5,949 Matching Annotations
  1. Nov 2024
    1. Author response:

      The following is the authors’ response to the original reviews.

      This study presents a valuable finding on sperm flagellum and HTCA stabilization. The evidence supporting the authors' claims is incomplete. The work will be of broad interest to cell and reproductive biologists working on cilium and sperm biology.

      We thank the Editor and the two reviewers for their time and thorough evaluation of our manuscript. We greatly appreciate their valuable guidance on improving our study. In the revised manuscript, we have conducted additional experiments and provided quantitative data in response to the reviewers' comments. Furthermore, we have refined the manuscript and added further context to elucidate the significance of our findings for the readers.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this paper, Wu et al. investigated the physiological roles of CCDC113 in sperm flagellum and HTCA stabilization by using CRISPR/Cas knockouts mouse models, co-IP, and single sperm imaging. They find that CCDC113 localizes in the linker region among radial spokes, the nexin-dynein regulatory complex (N-DRC), and doublet microtubules (DMTs) RS, N-DRC, and DMTs and interacts with axoneme-associated proteins CFAP57 and CFAP91, acting as an adaptor protein that facilitates the linkage between RS, N-DRC, and DMTs within the sperm axoneme. They show the disruption of CCDC113 produced spermatozoa with disorganized sperm flagella and CFAP91, DRC2 could not colocalize with DMTs in Ccdc113-/- spermatozoa. Interestingly, the data also indicate that CCDC113 could localize on the HTCA region, and interact with HTCA-associated proteins. The knockout of Ccdc113 could also produce acephalic spermatozoa. By using Sun5 and Centlein knockout mouse models, the authors further find SUN5 and CENTLEIN are indispensable for the docking of CCDC113 to the implantation site on the sperm head. Overall, the experiments were designed properly and performed well to support the authors' observation in each part. Furthermore, the study's findings offer valuable insights into the physiological and developmental roles of CCDC113 in the male germ line, which can provide insight into impaired sperm development and male infertility. The conclusions of this paper are mostly well supported by data, but some points need to be clarified and discussed.

      We thank Reviewer #1 for his or her critical reading and the positive assessment.

      (1) In Figure 1, a sperm flagellum protein, which is far away from CCDC113, should be selected as a negative control to exclude artificial effects in co-IP experiments.

      We greatly appreciate Reviewer #1’s insightful suggestion. In response, we selected two sperm outer dense fiber proteins, ODF1 and ODF2, which are located distant from the sperm axoneme, as negative controls in the co-IP experiments. As shown in Figure 1- figure supplement 1A and B, neither ODF1 nor ODF2 bound to CCDC113, indicating the interaction observed in Figure 1 is not an artifact.

      (2) Whether the detachment of sperm head and tail in Ccdc113-/- mice is a secondary effect of the sperm flagellum defects? The author should discuss this point.

      Good question. Considering that CCDC113 is localized in the sperm neck region and interacts with SUN5 and CENTLEIN, it may play a direct role in connecting the sperm head and tail. Indeed, PAS staining revealed that Ccdc113–/– sperm heads exhibit abnormal orientation in stages V–VIII of the seminiferous epithelia (Figure 6C-D). Furthermore, transmission electron microscopy (TEM) analysis indicated that the absence of CCDC113 caused detachment of the damaged coupling apparatus from the sperm head in step 9–11 spermatids (Figure 6E). These results suggest that the detachment of the sperm head and tail in Ccdc113–/– mice may not be a secondary effect of sperm flagellum defects. We have discussed this point further below:

      “CCDC113 can interact with SUN5 and CENTLEIN, but not PMFBP1 (Figure 7A-C), and left on the tip of the decapitated tail in Sun5–/– and Centlein–/– spermatozoa (Figure 7K and L). Furthermore, CCDC113 colocalizes with SUN5 in the HTCA region, and immunofluorescence staining in spermatozoa shows that SUN5 is positioned closer to the sperm nucleus than CCDC113 (Figure 7G and H). Therefore, SUN5 and CENTLEIN may be closer to the sperm nucleus than CCDC113. PAS staining revealed that Ccdc113–/– sperm heads are abnormally oriented in stages V–VIII seminiferous epithelia (Figure6 C and D), and TEM analysis further demonstrated that the disruption of CCDC113 causes the detachment of the destroyed coupling apparatus from the sperm head in step 9–11 spermatids (Figure 6E). All these results suggest that the detachment of sperm head and tail in Ccdc113–/– mice may not be a secondary effect of sperm flagellum defects.”

      (3) Given that some cytoplasm materials could be observed in Ccdc113-/- spermatozoa (Fig. 5A), whether CCDC113 is also essential for cytoplasmic removal?

      Good question. Unremoved cytoplasm could be detected in spermatozoa by using transmission electron microscopy (TEM) analysis, including disrupted mitochondria, damaged axonemes, and large vacuoles. These observations indicate defects in cytoplasmic removal in Ccdc113–/– mice. We have discussed this point as below:

      “Moreover, TEM analysis detected excess residual cytoplasm in spermatozoa, including disrupted mitochondria, damaged axonemes, and large vacuoles, indicating defects in cytoplasmic removal in Ccdc113–/– mice (Figure 5A).”

      (4) Although CCDC113 could not bind to PMFBP1, the localization of CCDC113 in Pmfbp1-/- spermatozoa should be also detected to clarify the relationship between CCDC113 and SUN5-CENTLEIN-PMFBP1.

