead variant of EFR indeed kinase dead? I could still see a decent autorad signal for this mutant when expressed in E. coli (Fig 1 A in Bender et al., 2021; https://pubmed.ncbi.nlm.nih.gov/34531323/)? If this mutant is not completely inactive, could this change the interpretation of the experiments performed with the mutant protein in vitro and in planta in the current manuscript? In my opinion, it could be possible that a partially active EFR mutant can be further activated by BAK1, and in turn can phosphorylate BIK1 D202N. The differences in autorad signal for BRI1D1009?N and EFRD849N is very small, and the entire mechanism hinges on this difference.

      We would like to emphasize that the mechanism hinges on the difference between non-dimerized and dimerized kinase domains in the in vitro kinase assay. BRI1 D1009N fails to enhance BIK1 D202N trans-phosphorylation compared to the non-dimerized sample, while EFR D849N is still capable of enhancing BIK1 transphosphorylation upon dimerization as indicated by quantification of autorads (Figure 1B/C). We have also addressed this point in a section on the limitations of our study.

      (7) Fig 1B. "Our findings therefore support the hypothesis that EFR increases BIK1 phosphorylation by allosterically activating the BAK1 kinase domain." To the best of my understanding presence of wild-type EFR in the EFR-BAK1 signaling complex leads to much better phosphorylation of BIK1D202N when compared to the EFRD849N mutant. How does that support the allosteric mechanism? By assuming that the D849N mutant is in an inactive conformation and fully catalytically inactive (see above)? Again, I think the data could also be interpreted in such a way that the small difference in autorad signal for BIK1 between BRI1 inactive (but see above) and ERF inactive are due to EFR not being completely kinase dead (see above), rather than EFR being an allosteric regulator. To clarify this point I would suggest to a) perform quantitative auto- and trans-(generic substrate) phosphorylation assays with wt and D849N EFR to derive enzyme kinetic parameters, to (2) include the EFRD849 mutant in the HDX analysis and (3) to generate transgenic lines for EFRD489N/F761H/Y836F // EFRD489N/F761H/SSAA and compare them to the existing lines in Fig. 3.

      Mutations of proteins, especially those that require conformational plasticity for their function can have pleiotropic effects as the mutation may affect the conformational plasticity and consequently catalytic and non-catalytic functions that depend on the conformational plasticity. In such cases, it is difficult to fully untangle catalytic and non-catalytic functions. Coming back to EFR D849N, the D849N mutation may also impact the non-catalytic function by altering the conformational plasticity, explaining the difference observed in EFR vs EFR D849N. As you rightly suggested, HDX would be a way to address this but would still not clarify whether catalytic activity contributes to activation. We instead attempted to produce analog sensitive EFR variants for in vivo characterization of EFR-targeted catalytic inhibition. Unfortunately, we failed in producing an analog-sensitive variant for which we could show ATP-analog binding. To address your concern, we inserted a section on limitations of the study.

      (8) Fig. 2B,C, supplement 3 C,D. Has it been assessed if the different EFR versions were expressed to similar protein levels and still localized to the PM?

      Localization of the mutant receptors has not been explicitly evaluated by confocal microscopy. However, the selected mutation EFRF761H is shown to accumulate in stable Arabidopsis lines (Figure 3 – Supplement 1C) and BAK1 could be coIPed by all EFR variants upon elf18-treatment (Figure 3 B), indicating plasma membrane localization.

      (9) How the active-like conformation of EFR is in turn activating BAK1 is poorly characterized, but appears to be the main step in the activation of the receptor complex. Extending the HDX analyses to resting and Rap-activated receptor complexes could be a first step to address this question. I tried to come up with an experimental plan to test if indeed the kinase activity of BAK1 and not of EFR is essential for signal propagation, but this is a complex issue. You would need to be able to mimic an activated form of EFR (which you can), to make sure its inactive (possibly, see above) and likewise to engineer a catalytically inactive form of BAK1 in an active-like state (difficult). As such a decisive experiment is difficult to implement, I would suggest to discuss different possible interpretations of the existing data and alternative scenarios in the discussion section of the manuscript.

      We addressed your concern whether BAK1 kinase activity is essential for signaling propagation by pairing EFRF761H and BAK1D416N (Figure 4 Supplement 2 C) which fails to induce signaling. In this case, EFRF761H is in its activated conformation but cannot activate downstream signaling. We also attempted to address your concern by an in vitro kinase assay by pairing EFR and BAK1D416N and using a range of concentrations of the substrate BIK1D202N. We observed that catalytic activity of BAK1 but not EFR was essential for BIK1 phosphorylation. However, this experiment does not address whether activated EFR can efficiently propagate signaling in the absence of BAK1 catalytic activity. In the limitations of the study section, we now discuss the catalytic importance of EFR for signaling activation.

      Author response image 1.

      BIK1 trans-phosphorylation depends on BAK1 catalytic activity. Increasing concentrations of BIK1 D202N were used as substrate for Rap-induced dimers of EFR-BAK1, EFR D849N-BAK1, and EFR-BAK1 D416N respectively. BIK1 trans-phosphorylation depended on the catalytic activity of BAK1. Proteins were purified from E. coli λPP cells. Three experiments yielded similar results of which a representative is shown here.

      Reviewer #2:

      All of my suggestions are minor.

      Figure 1B, I think it would be more useful to readers to explain the amino acid in the D-N change, rather than just call it D-to-N? Also, please label the bands on the stained gel; the shift on FKBP-BRI1 and FKBP-EFR are noticeable on the Coomassie stain.

      We implemented your suggestions.

      Figure 1-Supplement 1. There is still a signal in pS612 BAK1 (it states 'also failed to induce BAK1 S612 phosphorylation' in the text, which is not quite correct). Also, could mention the gel shift seen in BAK1, which appears absent in Y836F.

      We corrected the text which now states: “To test whether the requirement for Y836 phosphorylation is similar, we immunoprecipitated EFR-GFP and EFRY836F-GFP from mock- or elf18-treated seedlings and probed co-immunoprecipitated BAK1 for S612 phosphorylation. EFRY836F also obstructed the induction of BAK1 S612 phosphorylation (Figure 1 – Supplement 1), indicating that EFRY836F and EFRSSAA impair receptor complex activation.” The gel shift of BAK1 you pointed out was not observed in replications and thus we prefer not to comment on it.

      Figure 2 and 3 are full of a, b, c,d's, which I don't understand. Sorry

      We used uppercase letters to indicate subpanels and lowercase letters to indicate the results of the statistical testing. In the figure caption, we have clarified that the lowercase letters refer to statistical comparisons.

      Figure 2 A. If each point on the x-axis is one amino acid, I think it would again be useful to name the amino acids that the gold or purple or blue colored lines extend through.

      Each point stands for a peptide which are sorted by position of their starting amino acid from N-terminus to C-terminus. We now added plots of HDX for individual peptides that correspond to the highlighted region in subpanel A.

      Figure Supplement 1 is very small for what it is trying to show, even on the printed page. If this residue were to be phosphorylated, what would happen to the H-bond?

      We suppose that VIa-Tyr phosphorylation would break the H-bond and causes displacement of the aC-b4 loop. Recent studies, published after our submission, highlight the importance of this loop for substrate coordination and ATP binding. Thus, phosphorylation of VIa-Tyr and displacing this loop may render the kinase rather unproductive. We have expanded the discussion to include this point.

      Figure 2B: Tyr 836 is not present in any of the alignments in Figure 2A. This should be rectified, because the text talks about the similarity to Tyr 156 in PKA.

      We have adjusted the alignments such that they now contain the VIa-Tyr residues of EFR and PKA.

      Figure 4D. Is there any particular reason that these Blots are so hard to compare or FKBP and BAK1?

      We assume it is referred to Figure 4 – Supplement 2 D. FKBP-EFR and FRB-BAK1 both are approximately the size of RubisCo, the most abundant protein in plant protein samples and which overlay the FKBP- and FRB-tagged kinase. Thus, it is difficult to detect these proteins.

      Reviewer #3:

      (1) The paper reporting the allosteric activation mechanism of EGFR should be cited.

      Will be included.

      (2)The authors showed that "Rap addition increased BIK1 D202N phosphorylation when the BRI1 or EFR kinase domains were dimerized with BAK1, but no such effect was observed with FLS2". Please explain why FLS2 failed to enhance BIK1 transphosphorylation by Rap treatment?

      Even though BIK1 is a reported downstream signaling component of FLS2/BAK1, it might be not the most relevant downstream signaling component and rather related RLCKs, like PBL1, might be better substrates for dimerized FLS2/BAK1. We haven’t tested this, however. Alternatively, the purified FLS2 kinase domain might be labile and quickly unfolds even though it was kept on ice until the start of the assay, or the N-terminal FKBP-tag may disrupt function. As the reason for our observation is not clear, we have removed FLS2 in vitro dimerization experiments from the manuscript.

      (3) Based solely on the data presented in Figure 1, it can be concluded that EFR's kinase activity is not required to facilitate BIK1 transphosphorylation. Therefore, the title of Figure 1, "EFR Allosterically Activates BAK1," may be inappropriate.

      We have changed the figure title to: “EFR facilitates BIK1 trans-phosphorylation by BAK1 non-catalytically.”

      (4) In Figure 1- Supplement 1, I could not find any bands in anti-GFP and anti-BAK1 pS612 of input. Please redo it.

      Indeed, we could not detect protein in the input samples of this experiment. BAK1 S612 phosphorylation is an activation mark and not necessarily expected to be abundant enough for detection in input samples. EFR-GFP, however, is usually detected in input samples and is reported in Macho et al. 2014 from which manuscript these lines come. Why EFR-GFP is not detected in this set of experiments is unclear but, in our opinion, does not detract from the conclusions drawn since similar amounts of EFR-GFP are pulled-down across all samples.

      (5) For Figure 2A, please mark the structure represented by each color directly in the figure.

      We have made the suggested change.

      (6) Please modify "EFRF761/Y836F and EFRF761H/SSAA restore BIK1 trans-phosphorylation" to "EFRF761H/Y836F and EFRF761H/SSAA restore BIK1 trans-phosphorylation".

      Thank you for spotting this. We changed it.

      (7) The HDX-MS analysis demonstrated that the EFR (Y836F) mutation inhibits the formation of the active-like conformation. Conversely, the EFR (F761H) mutation serves as a potent intragenic suppressor, significantly stabilizing the active-like conformation. Confirming through HDX-MS conformational testing that the EFR (Y836F F761H) double mutation does not hinder the formation of the active-like EFR kinase conformation would greatly strengthen the conclusions of the article.

      Response: We agree that this is beneficial, and we attempted to do it but failed to produce enough protein for HDX-MS analysis. We stated this now in an extra section of the paper (“Limitations of the study”).

    1. Author response:

      eLife assessment

      This study investigates associations between retrotransposon element expression and methylation with age and inflammation, using multiple public datasets. The study is valuable because a systematic analysis of retrotransposon element expression during human aging has been lacking. However, the data provided are incomplete due to the sole reliance on microarray expression data for the core analysis of the paper.

      Both reviewers found this study to be important. We have selected the microarray datasets of human blood adopted by a comprehensive study of ageing published in Nature Communications (DOI: doi: 10.1038/ncomms9570). We only included the datasets specifically collected for ageing studies. Therefore, the large RNA-seq cohorts for cancer, cardiovascular, and neurological diseases were not relevant to this study and cannot be included.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Tsai and Seymen et al. investigate associations between RTE expression and methylation and age and inflammation, using multiple public datasets. The concept of the study is in principle interesting, as a systematic analysis of RTE expression during human aging is lacking.

      We thank the reviewer for the positive comment.

      Unfortunately, the reliance on expression microarray data, used to perform the core analysis of the paper places much of the study on shaky ground. The findings of the study would not be sufficiently supported until the authors validate them with more suitable methods.

      In our discussion section in the manuscript, we have clarified that “we are aware of the limitations imposed by using microarray in this study, particularly the low number of intergenic probes in the expression microarray data. Our study can be enriched with the advent of large RNA-seq cohorts for aging studies in the future.” However, the application of microarray for RTE expression analysis was introduced previously. In fact, in a manuscript published by Reichmann et al. (DOI: 10.1371/journal.pcbi.1002486) which was cited 76 times, the authors showed and experimentally verified that cryptic repetitive element probes present in Illumina and Affymetrix gene expression microarray platforms can accurately and sensitively monitor repetitive element expression data. Inspired by this methodological manuscript with reasonable acceptance by other researchers, we trusted that the RTE microarray probes could accurately quantify RTE expression at class and family levels.

      Strengths:

      This is a very important biological problem.

      Weaknesses:

      RNA microarray probes are obviously biased to genes, and thus quantifying transposon analysis based on them seems dubious. Based on how arrays are designed there should at least be partial (perhaps outdated evidence) that the probe sites overlap a protein-coding or non-coding RNA.

      We disagree with the reviewer that quantifying transposon analysis based on microarray data is dubious. As previously shown by Reichmann et al., the quantification is reliable as long as the probes do not overlap with annotated genes and they are in the correct orientation to detect sense repetitive element transcripts. Reichman et al. identified 1,400 repetitive element probes in version 1.0, version 1.1 and version 2.0 of the Illumina Mouse WG-6 Beadchips by comparing the genomic locations of the probes with the Repeatmasked regions of the mouse genome. We applied the same criteria for Illumina Human HT-12 V3 (29431 probes) and V4 (33963) to identify the RTE-specific probes.

      The authors state they only used intergenic probes, but based on supplementary files, almost half of RTE probes are not intergenic but intronic (n=106 out of 264).

      All our identified RTE probes overlap with intergenic regions. However, due to their repetitive natures, some probes overlap with intronic regions, too. We can replace "intergenic" with "noncoding" in our revision to show that they do not overlap with the exons of protein-coding genes. However, we do not rule out the possibility that some of our detected RTE probes might overlap noncoding RNAs. In fact, the border between coding and non-coding genomes has recently become very fuzzy with new annotations of the genome. RTE RNAs can be easily considered as non-coding RNAs if we challenge our junk DNA view.

      This is further complicated by the fact that not all this small subset of probes is available in all analyzed datasets. For example, 232 probes were used for the MESA dataset but only 80 for the GTP dataset. Thus, RTE expression is quantified with a set of probes which is extremely likely to be highly affected by non-RTE transcripts and that is also different across the studied datasets. Differences in the subsets of probes could very well explain the large differences between datasets in multiple of the analyses performed by the authors, such as in Figure 2a, or 3a. It is nonetheless possible that the quantification of RTE expression performed by the authors is truly interpretable as RTE expression, but this must be validated with more data from RNA-seq. Above all, microarray data should not be the main type of data used in the type of analysis performed by the authors.

      In this study, we did not compare MESA with GTP etc. We have analysed each dataset separately based on the available data for that dataset. Therefore, sacrificing one analysis because of the lack of information from the other does not make sense. We would do that if we were after comparing different datasets. Moreover, the datasets are not comparable because they were produced from different blood cell types.

      Reviewer #2 (Public Review):

      Summary:

      Yi-Ting Tsai and colleagues conducted a systematic analysis of the correlation between the expression of retrotransposable elements (RTEs) and aging, using publicly available transcriptional and methylome microarray datasets of blood cells from large human cohorts, as well as single-cell transcriptomics. Although DNA hypomethylation was associated with chronological age across all RTE biotypes, the authors did not find a correlation between the levels of RTE expression and chronological age. However, expression levels of LINEs and LTRs positively correlated with DNA demethylation, and inflammatory and senescence gene signatures, indicative of "biological age". Gene set variation analysis showed that the inflammatory response is enriched in the samples expressing high levels of LINEs and LTRs. In summary, the study demonstrates that RTE expression correlates with "biological" rather than "chronological" aging.

      Strengths:

      The question the authors address is both relevant and important to the fields of aging and transposon biology.

      We thank the reviewer for finding this study relevant and important.

      Weaknesses:

      The choice of methodology does not fully support the primary claims. Although microarrays can detect certain intergenic transposon sequences, the authors themselves acknowledge in the Discussion section that this method's resolution is limited. More critical considerations, however, should be addressed when interpreting the results. The coverage of transposon sequences by microarrays is not only very limited (232 unique probes) but also predetermined. This implies that any potential agerelated overexpression of RTEs located outside of the microarray-associated regions, or of polymorphic intact transposons, may go undetected. Therefore, the authors should be more careful while generalising their conclusions.

      This is a bioinformatics study, and we have already admitted and discussed the limitations in the discussion section of this manuscript. All technologies have their own limitations, and this should not stop us from shedding light on scientific facts because of inadequate information. In the manuscript, we have discussed that all large and proper ageing studies were performed using microarray technology. Peters et al. (DOI: doi: 10.1038/ncomms9570) adopted all these microarray data in their transcriptional landscape of ageing manuscript. Our study essentially applies the Reichmann et al. method to the peripheral blood-related data from the Peters et al. manuscript. Since hypomethylation due to ageing is a well-established and broad epigenetic reprogramming, it is unlikely that only a fraction of RTEs is affected by this phenomenon. Therefore, the subsampling of RTEs should not affect the result so much. Indeed, this is supported in our study by the inverse correlation between DNA methylation and RTE expression for LINE and SINE classes despite having limited numbers of probes for LINE and SINE expressions.

      Additionally, for some analyses, the authors pool signals from RTEs by class or family, despite the fact that these groups include subfamilies and members with very different properties and harmful potentials. For example, while sequences of older subfamilies might be passively expressed through readthrough transcription, intact members of younger groups could be autonomously reactivated and cause inflammation. The aggregation of signals by the largest group may obscure the potential reactivation of smaller subgroups. I recommend grouping by subfamily or, if not possible due to the low expression scores, by subgroup. For example, all HERV subfamilies are from the ERVL family.

      We agree with the reviewer that different subfamilies of RTEs play different roles through their activation. However, we will lose our statistical power if we study RTE subfamilies with a few probes. Global epigenetic alteration and derepression of RTEs by ageing have been observed to be genome-wide. While our systematic analysis across RTE classes and families cannot capture alterations in subfamilies due to statistical power, it is still relevant to the research question we are addressing.

      Next, Illumina arrays might not accurately represent the true abundance of TEs due to non-specific hybridization of genomic transposons. Standard RNA preparations always contain traces of abundant genomic SINEs unless DNA elimination is specifically thorough. The problem of such noise should be addressed.

      We have checked the RNA isolation step from MESA, GTP, and GARP manuscripts. The total RNA was isolated using the Qiagen mini kit following the manufacturer’s recommendations. The authors of these manuscripts did not mention whether they eliminated genomics DNA, but we assumed they were aware of the DNA contamination and eliminated it based on the manufacturer’s recommendations. We have looked up the literature about non-specific hybridization of RTEs but could not find any evidence to support this observation. We would appreciate the reviewers providing more evidence about such RTE contaminations.

      Lastly, scRNAseq was conducted using 10x Genomics technology. However, quantifying transposons in 10x sequencing datasets presents major challenges due to sparse signals.

      Applying the scTE pipeline (https://www.nature.com/articles/s41467-021-21808-x), we have found that the statical power of quantifying RTE classes (LINE, SINE, and LTR) or RTE families (L1, L2, All, ERVK, etc.) are as good as each individual gene. However, our proposed method cannot analyse RTE subfamilies, and we did not do that.

      Smart-seq single-cell technology is better suited to this particular purpose.

      We agree with the reviewer that Smart-seq provides higher yield than 10x, but there is no Smart-seq data available for ageing study.

      Anyway, it would be more convincing if the authors demonstrated TE expression across different clusters of immune cells using standard scRNAseq UMAP plots instead of boxplots.

      Since the number of RTE reads per cell is low, showing the expression of RTEs per cell in UMAP may not be the best statistical approach to show the difference between the aged and young groups. This is why we chose to analyse with pseudobulk and displayed differential expression using boxplot rather than UMAP for each immune cell type.

      I recommend validating the data by RNAseq, even on small cohorts. Given that the connection between RTE overexpression and inflammation has been previously established, the authors should consider better integrating their observations into the existing knowledge.

      Until recently, there were no publicly-available, non-cancerous, large cohort of RNA-seq data for ageing studies. We tried to gain access to the two RNA-seq datasets suggested by reviewer 2: Marquez et al. 2020 (phs001934.v1.p1, controlled access) and Morandini et al. 2023 (GSE193141, public access).

      Unfortunately, Marquez et al. 2020 data is not accessible because the authors only provide the data for projects related to cardiovascular diseases. However, we did analyse Morandini et al. 2023 data, and we can confirm that no association was observed between any class and family of RTEs with chronological ageing, which is the second strong piece of evidence supporting the statement in the manuscript. However, as expected, we found a positive correlation between RTE expression and IFNI signature score.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study provides an important finding that the local abundance of metabolites impacts the biology of the tumor microenvironment by utilizing kidney tumors from patients and adjacent normal tissues. The evidence supporting the claims of the authors is convincing although certain caveats need to be taken into consideration as the authors acknowledged in the paper. The work will be of interest to the research community working on metabolism and on kidney cancer especially.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The present study addresses how the local abundance of metabolites impacts the biology of the tumor microenvironment. The authors enroll patients harboring kidney tumors and use freshly resected tumor material for metabolic studies. Specifically, the authors separate the adjacent normal kidney tissue from the tumor material and then harvest the interstitial fluid from the normal kidney (KIF) or the tumor (TIF) for quantitative metabolomics. The plasma samples from the patient are used for comparison. Additionally, the authors also compare metabolite levels in the plasma of patients with kidney versus lung cancer (or healthy donors) to address how specific tumor types might contribute to circulating levels of metabolites. Altogether, the authors find that the metabolite levels in the KIF and TIF, although vastly different than plasma, are largely overlapping. These findings indicate that tissue of origin appears to have a stronger role in determining the local metabolic environment of tumors than the genetics or biochemistry of the tumor itself.

      Strengths:

      The biggest strength of the current study is the use of human patient-derived samples. The cohort size (~50 patients) is relatively large, which adds to the rigor of the work. The work also relies on a small pool of metabolites that can be quantitatively measured using methods developed by the authors. Focusing on a smaller metabolic pool also likely increases the signal-to-noise ratio and enables the more rigorous determination of any underlying differences. The manuscript is well-written and highlights both the significance of the findings and also acknowledges many of the caveats. The recognition of the metabolic contributions of surrounding normal tissue as the primary driver of local nutrient abundance is a novel finding in the work, which can be leveraged in future studies.

      We thank the Reviewer for their careful evaluation of the study and for their supportive comments.

      Weaknesses:

      The work has certain caveats, some of which have been already recognized by the authors. These include the use of steady-state metabolites and the possibility of cross-contamination of some TIF into the adjacent KIF. This study is also unable to distinguish the mechanisms driving the metabolic changes in KIF/TIF relative to circulating levels in plasma.

      We agree with the Reviewer that these are important caveats to consider when interpreting the results of this study.

      The relative similarity of KIF and TIF is quite surprising. However, this interpretation is presently based on a sampling of only ~100 polar metabolites and ~200 lipid molecules. It is, perhaps, possible that future technological developments that enable more comprehensive quantitative metabolic profiling might distinguish between KIF and TIF composition.

      The Reviewer raises another important point that our interpretation of KIF vs TIF is limited to the ~300 metabolites we measured. We agree it would be worthwhile quantifying more metabolites where technically feasible to further characterize similarities and differences in nutrient availability between tumor and normal tissues.

      In vitro, tissue culture is recognized to suffer from ‘non-physiological’ nutrient dependencies, which are impacted by the composition of culture media. Thus, in vivo studies remain our current gold-standard in mechanistic studies of tumor metabolism. It is presently unclear whether the findings of this work will be recapitulated in any of the kidney cancer in vivo models and thus be functionally testable.

      We thank the Reviewer for calling attention to the limitations of cell culture media in studying tumor metabolism. While both in vitro and in vivo approaches have inherent limitations, formulating culture media based on metabolite concentrations measured here and in other studies provides a tool to study the influence of nutrient availability on kidney cell or kidney cancer cell phenotypes in vitro. We also agree with the Reviewer that determining whether the findings in our study are recapitulated in mouse models of kidney cancer, as this might enable investigation into the factors that modulate nutrient availability in this tissue context.

      Reviewer #2 (Public Review):

      The study employs quantitative metabolomic and lipidomic analyses to scrutinize tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples from renal cell carcinoma (RCC) patients. The authors delve into the intricate world of renal cell carcinoma and its tumor microenvironment, shedding light on the factors that shape nutrient availability in both cancerous and adjacent normal tissues. The authors prove that non-cancer-driven tissue factors play a dominant role in shaping nutrient availability in RCC. This finding opens up new avenues for research, suggesting that the tumor microenvironment is profoundly influenced by factors beyond the presence of cancer cells. This study not only contributes valuable insights into RCC metabolism but also prompts a reevaluation of the factors governing nutrient availability in tumor microenvironments more broadly. Overall, it represents a significant step forward in our understanding of the intricate interplay between cancer and its surrounding milieu.

      We thank the Reviewer for their evaluation of our work and for their supportive comments.

      The study is overall well-constructed, including appropriate analysis. Likewise, the manuscript is written clearly and supported by high-quality figures. Since the authors exclusively employed samples from RCC patients and did not include kidney interstitial fluid and plasma samples from healthy individuals, we cannot accurately assess the true significance and applicability of the results until the role of cancer cells in reshaping KIF is understood. In essence, some metabolite levels in the tumor interstitial fluid did not show an increase or decrease compared to the adjacent normal kidney interstitial fluid. However, the levels of these metabolites in both TIF and KIF might be higher or lower than those in kidney interstitial fluid from healthy individuals, and the roles of these metabolites should not be overlooked. Similar concerns extend to plasma levels, emphasizing the importance of metabolites that synchronously change in RCC TIF, KIF, and plasma-whether elevated or reduced.

      We agree with the Reviewer that an important caveat in considering the study findings is that we do not have KIF values from healthy individuals. Since resection of normal kidney is not a common procedure, obtaining KIF samples from healthy patients was not possible to complement our analysis. We further agree that the metabolite levels we measured in KIF or plasma are plausibly impacted by the presence of RCC. We did compare the composition of polar metabolites in the plasma from RCC, lung cancer, and healthy patients, highlighting how cystine is affected by tumor presence and/or sample collection methodology. We also point out that factors such as diet will impact metabolites in both blood and tissues.

      Reviewer #3 (Public Review):

      In this study, the authors utilized mass spectrometry-based quantification of polar metabolites and lipids in normal and cancerous tissue interstitial fluid and plasma. This showed that nutrient availability in tumor interstitial fluid was similar to that of interstitial fluid in adjacent normal kidney tissue, but that nutrients found in both interstitial fluid compartments were different from those found in plasma. This suggests that the nutrients in kidney tissue differ from those found in blood and that nutrients found in kidney tumors are largely dictated by factors shared with normal kidney tissue. Those data could be useful as a resource to support further study and modeling of the local environment of RCC and normal kidney physiology.

      We thank the Reviewer for their time considering our paper and for their supportive comments.

      In Figures 1D and 1E, there were about 30% of polar metabolites and 25% of lipids significantly different between TIF and KIF, which could be key factors for RCC tumors. This reviewer considers that the authors should make comments on this.

      We agree with the Reviewer that the metabolites that significantly differ between TIF and KIF are of interest, particularly for those studying RCC tumor metabolism. We comment on some of the metabolites driving differences between TIF and KIF in our discussion of Figure 2, and in the revised manuscript we now include a new figure showing a heatmap that enables visualization of these metabolites (Figure 2-Supplement 1A-B).

      Recommendations for the authors:

      From the Reviewing Editor:

      Figure 2 needs to plot heatmaps for both upregulated and downregulated metabolites in TIF.

      We agree and now include heatmaps for significantly differing polar metabolites and lipids in TIF vs KIF as requested by Reviewer 3 (Figure 2-Supplement 1A-B). For completeness, we also include heatmaps for metabolites differing between healthy and RCC plasma (Figure 2-Supplement 2C) and for NSCLC and RCC plasma (Figure 2-Supplement 2D).

      There is a need to show whether the differences in these metabolites between plasma and tissue interstitial fluid are specific to RCC patients or if they are also present in normal individuals.

      Unfortunately, it has not been possible for us to collect KIF from healthy individuals. Since resection of normal kidney is not a common procedure, we have no way to obtain sufficient KIF samples from healthy patients for this measurement. We discuss this as a limitation of the study.

      Reviewer #1 (Recommendations For The Authors):

      a. The authors should provide additional details about the methodology to separate the KIF and TIF. Contaminating metabolites from surrounding tissue or the peritoneal fluids could impact interpretation and it would be helpful to understand how these challenges were addressed during tissue collection for this study. Additionally, was the collected tissue minced or otherwise dissociated? If so, could these procedures cause tissue lysis and contaminate the KIF/TIF with intracellular components?

      We thank the Reviewer for the suggestions to include more information about the sampling methodology. Care was taken to minimize cell lysis incurred by the processing methodology as tissues were not minced, smashed, nor dissociated, however there is still a possibility of some level of tissue lysis that is pre-existing or occurs during the isolation procedure. We note this caveat in the text (lines 218-220) and have updated the Methods with more details of the sampling and processing of the samples.

      b. Although the authors focus on metabolites that are elevated in TIF (relative to KIF and plasma), it would be equally relevant to consider the converse. Metabolites that are reduced in TIF, either due to underproduction or overconsumption, could render the tumors auxotrophic for some critical dependencies and identify some novel metabolic vulnerabilities. In this regard, Figure 2 could have a heatmap of the top metabolites that are elevated and depleted specifically in the TIF.

      We agree with the Reviewer it is useful to include heatmaps to better display the metabolites that significantly differ between TIF and KIF and now include these in Figure 2-Supplement 1A-B.

      c. The future utilization of this knowledge would depend on our ability to model these differences. Would interstitial tissue from a normal mouse kidney or tumor-bearing mouse kidney recapitulate the same differences relative to mouse plasma?

      We agree with the Reviewer that it would be worth determining whether the findings in our study are recapitulated in mouse models of kidney cancer, which would support future investigation into the factors that modulate nutrient availability. This is an interesting question, but we did not have access to endogenously arising models of RCC, which have been a limitation for the field, and comparison of normal mouse kidney metabolite data to human metabolite data is problematic for obvious reasons. Thus, we had no choice but to discuss this as a limitation of the study.

      Reviewer #2 (Recommendations For The Authors):

      In this study, Abbott et al. investigated the metabolic profile of renal cell carcinoma (RCC) by analyzing the tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples from patients. The results indicate that nutrient composition in TIF closely resembles that of KIF, suggesting that tissue-specific factors, rather than tumor-driven alterations, have a more significant impact on nutrient levels. These findings are interesting. The study is overall well-constructed, including appropriate analysis, and the manuscript is written clearly and supported by high-quality figures. However, some issues are raised which if addressed, would strengthen the paper.

      We thank the Reviewer for their suggestions to improve the paper.

      The authors found a difference in the number of metabolites when comparing TIF or KIF lipid composition with plasma. The discoveries are intriguing; however, I am keen to understand whether the differences in these metabolites between plasma and tissue interstitial fluid are specific to RCC patients or if they are also present in normal individuals. I am particularly interested in identifying which metabolites could serve as potential diagnostic markers, intervention targets, or potentially reshape the tumor microenvironment. Because, even though some metabolite levels show no difference between TIF and KIF in RCC patients, I wonder if these metabolite levels in KIF increase or decrease compared to the interstitial fluid in healthy individuals. I am intrigued by the metabolites that simultaneously increase or decrease in both TIF and KIF compared to the kidney interstitial fluid in healthy individuals.

      We agree with the Reviewer that it would be interesting to measure kidney interstitial fluid from healthy patients to be able to compare metabolites changing due to the presence of RCC tumor. As we discuss in response to the public review, this was not possible as we could not obtain material from healthy individuals for analysis. Nevertheless we agree it warrants future study if material were available.

      The analysis conducted using plasma from healthy donors, as applauded by the author, is noteworthy. The author seems to have found that cystine levels do not differ between RCC patient plasma and tissue interstitial fluid. However, considering that in patient plasma, the cystine concentration is approximately two-fold higher than in plasma from healthy individuals, likely, cystine levels in patient tissue fluid have also increased nearly two-fold compared to levels in the interstitial fluid of normal kidney tissues. This finding aligns with the discovery of elevated GSH levels in cancer cells.

      We agree with the Reviewer that a higher cystine concentration in RCC patient plasma and interstitial fluid is interesting, and also considered this in relationship to past findings including reports of elevated GSH levels in RCC. However, we think this observation is driven at least in part by the fasting status of the patients pre-surgery. This does not rule out some part being related to the presence of the tumor, as this would be consistent with elevated GSH levels as noted by the Reviewer. Future studies will be needed to further delineate the factors that impact elevated cystine levels in both interstitial fluid and plasma.

      Some minor typos, such as "HIF1􀀀-driven" should be corrected.

      We thank the Reviewer for pointing out this typo and we have corrected it in the revised manuscript.

    1. Author response:

      eLife assessment

      This study provides valuable evidence indicating that Syngap1 regulates the synaptic drive and membrane excitability of parvalbumin- and somatostatin-positive interneurons in the auditory cortex. Since haplo-insufficiency of Syngap1 has been linked to intellectual disabilities without a well-defined underlying cause, the central question of this study is timely. However, the support for the authors' conclusions is incomplete in general and some parts of the experimental evidence are inadequate. Specifically, the manuscript requires further work to properly evaluate the impact on synaptic currents, intrinsic excitability parameters, and morphological features.

      We are happy that the editors found that our study provides valuable evidence and that the central question is timely. We thank the reviewers for their detailed comments and suggestions. Below, we provide a point-by-point answer (in blue) to the specific comments and indicate the changes to the manuscript and the additional experiments we plan to perform to answer these comments.

      Public Reviews:

      Reviewer #1 (Public Review):

      The study is designed to assess the role of Syngap1 in regulating the physiology of the MGE-derived PV+ and SST+ interneurons. Syngap1 is associated with some mental health disorders, and PV+ and SST+ cells are the focus of many previous and likely future reports from studies of interneuron biology, highlighting the translational and basic neuroscience relevance of the authors' work.

      Strengths of the study are using well-established electrophysiology methods and the highly controlled conditions of ex vivo brain slice experiments combined with a novel intersectional mouse line, to assess the role of Syngap1 in regulating PV+ and SST+ cell properties. The findings revealed that in the mature auditory cortex, Syngap1 haploinsufficiency decreases both the intrinsic excitability and the excitatory synaptic drive onto PV+ neurons from Layer 4. In contrast, SST+ interneurons were mostly unaffected by Syngap1 haploinsufficiency. Pharmacologically manipulating the activity of voltage-gated potassium channels of the Kv1 family suggested that these channels contributed to the decreased PV+ neuron excitability by Syngap insufficiency. These results therefore suggest that normal Syngap1 expression levels are necessary to produce normal PV+ cell intrinsic properties and excitatory synaptic drive, albeit, perhaps surprisingly, inhibitory synaptic transmission was not affected by Syngap1 haploinsufficiency.

      Since the electrophysiology experiments were performed in the adult auditory cortex, while Syngap1 expression was potentially affected since embryonic stages in the MGE, future studies should address two important points that were not tackled in the present study. First, what is the developmental time window in which Syngap1 insufficiency disrupted PV+ neuron properties? Albeit the embryonic Syngap1 deletion most likely affected PV+ neuron maturation, the properties of Syngap-insufficient PV+ neurons do not resemble those of immature PV+ neurons. Second, whereas the observation that Syngap1 haploinsufficiency affected PV+ neurons in auditory cortex layer 4 suggests auditory processing alterations, MGE-derived PV+ neurons populate every cortical area. Therefore, without information on whether Syngap1 expression levels are cortical area-specific, the data in this study would predict that by regulating PV+ neuron electrophysiology, Syngap1 normally controls circuit function in a wide range of cortical areas, and therefore a range of sensory, motor and cognitive functions. These are relatively minor weaknesses regarding interpretation of the data in the present study that the authors could discuss.

      We agree with the reviewer on the proposed open questions, which we will certainly discuss in the revised manuscript we are preparing. We do have experimental evidence suggesting that Syngap1 mRNA is expressed by PV+ and SST+ neurons in different cortical areas, during early postnatal development and in adulthood; therefore, we agree that it will be important, in future experiments, to tackle the question of when the observed phenotypes arise.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors investigated how partial loss of SynGap1 affects inhibitory neurons derived from the MGE in the auditory cortex, focusing on their synaptic inputs and excitability. While haplo-insufficiently of SynGap1 is known to lead to intellectual disabilities, the underlying mechanisms remain unclear.

      Strengths:

      The questions are novel

      Weaknesses:

      Despite the interesting and novel questions, there are significant concerns regarding the experimental design and data quality, as well as potential misinterpretations of key findings. Consequently, the current manuscript fails to contribute substantially to our understanding of SynGap1 loss mechanisms and may even provoke unnecessary controversies.

      Major issues:

      (1) One major concern is the inconsistency and confusion in the intermediate conclusions drawn from the results. For instance, while the sEPSC data indicates decreased amplitude in PV+ and SOM+ cells in cHet animals, the frequency of events remains unchanged. In contrast, the mEPSC data shows no change in amplitudes in PV+ cells, but a significant decrease in event frequency. The authors conclude that the former observation implies decreased excitability. However, traditionally, such observations on mEPSC parameters are considered indicative of presynaptic mechanisms rather than changes of network activity.‎ The subsequent synapse counting experiments align more closely with the traditional conclusions. This issue can be resolved by rephrasing the text. However, it would remain unexplained why the sEPSC frequency shows no significant difference. If the majority of sEPSC events were indeed mediated by spiking (which is blocked by TTX), the average amplitudes and frequency of mEPSCs should be substantially lower than those of sEPSCs. Yet, they fall within a very similar range, suggesting that most sEPSCs may actually be independent of action potentials. But if that was indeed the case, the changes of purported sEPSC and mEPSC results should have been similar.

      We understand the reviewer’s perspective; indeed, we asked ourselves the very same question regarding why the sEPSC and mEPSC frequency fall within a similar range when we analysed neuron means (bar graphs). We have already recorded sEPSCs followed by mEPSCs from several PV neurons (control and cHet) and are in the process of analyzing the data. We will add this data to the revised version of the manuscript. We will also rephrase the manuscript to present multiple potential interpretations of the data.

      We hope that we have correctly interpreted the reviewer's concern. However, if the question is why sEPSC amplitude but not frequency is affected in cHet vs ctrl then the reviewer’s comment is perhaps based on the assumption that the amplitude and frequency of miniature events should be lower for all events compared to those observed for spontaneous events. However, it's essential to note that changes in the mean amplitude of sEPSCs are primarily driven by alterations in large sEPSCs (>9-10pA, as shown in cumulative probability in Fig. 1b right), with smaller ones being relatively unaffected. Consequently, a reduction in sEPSC amplitude may not necessarily result in a significant decrease in frequency since their values likely remain above the detection threshold of 3 pA. This could explain the lack of a significant decrease in average inter-interval event of sEPSCs (as depicted in Fig. 1b left).

      If the question is whether we should see the same parameters affected by the genetic manipulation in both sEPSC and mEPSC, then another critical consideration is the involvement of the releasable pool in mEPSCs versus sEPSCs. Current knowledge suggests that activity-dependent and -independent release may not necessarily engage the same pool of vesicles or target the same postsynaptic sites. This concept has been extensively explored (reviewed in Kavalali, 2015). Consequently, while we may have traditionally interpreted activity-dependent and -independent data assuming they utilize the same pool, this is no longer accurate. The current discussion in the field revolves around understanding the mechanisms underlying such phenomena. Therefore, comparisons between sEPSCs and mEPSCs may not yield conclusive data but rather speculative interpretations. For a rigorous analysis, particularly in this context involving thousands of events, it is essential to assess these data sets (mEPSCs vs sEPSCs) separately and provide cumulative probability curves. This approach allows for a more comprehensive understanding of the underlying distributions and helps to elucidate any potential differences between the two types of events. We will rephrase the text, and as mentioned above, add additional data, to better reflect these considerations.

      (2) Another significant concern is the quality of synapse counting experiments. The authors attempted to colocalize pre- and postsynaptic markers Vglut1 and PSD95 with PV labelling. However, several issues arise. Firstly, the PV labelling seems confined to soma regions, with no visible dendrites. Given that the perisomatic region only receives a minor fraction of excitatory synapses, this labeling might not accurately represent the input coverage of PV cells. Secondly, the resolution of the images is insufficient to support clear colocalization of the synaptic markers. Thirdly, the staining patterns are peculiar, with PSD95 puncta appearing within regions clearly identified as somas by Vglut1, hinting at possible intracellular signals. Furthermore, PSD95 seems to delineate potential apical dendrites of pyramidal cells passing through the region, yet Vglut1+ partners are absent in these segments, which are expected to be the marker of these synapses here. Additionally, the cumulative density of Vglut2 and Vglut1 puncta exceeds expectations, and it's surprising that subcortical fibers labeled by Vglut2 are comparable in number to intracortical Vglut1+ axon terminals. Ideally, N(Vglut1)+N(Vglut2) should be equal or less than N(PSD95), but this is not the case here. Consequently, these results cannot be considered reliable due to these issues.

      We apologize, as it appears that the images we provided have caused confusion. The selected images represent a single focal plane of a confocal stack, which was visually centered on the PV cell somata. We chose just one confocal plane because we thought it showed more clearly the apposition of presynaptic and postsynaptic immunolabeling around the somata. In the revised version of the manuscript, we will provide higher magnification images, which will clearly show how we identified and selected the region of interest for the quantification of colocalized synaptic markers. In our confocal stacks, we can also identify PV immunolabeled dendrites and colocalized vGlut1/PSD95 or vGlut2/PSD95 puncta on them; but these do not appear in the selected images because, as explained, only one focal plane, centered on the PV cell somata, was shown.

      We acknowledge the reviewer's point that in PV+ cells the majority of excitatory inputs are formed onto dendrites; however, we focused on the somatic excitatory inputs to PV cells, because despite their lower number, they produce much stronger depolarization in PV neurons than dendritic excitatory inputs (Hu et al., 2010; Norenberg et al., 2010). Further, quantification of perisomatic putative excitatory synapses is more reliable since by using PV immunostaining, we can visualize the soma and larger primary dendrites, but smaller, higher order dendrites are not be always detectable. Of note, PV positive somata receive more excitatory synapses than SST positive and pyramidal neuron somata as found by electron microscopy studies in the visual cortex (Hwang et al., 2021; Elabbady et al., 2024).

      Regarding the comment on the density of vGlut1 and vGlut2 puncta, the reason that the numbers appear high and similar between the two markers is because we present normalized data (cHet normalized to their control values for each set of immunolabelling) to clearly represent the differences between genotypes. This information is present in the legends but we apologize for not clearly explaining it the methods section. We will provide a more detailed explanation of our methods in the revised manuscript.

      Briefly, immunostained sections were imaged using a Leica SP8-STED confocal microscope, with a 63x (NA 1.4) at 1024 X 1024, z-step =0.3 μm, stack size of ~15 μm. Images were acquired from the auditory cortex from at least 3 coronal sections per animal. All the confocal parameters were maintained constant throughout the acquisition of an experiment. All images shown in the figures are from a single confocal plane. To quantify the number of vGlut1/PSD95 or vGlut2/PSD95 putative synapses, images were exported as TIFF files and analyzed using Fiji (Image J) software. We first manually outlined the profile of each PV cell soma (identified by PV immunolabeling). At least 4 innervated somata were selected in each confocal stack. We then used a series of custom-made macros in Fiji as previously described (Chehrazi et al, 2023). After subtracting background (rolling value = 10) and Gaussian blur (σ value = 2) filters, the stacks were binarized and vGlut1/PSD95 or vGlut2/PSD95 puncta were independently identified around the perimeter of a targeted soma in the focal plane with the highest soma circumference. Puncta were quantified after filtering particles for size (included between 0-2μm2) and circularity (included between 0-1). Data quantification was done by investigators blind to the genotype, and presented as normalized data over control values for each experiment.

      (3) One observation from the minimal stimulation experiment was concluded by an unsupported statement. Namely, the change in the onset delay cannot be attributed to a deficit in the recruitment of PV+ cells, but it may suggest a change in the excitability of TC axons.

      We agree with the reviewer, please see answer to point below.

      (‎4) The conclusions drawn from the stimulation experiments are also disconnected from the actual data. To make conclusions about TC release, the authors should have tested release probability using established methods, such as paired-pulse changes. Instead, the only observation here is a change in the AMPA components, which remained unexplained.

      We agree with the reviewer and we will perform additional paired-pulse ratio experiments at different intervals. We will rephrase the discussion and our interpretation and potential hypothesis according to the data obtained from this new experiment.

      (5) The sampling rate of CC recordings is insufficient ‎to resolve the temporal properties of the APs. Therefore, the phase-plots cannot be interpreted (e.g. axonal and somatic AP components are not clearly separated), raising questions about how AP threshold and peak were measured. The low sampling rate also masks the real derivative of the AP signals, making them apparently faster.

      We acknowledge that a higher sampling rate could offer a more detailed analysis of the action potential waveform. However, in the context of action potential analysis, it is acceptable to use sampling rates ranging from 10 kHz to 20 kHz (Golomb et al., 2007; Stevens et al., 2021; Zhang et al., 2023), which are considered adequate in the context of the present study. Indeed, our study aims to evaluate "relative" differences in the electrophysiological phenotype when comparing groups following a specific genetic manipulation. A sampling rate of 10 kHz is commonly employed in similar studies, including those conducted by our collaborator and co-author S. Kourrich (e.g., Kourrich and Thomas 2009, Kourrich et al., 2013), as well as others (Russo et al., 2013; Ünal et al., 2020; Chamberland et al., 2023).

      Despite being acquired at a lower sampling rate than potentially preferred by the reviewer, our data clearly demonstrate significant differences between the experimental groups, especially for parameters that are negligibly or not affected by the sampling rate used here (e.g., #spikes/input, RMP, Rin, Cm, Tm, AP amplitude, AP latency, AP rheobase).

      Regarding the phase-plots, we agree that a higher sampling rate would have resulted in smoother curves and more accurate absolute values. However, the differences were sufficiently pronounced to discern the relative variations in action potential waveforms between the experimental groups.

      A related issue is that the Methods section lacks essential details about the recording conditions, such as bridge balance and capacitance neutralization.

      We indeed performed bridge balance and neutralized the capacitance before starting every recording. We will add the information in the methods.

      (6) Interpretation issue: One of the most fundamental measures of cellular excitability, the rheobase, was differentially affected by cHet in BCshort and BCbroad. Yet, the authors concluded that the cHet-induced changes in the two subpopulations are common.

      We are uncertain if we have correctly interpreted the reviewer's comment. While we observed distinct impacts on the rheobase (Fig. 7d and 7i), there seems to be a common effect on the AP threshold (Fig. 7c and 7h), as interpreted and indicated in the final sentence of the results section for Figure 7 (page 12). If our response does not address the reviewer's comment adequately, we would greatly appreciate it if the reviewer could rephrase their feedback.

      (7) Design issue:

      The Kv1 blockade experiments are disconnected from the main manuscript. There is no experiment that shows the causal relationship between changes in DTX and cHet cells. It is only an interesting observation on AP halfwidth and threshold. However, how they affect rheobase, EPSCs, and other topics of the manuscript are not addressed in DTX experiments.

      Furthermore, Kv1 currents were never measured in this work, nor was the channel density tested. Thus, the DTX effects are not necessarily related to changes in PV cells, which can potentially generate controversies.

      While we acknowledge the reviewer's point that Kv1 currents and density weren't specifically tested, an important insight provided by Fig. 5 is the prolonged action potential latency. This delay is significantly influenced by slowly inactivating subthreshold potassium currents, namely the D-type K+ current. It's worth noting that D-type current is primarily mediated by members of the Kv1 family. The literature supports a role for Kv1.1-containing channels in modulating responses to near-threshold stimuli in PV cells (Wang et al., 1994; Goldberg et al., 2008; Zurita et al., 2018). However, we recognize that besides the Kv1 family, other families may also contribute to the observed changes.

      To address this concern, we will revise our interpretation. We will opt for the more accurate term "D-type K+ current" and only speculate about the involved channel family in the discussion. It is not our intention to open unnecessary controversy, but present the data we obtained. We believe this approach and rephrasing the discussion as proposed will prevent unnecessary controversy and instead foster fruitful discussions.

      (8) Writing issues:

      Abstract:

      The auditory system is not mentioned in the abstract.

      One statement in the abstract is unclear‎. What is meant by "targeting Kv1 family of voltage-gated potassium channels was sufficient..."? "Targeting" could refer to altered subcellular targeting of the channels, simple overexpression/deletion in the target cell population, or targeted mutation of the channel, etc. Only the final part of the Results revealed that none of the above, but these channels were blocked selectively.

      We agree with the reviewer and we will rephrase the abstract accordingly.

      Introduction:

      There is a contradiction in the introduction. The second paragraph describes in detail the distinct contribution of PV and SST n‎eurons to auditory processing. But at the end, the authors state that "relatively few reports on PV+ and SST+ cell-intrinsic and synaptic properties in adult auditory cortex". Please be more specific about the unknown properties.

      We agree with the reviewer and we will rephrase more specifically.

      (9) The introduction emphasizes the heterogeneity of PV neurons, which certainly influences the interpretation of the results of the current manuscript. However, the initial experiments did not consider this and handled all PV cell data as a pooled population.

      In the initial experiments, we handled all PV cell data together because we wanted to be rigorous and not make assumptions/biases on the different PV cells, which in later experiments we were to distinguish based on the intrinsic properties alone. We will make this point clear in the revised manuscript.

      (10) The interpretation of the results strongly depends on unpublished work, which potentially provide the physiological and behavioral contexts about the role of GABAergic neurons in SynGap-haploinsufficiency. The authors cite their own unpublished work, without explaining the specific findings and relation to this manuscript.

      We agree with the reviewer and apologize for the lack of clarity. Our unpublished work is in revision right now. We will provide more information and update references in the revised version of this manuscript.

      (11) The introduction of Scholl analysis ‎experiments mentions SOM staining, however, there is no such data about this cell type in the manuscript.

      We apologize for the error, we will change SOM with SST (SOM and SST are two commonly used acronyms for Somatostatin expressing interneurons).

      Reviewer #3 (Public Review):

      This paper compares the synaptic and membrane properties of two main subtypes of interneurons (PV+, SST+) in the auditory cortex of control mice vs mutants with Syngap1 haploinsufficiency. The authors find differences at both levels, although predominantly in PV+ cells. These results suggest that altered PV-interneuron functions in the auditory cortex may contribute to the network dysfunction observed in Syngap1 haploinsufficiency-related intellectual disability. The subject of the work is interesting, and most of the approach is direct and quantitative, which are major strengths. There are also some weaknesses that reduce its impact for a broader field.

      (1) The choice of mice with conditional (rather than global) haploinsufficiency makes the link between the findings and Syngap1 relatively easy to interpret, which is a strength. However, it also remains unclear whether an entire network with the same mutation at a global level (affecting also excitatory neurons) would react similarly.

      The reviewer raises an interesting and pertinent open question which we will address in the discussion of the revised paper.

      (2) There are some (apparent?) inconsistencies between the text and the figures. Although the authors appear to have used a sophisticated statistical analysis, some datasets in the illustrations do not seem to match the statistical results. For example, neither Fig 1g nor Fig 3f (eNMDA) reach significance despite large differences.

      We respectfully disagree, we do not think the text and figures are inconsistent. In the cited example, large apparent difference in mean values does not show significance due to the large variability in the data; further, we did not exclude any data points, because we wanted to be rigorous. In particular, for Fig.1g, statistical analysis shows a significant increase in the inter-mEPSC interval (*p=0.027, LMM) when all events are considered (cumulative probability plots), while there is no significant difference in the inter-mEPSCs interval for inter-cell mean comparison (inset, p=0.354, LMM). Inter-cell mean comparison does not show difference with Mann-Whitney test either (p=0.101, the data are not normally distributed, hence the choice of the Mann-Whitney test). For Fig. 3f (eNMDA), the higher mean value for the cHet versus the control is driven by two data points which are particularly high, while the other data points overlap with the control values. The Mann-Whitney test show also no statistical difference (p=0.174).

      In the manuscript, discussion of the data is based on the results of the LMM analysis, which takes in account both the number of cells and the numbers of mice from which these cells are recorded. We chose this statistical approach because it does not rely on the assumption that cells recorded from same mouse are independent variables. In the supplemental tables, we provided the results of the statistical analysis done with both LMM and the most commonly used Mann Whitney (for not normally distributed) or t-test (for normally distributed), for each data set.

      Also, the legend to Fig 9 indicates the presence of "a significant decrease in AP half-width from cHet in absence or presence of a-DTX", but the bar graph does not seem to show that.

      We apologize for our lack of clarity. In legend 9, we reported the statistical comparisons between 1) cHET mice in absence of a-DTX and control mice and 2) cHET mice in presence of a-DTX and control mice. We will rephrase result description and the legend of the figure to avoid confusion.

      (3) The authors mention that the lack of differences in synaptic current kinetics is evidence against a change in subunit composition. However, in some Figures, for example, 3a, the kinetics of the recorded currents appear dramatically different. It would be important to know and compare the values of the series resistance between control and mutant animals.

      We agree with the reviewer that there appears to be a qualitative difference in eNMDA decay between conditions, although quantified eNMDA decay itself is similar between groups. We have used a cutoff of 15 % for the series resistance (Rs), which is significantly more stringent as compared to the cutoff typically used in electrophysiology, which are for the vast majority between 20 and 30%. To answer this concern, we re-examined the Rs, we compared Rs between groups and found no difference for Rs in eAMPA (13.2±0.5 in WT n=16 cells, 7 mice vs 13.7±0.3 in cHet n=14 cells, 7 mice, p=0.432 LMM) and eNMDA (12.7±0.7 in WT n=6 cells, 3 mice vs 13.8±0.7 in cHet n=6 cells, 5 mice, p=0.231, LMM). Thus, the apparent qualitative difference in eNMDA decay stems from inter-cell variability rather than inter-group differences. Notably, this discrepancy between the trace (Fig. 3a) and the data (Fig. 3f, right) is largely due to inter-cell variability, particularly in eNMDA, where a higher but non-significant decay rate is driven by a couple of very high values (Fig. 3f, right). In the revised manuscript, we will show traces that better represent our findings.

      (4) A significant unexplained variability is present in several datasets. For example, the AP threshold for PV+ includes points between -50-40 mV, but also values at around -20/-15 mV, which seems too depolarized to generate healthy APs (Fig 5c, Fig7c).

      We acknowledge the variability in AP threshold data, with some APs appearing too depolarized to generate healthy spikes. However, we meticulously examined each AP that spiked at these depolarized thresholds and found that other intrinsic properties (such as Rin, Vrest, AP overshoot, etc.) all indicate that these cells are healthy. Therefore, to maintain objectivity and provide unbiased data to the community, we opted to include them in our analysis. It's worth noting that similar variability has been observed in other studies (Bengtsson Gonzales et al., 2020; Bertero et al., 2020).

      Further, we conducted a significance test on AP threshold excluding these potentially unhealthy cells and found that the significant differences persist. After removing two outliers from the cHet group with values of -16.5 and 20.6 mV, we obtain: -42.6±1.01 mV in control, n=33, 15 mice vs -36.2±1.1 mV in cHet, n=38 cells, 17 mice, ***p<0.001, LMM. Thus, whether these cells are included or excluded, our interpretations and conclusions remain unchanged.

      We would like to clarify that these data have not been corrected with the junction potential. We will add this info in the revised version.

      (5) I am unclear as to how the authors quantified colocalization between VGluts and PSD95 at the low magnification shown in Supplementary Figure 2.

      We apologize for our lack of clarity. Although the analysis was done at high resolution, the figures were focused on showing multiple PV somata receiving excitatory inputs. We will add higher magnification figures and more detailed information in the methods of the revised version. Please also see our response to reviewer #2.

      (6) The authors claim that "cHet SST+ cells showed no significant changes in active and passive membrane properties", but this claim would seem to be directly refused by the data of Fig 8f. In the absence of changes in either active or passive membrane properties shouldn't the current/#AP plot remain unchanged?

      While we acknowledge the theoretical expectation that changes in intrinsic parameters should correlate with alterations in neuronal firing, the absence of differences in the parameters analyzed in this study should not overshadow the clear and significant decrease in firing rate observed in cHet SST+ cells. This decrease serves as a compelling indication of reduced intrinsic neuronal excitability. It's certainly possible that other intrinsic factors, not assessed in this study, may have contributed to this effect. However, exploring these mechanisms is beyond the scope of our current investigation. We will rephrase the discussion and add this limitation of our study in the revised version.

      (7) The plots used for the determination of AP threshold (Figs 5c, 7c, and 7h) suggest that the frequency of acquisition of current-clamp signals may not have been sufficient, this value is not included in the Methods section.

      This study utilized a sampling rate of 10 kHz, which is a standard rate for action potential analysis in the present context. We will describe more extensively the technical details in the method section of the revised manuscript we are preparing. While we acknowledge that a higher sampling rate could have enhanced the clarity of the phase plot, our recording conditions, as detailed in our response to Rev#2/comment#5, were suitable for the objectives of this study.

      Reference list

      Bengtsson Gonzales C, Hunt S, Munoz-Manchado AB, McBain CJ, Hjerling-Leffler J (2020) Intrinsic electrophysiological properties predict variability in morphology and connectivity among striatal Parvalbumin-expressing Pthlh-cells. Scientific Reports, 10, 15680. https://doi.org/10.1038/s41598-020-72588-1

      Bertero A, Zurita H, Normandin M, Apicella AJ (2020) Auditory long-range parvalbumin cortico-striatal neurons. Frontiers in Neural Circuits, 14, 45. http://doi.org/ 10.3389/fncir.2020.00045

      Chamberland S, Nebet ER, Valero M, Hanani M, Egger R, Larsen SB, Eyring KW, Buzsáki G, Tsien RW (2023) Brief synaptic inhibition persistently interrupts firing of fast-spiking interneurons. Neuron, 111, 1264–1281. http://doi.org/10.1016/j.neuron.2023.01.017

      Chehrazi P, Lee KKY, Lavertu-Jolin M, Abbasnejad Z, Carreño-Muñoz MI, Chattopadhyaya B, Di Cristo G (2023). The p75 Neurotrophin Receptor in Preadolescent Prefrontal Parvalbumin Interneurons Promotes Cognitive Flexibility in Adult Mice. Biol Psychiatry, 94, 310-321. doi: 10.1016/j.biopsych.2023.04.019.

      Elabbady L, Seshamani S, Mu S, Mahalingam G, Schneider-Mizell C, Bodor AL, Bae JA, Brittain D, Buchanan J, Bumbarger DJ, Castro MA, Dorkenwald S, Halageri A, Jia Z, Jordan C, Kapner D, Kemnitz N, Kinn S, Lee K, Li K…Collman F (2024) Perisomatic features enable efficient and dataset wide cell-type classifications across large-scale electron microscopy volumes. bioRxiv, https://doi.org/10.1101/2022.07.20.499976

      Goldberg EM, Clark BD, Zagha E, Nahmani M, Erisir A, Rudy B (2008) K+ Channels at the axon initial segment dampen near-threshold excitability of neocortical fast-spiking GABAergic interneurons. Neuron, 58, 387–400. https://doi.org/10.1016/j.neuron.2008.03.003

      Golomb D, Donner K, Shacham L, Shlosberg D, Amitai Y, Hansel D. (2007). Mechanisms of firing patterns in fast-spiking cortical interneurons. PLoS Computational Biology, 38, e156. http://doi.org/10.1371/journal.pcbi.0030156

      Hu H, Martina M, Jonas P (2010). Dendritic mechanisms underlying rapid synaptic activation of fast-spiking hippocampal interneurons. Science, 327, 52–58. http://doi.org/10.1126/science.1177876

      Hwang YS, Maclachlan C, Blanc J, Dubois A, Petersen CH, Knott G, Lee SH (2021). 3D ultrastructure of synaptic inputs to distinct gabaergic neurons in the mouse primary visual cortex. Cerebral Cortex, 31, 2610–2624. http://doi.org/10.1093/cercor/bhaa378

      Kavalali E (2015) The mechanisms and functions of spontaneous neurotransmitter release. Nature Reviews Neuroscience, 16, 5–16. https://doi.org/10.1038/nrn3875

      Kourrich S, Thomas MJ (2009) Similar neurons, opposite adaptations: psychostimulant experience differentially alters firing properties in accumbens core versus shell. Journal of Neuroscience, 29, 12275-12283. http://doi.org:10.1523/JNEUROSCI.3028-09.2009

      Kourrich S, Hayashi T, Chuang JY, Tsai SY, Su TP, Bonci A (2013) Dynamic interaction between sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine. Cell, 152, 236–247. http://doi.org/10.1016/j.cell.2012.12.004

      Norenberg A, Hu H, Vida I, Bartos M, Jonas P (2010) Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons. Proceedings of the National Academy of Sciences, 107, 894–9. http://doi.org/10.1073/pnas.0910716107

      Stevens SR, Longley CM, Ogawa Y, Teliska LH, Arumanayagam AS, Nair S, Oses-Prieto JA, Burlingame AL, Cykowski MD, Xue M, Rasband MN (2021) Ankyrin-R regulates fast-spiking interneuron excitability through perineuronal nets and Kv3.1b K+ channels. Elife, 10, e66491. http://doi.org/10.7554/eLife.66491

      Russo G, Nieus TR, Maggi S, Taverna S (2013) Dynamics of action potential firing in electrically connected striatal fast-spiking interneurons. Frontiers in Cellular Neuroscience, 7, 209. https://doi.org/10.3389/fncel.2013.00209

      Ünal CT, Ünal B, Bolton MM (2020) Low-threshold spiking interneurons perform feedback inhibition in the lateral amygdala. Brain Structure and Function, 225, 909–923. http://doi.org/10.1007/s00429-020-02051-4

      Wang H, Kunkel DD, Schwartzkroin PA, Tempel BL (1994) Localization of Kv1.1 and Kv1.2, two K channel proteins, to synaptic terminals, somata, and dendrites in the mouse brain. The Journal of Neuroscience, 14, 4588-4599. https://doi.org/10.1523/JNEUROSCI.14-08-04588.1994

      Zhang YZ, Sapantzi S, Lin A, Doelfel SR, Connors BW, Theyel BB (2023) Activity-dependent ectopic action potentials in regular-spiking neurons of the neocortex. Frontiers in Cellular Neuroscience, 17. https://doi.org/10.3389/fncel.2023.1267687

      Zurita H, Feyen PLC, Apicella AJ (2018) Layer 5 callosal parvalbumin-expressing neurons: a distinct functional group of GABAergic neurons. Frontiers in Cellular Neuroscience, 12, 53. https://doi.org/10.3389/fncel.2018.00053

    1. Author response:

      Reviewer #1

      The first is that data on the general health of mice with single and double knockouts is not shown, nor is there any data on effects in any other tissues. This gives the impression that the only phenotype is in the male reproductive system, which would be misleading if there were phenotypes in other tissues that are not reported.

      We thank the reviewer for helpful and constructive suggestions that we plan to implement in the revision. We agree with this point and we will add a statement that the effect on the urogenital system was not the only observed phenotype, although it was the most striking histological feature that we found. We did notice some other physiological differences that we are examining in detail and determining their mechanisms, for future publications.

      Furthermore, data for the genitourinary system in single knockouts are very sparse; data are described for fertility in Figure 1H, ploidy, and cell number in Figures 2B and C, plasma testosterone and luteinizing hormone levels in Figures 5C and 5D, and morphology of testis and prostate tissue for single Cdk8 knockout in Supplementary Figure 1C (although in this case the images do not appear very comparable between control and CDK8 KO, thus perhaps wider fields should be shown), but, for example, there is no analysis of different meiotic stages or of gene expression in single knockouts. It is worth mentioning that single knockouts seem to show a corresponding upregulation of the level of the paralogue kinase, indicating that any lack of phenotypes might be due to feedback compensation, which would be an interesting finding if confirmed; this has not been mentioned.

      We agree that a description of the single KO could be beneficial, but we expect no big differences with the WT or Cre-Ert. We found neither histological differences nor changes in cell counts or ratios of cell types. Our ethical committee also has concerns about sacrificing mice without major phenotypic changes, without a well formulated hypothesis about the observed effects. We plan to add histological pictures to the next version of the article.

      We thank the reviewer for raising an important point about the paralog upregulation. Indeed, our data on primary cells (supplementary 1B) suggests the upregulation of CDK19 in CDK8KO and vice versa. We will point this out in disc We plan to examine the data for the testis as soon as more tissues are available.

      The second major weakness is that the correlation between double knockout and reduced expression of genes involved in steroid hormone biosynthesis is portrayed as a causal mechanism for the phenotypes observed. While this is a possibility, there are no experiments performed to provide evidence that this is the case. Furthermore, there is no evidence showing that CDK8 and/or CDK19 are directly responsible for the transcription of the genes concerned.

      We agree with the reviewer that the effects on CDK8/CDK19/CCNC could lead to the observed transcriptional changes in multiple indirect steps. There are, however, major technical challenges in examining the binding of transcription factors in the tissue, especially in Leydig cells which are a relatively minor population. We will clarify it in the revision, and strengthen this point in the discussion.

      Finally, the authors propose that the phenotypes are independent of the kinase activity of CDK8 or CDK19 because treatment of mice for a month with an inhibitor does not recapitulate the effects of the knockout, and nor does expression of two steroidogenic genes change in cultured Leydig cells upon treatment with an inhibitor. However, there are no controls for effective target inhibition shown.

      We thank the reviewer for raising this concern, which we will address in the revision. This study used the same CDK8/19 inhibitor (SNX631-6) as in the recently published study on prostate cancer (doi: 10.1172/JCI176709). That study describes the inhibitor, its target engagement in cell-free and cell-based assays, its anticancer potency, and its transcriptomic effects in vivo, the same dosage strength as in the present study, which phenocopy the effects of CDK8/19 knockdown. Additional data will be included in the revision.

      Reviewer #2

      The claim of reproductive defects in the induced double knockout of CDK8/19 resulted from the loss of CCNC via a kinase-independent mechanism is interesting but was not supported by the data presented. While the construction and analysis of the systemic induced knockout model of Cdk8 in Cdk19KO mice is not trivial, the analysis and data are weakened by the systemic effect of Cdk8 loss, making it difficult to separate the systemic effect from the local testis effect.

      We agree with the reviewer that the effects on the testis could be due to the systemic loss of CDK8 rather than specifically in the testis, and we will clarify it in the revision. We will also clarify that although our results are suggestive that the effects of CDK8/19 knockout are kinase-independent, and that the loss of Cyclin C is a likely explanation for the kinase independence but we do not claim that it is the mechanism.

      The analysis of male sterile phenotype is also inadequate with poor image quality, especially testis HE sections. The male reproductive tract picture is also small and difficult to evaluate.

      Unfortunately, during the submission process through Biorxiv the quality of the image worsened. We uploaded the high resolution pictures for the journal but probably they were not presented for the reviewer. We will re-send the high resolution images.

      The mice crossing scheme is unusual as you have three mice to cross to produce genotypes, while we could understand that it is possible to produce pups of desired genotypes with different mating schemes, such a vague crossing scheme is not desirable and of poor genetics practice.

      We thank the reviewer for this suggestion. Indeed, our scheme is not a representation of the actual breeding scheme but just a brief explanation of lineages used for the acquisition of the triple transgenic mice. We will include the full crossing scheme into the revision.

      Also using TAM-treated wild type as control is ok, but a better control will be TAM-treated ERT2-cre; CDK8f/f or TAM-treated ERT2 Cre CDK19/19 KO, so as to minimize the impact from the well-recognized effect of TAM.

      We used TAM-treated ERT2-cre for most of the experiments, and did not observe any major histological or physiological differences with the WT+TAM. We will make sure to present them in the revision.

      While the authors proposed that the inducible loss of CDK8 in the CDK19 knockout background is responsible for spermatogenic defects, it was not clear in which cells CDK8/19 genes are interested and which cell types might have a major role in spermatogenesis. The authors also put forward the evidence that reduction/loss of Testosterone might be the main cause of spermatogenic defects, which is consistent with the expression change in genes involved in steroigenesis pathway in Leydig cells of inducible double knockout. However it is not clear how the loss of Testosterone contributed to the loss of CcnC protein.

      We agree with the reviewer that the spermatogenic defects could be caused by the effects on gene expression in tissues other than Leydig cells. Nevertheless, this is our primary hypothesis since these changes resemble the effects of chemical castration in rats (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3408499/), and in SCARKO mice (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968405/).

      Our hypothesis is actually the reversed scenario proposed by the reviewer. We think that the loss of steroidogenic gene expression is caused by the loss of CDK8/19 and Cyclin C in Leydig cells. This, in turn, leads to a drop of testosterone levels. We will expand this explanation for clarity.

      The authors should clarify or present the data on where CDK8 and CDK19 as well as CcnC are expressed so as to help the readers understand which tissues both CDK might be functioning in and cause the loss of CcnC. It should be easier to test the hypothesis of CDK8/19 stabilizing CcnC protein using double knock-out primary cells, instead of the whole testis.

      The stabilizing effect of Cdk8/19 on CcnC has been previously discovered and reported in cell culture (doi: 10.1093/nar/gkad538.), and here we have confirmed it at the level of whole tissue. Due to a limited sensitivity of single cell sequencing (only ~5,000 transcripts are sequenced from total of average 500,000 transcripts per cell, so the low expressed transcripts are not sequenced in all cells) it is challenging to firmly establish CDK8/19 positive and -negative tissues from single cell data because both transcripts are minor. This image will be included in the next version. We plan to resolve this matter using two approaches. First, we will try immunohistochemistry. If this method is not sufficiently sensitive we will analyze published single cell sequencing data from mouse databases and re-analyze our data. So far the former approach was challenging for us due to the absence of anti-mouse antibodies which are specific for CDK8 and CDK19 and work on tissue sections. We and others could not produce a tissue-specific staining, with the currently available commercially available antibodies. The only published specific antibody is currently not available.

      Since CDK8KO and CDK19KO have significantly reduced fertility compared to the wild type, it might be important to measure the sperm quantity and motility among CDK8 KO, CDK19KO, and induced DKO to evaluate spermatogenesis based on their sperm production.

      We agree that this is an interesting question. We did not do spermograms for single KOs but we don’t think that a decreased sperm count would explain CDK8KO infertility as the vasectomized males are able to produce copulative plugs in females whereas CDK8KO males do not, suggesting the absence of mating behavior as a reason for low fertility in the latter genotype.

      Some data for the inducible knockout efficiency of Cdk8 were presented in Supplemental Figure 1, but there is no legend for the supplemental figures, it was not clear which band represented the deletion band, and which tissues were examined. Tail or testis?

      We apologize for the accidental loss of supplementary figure legends, which will be presented in the next version. The efficiency of CDK8 KO in different tissues was previously examined by us in https://www.ncbi.nlm.nih.gov/gene/264064. The western blot in the MS represents deletion data for the testis.

      It seems that two months after the injection of Tam, all the Cdk8 were completely deleted, indicating extremely efficient deletion of Tam induction by two months post administration. Were the complete deletion of Cdk8 happening even earlier?

      The complete deletion of CDK8 occurs within a week or even as early as 2-3 days in culture, and at least after at two weeks in vivo. We chose the two mo. period to prevent the effect of tamoxifen on gene expression. We examined other time points (Figure 6) and registered the beginning of effects at 2 weeks and maximum effect by one mo.

      The authors found that Sertoli cells re-entered the cell cycle in the inducible double knockout but stopped short of careful characterization other than increased expression of cell cycle genes.

      We agree with the reviewer, and we will add Ki67 (or equivalent) staining along with Sertoli cell markers.

      Dko should be appropriately named iDKO (induced dKO).

      We will make the corresponding change.

      We performed necropsy ? not the right wording here. Colchicine-lke apoptotic bodies ? what does this mean? Not clear.

      We will amend the next version to address these minor points, and we thank the reviewer for careful reading of the manuscript.

      Images throughout the manuscript suffer from poor resolution and are often blurry and hard to evaluate.

      As mentioned above, we had a problem with image quality during the submission through Biorxiv and we will provide high resolution images in the next version.

      To pinpoint the meiotic stage defect of iDKO, it is better to use the meiotic chromosome spread approach.

      Unfortunately, meiotic spreads would not be feasible or informative, due to a low number of surviving cells in iDKO and the fact that there were evidently no cells in stages after SYCP3+.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Thank you very much for the careful and positive reviews of our manuscript. We have addressed each comment in the attached revised manuscript. We describe the modifications below. To avoid confusion, we've changed supplementary figure and table captions to start with "Supplement Figure" and "Supplementary Table," instead of "Figure" and "Table."

      We have modified/added:

      ● Supplementary Table S1: AUC scores for the top 10 frequent epitope types (pathogens) in the testing set of epitope split.

      ● Supplementary Table S5: AUCs of TCR-epitope binding affinity prediction models with BLOSUM62 to embed epitope sequences.

      ● Supplementary Table S6: AUCs of TCR-epitope binding affinity prediction models trained on catELMo TCR embeddings and random-initialized epitope embeddings.

      ● Supplementary Table S7: AUCs of TCR-epitope binding affinity prediction models trained on catELMo and BLOSUM62 embeddings.

      ● Supplementary Figure 4: TCR clustering performance for the top 34 abundant epitopes representing 70.55% of TCRs in our collected databases.

      ● Section Discussion.

      ● Section 4.1 Data: TCR-epitope pairs for binding affinity prediction.

      ● Section 4.4.2 Epitope-specific TCR clustering.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this manuscript, the authors described a computational method catELMo for embedding TCR CDR3 sequences into numeric vectors using a deep-learning-based approach, ELMo. The authors applied catELMo to two applications: supervised TCR-epitope binding affinity prediction and unsupervised epitope-specific TCR clustering. In both applications, the authors showed that catELMo generated significantly better binding prediction and clustering performance than other established TCR embedding methods. However, there are a few major concerns that need to be addressed.

      (1) There are other TCR CDR3 embedding methods in addition to TCRBert. The authors may consider incorporating a few more methods in the evaluation, such as TESSA (PMCID: PMC7799492), DeepTCR (PMCID: PMC7952906) and the embedding method in ATM-TCR (reference 10 in the manuscript). TESSA is also the embedding method in pMTnet, which is another TCR-epitope binding prediction method and is the reference 12 mentioned in this manuscript.

      TESSA is designed for characterizing TCR repertoires, so we initially excluded it from the comparison. Our focus was on models developed specifically for amino acid embedding rather than TCR repertoire characterization. However, to address the reviewer's inquiry, we conducted further evaluations. Since both TESSA and DeepTCR used autoencoder-based models to embed TCR sequences, we selected one used in TESSA for evaluation in our downstream prediction task, conducting ten trials in total. It achieved an average AUC of 75.69 in TCR split and 73.3 in epitope split. Notably, catELMo significantly outperformed such performance with an AUC of 96.04 in TCR split and 94.10 in epitope split.

      Regarding the embedding method in ATM-TCR, it simply uses BLOSUM as an embedding matrix which we have already compared in Section 2.1. Furthermore, we have provided the comparison results between our prediction model trained on catELMo embeddings with the state-of-the-art prediction models such as netTCR and ATM-TCR in Table 6 of the Discussion section.

      (2) The TCR training data for catELMo is obtained from ImmunoSEQ platform, including SARS-CoV2, EBV, CMV, and other disease samples. Meanwhile, antigens related to these diseases and their associated TCRs are extensively annotated in databases VDJdb, IEDB and McPAS-TCR. The authors then utilized the curated TCR-epitope pairs from these databases to conduct the evaluations for eptitope binding prediction and TCR clustering. Therefore, the training data for TCR embedding may already be implicitly tuned for better representations of the TCRs used in the evaluations. This seems to be true based on Table 4, as BERT-Base-TCR outperformed TCRBert. Could catELMo be trained on PIRD as TCRBert to demonstrate catELMo's embedding for TCRs targeting unseen diseases/epitopes?

      We would like to note that catELMo was trained exclusively on TCR sequences in an unsupervised manner, which means it has never been exposed to antigen information. We also ensured that the TCRs used in catELMo's training did not overlap with our downstream prediction data. Please refer to the section 4.1 Data where we explicitly stated, “We note that it includes no identical TCR sequences with the TCRs used for training the embedding models.”. Moreover, the performance gap (~1%) between BERT-Base-TCR and TCRBert, as observed in Table 4, is relatively small, especially when compared to the performance difference (>16%) between catELMo and TCRBert.

      To further address this concern, we conducted experiments using the same number of TCRs, 4,173,895 in total, sourced exclusively from healthy ImmunoSeq repertoires. This alternative catELMo model demonstrated a similar prediction performance (based on 10 trials) to the one reported in our paper, with an average AUC of 96.35% in TCR split and an average AUC of 94.03% in epitope split.

      We opted not to train catELMo on the PIRD dataset for several reasons. First, approximately 7.8% of the sequences in PIRD also appear in our downstream prediction data, which could be a potential source of bias. Furthermore, PIRD encompasses sequences related to diseases such as Tuberculosis, HIV, CMV, among others, which the reviewer is concerned about.

      (3) In the application of TCR-epitope binding prediction, the authors mentioned that the model for embedding epitope sequences was catElMo, but how about for other methods, such as TCRBert? Do the other methods also use catELMo-embedded epitope sequences as part of the binding prediction model, or use their own model to embed the epitope sequences? Since the manuscript focuses on TCR embedding, it would be nice for other methods to be evaluated on the same epitope embedding (maybe adjusted to the same embedded vector length).

      Furthermore, the authors found that catELMo requires less training data to achieve better performance. So one would think the other methods could not learn a reasonable epitope embedding with limited epitope data, and catELMo's better performance in binding prediction is mainly due to better epitope representation.

      Review 1 and 3 have raised similar concerns regarding the epitope embedding approach employed in our binding affinity prediction models. We address both comments together on page 6 where we discuss the epitope embedding strategies in detail.

      (4) In the epitope binding prediction evaluation, the authors generated the test data using TCR-epitope pairs from VDJdb, IEDB, McPAS, which may be dominated by epitopes from CMV. Could the authors show accuracy categorized by epitope types, i.e. the accuracy for TCR-CMV pair and accuracy for TCR-SARs-CoV2 separately?

      The categorized AUC scores have been added in Supplementary Table 7. We observed significant performance boosts from catELMo compared with other embedding models.

      (5) In the unsupervised TCR clustering evaluation, since GIANA and TCRdist direct outputs the clustering result, so they should not be affected by hierarchical clusters. Why did the curves of GIANA and TCRdist change in Figure 4 when relaxing the hierarchical clustering threshold?

      For fair comparisons, we performed GIANA and TCRdist with hierarchical clustering instead of the nearest neighbor search. We have clarified it in the revised manuscript as follows.

      “Both methods are developed on the BLOSUM62 matrix and apply nearest neighbor search to cluster TCR sequences. GIANA used the CDR3 of TCRβ chain and V gene, while TCRdist predominantly experimented with CDR1, CDR2, and CDR3 from both TCRα and TCRβ chains. For fair comparisons, we perform GIANA and TCRdist only on CDR3 β chains and with hierarchical clustering instead of the nearest neighbor search.”

      (6 & 7) In the unsupervised TCR clustering evaluation, the authors examined the TCR related to the top eight epitopes. However, there are much more epitopes curated in VDJdb, IEDB and McPAS-TCR. In real application, the potential epitopes is also more complex than just eight epitopes. Could the authors evaluate the clustering result using all the TCR data from the databases? In addition to NMI, it is important to know how specific each TCR cluster is. Could the authors add the fraction of pure clusters in the results? Pure cluster means all the TCRs in the cluster are binding to the same epitope, and is a metric used in the method GIANA.

      We would like to note that there is a significant disparity in TCR binding frequencies across different epitopes in current databases. For instance, the most abundant epitope (KLGGALQAK) has approximately 13k TCRs binding to it, while 836 out of 982 epitopes are associated with fewer than 100 TCRs in our dataset. Furthermore, there are 9347 TCRs having the ability to bind multiple epitopes. In order to robustly evaluate the clustering performance, we originally selected the top eight frequent epitopes from McPAS and removed TCRs binding multiple epitopes to create a more balanced dataset.

      We acknowledge that the real-world scenario is more complex than just eight epitopes. Therefore, we conducted clustering experiments using the top most abundant epitopes whose combined cognate TCRs make up at least 70% of TCRs across three databases (34 epitopes). This is illustrated in Supplementary Figure 5. Furthermore, we extended our analysis by clustering all TCRs after filtering out those that bind to multiple epitopes, resulting in 782 unique epitopes. We found that catELMo achieved the 3rd and 2nd best performance in NMI and Purity, respectively (see Table below). These are aligned with our previous observations of the eight epitopes.

      Author response table 1.

      Reviewer #2 (Public Review):

      In the manuscript, the authors highlighted the importance of T-cell receptor (TCR) analysis and the lack of amino acid embedding methods specific to this domain. The authors proposed a novel bi-directional context-aware amino acid embedding method, catELMo, adapted from ELMo (Embeddings from Language Models), specifically designed for TCR analysis. The model is trained on TCR sequences from seven projects in the ImmunoSEQ database, instead of the generic protein sequences. They assessed the effectiveness of the proposed method in both TCR-epitope binding affinity prediction, a supervised task, and the unsupervised TCR clustering task. The results demonstrate significant performance improvements compared to existing embedding models. The authors also aimed to provide and discuss their observations on embedding model design for TCR analysis: 1) Models specifically trained on TCR sequences have better performance than models trained on general protein sequences for the TCR-related tasks; and 2) The proposed ELMo-based method outperforms TCR embedding models with BERT-based architecture. The authors also provided a comprehensive introduction and investigation of existing amino acid embedding methods. Overall, the paper is well-written and well-organized.

      The work has originality and has potential prospects for immune response analysis and immunotherapy exploration. TCR-epitope pair binding plays a significant role in T cell regulation. Accurate prediction and analysis of TCR sequences are crucial for comprehending the biological foundations of binding mechanisms and advancing immunotherapy approaches. The proposed embedding method presents an efficient context-aware mathematical representation for TCR sequences, enabling the capture and analysis of their structural and functional characteristics. This method serves as a valuable tool for various downstream analyses and is essential for a wide range of applications. Thank you.

      Reviewer #3 (Public Review):

      Here, the authors trained catElMo, a new context-aware embedding model for TCRβ CDR3 amino acid sequences for TCR-epitope specificity and clustering tasks. This method benchmarked existing work in protein and TCR language models and investigated the role that model architecture plays in the prediction performance. The major strength of this paper is comprehensively evaluating common model architectures used, which is useful for practitioners in the field. However, some key details were missing to assess whether the benchmarking study is a fair comparison between different architectures. Major comments are as follows:

      • It is not clear why epitope sequences were also embedded using catELMo for the binding prediction task. Because catELMO is trained on TCRβ CDR3 sequences, it's not clear what benefit would come from this embedding. Were the other embedding models under comparison also applied to both the TCR and epitope sequences? It may be a fairer comparison if a single method is used to encode epitope sequence for all models under comparison, so that the performance reflects the quality of the TCR embedding only.

      In our study, we indeed used the same embedding model for both TCRs and epitopes in each prediction model, ensuring a consistent approach throughout.

      Recognizing the importance of evaluating the impact of epitope embeddings, we conducted experiments in which we used BLOSUM62 matrix to embed epitope sequences for all models. The results (Supplementary Table 5) are well aligned with the performance reported in our paper. This suggests that epitope embedding may not play as critical a role as TCR embedding in the prediction tasks. To further validate this point, we conducted two additional experiments.

      Firstly, we used catELMo to embed TCRs while employing randomly initialized embedding matrices with trainable parameters for epitope sequences. It yielded similar prediction performance as when catELMo was used for both TCR and epitope embedding (Supplementary Table 6). Secondly, we utilized BLOSUM62 to embed TCRs but employed catELMo for epitope sequence embedding, resulting in performance comparable to using BLOSUM62 for both TCRs and epitopes (Supplementary Table 4). These experiment results confirmed the limited impact of epitope embedding on downstream performance.

      We conjecture that these results may be attributed to the significant disparity in data scale between TCRs (~290k) and epitopes (less than 1k). Moreover, TCRs tend to exhibit high similarity, whereas epitopes display greater distinctiveness from one another. These features of TCRs require robust embeddings to facilitate effective separation and improve downstream performance, while epitope embedding primarily serves as a categorical encoding.

      We have included a detailed discussion of these findings in the revised manuscript to provide a comprehensive understanding of the role of epitope embeddings in TCR binding prediction.

      • The tSNE visualization in Figure 3 is helpful. It makes sense that the last hidden layer features separate well by binding labels for the better performing models. However, it would be useful to know if positive and negative TCRs for each epitope group also separate well in the original TCR embedding space. In other words, how much separation between these groups is due to the neural network vs just the embedding?

      It is important to note that we used the same downstream prediction model, a simple three-linear-layer network, for all the discussed embedding methods. We believe that the separation observed in the t-SNE visualization effectively reflects the ability of our embedding model. Also, we would like to mention that it can be hard to see a clear distinction between positive and negative TCRs in the original embedding space because embedding models were not trained on positive/negative labels. Please refer to the t-SNE of the original TCR embeddings below.

      Author response image 1.

      • To generate negative samples, the author randomly paired TCRs from healthy subjects to different epitopes. This could produce issues with false negatives if the epitopes used are common. Is there an estimate for how frequently there might be false negatives for those commonly occurring epitopes that most populations might also have been exposed to? Could there be a potential batch effect for the negative sampled TCR that confounds with the performance evaluation?

      Thank you for bringing this valid and interesting point up. Generating negative samples is non-trivial since only a limited number of non-binding TCR-pairs are publicly available and experimentally validating non-binding pairs is costly [1]. Standard practices for generating negative pairs are (1) paring epitopes with healthy TCRs [2, 3], and (2) randomly shuffling existing TCR-epitope pairs [4,5]. We used both approaches (the former included in the main results, and the latter in the discussion). In both scenarios, catELMo embeddings consistently demonstrated superior performance.

      We acknowledge the possibility of false negatives due to the finite-sized TCR database from which we randomly selected TCRs, however, we believe that the likelihood of such occurrences is low. Given the vast diversity of human TCR clonotypes, which can exceed 10^15[6], the chance of randomly selecting a TCR that specifically recognizes a target epitope is relatively small.

      In order to investigate the batch effect, we generated new negative pairs using different seeds and observed consistent prediction performance across these variations. However, we agree that there could still be a potential batch effect for the negative samples due to potential data bias.

      We have discussed the limitation of generative negative samples in the revised manuscript.

      • Most of the models being compared were trained on general proteins rather than TCR sequences. This makes their comparison to catELMO questionable since it's not clear if the improvement is due to the training data or architecture. The authors partially addressed this with BERT-based models in section 2.4. This concern would be more fully addressed if the authors also trained the Doc2vec model (Yang et al, Figure 2) on TCR sequences as baseline models instead of using the original models trained on general protein sequences. This would make clear the strength of context-aware embeddings if the performance is worse than catElmo and BERT.

      We agree it is important to distinguish between the effects of training data and architecture on model performance.

      In Section 2.4, as the reviewer mentioned, we compared catELMo with BERT-based models trained on the same TCR repertoire data, demonstrating that architecture plays a significant role in improving performance. Furthermore, in Section 2.5, we compared catELMo-shallow with SeqVec, which share the same architecture but were trained on different data, highlighting the importance of data on the model performance.

      To further address the reviewer's concern, we trained a Doc2Vec model on the TCR sequences that have been used for catELMo training. We observed significantly lower prediction performance compared to catELMo, with an average AUC of 50.24% in TCR split and an average AUC of 51.02% in epitope split, making the strength of context-aware embeddings clear.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) It is known that TRB CDR3, the CDR1, CDR2 on TRBV gene and the TCR alpha chain also contribute to epitope recognition, but were not modeled in catELMo. It would be nice for the authors to add this as a current limitation for catELMo in the Discussion section.

      We have discussed the limitation in the revised manuscript.

      “Our study focuses on modeling the TCRβ chain CDR3 region, which is known as the primary determinant of epitope binding. Other regions, such as CDR1 and CDR2 on the TRB V gene, along with the TCRα chain, may also contribute to specificity in antigen recognition. However, a limited number of available samples for those additional features can be a challenge for training embedding models. Future work may explore strategies to incorporate these regions while mitigating the challenges of working with limited samples.”

      (2) I tried to follow the instructions to train a binding affinity prediction model for TCR-epitope pairs, however, the cachetools=5.3.0 seems could not be found when running "pip install -r requirements.txt" in the conda environment bap. Is this cachetools version supported after Python 3.7 so the Python 3.6.13 suggested on the GitHub repo might not work?

      This has been fixed. We have updated the README.md on our github page.

      Reviewer #2 (Recommendations For The Authors):

      The article is well-constructed and well-written, and the analysis is comprehensive.

      The comments for minor issues that I have are as follows:

      (1) In the Methods section, it will be clearer if the authors interpret more on how the standard deviation is calculated in all tables. How to define the '10 trials'? Are they based on different random training and test set splits?

      ‘10 trials' refers to the process of splitting the dataset into training, validation, and testing sets using different seeds for each trial. Different trials have different training, validation, and testing sets. For each trial, we trained a prediction model on its training set and measured performance on its testing set. The standard deviation was calculated from the 10 measurements, estimating model performance variation across different random splits of the data.

      (2) The format of AUCs and the improvement of AUCs need to be consistent, i.e., with the percent sign.

      We have updated the format of AUCs.

      Reviewer #3 (Recommendations For The Authors):

      In addition to the recommendations in the public review, we had the following more minor questions and recommendations:

      • Could you provide some more background on the data, such as overlaps between the databases, and how the training and validation split was performed between the three databases? Also summary statistics on the length of TCR and epitope sequence data would be helpful.

      We have provided more details about data in our revision.

      • Could you comment on the runtime to train and embed using the catELMo and BERT models?

      Our training data is TCR sequences with relatively short lengths (averaging less than 20 amino acid residues). Such characteristic significantly reduces the computational resources required compared to training large-scale language models on extensive text corpora. Leveraging standard machines equipped with two GeForce RTX 2080 GPUs, we were able to complete the training tasks within a matter of days. After training, embedding one sequence can be accomplished in a matter of seconds.

      • Typos and wording:

      • Table 1 first row of "source": "immunoSEQ" instead of "immuneSEQ"

      This has been corrected.

      • L23 of abstract "negates the need of complex deep neural network architecture" is a little confusing because ELMo itself is a deep neural network architecture. Perhaps be more specific and add that the need is for downstream tasks.

      We have made it more specific in our abstract.

      “...negates the need for complex deep neural network architecture in downstream tasks.”

      References

      (1) Montemurro, Alessandro, et al. "NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data." Communications biology 4.1 (2021): 1060.

      (2) Jurtz, Vanessa Isabell, et al. "NetTCR: sequence-based prediction of TCR binding to peptide-MHC complexes using convolutional neural networks." BioRxiv (2018): 433706.

      (3) Gielis, Sofie, et al. "Detection of enriched T cell epitope specificity in full T cell receptor sequence repertoires." Frontiers in immunology 10 (2019): 2820.

      (4) Cai, Michael, et al. "ATM-TCR: TCR-epitope binding affinity prediction using a multi-head self-attention model." Frontiers in Immunology 13 (2022): 893247.

      (5) Weber, Anna, et al. "TITAN: T-cell receptor specificity prediction with bimodal attention networks." Bioinformatics 37 (2021): i237-i244.

      (6) Lythe, Grant, et al. "How many TCR clonotypes does a body maintain?." Journal of theoretical biology 389 (2016): 214-224.

    1. Author response:

      eLife assessment

      This is an important study describing a neuromuscular junction co-culture system using human cells that the authors use to study the synaptic consequences of ALS mutations. The data supporting the system are solid and show the value of using myotubes and motor neurons from the same donor. The study will be of interest to researchers who model neuromuscular junction disorders, however, the authors could more comprehensively compare and contrast their system with previous literature describing other similar models. There are also technical weaknesses that limit the interpretation of specific findings.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors propose an improved neuro-muscle co-culture system to study ALS-related functional differences in human pluripotent stem cell lines.

      Strengths:

      A simple co-culture system with functional readout.

      We appreciate the recognition that this is a simplified co-culture system with a straight-forward functional evaluation.

      Weaknesses:

      There are concerns about the lack of novelty, rigor, and clarity in the approach. The strength of the study is undermined by its reliance on transcription factors used more than a decade ago, low myocyte activity, and inadequate validation methods, such as the lack of single-cell transcriptome analysis and detailed neuromuscular synapse characterization. The evidence presented requires substantial validation through rigorous experimental approaches and resolution of the identified concerns for the study's findings to be considered significant and reliable.

      The muscle differentiation protocol used in our work is an adaptation of the Albini S, et al. Cell Rep. 2013. This protocol was selected due to its efficiency to differentiate skeletal muscles from pluripotent stem cells (PSCs). Modifications from the original publications were made in the plasmids (MYOD and BAF60C) used, such as the inclusion of selection genes, puromycin and blasticidin, to improve efficiency. Moreover, a criticism of the previously used overexpression system, especially overexpression of MYOD, is that it introduces artificial expression of this gene throughout muscle differentiation, when it is only supposed to be expressed early in myogenesis. Thus, the constructs used in our work are dox inducible, which enables us to control the expression of MYOD and restrict it to the first 48 hours. This protocol resulted in a highly efficient skeletal muscle differentiation, as noted in our manuscript. “The PSC-derived skeletal muscles were characterized by the presence of Desmin (DES) and Myosin Heavy Chain (MHC), and as early as day 8 of differentiation nearly 100% of the cells co-expressed these markers.” We agree with the reviewer that the myocyte activity identified in our work is lower compared to Albini et al. (2013), mostly explained by the modification we made to the method, from a 3D to a 2D culture. In Albini et al. (2013) the electrophysiological properties were assayed in skeletal myospheres (3D), which are known to improve contractility measurements. Conversely, in 2D cultures when the contractility intensifies the cells detach from the plate. Thus, a tight regulation of cell concentration for optimal maturation and formation of contractile skeletal muscle culture without premature detachment of the cells is required. We believe that single-cell or single-nuclei transcriptome analysis from the co-culture setting of two well-defined cell types might yield little value for method characterization, however, as part of a follow up study we are performing morphological NMJ characterization and applying single-nuclei transcriptome analysis in the fALS disease context to identify specific molecular mechanisms that result in synaptic dysfunction.

      Reviewer #2 (Public Review):

      The manuscript by Chen et al from the group of Helen Miranda aims to describe an improved neuromuscular junction (NMJ) model to study synaptic dysfunction in several cases of familial ALS. Overall, the system described in the paper appears as a valid platform to study disease phenotypes with exciting results showing specific effects of GDNF on non-SOD1 ALS patient lines. The strength of the paper lies in the use of myotubes, and motor neurons derived from the same donor. However, the current study: (1) lacks a clear comparison of the current system with numerous previously described systems; (2) is limited by the number of repeat experiments in the study and (3) has no description of the synaptic phenotype observed in the study. These major points are discussed in more detail below.

      We appreciate the recognition that “the system described in the paper appears as a valid platform to study disease phenotypes with exciting results showing specific effects of GDNF on non-SOD1 ALS patient lines” and the careful evaluation of our work. We plan to address the points raised by this reviewer in the revision.

      Major points:

      (1) In the introduction the authors state (p. 4): "Finally, recent human NMJ models have been established from PSCs by differentiating these cells into both skeletal muscles and motor neurons in 2D and 3D formats. These previous systems present a remarkable advancement to the studies of human NMJs, however, they require long NMJ formation and maturation time (40 to 60 days), which, restricts their sensitivity and scalability [42]"

      In fact, a number of studies have described various in-vitro NMJ systems, with the same timeframes for NMJ formation. For example, in studies by Osaki et al, 2018, Sci Adv; Bellmann et al, 2019, Biomat; Demestre et al, 2015, Stem Cell Res; Badu-Mensah et al, 2022, Biomat (this is just an exemplar selection of the papers); NMJ formation was observed as early as 14 d in culture, in line with or at least slightly longer than reported by Chen et al. With the exception of the study by Osaki et al, all co-culture systems cited above are 2D-based. The authors need to expand on this further or provide a quantitative assessment of why their system is better compared to previously published models.

      Indeed, there are previous publications that have described neuromuscular junctions (NMJs) in cocultures of iPSC-derived skeletal muscles and motor neurons. Some of the publications mentioned above did show NMJ formation within ~20ish days, albeit with several caveats such as culture heterogeneity, i.e. 50% motor neuron differentiation efficiency. We agree with the reviewer that this needs to be expanded and clarified, and we will address this concern in the revision.

      (2) Further, when comparing their results with other work it is hard to claim how the current system is (p. 5) "more reproducible, and offers a 6-fold increase in scalability compared to previous models [40-43]".

      The authors need to expand on this further.

      This is an important aspect of this work, and we believe that our protocol offers a higher reproducibility due to, at least partially, the homogeneity of the starting cultures of iPSC-derived skeletal muscles and iPSC-derived motor neurons, and that the direct 2D co-culture approach is more suitable for miniaturization compared to 3D cultures or microfluidic chamber devices. Thus, we will expand on this idea in the revision.

      (3) Although mentioned, there were no examples of the modularity of the system, which of course would strengthen the paper and help to uncover ALS mechanisms of synaptic formation, for example by combining WT myotubes and fALS motor neurons (see point 4 below). The authors should show how they would adapt to 96 well plate format to showcase the scalability of the system. Based on their data on the efficacy of synaptic formation (60 per 0.7 cm2 area), is further miniaturization allowed?

      We appreciate the points raised by the reviewer. The “mix-and-match” approach to co-culture wild-type and affected iPSC-derived skeletal muscles with iPSC-derived motor neurons is a main focus of our lab and an advantage to protocols like ours, where cells are differentiated independently and later co-cultured together; however, a comprehensive characterization of various mix-match combinations is beyond the scope of this Tools and Resources article. Since the initial submission of this manuscript, we have extensively optimized the scalability of the co-cultures from the initial 0.7 cm2 to 0.32 cm2 (96-well plates). Further miniaturization is also being optimized to 0.136 cm2 (384-well plates). This point will be clarified in the revision.

      (4) A lot of a-bungarotoxin staining corresponds to AChR clusters that do not seem to be associated with muscle and do not form normal rings of clustering (pretzel-like) associated with the NMJ in vivo. This is seen clearly in Figure 3B and Figure 5B. Figures 3B and 5B only show low-magnification images which makes it difficult to assess the specificity of localization of the pre-/post-synaptic markers. The authors should clearly show the morphologies of the NMJs formed in WT and fALS lines at high magnification. In addition, the authors should show co-localization images for a-bungarotoxin and myosin-heavy chains to confirm the localization of the bungarotoxin signal on the myotubes.

      In addition to that, the authors report that the number of functional synapses formed on a plate varies from 30 (fASL) to 60 (Ctrl) per 10,000 neurons spread over the 0.7 cm2 area (0.6%). How do the authors explain an extensive loss of a-bungarotoxin signal in Figure 5B the majority of which likely corresponds to AChR clusters that are formed outside of neuronal connections? Such clustering can be usually observed in immature co-cultures and in vivo prior to the innervation of myotubes. One explanation could be that myotubes derived from fALS PSC are less capable of synaptic formation. Noteworthy, a study of PSCderived myotubes and motor neurons from PSC lines with various SOD1 mutations has already been published, but not cited by Chen et al (Badu-Mensah et al). Given the importance of those confounding factors, the authors should test cell-intrinsic (motor neuron-related) vs non-cell-intrinsic mechanisms by co-culturing healthy myotubes with fALS-derived motor neurons followed by NMJ quantification.

      The iPSC-derived skeletal muscle cultures were plated as a monolayer and even though the abungarotoxin staining does not show the pretzel-like shape NMJs, similar to other in vitro NMJ protocols (Badu-Mensah et al, Biomat 2023; Pereira et al., Nat Commun 2021; Uzel et al., Sci Adv 2016), abungarotoxin does show association with the muscles. For quantification purposes we omitted the MHC staining to decrease background, however we will include it in the revision in response to the reviewer’s concern.

      We agree with the reviewer that the suggested approaches would yield insight into disease mechanism but are beyond the scope of this method development study. In fact, we are very excited about our follow up study pursuing a more in-depth analysis of cell-autonomous vs non-cell autonomous pathogenesis to understand the NMJ dysfunction in fALS. We apologize that the “Badu-Mensah et al” work was not included, this was our oversight and will be added in the revision.

      (5) The authors present the advantage of optogenetic stimulation, but they only show the proof-ofprinciple and never really apply it to their studies. Specifically, with regard to Figure 6, are motor units derived from fALS PSCs incapable of being ontogenetically activated to the same extent as control motor units? Does the dysfunction stem from fALS motor neurons or fALS myotubes?

      We agree that these are important questions to be addressed and are actively pursuing these experiments as part of the natural follow up investigation from the present Tools and Resources article.

      (6) Figures 6 B and C appear to be identical except for the addition of the GDNF effect on the fALS lines. This should all be put in one figure. The authors should also show whether GDNF-induced functional recovery is associated with recovery in the number of motor units or with merely synaptic function by quantifying the NMJ number in the presence of GDNF.

      We will combine Figures 6B and 6C in the revision. Our follow up study also includes the interrogation of the mechanism through which GDNF rescues fALS NMJ dysfunction.

      (7) Figure 5 and Figure 6. The authors only use one line per fALS mutation and their corresponding isogenic controls. They state that the n=6 for these experiments represents the technical replication of the experiment. These experiments should be performed at least n=3 times starting from neuronal differentiation, and not by seeding replicate wells representing a true replication of each experiment. This would significantly strengthen their argument that their method is robust and the results are easily reproducible.

      We will clarify that the technical replicates originated from independent differentiations in the revision.

      (8) In the discussion the authors may want to mention that the lack of function of GDNF on the SOD1 lines may relate to the fact that SOD1 mutations do not lead to TDP43 pathology. Although speculative this suggests that in cases with TDP43 mutations (their data) or sporadic disease GDNF may be effective.

      We appreciate this suggestion and will highlight this as possible inclusion criteria for GDNF treatment in the discussion of our revised version of the manuscript.

      (9) Although beyond the scope of this paper, it would of course be interesting to see if sporadic forms of ALS had this same phenotype.

      We agree with the reviewer and we hope to include iPSC derived NMJs from sporadic ALS patients in a future study.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Strengths:

      This work (almost didactically) demonstrates how to develop, calibrate, validate and analyze a comprehensive, spatially resolved, dynamical, multicellular model. Testable model predictions of (also non-monotonic) emergent behaviors are derived and discussed. The computational model is based on a widely-used simulation platform and shared openly such that it can be further analyzed and refined by the community.

      Weaknesses:

      While the parameter estimation approach is sophisticated, this work does not address issues of structural and practical non-identifiability (Wieland et al., 2021, DOI:10.1016/j.coisb.2021.03.005) of parameter values, given just tissue-scale summary statistics, and does not address how model predictions might change if alternative parameter combinations were used. Here, the calibrated model represents one point estimate (column "Value" in Suppl. Table 1) but there is specific uncertainty of each individual parameter value and such uncertainties need to be propagated (which is computationally expensive) to the model predictions for treatment scenarios.

      We thank the reviewer for the excellent suggestions and observations. The CaliPro parameterization technique applied puts an emphasis on finding a robust parameter space instead of a global optimum. To address structural non-identifiability, we utilized partial rank correlation coefficient with each iteration of the calibration process to ensure that the sensitivity of each parameter was relevant to model outputs. We also found that there were ranges of parameter values that would achieve passing criteria but when testing the ranges in replicate resulted in inconsistent outcomes. This led us to further narrow the parameters into a single parameter set that still had stochastic variability but did not have such large variability between replicate runs that it would be unreliable. Additional discussion on this point has been added to lines 623-628. We acknowledge that there are likely other parameter sets or model rules that would produce similar outcomes but the main purpose of the model was to utilize it to better understand the system and make new predictions, which our calibration scheme allowed us to accomplish.

      Regarding practical non-identifiability, we acknowledge that there are some behaviors that are not captured in the model because those behaviors were not specifically captured in the calibration data. To ensure that the behaviors necessary to answer the aims of our paper were included, we used multiple different datasets and calibrated with multiple different output metrics. We believe we have identified the appropriate parameters to recapitulate the dominating mechanisms underlying muscle regeneration. We have added additional discussion on practical non-identifiability to lines 621-623.

      Suggested treatments (e.g. lines 484-486) are modeled as parameter changes of the endogenous cytokines (corresponding to genetic mutations!) whereas the administration of modified cytokines with changed parameter values would require a duplication of model components and interactions in the model such that cells interact with the superposition of endogenous and administered cytokine fields. Specifically, as the authors also aim at 'injections of exogenously delivered cytokines' (lines 578, 579) and propose altering decay rates or diffusion coefficients (Fig. 7), there needs to be a duplication of variables in the model to account for the coexistence of cytokine subtypes. One set of equations would have unaltered (endogenous) and another one have altered (exogenous or drugged) parameter values. Cells would interact with both of them.

      Our perturbations did not include delivery of exogenously delivered cytokines and instead were focused on microenvironmental changes in cytokine diffusion and decay rates or specific cytokine concentration levels. For example, the purpose of the VEGF delivery perturbation was to test how an increase in VEGF concentrations would alter regeneration outcome metrics with the assumption that the delivered VEGF would act in the same manner as the endogenous VEGF. We have clarified the purpose of the simulations on line 410. We agree that exploring if model predictions would be altered if endogenous and exogenous were represented separately; however, we did not explore this type of scenario.

      This work shows interesting emergent behavior from nonlinear cytokine interactions but the analysis does not provide insights into the underlying causes, e.g. which of the feedback loops dominates early versus late during a time course.

      Indeed, analyzing the model to fully understand the time-varying interactions between the multiple feedback loops is a challenge in and of itself, and we appreciate the opportunity to elaborate on our approach to addressing this challenge. First: the crosstalk/feedback between cytokines and the temporal nature was analyzed in the heatmap (Fig. 6) and lines 474-482. Second: the sensitivity of cytokine parameters to specific outputs was included in Table 9 and full-time course sensitivity is included in Supplemental Figure 2. Further correlation analysis was also included to demonstrate how cytokine concentrations influenced specific output metrics at various timepoints (Supplemental Fig. 3). We agree that further elaboration of these findings is required; therefore, we added lines 504-509 to discuss the specific mechanisms at play with the combined cytokine interactions. We also added more discussion (lines 637-638) regarding future work that could develop more analysis methods to further investigate the complex behaviors in the model.

      Reviewer #2 (Public Review):

      Strengths:

      The manuscript identified relevant model parameters from a long list of biological studies. This collation of a large amount of literature into one framework has the potential to be very useful to other authors. The mathematical methods used for parameterization and validation are transparent.

      Weaknesses:>

      I have a few concerns which I believe need to be addressed fully.

      My main concerns are the following:

      (1) The model is compared to experimental data in multiple results figures. However, the actual experiments used in these figures are not described. To me as a reviewer, that makes it impossible to judge whether appropriate data was chosen, or whether the model is a suitable descriptor of the chosen experiments. Enough detail needs to be provided so that these judgements can be made.

      Thank you for raising this point. We created a new table (Supplemental table 6) that describes the techniques used for each experimental measurement.

      (2) Do I understand it correctly that all simulations are done using the same initial simulation geometry? Would it be possible to test the sensitivity of the paper results to this geometry? Perhaps another histological image could be chosen as the initial condition, or alternative initial conditions could be generated in silico? If changing initial conditions is an unreasonably large request, could the authors discuss this issue in the manuscript?

      We appreciate your insightful question regarding the initial simulation geometry in our model. The initial configuration of the fibers/ECM/microvascular structures was kept consistent but the location of the necrosis was randomly placed for each simulation. Future work will include an in-depth analysis of altered histology configuration on model predictions which has been added to lines 618-621. We did a preliminary example analysis by inputting a different initial simulation geometry, which predicted similar regeneration outcomes. We have added Supplemental Figure 5 that provides the results of that example analysis.

      (3) Cytokine knockdowns are simulated by 'adjusting the diffusion and decay parameters' (line 372). Is that the correct simulation of a knockdown? How are these knockdowns achieved experimentally? Wouldn't the correct implementation of a knockdown be that the production or secretion of the cytokine is reduced? I am not sure whether it's possible to design an experimental perturbation which affects both parameters.

      We appreciate that this important question has been posed. Yes, in order to simulate the knockout conditions, the cytokine secretion was reduced/eliminated. The diffusion and decay parameters were also adjusted to ensure that the concentration within the system was reduced. Lines 391-394 were added to clarify this assumption.

      (4) The premise of the model is to identify optimal treatment strategies for muscle injury (as per the first sentence of the abstract). I am a bit surprised that the implemented experimental perturbations don't seem to address this aim. In Figure 7 of the manuscript, cytokine alterations are explored which affect muscle recovery after injury. This is great, but I don't believe the chosen alterations can be done in experimental or clinical settings. Are there drugs that affect cytokine diffusion? If not, wouldn't it be better to select perturbations that are clinically or experimentally feasible for this analysis? A strength of the model is its versatility, so it seems counterintuitive to me to not use that versatility in a way that has practical relevance. - I may well misunderstand this though, maybe the investigated parameters are indeed possible drug targets.

      Thank you for your thoughtful feedback. The first sentence (lines 32-34) of the abstract was revised to focus on beneficial microenvironmental conditions to best reflect the purpose of the model. The clinical relevance of the cytokine modifications is included in the discussion (lines 547-558) with additional information added to lines 524-526. For example, two methods to alter diffusion experimentally are: antibodies that bind directly to the cytokine to prevent it from binding to its receptor on the cell surface and plasmins that induce the release of bound cytokines.

      (5) A similar comment applies to Figure 5 and 6: Should I think of these results as experimentally testable predictions? Are any of the results surprising or new, for example in the sense that one would not have expected other cytokines to be affected as described in Figure 6?

      We appreciate the opportunity to clarify the basis for these perturbations. The perturbations included in Figure 5 were designed to mimic the conditions of a published experiment that delivered VEGF in vivo (Arsic et al. 2004, DOI:10.1016/J.YMTHE.2004.08.007). The perturbation input conditions and experimental results are included in Table 8 and Supplemental Table 6 has been added to include experimental data and method description of the perturbation. The results of this analysis provide both validation and new predictions, because some the outputs were measured in the experiments while others were not measured. The additional output metrics and timepoints that were not collected in the experiment allow for a deeper understanding of the dynamics and mechanisms leading to the changes in muscle recovery (lines 437-454). These model outputs can provide the basis for future experiments; for example, they highlight which time points would be more important to measure and even provide predicted effect sizes that could be the basis for a power analysis (lines 639-640).

      Regarding Figure 6, the published experimental outcomes of cytokine KOs are included in Table 8. The model allowed comparison of different cytokine concentrations at various timepoints when other cytokines were removed from the system due to the KO condition. The experimental results did not provide data on the impact on other cytokine concentrations but by using the model we were able to predict temporally based feedback between cytokines (lines 474-482). These cytokine values could be collected experimentally but would be time consuming and expensive. The results of these perturbations revealed the complex nature of the relationship between cytokines and how removal of one cytokine from the system has a cascading temporal impact. Lines 533-534 have been added to incorporate this into the discussion.

      (6) In figure 4, there were differences between the experiments and the model in two of the rows. Are these differences discussed anywhere in the manuscript?

      We appreciate your keen observation and the opportunity to address these differences. The model did not match experimental results for CSA output in the TNF KO and antiinflammatory nanoparticle perturbation or TGF levels with the macrophage depletion. While it did align with the other experimental metrics from those studies, it is likely that there are other mechanisms at play in the experimental conditions that were not captured by simulating the downstream effects of the experimental perturbations. We have added discussion of the differences to lines 445-454.

      (7) The variation between experimental results is much higher than the variation of results in the model. For example, in Figure 3 the error bars around experimental results are an order of magnitude larger than the simulated confidence interval. Do the authors have any insights into why the model is less variable than the experimental data? Does this have to do with the chosen initial condition, i.e. do you think that the experimental variability is due to variation in the geometries of the measured samples?

      Thank you for your insightful observations and questions. The lower model variability is attributed to the larger sample size of model simulations compared to experimental subjects. By running 100 simulations it narrows in the confidence interval (average 2.4 and max 3.3) compared to the experiments that typically had a sample size of less than 15. If the number of simulations had been reduced to 15 the stochasticity within the model results in a larger confidence interval (average 7.1 and max 10). There are also several possible confounding variables in the experimental protocols (i.e. variations in injury, different animal subjects for each timepoint, etc.) that are kept constant in the model simulation. We have added discussion of this point to the manuscript (lines 517519). Future work with the model will examine how variations in conditions, such as initial muscle geometry, injury, etc, alter regeneration outcomes and overall variability. This discussion has been incorporated into lines 640-643.