      We appreciate Reviewer #1’s suggestion. We have analyzed the localization of CCDC113 in Pmfbp1-/- spermatozoa and found that CCDC113 was located at the tip of the decapitated tail in Pmfbp1-/- spermatozoa (Figure 7K and L). This finding has been incorporated into the revised manuscript as below:

      “To further elucidate the functional relationships among CCDC113, SUN5, CENTLEIN, and PMFBP1 at the sperm HTCA, we examined the localization of CCDC113 in Sun5-/-, Centlein–/–, and Pmfbp1–/– spermatozoa. Compared to the control group, CCDC113 was predominantly localized on the decapitated flagellum in Sun5-/-, Centlein–/–, and Pmfnp1–/– spermatozoa (Figure 7K and L), indicating SUN5, CENTLEIN, and PMFBP1 are crucial for the proper docking of CCDC113 to the implantation site on the sperm head. Taken together, these data demonstrate that CCDC113 cooperates with SUN5 and CENTLEIN to stabilize the sperm HTCA and anchor the sperm head to the tail.”

      Reviewer #2 (Public Review):

      Summary:

      In the present study, the authors select the coiled-coil protein CCDC113 and revealed its expression in the stages of spermatogenesis in the testis as well as in the different steps of spermiogenesis with expression also mapped in the different parts of the epididymis. Gene deletion led to male infertility in CRISPR-Cas9 KO mice and PAS staining showed defects mapped in the different stages of the seminiferous cycle and through the different steps of spermiogenesis. EM and IF with several markers of testis germ cells and spermatozoa in the epididymis indicated defects in flagella and head-to-tail coupling for flagella as well as acephaly. The authors' co-IP experiments of expressed CCDC113 in HEK293T cells indicated an association with CFAP91 and DRC2 as well as SUN5 and CENTLEIN.

      The authors propose that CCDC113 connects CFAP91 and DRC2 to doublet microtubules of the axoneme and CCDC113's association with SUN5 and CENTLEIN to stabilize the sperm flagellum head-to-tail coupling apparatus. Extensive experiments mapping CCDC13 during postnatal development are reported as well as negative co-IP experiments and studies with SUN5 KO mice as well as CENTLEIN KO mice.

      Strengths:

      The authors provide compelling observations to indicate the relevance of CCDC113 to flagellum formation with potential protein partners. The data are relevant to sperm flagella formation and its coupling to the sperm head.

      We are grateful to Reviewer #2 for his or her recognition of the strength of this study.

      Weaknesses:

      The authors' observations are consistent with the model proposed but the authors' conclusions for the mechanism may require direct demonstration in sperm flagella. The Walton et al paper shows human CCDC96/113 in cilia of human respiratory epithelia. An application of such methodology to the proteins indicated by Wu et al for the sperm axoneme and head-tail coupling apparatus is eagerly awaited as a follow-up study.

      We thank Reviewer 2 for his/her kindly help in improving the manuscript.  We now understand that directly detection of CCDC113 precise localization in sperm axoneme and head-tail coupling apparatus (HTCA) using cryo-electron microscopy (cryo-EM) could powerfully strengthen our model. Recent advances in cryo-EM have indeed advanced our understanding of axonemal structures analysis of axonemal structures and determined the structures of native axonemal DMTs from mouse, bovine, and human sperm (Leung et al., 2023; Zhou et al., 2023). However, high-resolution structures of sperm axoneme and HTCA regions, including those involving CCDC113, have yet to be fully characterized. Thus, we would like to discuss this point and consider it a valuable direction for future research.

      “Given that the cryo-EM of sperm axoneme and HTCA could powerfully strengthen the role of CCDC113 in stabilizing sperm axoneme and head-tail coupling apparatus, it a valuable direction for future research.”

      References:

      Bazan, R., Schröfel, A., Joachimiak, E., Poprzeczko, M., Pigino, G., & Wloga, D. (2021). Ccdc113/Ccdc96 complex, a novel regulator of ciliary beating that connects radial spoke 3 to dynein g and the nexin link. PLoS Genet, 17(3), e1009388.

      Ghanaeian, A., Majhi, S., McCafferty, C. L., Nami, B., Black, C. S., Yang, S. K., Legal, T., Papoulas, O., Janowska, M., Valente-Paterno, M., Marcotte, E. M., Wloga, D., & Bui, K. H. (2023). Integrated modeling of the Nexin-dynein regulatory complex reveals its regulatory mechanism. Nat Commun, 14(1), 5741.

      Leung, M. R., Zeng, J., Wang, X., Roelofs, M. C., Huang, W., Zenezini Chiozzi, R., Hevler, J. F., Heck, A. J. R., Dutcher, S. K., Brown, A., Zhang, R., & Zeev-Ben-Mordehai, T.  (2023). Structural specializations of the sperm tail. Cell, 186(13), 2880-2896.e2817

      Walton, T., Gui, M., Velkova, S., Fassad, M. R., Hirst, R. A., Haarman, E., O'Callaghan, C., Bottier, M., Burgoyne, T., Mitchison, H. M., & Brown, A. (2023). Axonemal structures reveal mechanoregulatory and disease mechanisms. Nature, 618(7965), 625-633.

      Zhou, L., Liu, H., Liu, S., Yang, X., Dong, Y., Pan, Y., Xiao, Z., Zheng, B., Sun, Y., Huang, P., Zhang, X., Hu, J., Sun, R., Feng, S., Zhu, Y., Liu, M., Gui, M., & Wu, J. (2023). Structures of sperm flagellar doublet microtubules expand the genetic spectrum of male infertility. Cell, 186(13), 2897-2910.e2819.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Please provide full gel for the Figure 2C experiment (could be as a supplementary file).