      (8) Is figure 2B described anywhere in the text? I could not find its description.

      Thank you for pointing that out. We have added a reference for Fig. 2B on line 190.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The model code seems to be available from https://simtk.org/projects/muscle_regen but that website requests member status ("This is a private project. You must be a member to view its contents.") and applying for membership could violate eLife's blind review process. So, this reviewer liked to but couldn't run the model her/himself. To eLife: Can the authors upload their model to a neutral server that reviewers and editors can access anonymously?

      The code has been made publicly available on the following sites:

      SimTK: https://simtk.org/docman/?group_id=2635

      Zendo: https://zenodo.org/records/10403014

      GitHub: https://github.com/mh2uk/ABM-of-Muscle-Regeneration-with-MicrovascularRemodeling

      Line 121 has been updated with the new link and the additional resources were added to lines 654-657.

      (2) The muscle regeneration field typically studies 2D cross-sections and the present model can be well compared to these other 2D models but cells as stochastic and localized sources of diffusible cytokines may yield different cytokine fields in 3D vs. 2D. I would expect more broadened and smoothened cytokine fields (from sources in neighboring cross-sections) than what the 2D model predicts based on sources just within the focus cross-section. Such relations of 2D to 3D should be discussed.

      We thank the reviewer for the excellent suggestions and observations. It has been reported in other Compucell3D models (Sego et al. 2017, DOI:10.1088/17585090/aa6ed4) that the convergence of diffusion solutions between 2D and 3D model configurations had similar outcomes, with the 3D simulations presenting excessive computational cost without contributing any noticeable additional accuracy. Similarly, other cell-based ABMs that incorporate diffusion mechanisms (Marino et al. 2018, DOI:10.3390/computation6040058) have found that 2D and 3D versions of the model both predict the same mechanisms and that the 2D resolution was sufficient for determining outcomes. Lines 615-618 were added to elaborate on this topic.

      (3) Since the model (and title) focuses on "nonlinear" cytokine interactions, what would change if cytokine decay would not be linear (as modeled here) but saturated (with nonlinear Michaelis-Menten kinetics as ligand binding and endocytosis mechanisms would call for)?

      Thank you for raising an intriguing point. The model includes a combination of cytokine decay as well as ligand binding and endocytosis mechanisms that can be saturated. For a cytokine-dependent model behavior to occur the cytokines necessary to induce that action had to reach a minimum threshold. Once that threshold was reached, that amount of the cytokine would be removed at that location to simulate ligand-receptor binding and endocytosis. These ligand binding and endocytosis mechanisms behave in a saturated way, removing a set amount when above a certain threshold or a defined ratio when under the threshold. Lines 313-315 was revised to clarify this point. There were certain concentrations of cytokines where we saw a plateau in outputs likely as a result of reaching a saturation threshold (Supplemental Fig. 3). In future work, more robust mathematical simulation of binding kinetics of cytokines (e.g., using ODEs) could be included.

      (4) Limitations of the model should be discussed together with an outlook for model refinement. For example, fiber alignment and ECM ultrastructure may require anisotropic diffusion. Many of the rate equations could be considered with saturation parameters etc. There are so many model assumptions. Please discuss which would be the most urgent model refinements and, to achieve these, which would be the most informative next experiments to perform.

      We appreciate your thoughtful consideration of the model's limitations and the need for a comprehensive discussion on model refinements and potential future experiments. The future direction section was expanded to discuss additional possible model refinements (lines 635-643) and additional possible experiments for model validation (lines 630-634).

      (5) It is not clear how the single spatial arrangement that is used affects the model predictions. E.g. now the damaged area surrounds the lymphatic vessel but what if the opposite corner was damaged and the lymphatic vessel is deep inside the healthy area?

      Thank you for highlighting the importance of considering different spatial arrangements in the model and its potential impact on predictions. We previously tested model perturbations that included specifying the injury surrounding the lymphatic vessel versus on the side opposite the vessel. Since this paper focuses more on cytokine dynamics, we plan to include this perturbation, along with other injury alterations, in a follow-on paper. We added more context about this in the future efforts section lines 640-643.

      (6) It seems that not only parameter values but also the initial values of most of the model components are unknown. The parameter estimation strategy does not seem to include the initial (spatial) distributions of collagen and cytokines and other model components. Please discuss how other (reasonable) initial values or spatial arrangements will affect model predictions.

      We appreciate your thoughtful consideration of unknown initial values/spatial arrangements and their potential influence on predictions. Initial cytokine levels prior to injury had a low relative concentration compared to levels post injury and were assumed to be negligible. Initial spatial distribution of cytokines was not defined as initial spatial inputs (except in knockout simulations) but are secreted from cells (with baseline resident cell counts defined from the literature). The distribution of cytokines is an emergent behavior that results from the cell behaviors within the model. The collagen distribution is altered in response to clearance of necrosis by the immune cells (decreased collagen with necrosis removal) and subsequent secretion of collagen by fibroblasts. The secretion of collagen from fibroblast was included in the parameter estimation sweep (Supplemental Table 1).

      We are working on further exploring the model sensitivity to altered spatial arrangements and have added this to the future directions section (lines 618-621), as well as provided Supplemental Figure 5 to demonstrate that model outcomes are similar with altered initial spatial arrangements.

      (7) Many details of the CC3D implementation are missing: overall lattice size, interaction neighborhood order, and "temperature" of the Metropolis algorithm. Are the typical adhesion energy terms used in the CPM Hamiltonian and if so, then how are these parameter values estimated?

      Thank you for bringing attention to the missing details regarding the CC3D implementation in our manuscript. We have included supplemental information providing greater detail for CPM implementation (Lines 808-854). We also added two additional supplemental tables for describing the requested CC3D implementation details (Supplemental Table 4) and adhesion energy terms (Supplemental Table 5).

      (8) Extending the model analysis of combinations of altered cytokine properties, which temporal schedules of administration would be of interest, and how could the timing of multiple interventions improve outcomes? Such a discussion or even analysis would further underscore the usefulness of the model.

      In response to your valuable suggestion, lines 558-562 were added to discuss the potential of using the model as a tool to perturb different cytokine combinations at varying timepoints throughout regeneration. In addition, this is also included in future work in lines 636-637.

      (9) The CPM is only weakly motivated, just one sentence on lines 142-145 which mentions diffusion in a misleading way as the CPM just provides cells with a shape and mechanical interactions. The diffusion part is a feature of the hybrid CompuCell3D framework, not the CPM.

      Thank you for bringing up this distinction. We removed the statement regarding diffusion and updated lines 143-146 to focus on CPM representation of cellular behavior and interactions. We also added a reference to supplemental text that includes additional details on CPM.

      (10) On lines 258-261 it does not become clear how the described springs can direct fibroblasts towards areas of low-density collagen ECM. Are the lambdas dependent on collagen density?

      Thank you for highlighting this area for clarification. The fibroblasts form links with low collagen density ECM and then are pulled towards those areas based on a constant lambda value. The links between the fibroblast and the ECM will only be made if the collagen is below a certain threshold. We added additional clarification to lines 260-264.

      (11) On line 281, what does the last part in "Fibers...were regenerating but not fully apoptotic cells" mean? Maybe rephrase this.

      The last of part of that line indicates that there were some fibers surrounding the main injury site that were damaged but still had healthy portions, indicating that they were impacted by the injury and are regenerating but did not become fully apoptotic like the fiber cells at the main site of injury. We rephrased this line to indicate that the nearby fibers were damaged but not fully apoptotic.

      (12) Lines 290-293 describe interactions of cells and fields with localized structures (capillaries and lymphatic vessel). Please explain in more detail how "capillary agents...transport neutrophiles and monocytes" in the CPM model formalism. Are new cells added following rules? How is spatial crowding of the lattice around capillaries affecting these rules? Moreover, how can "lymphatic vessel...drain the nearby cytokines and cells"? How is this implemented in the CPM and how is "nearby" calculated? We appreciate your detailed inquiry into the interactions of cells and fields with localized structures. The neutrophils and monocytes are added to the simulation at the lattice sites above capillaries (within the cell layer Fig. 2B) and undergo chemotaxis up their respective gradients. The recruitment of the neutrophils and monocytes are randomly distributed among the healthy capillaries that do not have an immune cell at the capillary location (a modeling artifact that is a byproduct of only having one cell per lattice site). This approach helped to prevent an abundance of crowding at certain capillaries. Because immune cells in the simulation are sufficiently small, chemotactic gradients are sufficiently large, and the simulation space is sufficiently large, we do not see aggregation of recruited immune cells in the CPM.

      The lymphatic vessel uptakes cytokines at lattice locations corresponding to the lymphatic vessel and will remove cells located in lattice sites neighboring the lymphatic vessel. In addition, we have included a rule in our ABM to encourage cells to migrate towards the lymphatic vessel utilizing CompuCell3D External Potential Plugin. The influence of this rule is inversely proportional to the distance of the cells to the lymphatic vessel.

      We have updated lines 294-298 and 305-309 to include the above explanation.

      (13) Tables 1-4 define migration speeds as agent rules but in the typical CPM, migration speed emerges from random displacements biased by chemotaxis and other effects (like the slope of the cytokine field). How was the speed implemented as a rule while it is typically observable in the model?

      We appreciate your inquiry regarding the implementation of migration speeds. To determine the lambda parameters (Table 7) for each cell type, we tested each in a simplified control simulation with a concentration gradient for the cell to move towards. We tuned the lambda parameters within this simulation until the model outputted cell velocity aligned with the literature reported cell velocity for each cell type (Tables 1-4). We have incorporated clarification on this to lines 177-180.

      (14) Line 312 shows the first equation with number (5), either add eqn. (1-4) or renumber.

      We have revised the equation number.

      (15) Typos: Line 456, "expect M1 cell" should read "except M1 cell".

      Line 452, "thresholds above that diminish fibroblast response (Supplemental Fig 3)." remains unclear, please rephrase.

      Line 473, "at 28." should read "at 28 days.".

      Line 474, is "additive" correct? Was the sum of the individual effects calculated and did that match?

      Line 534, "complexity our model" should read "complexity in our model".

      We have corrected the typos and clarified line 452 (updated line 594) to indicate that the TNF-α concentration threshold results in diminished fibroblast response. We updated terminology line 474 (updated line 512) to indicate that there was a synergistic effect with the combined perturbation.

      (16) Table 7 defines cell target volumes with the same value as their diameter. This enforces a strange cell shape. Should there be brackets to square the value of the cell diameter, e.g. Value=(12µm)^2 ?

      The target volume parameter values were selected to reflect the relative differences in average cell diameter as reported in the literature; however, there are no parameters that directly enforce a diameter for the cells in the CPM formalism separate from the volume. We have observed that these relative cell sizes allow the ABM to effectively reproduce cell behaviors described in the literature. Single cells that are too large in the ABM would be unable to migrate far enough per time step to carry out cell behaviors, and cells that are too small in the CPM would be unstable in the simulation environment and not persist in the simulation when they should. We removed the units for the cell shape values in Table 7 since the target volume is a relative parameter and does not directly represent µm.

      (17) Table 7 gives estimated diffusion constants but they appear to be too high. Please compare them to measured values in the literature, especially for MCP-1, TNF-alpha and IL-10, or relate these to their molecular mass and compare to other molecules like FGF8 (Yu et al. 2009, DOI:10.1038/nature08391).

      We utilized a previously published estimation method (Filion et al. 2004, DOI:10.1152/ajpheart.00205.2004) for estimating cytokine diffusivity within the ECM. This method incorporates the molecular masses and accounts for the combined effects of the collagen fibers and glycosaminoglycans. The paper acknowledged that the estimated value is faster than experimentally determined values, but that this was a result of the less-dense matrix composition which is more reflective of the tissue environment we are simulating in contrast to other reported measurements which were done in different environments. Using this estimation method also allowed us to more consistently define diffusion constants versus using values from the literature (which were often not recorded) that had varied experimental conditions and techniques (such as being in zebrafish embryo Yu et al. 2009, DOI:10.1038/nature08391 as opposed to muscle tissue). This also allowed for recalculation of the diffusivity throughout the simulation as the collagen density changed within the model. Lines 318-326 were updated to help clarify the estimation method.

      (18) Many DOIs in the bibliography (Refs. 7,17,20,31,40,47...153) are wrong and do not resolve because the appended directory names are not allowed in the DOI, just with a journal's URL after resolution.

      Thank you for bringing this to our attention. The incorrect DOIs have been corrected.

      Reviewer #2 (Recommendations For The Authors):

      Minor comments:

      (9) On line 174, the authors say "We used the CC3D feature Flip2DimRatio to control the number of times the Cellular-Potts algorithm runs per mcs." What does this mean? Isn't one monte carlo timestep one iteration of the Cellular Potts model? How does this relate to physical timescales?

      We appreciate your attention to detail and thoughtful question regarding the statement about the use of the CC3D feature Flip2DimRatio. Lines 175-177 were revised to simplify the meaning of Flip2DimRatio. That parameter alters the number of times the Cellular-Potts algorithm is run, which is the limiting factor for cell movement. The physical timescale is kept to a 15-minute timestep but a high Flip2DimRatio allows more flexibility and stability to allow the cells to move faster in one timestep.

      (10) Has the costum matlab script to process histology images into initial conditions been made available?

      The Matlab script along with CC3D code for histology initialization with documentation has been made available with the source code on the following sites:

      SimTK: https://simtk.org/docman/?group_id=2635

      Zendo: https://zenodo.org/records/10403014

      GitHub: https://github.com/mh2uk/ABM-of-Muscle-Regeneration-with-MicrovascularRemodeling

      (11) Equation 5 is provided without a reference or derivation. Where does it come from and what does it mean?

      Thank you for highlighting the diffusion equation and seeking clarification on its origin and significance. Lines 318-326 were revised to clarify where the equation comes from. This is a previously published estimation method that we applied to calculate the diffusivity of the cytokines considering both collagen and glycosaminoglycans.

      (12) Line 326: "For CSA, experimental fold-change from pre-injury was compared with fold-change in model-simulated CSA". Does this step rely on the assumption that the fold change will not depend on the CSA? If so, is this something that is experimentally known, or otherwise, can it be confirmed by simulations?

      We appreciate the opportunity to clarify our rationale. The fold change was used as a method to normalize the model and experiment so that they could be compared on the same scale. Yes, this step relies on the assumption that fold change does not depend on pre-injury CSA. Experimentally it is difficult to determine the impact of initial fiber morphology on altered regeneration time course. This fold-change allows us to compare percent recovery which is a common metric utilized to assess muscle regeneration outcomes experimentally. Line 340-343 was revised to clarify.

      (13) Line 355: "The final passing criteria were set to be within 1 SD for CSA recovery and 2.5 SD for SSC and fibroblast count" Does this refer to the experimental or the simulated SD?

      The model had to fit within those experimental SD. Lines 371-372 was edited to specify that we are referring the experimental SD.

      (14) "Following 8 iterations of narrowing the parameter space with CaliPro, we reached a set that had fewer passing runs than the previous iteration". Wouldn't one expect fewer passing runs with any narrowing of the parameter space? Why was this chosen as the stopping criterion for further narrowing?

      We appreciate your observation regarding the statement about narrowing the parameter space with CaliPro. We started with a wide parameter space, expecting that certain parameters would give outputs that fall outside of the comparable data. So, when the parameter space was narrowed to enrich parts that give passing output, initially the number of passing simulations increased.

      Once we have narrowed the set of possible parameters into an ideal parameter space, further narrowing will cut out viable parameters resulting in fewer passing runs. Therefore, we stopped narrowing once any fewer simulations passed the criteria that they had previously passed with the wider parameter set. Lines 375-379 have been updated to clarify this point.

      (15) Line 516: 'Our model could test and optimize combinations of cytokines, guiding future experiments and treatments." It is my understanding that this is communicated as a main strength of the model. Would it be possible to demonstrate that the sentence is true by using the model to make actual predictions for experiments or treatments?

      This is demonstrated by the combined cytokine alterations in Figure 7 and discussed in lines 509-513. We have also added in a suggested experiment to test the model prediction in lines 691-695.

      (16) Line 456, typo: I think 'expect' should be 'except'.

      Thank you for pointing that out. The typo has been corrected.

    1. Author response:

      Reviewer #1 (Public Review):

      Summary:

      The authors collected genomic information from public sources covering 423 eukaryote genomes and around 650 prokaryote genomes. Based on pre-computed CDS annotation, they estimated the frequency of alternative splicing (AS) as a single average measure for each genome and computed correlations with this measure and other genomic properties such as genome size, percentage of coding DNA, gene and intergenic span, etc. They conclude that AS frequency increases with genome complexity in a somewhat directional trend from "lower" organisms to "higher" organisms.

      Strengths:

      The study covers a wide range of taxonomic groups, both in prokaryotes and eukaryotes.

      Weaknesses:

      The study is weak both methodologically and conceptually. Current high throughput sequencing technologies, coupled with highly heterogeneous annotation methods, can observe cases of AS with great sensitivity, and one should be extremely cautious of the biases and rates of false positives associated with these methods. These issues are not addressed in the manuscript. Here, AS measures seem to be derived directly from CDS annotations downloaded from public databases, and do not account for differing annotation methods or RNA sequencing depth and tissue sample diversity.

      We are aware of the bias that may exist in annotation files. Since the source of noise can be highly variable, we have assumed that most of the data has a similar bias. However, we agree with the reviewer that we could perform some analysis to test for these biases and their association to different methodologies. Thus, we will measure the uncertainty present in the data. From one side, we will be more explicit about the data limitations and the biases it can generate in the results. On the other side, while analyzing the false positives in the data is out of our scope, we will perform a statistical test to detect possible biases regarding different methods of sequencing and annotation, and types of organisms (model or non-model organisms). If positive, we will proceed, as far as possible, to normalize the data or to estimate a confidence interval.

      Here, AS measures seem to be derived directly from CDS annotations downloaded from public databases, and do not account for differing annotation methods or RNA sequencing depth and tissue sample diversity.

      Beyond taking into account the differential bias that may exist in the data, we do not consider that our AS measure is problematic. The NCBI database is one of the most reliable databases that we have to date and is continuously updated from all scientific community. So, the use of this data and the corresponding procedures for deriving the AS measure are perfectly acceptable for a comparative analysis on such a huge global scale. Furthermore, the proposal of a new genome-level measure of AS that allows to compare species spanning the whole tree of life is part of the novelty of the study. We understand that small-scale studies require a high specificity about the molecular processes involved in the study. However, this is not the case, where we are dealing with a large-scale problem. On the other side, as we have previously mention, we agree with the reviewer to analyze the degree of uncertainty in the data to better interpret the results.

      There is no mention of the possibility that AS could be largely caused by random splicing errors, a possibility that could very well fit with the manuscript's data. Instead, the authors adopt early on the view that AS is regulated and functional, generally citing outdated literature.

      There is no question that some AS events are functional, as evidenced by strongly supported studies. However, whether all AS events are functional is questionable, and the relative fractions of functional and non-functional AS are unknown. With this in mind, the authors should be more cautious in interpreting their data.

      Many studies suggest that most of the AS events observed are the result of splicing errors and are therefore neither functional nor conserved. However, we still have limited knowledge about the functionality of AS. Just because we don’t have a complete understanding of its functionality, doesn’t mean there isn’t a fundamental cause behind these events. AS is a highly dynamic process that can be associated with processes of a stochastic nature that are fundamental for phenotypic diversity and innovation. This is one of the reasons why we do not get into a discussion about the functionality of AS and consider it as a potential measure of biological innovation. Nevertheless, we agree with the reviewer’s comments, so we will add a discussion about this issue with updated literature and look at any possible misinterpretation of the results.

      The "complexity" of organisms also correlates well (negatively) with effective population size. The power of selection to eliminate (slightly) deleterious mutations or errors decreases with effective population size. The correlation observed by the authors could thus easily be explained by a non-adaptive interpretation based on simple population genetics principles.

      We appreciate the observation of the reviewer. We know well the M. Lynch’s theory on the role of the effective population size and its eventual correlation with genomic parameters, but we want to emphasize that our objective is not to find an adaptive or non-adaptive explanation of the evolution of AS, but rather to reveal it. Nevertheless, as the reviewer suggests, we will look at the correlation between the AS and the effective population size and discuss about a possible non-adaptive interpretation.

      The manuscript contains evidence that the authors might benefit from adopting a more modern view of how evolution proceeds. Sentences such as "... suggests that only sophisticated organisms optimize alternative splicing by increasing..." (L113), or "especially in highly evolved groups such as mammals" (L130), or the repeated use of "higher" and "lower" organisms need revising.

      As the reviewer suggests, we will proceed with the corresponding linguistic corrections.

      Because of the lack of controls mentioned above, and because of the absence of discussion regarding an alternative non-adaptive interpretation, the analyses presented in the manuscript are of very limited use to other researchers in the field. In conclusion, the study does not present solid conclusions.

      Reviewer #2 (Public Review):

      Summary:

      In this contribution, the authors investigate the degree of alternative splicing across the evolutionary tree and identify a trend of increasing alternative splicing as you move from the base of the tree (here, only prokaryotes are considered) towards the tips of the tree. In particular, the authors investigate how the degree of alternative splicing (roughly speaking, the number of different proteins made from a single ORF (open reading frame) via alternative splicing) relates to three genomic variables: the genome size, the gene content (meaning the fraction of the genome composed of ORFs), and finally, the coding percentage of ORFs, meaning the ratio between exons and total DNA in the ORF. When correlating the degree of alternative splicing with these three variables, they find that the different taxonomic groups have a different correlation coefficient, and identify a "progressive pattern" among metazoan groups, namely that the correlation coefficient mostly increases when moving from flowering plants to arthropods, fish, birds, and finally mammals. They conclude that therefore the amount of splicing that is performed by an organismal group could be used as a measure of its complexity.

      Weaknesses:

      While I find the analysis of alternative splicing interesting, I also find that it is a very imperfect measure of organismal complexity and that the manuscript as a whole is filled with unsupported statements. First, I think it is clear to anyone studying evolution over the tree of life that it is the complexity of gene regulation that is at the origin of much of organismal structural and behavioral complexity. Arguably, creating different isoforms out of a single ORF is just one example of complex gene regulation. However, the complexity of gene regulation is barely mentioned by the authors.

      We disagree with the reviewer with that our measure of AS is imperfect. Just as we responded to the first reviewer, we will quantify the uncertainty in the data and correct for differential biases caused by annotation and sequencing methods. Thus, beyond correcting relevant biases in the data, we consider that our measure is adequate for a comparative analysis at a global scale. A novelty of our study is the proposal of a genome-level measure of AS that takes into account data from the entire scientific community. 

      We want also to emphasize that we assume from the beginning that AS may reflect some kind of biological complexity, it is not a conclusion from the results. An argument in favor of such an assumption is that AS is associated with stochastic processes that are fundamental for phenotypic diversity and innovation. Of course, we agree with the reviewer that it is not the only mechanism behind biological complexity, so we will emphasize it in the manuscript. On the other side, we will be more explicit about the assumptions and objectives, and will correct any unsupported statement.

      Further, it is clear that none of their correlation coefficients actually show a simple trend (see Table 3). According to these coefficients, birds are more complex than mammals for 3 out of 4 measures.

      An evolutionary trend is broadly defined as the gradual change in some characteristic of organisms as they evolve or adapt to a specific environment. Under our context, we define an evolutionary trend as the gradual change in genome composition and its association with AS across the main taxonomic groups. If we look at Figure 4 and Table 3 we can conclude that there is a progressive trend. We will be more precise about how we define an evolutionary trend and correct any possible misinterpretation of the results. On the other side, we do not assume that mammals should be more complex than birds. First, we will emphasize that our results show that birds have the highest values of such a trend. Second, after reading the reviewer’s comments, we have decided that we will perform an additional analysis to correct for differences in the taxonomic group sizes, which will allow us to have more confidence in the results.

      It is also not clear why the correlation coefficient between alternative splicing ratio and genome length, gene content, and coding percentage should display such a trend, rather than the absolute value. There are only vague mechanistic arguments.

      The study analyzes the relationship of AS with genomic composition for the large taxonomic groups. We assume that significant differences in these relationships are indicators of the presence of different mechanisms of genome evolution. However, we agree with the reviewer that a correlation does not imply a causal relation, so we will be more cautious when interpreting the results.

      To quantify the relationships we use correlation coefficients, the slopes of such correlations, and the relation of variability. Although the absolute values of AS are also illustrated in Table 4, we consider that they are less informative than if we include how it relates to the genomic composition. For example, we observe that plants have a different genome composition and relation with AS if compared to animals, which suggest that they follow different mechanisms of genome evolution. On the other hand, we observe a trend in animals, where high values of AS are associated to a large percentage of introns and a percentage of intergenic DNA of about the 50% of genomes.

      Much more troubling, however, is the statement that the data supports "lineage-specific trends" (lines 299-300). Either this is just an ambiguous formulation, or the authors claim that you can see trends *within* lineages.

      We agree with the reviewer that this statement is not correct, so we will proceed to correct it.

      The latter is clearly not the case. In fact, within each lineage, there is a tremendous amount of variation, to such an extent that many of the coefficients given in Table 3 are close to meaningless. Note that no error bars or p-values are presented for the values shown in Table 3. Figure 2 shows the actual correlation, and the coefficient for flowering plants there is given as 0.151, with a p-value of 0.193. Table 3 seems to quote r=0.174 instead. It should be clear that a correlation within a lineage or species is not a sign of a trend.

      The reviewer is not understanding correctly the results in Table 3. It is precisely the variation of the genome variables what we are measuring. Given the standardization of these values by the mean values, we have proceeded to compare the variability between groups, which is the result shown in Table 3. In this case there are no error bars or p-values associated. On the other hand, we agree that a correlation is not a sign of a trend. But the relations of variability, together with the results obtained in Figure 3, are indicators of a trend. As we mentioned before, we will proceed to analyze whether the variation in the group sizes is causing a bias in the results.

      There are several wrong or unsupported statements in the manuscript. Early on, the authors state that the alternative splicing ratio (a number greater or equal to one that can be roughly understood as the number of different isoforms per ORF) "quantifies the number of different isoforms that can be transcribed using the same amount of information" (lines 51-52). But in many cases, this is incorrect, because the same sequence can represent different amounts of information depending on the context. So, if a changed context gives rise to a different alternative splice, it is because the genetic sequence has a different meaning in the changed context: the information has changed.

      We agree that there are not well supported statements, so we will proceed to revise them.

      In line 149, the authors state that "the energetic cost of having large genomes is high". No citation is given, and while such a statement seems logical, it does not have very solid support.

      We will also revise the bibliography and support our statements with updated references.

      If there was indeed a strong selective force to reduce genome size, we would not see the stunning diversity of genome sizes even within lineages. This statement is repeated (without support) several times in the manuscript, apparently in support of the idea that mammals had "no choice" to increase complexity via alternative splicing because they can't increase it by having longer genomes. I don't think this reasoning can be supported.

      We agree with the reviewer in this issue, so we will carefully revise the statements that indirectly (or directly) assume the action of selective forces on the genome composition.

      Even more problematic is the statement that "the amount of protein-coding DNA seems to be limited to a size of about 10MB" (line 219). There is no evidence whatsoever for this statement.

      In Figure 1A we observe a one-to-one relationship between the genome size and the amount of coding. However, in multicellular organisms, although the genome size increases we observe that the amount of coding does not increase by more than 10Mb, which suggest the presence of some genomic limitation. Of course, this is not an absolute or general statement, but rather a suggestion. We are only describing our results.

      The reference that is cited (Choi et al 2020) suggests that there is a maximum of 150GB in total genome size due to physiological constraints. In lines 257-258, the authors write that "plants are less restricted in terms of storing DNA sequences compared to animals" (without providing evidence or a citation).

      We will revise the bibliography and add updated references.

      I believe this statement is made due to the observation that plants tend to have large intergenic regions. But without examining the functionality of these interagency regions (they might host long non-coding RNA stretches that are used to regulate the expression of other genes, for example) it is quite adventurous to use such a simple measure as being evidence that plants "are less restricted in terms of storing DNA sequences", whatever that even means. I do not think the authors mean that plants have better access to -80 freezers. The authors conclude that "plant's primary mechanism of genome evolution is by expanding their genome". This statement itself is empty: we know that plants are prone to whole genome duplication, but this duplication is not, as far as we understand, contributing to complexity. It is not a "primary mechanism of genome evolution".

      We will revise these statements.

      In lines 293-294, the authors claim that "alternative splicing is maximized in mammalian genomes". There is no evidence that this ratio cannot be increased. So, to conclude (on lines 302-303) that alternative splicing ratios are "a potential candidate to quantify organismal complexity" seems, based on this evidence, both far-fetched and weak at the same time.

      Our results show the highest values of AS in mammals, but we understand that the results are limited to the availability and accuracy of data, which we will emphasize in the manuscript. As we previously mention, we will also proceed to analyze the uncertainty in data and carry out the appropriate corrections.

      I am also not very comfortable with the data analysis. The authors, for example, say that they have eliminated from their analysis a number of "outlier species". They mention one: Emmer wheat because it has a genome size of 900 Mb (line 367). Since 900MB does not appear to be extreme, perhaps the authors meant to write 900 Gb. When I consulted the paper that sequenced Triticum dicoccoides, they noted that 14 chromosomes are about 10GB. Even a tetraploid species would then not be near 900Gb. But more importantly, such a study needs to state precisely which species were left out, and what the criteria are for leaving out data, lest they be accused of selecting data to fit their hypothesis.

      The reviewer is right, we wanted to say 900Mb, which is approximately 7.2Gb. We had a mistake of nomenclature. This value is extreme compared to the typical values, so it generates large deviations when applying measures of central tendency and dispersion. We want to obtain mean values that are representative of the most species composing the taxonomic groups, so we find appropriate to exclude all outlier values in the study. Nevertheless, we will specify the criteria that we have used to select the data in a rigorous way.

      I understand that Methods are often put at the end of a manuscript, but the measures discussed here are so fundamental to the analysis that a brief description of what the different measures are (in particular, the "alternative splicing ratio") should be in the main text, even when the mathematical definition can remain in the Methods.

      We agree with the reviewer, so we will add a brief description of the genomic variables at the beginning of the Results section.

      Finally, a few words on presentation. I understand that the following comments might read differently after the authors change their presentation. This manuscript was at the border of being comprehensible. In many cases, I could discern the meaning of words and sentences in contexts but sometimes even that failed (as an example above, about "species-specific trends", illustrates). The authors introduced jargon that does not have any meaning in the English language, and they do this over and over again.

      Note that I completely agree with all the comments by the other reviewer, who alerted me to problems I did not catch, including the possible correlation with effective population size: a possible non-adaptive explanation for the results.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Specific comments to improve the quality of the work:

      (1) The choice of subunits to tag are really not ideal. In the available structures of the human proteasome, The C-terminus of Rpn3/PSMD3 points directly toward the ATPase pore and is likely to disrupt the structure and/or dynamics of the proteasome during proteolysis (see comments regarding controls for functionality below). Similarly, the C-terminal tail of Rpt1/PSMC2 has a key role in the opening of the 20S core particle gate for substrate translocation and processing (see 2018 Nature Communications, 9:1360 and 2018 Cell Reports 24:1301-1315), and Alpha3/PSMA4 can be substituted by a second copy of Alpha4/PSMA7 in some conditions (although tagging Alpha3/PSMA4 would admittedly provide a picture of the canonical proteasome interactome while actively excluding the interactome of the non-canonical proteasomes that form via replacement of Alpha3/PSMA4). Comparison of these cell lines with lines harboring tags on subunits that are commonly used for tagging in the field because of a lack of impacts, such as the N-terminus of Rpn1/PSMD2, the C-terminus of Rpn11/PSMD14, and the C-terminus of Beta4/PSMB2 would help instill confidence that the interactome reported largely arises from mature, functional proteasomes rather than subcomplexes, defective proteasomes, or other species that may occur due to tagging at these positions.

      We thank the reviewer for pointing this out. The original purpose of our strategy was to establish proximity labeling of proteasomes to enable applications both in cell culture and in vivo. The choice of PSMA4 and PSMC2 was dictated by previous successful tagging with GFP in mammalian cells (Salomons et al., Exp Cell Res 2010)(Bingol and Schuman, Nature 2006). However, the choice of C-terminal PSMC2 might have been not optimal. HEK293 cells overexpressing PSMC2-BirA show slower growth and the BioID data retrieve higher enrichment of assembly factors suggesting slower assembly of this fusion protein in proteasome. Although we did not observe a negative impact on overall proteasome activity and PSMC2-BirA was (at least in part) incorporated into fully assembled proteasomes as indicated by enrichment of 20S proteins.We apologize for not making it clear that we labeled the N-terminus of PSMD3/Rpn3 and not the C-terminus (Figure 1a and S1a). Therefore, we included in Figure S1a of the revised manuscript structures of the proteasome where the tagged subunit termini are highlighted: C-terminus for PSMA4 and PSMC2 and N-terminus for PSMD3. Additionally, we would like to point out that, differently from PSMC2-BirA, cells expressing BirA-PSMD3 did not show slower growth, and BioID data showed a more homogenous enrichment of both 19S and 20S proteins, as compared to PSMC2-BirA (Figure 1D and 1E). However, the overall level of enrichment of proteasome subunits was not comparable to PSMA4-BirA and, therefore, we opted for focusing the rest of the manuscript on this construct.

      In support of this point, the data provided in Figure 1E in which the change in the abundances of each proteasome subunit in the tagged line vs. the BirA control line demonstrates substantial enrichment of the subcomplexes of the proteasome that are tagged in each case; this effect may represent the known feedback-mediated upregulation of new proteasome subunit synthesis that occurs when proteasomal proteolysis is impaired, or alternatively, the accumulation of subcomplexes containing the tagged subunit that cannot readily incorporate into mature proteasomes. Acknowledging this limitation in the text would be valuable to readers who are less familiar with the proteasome.

      We would like to clarify that the data shown in Figure 1E do not represent whole proteome data, but rather log2 fold changes vs. BirA* control calculated on streptavidin enrichment samples. The differences in the enrichment of the various subcomplexes between cell lines derives from the fact that the effect size of the enrichment depends on both protein abundance in the isolated complexes, but also on the efficiency of biotinylation. The latter will be higher for proteins located in closer proximity to the bait. A similar observation was pointed out in a recent publication (PMID:36410438) that compared BioID and Co-IP for the same bait. When a component of the nuclear pore complex (Nup158) was analyzed by BioID only the more proximal proteins were enriched as compared to the whole complex in Co-IP data (Author response image 1):

      Author response image 1.

      Proteins identified in the NUP158 BioID or pulldown experiments are filled in red or light red for significance intervals A or B, respectively. The bait protein NUP158 is filled in yellow. Proteins enriched in the pulldown falling outside the SigA/B cutoff are filled in gray. NPC, nuclear pore complex. SigA, significant class A; SigB, significant class B. Reproduced from Figure 6 of PMID: 36410438.

      However, we would like to point out that despite quantitative differences between different proteasome subunits, both 19S and 20S proteins were found to be strongly enriched (typically >2 fold) in all the constructs compared to BirA* control line (Figure 1E). This indicates that at least a fraction of all the tagged subunits are incorporated into fully assembled proteasomes.

      Regarding the upregulation of proteasome subunits as a consequence of proteasome dysfunction, we did not find evidence of this, at least in the case of PSMA4. The immunoblot shown in Figure 2A and its quantification in S3A indicate no increased abundance of endogenous PSMA4 upon tetracycline induction of PSMA4-BirA*.

      (2) The use of myc as a substrate of the proteasome for demonstration that proteolysis is unaffected is perhaps not ideal. Myc is known to be degraded via both ubiquitin-dependent and ubiquitin-independent mechanisms, such that disruption of one means of degradation (e.g., ubiquitin-dependent degradation) via a given tag could potentially be compensated by another. A good example of this is that the C-terminal tagging of PSMC2/Rpt1 is likely to disrupt interaction between the core particle and the regulatory particle (as suggested in Fig. 1D); this may free up the core particle for ubiquitin-independent degradation of myc.

      Aside from using specific reporters for ubiquitin-dependent vs. independent degradation or a larger panel of known substrates, analysis of the abundance of K48-ubiquitinated proteins in the control vs. tag lines would provide additional evidence as to whether or not proteolysis is generally perturbed in the tag lines.

      We thank the reviewer for this suggestion. We have included an immunoblot analysis showing that the levels of K48 ubiquitylation (Figure S3d) are not affected by the expression of tagged PSMA4.

      (3) On pg. 8 near the bottom, the authors accidentally refer to ARMC6 as ARMC1 in one instance.

      We have corrected the mistake.

      (4) On pg. 10, the authors explain that they analyzed the interactome for all major mouse organs except the brain; although they explain in the discussion section why the brain was excluded, including this explanation on pg. 10 here instead of in the discussion might be a better place to discuss this.

      We moved the explanation from the discussion to the results part.

      Reviewer #2 (Recommendations For The Authors):

      (1) Perhaps the authors can quantify the fraction of unassembled PSMA4-BirA* from the SEC experiment (Fig. 2b) to give the readers a feeling for how large a problem this could be.

      The percentages based on Area Under the Curve calculations have been added to Figure S3b.

      (2) Do the authors observe any difference in the enrichment scores between proteins that are known to interact with the proteasome vs proteins that the authors can justify as "interactors of interactors" vs the completely new potential interactors? This could be an interesting way to show that the potential new interactors are not simply because of poor false positive rate calibration, but that they behave in the same way as the other populations.

      We thank the reviewer for this suggestion. We analyzed the enrichment scores for 20S proteasome subunits, known PIPs, first neighbors and the remaining enriched proteins. The remaining proteins (potential new interactors) have very similar scores as the first neighbors of known interactors. This plot has been added to Figure S3g.

      (3) Did the authors try to train a logistic model for the miniTurbo experiments, like it was done for the BirA* experiments? Perhaps combining the results of both experiments would yield higher confidence on the proteasome interactors.

      Following the reviewers suggestion, we applied the classifier on the dataset of the comparison between miniTurbo and PSMA-miniTurbo. We found a clear separation between the FPR and the TPR with 136 protein groups enriched in PSMA-miniTurbo. We have added the classifier and corresponding ROC curve to Figure S4f and S4g.

      75 protein groups were found to be enriched for both PSMA4-BirA* and PSMA4-miniTurbo (Author response image 2), including the proteasome core particles, regulatory particles, known interactors and potential new interactors. As we focused more on the identification of substrates with PSMA4-miniTurbo, we did not pursue these overlapping protein groups further, but rather used the comparison to the mouse model to identify potential new interactors.

      Author response image 2.

      Overlap between ProteasomeID enriched proteins (fpr<0.05) between PSMA4-BirA* and PSMA4-miniTurbo.

      (4) Perhaps this is already known, but did the authors check if MG132 affect proteasome assembly? The authors could for example repeat their SEC experiments in the presence of MG132.

      We thank the reviewer for the suggestion, however to our knowledge there are no reports that MG132 has an effect on the assembly of the proteasome. MG132 is one of the most used proteasome inhibitors in basic research and as such has been extensively characterized in the last 3 decades. The small peptide aldehyde acts as a substrate analogue and binds directly to the active site of the protease PSMB5/β5. We therefore think it is unlikely that MG132 is interfering with the assembly of the proteasome.

      (5) Minor comment: at the bottom of page 8, the authors probably mean ARMC6 and not ARMC1.

      We have corrected the mistake.

      (6) It would be interesting to expand the analysis of the already acquired in vivo data to try to identify tissue-specific proteasome interactors. Can the authors draw a four-way Venn diagram with the interactors of each tissue?

      We thank the reviewer for this suggestion. We have generated an UpSet plot showing the overlap of ProteasomeID enriched proteins in the four tissues that gave us meaningful results (Author response image 3). In order to investigate whether the observed differences in ProteasomeID enriched proteins could be meaningful in terms of proteasome biology, we have highlighted proteins belonging to the UPS that show tissue specific enrichments. We found proteasome activators such as PSME1/PA28alpha and PSME2/PA28beta to enrich preferentially in kidney and liver, respectively, as well as multiple deubiquitinases to enrich preferentially in the heart. These differences might be related to the specific cellular composition of the different tissues, e.g., number of immune cells present, or the tissue-specific interaction of proteasomes with enzymes involved in the ubiquitin cycle. Given the rather preliminary nature of these findings, we have opted for not including this figure in the main manuscript, but rather include it only in this rebuttal letter.

      Author response image 3.

      Upset plot showing overlap between ProteasomeID enriched proteins in different mouse organs.

      Reviewer #3 (Recommendations For The Authors):

      (1) In the first paragraph of the Introduction, the authors link cellular senescence caused by partial proteasome inhibition with the efficacy of proteasome inhibitors in cancer therapy. Although this is an interesting hypothesis, I am not aware of any direct evidence for this; rather, I believe the efficacy of bortezomib/carfilzomib in haematological malignancies is most commonly attributed to these cells having adapted to high levels of proteotoxic stress (e.g., chronic unfolded protein response activation). I would suggest rephrasing this sentence.

      We thank the reviewer for the comment and have amended the introduction.

      (2) For the initial validation experiments (e.g., Fig. 1B), have the authors checked what level of Streptavidin signal is obtained with "+ bio, - tet" ? Although I accept that the induction of PSMA4-BirA* upon doxycycline addition is clear from the anti-Flag blots, it would still be informative to ascertain what level of background labelling is obtained without induction (but in the presence of exogenous biotin).

      We tested four different conditions +/- tet and +/- biotin (24h) in PSMA4-BirA* cell lines (Author response image 4). As expected, biotinylation was most pronounced when tet and biotin were added. When biotin was omitted, streptavidin signal was the lowest regardless of the addition of tet. Compared to the -biotin conditions, a slight increase of streptavidin signal could be observed when biotin was added but tet was not added. This could be either due to the promoter leaking (PMID: 12869186) or traces of tetracycline in the FBS we used, as we did not specifically use tet-free FBS for our experiments.

      Author response image 4.

      Streptavidin-HRP immunoblot following induction of BirA fusion proteins with tetracycline (+tet) and supplementation of biotin (+bio). For the sample used as expression control tetracycline was omitted (-tet). To test background biotinylation, biotin supplementation was omitted (-bio). Immunoblot against BirA and PSMA was used to verify induction of fusion proteins, while GAPDH was used as loading control.

      (3) For the proteasome structure models in Fig. 1D, a scale bar would be useful to inform the reader of the expected 10 nm labelling radius (as the authors have done later, in Fig. 2D).

      We have added 10 nm scale bars to Figure 1d.

      (4) In the "Identification of proteasome substrates by ProteasomeID" Results subsection, I believe there is a typo where the authors refer to ARMC1 instead of ARMC6.

      We have corrected the mistake.

      (5) I think Fig. S5 was one of the most compelling in the manuscript. Given the interest in confirming on-target efficacy of targeted degradation modalities, as well as identifying potential off-target effects early-on in development, I would consider promoting this out of the supplement.

      We thank the reviewer for the comment and share the excitement about using ProteasomeID for targeted degradation screening. We have moved the data on PROTACs (Figure S5) into a new main Figure 5.

      In addition, in relation to the comment of this reviewer regarding the detection of endogenous substrates, we have now included validation for one more hit emerging from our analysis (TIGD5) and included the results in Figure 4f, 4g and S4j.

    1. Author response:

      Overall recommendations.

      A brief summary of the main reviewers' recommendations that should be prioritized is listed below. Detailed recommendations as suggested by each individual reviewer are also included.

      -Better justification of the choice of the substitutions for the mutations should be added. In addition, authors should strongly consider adding more mutations to enable mechanistic tests of the proposed model for lipid conduction.

      We will characterize more mutations to the key residues at the TM4-TM6 interface. In addition to the TM4 lysine mutations shown in the original manuscript, we will include mutations to alanine and glutamate, and justify our choice of the substitutions in the revised manuscript. Furthermore, we will also test if introducing lysine mutations in TM6 will convert the ion channels into lipid scramblases. These additional experiments will greatly strengthen our conclusion.

      -Blockers to validate the concern that the recorded currents indeed arise from TMEM16A or OSCA/TMEM63 channels should be tested. Do the pore blockers also block scramblase activity in the gating mutants?

      TMEM16A and OSCA1.2 are readily expressed on cell surface. OSCA1.2 also has large conductance. This is the reason why we can record huge current even with inside-out patches. We will include TMEM16A inhibitor Ani9 and a non-specific inhibitor of OSCA channels to further validate. We have reported that Ani9 can inhibit a TMEM16A-derived lipid scramblase (L543K in TM4) in our previo3us publication (PMID: 31015464). We will test if Ani9 can also inhibit other TMEM16A scramblases reported in this study. We will also examine if Gd3+ is capable of blocking lipid scrambling of the OSCA1.2 gating mutations.

      -Include details of missing experimental conditions for scramblase activity.

      We will conduct a thorough revision to include detailed experimental conditions for scramblase activity measurement.

      -Additional mutants above and below the putative lysine gate as suggested by reviewer 3 to better assess the model.

      As we explained in Response #1, we will extend our mutations around the putative activation gate.

      -Concern about whether osmolarity changes are in fact activating OSC and TMEM63. As suggested by reviewers 1 and 3. This could be addressed by assessing scramblase activity and currents at different osmolarity levels.

      We will test the engineered OSCA1.2 scramblases in response to solutions with different osmolarity.

      Reviewer #1 (Public Review):

      Summary:

      TMEM16, OSCA/TMEM63, and TMC belong to a large superfamily of ion channels where TMEM16 members are calcium-activated lipid scramblases and chloride channels, whereas OSCA/TMEM63 and TMCs are mechanically activated ion channels. In the TMEM16 family, TMEM16F is a well-characterized calcium-activated lipid scramblase that plays an important role in processes like blood coagulation, cell death signaling, and phagocytosis. In a previous study, the group demonstrated that lysine mutation in TM4 of TMEM16A can enable the calcium-activated chloride channel to permeate phospholipids too. Based on this they hypothesize that the energy barrier for lipid scramblase in these ion channels is low, and that modification in the hydrophobic gate region by introducing a charged side chain between the TM4/6 interface in TMEM16 and OSCA/TMEM63 family can allow lipid scramblase. In this manuscript, using scramblase activity via Annexin V binding to phosphatidylserine, and electrophysiology, the authors demonstrate that lysine mutation in TM4 of TMEM16F and TMEM16A can cause constitutive lipid scramblase activity. The authors then go on to show that analogous mutations in OSCA1.2 and TMEM63A can lead to scramblase activity.

      Strengths:

      Overall, the authors introduce an interesting concept that this large superfamily can permeate ions and lipids.

      Weaknesses:

      The electrophysiology data does not entirely support their claims.

      We appreciate your positive comments. We will conduct more experiments including more electrophysiology characterizations as suggested.

      Reviewer #2 (Public Review):

      This concise and focused study by Lowry and colleagues identifies a motif in the pores of three families of channel/scramblase proteins that regulate exclusive ion permeation and lipid transport. These three ion channel families, which include the TMEM16s, the plant-expressed and stress-gated cation channel OSCA, and the mammalian homolog and mechanosensitive cation channel, TMEM63 share low sequence similarity between them and have seemingly differing functions, as anion (TMEM16s), or stress-activated cation channels (OSCA/TMEM63). The study finds that in all three families, mutating a single hydrophobic residue in the ion permeation pathway of the channels confers lipid transport through the pores of the channels, indicating that TMEM16 and the related OSCA and TMEM63 channels have a conserved potential for both ion and lipid permeation. The authors interpret the findings as revealing that these channel/scramblase proteins have a relatively low "energetic barrier for scramblase" activity. The experiments themselves seem to be done with a high level of rigor and the paper is well written. A weakness is the limited scope of the experiments which, if fixed, could open up a new line of inquiry.

      We appreciate the positive comments from the reviewer. We will conduct more experiments listed in our responses to the Overall Recommendations to improve the scope and quality of our study.

      Reviewer #3 (Public Review):

      This study was focused on the conserved mechanisms across the Transmembrane Channel/Scramblase superfamily, which includes members of the TMEM16, TMEM63/OSCA, and TMC families. The authors show that the introduction of lysine residues at the TM4-TM6 interface can disrupt gating and confer scramblase activity to non-scramblase proteins. Specifically, they show this to be true for conserved TM4 residues across TMEM16F, TMEM16A, OSCA1.2, and TMEM63A proteins. This breadth of data is a major strength of the paper and provides strong evidence for an underlying linked mechanism for ion conduction and phospholipid transport. Overall, the confocal imaging experiments, patch clamping experiments, and data analysis are performed well.

      However, there are several concerns regarding the scope of experiments supporting some claims in the paper. Although the authors propose that the TM4/TM6 interface is critical to ion conduction and phospholipid scramblase activity, in each case, there is very narrow evidence of support consisting of 1-3 lysine substitutions at specific residues on TM4. Given that the authors postulate that the introduction of a positive charge via the lysine side chain is essential to the constitutive activity of these proteins, additional mutation controls for side chain size (e.g. glutamine/methionine) or negative charge (e.g. glutamic acid), or a different positive charge (i.e. arginine) would have strengthened their argument. To more comprehensively understand the TM4/TM6 interface, mutations at locations one turn above and one turn below could be studied until there is no phenotype. In addition, the equivalent mutations on the TM6 side should be explored to rule out the effects of conformational changes that arise from mutating TM4 and to increase the strength of evidence for the importance of side-chain interactions at the TM6 interface. The experiments for OSCA1.2 osmolarity effects on gating and scramblase in Figure 4 could be improved by adding different levels of osmolarity in addition to time in the hypotonic solution.

      We appreciate the positive and constructive comments from the reviewer. As we outlined in our responses to the Overall Recommendations, we will include more mutations at the TM4 and TM6 interface to further strengthen our conclusion.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In this study, the authors examined the role of IBTK, a substrate-binding adaptor of the CRL3 ubiquitin ligase complex, in modulating the activity of the eiF4F translation initiation complex. They find that IBTK mediates the non-degradative ubiquitination of eiF4A1, promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and tumor cell growth. Correspondingly, phosphorylation of IBTK by mTORC1/ S6K1 increases eIF4A1 ubiquitination and sustains oncogenic translation.

      Strengths:

      This study utilizes multiple biochemical, proteomic, functional, and cell biology assays to substantiate their results. Importantly, the work nominates IBTK as a unique substrate of mTORC1, and further validates eiF4A1 (a crucial subunit of the ei44F complex) as a promising therapeutic target in cancer. Since IBTK interacts broadly with multiple members of the translational initial complex - it will be interesting to examine its role in eiF2alpha-mediated ER stress as well as eiF3-mediated translation. Additionally, since IBTK exerts pro-survival effects in multiple cell types, it will be of relevance to characterize the role of IBTK in mediating increased mTORC1 mediated translation in other tumor types, thus potentially impacting their treatment with eiF4F inhibitors.

      Limitations/Weaknesses:

      The findings are mostly well supported by data, but some areas need clarification and could potentially be enhanced with further experiments:

      (1) Since eiF4A1 appears to function downstream of IBTK1, can the effects of IBTK1 KO/KD in reducing puromycin incorporation (in Fig 3A), cap-dependent luciferase reporter activity (Fig 3G), reduced oncogene expression (Fig 4A) or 2D growth/ invasion assays (Fig 4) be overcome or bypassed by overexpressing eiF4A1? These could potentially be tested in future studies.

      We appreciate the reviewer for bringing up this crucial point. As per the reviewer's suggestion, we conducted experiments where we overexpressed Myc-eIF4A1 in IBTK-KO SiHa cells. Our findings indicate that increasing levels of eIF4A1 through ectopic overexpression is unable to reverse the decrease in puromycin incorporation (Fig. S3C) and protein expression of eIF4A1 targets caused by IBTK ablation (Fig. S4E). These results clearly demonstrate that IBTK ablation-induced eIF4A1 dysfunctions cannot be rescued by simply elevating eIF4A1 protein levels. Given the above results are negative, the impacts of eIF4A1 overexpression on the 2D growth/invasion capacities of IBTK-KO cells were not further examined. We sincerely appreciate the reviewer's understanding regarding this matter.

      (2) The decrease in nascent protein synthesis in puromycin incorporation assays in Figure 3A suggest that the effects of IBTK KO are comparable to and additive with silvesterol. It would be of interest to examine whether silvesterol decreases nascent protein synthesis or increases stress granules in the IBTK KO cells stably expressing IBTK as well.

      We appreciate the reviewer for bringing up this crucial point. We have showed that silvestrol treatment still decreased nascent protein synthesis in IBTK-KO cells overexpressing FLAG-IBTK as well (Fig. S3B).

      (3) The data presented in Figure 5 regarding the role of mTORC1 in IBTK- mediated eiF4A1 ubiquitination needs further clarification on several points:

      • It is not clear if the experiments in Figure 5F with Phos-tag gels are using the FLAG-IBTK deletion mutant or the peptide containing the mTOR sites as it is mentioned on line 517, page 19 "To do so, we generated an IBTK deletion mutant (900-1150 aa) spanning the potential mTORC1-regulated phosphorylation sites" This needs further clarification.

      We appreciate the reviewer for bringing up this crucial point. The IBTK deletion mutant used in Fig. 5F is FLAG-IBTK900-1150aa. We have annotated it with smaller font size in the panel (red box) in Author response image 1.

      Author response image 1.

      • It may be of benefit to repeat the Phos tag experiments with full-length FLAG- IBTK and/or endogenous IBTK with molecular weight markers indicating the size of migrated bands.

      We appreciate the reviewer for bringing up this crucial point. We attempted to perform Phos-tag assays to detect the overexpressed full-length FLAG-IBTK or endogenous IBTK. However, we encountered difficulties in successfully transferring the full-length FLAG-IBTK or endogenous IBTK onto the nitrocellulose membrane during Phos-tag WB analysis. This is likely due to the limitations of this technique. Based on our experience, phos-tag gel is less efficient in detecting protein motility shifts with large molecular weights. As the molecular weight of IBTK protein is approximately 160 kDa, it falls within this category. Considering these technical constraints, we did not include Phos-tag assay results for full-length IBTK in our study. We sincerely appreciate the reviewer's understanding regarding this matter.

      The binding of Phos-tag to phosphorylated proteins induces a mobility shift during gel electrophoresis or protein separation techniques. This shift allows for the visualization and quantification of phosphorylated proteins separately from non-phosphorylated proteins. It's important to note that these mobility shifts indicate phosphorylation status, rather than actual molecular weights. pre- stained protein markers are typically used as a reference to assess the efficiency of protein transfer onto the membrane [Ref: 1]. Considering the aforementioned reasons, we did not add molecular weights to the WB images.

      Reference [1]. FUJIFILM Wako Pure Chemical Corporation, https://www.wako- chemicals.de/media/pdf/c7/5e/20/FUJIFILM-Wako_Phos-tag-R.pdf

      • Additionally, torin or Lambda phosphatase treatment may be used to confirm the specificity of the band in separate experiments.

      We appreciate the reviewer for bringing up this crucial point. Torin1 is a synthetic mTOR inhibitor by preventing the binding of ATP to mTOR, leading to the inactivation of both mTORC1 and mTORC2, whereas rapamycin primarily targets mTORC1 activity and may inhibit mTORC2 in certain cell types after a prolonged treatment. We have identified that the predominant mediator of IBTK phosphorylation is the mTORC1/S6K1 complex. Therefore, in this context, we think that rapamycin is sufficient to inactivate the mTORC1/S6K1 pathway. As shown in Fig. 5F, the phosphorylated IBTK900-1150aa was markedly decreased while the non-phosphorylated form was simultaneously increased in rapamycin- treated cells. As per the reviewer's suggestion, we treated FLAG-IBTK900-1150aa overexpressed cells with lambda phosphatase. As shown in Fig. 5G, lambda phosphatase treatment completely abolished the mobility shifts of phosphorylated FLAG-IBTK900-1150aa. Additionally, the lowest band displayed an abundant accumulation of the non-phosphorylated form of FLAG-IBTK900-1150aa. These findings confirm that the mobility shifts observed in WB analysis correspond to the phosphorylated forms of FLAG-IBTK900-1150aa.

      • Phos-tag gels with the IBTK CRISPR KO line would also help confirm that the non-phosphorylated band is indeed IBTK.

      We appreciate the reviewer for bringing up this crucial point. As we state above, we performed Phos-tag assays to detect the mobility shifts of phosphorylated FLAG-IBTK900-1150aa. Anti-FLAG antibody, but not the anti-IBTK antibody was used for WB detection. This antibody does not exhibit cross-reactivity with endogenous IBTK.

      • It is unclear why the lower, phosphorylated bands seem to be increasing (rather than decreasing) with AA starvation/ Rapa in Fig 5H.

      We appreciate the reviewer for bringing up this crucial point. We think the panel the reviewer mentioned is Fig. 5F. According to the principle of Phos-tag assays, proteins with higher phosphorylation levels have slower migration rates on SDS-PAGE, while proteins with lower phosphorylation levels have faster migration rates.

      As shown in Author response image 2, the green box indicates the most phosphorylated forms of FLAG-IBTK900-1150aa, the red box indicates the moderately phosphorylated forms of FLAG-IBTK900-1150aa, and the yellow box indicates the non-phosphorylated forms of FLAG-IBTK900-1150aa. AA starvation or Rapamycin treatment reduced the hyperphosphorylated forms of FLAG-IBTK900-1150aa (green box), while simultaneously increasing the hypophosphorylated (red box) and non- phosphorylated (yellow box) forms of FLAG-IBTK900-1150aa. Thus, we conclude that AA starvation or Rapamycin treatment leads to a marked decrease in the phosphorylation levels of FLAG-IBTK900-1150aa.

      Author response image 2.

      Reviewer #2 (Public Review):

      Summary:

      This study by Sun et al. identifies a novel role for IBTK in promoting cancer protein translation, through regulation of the translational helicase eIF4A1. Using a multifaceted approach, the authors demonstrate that IBTK interacts with and ubiquitinates eIF4A1 in a non-degradative manner, enhancing its activation downstream of mTORC1/S6K1 signaling. This represents a significant advance in elucidating the complex layers of dysregulated translational control in cancer.

      Strengths:

      A major strength of this work is the convincing biochemical evidence for a direct regulatory relationship between IBTK and eIF4A1. The authors utilize affinity purification and proximity labeling methods to comprehensively map the IBTK interactome, identifying eIF4A1 as a top hit. Importantly, they validate this interaction and the specificity for eIF4A1 over other eIF4 isoforms by co- immunoprecipitation in multiple cell lines. Building on this, they demonstrate that IBTK catalyzes non-degradative ubiquitination of eIF4A1 both in cells and in vitro through the E3 ligase activity of the CRL3-IBTK complex. Mapping IBTK phosphorylation sites and showing mTORC1/S6K1-dependent regulation provides mechanistic insight. The reduction in global translation and eIF4A1- dependent oncoproteins upon IBTK loss, along with clinical data linking IBTK to poor prognosis, support the functional importance.

      Weaknesses:

      While these data compellingly establish IBTK as a binding partner and modifier of eIF4A1, a remaining weakness is the lack of direct measurements showing IBTK regulates eIF4A1 helicase activity and translation of target mRNAs. While the effects of IBTK knockout/overexpression on bulk protein synthesis are shown, the expression of multiple eIF4A1 target oncogenes remains unchanged.

      Summary:

      Overall, this study significantly advances our understanding of how aberrant mTORC1/S6K1 signaling promotes cancer pathogenic translation via IBTK and eIF4A1. The proteomic, biochemical, and phosphorylation mapping approaches established here provide a blueprint for interrogating IBTK function. These data should galvanize future efforts to target the mTORC1/S6K1-IBTK-eIF4A1 axis as an avenue for cancer therapy, particularly in combination with eIF4A inhibitors.

      Reviewer #1 (Recommendations For The Authors):

      (1) Certain references should be provided for clarity. For e.g.,: Page 15, line 418 " The C-terminal glycine glycine (GG) amino acid residues are essential for Ub conjugation to targeted proteins".

      We appreciate the reviewer for bringing up this crucial point. We have taken two fundamental review papers (PMID: 22524316, 9759494) on the ubiquitin system as references in this sentence.

      (2) Please describe the properties of the ΔBTB mutant on page 15 when first describing it. What motifs does it lack and has it been described before in functional studies?

      We appreciate the reviewer for bringing up this crucial point. We added a sentence to describe the properties of the ΔBTB mutant. This mutant lacks the BTB1 and BTB2 domains (deletion of aa 554–871), which have been previously demonstrated to be essential for binding to CUL3. The original reference has been added to the revised manuscript.

      (3) In Figure 2G how do the authors explain the fact that co-expression of the Ub K-ALLR mutant, which is unable to form polyubiquitin chains, formed only a moderate reduction in IBTK-mediated eIF4A1 ubiquitination?

      We appreciate the reviewer for bringing up this crucial point. The Ub K-ALLR mutant can indeed conjugate to substrate proteins, but it cannot form chains due to its absence of lysine residues, resulting in mono-ubiquitination. Multi- mono-ubiquitination refers to the attachment of single ubiquitin molecules to multiple lysine residues on a substrate protein. It's worth noting that a poly- ubiquitinated protein and a multi-mono-ubiquitinated protein appear strikingly similar in Western blot. Our findings demonstrated that the co-expression of the Ub K-ALL-R mutant resulted in only a modest reduction in IBTK-mediated eIF4A1 ubiquitination (Fig. 2G), and that eIF4A1 was ubiquitinated at twelve lysine residues when co-expressed with IBTK (Fig. S2F). As such, we conclude that the CRL3IBTK complex primarily catalyzes multi-mono-ubiquitination on eIF4A1. .

      (4) In Figure 5, The identity of the seven sites in the IBTK 7ST A mutants should be specified.

      We appreciate the reviewer for bringing up this crucial point. We have specified the seven mutation sites in the IBTK-7ST A mutant (Fig. 6A).

      (5) In Figure 5, the rationale for generating antibodies only to S990/992/993, as opposed to the other mTORC1/S6K motifs should be specified.

      We appreciate the reviewer for bringing up this crucial point. Upon demonstrating that IBTK can be phosphorylated—with evidence from positive Phos-tag and in vitro phosphorylation assays—we sought to directly detect changes in the phosphorylation levels using an antibody specific to IBTK phosphorylation. However, the expense of generating seven phosphorylation- specific antibodies for each site is significant. Recognizing that S990/992/993 are three adjacent sites, we deemed it appropriate to generate a single antibody to recognize the phospho-S990/992/993 epitope. Moreover, out of the seven phosphorylation sites, S992 perfectly matches the consensus motif for S6K1 phosphorylation (RXRXXS). Utilizing this antibody allowed us to observe a substantial decrease in the phosphorylation levels of these three adjacent Ser residues in IBTK following either AA deprivation or Rapamycin treatment (Fig. 5L). We have specified these points in the manuscript.

      Reviewer #2 (Recommendations For The Authors):

      The following suggestions would strengthen the study:

      (1) Directly examine the effects of IBTK modulation (knockdown/knockout/ overexpression) on eIF4A1 helicase activity.

      We appreciate the reviewer for bringing up this crucial point. We agree with the reviewer's suggestion that evaluating IBTK's influence on eIF4A1 helicase activity directly would enhance the strength of our conclusion. However, the current eIF4A1 helicase assays, as described in previous publications [Ref: 1, 2], can only be conducted using in vitro purified recombinant proteins. For instance, it is feasible to assess the varying levels of helicase activity exhibited by recombinant wild-type or mutant EIF4A1 proteins [Ref: 2]. Importantly, there is currently no reported methodology for evaluating the helicase activity of EIF4A1 in vivo, as mentioned by the reviewer in gene knockdown, knockout, or overexpression cellular contexts. Therefore, we have not performed these assays and we sincerely appreciate the reviewer's understanding in this regard. We sincerely appreciate the reviewer's understanding regarding this matter.

      Reference:

      [1] Chu J, Galicia-Vázquez G, Cencic R, Mills JR, Katigbak A, Porco JA, Pelletier J. CRISPR-mediated drug-target validation reveals selective pharmacological inhibition of the RNA helicase, eIF4A. Cell reports. 2016 Jun 14;15(11):2340-7.

      [2] Chu J, Galicia-Vázquez G, Cencic R, Mills JR, Katigbak A, Porco JA, Pelletier J. CRISPR-mediated drug-target validation reveals selective pharmacological inhibition of the RNA helicase, eIF4A. Cell reports. 2016 Jun 14;15(11):2340-7.

      (2) Justify why the expression of some but not all eIF4A1 target oncogenes is affected in IBTK-depleted/overexpressing cells. This is important if IBTK should be considered as a therapeutic target. The authors should consider which of the eIF4A1 targets are most impacted by IBTK KO. This would provide a more focused therapeutic approach in the future.

      We appreciate the reviewer for bringing up this crucial point. As the reviewer has pointed out, we assessed the protein levels of ten reported eIF4A1 target genes across three cancer cell lines (Fig.4, Fig. S4A, C). We observed that IBTK depletion led to a substantial reduction in the protein levels of most eIF4A1- regulated oncogenes upon IBTK depletion, although there were some exceptions. For instance, IBTK KO in H1299 cells exerted minimal influence on the protein levels of ROCK1 (Fig. S4A). Several possible explanations might account for this observation: firstly, given that our list of eIF4A1 target genes collected from previous studies conducted using distinct cell lines, it is not unexpected for different lines to exhibit subtle differences in regulation of eIF4A1 target genes. Secondly, as a CRL3 adaptor, IBTK potentially performs other biological functions via ubiquitination of specific substrates; dysregulation of these could buffer the impact of IBTK KO on the protein expression of some eIF4A1 target genes. We added these comments to the Discussion section of the revised manuscript.

      (3) Expand mTOR manipulation experiments (inhibition, Raptor knockout, activation) and evaluate impacts on IBTK phosphorylation, eIF4A1 ubiquitination, and translation.

      The mTORC1 signaling pathway is constitutively active under normal culture conditions. In order to inhibit mTORC1 activation, we employed several approaches including AA starvation, Rapamycin treatment, or Raptor knockout. Our results have demonstrated that both AA starvation and rapamycin treatment led to a reduction in eIF4A1 ubiquitination (Fig. 5M). Moreover, we have included new findings in the revised manuscript, which highlight that Raptor knockout specifically decreases eIF4A1 ubiquitination (Fig. 5N). It is worth mentioning that the impacts of mTOR inhibition or activation on protein translation have been extensively investigated and documented in numerous studies. Therefore, in our study, we did not feel it necessary to examine these treatments further.

      (4) Although not absolutely necessary, it would be nice to see if some of these findings are true in other cancer cell types.

      We appreciate the reviewer for bringing up this crucial point. We concur with the reviewer's suggestion that including data from other cancer cell types would enhance the strength of our conclusion. While the majority of our data is derived from two cervical cancer cell lines, we have corroborated certain key findings— such as the impact of IBTK on eIF4A1 and its target gene expression—in H1299 cells (human lung cancer) (Fig. 2C, Fig. S4A, B) and in CT26 cells (murine colon adenocarcinoma) (Fig. S4C, D). Additionally, we demonstrated that IBTK promotes IFN-γ-induced PD-L1 expression and tumor immune escape in both the H1299 and CT26 cells (Fig. S6A-K).

    1. Author response:

      The following is the authors’ response to the original reviews.

      The reviewer comments have been helpful, and we have revised the manuscript to address the concerns of reviewer 2. In addition to text changes, we also added a negative control to Figure 1 to address concerns about photobleaching or DNA unwrapping.

      Reviewer #1:

      This manuscript presents an extremely exciting and very timely analysis of the role that the nucleosome acidic patch plays in SWR1-catalyzed histone exchange. Intriguingly, SWR1 loses activity almost completely if any of the acidic patches are absent. To my knowledge, this makes SWR1 the first remodeler with such a unique and pronounced requirement for the acidic patch. The authors demonstrate that SWR1 affinity is dramatically reduced if at least one of the acidic patches is absent, pointing to a key role of the acidic patch in SWR1 binding to the nucleosome. The authors also pinpoint a specific subunit - Swc5 - that can bind nucleosomes, engage the acidic patch, and obtain a cryo-EM structure of Swc5 bound to a nucleosome. They also identify a conserved arginine-rich motif in this subunit that is critical for nucleosome binding and histone exchange in vitro and for SWR1 function in vivo. The authors provide evidence that suggests a direct interaction between this motif and the acidic patch.

      Strengths:

      The manuscript is well-written and the experimental data are of outstanding quality and importance for the field. This manuscript significantly expands our understanding of the fundamentally important and complex process of H2A.Z deposition by SWR1 and would be of great interest to a broad readership.

      We thank the reviewer for their enthusiastic and positive comments on our work.

      Reviewer #2:

      Summary:

      In this study, Baier et al. investigated the mechanism by which SWR1C recognizes nucleosomal substrates for the deposition of H2A.Z. Their data convincingly demonstrate that the nucleosome's acidic patch plays a crucial role in the substrate recognition by SWR1C. The authors presented clear evidence showing that Swc5 is a pivotal subunit involved in the interaction between SWR1C and the acidic patch. They pared down the specific region within Swc5 responsible for this interaction. However, two central assertions of the paper are less convincing. First, the data supporting the claim that the insertion of one Z-B dimer into the canonical nucleosome can stimulate SWR1C to insert the second Z-B dimer is somewhat questionable (see below). Given that this claim contradicts previous observations made by other groups, this hypothesis needs further testing to eliminate potential artifacts. Secondly, the claim that SWR1C simultaneously recognizes the acidic patch on both sides of the nucleosome also needs further investigation, as the assay used to establish this claim lacks the sensitivity necessary to distinguish any difference between nucleosomal substrates containing one or two intact acidic patches.

      Strengths:

      As mentioned in the summary, the authors presented clear evidence demonstrating the role of Swc5 in recognition of the nucleosome acidic patch. The identification of the specific region in Swc5 responsible for this interaction is important.

      We thank the reviewer for their careful critique of our work. Below we address each major concern.

      Major comments: (1) Figure 1B: It is unclear how much of the decrease in FRET is caused by the bleaching of fluorophores. The authors should include a negative control in which Z-B dimers are omitted from the reaction. In the absence of ZB dimers, SWR1C will not exchange histones. Therefore, any decrease in FRET should represent the bleaching of fluorophores on the nucleosomal substrate, allowing normalization of the FRET signal related to A-B eviction.

      In this manuscript, as well as in our two previous publications (Singh et al., 2019; Fan et al.,2022), we have presented the results of no enzyme controls, +/- ZB dimers, no ATP controls, or AMP-PNP controls for our FRET-based, H2A.Z deposition assay (see also Figure S3). We do not observe significant levels of photobleaching in this assay, either during ensemble measurements or in an smFRET experiment. To aid the reader, we have added the AMP-PNP data for the experiment shown in Figure 1B. The results show there is less than a 10% decrease in FRET over 30’, and the signal from the double acidic patch disrupted nucleosome is identical to this negative control.

      (2) Figure S3: The authors use the decrease in FRET signal as a metric of histone eviction. However, Figure S3 suggests that the FRET signal decrease could be due to DNA unwrapping. Histone exchange should not occur when SWR1C is incubated with AMP-PNP, as histone exchange requires ATP hydrolysis (10.7554/eLife.77352). And since the insertion of Z-B dimer and the eviction of A-B dimer are coupled, the decrease of FRET in the presence of AMP-PNP is unlikely due to histone eviction or exchange. Instead, the FRET decrease is likely due to DNA unwrapping (10.7554/eLife.77352). The authors should explicitly state what the loss of FRET means.

      We agree with the reviewer, that loss of FRET can be due to DNA unwrapping from the nucleosome. We have previously demonstrated this activity by SWR1C in our smFRET study (Fan et al., 2022). However, DNA unwrapping is highly reversible and has a time duration of only 1-3 seconds. We and others have not observed stable unwrapping of nucleosomes by SWR1C, but rather the stable loss of FRET reports on dimer eviction. We assume the reviewer is concerned about the rather large decrease in FRET signal shown in the AMP-PNP controls for Figure S3, panels A and D. For the other 7 panels, the decrease in FRET with AMP-PNP are minimal. In fact, if we average all of the AMP-PNP data points, the rate of FRET loss is not statistically different from no enzyme control reactions (nucleosome plus ZB dimers).

      Data for panels A and D used a 77NO nucleosomal substrate, with Cy3 labeling the linker distal dimer. This is our standard DNA fragment, and it was used in Figure 1B. The only difference between data sets is that the data shown in Fig 1B used nucleosome reconstituted with a Cy5-labelled histone octamer, rather than the hexasome assembly method used for Fig S3. Three points are important. First, for all of these substrates, we assembled 3 independent nucleosomes, and the results are highly reproducible. Two, we performed a total of 6 experiments for the 77NO-Cy5 substrates to ensure that the rates were accurate (+/-ATP). Third, and most important, we do not see this decrease in FRET signal in the absence of SWR1C (no enzyme control). This data was included in the data source file. Thus, it appears that there is significant SWR1C-induced nucleosome instability for these two hexasome-assembled substrates. We now note this in the legend to Figure S3. Key for this work, however, is that there is a large increase in the rate of FRET loss in the presence of ATP, and this rate is faster when a ZB dimer was present at the linker proximal location. In response to the last point, we state in the first paragraph of the results: “The dimer exchange activity of SWR1C is monitored by following the decrease in the 670 nm FRET signal due to eviction of the Cy5-labeled AB-Cy5 dimer (Figure 1A).”

      (3) Related to point 2. One way to distinguish nucleosomal DNA unwrapping from histone dimer eviction is that unwrapping is reversible, whereas A-B eviction is not. Therefore, if the authors remove AMP-PNP from the reaction chamber and a FRET signal reappears, then the initial loss of FRET was due to reversible DNA unwrapping. However, if the removal of AMP-PNP did not regain FRET, it means that the loss of FRET was likely due to A-B eviction. The authors should perform an AMP-PNP and/or ATP removal experiment to make sure the interpretation of the data is correct.

      See response to item 2 above

      (4) The nature of the error bars in Figure 1C is undefined; therefore, the statistical significance of the data is not interpretable.

      We apologize for not making this more explicit for each figure. The error bars report on 95% confidence intervals from at least 3 sets of experiments. This statement has been added to the legend.

      (5) The authors claim that the SWR1C requires intact acidic patches on both sides of the nucleosomes to exchange histone. This claim was based on the experiment in Figure 1C where they showed mutation of one of two acidic patches in the nucleosomal substrate is sufficient to inhibit SWR1C-mediated histone exchange activity. However, one could argue that the sensitivity of this assay is too low to distinguish any difference between nucleosomes with one (i.e., AB/AB-apm) versus two mutated acidic patches (i.e., AB-apm/AB-apm). The lack of sensitivity of the eviction assay can be seen when Figure 1B is taken into consideration. In the gel-shift assay, the AB-apm/AB-apm nucleosome exhibited a 10% SWR1C-mediated histone exchange activity compared to WT. However, in the eviction assay, the single AB/AB-apm mutant has no detectable activity. Therefore, to test their hypothesis, the authors should use the more sensitive in-gel histone exchange assay to see if the single AB/AB-apm mutant is more or equally active compared to the double AB-apm/AB-apm mutant.

      Our pincher model is based on three, independent sets of data, not just Figure 1C. First, as noted by the reviewer, we find that disruption of either acidic patch cripples the dimer exchange activity of SWR1C in the FRET-based assay. Whether the defect is identical to that of the double APM mutant nucleosome does not seem pertinent to the model. In a second set of assays, we used fluorescence polarization to quantify the binding affinity of SWR1C for wildtype nucleosomes, a double APM nucleosome, or each single APM nucleosome. Consistent with the pincher model, each single APM disruption decreases binding affinity at least 10-fold (below the sensitivity of the assay). Finally, we monitored the ability of different nucleosomes to stimulate the ATPase activity of SWR1C. Consistent with the pincher model, a single APM disruption was sufficient to eliminate nucleosome stimulation.

      (6) The authors claim that the AZ nucleosome is a better substrate than the AA nucleosome. This is a surprising result as previous studies showed that the two insertion steps of the two Z-B dimers are not cooperative (10.7554/eLife.77352 and 10.1016/J.CELREP.2019.12.006). The authors' claim was based on the eviction assay shown in Fig 1C. However, I am not sure how much variation in the eviction assay is contributed by different preparations of nucleosomes. The authors should use the in-gel assay to independently test this hypothesis.

      For all data shown in our manuscript, at least three different nucleosome preparations were used. The impact of a ZB dimer on the rates of dimer exchange was highly reproducible among different nucleosome preparations and experiments. We also see reproducible ZB stimulation for three different substrates – with ZB on the linker proximal side, the linker distal side, and on one side of a core particle. We do not believe that our data are inconsistent with previous studies. First, the previous work referenced by the reviewer performed dimer exchange reactions with a large excess of nucleosomes to SWR1C (catalytic conditions), whereas we used single turnover reactions. Secondly, our study is the first to use a homogenous, ZA heterotypic nucleosome as a substrate for SWR1C. All previous studies used a standard AA nucleosome, following the first and second rounds of dimer exchange that occur sequentially. And finally, we observe only a 20-30% increase in rate by a ZB dimer (e.g. 77N0 substrates), and such an increase was unlikely to have been detected by previous gel-based assays.

      Minor comments:

      (1) Abstract line 4: To say 'Numerous' studies have shown acidic patch impact chromatin remodeling enzymes activity may be too strong.

      Removed

      (2) Page 15, line 15: The authors claim that swc5∆ was inviable on formamide media. However, the data in Figure 8 shows cell growth in column 1 of swc5∆.

      The term ‘inviable’ has been replaced with ‘poor’ or ‘slow growth’

      (3) The authors should use standard yeast nomenclature when describing yeast genes and proteins. For example, for Figure 8 and legend, Swc5∆ was used to describe the yeast strain BY4741; MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; YBR231c::kanMX4. Instead, the authors should describe the swc5∆ mutant strain as BY4741 MAT a his3∆1 leu2∆0 met15∆0 ura3∆0 swc5∆::kanMX4. Exogenous plasmid should also be indicated in italics and inside brackets, such as [SWC5-URA3] or [swc5(R219A)-URA3].

      We apologize for missing this mistake in the Figure 8 legend. We had inadvertently copied this from the euroscarf entry and forgot to edit the entry. We decided not to add all the plasmid names to the figure, as it was too cluttered. We state in the figure legend that the panels show growth of swc5 deletion strains harboring the indicated swc5 alleles on CEN/ARS plasmids.

      (4) According to Lin et al. 2017 NAR (doi: 10.1093/nar/gkx414), there is only one Swc5 subunit per SWR1C. Therefore, the pincher model proposed by the authors would suggest that there is a missing subunit that recognizes the second acidic patch. The authors should point out this fact in the discussion. However, as mentioned in Major comment 6, I am not sure if the pincer model is substantiated.

      In our discussion, we had noted that the published cryoEM structure had suggested that the Swc2 subunit likely interacts with the acidic patch on the dimer that is not targeted for replacement, and we proposed that Swc5 interacts with the acidic patch on the exchanging H2A/H2B dimer. We have now made this more clear in the text.

    1. Author response:

      We thank the reviewers for the feedback on our manuscript; we are planning to address the raised concerns in the following manner:

      We will be more explicit about the novelty of this method framing it more concretely within the scope of current research. From some comments of the reviewers, we understand that it is not clear that our method is an extension of an already existing method and model that has been extensively validated with pre-trained models brought online. Consequently, the details of the model as well as the training cohort are only covered briefly, referencing relevant published works on this topic. We will improve the clarity in this respect in the full responses. Nevertheless, we agree that the work would benefit from a simulation study that formally evaluates the performance of our method compared with more traditional approaches and will add it in our full responses. We will take care specifically of investigating the effect of assumptions like the centile-stability in healthy controls as suggested by the Reviewer 2.

      The novelty of this work lies in introducing a mathematically transparent method to use normative modelling for evaluating studies with a longitudinal design, using normative models trained on cross sectional data. We emphasise strongly that this is otherwise not possible using current methods. Furthermore, by building on a pre-trained model, this method enjoys the benefits of big (cross-sectional) data (by the pre-trained model being fitted on an extensive population sample) without the need to have direct access to them, or a ‘big’ longitudinal dataset from the cohort at hand. This is crucial in neuroimaging, where longitudinal data are much more scarce than cross-sectional data.

      We strongly disagree with the notion raised by Reviewer 1 that after the first episode cortical thickness alterations are expected to become more severe. There is now increasing evidence that: (i) trajectories of cortical thickness are highly variable across different individuals after the first psychotic episode and (ii) that individuals treated with second-generation antipsychotics and with careful clinical follow-up can show normalisation of cortical thickness atypicalities after the first episode. Indeed, we can provide evidence for this in an independent cohort, with different analytical methodologies, where precisely this occurs (https://www.medrxiv.org/content/10.1101/2024.04.19.24306008v1, https://pubmed.ncbi.nlm.nih.gov/36805840/). In the full revision, we would be happy to provide further discussion of evidence in support of this.

      We  would also like to re-emphasise  that the data were processed with the utmost rigour using state of the art processing pipelines including quality control.

      We will take care to improve the flow of the manuscript with special attention to the theoretical part and sections highlighted by the Reviewer 2. 

      We agree with the challenge outlined by the Reviewer 2 regarding the limitations in interpretation of overall trends when the position in the visit one is different between the subjects. However, this is a much broader challenge and is not specific to this study. The non-random sampling of large cohort studies is problematic for nearly all studies using such cohorts, and regardless of the  statistical approach used. We will explicitly acknowledge these limitations in the full response.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This solid study investigates the transdifferentiation of chicken embryonic fibroblasts into muscle and fat cells in 3D to create whole-cut meat mimics. The study is important and provides a method to control muscle, fat, and collagen content within the 3D meat mimics and thus provides a new avenue for customized cultured meat production. Limitations of this study include the use of transgene for transdifferentiation and thus the creation of GMO food.

      We are grateful for the substantial effort that editors and reviewers put into assessing our manuscript and providing insightful feedback. We have tried to address, as much as possible, all comments and criticisms. We believe that we have now a significantly improved manuscript. Below, there is a point-by-point response.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors presented here a novel 3D fibroblast culture and transdifferentiation approach for potential meat production with GelMA hydrogel.

      Strengths:

      (1) Reduced serum concentration for 3D chicken fibroblast culture and transdifferentiation is optimized.

      (2) Efficient myogenic transdifferentiation and lipogenesis as well as controlled fat deposition are achieved in the 3D GelMA.

      Weaknesses:

      (1) While the authors stated the rationale of using fibroblasts instead of myogenic/adipogenic stem cells for meat production, the authors did not comment on the drawbacks/disadvantages of genetic engineering (e.g., forced expression of MyoD) in meat production.

      Thanks for the reviewer for raise this important issue. We have now described this drawback in the discussion part.

      As a proof-of-concept study, we sought to explore the potential of utilizing the transdifferentiation integrated transgene tools for overexpressing a transdifferentiation factor to achieve the maximum muscle production. However, it is important to acknowledge that genetically modified meat products derived from the genetic engineering of cultured cells will not be suitable for consumer acceptance and market viability. We are currently testing other non-genomic integrating delivery means such as modRNAs and chemical cocktails to induce myogenic transdifferentiation in fibroblasts. We believe the new non-genomic integration means would be compatible for the meat production and consumer acceptance.

      Please see lines 439-445.

      “As a proof-of-concept, we utilized the transgene method to achieve maximum myogenic induction and the final products still retain the foreign transgene fragment in the cells’ genome. It is therefore posing a risk of genetic modified food which is not suitable for mass production. In the next step, other non-transgenic means such as non-integrating vectors, chemical reprogramming, modified RNAs, and recombinant transgene removal techniques will be explored to develop transgene-free end products.”

      (2) While the authors cited one paper to state the properties and applications of GelMA hydrogel in tissue engineering and food processing, concerns/examples of the food safety with GelMA hydrogel are not discussed thoroughly.

      Thank you for pointing out this issue. We discussed the drawbacks of Gelma hydrogel applications in the meat production in the main text.

      GelMA-based hydrogels have shown great potential due to their biocompatibility and mechanical tenability. It is widely used in 3D cell culture and tissue engineering for regenerative medicine, but less common in food processing and agricultural applications. Due to its special photo-crosslinking properties, biocompatibility and degradability, it allows this material to be shaped into complex tissue structures by 3D printing or modelling. Many researchers have also used Gelma hydrogel as a scaffold for culture meat production (Jeong et al., 2022; Li et al., 2021; Park et al., 2023). Later research will carefully consider Gelma hydrogen as well as other types of scaffold biomaterials for cost-effective and food-safety compliant culture meat production (Bomkamp et al., 2022).

      Bomkamp, C., Skaalure, S. C., Fernando, G. F., Ben‐Arye, T., Swartz, E. W., & Specht, E. A. J. A. S. (2022). Scaffolding biomaterials for 3D cultivated meat: prospects and challenges. Advanced Science (Weinh), 9(3), 2102908.

      Jeong, D., Seo, J. W., Lee, H. G., Jung, W. K., Park, Y. H., & Bae, H. (2022). Efficient Myogenic/Adipogenic Transdifferentiation of Bovine Fibroblasts in a 3D Bioprinting System for Steak-Type Cultured Meat Production. Advanced Science (Weinh), 9(31), e2202877.

      Li, Y., Liu, W., Li, S., Zhang, M., Yang, F., & Wang, S. J. J. o. F. F. (2021). Porcine skeletal muscle tissue fabrication for cultured meat production using three-dimensional bioprinting technology. Journal of Future Foods, 1(1), 88-97.

      Park, S., Hong, Y., Park, S., Kim, W., Gwon, Y., Jang, K.-J., & Kim, J. J. J. o. B. E. (2023). Designing Highly Aligned Cultured Meat with Nanopatterns-Assisted Bio-Printed Fat Scaffolds. Journal of Biosystems Engineering, 48(4), 503-511.

      We discussed the drawbacks of GelMA hydrogel. Please see lines 445-457.

      “Another food safety concern in this study is the use of GelMA hydrogel for culture meat production. Due to its excellent biocompatibility and mechanical flexibility, GelMA-based hydrogel has demonstrated significant potential in scalable 3D cell culture for creating artificial tissue ranging in sizes from millimeters to centimeters. It is widely used in 3D cell culture and tissue engineering for regenerative medicine, but less common in food processing and agricultural applications. Due to its special photo-crosslinking properties, biocompatibility and degradability, it allows this material to be shaped into complex tissue structures by 3D printing or modelling. Many researchers have also used GelMA hydrogel as a scaffold for culture meat production (Jeong et al., 2022; Li et al., 2021; Park et al., 2023). Later research will carefully consider hydrogel as well as other types of scaffold biomaterials for cost-effective and food-safety compliant culture meat production (Bomkamp et al., 2022). ”

      (3) In Fig. 4C, there seems no significant difference in the Vimentin expression between Fibroblast_MyoD and Myofibroblast. The conclusion of "greatly reduced in the myogenic transdifferentiated cells" is overstated.

      Thanks for pointing out this mistake.

      We revised the wording accordingly. The vimentin expression was reduced in fibroblast_MyoD compare to the original fibroblast.

      Please see lines 231-233.

      “The fibroblast intermediate filament Vimentin (Tarbit et al., 2019) was abundantly expressed in the fibroblasts but reduced in the myogenic transdifferentiated cells (Figure 4C)”

      (4) The presented cell culture platform is only applied to chicken fibroblasts and should be tested in other species such as pigs and fish.

      Thank you for the suggestion.

      In this pilot cultured meat study, we utilized chicken embryonic fibroblasts. These specific cells were chosen for their near-immortal nature and robustness in culture, as well as the inducible myogenic capacity. In our previous experiments (Ren et al, Cell Reports, 2022, 40:111206), we have tested the myogenic transdifferentiation potential of fibroblasts from mice, pigs, and chickens, and observed varying efficiencies of myogenesis. It is important to note that fibroblast cells derived from different species, or even different tissues within the same species, would exhibit significant variations in their capacities for myogenic and adipogenic transdifferentiation.

      In this proof-of-concept study we used only one source of fibroblasts for testing culture meat production and confirmed the myogenic/adipogenic transdifferentiation could be manipulated as feasible means to precisely control muscle, fat and collagen content. We would expect that different origins of fibroblasts to display different transdifferentiation efficiencies and thus produce various muscle/fat ratios in meat mimics. That is beyond the scope of current study.

      Furthermore, we are also testing myogenic/adipogenic transdifferentiation of fibroblasts from pigs through non-genomic integration approaches. We believe only the non-transgene tools are viable solutions for culture meat production in the future. We added the species information in the discussion part.

      See lines 515-517.

      “This approach can be readily extrapolated to other species such as pigs and presents promising avenues for the large-scale production of customized and versatile meat products that may cater to varying consumer preferences.”

      Reviewer #2 (Public Review):

      The manuscript by Ma et al. tries to develop a protocol for cell-based meat production using chicken fibroblasts as three-dimensional (3D) muscle tissues with fat accumulation. The authors used genetically modified fibroblasts which can be forced to differentiate into muscle cells and formulated 3D tissues with these cells and a biphasic material (hydrogel). The degrees of muscle differentiation and lipid deposition in culture were determined by immunohistochemical, biochemical, and molecular biological evaluations. Notably, the protocol successfully achieved the process of myogenic and lipogenic stimulation in the 3D tissues.

      Overall, the study is reasonably designed and performed including adequate analysis. The manuscript is clearly written with well-supported figures. While it presents valuable results in the field of cultivated meat science and skeletal muscle biology, some critical concerns were identified. First, it is unclear whether some technical approaches were really the best choice for cell-based meat production. Next, more careful evaluations and justifications would be required to properly explain biological events in the results. These points include additional evaluations and considerations with regard to myocyte alignment and lipid accumulation in the differentiated 3D tissues. The present data are very suggestive in general, but further clarifications and arguments would properly support the findings and conclusions.

      Thanks for the reviewer’s comments. We have performed additional experiments and analysis to address the critical questions. We also revised the text extensively to clarify or discuss some of the concerns, such as the cell alignment and cellular distribution of intramuscular fat issues. We expect the revised data and text could adequately support the conclusions of the manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) In Figure 1, the authors used 1% chicken serum. Have the authors tested other lower concentrations? It will be interesting to see the lowest chicken serum concentrations in fibroblast culture and transdifferentiation;

      Thank you for your suggestion.

      Yes, we actually have tested the lower concentrations of serum, such as 1% FBS, and 0.5% chicken serum. However, the cells are not in a healthy state under these low levels of serum, as shown by the abnormal cell morphology and nearly no cell growth. Please see the revised Supplementary Figure S1D, in which we added the 1%FBS and 0.5% chicken serum data. Hence, the 1% chicken serum is optimal in our hands. We will also test other types of specialized serum-free medium in future experiments.

      (2) In Figure 2, the authors should quantify the fold expansion of fibroblasts cultured in 3D gel after 1, 3, 5, and 9 days since this data is important for future meat manufacturing. In addition, long-term expansion (e.g., 1 month) in 3D gel should also be shown;

      Thanks for the question. We have quantified the cell growth in 3D by measuring the PHK26 stained cells. Since the cells were implanted into the gel, they propagated exponentially from 1 day to 9 days. The cell proliferation data provide good reference for the future meat manufacturing (Figure 2D). We have tried the long-term expansion in 3D but failed to measure the cell proliferation. Because the 3D gel always collapsed during 12-15 days in cell culture for some unknown reasons, either the cells are grown too crowded to compromise the gel structure or the gel matrix itself is not strong enough for standing long-term. We believe the cells will grow well in long-term if we provide enough 3D attachment surface, since they grow indefinitely in 2D. We will testing different 3D matrix in the future.

      Please see the revised Figure 2D for the quantification of cells.

      (3) In Figure 3, please also show MyoD staining as it'll be interesting to see the expression of exogenous and endogenous MyoD expression after dox treatment. In Figure G, the hydrogel meat seems very small, please show/discuss the maximum size of hydrogel meat that may be achieved using this approach;

      Thanks for asking this information. We performed the immunostaining by using the anti-MyoD and anti-Flag to show the expression of all MyoD (exogenous and endogenous) and only exogenous MyoD after dox treatment. The MyoD and 3xFlag were fused in-frame in the transgene plasmid and thus the anti-Flag staining indicate the exogenous MyoD expression and anti-MyoD staining indicate the expression of exogenous and endogenous MyoD together.

      As shown in Figure S4, we found that almost 100% of cells were positive for MyoD staining and 60% of which expressed Flag, these data were consistent with our previous results (Ren et al., 2022, Cell Reports).

      Author response image 1.

      As for the size of the culture meat based on hydrogel, we discussed the possibilities in scalable production of hydrogel based whole-cut meat mimics. Please see lines 446-449. “Due to its excellent biocompatibility and mechanical flexibility, GelMA-based hydrogel has demonstrated significant potential in scalable 3D cell culture for creating artificial tissue ranging in sizes from millimeters to centimeters.”

      (4) In Figure 5 and Supplementary Figure 6, please quantify the Oil-red O+ fat cells in the 2D and 3D lipogenic induction. Also in Fig. 6B, quantify the oil-red+MHC+ cells;

      Thank you for this advice. We have quantified the oil-red O stained images in the result “Stimulate the fat deposition in chicken fibroblasts in 3D” using analysis software imageJ and the quantification of Oil-red O area was added to the corresponding graphs (Figure 5C, Figure S6C and S6F).

      However, due to the unique structure of the 3D matrix, many MHC+ and Oil Red O+ double-positive cells overlap with each other across different Z-stack layers in 3D. This overlap makes it challenging to accurately position and quantify the double-positive cells as the different layers interfere with each other.

      (5) In Figure 7, please show immunostaining images of collagen and other major ECMs;

      Thank you for this question. We have tried to stain collagen networks the by the Picrosirius Red staining but failed. Instead, we employed the laminin immunostainings to confirm that the ECM contents in the 3D matrix is increasing steadily during cell culturation.

      Please see Figure 7C. Lines 346-348.

      “the laminin protein content was accumulated and increased steadily during 3D culturation (Figure 7C) “

      (6) In Figure 8, please show hierarchical clustering analysis of whole transcriptomes of 3D_fibroblasts, 3D_MyoD, 3D+FI, and 3D_MyoD+FI. A Venn Diagram showing the overlap and distinct gene expression among these groups is also appreciated.

      Thank you for the suggestion.

      We added the hierarchical clustering analysis of whole transcriptomes of 3D_fibroblasts, 3D_MyoD, 3D+FI, and 3D_MyoD+FI using Euclidean distance with ward.D cluster method. Please see Figure 8B. The result showed that these groups formed two large clusters, in which the 3D+FI clustered separately and the 3D_fibroblasts, 3D_MyoD and 3D_MyoD+FI were more similar. Please see Figure 8B.

      As the reviewer suggested, we also compared the transcriptomes of 3D_MyoD, 3D+FI, and 3D_MyoD+FI to the original 3D_fibroblasts to identify differentially expression genes (DEG) and then analyzed the overlap and distinct DEGs respectively. As shown in Figure 8D, the Venn Diagram showed that majority of DEG from 3D_MyoD+FI (3D_MyoD+FI versus 3D_fibroblasts) are overlapped with 3D_MyoD and 3D+FI, indicating that 3D_MyoD+FI are compatible with myogenic and adipogenic function.

      Please see the revised Figure 8.

      Reviewer #2 (Recommendations For The Authors):

      In this study, the authors demonstrated a new approach for cultivated meat production using chicken fibroblasts. Specifically, the cells were cultured as 3D and induced muscle differentiation and lipid deposition. The manuscript contains a good set of data, which would be valuable to researchers in the fields of both cell-based meat and skeletal muscle biology. From the aspect of cultivated meat science, the rationale behind the idea is understandable, but it remains unclear whether the proposed approach was really the best choice to achieve their final goal. On the other hand, when we read this manuscript as a paper in skeletal muscle biology, the overall approach was not innovative enough and several uncertain issues remain. The authors should add more sufficient justifications, arguments, and discussions.

      (1) When considering their goal to produce edible meat products, the current approach has some concerns. First, there are issues with the approach used for the induction of myogenesis by MyoD transgene. This makes the end products GMO foods, which are not easily acceptable to a wide range of consumers. Next, the hydrogel was used for 3D tissue formation, but it is unclear whether this matrix type is edible, safe, and bio-comparable for cell-based meat production. The authors already discussed these points by excusing that the current work remains proof-of-concept. However, more careful considerations and justifications would be required.

      Thank you for the suggestion.

      We acknowledge that the current transgene myogenic induction method is not suitable for mass production of culture meat because of the GMO food concerns. We utilized the MyoD transgene as the means of myogenic transdifferentiation at the first place, because of the ease of genetic manipulation and maximum efficiency. We are current testing non-genomic integration tools such as chemical cocktails and modified RNAs for myogenic transdifferentiation.

      When it comes to the applications of hydrogel in the food industry, certain types of hybrid hydrogels, such as those made from pectin or sodium polyacrylate, are not only edible but also safe for consumption. While GelMA hydrogel is typically utilized in tissue engineering and subsequent implantation in patients for therapeutic regenerative medicine purposes, it has not been commonly employed in food processing. In this study, we cultivated cells within GelMA hydrogel due to its durability and ease of use in cell culture. Moving forward, we plan to investigate alternative types of matrices to develop cultured meat suitable for food applications.

      We have now described the GMO and hydrogel drawbacks in the discussion part. Please see lines 439-457.

      “As a proof-of-concept, we utilized the transgene method to achieve maximum myogenic induction and the final products still retain the foreign transgene fragment in the cells’ genome. It is therefore posing a risk of genetic modified food which is not suitable for mass production. In the next step, other non-transgenic means such as non-integrating vectors, chemical reprogramming, modified RNAs, and recombinant transgene removal techniques will be explored to develop transgene-free end products. Another food safety concern in this study is the use of GelMA hydrogel for culture meat production. Due to its excellent biocompatibility and mechanical flexibility, GelMA-based hydrogel has demonstrated significant potential in scalable 3D cell culture for creating artificial tissue ranging in sizes from millimeters to centimeters. It is widely used in 3D cell culture and tissue engineering for regenerative medicine, but less common in food processing and agricultural applications. Due to its special photo-crosslinking properties, biocompatibility and degradability, it allows this material to be shaped into complex tissue structures by 3D printing or modelling. Many researchers have also used GelMA hydrogel as a scaffold for culture meat production (Jeong et al., 2022; Li et al., 2021; Park et al., 2023). Later research will carefully consider hydrogel as well as other types of scaffold biomaterials for cost-effective and food-safety compliant culture meat production (Bomkamp et al., 2022). ”

      (2) From the view of skeletal muscle biology, the approaches (MyoD overexpression, hydrogel-based 3D tissue formation, and lipogenic induction) have already been tested.

      Thank you for the insightful comments from the perspective of skeletal muscle cell biology. We totally agree that the current approaches including MyoD overexpression, 3D cell culture and lipogenic induction, were routine experiments in muscle cell biology. However, we want to highlight that utilization of these classical and robust muscle cell approaches, combine with the unique advantages of fibroblast cells (easily accessible, immortalized, cost-effective, ...) would provide a novel and practical avenue for culture meat production. We stated these issues in the revised manuscript in the discussion part.

      Please see lines 511-515.

      “In conclusion, we have effectively utilized immortalized chicken fibroblasts in conjunction with classical myogenic/adipogenic transdifferentiation approaches within 3D hydrogel to establish a cultured meat model. This model allows for the precise regulation of the synthesis of key components found in conventional meat, including muscle, fat, and ECM.”

      (3) The common emphasis in this manuscript is to use the advantages of 3D culture for tissue differentiation. As the authors described, skeletal muscle is a highly aligned tissue. In this study, some results successfully demonstrated advantages in terms of myocyte alignment, maturation, and lipid deposition. However, the current results cannot address whether the entire 3D tissues maintained these advantageous characteristics or not. Because the method for 3D formation does not have any additional modifications to make the cells aligned, like micropatterning, scaffolding, or bioprinting.

      Thank you for the suggestion.

      We agree with the reviewer that the skeletal muscle tissues are composed of well organized, directional bundles of fibers, and the cell alignment would greatly affect the meat tenderness and sensory properties. Therefore, it is a desired attribute if the cells in the culture meat matrix could be aligned together. But this alignment would require sophisticated biomaterial engineering mainly involved in the scaffold manipulation which is beyond the scope of this study. The hydrogel used in this study formed different sizes of pores at random directions and we would expect the embedded cells to be totally non-directional. But we still found localized cell alignments in some parts of the gel matrix which confirming the cell-cell interactions, please see figure 3D. We describe this feature in the results part. In the future, we will be testing the application of physical or electrical stimulations to the matrix to see if we can align the cells better to make all the muscle cells in the whole matrix to align together.

      Please see lines 186-190.

      “The separate XY axis views of the orthogonal projections at different depths (Figure 3D) and a multi-angle video (Supplementary Video 2) also showed the several myotubes were aligned together. Nevertheless, many myotubes were oriented in different directions, preventing the entire matrix from aligning in one direction.”

      (4) In the skeletal muscle, fat accumulation mainly occurs in adipocytes between myocytes. This means that "intra-" muscular fat deposition is identified. However, lipid deposition within myocytes also occurred in this preparation (Supplementary Figure 7C). This situation is not "intra-" muscular accumulation, which sounds different from what is going on in normal skeletal muscle tissues. Please explain what happened and what biological situations accounted for this. Also, the authors should clarify better how lipogenesis was induced in the 3D tissues, such as cell types (transdifferentiated myocytes, remained/un-transdifferentiated fibroblasts, or both).

      Thank you for the very insightful question. We have revised the corresponding text to further explain the intramuscular fat distribution in different cell types in culture meat.

      We totally agree with the reviewer that intramuscular fat accumulation may occur mainly in the intramuscular adipocytes. However, under some pathological and physiological conditions in human and animals, the lipid droplets were also abundantly observed inside myofibers (intramyocellular lipids within myofiber cytoplasm). For instance, high intramyocellular lipid content was found in insulin resistance patients and paradoxically in endurance trained athletes, (doi.org/10.1016/j.tem.2012.05.009), as well as in some farm animals under intensive selective breeding (doi:10.2174/1876142910901010059). In the current study, with the Oil Red O staining of lipid droplets, we identified lipid deposition in both the transdifferentiated myocytes and the remained un-transdifferentiated fibroblasts in the culture meat. This lipid distribution pattern is comparable to the intramuscular fat storage pattern observed in some human and animals, in which fat accumulation occurs in both myofibers (intramyocellular lipids) and intramuscular adipocyte cells (extramyocellular lipids) which reside within the muscle tissue bundle but between myofibers. We reason that current adipogenic induction treatment caused lipogenesis in both the MyoD-transdifferentiated cells and un-transdifferentiated fibroblasts. It is difficult to compare the absolute amount of lipids between these two types of cells via the Oil Red O staining. Also, it is almost impossible to separate these two types of cells from the 3D meat mimics. Thus, we can only confirm the lipid deposition occurs in both transdifferentiated myocytes and un-transdifferentiated fibroblasts, but without knowing which one is dominant and the major contributor to the intramuscular fat content in the culture meat.

      Please see lines 486-492.

      “In this study, the deposition of fat in the myotubes/myofibers facilitated the storage of significant lipid quantities in transdifferentiated muscle cells, known as intramyocellular lipids. Additionally, we observed Oil Red O staining in the remaining un-transdifferentiated fibroblasts, resembling cells of intramuscular adipocytes (extramyocellular lipids) found within muscle tissue. Hence, current adipogenic induction treatment caused lipogenesis in both the MyoD-transdifferentiated cells and un-transdifferentiated fibroblasts.”

    1. Author response:

      Reviewer #1 (Public Review):

      Given that this is one of the first studies to report the mapping of longitudinal intactness of proviral genomes in the globally dominant subtype C, the manuscript would benefit from placing these findings in the context of what has been reported in other populations, for example, how decay rates of intact and defective genomes compare with that of other subtypes where known.

      Most published studies are from men living with HIV-1 subtype B and the studies are not from the hyperacute infection phase and therefore a direct head-to-head comparison with the FRESH study is difficult. However, we can cite/highlight and contrast our study with a few examples from other acute infection studies as follows.

      (1) Peluso et. al., JCI, 2020, showed that in Caucasian men (SCOPE study), with subtype B infection, initiating ART during chronic infection virus intact genomes decayed at a rate of 15.7% per year, while defective genomes decayed at a rate of 4% per year. In our study we showed that in chronic treated participants genomes decreased at a rate of 25% (intact) and 3% (defective) per month for the first 6 months of treatment.

      (2) White et. al., PNAS, 2021, demonstrated that in a cohort of African, white and mixed-race American men treated during acute infection, the rate of decay of intact viral genomes in the first phase of decay was <0.3 logs copies in the first 2-3 weeks following ART initiation. In the FRESH cohort our data from acute treated participants shows a comparable decay rate of 0.31 log copies per month for virus intact genomes.

      (3) A study in Thailand (Leyre et. al., 2020, Science Translational Medicine), of predominantly HIV-1 CRF01-AE subtype compared HIV-reservoir levels in participants starting ART at the earliest stages of acute HIV infection (in the RV254/SEARCH 010 cohort) and participants initiating ART during chronic infection (in SEARCH 011 and RV304/SEARCH 013 cohorts). In keeping with our study, they showed that the frequency of infected cells with integrated HIV DNA remained stable in participants who initiated ART during chronic infection, while there was a sharp decay in these infected cells in all acutely treated individuals during the first 12 weeks of therapy. Rates of decay were not provided and therefore a direct comparison with our data from the FRESH cohort is not possible.

      (4) A study by Bruner et. al., Nat. Med. 2016, described the composition of proviral populations in acute treated (within 100 days) and chronic treated (>180 days), predominantly male subtype B cohort. In comparison to the FRESH chronic treated group, they showed that in chronic treated infection 98% (87% in FRESH) of viral genomes were defective, 80% (60% in FRESH) had large internal deletions and 14% (31% in FRESH) were hypermutated. In acute treated 93% (48% in FRESH) were defective and 35% (7%) in FRESH were hypermutated. The differences frequency of hypermutations could be explained by the differences in timing of infection specifically in the acute treated groups were FRESH participants initiate ART at a median of 1 day after infection. It is also possible that sex- or race-based differences in immunological factors that impact the reservoir may play a role.

      This study also showed that large deletions are non-random and occur at hotspots in the HIV-1 genome. The design of the subtype B IPDA assay (Bruner et. al., Nature, 2019) is based on optimal discrimination between intact and deleted sequences - obtained with a 5′ amplicon in the Ψ region and a 3′ amplicon in Envelope. This suggest that Envelope is a hotspot for large while deletions in Ψ is the site of frequent small deletions and is included in larger 5′ deletions. In the FRESH cohort of HIV-1 subtype C, genome deletions were most frequently observed between Integrase and Envelope relative to Gag (p<0.0001–0.001).

      (5) In 2017, Heiner et. al., in Cell Rep, also described genetic characteristics of the latent HIV-1 reservoir in 3 acute treated and 3 chronic treated male study participants with subtype B HIV. Their data was similar to Bruner et. al. above showing proportions of intact proviruses in participants who initiated therapy during acute/early infection at 6% (94% defective) and chronic infection at 3% (97% defective). In contrast the frequencies in FRESH in acute treated were 52% intact and 48% defective and in chronic infection were 13% intact and 87% defective. These differences could be attributed to the timing of treatment initiation where in the aforementioned study early treatment ranged from 0.6-3.4 months after infection.

      Indeed, in the abstract, the authors indicate that treatment was initiated before the peak. The use of the term 'peak' viremia in the hyperacute-treated group could perhaps be replaced with 'highest recorded viral load'. The statistical comparison of this measure in the two groups is perhaps more relevant with regards to viral burden over time or area under the curve viral load as these are previously reported as correlates of reservoir size.

      We will edit the manuscript text to describe the term peak viraemia in hyperacute treated participants more clearly. We will perform an analysis of area under the curve to compare viral burden in the two study groups.

      Reviewer #2 (Public Review):

      Other factors also deserve consideration and include age, and environment (e.g. other comorbidities and coinfections.)

      We agree that these factors could play a role however participants in this study were of similar age (18-23), and information on co-morbidities and coinfections are not known.

      Reviewer #3 (Public Review):

      The word reservoir should not be used to describe proviral DNA soon after ART initiation. It is generally agreed upon that there is still HIV DNA from actively infected cells (phase 1 & 2 decay of RNA) during the first 6-12 months of ART. Only after a full year of uninterrupted ART is it really safe to label intact proviral HIV DNA as an approximation of the reservoir. This should be amended throughout.

      We agree and will amend the use of the word reservoir to only refer to the proviral DNA load after full viral suppression, i.e., during undetectable viral load.

      All raw, individualized data should be made available for modelers and statisticians. It would be very nice to see the RNA and DNA data presented in a supplementary figure by an individual to get a better grasp of intra-host kinetics.

      We will make all relevant data available and accessible to interested parties.

      The legend of Supplementary Figure 2 should list when samples were taken.

      The data in this figure represents an overall analysis of all sequences available for each participant at all time points. This will be explained more clearly in the manuscript and added to the figure legend.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This is a follow-up study to the authors' previous eLife report about the roles of an alpha-arrestin called protein thioredoxin interacting protein (Txnip) in cone photoreceptors and in the retinal pigment epithelium. The findings are important because they provide new information about the mechanism of glucose and lactate transport to cone photoreceptors and because they may become the basis for therapies for retinal degenerative diseases.

      Strengths:

      Overall, the study is carefully done and, although the analysis is fairly comprehensive with many different versions of the protein analyzed, it is clearly enough described to follow. Figure 4 greatly facilitated my ability to follow, understand and interpret the study. The authors have appropriately addressed a few concerns about statistical significance and the relationship between their findings and previous studies of the possible roles of Txnip on GLUT1 expression and localization on the surfaces of RPE cells.

      We are delighted that Reviewer #1 is satisfied with this revised version.

      Reviewer #2 (Public Review):

      The hard work of the authors is much appreciated. With overexpression of a-arrestin Txnip in RPE, cones and the combined respectively, the authors show a potential gene agnostic treatment that can be applied to retinitis pigmentosa. Furthermore, since Txnip is related to multiple intracellular signaling pathway, this study is of value for research in the mechanism of secondary cone dystrophy as well.

      There are a few areas in which the article may be improved through further analysis and application of the data, as well as some adjustments that should be made in to clarify specific points in the article.

      Strengths

      • The follow-up study builds on innovative ground by exploring the impact of TxnipC247S and its combination with HSP90AB1 knockdown on cone survival, offering novel therapeutic pathways.

      • Testing of different Txnip deletion mutants provides a nuanced understanding of its functional domains, contributing valuable insights into the mechanism of action in RP treatment.

      • The findings regarding GLUT1 clearance and the differential effects of Txnip mutants on cone and RPE cells lay the groundwork for targeted gene therapy in RP.

      Weaknesses

      • The focus on specific mutants and overexpression systems might overlook broader implications of Txnip interactions and its variants in the wider context of retinal degeneration.

      Txnip is not expressed in WT or RP cones, as described in our previous study (Xue et al., 2021, eLife), so we could not perform loss of function assays. We thus chose overexpression, and assayed various alleles, based upon the literature, as we describe in our manuscript.

      • The study's reliance on cell count and GLUT1 expression as primary outcomes misses an opportunity to include functional assessments of vision or retinal health, which would strengthen the clinical relevance.

      In our previous study, we demonstrated that the optomotor response of Txnip-treated RP mice improved (Xue et al., 2021, eLife). Also, as described in our previous Txnip study, as well as an independent study (Xue et al., 2021, eLife; Xue et al., 2023, PNAS), ERG assays of Txnip-treated RP cones were no different than the controls. Other therapies that prolong RP cone survival and the optomotor response in our lab also failed to save the ERG, suggesting that there are other pathways that need to be addressed, e.g. the visual cycle. A combination therapy addressing multiple problems is one of our goals.

      • The paper could benefit from a deeper exploration of why certain treatments (like Best1-146 Txnip.C247S) do not lead to cone rescue and the potential for these approaches to exacerbate disease phenotypes through glucose shortages.

      This system is more complicated than we currently understand, and more work needs to be done.

      • Minor inconsistencies, such as the missing space in text references and the need for clarification on data representation (retinas vs. mice), should be addressed for clarity and accuracy.

      The missing spaces are added.

      We described the strategy of injecting the same mouse in each eye, one eye with control and one with the experimental vector. However, the following sentence has been added to the Materials and Methods to better assist the reader:

      “In almost all experiments, other than as noted, one eye of the mouse was treated with control (AAV8-RedO-H2BGFP, 2.5 × 108 vg/eye), and the other eye was treated with the experimental vector plus AAV8-RedO-H2BGFP, 2.5 × 108 vg/eye.”