      Thanks for your insightful suggestions. We have replaced Figure 2C and provided the full gel in Figure 2-figure supplement 1A.

      (2) The authors write on Line 163 "In contrast, the flagellum staining appeared reduced in Ccdc113-/- seminiferous tubules (Fig. 2J, red asterisk)." However, the magnification of the pictures is not sufficient to distinguish anything in the panel mentioned, please provide others.

      Many thanks for pointing this out. We have provided the iconic figure to show the flagella defect in seminiferous tubules.

      (3) Please add statistical p-values for figures.

      Thanks for your valuable advice. We have added statistical p-values to the figures in the revised manuscript.

      (4) Line 128: Should "speculate" be "speculated"?

      Thank you for pointing out this problem. We have corrected it in the revised manuscript, as shown below:

      “Given that CFAP91 has been reported to stabilize RS on the DMTs (Bicka et al., 2022; Dymek et al., 2011; Gui et al., 2021) and cryo-EM analysis shows that CCDC113 is closed to DMTs, we speculated that CCDC113 may connect RS to DMTs by binding to CFAP91 and microtubules.”

      (5) In lines 384-385, more "-" is typed.

      Thank you for pointing out this problem. We have corrected it in the revised manuscript, as shown below:

      “Furthermore, CCDC113 colocalizes with SUN5 in the HTCA region, and immunofluorescence staining in spermatozoa shows that SUN5 is closer to the sperm nucleus than CCDC113 (Figure 7G and H). Therefore, SUN5 and CENTLEIN may be closer to the sperm nucleus than CCDC113.”

      (6) In general, the article has many typos and should be professionally proofread.

      Many thanks for pointing this out. We have thoroughly revised the manuscript with the assistance professional proofreading.

      Reviewer #2 (Recommendations For The Authors):

      Can the authors indicate in the Materials and Methods if n=3 biological replicates were done for all co-IP, EM, LM, and IF studies? The statistical analysis section indicates this but quantification is missing for most figures including co-IP, most IF, PAS staining, EM, etc.

      We thank Reviewer 2 for the insightful comments and guidance to improve our data quality. All the experiments in this study were repeated at least three times to ensure reproducibility. We have quantified the co-IP experiments in Figures 1C-H and 7A-F, the IF data in Figures 2K, 5C, and 5D, as well as the PAS staining in Figure 6C. Since electron microscopy samples require very little testicular tissue and the sections obtained are very thin, the likelihood of capturing sections specifically at the sperm head-tail junction is considerably low. This challenge makes it difficult to perform quantitative analysis and statistical evaluation in the TEM experiment. To address this limitation, we have quantified the percentage of _Ccdc113-/-_sperm heads with abnormal orientation in stages V–VIII of the seminiferous epithelium to indicate impaired head-to-tail anchorage.

      Figure S2 is compelling and might be indicated as a major figure instead of a supplementary figure.

      We appreciate the positive comment. We have included it as a major figure in Figure 3F.

      Figure 4A may be incomplete. Data sets for RNA expression suggest high expression in the ovary and other organs in males and females including the brain and are not indicated by the authors. Figure 4A may be considered for removal with a more complete study for another paper.

      Thank you for pointing out this issue. We reviewed RNA expression data from various tissues using RNA-Seq data from Mouse ENCODE (https://www.ncbi.nlm.nih.gov/gene/244608) and found that CCDC113 is highly expressed in the testis, but not significantly in the ovary and brain (Figure 4- figure supplement 1A). Additionally, we re-evaluated CCDC113 protein levels in the spleen, lung, kidney, testis, intestine, stomach, brain, and ovary, confirming that it is highly expressed in the testes, with negligible expression in the ovary and brain (Figure 4- figure supplement 1B). In line with Reviewer 2's suggestion, we have removed Figure 4A in the revised manuscript.

      There are grammatical errors throughout the manuscript and Figure 7 is truncated.

      Thank you for pointing out this problem. We have thoroughly revised the manuscript with the assistance professional proofreading.

      The Introduction and Discussion parts of the paper may need some clarification for the general reader. The material in the "Additional Context " section of the critique below may be a helpful place to introduce what a stage is, and the steps in germ cell development in the testis with the latter of course where and when the flagellum develops.

      We appreciate your valuable suggestions. We have referred to the material in the “Additional Context” section to introduce the stages of spermatogenesis and the steps in germ cell development in the testis in the introduction and results.

      “Male fertility relies on the continuous production of spermatozoa through a complex developmental process known as spermatogenesis. Spermatogenesis involves three primary stages: spermatogonia mitosis, spermatocyte meiosis, and spermiogenesis. During spermiogenesis, spermatids undergo complex differentiation processes to develop into spermatozoa, which includes nuclear elongation, chromatin remodeling, acrosome formation, cytoplasm elimination, and flagellum development (Hermo et al., 2010).”

      Hermo, L., Pelletier, R. M., Cyr, D. G., & Smith, C. E. (2010). Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: background to spermatogenesis, spermatogonia, and spermatocytes. Microscopy research and technique, 73(4), 241–278. https://doi.org/10.1002/jemt.20783

      “Pioneering work in the mid-1950s used the PAS stain in histologic sections of mouse testis to visualize glycoproteins of the acrosome and Golgi in seminiferous tubules (Oakberg, 1956). The pioneers discovered in cross-sectioned seminiferous tubules the association of differentiating germ cells with successive layers to define different stages that in mice are twelve, indicated as Roman numerals (XII). For each stage, different associations of maturing germ cells were always the same with early cells in differentiation at the periphery and more mature cells near the lumen. In this way, progressive differentiation from stem cells to mitotic, meiotic, acrosome-forming, and post-acrosome maturing spermatocytes was mapped to define spermatogenesis with the XII stages in mice representing the seminiferous cycle. The maturation process from acrosome-forming cells to mature spermatocytes is defined as spermiogenesis with 16 different steps that are morphologically distinct spermatids (O'Donnell L, 2015).”