      • The observation of promoter leakage and potential vector tropism issues raise questions about the specificity and efficiency of the gene delivery system, necessitating further discussion and validation.

      The following sentences have been added to the Results. We do not think this phenomenon affects the practice of the experiments or the interpretation of the results in this study.

      “To enable automated cone counting and trace the infection, we co-injected an AAV (AAV8-RedO-H2BGFP-WPRE-bGHpA) encoding an allele of GFP fused to histone 2B (H2BGFP), which localized to the nucleus. As the red opsin promoter was used to express this gene, H2BGFP was seen in cone nuclei, but not in the RPE, if AAV8-RedO-H2BGFP-WPRE-bGHpA was injected alone. However, when an AAV that expressed in the RPE, i.e. AAV8-Best1-Sv40intron-(Gene)-WPRE-bGHpA, was co-injected with AAV8-RedO-H2BGFP-WPRE-bGHpA, H2BGFP was expressed in the RPE, along with expression in cones (Figure 2A). We speculate that this is due to concatenation or recombination of the two genomes, such that the H2BGFP comes under the control of the RPE promoter. This may be due to the high copy number of AAV in the RPE, as it did not happen in the reverse combination, i.e. AAV with an RPE promoter driving GFP and a cone promoter driving another gene, perhaps due to the observation that the AAV genome copy number is »10 fold lower in cones than in the RPE (Wang et al., 2020).”

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review):

      Summary:

      This paper provides a straightforward mechanism of how mycobacterial cAMP level is increased under stressful conditions and shows that the increase is important for the survival of the bacterium in animal hosts. The cAMP level is increased by decreasing the expression of an enzyme that degrades cAMP.

      We thank the reviewer for these extremely encouraging comments.

      Strengths:

      The paper shows that under different stresses the response regulator PhoP represses a phosphodiesterase (PDE) that degrades cAMP specifically. Identification of PhoP as a regulator of cAMP is significant progress in understanding Mtb pathogenesis, as increase in cAMP apparently increases bacterial survival upon infection. On the practical side, reduction of cAMP by increasing PDE can be a means to attenuate the growth of the bacilli. The results have wider implications since PhoP is implicated in controlling diverse mycobacterial stress responses and many bacterial pathogens modulate host cell cAMP level. The results here are straightforward, internally consistent, and of both theoretical and applied interests. The results also open considerable future work, especially how increases in cAMP level help to increase survival of the pathogen.

      Weaknesses:

      It is not clear whether PhoP-PDE Rv0805 is the only pathway to regulate cAMP level under stress.

      Reviewer 1 (Recommendations for the authors):

      (1) L.1: "maintenance of" or 'regulating'- I thought change in cAMP level upon stress is the whole point of the paper. Also, can replace "intracellular survival" with 'survival in host macrophages' if you want to be more specific.

      We agree with the reviewer, and therefore, we have now replaced “maintenance of” with “regulating cAMP level” in the title. However, we feel more comfortable with “intracellular survival” rather than being more specific with ‘survival in host macrophages’ as we have also shown animal experiments to demonstrate ‘in vivo’ effect in mice lung and spleen.

      (2) L.26: ---requires the bacterial virulence regulator –

      The suggested change has been made to the text.

      (3) L.30: Replace "phoP locus since the" with 'PhoP since this'. (The product, not the locus, is the regulator). The same comment for l.113.

      We agree with the reviewer. The suggested changes have been made to the text.

      (4) L.31: Change represtsor to repressor.

      We are sorry for the embarrassing spelling mistake. We have rectified the mistake in the revised version.

      (5) L.32: "hydrolytically degrades" or hydrolyses? (lytic and degrade sound like tautology). Same comment for l.117.

      We agree. The suggested change has been made to the text in both places of the revised manuscript.

      (6) L.35: I would also suggest changing "intra-mycobacterial" to 'intra bacterial' because you are talking about one bacterium here. The same change is recommended in l.29.

      Following reviewer’s recommendation, we have made the changes in the revised manuscript.

      (7) L.37: bacillus unless use of the plural form is the norm in the field.

      We agree. The suggested change has been made to the text.

      (8) L.43: Delete "intracellular" and change "intracellular" to host in l.44.

      The suggested changes have been made to the text.

      (9) L.66: --that a burst--

      We have corrected the mistake in the revised manuscript.

      (10) L.76: Receptor or receptor?

      We have corrected the mistake in the revised manuscript.

      (11) L.86: -- mechanisms of regulation of mycobacterial cAMP level. (homeostasis needs to be introduced first, and not used in the concluding statement for the first time).

      The suggested changes have been made to the text.

      (12) L.96: "essential" or 'a requirement'. (reduction is not the same as elimination)

      We understand the reviewer’s concern. However, several studies have independently established that phoPR remains an essential requirement for mycobacterial virulence.

      (13) L.97: Moreover, a mutant

      The suggested change has been made to the text.

      (14) L.113: --locus since PhoP has been –

      The suggested change has been made to the text.

      (15) L.119: mechanism or manner? (you are stating a fact, not a mechanism)

      We agree. We have now replaced ‘mechanism’ with ‘manner’ in the revised manuscript.

      (16) L.130: --lacking copies of both phoP and phoR (I am assuming you don't have two copies of each gene)

      We understand the reviewer’s concern. For better clarity, we have now clearly mentioned that the phoPR-KO mutant lacks both the single copies of phoP and phoR genes.

      (17) L.156: Indicate why GroEL2? - cells as another cytoplasmic protein, GroEL2 was also undetectable

      We have now mentioned it in the secretion experiments that mycobacterial cells did not undergo autolysis. To prove this point, we have used cytoplasmic GroEL2 as a marker protein. The absence of detectable GroEL2 in the culture filtrates (CFs) suggests absence of autolysis. To this end, we have modified the sentence in the revised manuscript (duplicated below):

      “Fig. 1C confirms absence of autolysis of mycobacterial cells as GroEL2, a cytoplasmic protein, was undetectable in the culture filtrates (CF).”

      (18) L.266: May delete "Together". Start with These data--, which would draw more attention to integrated view. In l.268-270, a reminder that intracellular pH is acidic in the normal course would enhance the physiological significance of the present results.

      We agree. We have made the suggested changes to the text. In view of the second comment of the reviewer, we have modified the text (duplicated below):

      “These data represent an integrated view of our results suggesting that PhoP-dependant repression of rv0805 regulates intra-mycobacterial cAMP level. In keeping with these results, activated PhoP under acidic pH conditions significantly represses rv0805, and intracellular mycobacteria most likely utilizes a higher level of cAMP to effectively mitigate stress for survival under hostile environment including acidic pH of the phagosome.”

      (19) L.272: Delete "and intracellular survival" (?) (I am assuming the survival is due to stress tolerance; also the section talks about stress only). No period in l.273.

      Following reviewer’s recommendations, the suggested changes have been made to the text.

      (20) L.295: Start the sentence thus: It appears that at least one of ---. (This would put more emphasis on the inference)

      We agree. We have now incorporated the recommended changes in the revised version.

      (21) L.301: No parenthesis.

      The parenthesis has been removed in the revised manuscript.

      (22) L.306: Together already implies these. Either delete Together (which I would prefer) or say 'Together, the results suggest that strains expressing wild type and mutant----properties, and the results are

      We agree. We have now deleted ‘Together’ in the revised manuscript.

      (23) L.311: These results support our view that higher---- (to avoid repetition of l.266)

      We agree. We have now incorporated the suggested change in the revised manuscript.

      (24) L.316: Using or with?

      We think “with” goes well with the statement.

      (25) L.329: Rephrase thus: Effect of intra-bacterial cAMP level on in vivo--

      The recommended change has been made to the text.

      (26) L.333: I would use ~, if you want to indicate about.

      We agree. We have now used ‘~’ in the revised version. Changes were incorporated in lines 328, 330 and 333 of the revised manuscript.

      (27) L.350: Change "somewhat functionally" to phenotypically?

      We thank the reviewer for this suggestion. We have changed “somewhat functionally” to “phenotypically” in the revised manuscript.

      (28) L.361: Change "is connected to" to 'regulates'.

      The suggested change has been made to the text.

      (29) L.365: ACs (to be parallel with PDEs)

      We agree. The suggested change has been made to the text.

      (30) L.366: delete "very" (let the readers decide how recent from the reference date).

      The suggested change has been made to the text.

      (31) L.382: level remained unknown before the present study.

      The recommended change has been made to the text.

      (32) L.399: add at the end of the sentence 'under stress'. Also, represent, not represents.

      The recommended changes have been made to the text.

      (33) L.560 and 571: Section headings formatted differently from the rest. Similar problem in l.900.

      We have rectified the issue and all of the section headings are now formatted in the same style.

      Reviewer #2 (Public Review):

      Summary:

      In the manuscript, the authors have presented new mechanistic details to show how intracellular cAMP levels are maintained linked to the phosphodiesterase enzyme which in turn is controlled by PhoP. Later, they showed the physiological relevance linked to altered cAMP concentrations.

      Strengths:

      Well thought out experiments. The authors carefully planned the experiments well to uncover the molecular aspects of it diligently.

      We thank the reviewer for these extremely encouraging comments.

      Weaknesses:

      Some fresh queries were made based on the author's previous responses and hope to get satisfactory answers this time.

      We provide below a point-by-point response to the fresh queries.

      (2) Line 134: please describe the complementation strain features as it is mentioned for the first time (plasmid, copy number, promoter etc.) in the manuscript. Especially under NO stress what could be the authors' justification regarding the high cAMP concentration in the complementation strain?

      As recommended by the reviewer, the details of construction of the complemented strain have been incorporated in the 'Materials and Methods' section of the revised manuscript (duplicated below): "To complement phoPR expression, pSM607 containing a 3.6-kb DNA fragment of M. tuberculosis phoPR including 200-bp phoP promoter region, a hygromycin resistance cassette, attP site and the gene encoding phage L5 integrase, as detailed earlier (Walters et al., 2006) was used to transform phoPR mutant to integrate at the L5 attB site.

      " To address the reviewer's other concern, we have now included the following sentence in the 'Results' section of the revised manuscript (duplicated below): "A higher cAMP level in the complemented strain under NO stress is possibly attributable to reproducibly higher phoP expression in the complemented mutant under specific stress condition (Khan et al., 2022)."

      Reference: Khan et al. (2022) Convergence of two global regulators to coordinate expression of essential virulence determinants of Mycobacterium tuberculosis. eLife 2022, 11:e80965.

      New query: The complemented gene (in pSM607 plasmid) becomes a single copy after chromosomal integration, so it should ideally behave like a WT strain. How could authors still justify the high cAMP concentration under NO stress?

      We agree with the reviewer. We are unable to provide a cogent justification regarding this result. We speculate that PhoP is strikingly activated under NO stress by a non-canonical mechanism and strongly represses rv0805 expression. As a result, there is a significantly higher cAMP concentration in case of the complemented mutant under NO stress.

      (13) Line 292: There is a difference between red and green bars. Authors should do statistical analysis and then comment on whether overexpression of WT and mutant pde are different or similar, to me they are different; also, explain why the WT-Rv0805 strain is different than the phoPR-KO strain in the context of cell wall metabolism.

      As recommended by the reviewer, we have now included statistical significance of the data in the revised version, and modified the text accordingly in the manuscript.

      New query: Authors are asked to put a statistical significance test between WT-Rv0805 and WT-Rv0805M.

      We have included it in the modified figure. Also, to explain it we incorporated new text in the legend to Fig. 4C of the revised manuscript (duplicated below):

      “Note that similar to phoPR-KO, WT-Rv0805 shows a comparably higher sensitivity to CHP relative to WT bacilli. However, WT-Rv0805M expressing a mutant Rv0805, shows a significantly lower sensitivity to CHP relative to WT-Rv0805, as measured by the corresponding CFU values.”

      (14) Line 299-303: Authors should explain how the colocalization % are calculated. Also, in the figure 4D merge panel please highlight the difference.

      As suggested by the reviewer, we have now explained the methodology used to calculate percent colocalization in greater details. Also, we have modified Figure 4D to highlight the difference between samples shown in merge panel. Please see our response to comment # 33 from the Reviewer 1.

      New query: In the figure legend it should be mentioned that the white arrow indicates non-co-localization which is visibly higher in WT and WT Rvo805M.

      We thank the reviewer for this very important suggestion. We have now included the following text in the legend to Fig. 4D of the revised manuscript.

      “White arrowheads in the merge panels indicate non-colocalization, which remains higher in WT-H37Rv and WT-Rv0805M relative to phoPR-KO or WT-Rv0805.”

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      Through an unbiased genomewide KO screen, the authors identified loss of DBT to suppress MG132-mediated death of cultured RPE cells. Further analyses suggested that DBT reduces ubiquitinated proteins by promoting autophagy. Mechanistic studies indicated that DBT loss promotes autophagy via AMPK and its downstream ULK and mTOR signaling. Furthermore, loss of DBT suppresses polyglutamine- or TDP-43-mediated cytotoxicity and/or neurodegeneration in fly models. Finally, the authors showed that DBT proteins are increased in ALS patient tissues, compared to non-neurological controls.

      Strengths:

      The idea is novel, the evidence is mostly convincing, and the data are clean. The findings have implications for human diseases.

      Reply: We thank the reviewer for the supportive comments.

      Weaknesses:

      More experiments are needed to establish the connections between DBT and autophagy. The mechanistic studies are somewhat biased, and it's unclear whether the same mechanism (i.e., AMPK-->mTOR) can be applied to TDP-43-mediated neurodegeneration. Also, some data interpretation has to be more accurate.

      Reply: We thank the reviewer for raising these questions, and we have provided additional evidence in the revised manuscript to support the model that DBTKO can enhance autophagy and induce resistance to TDP-43-associated toxicity. This is described in greater detail below.

      (1) To provide further evidence for the connection between DBT and autophagy, we have introduced additional controls. For the additional controls, we have included the AMPK shRNA and drug treatment controls (Fig.4D, Fig.S4B), and these results suggest that reducing the AMPK level renders DBTKO cells sensitive to MG132 toxicity. We also added the TSC1 shRNA and mTOR agonist treatment controls (Fig.5E, Fig.S4G), and the results show that increasing mTOR levels also make the DBTKO cells sensitive to MG132.

      (2) To further confirm the roles of AMPK and mTOR in DBTKO cells, we introduced the AMPK agonist (EX229) and mTOR inhibitors (RAD001 and AZD8055) in co-treatment experiments with MG132 and then measured cell survival (Fig.S4D, S4G). The results indicate that promoting AMPK activation or inhibiting mTOR can enhance cell resistance to MG132-induced toxicity.

      (3) Additionally, we included the overexpression and rescue experiments for DBT and analyzed the AMPK-ULK1 signaling in WT RPE1 and DBTKO cells (Fig.S5D, S5E). The results indicate that the increase of DBT can significantly reduce the phosphorylation of AMPK/ULK1 and the levels of the autophagy marker LC3II. Together, these results suggest that DBT plays an important role in autophagy.

      (4) We had shown in the original version of the manuscript that DBTKO renders cells more resistant to TDP-43-associated toxicity, similar to the tolerance of MG132-induced toxicity. Here we further show that expression of TDP-43M337V enhances the phosphorylation of AMPK in the DBTKO cells (Fig. S7A), similar to the effect of the MG132 treatment. These results suggest that the resistance of DBTKO cells to MG132 or TDP-43-assoicated toxicity shares a similar mechanism of activated the AMPK signaling.

      Reviewer #2 (Public Review):

      Summary:

      Hwang, Ran-Der et al utilized a CRISPR-Cas9 knockout in human retinal pigment epithelium (RPE1) cells to evaluate for suppressors of toxicity by the proteasome inhibitor MG132 and identified that knockout of dihydrolipoamide branched chain transacylase E2 (DBT) suppressed cell death. They show that DBT knockout in RPE1 cells does not alter proteasome or autophagy function at baseline. However, with MG132 treatment, they show a reduction in ubiquitinated proteins but with no change in proteasome function. Instead, they show that DBT knockout cells treated with MG132 have improved autophagy flux compared to wildtype cells treated with MG132. They show that MG132 treatment decreases ATP/ADP ratios to a greater extent in DBT knockout cells, and in accordance causes activation of AMPK. They then show downstream altered autophagy signaling in DBT knockout cells treated with MG132 compared to wild-type cells treated with MG132. Then they express the ALS mutant TDP43 M337 or expanded polyglutamine repeats to model Huntington's disease and show that knockdown of DBT improves cell survival in RPE1 cells with improved autophagic flux. They also utilize a Drosophila model and show that utilizing either a RNAi or CRISPR-Cas9 knockout of DBT improves eye pigment in TDP43M337V and polyglutamine repeat-expressing transgenic flies. Finally, they show evidence for increased DBT in postmortem spinal cord tissue from patients with ALS via both immunoblotting and immunofluorescence.

      Strengths:

      This is a mechanistic and well-designed paper that identifies DBT as a novel regulator of proteotoxicity via activating autophagy in the setting of proteasome inhibition. Major strengths include careful delineation of a mechanistic pathway to define how DBT is protective. These conclusions are largely justified, but additional experiments and information would be useful to clarify and extend these conclusions.

      Reply: We thank the reviewer for the supportive comments.

      Weaknesses:

      The large majority of the experiments are evaluating suppression of drug (MG132) toxicity in an in vitro epithelial cell line, so the generalizability to disease is unclear. Indeed, MG132 itself has been shown to modulate autophagy, and off-target effects of MG132 are not addressed. While this paper is strengthened by the inclusion of mouse-induced motor neurons, Drosophila models, and postmortem tissue, the putative mechanisms are minimally evaluated in these models.

      Also, this effect is only seen with MG132 treatment, at a dose that causes markedly impaired cell survival. In this setting, it is certainly plausible that changes in autophagy could be the result of differences in cell survival, as opposed to an underlying mechanism for cell survival. Additional controls would be useful to increase confidence that DBT knockdown is protective via modulation of autophagy.

      While the authors report increased DBT in postmortem ALS tissue as suggestive that DBT may modulate proteotoxicity in neurodegeneration, this point would be better supported with the evaluation of overexpression of DBT in their model.

      Reply: We appreciate the reviewer for raising these questions, and we have provided further evidence in the revised manuscript to support the proposed mechanism that DBTKO confers resistance to MG132-induced toxicity through activation of autophagy. This is discussed in greater detail below.

      (1) To provide further mechanistic analysis, we have included additional controls for the analysis of AMPK signaling in Fig. 4D and Fig. S4B. These results demonstrate that using drugs or shRNAs to reduce AMPK activity can decrease DBTKO survival. We have also shown that that an increasing the AMPK activity with an activator enhances the survival of both WT and DBTKO cells under MG132 treatment (Fig. S4D), suggesting that DBTKO cells resist MG132-induced toxicity through the activation of AMPK signaling.

      (2) We have included additional controls for the analysis of mTOR signaling in Fig. 5E and Fig. S4F. The results in Fig. 5E show that reducing TSC1 using shRNAs can decrease DBTKO survival. We also added the experiments with mTOR agonist MHY1485 as a control in Fig. S4F. These results indicate that mTOR activation can promote DBTKO cells' sensitivity to MG132 toxicity. To further confirm the importance of mTOR in DBTKO-mediated resistance to MG132 toxicity, we included the mTOR inhibitors RAD001 and AZD8055 in the co-treatment experiments with MG132, and then measured cell survival (Fig. S4G). The results show that both mTOR inhibitors can enhance cell resistance to MG132-induced toxicity (Fig. S4G). These findings suggest that mTOR inhibition is required for DBTKO-mediated cell survival under MG132 treatment.

      (3) To further test the hypothesis that DBT knockdown is protective via modulation of autophagy, we have introduced the overexpression of DBT and the rescue of DBT in DBTKO cells to analyze the AMPK signaling that regulates autophagy (Fig. S5E). The results demonstrate that overexpression of DBT significantly reduced the phosphorylation of AMPK and ULK1 (Fig. S5E). In the rescue experiment, the results mirror those of the overexpression experiment, showing a significant reduction in the phosphorylation of AMPK and ULK1 (Fig. S5E). We also analyzed the autophagy marker LC3II in both the overexpression and rescue experiments, and the results indicate that increasing the DBT level specifically reduces the LC3II level (Fig. S5D). These results support the model that loss of DBT promotes the activation of autophagy.

      (4) To test the hypothesis that DBT may modulate proteotoxicity in neurodegeneration, we included the studies with TDP-43M337V and found that the expression of the mutant TDP43 enhanced the phosphorylation of AMPK in the DBTKO cells (Fig. S7A), consistent with the observations made with MG-132 treatment. Together with other findings in the manuscript, these results indicate that DBTKO can sensitize the activation of the AMPK signaling and confer the resistance to TDP-43-associated toxicity.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Editor’s summary:

      This paper by Castello-Serrano et al. addresses the role of lipid rafts in trafficking in the secretory pathway. By performing carefully controlled experiments with synthetic membrane proteins derived from the transmembrane region of LAT, the authors describe, model and quantify the importance of transmembrane domains in the kinetics of trafficking of a protein through the cell. Their data suggest affinity for ordered domains influences the kinetics of exit from the Golgi. Additional microscopy data suggest that lipid-driven partitioning might segregate Golgi membranes into domains. However, the relationship between the partitioning of the synthetic membrane proteins into ordered domains visualised ex vivo in GPMVs, and the domains in the TGN, remain at best correlative. Additional experiments that relate to the existence and nature of domains at the TGN are necessary to provide a direct connection between the phase partitioning capability of the transmembrane regions of membrane proteins and the sorting potential of this phenomenon.

      The authors have used the RUSH system to study the traffic of model secretory proteins containing single-pass transmembrane domains that confer defined affinities for liquid ordered (lo) phases in Giant Plasma Membrane derived Vesicles (GPMVs), out of the ER and Golgi. A native protein termed LAT partitioned into these lo-domains, unlike a synthetic model protein termed LAT-allL, which had a substituted transmembrane domain. The authors experiments provide support for the idea that ER exit relies on motifs in the cytosolic tails, but that accelerated Golgi exit is correlated with lo domain partitioning.

      Additional experiments provided evidence for segregation of Golgi membranes into coexisting lipid-driven domains that potentially concentrate different proteins. Their inference is that lipid rafts play an important role in Golgi exit. While this is an attractive idea, the experiments described in this manuscript do not provide a convincing argument one way or the other. It does however revive the discussion about the relationship between the potential for phase partitioning and its influence on membrane traffic.

      We thank the editors and scientific reviewers for thorough evaluation of our manuscript and for positive feedback. While we agree that our experimental findings present a correlation between trafficking rates and raft affinity, in our view, the synthetic, minimal nature of the transmembrane protein constructs in question makes a strong argument for involvement of membrane domains in their trafficking. These constructs have no known sorting determinants and are unlikely to interact directly with trafficking proteins in cells, since they contain almost no extramembrane amino acids. Yet, the LATTMD traffics through Golgi similarly to the full-length LAT protein, but quite different from mutants with lower raft phase affinity. We suggest that these observations can be best rationalized by involvement of raft domains in the trafficking fates and rates of these constructs, providing strong evidence (beyond a simple correlation) for the existence and relevance of such domains.

      We have substantially revised the manuscript to address all reviewer comments, including several new experiments and analyses. These revisions have substantially improved the manuscript without changing any of the core conclusions and we are pleased to have this version considered as the “version of record” in eLife.

      Below is our point-by-point response to all reviewer comments.

      ER exit:

      The experiments conducted to identify an ER exit motif in the C-terminal domain of LAT are straightforward and convincing. This is also consistent with available literature. The authors should comment on whether the conservation of the putative COPII association motif (detailed in Fig. 2A) is significantly higher than that of other parts of the C-terminal domain.

      Thank you for this suggestion, this information has now been included as Supp Fig 2B. While there are other wellconserved residues of the LAT C-terminus, many regions have relatively low conservation. In contrast, the essential residues of the COPII association motif (P148 and A150) are completely conserved across in LAT across all species analyzed.

      One cause of concern is that addition of a short cytoplasmic domain from LAT is sufficient to drive ER exit, and in its absence the synthetic constructs are all very slow. However, the argument presented that specific lo phase partitioning behaviour of the TMDs do not have a significant effect on exit from the ER is a little confusing. This is related to the choice of the allL-TMD as the 'non-lo domain' partitioning comparator. Previous data has shown that longer TMDs (23+) promote ER export (eg. Munro 91, Munro 95, Sharpe 2005). The mechanism for this is not, to my knowledge, known. One could postulate that it has something to do with the very subject of this manuscript- lipid phase partitioning. If this is the case, then a TMD length of 22 might be a poor choice of comparison. A TMD 17 Ls' long would be a more appropriate 'non-raft' cargo. It would be interesting to see a couple of experiments with a cargo like this.

      The basis for the claim that raft affinity has relatively minor influence on ER exit kinetics, especially in comparison to the effect of the putative COPII interaction motif, is in Fig 1G. We do observe some differences between constructs and they may be related to raft affinity, however we considered these relatively minor compared to the nearly 4-fold increase in ER efflux induced by COPII motifs.

      We have modified the wording in the manuscript to avoid the impression that we have ruled out an effect of raft affinity of ER exit.

      We believe that our observations are broadly consistent with those of Munro and colleagues. In both their work and ours, long TMDs were able to exit the ER. In our experiments, this was true for several proteins with long TMDs, either as fulllength or as TMD-only versions (see Fig 1G). We intentionally did not measure shorter synthetic TMDs because these would not have been comparable with the raft-preferring variants, which all require relatively long TMDs, as demonstrated in our previous work1,2. Thus, because our manuscript does not make any claims about the influence of TMD length on trafficking, we did not feel that experiments with shorter non-raft constructs would substantively influence our conclusions.

      However, to address reviewer interest, we did complete one set of experiments to test the effect of shortening the TMD on ER exit. We truncated the native LAT TMD by removing 6 residues from the C-terminal end of the TMD (LAT-TMDd6aa). This construct exited the ER similarly to all others we measured, revealing that for this set of constructs, short TMDs did not accumulate in the ER. ER exit of the truncated variant was slightly slower than the full-length LAT-TMD, but somewhat faster than the allL-TMD. These effects are consistent with our previous measurements with showed that this shortened construct has slightly lower raft phase partitioning than the LAT-TMD but higher than allL2. While these are interesting observations, a more thorough exploration of the effect of TMD length would be required to make any strong conclusion, so we did not include these data in the final manuscript.

      Author response image 1.

      Golgi exit:

      For the LAT constructs, the kinetics of Golgi exit as shown in Fig. 3B are surprisingly slow. About half of the protein Remains in the Golgi at 1 h after biotin addition. Most secretory cargo proteins would have almost completely exited the Golgi by that time, as illustrated by VSVG in Fig. S3. There is a concern that LAT may have some tendency to linger in the Golgi, presumably due to a factor independent of the transmembrane domain, and therefore cannot be viewed as a good model protein. For kinetic modeling in particular, the existence of such an additional factor would be far from ideal. A valuable control would be to examine the Golgi exit kinetics of at least one additional secretory cargo.

      We disagree that LAT is an unusual protein with respect to Golgi efflux kinetics. In our experiments, Golgi efflux of VSVG was similar to full-length LAT (t1/2 ~ 45 min), and both of these were similar to previously reported values3. Especially for the truncated (i.e. TMD) constructs, it is very unlikely that some factor independent of their TMDs affects Golgi exit, as they contain almost no amino acids outside the membrane-embedded TMD.

      Practically, it has proven somewhat challenging to produce functional RUSH-Golgi constructs. We attempted the experiment suggested by the reviewer by constructing SBP-tagged versions of several model cargo proteins, but all failed to trap in the Golgi. We speculate that the Golgin84 hook is much more sensitive to the location of the SBP on the cargo, being an integral membrane protein rather than the lumenal KDEL-streptavidin hook. This limitation can likely be overcome by engineering the cargo, but we did not feel that another control cargo protein was essential for the conclusions we presented, thus we did not pursue this direction further.

      Comments about the trafficking model

      (1) In Figure 1E, the export of LAT-TMD from the ER is fitted to a single-exponential fit that the authors say is "well described". This is unclear and there is perhaps something more complex going on. It appears that there is an initial lag phase and then similar kinetics after that - perhaps the authors can comment on this?

      This is a good observation. This effect is explainable by the mechanics of the measurement: in Figs 1 and 2, we measure not ‘fraction of protein in ER’ but ‘fraction of cells positive for ER fluorescence’. This is because the very slow ER exit of the TMD-only constructs present a major challenge for live-cell imaging, so ER exit was quantified on a population level, by fixing cells at various time points after biotin addition and quantifying the fraction of cells with observable ER localization (rather than tracking a single cell over time).

      For fitting to the kinetic model (which attempts to describe ‘fraction in ER/Golgi’) we re-measured all constructs by livecell imaging (see Supp Fig 5) to directly quantify relative construct abundance in the ER or Golgi. These data did not have the plateau in Fig 1E, suggesting that this is an artifact of counting “ER positive cells” which would be expected to have a longer lag than “fraction of protein in ER”. Notably however, t1/2 measured by both methods was similar, suggesting that the population measurement agrees well with single-cell live imaging.

      We have included all these explanations and caveats in the manuscript. We have also changed the wording from “well described” to “reasonably approximated”.

      (2) The model for Golgi sorting is also complicated and controversial, and while the authors' intention to not overinterpreting their data in this regard must be respected, this data is in support of the two-phase Golgi export model (Patterson et al PMID:18555781).

      The reviewers are correct, our observations and model are consistent with Patterson et al and it was a major oversight that a reference to this foundational work was not included. We have now added a discussion regarding the “two phase model” of Patterson and Lippincott-Schwartz.

      Furthermore contrary to the statement in lines 200-202, the kinetics of VSVG exit from the Golgi (Fig. S3) are roughly linear and so are NOT consistent with the previous report by Hirschberg et al.

      Regarding kinetics of VSVG, our intention was to claim that the timescale of VSVG efflux from the Golgi was similar to previously reported in Hirschberg, i.e. t1/2 roughly between 30-60 minutes. We have clarified this in the text. Minor differences in the details between our observations and Hirschberg are likely attributable to temperature, as those measurements were done at 32°C for the tsVSVG mutant.

      Moreover, the kinetics of LAT export from the Golgi (Fig. 3B) appear quite different, more closely approximating exponential decay of the signal. These points should be described accurately and discussed.

      Regarding linear versus exponential fits, we agree that the reality of Golgi sorting and efflux is far more complicated than accounted for by either the phenomenological curve fitting in Figs 1-3 or the modeling in Fig 4. In addition to the possibility of lateral domains within Golgi stacks, there is transport between stacks, retrograde traffic, etc. The fits in Figs 1-3 are not intended to model specifics of transport, but rather to be phenomenological descriptors that allowed us to describe efflux kinetics with one parameter (i.e. t1/2). In contrast, the more refined kinetic modeling presented in Figure 4 is designed to test a mechanistic hypothesis (i.e. coexisting membrane domains in Golgi) and describes well the key features of the trafficking data.

      Relationship between membrane traffic and domain partitioning:

      (1) Phase segregation in the GPMV is dictated by thermodynamics given its composition and the measurement temperature (at low temperatures 4degC). However at physiological temperatures (32-37degC) at which membrane trafficking is taking place these GPMVs are not phase separated. Hence it is difficult to argue that a sorting mechanism based solely on the partitioning of the synthetic LAT-TMD constructs into lo domains detected at low temperatures in GPMVs provide a basis (or its lack) for the differential kinetics of traffic of out of the Golgi (or ER). The mechanism in a living cell to form any lipid based sorting platforms naturally requires further elaboration, and by definition cannot resemble the lo domains generated in GPMVs at low temperatures.

      We thank the reviewers for bringing up this important point. GPMVs are a useful tool because they allow direct, quantitative measurements of protein partitioning between coexisting ordered and disordered phases in complex, cell-derived membranes. However, we entirely agree, that GPMVs do not fully represent the native organization of the living cell plasma membrane and we have previously discussed some of the relevant differences4,5. Despite these caveats, many studies have supported the cellular relevance of phase separation in GPMVs and the partitioning of proteins to raft domains therein 6-9. Most notably, elegant experiments from several independent labs have shown that fluorescent lipid analogs that partition to Lo domains in GPMVs also show distinct diffusive behaviors in live cells 6,7, strongly suggesting the presence of nanoscopic Lo domains in live cells. Similarly, our recent collaborative work with the lab of Sarah Veatch showed excellent agreement between raft preference in GPMVs and protein organization in living immune cells imaged by super-resolution microscopy10. Further, several labs6,7, including ours11, have reported nice correlations between raft partitioning in GPMVs and detergent resistance, which is a classical (though controversial) assay for raft association.

      Based on these points, we feel that GPMVs are a useful tool for quantifying protein preference for ordered (raft) membrane domains and that this preference is a useful proxy for the raft-associated behavior of these probes in living cells. We propose that this approach allows us to overcome a major reason for the historical controversy surrounding the raft field: nonquantitative and unreliable methodologies that prevented consistent definition of which proteins are supposed to be present in lipid rafts and why. Our work directly addresses this limitation by relating quantitative raft affinity measurements in a biological membrane with a relevant and measurable cellular outcome, specifically inter-organelle trafficking rates.

      Addressing the point about phase transition temperatures in GPMVs: this is the temperature at which macroscopic domains are observed. Based on physical models of phase separation, it has been proposed that macroscopic phase separation at lower temperatures is consistent sub-microscopic, nanoscale domains at higher temperatures8,12. These smaller domains can potentially be stabilized / functionalized by protein-protein interactions in cells13 that may not be present in GPMVs (e.g. because of lack of ATP).

      (2) The lipid compositions of each of these membranes - PM, ER and Golgi are drastically different. Each is likely to phase separate at different phase transition temperatures (if at all). The transition temperature is probably even lower for Golgi and the ER membranes compared to the PM. Hence, if the reported compositions of these compartments are to be taken at face value, the propensity to form phase separated domains at a physiological temperature will be very low. Are ordered domains even formed at the Golgi at physiological temperatures?

      It is a good point that the membrane compositions and the resulting physical properties (including any potential phase behavior) will be very different in the PM, ER, and Golgi. Whether ordered domains are present in any of these membranes in living cells remains difficult to directly visualize, especially for non-PM membranes which are not easily accessible by probes, are nanoscopic, and have complex morphologies. However, the fact that raft-preferring probes / proteins share some trafficking characteristics, while very similar non-raft mutants behave differently argues that raft affinity plays a role in subcellular traffic.

      (3) The hypothesis of 'lipid rafts' is a very specific idea, related to functional segregation, and the underlying basis for domain formation has been also hotly debated. In this article the authors conflate thermodynamic phase separation mechanisms with the potential formation of functional sorting domains, further adding to the confusion in the literature. To conclude that this segregation is indeed based on lipid environments of varying degrees of lipid order, it would probably be best to look at the heterogeneity of the various membranes directly using probes designed to measure lipid packing, and then look for colocalization of domains of different cargo with these domains.

      This is a very good suggestion, and a direction we are currently following. Unfortunately, due to the dynamic nature and small size of putative lateral membrane domains, combined with the interior of a cell being filled with lipophilic environments that overlay each other, directly imaging domains in organellar membranes with lipid packing probes remains extremely difficult with current technology (or at least available to us). We argue that the TMD probes used in this manuscript are a reasonable alternative, as they are fluorescent probes with validated selectivity for membrane compartments with different physical properties.

      Ultimately, the features of membrane domains suggested by a variety of techniques – i.e. nanometric, dynamic, relatively similar in composition to the surrounding membrane, potentially diverse/heterogeneous – make them inherently difficult to microscopically visualize. This is one reason why we believe studies like ours, which use a natural model system to directly quantify raft-associated behaviors and relate them to cellular effects (in our case, protein sorting), are a useful direction for this field.

      We believe we have been careful in our manuscript to avoid confusing language surrounding lipid rafts, phase separation, etc. Our experiments clearly show that mammalian membranes have the capacity to phase separate, that some proteins preferentially interact with more ordered domains, and that this preference is related to the subcellular trafficking fates and rates of these proteins. We have edited the manuscript to emphasize these claims and avoid the historical controversies and confusions.

      (4) In the super-resolution experiments (by SIM- where the enhancement of resolution is around two fold or less compared to optical), the authors are able to discern a segregation of the two types of Golgi-resident cargo that have different preferences for the lo-domains in GPMVs. It should be noted that TMD-allL and the LATallL end up in the late endosome after exit of the Golgi. Previous work from the Bonafacino laboratory (PMID: 28978644) has shown that proteins (such as M6PR) destined to go to the late endosome bud from a different part of the Golgi in vesicular carriers, while those that are destined for the cell surface first (including TfR) bud with tubular vesicular carriers. Thus at the resolution depicted in Fig 5, the segregation seen by the authors could be due to an alternative explanation, that these molecules are present in different areas of the Golgi for reasons different from phase partitioning. The relatively high colocalization of TfR with the GPI probe in Fig 5E is consistent with this explanation. TfR and GPI prefer different domains in the GPMV assays yet they show a high degree of colocalization and also traffic to the cell surface.

      This is a good point. Even at microscopic resolutions beyond the optical diffraction limit, we cannot make any strong claims that the segregation we observe is due to lateral lipid domains and not several reasonable alternatives, including separation between cisternae (rather than within), cargo vesicles moving between cisternae, or lateral domains that are mediated by protein assemblies rather than lipids. We have explicitly included this point in the Discussion: “Our SIM imaging suggests segregation of raft from nonraft cargo in the Golgi shortly (5 min) after RUSH release (Fig 5B), but at this level of resolution, we can only report reduced colocalization, not intra-Golgi protein distributions. Moreover, segregation within a Golgi cisterna would be very difficult to distinguish from cargo moving between cisternae at different rates or exiting via Golgi-proximal vesicles.”

      We have also added a similar caveat in the Results section of the manuscript: “These observations support the hypothesis that proteins can segregate in Golgi based on their affinity for distinct membrane domains; however, it is important to emphasize that this segregation does not necessarily imply lateral lipid-driven domains within a Golgi cisterna. Reasonable alternative possibilities include separation between cisternae (rather than within), cargo vesicles moving between cisternae, or lateral domains that are mediated by protein assemblies rather than lipids.”

      Finally, while probes with allL TMD do eventually end up in late endosomes (consistent with the Bonifacino lab’s findings which we include), they do so while initially transiting the PM2,11.

      Minor concerns:

      (1) Generally, the quantitation is high quality from difficult experimental data. Although a lot appears to be manual, it appears appropriately performed and interpreted. There are some claims that are made based on this quantitation, however, where there are no statistics performed. For example, figure 1B. Any quantitation with an accompanying conclusion should be subject to a statistical test. I think the quality of the model fits- this is particularly important.

      We appreciate the thoughtful feedback, the quantifications and fits were not trivial, but we believe important. We have added statistical significance to Figure 1B and others where it was missing.

      (2) Modulation of lipid levels in Fig 4E shows a significant change for the trafficking rate for the LAT-TMD construct and a not so significant change for all-TMD construct. However, these data are not convincing and appear to depend on a singular data point that appears to lower the mean value. In general, the experiment with the MZA inhibitor (Fig. 4D-F) is hard to interpret because cells will likely be sick after inhibition of sphingolipid and cholesterol synthesis. Moreover, the difference in effects for LAT-TMD and allL-TMD is marginal.

      We disagree with this interpretation. Fig 4E shows the average of three experiments and demonstrates clearly that the inhibitors change the Golgi efflux rate of LAT-TMD but not allL-TMD. This is summarized in the t1/2 quantifications of Fig 4F, which show a statistically significant change for LAT-TMD but not allL-TMD. This is not an effect of a singular data point, but rather the trend across the dataset.

      Further, the inhibitor conditions were tuned carefully to avoid cells becoming “sick”: at higher concentrations, cells did adopt unusual morphologies and began to detach from the plates. We pursued only lower concentrations, which cells survived for at least 48 hrs and without major morphological changes.

      (3) Line 173: 146-AAPSA-152 should read either 146-AAPSA-150 or 146-AAPSAPA-152, depending on what the authors intended.

      Thanks for the careful reading, we intended the former and it has been fixed.

      (4) What is the actual statistical significance in Fig. 3C and Fig. 3E? There is a single asterisk in each panel of the figure but two asterisks in the legend.

      Apologies, a single asterisk representing p<0.05 was intended. It has been fixed.

      (5) The code used to calculate the model. is not accessible. It is standard practice to host well-annotated code on Github or similar, and it would be good to have this publicly available.

      We have deposited the code on a public repository (doi: 10.5281/zenodo. 10478607) and added a note to the Methods.

      (1) Lorent, J. H. et al. Structural determinants and func7onal consequences of protein affinity for membrane ra=s. Nature communica/ons 8, 1219 (2017).PMC5663905

      (2) Diaz-Rohrer, B. B., Levental, K. R., Simons, K. & Levental, I. Membrane ra= associa7on is a determinant of plasma membrane localiza7on. Proc Natl Acad Sci U S A 111, 8500-8505 (2014).PMC4060687

      (3) Hirschberg, K. et al. Kine7c analysis of secretory protein traffic and characteriza7on of golgi to plasma membrane transport intermediates in living cells. J Cell Biol 143, 1485-1503 (1998).PMC2132993

      (4) Levental, K. R. & Levental, I. Giant plasma membrane vesicles: models for understanding membrane organiza7on. Current topics in membranes 75, 25-57 (2015)

      (5) Sezgin, E. et al. Elucida7ng membrane structure and protein behavior using giant plasma membrane vesicles. Nat Protoc 7, 1042-1051 (2012)

      (6) Komura, N. et al. Ra=-based interac7ons of gangliosides with a GPI-anchored receptor. Nat Chem Biol 12, 402-410 (2016)

      (7) Kinoshita, M. et al. Ra=-based sphingomyelin interac7ons revealed by new fluorescent sphingomyelin analogs. J Cell Biol 216, 1183-1204 (2017).PMC5379944

      (8) Stone, M. B., Shelby, S. A., Nunez, M. F., Wisser, K. & Veatch, S. L. Protein sor7ng by lipid phase-like domains supports emergent signaling func7on in B lymphocyte plasma membranes. eLife 6 (2017).PMC5373823

      (9) Machta, B. B. et al. Condi7ons that Stabilize Membrane Domains Also Antagonize n-Alcohol Anesthesia. Biophys J 111, 537-545 (2016)

      (10) Shelby, S. A., Castello-Serrano, I., Wisser, I., Levental, I. & S., V. Membrane phase separa7on drives protein organiza7on at BCR clusters. Nat Chem Biol in press (2023)

      (11) Diaz-Rohrer, B. et al. Rab3 mediates a pathway for endocy7c sor7ng and plasma membrane recycling of ordered microdomains Proc Natl Acad Sci U S A 120, e2207461120 (2023)

      (12) Veatch, S. L. et al. Cri7cal fluctua7ons in plasma membrane vesicles. ACS Chem Biol 3, 287-293 (2008)

      (13) Wang, H. Y. et al. Coupling of protein condensates to ordered lipid domains determines func7onal membrane organiza7on. Science advances 9, eadf6205 (2023).PMC10132753

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Suggestions to the authors:

      • Please re-analyze findings by omitting from all Tables and Figures all data of comparators who were not randomized (BAC). I understand the difficulties of running this trial but the results of excess reduction of mortality do not allow the publication of a trial where comparators do not come from the randomized patient population.

      We wish to thank the editors and reviewers for their useful comments. Given that the study was designed with both randomised and CC participants we can’t easily exclude the CC analysis from the paper. However, we do provide graphs for both randomised only and randomised and CC participants for the primary and secondary endpoints. The fact that the primary endpoint (CRP) results are mirrored in both instances is also informative form a trial design perspective and indicative of the effect of dornase alfa therapy on inflammation being robust enough to yield the same results with small and larger cohorts.

      We agree that there are potential drawbacks of using contemporary controls. To address these potential biases we used CC patients recruited at the same time period at single site using the same selection criteria as the randomised group, which minimised potential bias. However, the enrolment and comparison of CRP in CC-BAC participants to concurrent randomised control R-BAC patients indicated that the two groups responded to BAC treatment in the same manner (Table 2, LS means log(CRP) 3.78 vs 3.53, P=0.386), whereas the R-BAC+DA vs R-BAC group comparison yielded significant differences (Table 2, LS means log(CRP) 3.1 vs 3.59, P=0.041). These comparisons mitigate to a large degree these potential problems.

      Still, to make easy to distinguish the groups we now use the following unique nomenclature throughout the manuscript which is clearly defined on ln. 111 and state that comparisons of treated participants were performed with both control groups separately and combined.

      R-BAC: Randomised BAC CC-BAC: Contemporary control BAC R-BAC+DA : Randomised BAC+ dornase alfa T-BAC: R-BAC + CC-BAC

      In fact, the most important bias in our study, might actually be the placebo effect, given that participants randomised to BAC did not receive a nebulized control substance. We now discuss these points in more detail in the manuscript and modified the title by removing the reference to a randomised trial and clinical outcomes.

      • The presentation remains confusing and the manuscript should be critically revised for clarity. There is a repetition of methods (e.g. lines 176-187 repeat 160-175) and redundant results (e.g. Figure S2, Table 3).

      We apologise for the repetition. We removed the repeated text in the Exclusion criteria (lines 176-187 in the old manuscript).

      Figure S2 is not related to Table 3. Figure S2 depicts baseline characteristics, whereas Table 3 complements the graph in Figure 3A but lists the mean daily value of the primary endpoint as requested by Reviewer 1 in the first round of revision.

      At Table 4: the authors should select one method of illustration for lab results, either Table or figure, without repetitions

      We agree and have removed Table 4 leaving the graphs instead.

      • Regarding inclusion criteria, it is unclear whether high radiological suspicion is sufficient for inclusion or whether PCR based confirmation is required in all instances (differences in wording between lines 153 and 191), and under which oxygen requirements (lines 155 and 192)

      We thank the reviewer for pointing this out. Indeed, radiological suspicion was not sufficient and all participants in this study had a positive PCR test as part of their diagnosis prior to inclusion in the study. The entire eligibility section was rewritten to reflect this important point.

      • Table 1 should be merged with Table S2 and a better description of cohort baseline severity (P/F, SOFA, APACHE, organ support, number of patients in each point of the WHO severity score) and treatments should be made available.

      We thank the reviewer for this suggestion. We have now merged Table 1 and S2 and included WHO ordinal severity information in Table 1, with median, average, SD, min and max values which reflect the participant distribution. Unfortunately, although the additional requested information was recorded, it was not systematically collected for the analysis of the trial and it was not straight forward to compile at this stage.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendation for the authors):

      (1) On a few occasions, I found that the authors would introduce a concept, but provide evidence much later on. For example, in line 57, they introduced the idea that feedback timing modulates engagement of the hippocampus and striatum, but they provided the details much later on around line 99. There are a few instances like these, and the authors may want to go through the manuscript critically to bridge such gaps to improve the flow of reading.

      First, we thank the reviewer for acknowledging the contribution of our study and the methodological choices. We acknowledge the concern raised about the flow of information in the introduction. We have critically reviewed the manuscript, especially on writing style and overall structure, to ensure a smoother transition between the introduction of concepts and the provision of supporting evidence. In the case of the concept of feedback timing and memory systems, lines 46-58 first introduce the concept enhanced with evidence regarding adults, and we then pick up the concept around line 103 again to relate it to children and their brain development to motivate our research question. To further improve readability, we have included an outline of what to expect in the introduction. Specifically, we added a sentence in line 66-68 that provides an overview of the different paragraphs: “We will introduce the key parameters in reinforcement learning and then we review the existing literature on developmental trajectories in reinforcement learning as well as on hippocampus and striatum, our two brain regions of interest.”

      This should prepare the reader better when to expect more evidence regarding the concepts introduced. We included similar “road-marker” outline sentences in other occasions the reviewer commented on, to enhance consistency and readability.

      (2) I am curious as to how they think the 5-second delay condition maps onto real-life examples, for example in a classroom setting feedback after 5 seconds could easily be framed as immediate feedback.

      The authors may want to highlight a few illustrative examples.

      Thank you for asking about the practical implications of a 5-second delay condition, which may be very relevant to the reader. We have modified the introduction example in line 39-41 towards the role of feedback timing in the classroom to point out its practical relevance early on: “For example, children must learn to raise their hand before speaking during class. The teacher may reinforce this behavior immediately or with a delay, which raises the question whether feedback timing modulates their learning”.

      We have also expanded a respective discussion point in lines 720-728 to pick up the classroom example and to illustrate how we think timescale differences may apply: “In scenarios such as in the classroom, a teacher may comment on a child’s behavior immediately after the action or some moments later, in par with our experimental manipulation of 1 second versus 5 seconds. Within such short range of delay in teachers’ feedback, children’s learning ability during the first years of schooling may function equally well and depend on the striatal-dependent memory system. However, we anticipate that the reliance on the hippocampus will become even more pronounced when feedback is further delayed for longer time. Children’s capacity for learning over longer timescales relies on the hippocampal-dependent memory system, which is still under development. This knowledge could help to better structure learning according to their development.”

      (3) In the methods section, there are a few instances of task description discrepancies which make things a little bit confusing, for example, line 173 reward versus punishment, or reward versus null elsewhere e.g. line 229. In the same section, line 175, there are a few instances of typos.

      We appreciate your attention to detail in pointing out discrepancies in task descriptions and typos in the method section. We have revised the section, corrected typos, and now phrased the learning outcomes consistently as “reward” and “punishment”.

      (4). I wasn't very clear as to why the authors did not compute choice switch probability directly from raw data but implemented this as a model that makes use of a weight parameter. Former would-be much easier and straightforward for data plotting especially for uninformed readers, i.e., people who do not have backgrounds in computational modelling.

      Thank you for asking for clarification on the calculation of switching behavior. Indeed, in the behavioral results, switching behavior was directly calculated from the raw data. We now stressed this in the methods in lines 230-235, also by naming win-stay and lose-shift as “proportions” instead of as “probabilities”:“As a first step, we calculated learning outcomes diretly from the raw data, which where learning accuracy, win-stay and lose-shift behavior as well as reaction time.

      Learning accuracy was defined as the proportion to choose the more rewarding option, while win-stay and lose-shift refer to the proportion of staying with the previously chosen option after a reward and switching to the alternative choice after receiving a punishment, respectively.”

      In contrast to the raw data switching behavior, the computational heuristic strategy model indeed uses a weight for a relative tendency of switching behavior. We have also stressed the advantage of the computational measure and its difference to the raw data switching behavior in lines 248-252 and believe that the reader can now clearly distinguish between the raw data and the computational results: “Note that these model-based outcomes are not identical to the win-stay and lose-shift behavior that were calculated from the raw data. The use of such model-based measure offers the advantage in discerning the underlying hidden cognitive process with greather nuance, in contrast to classical approaches that directly use raw behavioral data.”

      (5) I agree with the authors' assertion that both inverse temperature and outcome sensitivity parameters may lead to non-identifiability issues, but I was not 100% convinced about their modelling approach exclusively assessing a different family of models (inv temperature versus outcome sensitivity). Here, I would like to make one mid-way recommendation. They may want to redefine the inverse temperature term in terms of reaction time, i.e., B=exp^(s+g(RT-mean (RT)) where s and g are free parameters (see Webb, 2019), and keep the outcome sensitivity parameter in the model with bounds [0,2] so that the interpretation could be % increase or decrease in actual outcome. Personally, in tasks with binary outcomes i.e. [0,1: null vs reward] I do not think outcome sensitivity parameters higher than 2 are interpretable as these assign an inflated coefficient to outcomes.

      We appreciate the mid-way recommendation regarding the modeling approach for inverse temperature and outcome sensitivity parameters. We have carefully revised our analysis approach by considering alternative modeling choices. Regarding the suggestion to redefine the inverse temperature in terms of reaction time by B=exp^(s+g(RT-mean (RT)), we unfortunately were not able to identify the reference Webb (2019), nor did we find references to the suggested modeling approach. Any further information that the reviewer could provide will be greatly appreciated. Regardless, we agree that including reaction times through the implementation of drift-diffusion modeling may be beneficial. However, changing the inverse temperature model in such a way would necessitate major changes in our modeling approach, which unfortunately would result in non-convergence issues in our MCMC pipeline using Rstan. Hence, this approach goes beyond the scope of the manuscript. Nonetheless, we have decided to mention the use of a drift-diffusion model, along with other methodological considerations, as future recommendation for disentangling outcome sensitivity from inverse temperature in lines 711-712: “Future studies might shed new light by examining neural activations at both task phases, by additionally modeling reaction times using a drift-diffusion approach, or by choosing a task design that allows independent manipulations of these phases and associated model parameters, e.g., by using different reward magnitudes during reinforcement learning, or by studying outcome sensitivity without decisionmaking.“

      Regarding the upper bound of outcome sensitivity, we agree that traditionally, limiting the parameter values at 2 is the choice for the parameter to be best interpretable. During model fitting, we had experienced non-convergence issues and ceiling effects in the outcome sensitivity parameter when fixing the inverse temperature at 1. The non-convergence issue was not resolved when we fixed the inverse temperature at 15.47, which was the group mean of the winning inverse temperature family. Model convergence was only achieved after increasing the outcome sensitivity upper bound to 20, with inverse temperature again fixed at 1. Since this model also performed well during parameter and model recovery, we argue that the parameter is nevertheless meaningful, despite the more extreme trial-to-trial value fluctuations under higher outcome sensitivity. We described our choice for this model in the methods section in lines 282-288: “Even though outcome sensitivity is usually restricted to an upper bound of 2 to not inflate outcomes at value update, this configuration led to ceiling effects in outcome sensitivity and non-converging model results. Further, this issue was not resolved when we fixed the inverse temperature at the group mean of 15.47 of the winning inverse temperature family model. It may be that in children, individual differences in outcome sensitivity are more pronounced, leading to more extreme values. Therefore, we decided to extend the upper bound to 20, parallel to the inverse temperature, and all our models converged with Rhat < 1.1.”.

      (6) I think the authors reporting optimal parameters for the model is very important (line 464), but the learning rate they report under stable contingencies is much higher than LRs reported by for example Behrens et al 2007, LRs around 0.08 for the optimal learning behaviour. The authors may want to discuss why their task design calls for higher learning rates.

      Thank you for appreciating our optimal parameter analysis, and for the recommendation to discuss why optimal learning rates in our task design may call for higher learning rates compared to those reported in some other studies. As largely articulated in Zhang et al (2020; primer piece by one of our co-authors), the optimal parameter combination is determined by several factors, such as the reward schedule (e.g., 75:25, vs 80:20) and task design (e.g., no reversal, one reversal, vs multiple reversal) and number of trials (e.g., 80, vs 100, vs, 120). Notably, in these taskrelated regards, our task is different from Behrens et al. (2007), which hinders a quantitative comparison among the optimal parameters in the two tasks. We have now included more details in our discussion in lines 643-656: “However, the differences in learning rate across studies have to be interpreted with caution. The differences in the task and the analysis approach may limit their comparability. Task proporties such as the trial number per condition differed across studies. Our study included 32 trials per cue in each condition, while in adult studies, the trials per condition ranged from 28 to 100. Optimal learning rates in a stable learning environment were at around 0.25 for 10 to 30 trials, another study reported a lower optimal learning rate of around 0.08 for 120 trials. This may partly explain why in our case of 32 trials per condition and cue, optimal learning rates called for a relatively high optimal learning rate of 0.29, while in other studies, optimal learning rates may be lower. Regarding differences in the analysis approach, the hierarchical bayesian estimation approach used in our study produces more reliable results in comparison to maximum likelihood estimation, which had been used in some of the previous adult studies and may have led to biased results towards extreme values. Taken together, our study underscores the importance of using longitudinal data to examine developmental change as well as the importance of simulation-based optimal parameters to interpret the direction of developmental change.”

      (7) The authors may want to report degrees of freedom in t-tests so that it would be possible to infer the final sample size for a specific analysis, for example, line 546.

      We appreciate the recommendation to include degrees of freedom, which are now added in all t-test results, for example in line 579: “Episodic memory, as measured by individual corrected object recognition memory (hits - false alarms) of confident (“sure”) ratings, showed at trend better memory for items shown in the delayed feedback condition (𝛽!""#$%&’(#")%*"# = .009, SE =.005, t(df = 137) = 1.80, p = .074, see Figure 5A).”

      (8) I'm not sure why reductions in lose shift behaviour are framed as an improvement between 2 assessment points, e.g. line 578. It all depends on the strength of the contingency so a discussion around this point should be expanded.

      We acknowledge that a reduction in lose-shift behavior only reflect improvements under certain conditions where uncertainty is low and the learning contingencies are stable, which is the case in our task. We have added Supplementary Material 4 to illustrate the optimality of win-stay and lose-shift proportions from model simulation and to confirm that children’s longitudinal development was indeed towards more optimal switching behavior. In the manuscript, we refer to these results in lines 488-490: “We further found that the average longitudinal change in win-stay and lose-shift proportion also developed towards more optimal value-based learning (Supplementary Material 4).”

      (9) If I'm not mistaken, the authors reframe a trend-level association as weak evidence. I do not think this is an accurate framing considering the association is strictly non-significant, therefore should be omitted line 585.

      We thank for the point regarding the interpretation of a trend-level association as weak evidence. We changed our interpretation, corrected in lines 581-585: “The inclusion of poor learners in the complete dataset may have weakend this effect because their hippocampal function was worse and was not involved in learning (nor encoding), regardless of feedback timing. To summarize, there was inconclusive support for enhanced episodic memory during delayed compared to immediate feedback, calling for future study to test the postulation of a selective association between hippocampal volume and delayed feedback learning.” as well as lines 622-623: “Contrary to our expectations, episodic memory performance was not enhanced under delayed feedback compared to immediate feedback.”

      Reviewer # 2 (Public Review):

      We thank the reviewer for acknowledging the strength of our study and pointing out its weaknesses.

      Weaknesses:

      There were a few things that I thought would be helpful to clarify. First, what exactly are the anatomical regions included in the striatum here?

      We appreciate the clarification question regarding the anatomical regions included in the striatum. The striatum included ventral and dorsal regions, i.e., accumbens, caudate and putamen. We have now specified the anatomical regions that were included in the striatum in lines 211-212: “We extracted the bilateral brain volumes for our regions of interest, which were striatum and hippocampus. The striatum regions included nucleus accumbens, caudate and putamen.”

      Second, it was mentioned that for the reduced dataset, object recognition memory focused on "sure" ratings. This seems like the appropriate way to do it, but it was not clear whether this was also the case for the full analyses in the main text.

      Thank you for pointing out that in the full dataset analysis, the use of “sure” ratings for object recognition memory was previously not mentioned. Including only “sure” ratings was used consistently across analyses. This detail is now described under methods in lines 332-333: “Only confident (“sure”) ratings were included in the analysis, which were 98.1 % of all given responses.”

      Third, the children's fitted parameters were far from optimal; is it known whether adults would be closer to optimal on the task?

      We thank for your question on whether adult learning rates in the task have been reported to be more optimal than those of the children in our study. This indeed seems to be the case, and we added this point in our discussion in line 639-643: “Adult studies that examined feedback timing during reinforcement learning reported average learning rates range from 0.12 to 0.34, which are much closer to the simulated optimal learning rates of 0.29 than children’s average learning rates of 0.02 and 0.05 at wave 1 and 2 in our study. Therefore, it is likely that individuals approach adult-like optimal learning rates later during adolescence.”

      The main thing I would find helpful is to better integrate the differences between the main results reported and the many additional results reported in the supplement, for example from the reduced dataset when excluding non-learners. I found it a bit challenging to keep track of all the differences with all the analyses and parameters. It might be helpful to report some results in tables side-by-side in the two different samples. And if relevant, discuss the differences or their implication in the Discussion. For example, if the patterns change when excluding the poor learners, in particular for the associations between delayed feedback and hippocampal volume, and those participants were also those less well fit by the value-based model, is that something to be concerned about and does that affect any interpretations? What was not clear to me is whether excluding the poor learners at one extreme simply weakens the general pattern, or whether there is a more qualitative difference between learners and non-learners. The discussion points to the relevance of deficits in hippocampaldependent learning for psychopathology and understanding such a distinction may be relevant.

      We appreciate the feedback that it might seem challenging to keep track of differences between the analyses of the full and the reduced dataset. We have now gathered all the analyses for the reduced dataset in Supplementary Material 6, with side-by-side tables for comparison to the full dataset results. Whenever there were differences between the results, they were pointed out in the results section, see lines 557-560: “In the results of the reduced dataset, the hippocampal association to the delayed learning score was no longer significant, suggesting a weakened pattern when excluding poor learners (Supplementary Material 6). It is likely that the exclusion reduced the group variance for hippocampal volume and delayed learning score in the model.” and lines 579-581: “Note that in the reduced dataset, delayed feedback predicted enhanced item memory significantly (Supplementary Material 6).”

      The found differences were further included in our discussion in lines 737-740 in the context of deficits in hippocampal-dependent learning and psychopathology: “Interestingly, poor learners showed relatively less value-based learning in favor of stronger simple heuristic strategies, and excluding them modulated the hippocampal-dependent associations to learning and memory in our results. More studies are needed to further clarify the relationship between hippocampus and psychopathology during cognitive and brain development.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1) There appears to be a flaw in the exploration of cortical inputs. the authors never show that HFS of cortical inputs has no effect in the absence of thalamic stimulation. It appears that there is a citation showing this, but I think it would be important to show this in this study as well.

      We understand that the reviewer would like us to induce an HFS protocol on cortical input and then test if there is any change in synaptic strength in thalamic input. We have done this experiment which shows that without a footshock, high-frequency stimulation (HFS) of the cortical inputs did not induce synaptic potentiation on the thalamic pathway (Extended Data Fig. 4d).

      (2) t is somewhat confusing that the authors refer to the cortical input as driving heterosynaptic LTP, but this is not shown until Figure 4J, that after non-associative conditioning (unpaired shock and tone) HFS of the cortex can drive freezing and heterosynaptic LTP of thalamic inputs.

      We agree with the reviewer that it is in figure 4j and figure 5,b,c which we show electrophysiological evidence for cortical input driving heterosynaptic LTP. It is only to be consistent with our terminology that initially we used behavioral evidence as the proxy for heteroLTP (figure 3c).

      …, the authors are 'surprised' by this outcome, which appears to be what they predict.

      We removed the phrase “To our surprise”.

      (3) 'Cortex' as a stimulation site is vague. The authors have coordinates they used, it is unclear why they are not using standard anatomical nomenclature.

      We replaced “cortex” with “auditory/associative cortex”.

      (4) The authors' repeated use of homoLTP and heteroLTP to define the input that is being stimulated makes it challenging to understand the experimental detail. While I appreciate this is part of the goal, more descriptive words such as 'thalamic' and 'cortical' would make this much easier to understand.

      We agree with the reviewer that a phrase such as “an LTP protocol on thalamic and cortical inputs” would be more descriptive. We chose the words “homoLTP” and “heteroLTP” only to clarify (for the readers) the physiological relevance of these protocols. We thought by using “thalamic” and “cortical” readers may miss this point. However, when for the first time we introduce the words “homoLTP” and “heteroLTP”, we describe which stimulated pathway each refers to.

      Reviewer #2 (Public Review):

      (1) …The experimental schemes in Figs. 1 and 3 (and Fig. 4e and extended data 4a,b) show that one group of animals was subjected to retrieval in the test context at 24 h, then received HFS, which was then followed by a second retrieval session. With this design, it remains unclear what the HFS impacts when it is delivered between these two 24 h memory retrieval sessions.

      We understand that the reviewer has raised the concern that the increase in freezing we observed after the HFS protocol (ex. Fig. 1b, the bar labeled as Wth+24hHFSth) could be caused or modulated by the recall prior to the HFS (Fig. 1a, top branch). To address this concern, in a new group of mice, 24 hours after weak conditioning, we induced the HFS protocol, followed by testing (that is, no testing prior to the HFS protocol). We observed that homoLTP was as effective in mice that were tested prior to the induction protocol as those that were not (Fig. 1b, Extended Data Fig. 1d,e).

      It would be nice to see these data parsed out in a clean experimental design for all experiments (in Figs 1, 3, and 4), that means 4 groups with different treatments that are all tested only once at 24 h, and the appropriate statistical tests (ANOVA). This would also avoid repeating data in different panels for different pairwise comparisons (Fig 1, Fig 3, Fig 4, and extended Fig 4).

      While we understand the benefit of the reviewer’s suggestion, the current presentation of the data was done to match the flow of the text and the delivery of the information throughout the manuscript. We think it is unlikely that the retrieval test prior to the HFS impacts its effectiveness, as confirmed by homosynaptic HFS data (Extended Data Fig. 1d,e). It is beyond the scope of current manuscript to investigate the mechanisms and manipulations related to reconsolidation and retrieval effects.

      (2) … It would be critical to know if LFPs change over 24 h in animals in which memory is not altered by HFS, and to see correlations between memory performance and LFP changes, as two animals displayed low freezing levels. … They would suggest that thalamo-LA potentiation occurs directly after learning+HFS (which could be tested) and is maintained over 24 h.

      We have performed the experiment where we recorded the evoked LFP 2hrs and 24hrs following the weak conditioning protocol. We observed that a weak conditioning protocol that was not followed by an optical LTP protocol on the cortical inputs failed to produce synaptic potentiation of the thalamic inputs (tested 2hrs and 24hrs after the LTP protocol; Extended Data Fig. 5d,e).

      (3) The statistical analyses need to be clarified. All statements should be supported with statistical testing (e.g. extended data 5c, pg 7 stats are missing). The specific tests should be clearly stated throughout. For ANOVAs, the post-hoc tests and their outcomes should be stated. In some cases, 2-way ANOVAs were performed, but it seems there is only one independent variable, calling for one-way ANOVA.

      All the statistical analyses have been revised and the post-hoc tests performed after the ANOVAs are mentioned in the relevant figure legends.

      Reviewer #2 (Recommendations For The Authors):

      The wording "transient" and "persistent" used here in the context of memory seems a bit misleading, as only one timepoint was assessed for memory recall (24 h), at which the memory strength (freezing levels) seem to change.

      As the reviewer mentioned, we have tested memory recall only at one time point. For this reason, throughout the text we used “transient” exclusively to refer to the experience (receiving footshock) and not to the memory. We replaced “persistence” with “stabilization” where it refers to a memory (“the induction of plasticity influences the stabilization of the memory”).

      For the procedures in which the CS and US were not paired, the term "unpairing" is used (which is probably the more adequate one), but the term "non-associative conditioning" appears in the text, which seems a bit misleading, as this term may have another connotation. There is also literature that an unpairing of CS and US could lead to the formation of a safety memory to the CS, that may be disrupted by HFS stimulation.

      We replaced "non-associative" with “unpaired”.

      Validation of viral injection sites for all experiments: Only representative examples are shown, it would be nice to see all viral expression sites.

      For this manuscript, we have used 155 mice. For this reason, including the injection sites for all the animals in the manuscript is not feasible. Except for the mice that have been excluded, (please see exclusion criteria added in the methods), the expression pattern we observed was consistent across animals and therefore the images shown are true representatives.

      Extended Data 1b: Please explain what N, U, W, and S behavioral groups mean. To what groups mentioned in the text (pg 2,3) do these correspond?

      The requested clarifications are implemented in the figure legend.

      Please elaborate on the following aspects of your methods and approaches:

      • Please explain if the protocol for HFS to manipulate behavior was the same as the one used for the LTP experiments (Fig 1d, Fig 4j) and was identical for homo/hetero inputs from thal and ctx?

      We used the same HFS protocol for all the HFS inductions. We included this information in the methods section.

      • Please state when the HFS was given in respect to the conditioning (what means immediately before and after?) and in which context it was given. Were animals subjected to HFS exposed to the context longer (either before or after the conditioning while receiving HFS) than the other groups? When the HFS was given in another context (for the 24 h group)- how was this controlled for?

      Requested information has been added to the methods section. The control and intervention groups were treated in the same way.

      • When were the footshocks given in the anesthesized recordings (Fig. 4j) and how was the temporal relationship to the HFS? Was the timing the same as for the HFS in the behavioral experiments?

      Requested information has been added to the methods section.

      • Please add information on how the LFP was stimulated and how the LFP- EPSP slope was determined in in vivo recordings, likewise for the whole cell recordings of EPSPs in Fig. 5d-f.

      Requested information has been added to the methods section.

      Here, the y-Axis in Fig. 5e should be corrected to EPSP slope rather than fEPSP slope if these are whole-cell recordings.

      This has been corrected.

      • Please include information if the viral injections and opto-manipulations were done bilateral or unilateral and if so in which hemisphere. Likewise, indicate where the LFP recordings were done.

      Requested information has been added to the methods section.

      • Were there any exclusion criteria for animals (e.g. insufficient viral targeting or placement of fibers and electrodes), other than the testing of the optical CS for adverse effects?

      Requested information has been added to the methods section.

      Statistics: In addition to clarifying analytical statistics, please clarify n-numbers for slice recordings (number of animals, number of slices, and number of cells if applicable).

      Requested information has been added to the methods section.

      It would be nice to scrutinize the results in extended data 4b. The freezing levels with U+24h HFS show a strong trend towards an increase, the effect size may be similar to immediate HFS Fig 4f and extended data 4a) if n was increased.

      We agree with the reviewer. To address this point, we added “HomoLTP protocol when delivered 24hrs later, produced an increase in freezing; however, the value was not statistically significant.” To show this point, we used the same scale for freezing in Extended Data Fig. 4a and b.

      In the final experiment (Fig. 5a-c), Fig. 5b seems to show results from only one animal, but behavioral results are from 4 animals (Fig 5c). It would be helpful to see the quantification of potentiation in each animal.

      The results (now with error bar) include all mice.

      Please spell out the abbreviation "STC".

      Now, it is spelled out.

      Page 8 last sentence of the discussion does not seem to fit there.

      The sentence has been removed.

      Reviewer #3 (Recommendations For The Authors):

      (1) The authors did not determine how WTh affects Th-LA synapses, as field EPSPs were recorded only after HFS. WTh was required for the effects of HFS, as HFS alone did not produce CR in naïve and/or unpaired controls. As such the effects of the WTh protocol on synaptic strength must be investigated.

      We have performed the experiment where we recorded the evoked LFP 2hrs and 24hrs following the weak conditioning protocol. We observed that a weak conditioning protocol that was not followed by an optical LTP protocol on the cortical inputs failed to produce synaptic potentiation of the thalamic inputs (tested 2hrs and 24hrs after the LTP protocol; Extended Data Fig. 5d,e).

      (2) The authors provide some evidence that their dual opsin approach is feasible, particularly the use of sustained yellow light to block the effects of blue light on ChrimsonR. However, this validation was done using single pulses making it difficult to assess the effect of this protocol on Th input when HFS was used. Without strong evidence that the optogenetic methods used here are fault-proof, the main conclusions of this study are compromised. Why did the authors not use a protocol in which fibers were placed directly in the Ctx and Th while using soma-restricted opsins to avoid cross-contamination?

      We understand that the reviewer raises the possibility that our dual-opsin approach, although effective with single pulses, may fail in higher frequency stimulation protocols (10Hz and 85Hz). To address this concern, in a new group of mice we applied our approach to 10Hz and 85Hz stimulation protocols. We show that our approach is effective in single-pulse as well as in 10Hz and 85Hz stimulation protocols (Fig. 2d-h).

    1. Author response:

      Reviewer #1 (Public Review):

      Summary:

      Zhang et al. demonstrate that CD4+ single positive (SP) thymocytes, CD4+ recent thymic emigrants (RTE), and CD4+ T naive (Tn) cells from Cd11c-p28-flox mice, which lack IL-27p28 selectively in Cd11c+ cells, exhibit a hyper-Th1 phenotype instead of the expected hyper Th2 phenotype. Using IL-27R-deficient mice, the authors confirm that this hyper-Th1 phenotype is due to IL-27 signaling via IL-27R, rather than the effects of monomeric IL-27p28. They also crossed Cd11c-p28-flox mice with autoimmune-prone Aire-deficient mice and showed that both T cell responses and tissue pathology are enhanced, suggesting that SP, RTE, and Tn cells from Cd11c-p28-flox mice are poised to become Th1 cells in response to self-antigens. Regarding mechanism, the authors demonstrate that SP, RTE, and Tn cells from Cd11c-p28-flox mice have reduced DNA methylation at the IFN-g and Tbx21 loci, indicating 'de-repression', along with enhanced histone tri-methylation at H3K4, indicating a 'permissive' transcriptional state. They also find evidence for enhanced STAT1 activity, which is relevant given the well-established role of STAT1 in promoting Th1 responses, and surprising given IL-27 is a potent STAT1 activator. This latter finding suggests that the Th1-inhibiting property of thymic IL-27 may not be due to direct effects on the T cells themselves.

      Strengths:

      Overall the data presented are high quality and the manuscript is well-reasoned and composed. The basic finding - that thymic IL-27 production limits the Th1 potential of SP, RTE, and Tn cells - is both unexpected and well described.

      Weaknesses:

      A credible mechanistic explanation, cellular or molecular, is lacking. The authors convincingly affirm the hyper-Th1 phenotype at epigenetic level but it remains unclear whether the observed changes reflect the capacity of IL-27 to directly elicit epigenetic remodeling in developing thymocytes or knock-on effects from other cell types which, in turn, elicit the epigenetic changes (presumably via cytokines). The authors propose that increased STAT1 activity is a driving force for the epigenetic changes and resultant hyper-Th1 phenotype. That conclusion is logical given the data at hand but the alternative hypothesis - that the hyper-STAT1 response is just a downstream consequence of the hyper-Th1 phenotype - remains equally likely. Thus, while the discovery of a new anti-inflammatory function for IL-27 within the thymus is compelling, further mechanistic studies are needed to advance the finding beyond phenomenology.

      Thanks for the comments. Following the suggestions of the reviewer, further studies will be performed to test whether developing thymocytes are the direct targets of IL-27 using Cd4-IL-27ra knockout mice or mixed bone marrow chimeras of wildtype and IL-27ra knockout cells.

      To address the potential autocrine loop in the STAT1 hyperactivation, we added IFN-γ antibody into CD4+ T cell cultures and saw no obvious impact on STAT1 phosphorylation. If deemed necessary, we could further test this possibility in vivo using Cd4-Ifng and CD11c-p28 double knockout mice.

      The detailed mechanisms underlying the hyperactivation of STAT1 remain to be determined. IL-27p28 has recently been shown to act as an antagonist of gp130-mediated signaling. In addition, structural studies have demonstrated that IL-27p28 has the interface with EBI3, as well as the two receptor subunits IL-27Rα and gp130. Taken into consideration of these findings and the fact that p28 and IL-27ra deficiency exhibits similar phenotype, we speculate that deficiency in either p28 or IL-27ra makes more gp130 available to transduce signals elicited by other cytokines. We will next focus on gp130 related cytokines to search for the candidate(s) which ultimately leads to enhanced STAT1 activation in the absence of p28. Alternatively, release of EBI3 in the absence of p28 may facilitate its coupling with other cytokine subunits. IL-35, which is composed of EBI3 and p35, is of particular interest as IL-27Rα is also involved in its signaling.

      To narrow down the candidate cytokines, we will first examine the expression of IL-35 and gp130 related cytokines, including IL-6, IL-11, LIF, CT1, OSM, IL-31, CLCF1, CNTF in the thymus and thymocyte-depleted thymic stromal cells by mining public databases and by RT-PCR. Similarly, CD4+ thymocytes will be examined for the expression of receptor subunits which can couple with gp130, including IL-6R, IL-11R, LIFR, OSMRβ, IL-31Rα, CNTFRα, IL-23R, and IL-12Rβ2.

      We next will select those cytokines expressed in the thymus or thymic stromal cells with cognate receptor expression in CD4+ thymocytes and test their effect on STAT1 phosphorylation of wildtype and p28-deficient CD4+ thymocytes. If deemed necessary, double knockout mice will be engaged to rescue the hyper-Th1 phenotype.

      Reviewer #2 (Public Review):

      Summary:

      Naïve CD4 T cells in CD11c-Cre p28-floxed mice express highly elevated levels of proinflammatory IFNg and the transcription factor T-bet. This phenotype turned out to be imposed by thymic dendritic cells (DCs) during CD4SP T cell development in the thymus [PMID: 23175475]. The current study affirms these observations, first, by developmentally mapping the IFNg dysregulation to newly generated thymic CD4SP cells [PMID: 23175475], second, by demonstrating increased STAT1 activation being associated with increased T-bet expression in CD11c-Cre p28-floxed CD4 T cells [PMID: 36109504], and lastly, by confirming IL-27 as the key cytokine in this process [PMID: 27469302]. The authors further demonstrate that such dysregulated cytokine expression is specific to the Th1 cytokine IFNg, without affecting the expression of the Th2 cytokine IL-4, thus proposing a role for thymic DC-derived p28 in shaping the cytokine response of newly generated CD4 helper T cells. Mechanistically, CD4SP cells of CD11c-Cre p28-floxed mice were found to display epigenetic changes in the Ifng and Tbx21 gene loci that were consistent with increased transcriptional activities of IFNg and T-bet mRNA expression. Moreover, in autoimmune Aire-deficiency settings, CD11c-Cre p28-floxed CD4 T cells still expressed significantly increased amounts of IFNg, exacerbating the autoimmune response and disease severity. Based on these results, the investigators propose a model where thymic DC-derived IL-27 is necessary to suppress IFNg expression by CD4SP cells and thus would impose a Th2-skewed predisposition of newly generated CD4 T cells in the thymus, potentially relevant in autoimmunity.

      Strengths:

      Experiments are well-designed and executed. The conclusions are convincing and supported by the experimental results.

      Weaknesses:

      The premise of the current study is confusing as it tries to use the CD11c-p28 floxed mouse model to explain the Th2-prone immune profile of newly generated CD4SP thymocytes. Instead, it would be more helpful to (1) give full credit to the original study which already described the proinflammatory IFNg+ phenotype of CD4 T cells in CD11c-p28 floxed mice to be mediated by thymic dendritic cells [PMID: 23175475], and then, (2) build on that to explain that this study is aimed to understand the molecular basis of the original finding. In its essence, this study mostly rediscovers and reaffirms previously reported findings, but with different tools. While the mapping of epigenetic changes in the IFNg and T-bet gene loci and the STAT1 gene signature in CD4SP cells are interesting, these are expected results, and they only reaffirm what would be assumed from the literature. Thus, there is only incremental gain in new insights and information on the role of DC-derived IL-27 in driving the Th1 phenotype of CD4SP cells in CD11c-p28 floxed mice.

      Indeed, the present study is based on the finding of enhanced IFN-γ production by CD4+ T cells from CD11c-p28 floxed mice, which was originally reported by Zhang et al. and repeatedly cited in the our manuscript. We revisited this phenomenon in the context of functional bias of newly generated CD4+ T cells and sought to reveal the mechanisms underlying the hyper-Th1 phenotype in the absence of thymic DC-derived IL-27. We showed that deletion of p28 resulted in an unexpected hyperactivation of STAT1, which was accompanied by epigenetic changes in favor of Th1 bias. However, the gap remains between p28 deficiency and STAT1 activation.

      Altogether, the major issues of this study remain unresolved:

      (1) It is still unclear why the p28-deficiency in thymic dendritic cells would result in increased STAT1 activation in CD4SP cells. Based on their in vitro experiments with blocking anti-IFNg antibodies, the authors conclude that it is unlikely that the constitutive activation of STAT1 would be a secondary effect due to autocrine IFNg production by CD4SP cells. However, this possibility should be further tested with in vivo models, such as Ifng-deficient CD11c-p28 floxed mice. Alternatively, is this an indirect effect by other IFNg producers in the thymus, such as iNKT cells? It is necessary to explain what drives the STAT1 activation in CD11c-p28 floxed CD4SP cells in the first place.

      Thanks for the suggestions. Further studies will be performed to test the potential autocrine loop for IFN-γ production in vivo using Cd4-Ifng and CD11c-p28 double knockout mice. This model should also be helpful to exclude the possibility of indirect role of IFN- production by such cells as iNKT.

      As pointed out by the reviewer, a critical unanswered question is what drives the STAT1 activation in CD11c-p28 floxed CD4SP cells. Several lines of evidence point to the possibility that p28 deficiency increases the responsiveness of developing thymocytes to STAT1-activating cytokines. Firstly, IL-27p28 has recently been shown to act as an antagonist of gp130-mediated signaling. Secondly, structural studies have demonstrated that IL-27p28 is centrally positioned in the complex formed with EBI3, as well as the two receptor subunits IL-27Rα and gp130. Thirdly, we observed similar hyper-Th1 phenotype in the absence of either p28 and IL-27ra. Therefore, it is speculated that more gp130 should be available to transduce signals elicited by other cytokines in such a scenario. We will next seek to determine the candidate cytokine(s) responsible for the enhanced STAT1 activation in the absence of p28 as outlined in the response to Reviewer 1.

      (2) It is also unclear whether CD4SP cells are the direct targets of IL-27 p28. The cell-intrinsic effects of IL-27 p28 signaling in CD4SP cells should be assessed and demonstrated, ideally by CD4SP-specific deletion of IL-27Ra, or by establishing bone marrow chimeras of IL-27Ra germline KO mice.

      Thanks for the suggestions. Further studies will be performed to test whether developing thymocytes are the direct targets of IL-27 using Cd4-IL-27ra knockout mice or mixed bone marrow chimeras of wildtype and IL-27ra knockout cells.

    1. Author Response:

      We thank the editors for their assessment of our manuscript. We appreciate the reviewers’ thoughtful comments and plan to incorporate their feedback into a revised manuscript. We agree that incorporating an additional, more common ablation tool would be highly complementary to our Kir2.1 ablation studies. We also agree that images across timepoints should be expanded for contact analyses, connectomics data can be better leveraged, additional quantifications can be performed as suggested by the reviewers to better support claims, and that the introduction and discussion can be revised to better position our work in the context of previous studies. We also strongly agree that providing data on receptor RNA and protein expression in the GF across timepoints would be extremely informative, however we have found acquiring these data, at the necessary resolution, would require new approaches and tools that may be outside the scope of the project.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Farhat-Younis and colleagues demonstrate tumor-specific IgM's capacity to induce tumor cell death in monocyte-derived dendritic cell cultures. They subsequently designed a chimeric receptor based on high-affinity FcRI. However, the authors found that the transfection process was more efficient when either the variable light or heavy chain was transfected individually rather than the entire scFv. This scFv construct led to an endoplasmic reticulum (ER) stress response and scFv degradation. A considerable portion of the manuscript is dedicated to the negative scFv expression results. The authors pivoted to a modified FcgRI capable of transmitting IgM signals. This represents a tremendous amount of work in the development of this chimeric receptor, the critical experiment showing efficacy in vivo was not presented, and instead various in vitro assays are shown. Thus, this manuscript will markedly benefit from showing improved responses to tumors in vivo when macrophages express FcgRI-IgM.

      We deeply thank the reviewer for his thoughtful comments and overall favorable review of our manuscript.

      1) In a mouse tumor model, the authors demonstrated that monocyte-derived dendritic cells (MoDCs) treated with IgG immune complexes (ICs) were more effective at preventing tumor growth compared to those treated with IgM ICs (as shown in Figure 1B). In Figure 1C, their in vitro experiments revealed that IgM resulted in tumor cell death, as well as increased production of nitric oxide (NO) and granzyme B. How do the authors reconcile IgG IC-treated MoDCs performing better in preventing tumors in vivo than IgM IC-treated MoDCs, despite the in vitro results with IgM-ICs. The authors speculate that IgG IC-treated MoDCs might trigger T cell immunity but do not show T cell involvement.

      We apologize for not making this point clearer. We have extensively studied this phenomenon and published two papers that detailed the underlying mechanism in two consecutive papers (PMID: 27812544, PMID: 25924063). Briefly, we showed that DC activated with IgM-IC DC undergo cell death concomitantly to their release of lytic granules and lysis of tumor cells. As a result, they do not migrate to the lymph nodes where they should induce reactive T cell clones. In contrast, DC activated with IgG-IC do not elicit in vitro cytotoxicity but rather process the IC to present its derived antigens of MHC-II. We addressed that issue in the revised version and cited the relevant paper to further clarify it.

      (2) The authors report distinct functional consequences of MoDCs incubated with tumor-IgG complexes and tumor IgM complexes. Tumor growth was inhibited and T cell immunity induced with the former. The latter, however, elicited robust anti-tumor killing. What happens if MoDCs are incubated with both IgG and IgM complexes? If this combined treatment induces effective killing and T cell memory, would this impact the design of the chimeric receptor to include IgG responsiveness as well?

      This is a very interesting point. As mentioned above, our previous publications strongly suggest that tumor binding IgG and IgM induce different processes in myeloid cells. Yet, since MoDC naturally express the high affinity receptors for IgG FcRI, we speculate that treating tumor-bearing mice modified monocyte, alone or in combination with tumor-binding IgG, would shed some light into that. Indeed, such treatment elicit a strong T cell immunity in these mice and the data was added to Supplementary Data Figure S4J. With that being said, a complete analysis of this question is very complicated and extent beyond the scope of this work. We would like to emphasize that the purpose of this work is to highlight some of the challenges unique to genetic manipulation in myeloid cells and to suggest one alternative scaffold for integrating signaling in these cells. We do not argue that the specific solution presented here is the most potent one and more work is required before promoting such treatment into the clinic. We have added a sentence to the Discussion section that stress that issue.

      (3) In Figure 5H, the authors demonstrate the ability of the chimeric receptor construct to deplete tumor cells in vitro. The ms would improve if the authors could show the chimeric receptor construct results in tumor cell death and/or prevention in an in vivo model. Similarly, if combined stimulation with IgG and IgM complexes enhances tumor response, this should be incorporated into the therapeutic strategy.

      This is a wonderful suggestion. To address that, we challenged C57Bl/6 mice with B16F10 melanoma and allowed them to grow until it reached a palpable size of approximately 25 mm2. Concomitantly, we cultured bone marrow dendritic cells from syngeneic mice and transfected them with a linear mRNA of the alpha/mu construct. Tumor bearing mice were then treated with alpha/mu and sham transduced BMDC alone, or in combination with antibody against the melanoma antigen Trp1 (TA99). The results were added as Figure 5K and to Supplementary Figure S4h-S4I.

      Reviewer #2 (Public Review):

      Summary:

      While a significant portion of immunotherapy research has focused on the pivotal role of T cells in tumor immunity, their effectiveness may be limited by the suppressive nature of the tumor environment. On the other hand, myeloid cells are commonly found within tumors and can withstand these adverse conditions. However, these cells often adopt an immunosuppressive phenotype when infiltrating tumors. Therefore, manipulating myeloid cells could potentially enhance the anti-tumor potential of immunotherapy.

      In this manuscript, Farhat-Younes and colleagues have demonstrated that activating the IgM receptor signaling in myeloid cells induces an oxygen burst, the secretion of Granzyme B, and the lysis of adjacent tumor cells. Furthermore, they have outlined a strategy to utilize these features to generate CAR macrophages. However, they have identified a limitation: the expression of scFv in myeloid cells induces ER stress and the degradation of misfolded proteins. To address this issue, chimeric receptors were designed based on the high-affinity FcγRI for IgG. When macrophages transfected with these receptors were exposed to tumor-binding IgG, extensive tumor cell killing, and the release of reactive oxygen species and Granzyme B were observed.

      Strengths:

      In general, I consider this work to be significant, and the results are compelling. It emphasizes the specific considerations and requirements for successful manipulation in myeloid cells, which could further advance the field of cellular engineering for the benefit of immunotherapy

      We thank the reviewer for his thoughtful comments and overall appreciation of our findings.

      Weaknesses:

      Nevertheless, there are several minor issues that should be addressed:

      (1) TCR fragments are commonly used to induce ER stress in non-immune cells. Therefore, it would be interesting to investigate whether TCR fragments can be expressed in myeloid cells and if they induce ER stress. Addressing this issue would support the notion that these cells lack the ER chaperones required for folding immunoglobulin variable chains.

      This is a wonderful suggestion. To assess that possibility, we cloned the alpha chain of anti-Trp1 TCR and transfected RAW 264.7 macrophages. Importantly, we could not detect expression on this construct in macrophages, further supporting our findings with scFv in these cells. We added this result to Figure 4J and Supplementary Figure S3C.

      (2) It would be valuable to determine whether, after the degradation of scFv fragments by myeloid cells, they are presented on MHC-I and MHC-II.

      This is a very interesting point. To address that, we generated a genetic construct where we fused the anti-CD19 scFv to a polypeptide composed from the MHCI and the MHCII fragments of Ova Albumin. Next, DC 2.4 were transfected with this construct and measured their capacity to stimulate the proliferation of CD8+ T cells from OT-I and CD4+ from OT-II mice. DC transfected with this construct efficiently stimulated the proliferation of both T cells, suggesting that both Ova fragments are indeed presented on MHCI and MHCII. Nonehteless, DC transfected with polypeptide of MHCI and MHCII fragments of Ova Albumin only (with no scFv), were almost equally effective in stimulating OT-I and OT-II T cell proliferation. We added that result to Supplementary Figure S3D-S3E.

      (3) Some methodological details, such as the vaccination protocol and high-resolution microscopy procedures, are missing from the text.

      We thank the reviewer for pointing out these issues. We added the missing details to the revised version of the manuscript.

    1. Author response:

      We thank both reviewers for their feedback and for underlying the potential of our new tool and experimental approach to identify signalling molecules that can improve the in vitro derivation of specific cell types from human pluripotent stem cells. To address the reviewers' points we plan to carry out further analysis that should solidify our conclusions. We will also edit the text to temper conclusions where appropriate.

    1. Author response:

      The following is the authors’ response to the current reviews.

      We sincerely appreciate the reviewer’s dedication to evaluating our manuscript and raising essential considerations regarding the classification of the migration behavior we described. While the reviewer suggests that this behavior aligns with the concept of itinerancy, we contend that it represents a distinct phenomenon, albeit with similarities, as both involve the non-breeding movements of birds. We acknowledge that our manuscript did not adequately address this distinction and have considered the reviewer’s feedback. In our response, we clarify the difference between the described phenomenon and itinerancy. Our revised manuscript will include a new section in the Discussion to address this issue comprehensively.

      In the first part of the review, the reviewer emphasizes that the pattern we are describing is consistent with itinerancy. Regardless of the terminology used, we want to highlight the existence of two different types of migratory behavior, both of which involve movement in non-breeding areas.

      The first type, called itinerancy, was first described by Moreau in 1972 in “The Palaearctic-African Bird Migration Systems.” As noted by the reviewer, this behavior involves an alternation of stopovers and movements between different short-term non-breeding residency areas. They usually occur in response to food scarcity in one part of the non-breeding range, causing birds to move to another part of the same range. These movements typically cover distances of 10 to 100 kilometers but are neither continuous nor directional. Moreau (1972) defined itinerancy as prolonged stopovers, normally lasting several months, primarily in tropical regions. He noted observations of certain species disappearing from his study areas in sub-Saharan Africa in December and others appearing, suggesting they may have multiple home ranges during the non-breeding season. Subsequent research, as mentioned by the reviewer, has confirmed itinerancy in many species, particularly among Palaearctic-African migrants in sub-Saharan Africa. In particular, the Montagu’s Harrier has been extensively studied in this regard. The reviewer rightly points out that our study does not include recent findings on this species. In our revised version, we will include references to recent studies, such as those by Trierweiler et al. (2013, Journal of Animal Ecology, 82:107-120) and Schlaich et al. (2023, Ardea, 111:321-342), which show that Montagu’s Harrier has an average of 3-4 home ranges separated by approximately 200 kilometers. These studies suggest that the species spends approximately 1.5 months at each site, with the most extended period typically observed at the last site before migrating to the breeding grounds.

      In the second type, birds undertake a post-breeding migration, arrive in their non-breeding range, and then gradually move in a particular direction throughout the season. This continuous directional movement covers considerable distances and continues throughout the non-breeding period. In our study, this movement covered about 1000 km, comparable to the total migration distance of Rough-legged Buzzards of about 1500 km. As observed in our research, these movements are influenced by external factors such as snow cover. In such cases, the progression of snow cover in a south-westerly direction during winter can prevent birds from finding food, forcing them to continue migrating in the same direction. In essence, this movement represents a prolonged phase of the migration process but at a slower pace. Similar behavior has been documented in buzzards, as reported by Strandberg et al. (2009, Ibis 151:200-206). Although several transmitters in their study stopped working in mid-winter, the authors observed a phenomenon they termed ‘prolonged autumn migration.’

      In the second part of the review, the reviewer questions the need to distinguish between the two behaviors we have discussed. However, we believe these behaviors differ in their structure (with the first being intermittent and often non-directional, whereas the second is continuous and directional) and in their causes (with the first being driven by seasonal food resource cycles and the second by advancing snow cover). We therefore argue that it is worth distinguishing between them. To differentiate these forms of non-breeding movement, we propose to use ‘itinerancy’ for the first type, as described initially by Moreau in 1972, and introduce a separate term for the second behavior. Although ‘slow directional itinerancy’ could be considered, we find it too cumbersome.

      Moreover, ‘itinerancy’ in the literature refers not only to non-breeding movements but also to the use of different nesting sites, e.g., Lislevand et al. (2020, Journal of Avian Biology: e02595), reinforcing its association with movements between multiple sites within habitats. We, therefore, propose that the second behavior be given a distinct name. We acknowledge the reviewer’s point that we did not adequately address this distinction in the Discussion and plan to include a separate section in our paper’s revised version. In the third part of his review, the reviewer suggests an alternative title. Another reviewer, Dr Theunis Piersma, suggested the current title during the first round of reviewing, and we have chosen his version.

      In the fourth part of the review, the reviewer questions whether it is appropriate to discuss the conservation aspect of this study. This type of non-breeding movement raises concerns about accurately determining non-breeding ranges and population dynamics for species that exhibit this behavior. We believe that accurate determination of range and population dynamics is critical to conservation efforts. While this may be less important for species breeding in Europe and migrating to Africa, for which monitoring breeding territories is more feasible, it’s essential for Arctic and sub-Arctic breeding species. Large-scale surveys in these regions have historically been challenging and have become even more so with the end of Arctic cooperation following Russia’s war with Ukraine (Koivurova, Shibata, 2023). For North America and Europe, non-breeding abundance is typically estimated once per season in mid-winter. In North America, these are the so-called Christmas counts (which take place once at the end of December), and in Europe, they are the IWC counts mentioned by the reviewer (as follows from their official website - “The IWC requires a single count at each site, which should be repeated each year. The exact dates vary slightly from region to region, but take place in January or February”). Because of such a single count in mid-winter, non-breeding habitats occupied in autumn and spring will be listed as ‘uncommon’ at best, while south-western habitats where birds are only present in mid-winter will be listed as ‘common.’ However, the situation will be reversed if we consider the time birds spend in these habitats.

      The reviewer also highlights the introduction’s unconventional structure and information redundancy at the beginning. We have chosen this structure and provided basic explanations to improve readability for a wider audience, given eLife’s readership. At the same time, we will certainly take the reviewers’ feedback into account in the revised version. We plan to include the references to modern itinerancy research mentioned above and to add a section on itinerancy to the Discussion.

      We appreciate the reviewer’s input and sincerely thank them for their time and effort in reviewing our paper. While we may not fully agree on the classification of the behavior we describe, we value the opportunity to engage in discussion and believe that presenting arguments and counterarguments to the reader is beneficial to scientific progress.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      I much enjoyed reading this manuscript, that is, once I understood what it is about. Titles like "Conserving bird populations in the Anthropocene: the significance of non-breeding movements" are a claim to so-called relevance, they have NOTHING to do with the content of the paper, so once I understood that this paper was about the "Quick quick slow: the foxtrot migration of rough-legged buzzards is a response to habitat and snow" (an alternative title), it was becoming very interesting. So the start of the abstract as well as the introduction is very tedious, as clearly much trouble is taken here to establish reputability. In my eyes this is unnecessary: eLife should be interested in publishing such a wonderful description of such a wonderful migrant in a study that comes to grips with limiting factors on a continental scale!

      We sincerely appreciate your time and effort in reviewing our manuscript. Thank you for your appreciation of our study.

      We agree that the focus of the article should be changed from conservation to migration patterns. We have rewritten the Introduction and Discussion as suggested. We have added the application of this pattern including conservation at the end of the Discussion by completely changing Figure 5. We have also changed the title to the suggested one.

      Not sure that the first paragraph statements that seek to downplay what we know about wintering vs breeding areas are valid (although I see what purpose they serve). Migratory shorebirds have extensively been studied in the nonbreeding areas, for example, including movement aspects (see, as just one example, Verhoeven, M.A., Loonstra, A.H.J., McBride, A.D., Both, C., Senner, N.R. & Piersma, T. (2020) Migration route, stopping sites, and non breeding destinations of adult Black tailed Godwits breeding in southwest Fryslân, The Netherlands. Journal of Ornithology 162, 61-76) and there are very impressive studies on the winter biology of migrants across large scale (for example in Zwarts' Living on the Edge book on the Sahel wetlands). Think also about geese and swans and about seabirds!

      We have rewritten the first paragraph and it now talks about patterns of migratory behavior. We have also rewritten the second paragraph, now it is devoted to studies of movements in the non-breeding period. We explain how our pattern differs from those already studied and give references to the papers you mentioned.

      Directional movements in nonbreeding areas as a function of food (in this case locusts) have really beautifully been described by Almut Schlaich et al in JAnimEcol for Montagu's harriers.

      We have added Montagu's harrier example in the second paragraph of the Introduction and the Discussion. We have added a reference to Schlaich and to Garcia and Arroyo, who suggested that Montagu's harriers have long directional migrations during the non-breeding period.

      Once the paper starts talking buzzards, and the analyses of the wonderful data, all is fine. It is a very competent analysis with a description of a cool pattern.

      Thank you for your appreciation of our study. We hope the revised version is better and clearer.

      However, i would say that it is all a question of spatial scale. The buzzards here respond to changes in food availability, but there is not an animal that doesn't. The question is how far they have to move for an adequate response: in some birds movements of 100s of meters may be enough, and then anything to the scale of rough-legged buzzards.

      In the new version of the manuscript, we emphasize that this is a large distance (about 1000 km), comparable to the distance of the fall and spring migrations (about 1400 km) in lines 70-72 of the Introduction and 379-383 of the Discussion.

      And actually, several of the shorebirds I know best also do a foxtrot, such as red knots and bar-tailed godwits moulting in the Wadden Sea, then spending a few months in the UK estuaries, before returning to the Wadden Sea before the long migrations to Arctic breeding grounds. The publication of the rough-legged buzzard story may help researchers to summarize patterns such as this too. Mu problem with this paper is the framing. A story on the how and why of these continental movements in response to snow and other habitat features would be a grand contribution. Drop Anthropocene, and rethink whether foxtrot should be introduced as a hypothesis or a summary of cool descriptions. I prefer the latter, and recommend eLife to go with that too, rather than encourage "disconnected frames that seek 'respectability'" Good luck, theunis piersma

      We thank the reviewer again for his valuable comments and suggestions. We have changed the framing to the suggested one and removed the Anthropocene from the article.

      Reviewer #2 (Recommendations For The Authors):

      We sincerely appreciate the time and effort you have taken to review our manuscript. We have carefully considered all of your comments, including both public and author comments, and provided detailed responses to each of them below. In addition, we would like to address the most important public comments.

      We agree with the suggestion to shift the focus of the article from conservation to migration patterns. Accordingly, we have rewritten both the Introduction and Discussion sections to focus on migration behavior rather than conservation.

      However, we respectfully disagree with the suggestion that the migration patterns we describe are synonymous with itinerancy. We acknowledge that our original presentation may have been unclear and may have hindered full understanding. In the revised version, we provide a detailed analysis of migratory behavior in the Introduction that describes how our pattern differs from itinerancy. We also revisit this distinction in the Discussion section. We have also carefully revised Figure 1 to improve clarity and avoid potential misunderstandings.

      Regarding the applicability of the described migration pattern, we acknowledge that the Rough-legged Buzzard is not listed as an endangered species. However, we believe that our findings have practical implications. We have moved our discussion of this issue to the end of the Discussion section and have completely revised Figure 5. While the overall population of Rough-legged Buzzards is not declining, certain regions within its range are experiencing declines. We show that this decline does not warrant listing the species as endangered. Instead, it may represent a redistribution within the non-breeding range - a shift in range dynamics. We use the example of the Rough-legged Buzzard to illustrate this concept and emphasize the importance of considering such dynamics when assessing the conservation status of species in the future.

      We also acknowledge that the hypothesis of this form of behavior has been proposed previously for Montagu's Harrier, and we have included this information in the revised manuscript. In addition, we agree that the focus on the Anthropocene is unnecessary in this context and have therefore removed it.

      We believe that these revisions significantly improve the clarity and robustness of the manuscript, and we are grateful for your insightful comments and suggestions.

      As a general comment, please note that including line numbers (as it is the standard in any manuscript submission) would facilitate reviewers providing more detailed comments on the text.

      We apologize for this oversight and have added line numbers to our revised manuscript.

      Dataset: unclear what is the frequency of GPS transmissions. Furthermore, information on relative tag mass for the tracked individuals should be reported.

      We have included this information in our manuscript (L 157-163). We also refer to the study in which this dataset was first used and described in detail (L 164).

      Data pre-processing: more details are needed here. What data have been removed if the bird died? The entire track of the individual? Only the data classified in the last section of the track? The section also reports on an 'iterative procedure' for annotating tracks, which is only vaguely described. A piecewise regression is mentioned, but no details are provided, not even on what is the dependent variable (I assume it should be latitude?).

      Regarding the deaths. We only removed the data when the bird was already dead. We have corrected the text to make this clear (L 170).

      Regarding the iterative procedure. We have added a detailed description on lines 175-188.

      Data analysis: several potential issues here:

      (1) Unclear why sex was not included in all mixed models. I think it should be included.

      Our dataset contains 35 females and eight males. This ratio does not allow us to include sex in all models and adequately assess the influence of this factor. At the same time, because adult females disperse farther than males in some raptor species, we conducted a separate analysis of the dependence of migration distance on sex (Table S8) and found no evidence for this in our species. We have written a separate paragraph about this. This paragraph can be found on lines 356-360 of the new manuscript.

      (2) Unclear what is the rationale of describing habitat use during migration; is it only to show that it is a largely unsuitable habitat for the species? But is a formal analysis required then? Wouldn't be enough to simply describe this?

      Habitat use and snow cover determine the two main phases (quick and slow) of the pattern we describe. We believe that habitat analysis is appropriate in this case and that a simple description would be uninformative and would not support our conclusions.

      (3) Analysis of snow cover: such a 'what if' analysis is fine but it seems to be a rather indirect assessment of the effect of snow cover on movement patterns. Can a more direct test be envisaged relating e.g. daily movement patterns to concomitant snow cover? This should be rather straightforward. The effectiveness of this method rests on among-year differences in snow cover and timing of snowfall. A further possibility would be to demonstrate habitat selection within the entire non-breeding home range of an individual in relation snow cover. Such an analysis would imply associating presence-absence of snow to every location within the non-breeding range and testing whether the proportion of locations with snow is lower than the proportion of snow of random locations within the entire non-breeding home range (95% KDE) for every individual (e.g. by setting a 1/10 ratio presence to random locations).

      The proposed analysis will provide an opportunity to assess whether the Rough-legged Buzzard selects areas with the lowest snow cover, but will not provide an opportunity to follow the dynamics and will therefore give a misleading overall picture. This is especially true in the spring months. In March-April, Rough-legged Buzzards move northeast and are in an area that is not the most open to snow. At this time, areas to the southwest are more open to snow (this can be seen in Figure 4b). If we perform the proposed analysis, the control points for this period would be both to the north (where there is more snow) and to the south (where there is less snow) from the real locations, and the result would be that there is no difference in snow cover.

      A step-selection analysis could be used, as we did in our previous work (Curk et al 2020 Sci Rep) with the same Rough-legged Buzzard (but during migration, not winter). But this would only give us a qualitative idea, not a quantitative one - that Rough-legged Buzzards move from snow (in the fall) and follow snowmelt progression (in the spring).

      At the same time, our analysis gives a complete picture of snow cover dynamics in different parts of the non-breeding range. This allows us to see that if Rough-legged Buzzards remained at their fall migration endpoint without moving southwest, they would encounter 14.4% more snow cover (99.5% vs. 85.1%). Although this difference may seem small (14.4%), it holds significance for rodent-hunting birds, distinguishing between complete and patchy snow cover. Simultaneously, if Rough-legged Buzzards immediately flew to the southwest and stayed there throughout winter, they would experience 25.7% less snow cover (57.3% vs. 31.6%). Despite a greater difference than in the first case, it doesn't compel them to adopt this strategy, as it represents the difference between various degrees of landscape openness from snow cover.

      We write about this in the new manuscript on lines 385-394.

      Results: it is unclear whether the reported dispersion measures are SDs or SEs. Please provide details.

      For the date and coordinates of the start and end of the different phases of migration, we specified the mean, sd, and sample size. We wrote this in line 277. For the values of the parameters of the different phases of the migration (duration, distance, speed, and direction), we used the mean, the standard error of the mean, and the confidence interval (obtained using the ‘emmeans’ package). We have indicated this in lines 302-303 and the caption of Table 1 (L 315) and Figure 2 (L 293-294). For the values of habitat and snow cover experienced by the Rough-legged Buzzards, we used the mean and the error of the mean. We reported this on lines 322 and 337 and in Figures 3 (L 332-333) and 4 (L 355-356).

      Discussion: in general, it should be reshaped taking into account the comments. It is overlong, speculative and quite naive in several passages. Entire sections can be safely removed (I think it can be reduced by half without any loss of information). I provide some examples of the issues I have spotted below. For instance, the entire paragraph starting with 'Understanding....' is not clear to me. What do you mean by 'prohibited management' options? Without examples, this seems a rather general text, based on unclear premises when related to the specific of this study. Some statements are vague, derive from unsubstantiated claims, and unclear. E.g. "Despite their scarcity in these habitats, forests appear to hold significant importance for Rough-legged buzzards for nocturnal safety". I could not find any day-night analysis showing that they actually roost in forests during nighttime. Being a tundra species, it may well be possible that rough-legged buzzards perceive forests as very dangerous habitats and that they prefer instead to roost in open habitats. Analysing habitat use during day and night during the non-breeding period may be of help to clarify this. Furthermore, considering the fast migration periods, what is the flight speed during day and night above forests? Do these birds also migrate at night or do they roost during the night? Perhaps a figure visualizing day and night track segments could be of help (or an analysis of day vs. night flight speed) (there are several R packages to annotate tracks in relation to day and night). This is an example of another problematic statement: "The progression of snow cover in the wintering range of Rough-legged buzzards plays a significant role in their winter migration pattern." The manuscript does not contain any clear demonstration of this, as I wrote in my previous comments. Without such evidence, you must considerably tone down such assertions. But since providing a direct link is certainly possible, I think that additional analyses would clearly strengthen your take-home message.

      The paragraph starting with "The quantification of environmental changes that could prove fatal to bird species presents yet another challenge for conservation efforts in an era of rapid global change." is quite odd. Take the following statement "For instance, the presence of small patches of woodland in the winter range might appear crucial to the survival of the Rough-legged buzzard. Elimination of these seemingly minor elements of vegetation cover through management actions could have dire consequences for the species.". It is based on the assumption that minor vegetation elements play a key role in the ecology of the species, without any evidence supporting this. Does it have any sense? I could safely say exactly the opposite and I would believe it might even be more substantiated.

      We agree with these comments.

      We have completely rewritten this section. As suggested, we have shortened it by removing statements that were not supported by the research. We have completely removed the statements about "prohibited management". We have also removed the statement that "forests appear to be of significant importance to Rough-legged buzzards for nocturnal safety" and everything associated with that statement, e.g. the statement about "small elements of vegetation cover", etc. We do believe that this statement is true in substance, but we also agree that it is not supported by the results and requires separate analysis. At the same time, we believe that this is a topic for a separate study and would be redundant here. Therefore, we leave it for a separate publication.

      Conclusion paragraph: I believe this severely overstates the conservation importance of this study. That the results have "crucial implications for conservation efforts in the Anthropocene, where rapidly changing environmental factors can severely impact bird migration" seems completely untenable to me. What is the evidence for such crucial implications? For instance, these results may suggest that climate change, because global warming is predicted to reduce snow cover in the non-breeding areas, might well be beneficial for populations of this species, by reducing non-breeding energy expenditure and improving non-breeding survival. I think statements like these are simply not necessary, and that the study should be more focused on the actual results and evidence provided.

      We have completely rewritten this section. We removed the reference to the Anthropocene and focused on migratory behavior and migration patterns.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Review:

      Summary:

      In this manuscript, the authors set out to understand how different TLR4 agonists trigger Myddosome assembly and seek to examine how the potent LPS agonist induces a heightened TLR4 response. A strength of the study is that the authors employ a novel light sheet imaging modality coupled to nanopipette delivery of TLR4 ligands. The authors use this technological innovation to resolve the dynamics of Myddosome formation within the whole cell volume of macrophage cell lines expressing MyD88-YFP. The main finding is that the kinetics of Myddosome formation is slower for the weaker agonist Abeta than LPS. However, Abeta amyloids resulted in the formation of larger MyD88-YFP puncta that persisted for longer. The authors suggest the slower kinetics of formation and larger puncta size reflect how Abeta amyloids are a less efficient TLR4 agonist. Many Toll-like receptors are now known to recognize endogenous produced danger signals and microbially derived molecules. This work is the first to compare the signaling kinetics of endogenous versus microbially derived TLR agonists.

      Strengths:

      A key strength of this work is the technological achievement of imaging Myddosomes within the entire cell volume and using a nanopipette to administer ligands directly to single cells. The authors also combine this light sheet microscopy with STORM imaging to gain a super-resolved view of the assembly of Myddosomes. These findings suggest that Myddosomes formed in response to Abeta have a more irregular morphology. We conclude that these technological achievements are significant in improving our understanding of the dynamics of TLR4 signaling in response to diverse agonists. Given the limited literature on the molecular dynamics of innate immune signal transduction, this study is an important addition to the field.

      Weaknesses:

      One limitation of the paper is that a suitable explanation for how larger Myddosomes would contribute to an attenuated downstream signaling response. Do the larger clusters of nucleated MyD88 polymers reflect inefficiency in assembling fully formed Myddosomes that contain IRAK4/2? Could the MyD88-GFP puncta be stained with antibodies against IRAK4 (or IRAK2) to determine the frequency and probably of the two ligands to stimulate signal transduction beyond MyD88 assembly?

      A second weakness is the discussion. The authors should explore other explanations for the observed differences in Myddosome formation between TLR4 agonists. For example, could the observed delay in Myddosome assembly in response to Abeta be due to different binding affinity or kinetics to TLR4? Can this be ruled out?

      We thank the reviewer for these comments.

      To address the first comment we have added a section on the limitations of the current study and suggested that future work could use IRAK4 or 2 staining to identify Myddosomes that are functional as well as working with cells where the Myddosome expression levels is at physiological levels, which may reduce the formation of larger Myddosomes.

      The reviewer is correct that the difference in delay time for Myddosome formation could be due slow formation of a TLR4 dimer or binding to the TLR4 dimer, rather than the time take to assemble the Myddosome after TLR4 dimerisation and binding since we have only measured the delay time for Myddosome formation when triggered by LPS or Aβ aggregates. This delay times involves dimerization of TLR4, binding of LPS or Aβ aggregates to the TLR4 dimer followed by Myddosome formation. These other processes might contribute to the difference in delay time that we observed between LPS or Aβ aggregates. It is worth noting that in our experiments we deliver the LPS or Aβ aggregates directly onto the surface for 5 seconds and that we previously showed the presence of the preformed TLR4 dimers on the cell surface (Latty et al., 2018). The affinity of Aβ aggregates for TLR4 is not known but LPS has a high affinity for TLR4, estimated to ∼3 nM for lipid A–TLR4-MD-2 (Akashi et al., 2003). However, even with this high affinity which implies fast binding, direct delivery directly onto the surface and the presence of preformed TLR4 dimers on the cell surface we observed that it took 80 s to observe Myddosome formation. This indicates that Myddosome formation is the slow step for LPS triggering. This is likely to be the case Aβ aggregates, since pM concentrations of aggregates can trigger TLR4 signalling (Hughes et al., 2020) indicating high affinity. However, it is not possible to rule out a contribution of a difference in affinity to observed difference in delay time without measuring the affinity directly.

      We have added both these points to a new paragraph on the limitations of the study in the Discussion.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We are grateful for these balanced, nuanced evaluations of our work concerning the observed epistatic trends and our interpretations of their mechanistic origins. Overall, we think the reviewers have done an excellent job at recognizing the novel aspects of our findings while also discussing the caveats associated with our interpretations of the biophysical effects of these mutations. We believe it is important to consider both of these aspects of our work in order to appreciate these advances and what sorts of pertinent questions remain.