      Oakberg, E. F. (1956). A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. The American journal of anatomy, 99(3), 391-413. https://doi.org/10.1002/aja.1000990303

      O'Donnell L. (2015). Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis, 4(2), e979623. https://doi.org/10.4161/21565562.2014.979623

      For the Discussion, the authors indicate that the function of CCDC113 in mammals is unknown yet the authors point to the work of Walton et al on human respiratory epithelia that points to a function for CCDC96/113. The work in the manuscript here does indicate a role in sperm flagella and the head-to-tail coupling apparatus but remains descriptive until the methodology of Walton et al is applied. Hopefully, the authors will consider it for a follow-up study.

      Thank you for pointing out this problem. We have revised this part and highlighted the Walton et al’s work in the Discussion.

      “CCDC113 is a highly evolutionarily conserved component of motile cilia/flagella. Studies in the model organism, Tetrahymena thermophila, have revealed that CCDC113 connects RS3 to dynein g and the N-DRC, which plays essential role in cilia motility (Bazan et al., 2021; Ghanaeian et al., 2023). Recent studies have also identified the localization of CCDC113 within the 96-nm repeat structure of the human respiratory epithelial axoneme, and localizes to the linker region among RS, N-DRC and DMTs (Walton et al., 2023). In this study, we reveal that CCDC113 is indispensable for male fertility, as Ccdc113 knockout mice produce spermatozoa with flagellar defects and head-tail linkage detachment (Figure 3D).”

      “Overall, we identified CCDC113 as a structural component of both the flagellar axoneme and the HTCA, where it performs dual roles in stabilizing the sperm axonemal structure and maintaining the structural integrity of HTCA. Given that the cryo-EM of sperm axoneme and HTCA could powerfully strengthen the role of CCDC113 in stabilizing sperm axoneme and head-tail coupling apparatus, it a valuable direction for future research.”

      The Discussion may be focused on the key aspects of CCDC113 related to sperm flagella and the head-to-tail coupling apparatus that represent a genuine advance. The more speculative parts of the Discussion that have not been addressed by experimentation in the Results section may be considered for removal in the Discussion section.

      Thank you for pointing out this. We have removed the speculative parts of the Discussion that have not been addressed by experimentation in the Results section.

      Additional Context to help readers understand the significance of the work:

      Pioneering work in the mid-1950s used the periodic acid Schiff (PAS) stain in histologic sections of rodent testis to visualize glycoproteins of the acrosome and Golgi in seminiferous tubules. The pioneers discovered in cross-sectioned seminiferous tubules the association of differentiating germ cells with successive layers to define different stages that in mice are twelve, indicated as Roman numerals (XII). For each stage, different associations of maturing germ cells were always the same with early cells in differentiation at the periphery and more mature cells near the lumen. In this way, progressive differentiation from stem cells to mitotic, meiotic, acrosome-forming, and post-acrosome maturing spermatocytes was mapped to define spermatogenesis with the XII stages in mice representing the seminiferous cycle. The maturation process from acrosome-forming cells to mature spermatocytes is defined as spermiogenesis with 19 different steps that are morphologically distinct spermatids. It is from steps 8-19 of spermiogenesis that the formation of the flagellum takes place. Final maturation occurs in the epididymis as sperm move through the caput, corpus, and cauda of the organ with motile spermatozoa generated.

      Thank you very much!

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors aimed to investigate the oscillatory activity of GnRH neurones in freely behaving mice. By utilising GCaMP fiber photometry, they sought to record real-time neuronal activity to understand the patterns and dynamics of GnRH neuron firing and their implications for reproductive physiology.

      Strengths:

      (1) The use of GCaMP fiber photometry allows for high temporal resolution recordings of neuronal activity, providing real-time data on the dynamics of GnRH neurones.

      (2) Recording in freely behaving animals ensures that the findings are physiologically relevant and not artifacts of a controlled laboratory environment.

      (3) The authors used statistical methods to characterise the oscillatory patterns, ensuring the reliability of their findings.

      Weaknesses:

      (1) While the study identifies distinct oscillatory patterns in GnRH neurones' calcium dynamics, it falls short in exploring the functional implications of these patterns for GnRH pulsatility and overall reproductive physiology.

      The functional roles of pulsatile and surge patterns of GnRH release are extremely well established. We have found perfect correlations between GnRH neuron dendron GCaMP activity and LH pulses as well as the LH surge clearly indicating the function of these activity patterns. We do not know the functional role of the clustered high-frequency basal activity that we have discovered and, as noted in the Discussion, are unsure of its physiological importance. Although it may be minor, it will require future investigation.

      (2) The study lacks a broader discussion to include comparisons with existing studies on GnRH neurone activity and pulsatility and highlight how the findings of this study align with or differ from previous research and what novel contributions are made.

      The Reviewer fails to recognise that these are first recordings of GnRH neurons in vivo. There are no prior studies for comparison. We have noted the only other in vivo study (undertaken by ourselves) many years ago in anaesthetized mice. It was never expected that electrophysiological recordings of GnRH neurons in acute brain slices (by ourselves and others) would reflect their activity in vivo. Now that we know this to be the case, it would be churlish to point this out explicitly. We have made some modifications to the Discussion by comparing the present data more thoroughly with other in vivo GnRH secretion and kisspeptin neuron activity studies.