      Notably, both reviewers are concerned that our lack of experimental approaches to compare the conformational properties of GnRHR variants weakens our claims. We would first humbly suggest that this constitutes a more general caveat that applies to nearly all investigations of the cellular misfolding of α-helical membrane proteins. Whether or not any current in vitro folding measurements report on conformational transitions that are relevant to cellular protein misfolding reactions remains an active area of debate (discussed further below). Nevertheless, while we concede that our structural and/ or computational evaluations of various mutagenic effects remain speculative, prevailing knowledge on the mechanisms of membrane protein folding suggest our mutations of interest (V276T and W107A) are highly unlikely to promote misfolding in precisely the same way. Thus, regardless of whether or not we were able experimentally compare the relevant folding energetics of GnRHR variants, we are confident that the distinct epistatic interactions formed by these mutations reflect variations in the misfolding mechanism and that they are distinct from the interactions that are observed in the context of stable proteins. In the following, we provide detailed considerations concerning these caveats in relation to the reviewers’ specific comments.

      Reviewer #1 (Public Review):

      The paper carries out an impressive and exhaustive non-sense mutagenesis using deep mutational scanning (DMS) of the gonadotropin-releasing hormone receptor for the WT protein and two single point mutations that I) influence TM insertion (V267T) and ii) influence protein stability (W107A), and then measures the effect of these mutants on correct plasma membrane expression (PME).

      Overall, most mutations decreased mGnRHR PME levels in all three backgrounds, indicating poor mutational tolerance under these conditions. The W107A variant wasn't really recoverable with low levels of plasma membrane localisation. For the V267T variant, most additional mutations were more deleterious than WT based on correct trafficking, indicating a synergistic effect. As one might expect, there was a higher degree of positive correlation between V267T/W107A mutants and other mutants located in TM regions, confirming that improper trafficking was a likely consequence of membrane protein co-translational folding. Nevertheless, context is important, as positive synergistic mutants in the V27T could be negative in the W107A background and vice versa. Taken together, this important study highlights the complexity of membrane protein folding in dissecting the mechanism-dependent impact of disease-causing mutations related to improper trafficking.

      Strengths

      This is a novel and exhaustive approach to dissecting how receptor mutations under different mutational backgrounds related to co-translational folding, could influence membrane protein trafficking.

      Weaknesses

      The premise for the study requires an in-depth understanding of how the single-point mutations analysed affect membrane protein folding, but the single-point mutants used seem to lack proper validation.

      Given our limited understanding of the structural properties of misfolded membrane proteins, it is unclear whether the relevant conformational effects of these mutations can be unambiguously validated using current biochemical and/ or biophysical folding assays. X-ray crystallography, cryo-EM, and NMR spectroscopy measurements have demonstrated that many purified GPCRs retain native-like structural ensembles within certain detergent micelles, bicelles, and/ or nanodiscs. However, helical membrane protein folding measurements typically require titration with denaturing detergents to promote the formation of a denatured state ensemble (DSE), which will invariably retain considerable secondary structure. Given that the solvation provided by mixed micelles is clearly distinct from that of native membranes, it remains unclear whether these DSEs represent a reasonable proxy for the misfolded conformations recognized by cellular quality control (QC, see https://doi.org/10.1021/acs.chemrev.8b00532). Thus, the use and interpretation of these systems for such purposes remains contentious in the membrane protein folding community. In addition to this theoretical issue, we are unaware of any instances in which GPCRs have been found to undergo reversible denaturation in vitro- a practical requirement for equilibrium folding measurements (https://doi.org/10.1146/annurev-biophys-051013-022926). We note that, while the resistance of GPCRs to aggregation, proteolysis, and/ or mechanical unfolding have also been probed in micelles, it is again unclear whether the associated thermal, kinetic, and/ or mechanical stability should necessarily correspond to their resistance to cotranslational and/ or posttranslational misfolding. Thus, even if we had attempted to validate the computational folding predictions employed herein, we suspect that any resulting correlations with cellular expression may have justifiably been viewed by many as circumstantial. Simply put, we know very little about the non-native conformations are generally involved in the cellular misfolding of α-helical membrane proteins, much less how to measure their relative abundance. From a philosophical standpoint, we prefer to let cells tell us what sorts of broken protein variants are degraded by their QC systems, then do our best to surmise what this tells us about the relevant properties of cellular DSEs.

      Despite this fundamental caveat, we believe that the chosen mutations and our interpretation of their relevant conformational effects are reasonably well-informed by current modeling tools and by prevailing knowledge on the physicochemical drivers of membrane protein folding and misfolding. Specifically, the mechanistic constraints of translocon-mediated membrane integration provide an understanding of the types of mutations that are likely to disrupt cotranslational folding. Though we are still learning about the protein complexes that mediate membrane translocation (https://doi.org/10.1038/s41586-022-05336-2), it is known that this underlying process is fundamentally driven by the membrane depth-dependent amino acid transfer free energies (https://doi.org/10.1146/annurev.biophys.37.032807.125904). This energetic consideration suggests introducing polar side chains near the center of a nascent TMDs should almost invariably reduce the efficiency of topogenesis. To confirm this in the context of TMD6 specifically, we utilized a well-established biochemical reporter system to confirm that V276T attenuates its translocon-mediated membrane integration (Fig. S1)- at least in the context of a chimeric protein. We also constructed a glycosylation-based topology reporter for full-length GnRHR, but ultimately found its’ in vitro expression to be insufficient to detect changes in the nascent topological ensemble.

      In contrast to V276T, the W107A mutation is predicted to preserve the native topological energetics of GnRHR due to its position within a soluble loop region. W107A is also unlike V276T in that it clearly disrupts tertiary interactions that stabilize the native structure. This mutation should preclude the formation of a structurally conserved hydrogen bonding network that has been observed in the context of at least 25 native GPCR structures (https://doi.org/10.7554/eLife.5489). However, without a relevant folding assay, the extent to which this network stabilizes the native GnRHR fold in cellular membranes remains unclear. Overall, we admit that these limitations have prevented us from measuring how much V276T alters the efficiency of GnRHR topogenesis, how much the W107A destabilizes the native fold, or vice versa. Nevertheless, given these design principles and the fact that both reduce the plasma membrane expression of GnRHR, as expected, we are highly confident that the structural defects generated by these mutations do, in fact, promote misfolding in their own ways. We also concede that the degree to which these mutagenic perturbations are indeed selective for specific folding processes is somewhat uncertain. However, it seems exceedingly unlikely that these mutations should disrupt topogenesis and/ or the folding of the native topomer to the exact same extent. From our perspective, this is the most important consideration with respect to the validity of the conclusions we have made in this manuscript.

      Furthermore, plasma membrane expression has been used as a proxy for incorrect membrane protein folding, but this not necessarily be the case, as even correctly folded membrane proteins may not be trafficked correctly, at least, under heterologous expression conditions. In addition, mutations can affect trafficking and potential post-translational modifications, like glycosylation.

      While the reviewer is correct that the sorting of folded proteins within the secretory pathway is generally inefficient, it is also true that the maturation of nascent proteins within the ER generally bottlenecks the plasma membrane expression of most α-helical membrane proteins. Our group and several others have demonstrated that the efficiency of ER export generally appears to scale with the propensity of membrane proteins to achieve their correct topology and/ or to achieve their native fold (see https://doi.org/10.1021/jacs.5b03743 and https://doi.org/10.1021/jacs.8b08243). Notably, these investigations all involved proteins that contain native glycosylation and various other post-translational modification sites. While we cannot rule out that certain specific combinations of mutations may alter expression through their perturbation of post-translational GnRHR modifications, we feel confident that the general trends we have observed across hundreds of variants predominantly reflect changes in folding and cellular QC. This interpretation is supported by the relationship between observed trends in variant expression and Rosetta-based stability calculations, which we identified using unbiased unsupervised machine learning approaches (compare Figs. 6B & 6D).

      Reviewer #2 (Public Review):

      Summary:

      In this paper, Chamness and colleagues make a pioneering effort to map epistatic interactions among mutations in a membrane protein. They introduce thousands of mutations to the mouse GnRH Receptor (GnRHR), either under wild-type background or two mutant backgrounds, representing mutations that destabilize GnRHR by distinct mechanisms. The first mutant background is W107A, destabilizing the tertiary fold, and the second, V276T, perturbing the efficiency of cotranslational insertion of TM6 to the membrane, which is essential for proper folding. They then measure the surface expression of these three mutant libraries, using it as a proxy for protein stability, since misfolded proteins do not typically make it to the plasma membrane. The resulting dataset is then used to shed light on how diverse mutations interact epistatically with the two genetic background mutations. Their main conclusion is that epistatic interactions vary depending on the degree of destabilization and the mechanism through which they perturb the protein. The mutation V276T forms primarily negative (aggravating) epistatic interactions with many mutations, as is common to destabilizing mutations in soluble proteins. Surprisingly, W107A forms many positive (alleviating) epistatic interactions with other mutations. They further show that the locations of secondary mutations correlate with the types of epistatic interactions they form with the above two mutants.

      Strengths:

      Such a high throughput study for epistasis in membrane proteins is pioneering, and the results are indeed illuminating. Examples of interesting findings are that: (1) No single mutation can dramatically rescue the destabilization introduced by W107A. (2) Epistasis with a secondary mutation is strongly influenced by the degree of destabilization introduced by the primary mutation. (3) Misfolding caused by mis-insertion tends to be aggravated by further mutations. The discussion of how protein folding energetics affects epistasis (Fig. 7) makes a lot of sense and lays out an interesting biophysical framework for the findings.

      Weaknesses:

      The major weakness comes from the potential limitations in the measurements of surface expression of severely misfolded mutants. This point is discussed quite fairly in the paper, in statements like "the W107A variant already exhibits marginal surface immunostaining" and many others. It seems that only about 5% of the W107A makes it to the plasma membrane compared to wild-type (Figures 2 and 3). This might be a low starting point from which to accurately measure the effects of secondary mutations.

      The reviewer raises an excellent point that we considered at length during the analysis of these data and the preparation of the manuscript. Though we remain confident in the integrity of these measurements and the corresponding analyses, we now realize this aspect of the data required further discussion and documentation which we have provided in the revised version of the manuscript as is described in the following.

      Still, the authors claim that measurements of W107A double mutants "still contain cellular subpopulations with surface immunostaining intensities that are well above or below that of the W107A single mutant, which suggests that this fluorescence signal is sensitive enough to detect subtle differences in the PME of these variants". I was not entirely convinced that this was true.

      We made this statement based on the simple observation that the surface immunostaining intensities across the population of recombinant cells expressing the library of W107A double mutants was consistently broader than that of recombinant cells expressing W107A GnRHR alone (see Author response image 1 for reference). Given that the recombinant cellular library represents a mix of cells expressing ~1600 individual variants that are each present at low abundance, the pronounced tails within this distribution presumably represent the composite staining of many small cellular subpopulations that express collections of variants that deviate from the expression of W107A to an extent that is significant enough to be visible on a log intensity plot.

      Author response image 1.

      Firstly, I think it would be important to test how much noise these measurements have and how much surface immunostaining the W107A mutant displays above the background of cells that do not express the protein at all.

      For reference, the average surface immunostaining intensity of HEK293T cells transiently expressing W107A GnRHR was 2.2-fold higher than that of the IRES-eGFP negative, untransfected cells within the same sample- the WT immunostaining intensity was 9.5-fold over background by comparison. Similarly, recombinant HEK293T cells expressing the W107A double mutant library had an average surface immunostaining intensity that was 2.6-fold over background across the two DMS trials. Thus, while the surface immunostaining of this variant is certainly diminished, we were still able to reliably detect W107A at the plasma membrane even under distinct expression regimes. We have included these and other signal-to-noise metrics for each experiment in the Results section of the revised manuscript.

      Beyond considerations related to intensity, we also previously noticed the relative intensity values for W107A double mutants exhibited considerable precision across our two biological replicates. If signal were too poor to detect changes in variant expression, we would have expected a plot of the intensity values across these two replicates to form a scatter. Instead, we found DMS intensity values for individual variants to be highly correlated from one replicate to the next (Pearson’s R2 = 0.95, see Author response image 2 for reference). This observation empirically demonstrates that this assay consistently differentiated between variants that exhibit slightly enhanced immunostaining from those that have even lower immunostaining than W107A GnRHR. We have included these discussion points in the Results section as well as scatter plots for replicate variant intensities within all three genetic backgrounds in Figure S3 of the revised manuscript.

      Author response image 2.

      But more importantly, it is not clear if under this regimen surface expression still reports on stability/protein fitness. It is unknown if the W107A retains any function or folding at all. For example, it is possible that the low amount of surface protein represents misfolded receptors that escaped the ER quality control.

      While we believe that such questions are outside the scope of this work, we certainly agree that it is entirely possible that some of these variants bypass QC without achieving their native fold. This topic is quite interesting to us but is quite challenging to assess in the context of GPCRs, which have complex fitness landscapes that involve their propensity to distinguish between different ligands, engage specific components associated with divergent downstream signaling pathways, and navigate between endocytic recycling/ degradation pathways following activation. In light of the inherent complexity of GPCR function, we humbly suggest our choice of a relatively simple property of an otherwise complex protein may be viewed as a virtue rather than a shortcoming. Protein fitness is typically cast as the product of abundance and activity. Rather than measuring an oversimplified, composite fitness metric, we focused on one variable (plasma membrane expression) and its dominant effector (folding). We believe restraining the scope in this manner was key for the elucidation of clear mechanistic insights.

      The differential clustering of epistatic mutations (Fig. 6) provides some interesting insights as to the rules that dictate epistasis, but these too are dominated by the magnitude of destabilization caused by one of the mutations. In this case, the secondary mutations that had the most interesting epistasis were exceedingly destabilizing. With this in mind, it is hard to interpret the results that emerge regarding the epistatic interactions of W107A. Furthermore, the most significant positive epistasis is observed when W107A is combined with additional mutations that almost completely abolish surface expression. It is likely that either mutation destabilizes the protein beyond repair. Therefore, what we can learn from the fact that such mutations have positive epistasis is not clear to me. Based on this, I am not sure that another mutation that disrupts the tertiary folding more mildly would not yield different results. With that said, I believe that the results regarding the epistasis of V276T with other mutations are strong and very interesting on their own.

      We agree with the reviewer. In light of our results we believe it is virtually certain that the secondary mutations characterized herein would be likely to form distinct epistatic interactions with mutations that are only mildly destabilizing. Indeed, this insight reflects one of the key takeaway messages from this work- stability-mediated epistasis is difficult to generalize because it should depend on the extent to which each mutation changes the stability (ΔΔG) as well as initial stability of the WT/ reference sequence (ΔG, see Figure 7). Frankly, we are not so sure we would have pieced this together as clearly had we not had the fortune (or misfortune?) of including such a destructive mutation like W107A as a point of reference.

      Additionally, the study draws general conclusions from the characterization of only two mutations, W107A and V276T. At this point, it is hard to know if other mutations that perturb insertion or tertiary folding would behave similarly. This should be emphasized in the text.

      We agree. Our findings suggest different mutations may not behave similarly, which we believe is a key finding of this work. We have emphasized this point in the Discussion section of the revised manuscript as follows:

      “These findings suggest the folding-mediated epistasis is likely to vary among different classes of destabilizing mutations in a manner that should also depend on folding efficiency and/ or the mechanism(s) of misfolding in the cell.”

      Some statistical aspects of the study could be improved:

      (1) It would be nice to see the level of reproducibility of the biological replicates in a plot, such as scatter or similar, with correlation values that give a sense of the noise level of the measurements. This should be done before filtering out the inconsistent data.

      We thank the reviewer for this suggestion and will include scatters for each genetic background like the one shown above in Figure S3 of the revised version of the manuscript.

      (2) The statements "Variants bearing mutations within the C- terminal region (ICL3-TMD6-ECL3-TMD7) fare consistently worse in the V276T background relative to WT (Fig. 4 B & E)." and "In contrast, mutations that are 210 better tolerated in the context of W107A mGnRHR are located 211 throughout the structure but are particularly abundant among residues 212 in the middle of the primary structure that form TMD4, ICL2, and ECL2 213 (Fig. 4 C & F)." are both hard to judge. Inspecting Figures 4B and C does not immediately show these trends, and importantly, a solid statistical test is missing here. In Figures 4E and F the locations of the different loops and TMs are not indicated on the structure, making these statements hard to judge.

      We apologize for this oversight and thank the reviewer for pointing this out. We utilized paired Wilcoxon-Signed Rank Tests to evaluate the statistical significance of these observations and modified the description of these findings in the revised version of the results section as follows:

      “Variants bearing mutations within the C-terminal regions including ICL3, TMD6, and TMD7 fare consistently worse in the V276T background relative to WT (paired Wilcoxon-Signed Rank Test p-values of 0.0001, 0.02, and 0.005, respectively) (Fig. 4 B & E). Given that V276T perturbs the cotranslational membrane integration of TMD6 (Fig. S1, Table S1), this directional bias potentially suggests that the apparent interactions between these mutations manifest during the late stages of cotranslational folding. In contrast, mutations that are better tolerated in the context of W107A mGnRHR are located throughout the structure but are particularly abundant among residues in the middle of the primary structure that form ICL2, TMD4, and ECL2 (paired Wilcoxon-Signed Rank Test p-values of 0.0005, 0.0001, and 0.004, respectively) (Fig. 4 C & F).”

      (3) The following statement lacks a statistical test: "Notably, these 98 variants are enriched with TMD variants (65% TMD) relative to the overall set of 251 variants (45% TMD)." Is this enrichment significant? Further in the same paragraph, the claim that "In contrast to the sparse epistasis that is generally observed between mutations within soluble proteins, these findings suggest a relatively large proportion of random mutations form epistatic interactions in the context of unstable mGnRHR variants". Needs to be backed by relevant data and statistics, or at least a reference.

      We thank the reviewer for this reasonable suggestion. In the revised manuscript, we included the results of a paired Wilcoxon-Signed Rank Test that confirms the statistical significance of this observation and modified the Results section to reflect this as follows:

      “Notably, these 98 variants are enriched with TMD variants (65% TMD) relative to the overall set of 251 variants (45% TMD, Fisher’s Exact Test p = 0.0019). These findings suggest random mutations form epistatic interactions in the context of unstable mGnRHR variants in a manner that depends on the specific folding defect (V276T vs. W107A) and topological context.”

      Reviewer #1 (Recommendations for the Authors):

      As far as this reviewer is aware, the effect of the V267T variant on MP insertion has not been measured directly; its position corresponds to T277 in TMD6 of human GnRHR that has been measured for TM insertion, but given the clear lack of conservation (threonine vs valine) the mutation in TM6 could potentially have a different impact on the mouse homologue. Please clarify what the predicted delta TM for insertion is between human and mouse GnRHR is? Moreover, I would argue that single TM insertion by tethering to Lep is insufficient to understand MP insertion/folding, as neighbouring TM helices could help to drive TM6 insertion. Has ER microsome experiments for mouse GnRHR also been carried out in the context of neighbouring helices?

      We included measurements (and predictions) of the impact of the V276T substitution on the translocon-mediated membrane integration of the mouse TMD6 in the context of a chimeric Lep protein (see Fig. S1 & Table S1). Our results reveal that this substitution decreases the efficiency of TMD6 membrane integration by ~10%. Though imperfect, this prevailing biochemical assay remains popular for a variety of theoretical and technical reasons. Importantly, extensive experimental testing of this system has shown that these measurements report apparent equilibrium constants that are well-described by two-state equilibrium partitioning models (see DOIs 10.1038/nature03216 and 10.1038/nature06387). This observation provides a reasonable rationale to interpret these measurements using energetic models as we have in this work (see Table S1). From a technical perspective, the Lep system is also advantageous due to the fact that this protein is generally well expressed in the context of in vitro translation systems containing native membranes, which generally ensures a consistent signal to noise and dynamic range for membrane integration measurements. Nevertheless, the reviewers are correct that membrane integration efficiencies are likely distinct in the context of the native mGnRHR protein. For these reasons, we attempted to develop a glycosylation-based topology reporter prior to the posting and submission of this manuscript. However, all GnRHR reporters we tested were poorly expressed in vitro and the resulting 35S-labeled proteins only generated faint smears on our phosphorimaging screens that could not be interpreted. For these reasons, we chose to rely the Lep measurements for these investigations.

      The lack of a more relevant topological reporter is one of many challenges we faced in our investigations of this unstable, poorly behaved protein. We share the reviewer’s frustrations concerning the speculative aspects of this work. Nevertheless, there is increasing appreciation for the fact that our perspectives on protein biophysics have been skewed by our continuing choice to focus on the relatively small set of model proteins that are compatible with our favored methodologies (doi: 10.1016/j.tibs.2013.05.001). We humbly suggest this work represents an example of how we can gain a deeper understanding of the limits of biochemical systems when we instead choose to study the unsavory bits of cellular proteomes. But this choice requires a willingness to make some reasonable assumptions and to lean on energetic/ structural modeling from time to time. Despite this limitation, we believe there is still tremendous value in this compromise.

      What is the experimental evidence the W107A variant affects the protein structure? Has its melting temperature with and without inverse agonist binding for WT vs the W107A variant been measured, for example? Even heat-FSEC of detergent-solubilised membranes would be informative to know how unstable the W107A variant is. If is very unstable in detergent, then it could be that recovery mutants are going to be unlikely as you are already starting with a poor construct showing poor folding/localisation.

      We again understand the rationale for this concern, but do not believe that thermal melting measurements are likely to report the same sorts of conformational transitions involved in cellular misfolding. Heating up a protein to the point in which membranes (or micelles) are disrupted and the proteins begin to form insoluble aggregates is a distinct physical process from those that occur during co- and post-translational folding within intact ER membranes at physiological temperatures (discussed further in the Response to the Reviews). Indeed, as the reviewer points out below, there seems to be little evidence that secretion is linked to thermal stability or various other metrics that others have attempted to optimize for the sake of purification and/ or structural characterization. Thus, we believe it would be just as speculative to suggest thermal aggregation represents a relevant metric for the propensity of membrane proteins to fold in the cell. The physical interpretation of membrane protein misfolding reaction remains contentious in our field due to the key fact that the denatured states of helical membrane proteins remain highly structured in a manner that is hard to generalize beyond the fact that the denatured states retain α-helical secondary structure (doi: 10.1146/annurev-biophys-051013-022926). This is in stark contrast to soluble proteins, where random coil reference states have proven to be generally useful for energetic interpretations of protein stability. For reference, our lab is currently working to leverage epistatic measurements like this to map the prevailing physiological denatured states of an integral membrane protein. Our current findings suggest that non-native electrostatic interactions form in the context of misfolded states. We hope that more information on the structural aspects of these states will help us to develop and interpret meaningful folding measurements within the membrane.

      For reference, even in cases when quantitative folding measurements can be achieved, their relevance remains actively debated. As a point of reference, the corresponding author of this work previously worked on the stability and misfolding of another human α-helical membrane protein (PMP22). Like GnRHR, PMP22 is prone to misfolding in the secretory pathway and is associated with dozens of pathogenic mutations that cause protein misfolding. To understand how the thermodynamic stability of this protein is linked to secretion, the corresponding author purified PMP22, reconstituted it into n-Dodecyl-phosphocholine (DPC) micelles, and measured its resistance to denaturation by an anionic denaturing detergent (Lauryl Sarcosine, LS). The results were initially perplexing due to the fact that equilibrium unfolding curves manifested as an exponential decay (rather than a sigmoid) and relaxation kinetics appeared to be dominated by the rate constant for unfolding (doi: 10.1021/bi301635f). Unfortunately, these data could not be fit with existing folding models due to the lack of a folded protein baseline and the absence of a folding arm in the chevron plot. We eventually found that a full sigmoidal unfolding transition and refolding kinetics could be measured upon addition of 15% (v/v) glycerol. Our measurements revealed that the free energy of unfolding in DPC micelles was 0 kcal/ mol (without glycerol). This shocking lack of WT stability made it impossible to directly measure the effects of destabilizing mutations that enhance misfolding- you can’t measure the unfolding of a protein that is already unfolded. We ultimately had to instead infer the energetic effects of such mutations from the thermodynamic coupling between cofactor binding and folding (doi: 10.1021/jacs.5b03743). Finally, after demonstrating the resulting ΔΔGs correlated with both cellular trafficking and disease phenotype, we still faced justified scrutiny about the relevance of these measurements due to the fact that they were carried out in micelles. For these reasons, we do not feel that additional biophysical measurements will add much to this work until more is understood about the nature of misfolding reactions in the membrane and how to effectively recapitulate it in vitro. We also note that PMP22 is secreted with 20% efficiency in mammalian cell lines, which is 20-fold more efficient than human GnRHR under similar conditions (doi: 10.1016/j.celrep.2021.110046). Thus, we suspect equilibrium unfolding measurements are likely out of reach using previously described measurements.

      Our greatest evidence suggesting W107A destabilizes the protein has to do with the fact that it deletes a highly conserved structural contact and that this structural modification kills its secretion. The fact that this mutation clearly reduces the escape of GnRHR from ER quality control is a classic indicator of misfolding that represents the cell’s way of telling us that the mutation compromises the folding of the nascent protein in some way or another. Precisely how this mutation remodels the nascent conformational ensemble of nascent GnRHR and how this relates to the free energy difference between the native and non-native portions of its conformational ensemble under cellular conditions is a much more challenging question that lies beyond the scope of this investigation (and likely beyond the scope of what’s currently possible). Indeed, there is an entire field dedicated to understanding such. Nevertheless, the difference in the epistatic interactions formed by W107A and V276T is at the very least consistent with our speculative interpretation that these two mutations vary in their misfolding mechanism and/ or in the extent to which they destabilize the protein. For these reasons, we feel the main conclusions of this manuscript are well-justified.

      Please clarify if the protein is glycosylated or not and, if it is, how would this requirement affect the conclusions of your analysis?

      As we noted in the Response to the Reviewers, which also constitutes a published portion of the final manuscript, this protein is indeed glycosylated. We were well aware of this aspect of the protein since inception of this project and do not think this changes our interpretation at all. Most membrane proteins are glycosylated, and several groups have demonstrated in various ways that the secretion efficiency of glycoproteins is proportional to certain stability metrics for secreted soluble proteins and membrane proteins alike. Generally, mutations that enhance misfolding do not change the propensity of the nascent chain to undergo N-linked glycosylation, which occurs during translation before protein synthesis and/ or folding is complete. Misfolded proteins typically carry lower weight glycans, which reflects their failure to advance from the ER to the Golgi, where N-linked glycans are modified and O-linked glycans are added. From our perspective, glycosyl modifications just ensure that nascent proteins are engaged by calnexin and other lectin chaperones involved in QC. It does not decouple folding from secretion efficiency. In the case of PMP22 (described above), we found that removal of its glycosylation site allows the nascent protein to bypass the lectin chaperones in a manner that enhances its plasma membrane expression eight-fold (doi: 10.1016/j.jbc.2021.100719). Similar to WT, the expression of several misfolded PMP22 variants also significantly increases upon removal of the glycosylation site. Nevertheless, their expression is still significantly lower than the un-glycosylated WT protein, and the expression patterns of the mutants relative to WT was quite similar across this panel of un-glycosylated proteins. Thus, while glycosylation certainly impacts secretion, it does not change its dependence on folding efficiency within the ER. There are many layers of partially redundant QC within the ER, and it seems that folding imposes a key bottleneck to secretion regardless of which QC proteins are involved. For these reasons, we do not think glycosylation (or other PTMs) should factor into our interpretation of these results.

      One caveat with the study is that there is a poor understanding of the factors that decide if the protein should be trafficked to the PM or not. Even secretory proteins not going through the calnexin/reticulum cycle (as they have no N-linked glycans), might still get stuck in the ER, despite the fact they are functional. Could this be a technical issue of heterologous expression overloading the Sec system?

      While we agree that there is much to be learned about this topic, we disagree with the notion that our understanding of folding and secretion is insufficient to generally interpret the molecular basis of the observed trends. In collaboration with various other groups, the corresponding author of this paper has shown for several other proteins that the stability of the native topology and the native tertiary structure can constrain secretion efficiency (see dois: 10.1021/jacs.8b08243, 10.1021/jacs.5b03743, and 10.1016/j.jbc.2021.100423). Moreover, the Balch and Kelly groups demonstrated many years ago that relatively simple models for the coupling between folding and chaperone binding can recapitulate the observed effects of mutations on the secretion efficiency of various proteins (doi: 10.1016/j.cell.2007.10.025). Given a wide body of prevailing knowledge in this area, we believe it is entirely reasonable to assume that the conformational effects of these mutation have a dominant effect on plasma membrane expression.

      Whether or not some of the proteins retained in the ER are folded and/ or functional is an interesting question, but is outside the scope of this work. Various lines of evidence concerning approaches to rescue misfolded membrane proteins suggest many of these variants are likely to retain residual function once they escape the ER, which may suggest there are pockets of foldable/ folded proteins within the ER. But it seems generally clear that the efficiency of folding in the ER bottlenecks secretion regardless of whether or not the ER contains some fraction of folded/ functional protein. We note that it is certainly possible, if not likely, that secretion efficiency is likely to be higher at lower expression levels (doi: 10.1074/jbc.AC120.014940). However, the mutational scanning platform used in this work was designed such that all variants are expressed from an identical promoter at the same location within the genome. Thus, for the purposes of these investigations, we believe it is entirely fair to draw “apples-to-apples” comparisons of their relative effects on plasma membrane expression.

      Please see Francis Arnold's paper on this point and their mutagenesis library of the channelrhodopsin (https://www.pnas.org/doi/10.1073/pnas.1700269114), which further found that 20% of mutations improved WT trafficking. Some general comparisons to this paper might be informative.

      We agree that it may be interesting to compare the results from this paper to those in our own. Indeed, we find that 20% of the point mutations characterized herein also enhance the expression of WT mGnRHR, as mentioned in the Results section. However, we think it might be a bit premature to suggest this is a more general trend in light of the fact that the channelrhodopsins engineered in those studies were not of eukaryotic origin and have likely resulted from distinct evolutionary constraints. We ultimately decided against adding more on this to our already lengthy discussion in order to maintain focus on the mechanisms of epistasis.

      Chris Tate and others have shown that there is a high frequency of finding stabilising point mutations in GPCRs and this is the premise of the StAR technology used to thermostabilise GPCRs in the presence of different ligands, i.e. agonist vs inverse agonists. As far as I am aware, there is a poor correlation between expression levels and thermostability (measured by ligand binding to detergent-solubilised membranes). As such, it is possible that some of the mutants might be more stable than WT even though they have lower levels of PME.

      We believe the disconnect between thermostability and expression precisely speaks to our main point about the suitability of current membrane protein folding assays for the questions we address herein. The degradative activity of ER quality control has not necessarily selected for proteins that are resistant to thermal degradation and/ or are suitable for macromolecular crystallography. For this reason, it is often not so difficult to engineer proteins with enhanced thermal stability. We do not believe this disconnect signals that quality control is insensitive to protein folding and stability, but rather that it is more likely to recognize conformational defects that are distinct from those involved in thermal degradation and/ or aggregation. Indeed, recent work from the Fluman group, which builds on a wider body of previous observations, has shown that the exposure of polar groups within the membrane is a key factor that recruits degradation machinery (doi: 0.1101/2023.12.12.571171). It is hard to imagine that these sorts of conformational defects are the same as those involved in thermal aggregation.

      Reviewer #2 (Recommendations For The Authors):

      (1) I believe that by focusing more on the epistasis with V276T, and less on W107A, the paper could be strengthened significantly.

      We appreciate this sentiment. But we believe the comparison of these two mutants really drive home the point that destabilizing mutations are not equivalent with respect to the epistatic interactions they form.

      (2) In the abstract - please define the term epistasis in a simple way, to make it accessible to a general audience. For example - negative epistasis means that... this should be explicitly explained.

      We thank the reviewer for this suggestion. To meet eLife formatting, we had to cut down the abstract significantly. We simplified this as best we could in the following statement:

      “Though protein stability is known to shape evolution, it is unclear how cotranslational folding constraints modulate the synergistic, epistatic interactions between mutations.”

      We also define positive and negative epistasis in the results section as follows:

      “Positive Ɛ values denote double mutants that have greater PME than would be expected based on the effects of single mutants. Negative Ɛ values denote double mutants that have lower PME than would be expected based on the effects of single mutants. Pairs of mutations with Ɛ values near zero have additive effects on PME.”

      (3) The title is quite complex and might deter readers from outside the protein evolution field. Consider simplifying it.

      We thank the reviewer for this suggestion. We have simplified the title to the following:

      “Divergent Folding-Mediated Epistasis Among Unstable Membrane Protein Variants”

      (4) The paper could benefit from a simple figure explaining the different stages of membrane protein folding (stages 1+2) to make it more accessible to readers from outside the membrane protein field.

      This is a great suggestion. We incorporated a new schematic in the revised manuscript that outlines the nature of these processes (see Fig. 1A in the revised manuscript).

      (5) For the FACS-Seq experiment - it was not clear to me if and when all cells are pulled together. For example - are the 3 libraries mixed together already at the point of transfection, or are the transfected cells pulled together at any point before sorting? This could have some implications on batch effects and should, therefore, be explicitly mentioned in the main text.

      We thank the reviewer for this suggestion. We modified the description of the DNA library assembly to emphasize that the mutations were generated in the context of three mixed plasmid pools, which were then transfected into the cells and sorted independently:

      “We then generated a mixed array of mutagenic oligonucleotides that collectively encode this series of substitutions (Table S3) and used nicking mutagenesis to introduce these mutations into the V276T, W107A, and WT mGnRHR cDNAs (Medina-Cucurella et al., 2019), which produced three mixed plasmid pools.”

      (6) The following description in the text is quite confusing. It would be better to simplify it considerably or remove it: "scores (Ɛ) were then determined by taking the log of the double mutant fitness value divided by the difference between the single mutant fitness values (see Methods)."

      We thank the reviewer for this valuable feedback and have simplified the text as follows:

      “To compare epistatic trends in these libraries, we calculated epistasis scores (Ɛ) for the interactions that these 251 mutations form with V276T and W107A by comparing their relative effects on PME of the WT, V276T, and W107A variants using a previously described epistasis model (product model, see Methods) (Olson et al. 2014).”

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      Connelly and colleagues provide convincing genetic evidence that importation from mainland Tanzania is a major source of Plasmodium falciparum lineages currently circulating in Zanzibar. This study also reveals ongoing local malaria transmission and occasional near-clonal outbreaks in Zanzibar. Overall, this research highlights the role of human movements in maintaining residual malaria transmission in an area targeted for intensive control interventions over the past decades and provides valuable information for epidemiologists and public health professionals.

      Reviewer #1 (Public Review):

      Zanzibar archipelago is close to achieving malaria elimination, but despite the implementation of effective control measures, there is still a low-level seasonal malaria transmission. This could be due to the frequent importation of malaria from mainland Tanzania and Kenya, reservoirs of asymptomatic infections, and competent vectors. To investigate population structure and gene flow of P. falciparum in Zanzibar and mainland Tanzania, they used 178 samples from mainland Tanzania and 213 from Zanzibar that were previously sequenced using molecular inversion probes (MIPs) panels targeting single nucleotide polymorphisms (SNPs). They performed Principal Component Analysis (PCA) and identity by descent (IBD) analysis to assess genetic relatedness between isolates. Parasites from coastal mainland Tanzania contribute to the genetic diversity in the parasite population in Zanzibar. Despite this, there is a pattern of isolation by distance and microstructure within the archipelago, and evidence of local sharing of highly related strains sustaining malaria transmission in Zanzibar that are important targets for interventions such as mass drug administration and vector control, in addition to measures against imported malaria.

      Strengths:

      This study presents important samples to understand population structure and gene flow between mainland Tanzania and Zanzibar, especially from the rural Bagamoyo District, where malaria transmission persists and there is a major port of entry to Zanzibar. In addition, this study includes a larger set of SNPs, providing more robustness for analyses such as PCA and IBD. Therefore, the conclusions of this paper are well supported by data.

      Weaknesses:

      Some points need to be clarified:

      (1) SNPs in linkage disequilibrium (LD) can introduce bias in PCA and IBD analysis. Were SNPs in LD filtered out prior to these analyses?

      Thank you for this point. We did not filter SNPs in LD prior to this analysis. In the PCA analysis in Figure 1, we did restrict to a single isolate among those that were clonal (high IBD values) to prevent bias in the PCA. In general, disequilibrium is minimal only over small distances <5-10kb without selective forces at play. This is much less than the average spacing of the markers in the panel. If there is minimal LD, the conclusions drawn on relative levels and connections at high IBD are unlikely to be confounded by any effects of disequilibrium.

      ( 2) Many IBD algorithms do not handle polyclonal infections well, despite an increasing number of algorithms that are able to handle polyclonal infections and multiallelic SNPs. How polyclonal samples were handled for IBD analysis?

      Thank you for this point. We added lines 157-161 to clarify. This section now reads:

      “To investigate genetic relatedness of parasites across regions, identity by descent (IBD) estimates were assessed using the within sample major alleles (coercing samples to monoclonal by calling the dominant allele at each locus) and estimated utilizing a maximum likelihood approach using the inbreeding_mle function from the MIPanalyzer package (Verity et al., 2020). This approach has previously been validated as a conservative estimate of IBD (Verity et al., 2020).”

      Please see the supplement in (Verity et al., 2020) for an extensive simulation study that validates this approach.

      Reviewer #1 (Recommendations For The Authors):

      (3) I think Supplementary Figures 8 and 9 are more visually informative than Figure 2.

      Thank you for your response. We performed the analysis in Figure 2 to show how IBD varies between different regions and is higher within a region than between.

      Reviewer #2 (Public Review):

      This manuscript describes P. falciparum population structure in Zanzibar and mainland Tanzania. 282 samples were typed using molecular inversion probes. The manuscript is overall well-written and shows a clear population structure. It follows a similar manuscript published earlier this year, which typed a similar number of samples collected mostly in the same sites around the same time. The current manuscript extends this work by including a large number of samples from coastal Tanzania, and by including clinical samples, allowing for a comparison with asymptomatic samples.

      The two studies made overall very similar findings, including strong small-scale population structure, related infections on Zanzibar and the mainland, near-clonal expansion on Pemba, and frequency of markers of drug resistance. Despite these similarities, the previous study is mentioned a single time in the discussion (in contrast, the previous research from the authors of the current study is more thoroughly discussed). The authors missed an opportunity here to highlight the similar findings of the two studies.

      Thank you for your insights. We appreciated the level of detail of your review and it strengthened our work. We have input additional sentences on lines 292-295, which now reads:

      “A recent study investigating population structure in Zanzibar also found local population microstructure in Pemba (Holzschuh et al., 2023). Further, both studies found near-clonal parasites within the same district, Micheweni, and found population microstructure over Zanzibar.”

      Strengths:

      The overall results show a clear pattern of population structure. The finding of highly related infections detected in close proximity shows local transmission and can possibly be leveraged for targeted control.

      Weaknesses:

      A number of points need clarification:

      (1) It is overall quite challenging to keep track of the number of samples analyzed. I believe the number of samples used to study population structure was 282 (line 141), thus this number should be included in the abstract rather than 391. It is unclear where the number 232 on line 205 comes from, I failed to deduct this number from supplementary table 1.

      Thank you for this point. We have included 282 instead of 391 in the abstract. We added a statement in the results at lines 203-205 to clarify this point, which now reads:

      “PCA analysis of 232 coastal Tanzanian and Zanzibari isolates, after pruning 51 samples with an IBD of greater than 0.9 to one representative sample, demonstrates little population differentiation (Figure 1A).”

      (2) Also, Table 1 and Supplementary Table 1 should be swapped. It is more important for the reader to know the number of samples included in the analysis (as given in Supplementary Table 1) than the number collected. Possibly, the two tables could be combined in a clever way.

      Thank you for this advice. Rather than switch to another table altogether, we appended two columns to the original table to better portray the information (see Table 1).

      Methods

      (3) The authors took the somewhat unusual decision to apply K-means clustering to GPS coordinates to determine how to combine their data into a cluster. There is an obvious cluster on Pemba islands and three clusters on Unguja. Based on the map, I assume that one of these three clusters is mostly urban, while the other two are more rural. It would be helpful to have a bit more information about that in the methods. See also comments on maps in Figures 1 and 2 below.

      Cluster 3 is a mix of rural/urban while the clusters 2, 4 and 5 are mostly rural. This analysis was performed to see how IBD changes in relation to local context within different regions in Zanzibar, showing that there is higher IBD within locale than between locale.

      (4) Following this point, in Supplemental Figure 5 I fail to see an inflection point at K=4. If there is one, it will be so weak that it is hardly informative. I think selecting 4 clusters in Zanzibar is fine, but the justification based on this figure is unclear.

      The K-means clustering experiment was used to cluster a continuous space of geographic coordinates in order to compare genetic relatedness in different regions. We selected this inflection point based on the elbow plot and based the number to obtain sufficient subsections of Zanzibar to compare genetic relatedness. This point is added to the methods at lines 174-178, which now reads:

      “The K-means clustering experiment was used to cluster a continuous space of geographic coordinates in order to compare genetic relatedness in different regions. We selected K = 4 as the inflection point based on the elbow plot (Supplemental Figure 5) and based the number to obtain sufficient subsections of Zanzibar to compare genetic relatedness.”

      (5) For the drug resistance loci, it is stated that "we further removed SNPs with less than 0.005 population frequency." Was the denominator for this analysis the entire population, or were Zanzibar and mainland samples assessed separately? If the latter, as for all markers <200 samples were typed per site, there could not be a meaningful way of applying this threshold. Given data were available for 200-300 samples for each marker, does this simply mean that each SNP needed to be present twice?

      Population frequency is calculated based on the average within sample allele frequency of each individual in the population, which is an unbiased estimator. Within sample allele frequency can range from 0 to 1. Thus, if only one sample has an allele and it is at 0.1 within sample frequency, the population allele frequency would be 0.1/100 = 0.001. This allele is removed even though this would have resulted in a prevalence of 0.01. This filtering is prior to any final summary frequency or prevalence calculations (see MIP variant Calling and Filtering section in the methods). This protects against errors occurring only at low frequency.

      Discussion:

      (6) I was a bit surprised to read the following statement, given Zanzibar is one of the few places that has an effective reactive case detection program in place: "Thus, directly targeting local malaria transmission, including the asymptomatic reservoir which contributes to sustained transmission (Barry et al., 2021; Sumner et al., 2021), may be an important focus for ultimately achieving malaria control in the archipelago (Björkman & Morris, 2020)." I think the current RACD program should be mentioned and referenced. A number of studies have investigated this program.

      Thank you for this point. We have added additional context and clarification on lines 275-280, which now reads:

      “Thus, directly targeting local malaria transmission, including the asymptomatic reservoir which contributes to sustained transmission (Barry et al., 2021; Sumner et al., 2021), may be an important focus for ultimately achieving malaria control in the archipelago (Björkman & Morris, 2020). Currently, a reactive case detection program within index case households is being implemented, but local transmission continues and further investigation into how best to control this is warranted (Mkali et al. 2023).”

      (7) The discussion states that "In Zanzibar, we see this both within and between shehias, suggesting that parasite gene flow occurs over both short and long distances." I think the term 'long distances' should be better defined. Figure 4 shows that highly related infections rarely span beyond 20-30 km. In many epidemiological studies, this would still be considered short distances.

      Thank you for this point. We have edited the text at lines 287-288 to indicate that highly related parasites mainly occur at the range of 20-30km, which now reads:

      “In Zanzibar, highly related parasites mainly occur at the range of 20-30km.”

      (8) Lines 330-331: "Polymorphisms associated with artemisinin resistance did not appear in this population." Do you refer to background mutations here? Otherwise, the sentence seems to repeat lines 324. Please clarify.

      We are referring to the list of Pfk13 polymorphisms stated in the Methods from lines 146-148. We added clarifying text on lines 326-329:

      “Although polymorphisms associated with artemisinin resistance did not appear in this population, continued surveillance is warranted given emergence of these mutations in East Africa and reports of rare resistance mutations on the coast consistent with spread of emerging Pfk13 mutations (Moser et al., 2021). “

      (9) Line 344: The opinion paper by Bousema et al. in 2012 was followed by a field trial in Kenya (Bousema et al, 2016) that found that targeting hotspots did NOT have an impact beyond the actual hotspot. This (and other) more recent finding needs to be considered when arguing for hotspot-targeted interventions in Zanzibar.

      We added a clarification on this point on lines 335-345, which now reads:

      “A recent study identified “hotspot” shehias, defined as areas with comparatively higher malaria transmission than other shehias, near the port of Zanzibar town and in northern Pemba (Bisanzio et al., 2023). These regions overlapped with shehias in this study with high levels of IBD, especially in northern Pemba (Figure 4). These areas of substructure represent parasites that differentiated in relative isolation and are thus important locales to target intervention to interrupt local transmission (Bousema et al., 2012). While a field cluster-randomized control trial in Kenya targeting these hotspots did not confer much reduction of malaria outside of the hotspot (Bousema et al. 2016), if areas are isolated pockets, which genetic differentiation can help determine, targeted interventions in these areas are likely needed, potentially through both mass drug administration and vector control (Morris et al., 2018; Okell et al., 2011). Such strategies and measures preventing imported malaria could accelerate progress towards zero malaria in Zanzibar.”

      Figures and Tables:

      (10) Table 2: Why not enter '0' if a mutation was not detected? 'ND' is somewhat confusing, as the prevalence is indeed 0%.

      Thank you for this point. We have put zero and also given CI to provide better detail.

      (11) Figure 1: Panel A is very hard to read. I don't think there is a meaningful way to display a 3D-panel in 2D. Two panels showing PC1 vs. PC2 and PC1 vs. PC3 would be better. I also believe the legend 'PC2' is placed in the wrong position (along the Y-axis of panel 2).

      Supplementary Figure 2B suffers from the same issue.

      Thank you for your comment. A revised Figure 1 and Supplemental Figure 2 are included, where there are separate plots for PC1 vs. PC2 and PC1 vs. PC3.

      (12) The maps for Figures 1 and 2 don't correspond. Assuming Kati represents cluster 4 in Figure 2, the name is put in the wrong position. If the grouping of shehias is different between the Figures, please add an explanation of why this is.

      Thank you for this point. The districts with at least 5 samples present are plotted in the map in Figure 1B. In Figure 2, a totally separate analysis was performed, where all shehias were clustered into separate groups with k-means and the IBD values were compared between these clusters. These maps are not supposed to match, as they are separate analyses. Figure 1B is at the district level and Figure 2 is clustering shehias throughout Zanzibar.

      The figure legend of Figure 1B on lines 410-414 now reads:

      “B) A Discriminant Analysis of Principal Components (DAPC) was performed utilizing isolates with unique pseudohaplotypes, pruning highly related isolates to a single representative infection. Districts were included with at least 5 isolates remaining to have sufficient samples for the DAPC. For plotting the inset map, the district coordinates (e.g. Mainland, Kati, etc.) are calculated from the averages of the shehia centroids within each district.”

      The figure legend of Figure 2 on lines 417-425 now reads:

      “Figure 2. Coastal Tanzania and Zanzibari parasites have more highly related pairs within their given region than between regions. K-means clustering of shehia coordinates was performed using geographic coordinates all shehias present from the sample population to generate 5 clusters (colored boxes). All shehias were included to assay pairwise IBD between differences throughout Zanzibar. Pairwise comparisons of within cluster IBD (column 1 of IBD distribution plots) and between cluster IBD (column 2-5 of IBD distribution plots) was done for all clusters. In general, within cluster IBD had more pairwise comparisons containing high IBD identity.”

      (13) Figure 2: In the main panel, please clarify what the lines indicate (median and quartiles?). It is very difficult to see anything except the outliers. I wonder whether another way of displaying these data would be clearer. Maybe a table with medians and confidence intervals would be better (or that data could be added to the plots). The current plots might be misleading as they are dominated by outliers.

      Thank you for this point and it greatly improved this figure. We changed the plotting mechanisms through using a beeswarm plot, which plots all pairwise IBD values within each comparison group.

      (14) In the insert, the cluster number should not only be given as a color code but also added to the map. The current version will be impossible to read for people with color vision impairment, and it is confusing for any reader as the numbers don't appear to follow any logic (e.g. north to south).

      Thank you very much for these considerations. We changed the color coding to a color blind friendly palette and renamed the clusters to more informative names; Pemba, Unguja North (Unguja_N), Unguja Central (Unguja_C), Unguja South (Unguja_S) and mainland Tanzania (Mainland).

      (15) The legend for Figure 3 is difficult to follow. I do not understand what the difference in binning was in panels A and B compared to C.

      Thank you for this point. We have edited the legend to reflect these changes. The legend for Figure 3 on lines 427-433 now reads:

      “Figure 3. Isolation by distance is shown between all Zanzibari parasites (A), only Unguja parasites (B) and only Pemba parasites (C). Samples were analyzed based on geographic location, Zanzibar (N=136) (A), Unguja (N=105) (B) or Pemba (N=31) (C) and greater circle (GC) distances between pairs of parasite isolates were calculated based on shehia centroid coordinates. These distances were binned at 4km increments out to 12 km. IBD beyond 12km is shown in Supplemental Figure 8. The maximum GC distance for all of Zanzibar was 135km, 58km on Unguja and 12km on Pemba. The mean IBD and 95% CI is plotted for each bin.”

      (16) Font sizes for panel C differ, and it is not aligned with the other panels.

      Thank you for pointing this out. Figure 3 and Supplemental Figure 10 are adjusted with matching formatting for each plot.

      (17) Why is Kusini included in Supplemental Figure 4, but not in Figure 1?

      In Supplemental Figure 4, all isolates were used in this analysis and isolates with unique pseudohaplotypes were not pruned to a single representative infection. That is why there are additional isolates in Kusini. The legend for Supplemental Figure 4 now reads:

      “Supplemental Figure 4. PCA with highly related samples shows population stratification radiating from coastal Mainland to Zanzibar. PCA of 282 total samples was performed using whole sample allele frequency (A) and DAPC was performed after retaining samples with unique pseudohaplotypes in districts that had 5 or more samples present (B). As opposed to Figure 1, all isolates were used in this analysis and isolates with unique pseudohaplotypes were not pruned to a single representative infection.”

      (18) Supplemental Figures 6 and 7: What does the width of the line indicate?

      The sentence below was added to the figure legends of Supplemental Figures 6 and 7 and the legends of each network plot were increased in size:

      “The width of each line represents higher magnitudes of IBD between pairs.”

      (19) What was the motivation not to put these lines on the map, as in Figure 4A? This might make it easier to interpret the data.

      Thank you for this comment. For Supplemental Figure 8 and 9, we did not put these lines that represent lower pairwise IBD to draw the reader's attention to the highly related pairs between and within shehias.

      Reviewer #2 (Recommendations For The Authors):

      (1) There is a rather long paragraph (lines 300-323) on COI of asymptomatic infections and their genetic structure. Given that the current study did not investigate most of the hypotheses raised there (e.g. immunity, expression of variant genes), and the overall limited number of asymptomatic samples typed, this part of the discussion feels long and often speculative.

      Thank you for your perspective. The key sections highlighted in this comment, regarding immunity and expression of variant genes, were shortened. This section on lines 300-303 now reads:

      “Asymptomatic parasitemia has been shown to be common in falciparum malaria around the globe and has been shown to have increasing importance in Zanzibar (Lindblade et al., 2013; Morris et al., 2015). What underlies the biology and prevalence of asymptomatic parasitemia in very low transmission settings where anti-parasite immunity is not expected to be prevalent remains unclear (Björkman & Morris, 2020).”

      (2) As a detail, line 304 mentions "few previous studies" but only one is cited. Are there studies that investigated this and found opposite results?

      Thank you for this comment. We added additional studies that did not find an association between clinical disease and COI. These changes are on lines 303-308, which now reads:

      “Similar to a few previous studies, we found that asymptomatic infections had a higher COI than symptomatic infections across both the coastal mainland and Zanzibar parasite populations (Collins et al., 2022; Kimenyi et al., 2022; Sarah-Matio et al., 2022). Other studies have found lower COI in severe vs. mild malaria cases (Robert et al., 1996) or no significant difference between COI based on clinical status (Earland et al. 2019; Lagnika et al. 2022; Conway et al. 1991; Kun et al. 1998; Tanabe et al. 2015)”

      (3) Table 2: Percentages need to be checked. To take one of several examples, for Pfk13-K189N a frequency of 0.019 for the mutant allele is given among 137 samples. 2/137 equals to 0.015, and 3/137 to 0.022. 0.019 cannot be achieved. The same is true for several other markers. Possibly, it can be explained by the presence of polyclonal infections. If so, it should be clarified what the total of clones sequenced was, and whether the prevalence is calculated with the number of samples or number of clones as the denominator.

      Thank you for this point. We mistakenly reported allele frequency instead of prevalence. An updated Table 2 is now in the manuscript. The method for calculating the prevalence is now at lines 148-151:

      “Prevalence was calculated separately in Zanzibar or mainland Tanzania for each polymorphism by the number of samples with alternative genotype calls for this polymorphism over the total number of samples genotyped and an exact 95% confidence interval was calculated using the Pearson-Klopper method for each prevalence.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Granados-Aparici et al., investigate somatic-germline interactions in female mice. Mammalian oocytes are nurtured in multi-cellular ovarian follicles and communication with surrounding somatic cells is critical for oocyte development. This study focused on transzonal projections (TZP) extending from granulosa cells to the surface of oocytes and documented the importance of SMAD4, a TGF- β mediator, in regulating the TZPs. They propose a model in which individual TZPs contact the surface of the oocyte and stably attach if there is sufficient N-cadherin. In SMAD4-depleted cells, there is insufficient N-cadherin to stabilize the attachment. The TZP continues to elongate but eventually retracts. Their model is well supported by their experimental evidence and the manuscript is both well-formulated and written.

      Reviewer #2 (Public Review):

      Summary:

      This study proposed a new mechanism by which the TGF-beta signaling pathway promotes contacts between oocytes and the surrounding somatic cells in mice, by regulating the numbers of transzonal projections (TZPs).

      Strengths:

      The conditional Smad4 knockout and three-dimensional observation of transzonal projections are solid and sufficiently support the major conclusions.

      Weaknesses:

      The physiological significance of SMAD4-dependent formation of transzonal projection networks is not assessed in this study.

      Previous studies have shown that physical contact and gap junctional communication with the granulosa cells is essential for normal oocyte development. A recent study has also shown that depleting Myo10 in granulosa cells reduces the number of TZPs and leads to abnormalities in oocyte and embryo development. Thus, the importance of TZPs is well-established. These findings, which were insufficiently brought out in the Introduction of the original manuscript, have now been made more clearly (Introduction, 2nd paragraph). We recognize that these reports do not directly test a role for SMAD4-dependent TZPs. Unfortunately, it is beyond our technical capacity to obtain embryos following meiotic maturation and fertilization of oocytes that have grown in vitro, which wold be necessary for us to fully test the physiological role of SMAD4-dependent TZPs.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) The authors switch from Amhr2-cre to ER-cre to increase the number of GFP-positive granulosa cells in 12 d/o ovaries. To avoid disruption of FSH secretion by SMAD4, they use an in vitro model that requires 6 days in GEO culture (1 d tamoxifen + 5 d). Could it be that Amhr2-cre didn't work because most follicles would not have reached the atretic preantral stage in 12 d/o ovaries? Did the authors consider 6 days in vitro GEO culture to determine if Amhr2-cre would be efficient and avoid exposure to tamoxifen?

      Please see below.

      When is Amhr2 expressed?

      Previous studies (Jorgez et al, 2004; Pangas et al, 2006) report that Amhr2 is expressed in growing follicles that have progressed beyond a single layer of granulosa cells (often defined as secondary and primary follicles, respectively). As shown in Fig. 1C, we did not observe evidence of widespread Cre activity in multilayer follicles. At least two factors may contribute why we observed relatively weak Cre activity. One possibility is that, on the genetic background our mice, Amhr2 is expressed relatively late during follicular growth. Thus, we might have observed more GFP-positive granulosa cells in antral or pre-ovulatory follicles. Because the granulosa cells of these late-stage follicles would already have produced many TZPs, the number of new TZPs generated in wild-type but not SMAD4-depleted cells after Amhr2 activation would be a relatively small proportion of the total population. This would make it more difficult to detect a reduction in TZP number in the absence of SMAD4.