      (3) The authors aimed to characterise the oscillatory activity of GnRH neurons and successfully identified distinct oscillatory patterns. The results support the conclusion that GnRH neurons exhibit complex oscillatory behaviours, which are critical for understanding their role in reproductive physiology. However, it has not been made clear what exactly the authors mean by "multi-dimensional oscillatory patterns" and how has this been shown.

      The study shows three types of GnRH neuron activity; two of which would be classified as oscillatory in nature and these show different temporal dimensions.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors report GCaMP fiber-photometry recordings from the GnRH neuron distal projections in the ventral arcuate nucleus. The recordings are taken from intact, male and female, freely behaving mice. The report three patterns of neuronal activity:

      (1) Abrupt increases in the Ca2+ signals that are perfectly correlated with LH pulses.

      (2) A gradual, yet fluctuating (with a slow ultradian frequency), increase in activity, which is associated with the onset of the LH surge in female animals.

      (3) Clustered (high frequency) baseline activity in both female and male animals.

      Strengths:

      The GCaMP fiber-photometry recordings reported here are the first direct recordings from GnRH neurones in vivo. These recordings have uncovered a rich repertoire of activity suggesting the integration of distinct "surge" and "pulse" generation signals, and an ultradian rhythm during the onset of the surge.

      Weaknesses:

      The data analysis method used for the characterisation of the ultradian rhythm observed during the onset of the surge is not detailed enough. Hence, I'm left wondering whether this rhythm is in any way correlated with the clusters of activity observed during the rest of the cycle and which have similar duration.

      We have provided further information on the characterisation of the ultradian rhythm observed at the time of the surge. Whether this is related to the clustered basal activity is an interesting point but very difficult to resolve. We note that the “basal” and “surge” ultradian oscillations have very different durations of ~30 and ~80 min suggesting that they may be independent phenomenon. However, the only way to really exclude a similar genesis will be to establish the origin of each type of oscillatory activity. Preliminary data in the lab show that the RP3V kisspeptin neurons exhibit an identical pattern of ultradian oscillation at the time of the surge leading us to suspect that the surge oscillation is driven by this input. As noted in the Discussion it is presently difficult to determine where the high basal activity originates.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Evidence of Multi-Dimensional Oscillatory Patterns: The manuscript presents data showing the oscillatory activity of GnRH neurones with distinct frequency and amplitude characteristics. The analysis includes statistical tests that illustrate the variability in neuronal firing patterns. However, the multi-dimensional nature of this activity has not been demonstrated. It is not clear what is meant by "dimension" with regard to the calcium recordings (oscillatory activity). If the authors refer to the frequency content of the calcium signal then a proper Fourier or Wavelet analysis should be carried out to characterise the multiple frequencies present in the calcium dynamics in male mice and during various stages of the cycle in female mice

      The study shows three types of GnRH neuron activity; two of which would be classified as oscillatory in nature. One occurs for ~10 min every hour or so and the other occurs for ~ 12 hours once every 4-5 days. This does not require any analysis to distinguish between the two or claim that they are different i.e. multidimensional. 

      (2) Data Interpretation: Expand the discussion on the physiological relevance of the identified oscillatory patterns. Specifically, explore how these patterns might influence GnRH pulsatility, hormone secretion dynamics, and reproductive cycles.

      The functional roles of pulsatile and surge patterns of GnRH release are extremely well established. We have found perfect correlations between GnRH neuron dendron GCaMP activity and LH pulses as well as the LH surge clearly indicating the function of these activity patterns. We do not know the functional role of the clustered high-frequency basal activity that we have discovered and, as noted in the Discussion, are unsure of its physiological importance. Although it may be minor, it will require future investigation.

      (3) Literature Contextualisation: Broaden the discussion to include comparisons with existing studies on GnRH neuron activity and pulsatility. Highlight how the findings of this study align with or differ from previous research and what novel contributions are made.

      The Reviewer fails to recognise that these are first recordings of GnRH neurons in vivo. There are no prior studies for comparison. We have noted the only other in vivo study (undertaken by ourselves) many years ago in anaesthetized mice. It would be naive to expect that electrophysiological recordings of GnRH neurons in acute brain slices (by ourselves and others) would reflect their activity in vivo. Now that we know this to be the case, it would be churlish to point this out explicitly. We have made some modifications to the Discussion by comparing the present data more thoroughly with other in vivo GnRH secretion and kisspeptin neuron activity studies.

      (4) Future Directions: Suggest potential follow-up experiments to explore the regulatory mechanisms underlying the observed oscillatory patterns. This could include investigating the role of neurotransmitters, hormonal feedback mechanisms, and other factors that might influence GnRH neuron activity.

      By addressing these recommendations, the authors can further strengthen their manuscript and enhance its impact on the field.

      Reviewer #2 (Recommendations For The Authors):

      Suggestions:

      (1) The authors might want to analyse their inter-peak interval data by fitting them to a simple parametric statistical model (the gamma distribution would be a good choice to capture the skewness of these data). This way they would be able to describe the observed variability, and if the fits are not good back up to their claims "The dSEs occurred on average ... and showed no clear modal distribution pattern (Fig. 2D)".

      Thank you for the suggestion. We have carried out Shapiro-Wilk tests for male inter-peak interval distribution and found a W value of 0.87 and P value <0.0001****, providing strong evidence that the data is not normally distributed. Skewness and Kurtosis values are 1.39 and 1.81 respectively, indicating that the distribution is right-skewed with a platykurtic distribution, indicating that the data is less peaked and more spread out than the normal distribution (with a kurtosis of 3). This has now been added to the manuscript.

      (2) If I understand correctly, in Figure 3D, inter-peak intervals from all 4 stages of the estrus cycle are pooled together. It would also be interesting if the authors gave the interval histograms for the different stages of the cycle separately.

      We have now plotted the inter-peak interval distribution histograms for each individual cycle next to the example traces in Figure 3. The descriptions of the distribution pattern are also updated in the figure legends.

      (3) In Figure 3C, one can see the mean interval for different animals (as open circles), is that right? Is the statistical test run on these animals mean, or is the entire dSEs dataset used? In any case, it's not clear to the reader how variable intervals are in individual recordings from each animal. Could the authors add this information (could be easily added in the figure caption)?

      The reviewer is correct, that each open circle is the mean interval for each animal. The statistical test was run on the animals mean. Now this information is added to the figure legend.

      (4) The authors should explain how they identify the regions (clusters) of high-frequency baseline activity, which they present in Figure 4.

      The relevant information is now added to the methods section under the heading ‘GCaMP6 fiber photometry and blood sampling’.

      (5) The authors should detail how to identify and characterise the ultradian rhythm they observe at the onset of the surge.

      The relevant information is now added to the methods section under the heading ‘GCaMP6 fiber photometry and blood sampling’.

      (6) The author could perform some kind of wavelet-type analysis to quantify and analyse how the frequency content of the observed Ca2+ signal changes over the cycle. From their current analysis, I am not sure whether the ultradian oscillations they observe during the surge are related to the low-activity cluster events they observe during the other stages of the cycle.

      This is an interesting point but very difficult to resolve. We note that the “basal” and “surge” ultradian oscillations have very different durations of ~30 and ~80 min suggesting that they may be independent phenomenon. However, the only way to really exclude a similar genesis will be to establish the origin of each type of oscillatory activity. Preliminary data in the lab show that the RP3V kisspeptin neurons exhibit an identical pattern of ultradian oscillation at the time of the surge leading us to suspect that the surge oscillation is driven by this input. As noted in the Discussion it is presently difficult to determine where the high basal activity originates.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Response to Reviewer’s comments

      We are most grateful for the opportunity to address the reviewer comments. Point-by-point responses are presented below.

      Overall, the paper has several strengths, including leveraging large-scale, multi-modal datasets, using computational reasonable tools, and having an in-depth discussion of the significant results.

      We thank the reviewer for the very supportive comments.

      Based on the comments and questions, we have grouped the concerns and corresponding responses into three categories.

      (1) The scope and data selection

      The results are somewhat inconclusive or not validated.

      The overall results are carefully designed, but most of the results are descriptive. While the authors are able to find additional evidence either from the literature or explain the results with their existing knowledge, none of the results have been biologically validated. Especially, the last three result sections (signaling pathways, eQTLs, and TF binding) further extended their findings, but the authors did not put the major results into any of the figures in the main text.”

      The goal of this manuscript is to provide a list of putative childhood obesity target genes to yield new insights and help drive further experimentation. Moreover, the outputs from signaling pathways, eQTLs, and TF binding, although noteworthy and supportive of our method, were not particularly novel. In our manuscript we placed our focus on the novel findings from the analyses. We did, however, report the part of the eQTLs analysis concerning ADCY3, which brought new insight to the pathology of obesity, in Figure 4C.

      The manuscript would benefit from an explanation regarding the rationale behind the selection of the 57 human cell types analyzed. it is essential to clarify whether these cell types have unique functions or relevance to childhood development and obesity.

      We elected to comprehensively investigate the GWAS-informed cellular underpinnings of childhood development and obesity. By including a diverse range of cell types from different tissues and organs, we sought to capture the multifaceted nature of cellular contributions to obesity-related mechanisms, and open new avenues for targeted therapeutic interventions.

      There are clearly cell types that are already established as being key to the pathogenesis of obesity when dysregulated: adipocytes for energy storage, immune cell types regulating inflammation and metabolic homeostasis, hepatocytes regulating lipid metabolism, pancreatic cell types intricately involved in glucose and lipid metabolism, skeletal muscle for glucose uptake and metabolism, and brain cell types in the regulation of appetite, energy expenditure, and metabolic homeostasis.

      While it is practical to focus on cell types already proven to be associated with or relevant to obesity, this approach has its limitations. It confines our understanding to established knowledge and rules out the potential for discovering novel insights from new cellular mechanisms or pathways that could play significant roles in the pathogenesis if obesity. Therefore, it was essential to reflect known biology against the unexplored cell types to expand our overall understanding and potentially identify innovative targets for treatment or prevention.

      I wonder whether the used epigenome datasets are all from children. Although the authors use literature to support that body weight and obesity remain stable from infancy to adulthood, it remains uncertain whether epigenomic data from other life stages might overlook significant genetic variants that uniquely contribute to childhood obesity.

      The datasets utilized in our study were derived from a combination of sources, both pediatric and adult. We recognize that epigenetic profiles can vary across different life stages but our principal effort was to characterize susceptibility BEFORE disease onset.

      Given that the GTEx tissue samples are derived from adult donors, there appears to be a mismatch with the study's focus on childhood obesity. If possible, identifying alternative validation strategies or datasets more closely related to the pediatric population could strengthen the study's findings.

      We thank the reviewer for raising this important point. We acknowledge that the GTEx tissue samples are derived from adult donors, which might not perfectly align with the study's focus on childhood obesity. The ideal strategy would be a longitudinal design that follows individuals from childhood into adulthood to bridge the gap between pediatric and adult data, offering systematic insights into how early-life epigenetic markers influencing obesity later in life. In future work, we aim to carry out such efforts, which will represent substantial time and financial commitment.