      A second point is that we used pre-puberal mice whereas Jorgez et al examined Amhr2 expression in ovaries of adult mice. Pangas et al evaluated both prepuberal and adult females. It may be that Amhr2 is expressed earlier or more strongly in granulosa cells of adult mice. Regarding the suggestion to culture complexes obtained from mice on the Amhr2-Cre background, as this might allow widespread expression of Cre without the need for tamoxifen, this is an excellent idea. If there is considerable heterogeneity among cells in the timing of Amhr2-Cre activity, though, this may further cloud efforts to uncover the role of SMAD4 in the production or stability of TZPs, as noted above.

      (2) Did most of the GEO cultured in vitro reach the antral follicle stage after 6 days?

      Since GOCs were treated with collagenase, the thecal layer was removed. Therefore, development of an antrum does not occur. We observed that, in some cases, the oocyte was extruded from the granulosa cell mass. These abnormal complexes were discarded.

      (3). Was the development/diameter of the oocyte in the GEO comparable to the oocyte growing in vivo?

      We did not compare the diameter of the oocytes grown in vitro to those grown in vivo. Thus, we cannot say whether the oocytes grown in vitro reached the same size as those grown in vivo. We did, however, compare the diameter of the oocytes in the wt and ko groups and observed no difference (Figure 2). This indicates that depletion of SMAD4 in the granulosa cells does not impair oocyte growth. Importantly for our studies, it excludes the possibility that the reduction in TZP-number is simply due to a smaller surface area of the oocyte.

      (4) SMAD4 depletion in granulosa cells disrupts steroidogenesis leading to increased progesterone levels and precocious luteinization of granulosa cells (Pangas et al., 2006). Did the authors determine the expression level of luteal markers of granulosa cells in the in vitro GEO culture Smad4 knockout model? Are their observations direct effects of the absence of SMAD4?

      This is an excellent point. We checked our previously performed RNA-seq analysis of the wild-type and knockout granulosa cells, but found no difference in the quantities of Cyp11a1, Sfrp4, Star or Ptgfr. This is now described in the Discussion (4th paragraph). One potentially important difference between our study and that of Pangas et al (2006) is that they observed premature luteinization when prepuberal (3-week old) mice were injected with the FSH analogue, equine serum gonadotropin, whereas we studied granulosa-oocyte complexes cultured in vitro. This could underlie the apparent differences with respect to luteinization.

      (5) Could the reduced number of TZPs in ER-cre+; Smad4fl/fl GOCs be explained by luteinization?

      This interesting and logical possibility is related to the previous point. In other words, luteinization could be considered as a default pathway of differentiation that is suppressed by SMAD signaling. It is possible that luteinized cells are unable to generate or maintain TZPs. This model offers a potential mechanistic basis for our observation, and we now raise it in the Discussion (3rd paragraph).

      Reviewer #3 (Recommendations For The Authors):

      The expression and localization of N-cadherin should be observed in Smad4 and control granulosa cell-oocyte complexes.

      We agree that this would be an excellent approach to confirm the decreased expression of N-cadherin in the granulosa cells that was observed by immunoblotting. We were confronted by two challenges, however. First, we were unable to consistently obtain strong staining of granulosa cell membranes in the inner layers of multilayer granulosa-oocyte complexes. Other antibodies are able to stain structures at the oocyte surface, indicating that antibodies are not physically blocked from penetrating the complex. More likely, the anti-N-cadherin does not bind its target strongly enough to generate a robust signal that can be detected through multiple overlying layers of cells. Second, whereas for immunoblotting we collect all granulosa cells from culture complexes, for immunofluorescence we are only able to examine those that remain in the complex. This means that, for immunofluorescence, we essentially but unavoidably select against cells that are only loosely attached – as would be expected for N-cadherin-deficient cells – to their neighbours. Given these challenges, we believe that the immunoblotting approach, which produced highly reproducible results over six biological replicates (Fig. 6), is the most reliable.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents useful findings regarding the role of formin-like 2 in mouse oocyte meiosis. The submitted data are supported by incomplete analyses, and in some cases, the conclusions are overstated. If these concerns are addressed, this paper would be of interest to reproductive biologists.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The presented study focuses on the role of formin-like 2 (FMNL2) in oocyte meiosis. The authors assessed FMNL2 expression and localization in different meiotic stages and subsequently, by using siRNA, investigated the role of FMNL2 in spindle migration, polar body extrusion, and distribution of mitochondria and endoplasmic reticulum (ER) in mouse oocytes.

      Strengths:

      Novelty in assessing the role of formin-like 2 in oocyte meiosis.

      Weaknesses:

      Methods are not properly described.

      Overstating presented data.

      It is not clear what statistical tests were used.

      My main concern is that there are missing important details of how particular experiments and analyses were done. The material and methods section are not written in the way that presented experiments could be repeated - it is missing basic information (e.g., used mouse strain, timepoints of oocytes harvest for particular experiments, used culture media, image acquisition parameters, etc.). Some of the presented data are overstated and incorrectly interpreted. It is not clear to me how the analysis of ER and mitochondria distribution was done, which is an important part of the presented data interpretation. I'm also missing important information about the timing of particular stages of assessed oocytes because the localization of both ER and mitochondria differs at different stages of oocyte meiosis. The data interpretation needs to be justified by proper analysis based on valid parameters, as there is considerable variability in the ER and mitochondria structure and localization across oocytes based on their overall quality and stage.

      Thank you for your comment. We regret the oversight of omitting critical information in the manuscript. In the revised manuscript, we have included essential details such as mouse strains, culture media, stages of oocyte and statistical methods in the materials and methods section. Please find our details responses in the “Recommendations for the authors” part.

      Reviewer #2 (Public Review):

      Summary:

      This research involves conducting experiments to determine the role of Fmnl2 during oocyte meiosis I.

      Strengths:

      Identifying the role of Fmnl2 during oocyte meiosis I is significant.

      Weaknesses:

      The quantitative analysis and the used approach to perturb FMNL2 function are currently incomplete and would benefit from more confirmatory approaches and rigorous analysis.

      (1) Most of the results are expected. The new finding here is that FMNL2 regulates cytoplasmic F-actin in mouse oocytes, which is also expected given the role of FMNL2 in other cell types. Given that FMNL2 regulates cytoplasmic F-actin, it is very expected to see all the observed phenotypes. It is already established that F-actin is required for spindle migration to the oocyte cortex, extruding a small polar body and normal organelle distribution and functions.

      Thank you for your comment. In the recent decade, Arp2/3 complex (Nat Cell Biol 2011), Formin2 (Nat Cell Biol 2002, Nat Commun 2020), and Spire (Curr Biol 2011) were reported to be 3 key factors to involve into this process. These factors regulate actin filaments in different ways. However, how they cross with each other for the subcellular events were still fully clear. Our current study identified that FMNL2 played a critical role in coordinating these molecules for actin assembly in oocytes. Our findings demonstrate that FMNL2 interacts with both the Arp2/3 complex and Formin2 to facilitate actin-based meiotic spindle migration. Additionally, we discovered a novel role for FMNL2 in determining the distribution and function of the endoplasmic reticulum and mitochondria, which may in turn influence meiotic spindle migration in oocytes. Our results not only uncover the novel functions of FMNL2-mediated actin for organelle distribution, but also extend our understanding of the molecular basis for the unique meiotic spindle migration in oocyte meiosis.

      (2) The authors used Fmnl2 cRNA to rescue the effect of siRNA-mediated knockdown of Fmnl2. It is not clear how this works. It is expected that the siRNA will also target the exogenous cRNA construct (which should have the same sequence as endogenous Fmnl2) especially when both of them were injected at the same time. Is this construct mutated to be resistant to the siRNA?

      Thank you for your question. We regret any misunderstanding that may have been caused by the inappropriate description in our manuscript. In the rescue experiments, we initially injected FMNL2 siRNA into oocytes, followed by the microinjection of FMNL2 mRNA 18-20 hours later. After conducting our previous experiments, we have verified through Western blotting that endogenous FMNL2 is effectively suppressed 18-20 hours following the microinjection of FMNL2 siRNA. Additionally, we observed a significant increase in exogenous FMNL2 protein expression 2 hours after the injection of FMNL2 mRNA. We believe that the exogenous FMNL2 could compensate the decrease by FMNL2 knockdown, and this approach was adopted in many oocyte studies.

      (3) The authors used only one approach to knockdown FMNL2 which is by siRNA. Using an additional approach to inhibit FMNL2 would be beneficial to confirm that the effect of siRNA-mediated knockdown of FMNL2 is specific.

      Thank you for your question. Yes, the specificity is always the concern for siRNA or morpholino microinjection due to the off-target issue. Due to the limitation we could not generate the knock out model, and there are no known inhibitors with specific targeting capabilities for FMNL2. To solve this, we performed the rescue study with exogenous mRNA to confirm the effective knock down of FMNL2. These measures provide reassurance regarding the credibility of the experimental outcomes, and this is also the general way to avoid the off-target of siRNA or morpholino.

      Reviewer #3 (Public Review):

      Summary:

      The authors focus on the role of formin-like protein 2 in the mouse oocyte, which could play an important role in actin filament dynamics. The cytoskeleton is known to influence a number of cellular processes from transcription to cytokinesis. The results show that downregulation of FMNL2 affects spindle migration with resulting abnormalities in cytokinesis in oocyte meiosis I.

      Weaknesses:

      The overall description of methods and figures is overall dismissively poor. The description of the sample types and number of replicate experiments is impossible to interpret throughout, and the quantitative analysis methods are not adequately described. The number of data points presented is unconvincing and unlikely to support the conclusions. On the basis of the data presented, the conclusions appear to be preliminary, overstated, and therefore unconvincing.

      Thank you for your comment. We regret the oversight of omitting critical information in the manuscript. In the revised manuscript, we have incorporated your suggestions for modification, particularly regarding the Materials and Methods section. Please see the detailed revision and responses in the “Recommendations for the authors” part.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for The Authors):

      My main concern is that there are missing important details of how particular experiments and analyses were done. The material and methods section is not written in the way that presented experiments could be repeated - it is missing basic information (e.g., used mouse strain, timepoints of oocytes harvest for particular experiments, used culture media, image acquisition parameters, etc.). Some of the presented data are overstated and incorrectly interpreted. It is not clear to me how the analysis of ER and mitochondria distribution was done, which is an important part of the presented data interpretation. I'm also missing important information about the timing of particular stages of assessed oocytes because the localization of both ER and mitochondria differs at different stages of oocyte meiosis. The data interpretation needs to be justified by proper analysis based on valid parameters, as there is considerable variability in the ER and mitochondria structure and localization across oocytes based on their overall quality and stage. My specific comments are listed below.

      (1) Information about statistical tests that were used needs to be provided for all quantification experiments.

      Thank you for your suggestion. Based on your suggestions, we revised the statistical analysis description in the Materials and Methods section. Additionally, we also included a description of the statistical methods in the legends of the relevant result figures.

      (2) I recommend replacing the plunger plots, used in most quantification data, with alternatives allowing evaluation of the distribution of the data (dot plots, box plots, whisker plots).

      Thank you for your suggestion. Following your suggestion, we replaced the plunger plots in Fig 2C, D, H, I and Fig3 B, C with dot plots.

      (3) Can the authors provide information about particular time points when were individual oocyte stages (GVBD, meiosis I, and meiosis II) harvested/used for immunofluorescence protein detection, western blotting, microinjection, and ER and mitochondria staining? Were the time points always the same in all presented experiments and experimental vs control group? If not, this needs to be clarified.

      Thank you for your suggestion. We used oocytes in the metaphase I (MI) stage for the statistical analysis of spindle migration, actin filament aggregation, endoplasmic reticulum localization, and mitochondrial localization. In the Western blot analysis, GV stage oocytes were utilized to evaluate the efficiency of knockdown and rescue experiments. The protein expression levels of Arp2, Formin2, INF2, Cofilin, Grp78, and Chop in different treatment groups were detected using MI-stage oocytes. In the revised version, we provided all the detailed information about the stages.

      (4) Figure 1B: Can the authors comment on why there is a missing representative image of MII oocyte FMBL2-Ab? I recommend including this in the figure to have a complete view of comparing overexpressed and endogenous FMNL2 localization in oocyte meiosis.

      Thank you for your suggestion. In the revised manuscript, we added immunostaining images of FMNL2 antibody in MII stage oocytes.

      (5) Figure 1C: The figure legend says, "FMNL2 and actin overlapped in cortex and spindle surrounding". In MI oocytes, there is usually no accumulated actin signal around the spindle, which is also true in the presented images, so there cannot be overlapping with the FMNL2 signal. The interpretation should be changed.

      We apologize for this inappropriate description that was used, and we deleted this sentence.

      (6) Figure 2B: What were the parameters of the "large" and "normal" polar bodies for performing the analysis?

      Thank you for your question. In order to assess the size of the polar body, we conducted a comparison between the diameter of the polar body and that of the oocyte. If the diameter of the polar body was found to be less than 1/3 of the oocyte's diameter, we categorized it as normal-sized polar body. Conversely, if the polar body's diameter exceeded 1/3 of the oocyte's diameter, we categorized it as a large polar body. We have included these details in the Results section of the manuscript.

      (7) Figure 2F: Can the authors comment on what can be the second band in the rescue group?

      Thank you for your question. In the rescue experiment, we microinjected exogenous FMNL2-EGFP mRNA into the oocytes. As a result, compared to endogenous FMNL2, the protein size increased due to the addition of the EGFP tag, approximately 27 kDa. Hence, in the Western blot bands of the rescue group, the upper band represents the expression of exogenous FMNL2-EGFP, while the lower band corresponds to the expression of endogenous FMNL2. We have provided annotations in the revised Figure 2F to clarify this.

      (8) Can the authors comment on the variability of PBE between 2C and 2H in the FMNL2-KD groups? In panel C, the PBE in the KD group was 59.5 {plus minus} 2.82%; in panel H, the PBE in the KD group was 48.34 {plus minus} 4.2%, and in the rescue group, the PBE was 62.62 {plus minus} 3.6%. The rescue group has a similar PBE rate as the KD group in panel C. How consistent was the FMNL2 knockdown across individual replicates? Can the authors provide more details on how the rescue experiment was performed?

      Thank you for your question. We believe that the difference in PBE observed in Figure 2C and 2H of the FMNL2-KD group was due to the microinjection times and the duration of in vitro arrest. The results shown in Figure 2C depict the outcome of a single injection of FMNL2 siRNA into GV stage oocytes, followed by 18 hours of in vitro arrest; the results shown in Figure 2H contain a subsequent additional injection of FMNL2-EGFP mRNA with another 2 hours of arrest. The two rounds of microinjection and the extended period of in vitro arrest both affect oocyte maturation rates.

      (9). Figure 2J and K: What groups were compared together? The used statistic needs to be properly described.

      Thank you for your question. The FMNL2-KD, FMNL3-KD, and FMNL2+3-KD groups were all compared to the Control group, therefore, t-test was used for analysis. We have provided explanations in the revised manuscript.

      (10) Figure 4B and C: Can the authors provide representative images without oversaturated actine signal?

      Thank you for your question. For the analysis of oocyte F-actin, the F-actin are divided into cortex actin and cytoplasmic actin. Due to the contrast during imaging, the strong cortex actin signals affected the detection of cytoplasmic actin, therefore, it is necessary to increase the scanning index, which will cause the overexpose the cortex actin signal. This is for the better observation of the cytoplasmic signals.

      (11) Figure 4G + 5H: Can the authors comment on why they used as a housekeeping gene actin instead of tubulin, which was used in the rest of the WB experiments?

      Thank you for your question. In most of the western blot experiments conducted in this study, we used tubulin as a housekeeping gene. However, due to the supply of antibodies by delivery period, we had GAPDH and actin as well for some experiments. These housekeeping genes were all valid for the study.

      (12) Based on what parameters was ER considered normally or abnormally distributed, and what stages of oocytes were assessed?

      Thank you for your question. In this study, we employed oocytes at the MI stage for the analysis of ER localization. In the MI stage, the ER localized around the spindle, which is regarded as the typical localization pattern. The ER displayed a dispersed distribution throughout the cytoplasm or clustered were categorized as aberrant positioning. We included relevant descriptions in the revised version of the manuscript.

      (13) Figure 5H: As a housekeeping gene was used actin - the quantification is labeled as a Grp78 to tubulin ratio.

      Thank you for pointing out the error. This is a label mistake and we corrected it.

      (14) Information about how JC-1 staining was done needs to be provided.

      Thank you for your carefully reading. We included a description of JC1 staining in the Materials and Methods section.

      (15). Line 231-232: "As shown in Figure 4A" - the text doesn't correspond to the figure.

      Thank you for pointing out the error. We revised this mistake in the revised manuscript by correcting "Fig3A" to "Fig4A."

      (16) Line 265: there is probably a missing word "Formin2".

      Thank you and we corrected the error and made the necessary changes in the revised manuscript.

      Reviewer #2 (Recommendations for The Authors):

      (1) Quantification and analysis:

      • Fig. 3B: The rate of spindle migration should be quantified based on the distance from the spindle to the cortex. Also, the orientation of the spindle (Z-position) needs to be taken into consideration.

      • Fig. 5C, D: It is unclear how the rate of ER distribution was calculated.

      • Western blot: In many experiments (such as Fig. 5H), the bands are saturated which will prevent accurate intensity measurements and quantifications.

      For spindle migration, we specifically focused on spindles exhibiting a distinctive spindle-like shape with clear bipolarity to eliminate any statistical discrepancies potentially caused by variations in Z-axis alignment. Our criterion for determining successful migration was based on the contact between the spindle pole and the cortical region of the oocyte. Therefore, we think that the rate is better to reflect the phenotype than the distance.

      For the examination of ER localization, Reviewer 1 also raised this issue. We utilized oocytes at the MI stage in this study. The ER localized around the spindle in MI stage. The ER displayed a dispersed distribution throughout the cytoplasm or clustered were categorized as aberrant positioning. We included relevant descriptions in the revised version of the manuscript.

      For the bands of the western blot results, during the experimental procedure we typically capture multiple images at different exposure levels (3-5 images). In the revised manuscript, we have replaced the inappropriate images with more suitable ones.

      (2) Given that all Immunoprecipitation experiments in this manuscript were performed on the whole ovary which contains more somatic cells than oocytes, the results do not necessarily reflect meiotic oocytes. Please consider this possibility during the interpretation.

      Thank you for your suggestion. Yes, we agree with you. In the revised manuscript, we made appropriate modifications to the relevant descriptions.

      (3) 351-365: The conclusion that Arp2/3 compensates for the decreased formin 2 in FMNL2 knockdown oocytes is a bit unconvincing. 1- In mouse oocytes, it is already known that Arp2/3 and formin 2 regulate different pools of F-actin nucleation. 2- The authors found an increase in Arp2/3 in FMNL2 knockdown oocytes compared to control oocytes without any change in cortical F-actin. Given that Arp2/3 is primarily promoting cortical F-actin, it is expected to see an increase in cortical F-actin in FMNL2 knockdown oocytes, which was not the case.

      Thank you for your question. Yes, previous studies showed that formin2 localizes to the cytoplasm of oocytes and accumulates around the spindle, which facilitate cytoplasmic actin assembly. While Arp2/3 is primarily responsible for actin assembly at the cortex region of oocytes. In invasive cells, FMNL2 is mainly localized in the leading edge of the cell, lamellipodia and filopodia tips, to improve cell migration ability by actin-based manner (Curr Biol 2012). We showed that FMNL2 localized both at spindle periphery and cortex, but depletion of FMNL2 did not affect cortex actin intensity. We think that FMNL2 and Arp2/3 both contribute to the cortex actin dynamics, when FMNL2 decreased, ARP2 increased to compensate for this, which maintained the cortex actin level. In the revised manuscript, we have made modifications to avoid excessive extrapolation from our results, ensuring that our conclusions are presented in a more objective manner.

      (4) Lines 195-197: The spindle is initially formed soon after the GVBD, so there is no spindle during GVBD. Also, I can't see oocytes at anaphase I or telophase I in this figure. Please revise.

      Thank you for your suggestion. We apologize for the inappropriate descriptions that were used. In the revised manuscript, we have made modifications to the respective descriptions in the Results part.

      (5) Fig. 2E: It seems that the control oocyte is abnormal with mild cytokinesis defects. Please replace or delete it since this information is already included in Fig. 3A.

      Thank you for your suggestion. Based on our observations, during the extrusion of the first polar body in oocytes, there is a temporary occurrence of cellular morphological fragmentation due to cortical reorganization (11h in control oocyte from Fig 2E). However, after the extrusion of the first polar body, the oocyte morphology returns to normal. Figure 2E illustrates the meiotic division process of oocytes, while Figure 3A primarily focuses on the process of oocyte spindle migration. We think that it is better to retain both to present our results.

      Reviewer #3 (Recommendations for The Authors):

      In the case of the observed phenotype, the stage of GV is important. The phenotypes presented also occur in meiotic or developmentally incompetent oocytes. In addition, the images of GV oocytes appear as NSN, which also show the KD phenotype in Figs. 2 and 3.

      Thank you for your concern. As the oocyte grows, the proportion of SN-type oocytes gradually increases. When the oocyte diameter reaches 70-80 μm, the proportion of SN oocytes is approximately 52.7% (Mol Reprod Dev. 1995). In our study, both the control and knockdown groups collected oocytes with a diameter of around 80 μm, which is considered as fully-grown oocytes, predominantly in the SN phase. Since the collection period and size of the oocytes were consistent, we can sure that the observed differences between the control and knockdown groups in phenotype analysis could be solid and reliable.

      MII is absent in Fig. 1B.

      In the revised manuscript, we added immunostaining images of FMNL2 in MII stage oocytes.

      The result of KD is not convincing. Also, discuss whether the heterozygous effect of Fmnl2 deletion affects reproductive fitness.

      Thank you for your concern. In our investigation, limited to the setup of knock out model, we employed siRNA to knockdown FMNL2 expression, to avoid the risk of off-target, we performed rescue experiment with exogenous mRNA, which we believe that it could solve this issue. When designing siRNA sequences, we ensured their specificity for binding to FMNL2 mRNA only, and we assessed the levels of FMNL2 and FMNL3 mRNA in oocytes after injection of FMNL2 siRNA. The results showed that, compared to the control group, the expression of FMNL2 mRNA decreased by approximately 70% after 18 hours of FMNL2 siRNA injection, while the level of FMNL3 mRNA was not decreased.

      Fig. 2F rescue experiment with double bands. What bands are seen here? Did the authors inject tagged or untagged FMNL2? Or does endogenous FMNL2 appear higher in the sample after KD?

      Thank you for your question. In the rescue experiment, we microinjected exogenous FMNL2-EGFP mRNA into the oocytes. As a result, compared to endogenous FMNL2, the protein size increased due to the addition of the EGFP tag, approximately 27 kDa. Hence, in the Western blot bands of the rescue group, the upper band represents the expression of exogenous FMNL2-EGFP, while the lower band corresponds to the expression of endogenous FMNL2. We provided annotations in the revised Figure 2F to clarify this.

      Variability in mitochondria and ER distribution patterns is also known in healthy and developing oocytes, although the authors described only a single phenotype.

      Thank you for your concern. Yes, mitochondria and ER show dynamic localization in different stage of oocyte maturation. However, in this study we employed oocyte MI stage for the analysis of ER and mitochondria localization, and in MI stage, both the ER and mitochondria localize around the spindle. This pattern is considered as the normal localization. Several studies showed that dispersed or clustered localization contributed to maturation defects. We included relevant descriptions in the revised manuscript.

      What exactly is meant by input in the IP experiments? Why is the target missing in the input sample?

      Thank you for your question. We subjected the input samples to electrophoresis on a single channel, all the analyzed proteins demonstrated normal expression, thereby confirming the viability of the input sample. However, upon simultaneous exposure with the IP samples, we observed a lack of clear signal for certain proteins in the input group. This phenomenon is due to the excessive signal intensity resulting from protein enrichment in the IP group, which caused the low exposure of proteins in input group.

      Explain the rationale for using, actin or tubulin as loading or normalization controls in the study focusing on the cytoskeleton.

      Thank you for your question. Actin and tubulin are both widely used as the control due to their stable expression. For actin, there are α-actin and β-actin isoforms. Formins and Arp2/3 complex regulate the polymerization of α-actin and β-actin to form F-actin, not isoform expression. In our study F-actin (the functional type) was examined. While α-tubulin and β-tubulin are two subtypes of tubulin, and they interact with each other to form stable α/β-tubulin heterodimers. The changes of cytoskeleton dynamics could not change the expression of α/β-tubulin. Therefore, β-actin and α-tubulin could be used as normalization controls.

      Fig. 6E shows only , but the legend says *.

      Thank you for pointing out the error. We correct the mistake in the revised manuscript.

      Spindle positioning appears to differ between control and KD. Does this affect the quantification of Fig. 6F? Adequate nomenclature should be used here.

      Thank you for your question. Yes, spindle positioning was affected by FMNL2 depletion. However, central spindle or cortex spindle all belong to MI stage, and JC1 is not related with the stage difference. To avoid misunderstanding we replaced the representative images and corresponding description in Figure 6F.

      The description of the methods and legends should be significantly improved.

      Thank you for your suggestion. Reviewer 1 and 2 also raised the similar concern. We enriched the description of methods and legends in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents valuable new insights into HIV-associated nephropathy (HIVAN) kidney phenotype in the Tg26 transgenic mouse model and delineates the kidney cell types that express HIV genes and are injured in these HIV-transgenic mice. A series of compelling experiments demonstrated that PKR inhibition can ameliorate HIVAN with reversal of mitochondrial dysfunction (mainly confined to endothelial cells), a prominent feature shared in other kidney diseases. Although there are concerns regarding the specificity of C16 to PKR inhibition, as well as with the in situ hybridization studies, the data suggests that inhibition of PKR and mitochondrial dysfunction has potential clinical significance for HIVAN.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      HIV-associated nephropathy (HIVAN) is a rapidly progressing form of kidney disease that manifests secondary to untreated HIV infection, and is predominantly seen in individuals of African descent. Tg26 mice carrying an HIV transgene lacking gag and pol exhibit high levels of albuminuria and rapid decline in renal function that recapitulates many features of HIVAN in humans. HIVAN is seen predominantly in individuals carrying two copies of missense variants in the APOL1 gene, and the authors have previously shown that APOL1 risk variant mRNA induces activity of the double-strand RNA sensor kinase PKR. Because of the tight association between the APOL1 risk genotype and HIVAN, the authors hypothesized that PKR activation may mediate renal injury in Tg26 mice and tested this hypothesis by treating mice with a commonly used PKR inhibitory compound called C16. Treatment with C16 substantially attenuated renal damage in the Tg26 model as measured by urinary albumin/creatinine ratio, urinary NGAL/creatinine ratio, and improvement in histology. The authors then performed bulk and single-nucleus RNAseq on kidneys from mice from different treatment groups to identify pathways and patterns of cell injury associated with HIV transgene expression as well as to determine the mechanistic basis for the effect of C16 treatment. They show that proximal tubule nuclei from Tg26 mice appear to have more mitochondrial transcripts which was reversed by C16 treatment and suggest that this may provide evidence of mitochondrial dysfunction in this model. They explore this hypothesis by showing there is a decrease in the expression of nuclear-encoded genes and proteins involved in oxidative phosphorylation as well as a decrease in respiratory capacity via functional assessment of respiration in tubule and glomerular preparations from these mouse kidneys. All of these changes were reversed by C16 treatment. The authors propose the existence of a novel injured proximal tubule cell-type characterized by the leak of mitochondrial transcripts into the nucleus (PT-Mito). Analysis of HIV transgene expression showed high level expression in podocytes, consistent with the pronounced albuminuria that characterizes this model and HIVAN, but transcripts were also detected in tubular and endothelial cells. Because of the absence of mitochondrial transcripts in the podocytes, the authors speculate that glomerular mitochondrial dysfunction in this model is driven by damage to glomerular endothelial cells.

      Strengths:

      The strengths of this study include the comprehensive transcriptional analysis of the Tg26 model, including an evaluation of HIV transgene expression, which has not been previously reported. This data highlights that HIV transcripts are expressed in a subset of podocytes, consistent with the highly proteinuric disease seen in mice and humans. However, transcripts were also seen in other tubular cells, notably intercalated cells, principal cells and injured proximal tubule cells. Though the podocyte expression makes sense, the relevance of the tubular expression to human disease is still an open question.

      The data in support of mitochondrial dysfunction are also robust and rely on combined evidence from downregulation of transcripts involved in oxidative phosphorylation, decreases in complex I and II as determined by immunoblot, and assessments of respiratory capacity in tubular and glomerular preparations. These data are largely consistent with other preclinical renal injury models reported in the literature as well as previous, less thorough assessments in the Tg26 model.

      Weaknesses:

      The key weakness of the study lies in the use of a PKR inhibitor with questionable specificity. C16 has been reported to inhibit numerous other kinases including cyclin CDKs and GSK3α and -β, and this means that the conclusions of this study with respect to the role of PKR are highly questionable. The rationale for the dose used was not provided (and is lower than used in other publications with C16), and in the absence of drug exposure data and assessment of target engagement, it is difficult to ascertain whether substantial inhibition of PKR was achieved.

      A second key weakness lies in the identification of the PT-Mito cell cluster. Though the authors provide some rationale for the identification of this specific cell type, it seems equally plausible the cells merely reflect a high background capture of mitochondria in a subset of droplets. The IHC analysis that was provided is not convincing enough to support the claim and more careful high resolution imaging and in situ hybridization (with appropriate quantitation) will be needed to provide substantive support for the presence of a proximal tubule cell type with mitochondrial transcript that are trafficked to the nucleus.

      We appreciate the reviewer’s thoughtful summary.

      With regard to non-specificity of C16, we added to the Discussion a description and references that describe non-specificity of C16. as suggested by the reviewer. Of note, the C16 doses that we used were also used previously (Okamoto, CommBiol, 2018). Importantly, newly-added immunofluorescence images using a phospho-PKR specific antibody showed PKR inhibition (Supplemental Figure 1).

      Identification of the PT-Mito cluster in tissues was challenging, mainly due to the absence of existence of know marker genes for newly-identified cluster. Finally, We added in situ hybridization images, with a negative control probe, to show specificity of target probes.

      Reviewer #2 (Public Review):

      Summary:

      Numerous studies by the authors and other groups have demonstrated an important role for HIV gene expression kidney cells in promoting progressive chronic kidney disease, especially HIV-associated nephropathy. The authors had previously demonstrated a role for protein kinase R (PKR) in a non-HIV transgenic model of kidney disease (Okamoto, Commun Bio, 2021). In this study, the authors used innovative techniques including bulk and single nuclear RNAseq to demonstrate that mice expressing a replication-incompetent HIV transgene have prominent dysregulation of mitochondrial gene expression and activation of PKR and that treatment of these mice with a small molecule PKR inhibitor ameliorated the kidney disease phenotype in HIV-transgenic mice. They also identified STAT3 as a key upstream regulator of kidney injury in this model, which is consistent with previously published studies. Other important advances include identifying the kidney cell types that express the HIV transgene and have dysregulation of cellular pathways.

      Strengths:

      Major strengths of the study include the use of a wide variety of state-of-the-art molecular techniques to generate important new data on the pathogenesis of kidney injury in this commonly used model of kidney disease and the identification of PKR as a potential druggable target for the treatment of HIV-induced kidney disease. The authors also identify a potential novel cell type within the kidney characterized by high expression of mitochondrial genes.

      Weaknesses:

      Though the HIV-transgenic model used in these studies results in a phenotype that is very similar to HIV-associated nephropathy in humans, the model has several limitations that may prevent direct translation to human disease, including the fact that mice lack several genetic factors that are important contributors to HIV and kidney pathogenesis in humans. Additional studies are therefore needed to confirm these findings in human kidney disease.

      We appreciate the succinct summary of the present work. We agree that the findings from the HIV Tg26 mouse model warrant additional investigation in human kidney disease samples. Further studies will be needed to confirm whether the mechanisms presented here are operative in human HIVAN or other RNA virus-associated kidney diseases.

      Reviewer #1 (Recommendations For The Authors)

      The specificity of the C16 tool has been called into question in 3 publications - Chen et al, 2008, PMID: 19046382; Lopez-Grancha et al, 2021, PMID: 34531308; and Cusak et al, 2023, PMID: 36400288. Lopez-Grancha et al have reported a novel, more selective PKR inhibitor with good pharmacological properties that might enable a more robust test of the PKR hypothesis. Regardless, compound exposures and target engagement (i.e. by monitoring phosphorylation of PKR targets such eIF2α) should accompany these studies. Alternatively, it may be easier to probe the role of PKR in Tg26 pathogenicity by crossing the Tg26 line to a PKR knockout mouse.

      In response, we have added a description and references about the the possibility of non-specificity of C16 in the Discussion as a limitation as suggested. (Page 21).

      “Third, we acknowledge possibility of a non-specific effect of C16 as an inhibitor of PKR.66-68”

      Further, we added immunohistochemistry images of pPKR on kidney tissue as shown in Supplemental Figure 1A-D. Images showed PKR activation in Tg26 tubular cells, which was inhibited by C16 treatment.

      Author response image 1.

      Immunofluorescent images showing pPKR. (A-D) Immunofluorescent images showed PKR activation by detecting pPKR in Tg26 mouse kidney. pPKR was inhibited by C16 treatments.

      The suggested PKR knockout mice experiment is an excellent idea for future work but we believe Is outside the scope of the current manuscript.

      To enhance the evidentiary base for the PT-Mito cell type, it would be interesting to know whether these cells can also be found in human datasets like KPMP, though this might require reprocessing the original snRNAseq data. Further in situ hybridization in both mouse and human samples using fluorescent rather than colorimetric approaches should yield a more compelling dataset to provide evidence for this cell type. These approaches would also allow for more precise quantification of the PT-Mito cells compared to the population of proximal tubule cells. Again, the default assumption here should be that the mitochondrial transcripts represent a contamination, and the purpose of these additional experiments is to definitively rule out that explanation.

      Authors: First, as suggested, we carried out additional analyses. We examined a publiclyavailable human kidney snRNA-seq dataset (GSE131882) and found in it the same PT-Mito cluster as shown in Supplemental Figure 6. The PT-Mito cluster was located in close proximity to the PT cluster in a UMAP plot. We added this finding in the Results as follows (Page 12):

      “We also confirmed the existence of similar PT-Mito cluster in published human kidney single-nuclear RNA-seq data47 by the re-analysis of the original data. (Supplemental Figure 6A-C).”

      Author response image 2.

      PT-Mito cluster detection of publicly available human kidney single-nuclear RNA-seq data (GSE131882) (A) UMAP plot of human kidney single-nuclear RNA-seq data shows 16 clusters. Cluster 1, 4 are proximal tubule (PT) clusters, and cluster 7 is PT-Mito cluster. (B) Dot plot shows expression of PT marker genes and PT-Mito marker genes obtained from current manuscript data. PTMito markers including MT-CO1 and MT-CO2 had high expression in cluster 7. (C) UMAP plot shows all six samples are contributing to all cell clusters.

      Second, as suggested, we also included negative control data from in situ hybridization studies (Supplementary Figure 5A, 5B), which shows that the signals in Figure 4B, 4C are true signals.

      Author response image 3.

      Additional in situ hybridization images. (A) In situ hybridization images probing dapB (negative control probe) showed no signals. (B) In situ hybridization images probing Ppib (positive control probe) showed strong signals.

      Reviewer #2 (Recommendations For The Authors)

      (1) The supplementary data file seems to have been uploaded twice but the supplementary methods were not available which would have been helpful when assessing some methods such as using PodoCount to count podocytes.

      We acknowledge that we inadvertently failed to upload the Supplementary Methods section-thank you for pointing this out. The supplementary methods are now provided in the revised submission, including detailed methods about PodoCount. Corresponding descriptions are as follows:

      “Estimation of glomerular podocyte count

      PodoCount5, a computational tool for whole slide podocyte estimation from digitized histologic sections, was used to detect, enumerate, and characterize podocyte nuclear profiles in the glomeruli of immunohistochemically labeled (IHC-labeled) murine kidney sections. Formalin-fixed, paraffin embedded tissues (2 µm thickness) were IHC-labeled for p57kip2, a marker of podocyte terminal differentiation (ab75974, Abcam, Cambridge, UK), and detected with horse radish peroxidase (RU-HRP1000, Diagnostic BioSystems, Pleasanton, CA) and diaminobenzidine chromogen substrate (BSB0018A, Bio SB, Santa Barbara, CA). A periodic acid-Schiff post-stain was applied without hematoxylin counterstain. The tool uses a combination of stain deconvolution, digital image processing, and feature engineering to compute histologic podometrics6 with correction for section thickness7. In this study, PodoCount was used to assess mean glomerular podocyte count per mouse.“

      (2) In the abstract, the authors give the impression that they know definitively the sequence of HIV gene expression, cytoskeletal dysregulation, dedifferentiation, then loss from glomeruli. Since they could only examine cells that were present in glomeruli, they can't definitively say much about the cells that were lost from glomeruli.

      As suggested, deleted the following text: “and were lost from glomeruli tuft”

      (3) The authors state that 56,976 cells were used for snRNAseq studies. Was the number of cells similar for each of the 8 mice (from 4 different groups)?

      In response, we have created a new table summarizing numbers of nuclei from each sample (i.e. each mouse) added to the Supplemental Figure 2D as follows:

      Author response table 1.

      Pre-processing of single-nuclear RNA-seq data, Breakdown of nuclei numbers from each sample showed comparable numbers of nuclei analyzed.

      (4) Please provide information on the assay that was used to measure creatinine since some methods can be unreliable in mice

      This is now provided in the revised submission, including creatinine measurement methods (LC-MS/MS) on page 3 of Supplementary Material:

      “Mouse chemistry measurements

      Plasma creatinine was measured by isotope dilution LC-MS/MS at The University of Alabama at Birmingham O’Brien Center Core C (Birmingham, AL).”

      (5) The authors state that expression of PKR (Eif2ak2) was expressed in all nephron segments. However, it appears on visual inspection of the UMAP in Fig S2B that the percentage of cells expressing Eif2ak2 was low. What percent of cells expressed Eif2ak2 and if it was a low percentage, what is the authors hypothesis for how expression in a small percentage of cells led to the kidney phenotype?

      Supplemental Figure 2B (now 3B) does show modest expression of Eif2ak2, approximately 10%. The technique may lack sensitivity to detect low gene expression and even low gene expression may be sufficient to cause phenotypic change.

      (6a) In figure 4B and C, it is not clear what genotype/treatment group is shown.

      The legend for figure 4B, 4C has been modified to state that the group was wildtype mice

      (B, C) In situ hybridization of mt-Co1 and mt-Atp6 genes showed signals inside nuclei of WT mice

      (6b) Also, if these ISH images are from Tg26 mice, it would be helpful to do ISH in mice with/without C16 treatment.

      These images of ISH for these two genes are from wild-type mice, as now stated in the revised legend. Our purpose was to show that these mitochondrial-encoded gene transcripts (mt-Co1 and mt-Atp6) are transported to nuclei from the cytoplasm. We believe it is not necessary to do ISH in Tg26 mice because these genes are not disease-specific.

      (6c) Also, only 3-6% of cells express these "PT-mito" markers by snRNAseq, but it appears that far more are expressed by ISH, raising concerns for nonspecific binding of the ISH probe.

      (6d) Also, nonsense controls should be included to demonstrate the specificity of the ISH data.

      First (comment 6c), the PT-mito cluster does not have specific markers, to our knowledge. Second (comment 6d) , to address the concern for non-specific binding of the ISH probes, we have now added additional ISH images, together with a negative control probe (C. elegans gene dapB) and a positive control probe (mouse Ppib), as shown in Supplementary Figure 5A and 5B, respectively.

      Author response image 4.

      Additional in situ hybridization images. (A) In situ hybridization images probing dapB (negative control probe) showed no signals. (B) In situ hybridization images probing Ppib (positive control probe) showed strong signals.

      (7) The authors state that "mitochondrial dysfunction was most pronounced in the PT-Mito cluster" but in Figure 4D, the oxidative phosphorylation activation Z score was most down in the PT-inj (injured PT cells) and the PT-Mito cells were the 4-most downregulated cell type.

      We appreciate the careful reading and agree with reviewer’s comment. In the revision, we have deleted “most” from this description.

      (8) In Fig 4F, please state what "Cp expression" means.

      We have spelled out ceruloplasmin (Cp).

      (9) It is not clear in immunohistochemistry images in Fig 5F where the p-stat3 was detected due to the hematoxylin counterstain which may have obscured subtle nuclear staining. Also, some of the strongest staining appears to be in peritubular capillaries, instead of tubular and glomerular epithelial cells.

      We have added arrows to help readers see where we show that p-Stat3 was detected as faintly-brown and distinct cytoplasmic granules in injured tubular cells in Tg26 mice (panel F), as opposed to diffuse in tubular cytoplasmic color in wild-type mice (panel E).

      Author response image 5.

      (10) For the studies of mitochondrial oxygen consumption (Fig 6), it would be helpful to also provide data on the effect of C16 in wild-type kidneys, in case C16 somehow causes a primary increase in mitochondrial oxygen consumption rather than preventing HIV-induced loss in kidney cells from HIV-transgenic mice.

      We did not include Seahorse data regarding oxygen consumption from WT mice treated with C16, as C16 did not affect either renal function or transcriptomes in WT mice, in contrast to the Tg26 mice (Figure 1A-G).

      (11) The authors emphasize that podocytes had the highest expression of HIV genes (Fig 7). However, it appears that <2% of podocytes expressed HIV genes. How do the authors explain the severe renal phenotype given the relatively small number of cells expressing the HIV transgene? Also, did the same cells express all/most of the HIV transcripts, or did some cells express some HIV transcripts? For instance, since the authors state that vpr and nef have the most important role in kidney injury, were the same cells that expressed nef also expressing Vpr?

      We know that snRNA-seq cannot detect the whole transcriptome in each cell, due to the well-known drop-out effect characteristic of the method. Several factors may contribute to this drop-out effect, including stochastic patterns of gene expression, low RNA amounts and inefficient mRNA capture (Qiu, Nature Comm, 2020; Ran, Bioinformatics, 2020).

      Our interpretation is that HIV gene expressing-podocytes had higher expression of HIV genes, but it does not mean that other kidney cells entirely lack HIV gene expression. With regard to co-expression of other HIV transcripts, nef and vpr were more often coexpressed as shown in Figure 7J. Vpr was expressed in nef-positive podocytes and not detected in nef-negative podocytes.

      (12) In figure 8, the authors emphasize the dysregulation of genes involved in cell-cell interaction, particularly PDGF-D. They show some data for the effect of C16 in this system in Fig 8 but it would be helpful if they can state the effect in the text of the Results section.

      We have added text in the Results describing activating interactions in Tg26 mice, that were reduced by C16 exposure, as follows: (page 18)

      “For example, platelet derived growth factor D (PDGF-D) was upregulated in PT-Inj in Tg26 mice and was downregulated by C16 treatment (Figure 8D). Further, PDGF-D may interact with PDGFR-B in fibroblasts.”

    1. Author response:

      We extend our sincere gratitude to the editor and three reviewers for their invaluable feedback, which not only included positive comments but also provided constructive suggestions for enhancing the quality of our manuscript.

      Of potential interest to you is our forthcoming investigation into vaccine efficacy, where we will compare the effectiveness of our live-attenuated vaccine with an mRNA-based alternative.

      Moreover, we acknowledge and fully endorse the recommendation to elucidate why immunization with our live-attenuated vaccine confers protection against viral challenge, even in the absence of sufficient neutralizing antibodies. As pointed out by the reviewers, this phenomenon may be attributed to mucosal immunity. Consequently, we have outlined plans to investigate whether the attenuated live vaccine elicits mucosal immunity as part of our ongoing research.

      We are currently working to gather the necessary data to address these inquiries comprehensively, and are aiming to resubmit our manuscript at the earliest opportunity.

      Reviewer #1: We sincerely appreciate the insightful comments provided by Reviewer #1. In response to this feedback, we will conduct a comparative analysis of efficacy between our live-attenuated vaccine and an mRNA-based alternative. Furthermore, we will thoroughly examine and delineate the advantages and limitations of this/our live-attenuated vaccine in our discussion.

      Reviewer #2: We express our sincere appreciation to Reviewer #2 for invaluable suggestions. In light of the insightful observation concerning the weakness of our study, related to the poor assessment/evaluation of the induction of mucosal immunity by our vaccine candidate, we have resolved to undertake a comprehensive analysis in this regard.

      Furthermore, we will take into account this reviewer's recommendation to compare BK2102 results with those of an mRNA vaccine. We are currently in the process of planning additional experiments to thoroughly address this aspect.

      Reviewer #3: We are very grateful to Reviewer #3 for the positive feedback and invaluable suggestions. In order to further explore the immune mechanisms underlying the protection against the Omicron variant in the absence of detectable neutralizing antibodies, we are currently devising plans for experiments focused on evaluating mucosal immunity.

      Moreover, in accordance with Reviewer #3's suggestion, we are considering the incorporation of an ELISPOT assay experiment. However, we acknowledge uncertainties regarding the feasibility of establishing an experimental system for this purpose.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Day et al. present a high-throughput version of expansion microscopy to increase the throughput of this well-established super-resolution imaging technique. Through technical innovations in liquid handling with custom-fabricated tools and modifications to how the expandable hydrogels are polymerized, the authors show robust ~4-fold expansion of cultured cells in 96-well plates. They go on to show that HiExM can be used for applications such as drug screens by testing the effect of doxorubicin on human cardiomyocytes. Interestingly, the effects of this drug on changing DNA organization were only detectable by ExM, demonstrating the utility of HiExM for such studies.

      Overall, this is a very well-written manuscript presenting an important technical advance that overcomes a major limitation of ExM - throughput. As a method, HiExM appears extremely useful, and the data generally support the conclusions.

      Strengths:

      Hi-ExM overcomes a major limitation of ExM by increasing the throughput and reducing the need for manual handling of gels. The authors do an excellent job of explaining each variation introduced to HiExM to make this work and thoroughly characterize the impressive expansion isotropy. The dox experiments are generally well-controlled and the comparison to an alternative stressor (H2O2) significantly strengthens the conclusions.

      Weaknesses:

      (1) Based on the exceedingly small volume of solution used to form the hydrogel in the well, there may be many unexpanded cells in the well and possibly underneath the expanded hydrogel at the end of this. How would this affect the image acquisition, analysis, and interpretation of HiExM data?

      The hydrogel footprint covers approximately 5% of the surface within an individual well and only cells within this area are embedded in the polymerized hydrogel for subsequent processing steps. Cells that are outside of this footprint are not incorporated into the gel, meaning that these cells are digested by Proteinase K and subsequently washed away by the excess water exchange in the gel swelling step. Note that different cell types may require higher or lower concentrations of Proteinase K to adequately digest cells for expansion while maintaining fluorescence signal. Given the compatibility of HiExM with 96-well plates, this titration can be performed rapidly in a single experiment. Although cells outside of the hydrogel footprint are removed prior to imaging, we do occasionally observe Hoechst signal that appears to be underneath the gels. We believe this signal is likely from excess DNA from digested cells that was not fully washed out in the gel swelling step. This signal is both spatially and morphologically distinct from the nuclear signal of intact cells and it does not affect image acquisition, analysis, or data interpretation.

      (2) It is unclear why the expansion factor is so variable between plates (e.g., Figure 2H). This should be discussed in more detail.

      The variability in expansion factor across plates can likely be attributed to the small volume (~250 nL) deposited by the device posts. Small variations in gel volume could impact gel polymerization compared to standard ExM gels. For example, gels in HiExM are more sensitive to evaporation because they are ~1000x smaller than standard expansion gel preparations due to an increased air-liquid-interface. Evaporation in HiExM gels increases monomer and cross linker concentrations, leading to variation in expansion factor across plates. We note that expansion factor is robust within well plates and that variance is slightly increased between plates. These differences will be discussed in the revised manuscript.

      (3) The authors claim that CF dyes are more resistant to bleaching than other dyes. However, in Figure. S3, it appears that half of the CF dyes tested still show bleaching, and no data is shown supporting the claim that Alexa dyes bleach. It would be helpful to include data supporting the claim that Alexa dyes bleach more than CF dyes and the claim that CF dyes in general are resistant to bleaching should be modified to more accurately reflect the data shown.

      We did not show data using Alexa dyes because these fluorophores are highly sensitive to photobleaching using Irgacure and thus we could not obtain images. In contrast, some CF dyes are more robust to bleaching in HiExM including CF488A, CF568, and CF633 dyes. We have recently adapted our protocol to PhotoExM chemistry which is compatible with a wider range of fluorophores as described by Günay et al. (2023) and as shown in current Fig. S11.

      (4) Related to the above point, it appears that Figure S11 may be missing the figure legend. This makes it hard to understand how HiExM can use other photo-inducible polymerization methods and dyes other than CF dyes.

      The following figure legend will be included in the revised manuscript. Fig. S11: Example of a cell expanded in HiExM using Photo-ExM gel chemistry. Photo-ExM does not require an anoxic environment for gel deposition and polymerization, improving ease of use of HiExM. Mitochondria were stained with an Alexa 647 conjugated secondary antibody, indicating that HiExM is compatible with additional fluorophores when combined with Photo-ExM.

      (5) The use of automated high-content imaging is impressive. However, it is unclear to me how the increased search space across the extended planar area and focal depths in expanded samples is overcome. It would be helpful to explain this automated imaging strategy in more detail.

      We imaged plates on the Opera Phenix using the PreciScan Acquisition Software in Harmony. In brief, each well is imaged at 5x magnification in the Hoechst channel to capture the full well at low resolution. Hoechst is used for this step given its signal brightness, ubiquity across established staining protocols, and spectral independence from most fluorophores commonly conjugated to secondary antibodies. Using this information, the microscope detects regions of interest (nuclei) based on criteria including size, brightness, circularity, etc. Finally, the positional information for each region is stored, and the microscope automatically images those regions at 63x magnification. The working distance for the objective used in this study is 600 µm which is sufficient to capture the entirety of expanded cells in the Z direction. This strategy allows minimizes off-target imaging and allows robust image acquisition even in cultures with lower seeding density. A detailed description of the automated imaging strategy will be included in the revised manuscript.

      (6) The general method of imaging pre- and post-expansion is not entirely clear to me. For example, on page 5 the authors state that pre-expansion imaging was done at the center of each gel. Is pre-expansion imaging done after the initial gel polymerization? If so, this would assume that the gelation itself has no effect on cell size and shape if these gelled but not yet expanded cells are used as the reference for calculating expansion factor and isotropy.

      Pre-expansion imaging is performed after staining is complete, but prior to the application of AcX, which is the first step of the HiExM protocol. Following staining and imaging, plates can be sealed with paraffin and stored at 4˚C for up to a week prior to starting the expansion protocol. We typically image 61 fields of view at the center of the well plate (where the gel will be deposited) to obtain sufficient pre-expansion images as shown in Figure 2b (left). After pre-expansion imaging, we perform the HiExM protocol followed by image acquisition. We then tile all the images, as shown in Figure 2b, and compare tiled images from the same well pre- and post-expansion to manually identify the same cells. Comparisons of the pre- and post-expansion images of the same cell are then used to calculate expansion factor and isotropy measurements as described. This detailed description will be included in the revised manuscript.

      (7) In the dox experiments, are only 4 expanded nuclei analyzed? It is unclear in the Figure 3 legend what the replicates are because for the unexpanded cells, it says the number of nuclei but for expanded it only says n=4. If only 4 nuclei are analyzed, this does not play to the strengths of HiExM by having high throughput.

      We performed the DOX titration assay across four different well plates (i.e. n=4). For each condition, the total number of nuclei measured was 56, 71, 64, 92, and 62 for DMSO, 1nM, 10nM, 100nM, and 1µM, respectively. For SEM calculations, we included the number of technical replicates to avoid underestimating error. We have revised the Figure 3 legend to better reflect the experimental details.

      (8) I am not sure if the analysis of dox-treated cells is accurate for the overall phenotype because only a single slice at the midplane is analyzed. It would be helpful to show, at least in one or two example cases, that this trend of changing edge intensity occurs across the whole 3D nucleus.

      We will repeat our analysis on a subset of images using multiple optical sections for each nucleus reported. These new data will be included in the revised manuscript.

      (9) It would be helpful to provide an actual benchmark of imaging speed or throughput to support the claims on page 8 that HiExM can be combined with autonomous imaging to capture thousands of cells a day. What is the highest throughput you have achieved so far?

      The parameters that dictate imaging speed in HiExM include exposure time, z-stack height, and number of channels. Depending on the signal intensity for a given channel, exposure times vary from 200ms to 1000ms. For z-stack height, we found that imaging 65 sections with 1µm spacing allowed for robust identification of each region of interest in the 5x pre-scan. As an example, collecting images for a full well plate (e.g., 20 images per well with 4 channels) requires approximately 24 hours of autonomous image acquisition using the Opera Phenix. Depending on cell size, this yields imaging data for between 1200 cells (1 cell per field of view) to 6000 cells (5 cells per field of view). Different autonomous imagers as well as improving staining techniques that increase signal:noise can be expected to significantly decrease the exposure time as it will reduce the number of z-stacks needed for each region.

      Reviewer #2 (Public Review):

      Summary:

      In the present work, the authors present an engineering solution to sample preparation in 96-well plates for high-throughput super-resolution microscopy via Expansion Microscopy. This is not a trivial problem, as the well cannot be filled with the gel, which would prohibit the expansion of the gel. A device was engineered that can spot a small droplet of hydrogel solution and keep it in place as it polymerizes. It occupies only a small portion of space at the center of each well, the gel can expand into all directions, and imaging and staining can proceed by liquid handling robots and an automated microscope.

      Strengths:

      In contrast to Reference 8, the authors' system is compatible with standard 96 well imaging plates for high-throughput automated microscopy and automated liquid handling for most parts of the protocol. They thus provide a clear path towards high-throughput ExM and high-throughput super-resolution microscopy, which is a timely and important goal.

      Weaknesses:

      The assay they chose to demonstrate what high-throughput ExM could be useful for, is not very convincing. But for this reviewer that is not important.

      We appreciate this reviewer’s point. We believe the data provide an example of the power of HiExM for collecting thousands of nanoscale images that would benefit experiments that require many samples (e.g., conditions, replicates, timepoints, etc.). The ability to generate large data sets also enables quantitative analysis of images with appropriate statistical power. The intention of this experiment was to provide a proof-of-concept example of the robustness, accessibility, and experimental design flexibility of HiExM.

      Reviewer #3 (Public Review):

      Summary:

      Day et al. introduced high-throughput expansion microscopy (HiExM), a method facilitating the simultaneous adaptation of expansion microscopy for cells cultured in a 96-well plate format. The distinctive features of this method include 1) the use of a specialized device for delivering a minimal amount (~230 nL) of gel solution to each well of a conventional 96-well plate, and 2) the application of the photochemical initiator, Irgacure 2959, to successfully form and expand the toroidal gel within each well.

      Strengths:

      This configuration eliminates the need for transferring gels to other dishes or wells, thereby enhancing the throughput and reproducibility of parallel expansion microscopy. This methodological uniqueness indicates the applicability of HiExM in detecting subtle cellular changes on a large scale.

      Weaknesses:

      To demonstrate the potential utility of HiExM in cell phenotyping, drug studies, and toxicology investigations, the authors treated hiPS-derived cardiomyocytes with a low dose of doxycycline (dox) and quantitatively assessed changes in nuclear morphology. However, this reviewer is not fully convinced of the validity of this specific application. Furthermore, some data about the effect of expansion require reconsideration.

      The application we chose was intended as a proof of concept. We believe the data provide an example of the power of HiExM for collecting thousands of nanoscale images that would benefit experiments that require many samples (e.g., conditions, replicates, timepoints, etc.). The ability to generate large data sets also enables quantitative analysis of images with appropriate statistical power. The intention of this experiment was to provide a proof-of-concept example of the robustness, accessibility, and experimental design flexibility of HiExM.

      The variability in expansion factor across plates can likely be attributed to the small volume (~250 nL) deposited by the device posts. Small variations in gel volume could impact gel polymerization compared to standard ExM gels. For example, gels in HiExM are more sensitive to evaporation because they are ~1000x smaller than standard expansion gel preparations due to an increased air-liquid-interface. Evaporation in HiExM gels increases monomer and cross linker concentrations, leading to variation in expansion factor across plates. We note that expansion factor is robust within well plates and that variance is slightly increased between plates. These differences will be discussed in the revised manuscript.