      Along the same lines, the Developmental Genotype-Tissue Expression (dGTEx) Project is a new effort to study development-specific genetic effects on gene expression at 4 developmental windows spanning from infant to post-puberty (0-18 years). Donor recruitment began in August 2023 and remains ongoing. Tissue characterization and data production are underway. We hope that with the establishment of this resource, our future research in the field of pediatric health will be further enhanced.

      Figure 1B: in subplots c and d, the results are either from Hi-C or capture-C. Although the authors use different colors to denote them, I cannot help wondering how much difference between Hi-C and capture-C brings in. Did the authors explore the difference between the Hi-C and capture-C?

      Thank you for your comment. It is not within the scope of our paper to explore the differences between the Hi-C and Capture-C methods. In the context of our study, both methods serve the same purpose of detecting chromatin loops that bring putative enhancers to sometimes genomically distant gene promoters. Consequently, our focus was on utilizing these methods to identify relevant chromatin interactions rather than comparing their technical differences.

      (2) Details on defining different categories of the regions of interest

      Some technical details are missing.

      While the authors described all of their analysis steps, a lot of the time, they did not mention the motivation. Sometimes, the details were also omitted.”

      We have added a section to the revision to address the rationale behind different OCRs categories.

      Line 129: should "-1,500/+500bp" be "-500/+500bp"?

      A gene promoter was defined as a region 1,500 bases upstream to 500 bases downstream of the TSS. Most transcription factor binding sites are distributes upstream (5’) from TSS, and the assembly of transcription machinery occurs up to 1000 bases 5’ from TSS. Given our interest in SNPs that can potentially disrupt transcription factor binding, this defined promoter length allowed us to capture such SNPs in our analyses.

      How did the authors define a contact region?

      Chromatin contact regions identified by Hi-C or Capture-C assays are always reported as pairs of chromatin regions. The Supplementary eMethods provide details on the method of processing and interaction calling from the Hi-C and Capture-C data.

      The manuscript would benefit from a detailed explanation of the methods used to define cREs, particularly the process of intersecting OCRs with chromatin conformation data. The current description does not fully clarify how the cREs are defined.

      In the result section titled "Consistency and diversity of childhood obesity proxy variants mapped to cREs", the authors introduced the different types of cREs in the context of open chromatin regions and chromatin contact regions, and TSS. Figure 2A is helpful in some way, but more explanation is definitely needed. For example, it seems that the authors introduced three chromatin contacts on purpose, but I did not quite get the overall motivation.

      We apologize for the confusion. Our definition of cREs is consistent throughout the study. Figure 2A will be the first Figure 1A in the revision in order to aid the reader.

      The 3 representative chromatin loops illustrate different ways the chromatin contact regions (pairs of blue regions under blue arcs) can overlap with OCRs (yellow regions under yellow triangles – ATAC peaks) and gene promoters.

      (1) The first chromatin loop has one contact region that overlaps with OCRs at one end and with the gene promoter at the other. This satisfies the formation of cREs; thus, the area under the yellow ATAC-peak triangle is green.

      (2) The second loop only overlapped with OCR at one end, and there was no gene promoter nearby, so it is unqualified as cREs formation.

      (3) The third chromatin loop has OCR and promoter overlapping at one end. We defined this as a special cRE formation; thus, the area under the yellow ATAC-peak triangle is green.

      To avoid further confusion for the reader, we have eliminated this variation in the new illustration for the revised manuscript.

      Figure 2A: The authors used triangles filled differently to denote different types of cREs but I wonder what the height of the triangles implies. Please specify.

      The triangles are illustrations for ATAC-seq peaks, and the yellow chromatin regions under them are OCRs. The different heights of ATAC-seq peaks are usually quantified as intensity values for OCRs. However, in our study, when an ATAC-seq peak passed the significance threshold from the data pipeline, we only considered their locations, regardless of their intensities. To avoid further confusion for the reader, we have eliminated this variation in the new illustration for the revised manuscript.

      Figure 1B-c. the title should be "OCRs at putative cREs". Similarly in Figure 1B-d.

      cREs are a subset of OCRs.

      - In the section "Cell type specific partitioned heritability", the authors used "4 defined sets of input genomic regions". Are you corresponding to the four types of regions in Figure 2A? 

      Figure 2A is the first Figure 1A in the revision and is modified to showcase how we define OCRs and cREs.

      It seems that the authors described the 771 proxies in "Genetic loci included in variant-to-genes mapping" (ln 154), and then somehow narrowed down from 771 to 94 (according to ln 199) because they are cREs. It would be great if the authors could describe the selection procedure together, rather than isolated, which made it quite difficult to understand.

      In the Methods section entitled “Genetic loci included in variant-to-genes mapping," we described the process of LD expansion to include 771 proxies from 19 sentinel obesity-significantly associated signals. Not all of these proxies are located within our defined cREs. Figure 2B, now Figure 2A in the revision, illustrates different proportions of these proxies located within different types of regions, reducing the proxy list to 94 located within our defined cREs.

      Figure 2. What's the difference between the 771 and 758 proxies?

      13 out of 771 proxies did not fall within any defined regions. The remaining 758 were located within contact regions of at least one cell type regardless of chromatin state.

      (3) Typos

      In the paragraph "Childhood obesity GWAS summary statistics", the authors may want to describe the case/control numbers in two stages differently. "in stage 1" and "921 cases" together made me think "1,921" is one number.

      This has been amended in the revision.

      Hi-C technology should be spelled as Hi-C. There are many places, it is miss-spelled as "hi-C". In Figure 1, the author used "hiC" in the legend. Similarly, Capture-C sometime was spelled as "capture-C" in the manuscript.

      At the end of the fifth row in the second paragraph of the Introduction section: "exisit" should be "exist".

      In Figure 2A: "Within open chromatin contract region" should be "Within open chromatin contact region”

      These typos and terminology inconsistencies have been amended in the revision.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Zhang et al. report a genetic screen to identify novel transcriptional regulators that could coordinate mitochondrial biogenesis. They performed an RNAi-based modifier screen wherein they systematically knocked down all known transcription factors in the developing Drosophila eye, which was already sensitised and had decreased mitochondrial DNA content. Through this screen, they identify CG1603 as a potential regulator of mitochondrial content. They show that protein levels of mitochondrial proteins like TFAM, SDHA, and other mitochondrial proteins and mtDNA content are downregulated in CG1603 mutants. RNA-Seq and ChIP-Seq further show that CG1603 binds to the promoter regions of several known nuclear-encoded mitochondrial genes and regulates their expression. Finally, they also identified YL-1 as an upstream regulator of CG1603. Overall, it is a very important study as our understanding of the regulation of mitochondrial biogenesis remains limited across metazoans. Most studies have focused on PGC-1α as a master regulator of mitochondrial biogeneis, which seems a context-dependent regulator. Also, PGC-1α mediated regulation could not explain the regulation of 1100 genes that are required for mitochondrial biogenesis. Therefore, identifying a new regulator is crucial for understanding the overall regulation of mitochondrial biogenesis.

      Reviewer #2 (Public Review):

      Summary:

      In this study, the authors aim to identify the nuclear genome-encoded transcription factors that regulate mtDNA maintenance and mitochondrial biogenesis. They started with an RNAi screening in developing Drosophila eyes with reduced mtDNA content and identified a number of putative candidate genes. Subsequently, using ChIP-seq data, they built a potential regulatory network that could govern mitochondrial biogenesis. Next, they focused on a candidate gene, CG1603, for further characterization. Based on the expression of different markers, such as TFAM and SDHA, in the RNAi and OE clones in the midgut cells, they argue that CG1603 promotes mitochondrial biogenesis and the expression of ETC complex genes. Then, they used a mutant of CG1603 and showed that both mtDNA levels and mitochondrial protein levels were reduced. Using clonal analyses, they further show a reduction in mitochondrial biogenesis and membrane potential upon loss of CG1603. They made a reporter line of CG1603, showed that the protein is localized to the mitochondria, and binds to polytene chromosomes in the salivary gland. Based on the RNA-seq results from the mutants and the ChIP data, the authors argue that the nucleus-encoded mitochondrial genes that are downregulated >2 folds in the CG1603 mutants and that are bound by CG1603 are related to ETC biogenesis. Finally, they show that YL-1, another candidate in the network, is an upstream regulator of CG1603.

      Strengths:

      This is a valuable study, which identifies a potential regulator and a network of nucleus-encoded transcription factors that regulate mitochondrial biogenesis. Through in-vivo and in-vitro experimental evidence, the authors identify the role of CG1603 in this process. The screening strategy was smart, and the follow-up experiments were nicely executed.

      Weaknesses:

      Some additional experiments showing the effects of CG1603 loss on ETC integrity and functionality would strengthen the work.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Fig 3F: SDHA levels are severely downregulated in CG1603 RNAi clones. Therefore, estimating mitochondrial volume based on the SDHA reporter might be misleading. I suggest the authors perform this experiment with an independent marker of mitochondria, like mitoTracker Green or other dyes. I also suggest checking for mitochondrial number/quantity/size by electron microscopy.

      Even though being downregulated, the SDHA-mNeon signal in EC clones clearly outlined mitochondria and the overall mitochondrial network, allowing us to quantify the total mitochondrial volume. Examining mitochondrial number/quantity/size by electron microscopy would further strengthen this statement, and we will consider it in future studies.

      (2) The authors might comment on whether there was any decrease in the volume of CG1603i clone cells. And whether this was taken into account while normalising the mitochondrial volume.

      The size/volume of CG1603i clone cells were indeed decreased, which was considered while normalizing the mitochondrial volume. We clarified this point in methods section (page 18, line 511-512 (revised version page 18, line 515-517)).

      (3) Line 230-234: Collectively, these results demonstrate that CG1603 promotes the expression of both nuclear and mtDNA-encoded ETC genes and boosts mitochondrial biogenesis. CG1603 RNAi produced very few EC clones, consistent with the notion that mitochondrial respiration is necessary for ISCs differentiation.

      (4) Quantifying the number of EC clone cells observed might help support this statement.

      This is a great point. We quantified the number of EC clone cells, and the data was included in the revised Figure 3—figure supplement.

      (5) Figure 5: The intensity of MTGreen in CH1603 clones seems comparable to that in control cells, at least visually. Since the authors claim a reduction in mitochondrial volume in CG1603 mutants, it is crucial to estimate mitochondrial volume based on MTGreen intensity in mutant and control cells.

      There are two types of clones shown in Figure 5:  germ cell clones including all 16 germ cells in the same egg chamber and follicle cell clones. We highlight these two types of clones in the revised Figure 5, to emphasize this point. The total MT Green intensity in both germ cell and follicle cell CG1603PBac clones were reduced, compared to germ cells in adjacent egg chambers and adjacent follicle cells in the same egg chamber, respectively. We included the quantification of MTGreen intensity in the revised Figure 5—figure supplement C. Examining mitochondrial number/quantity/size by electron microscopy would further strengthen this statement, and we will consider it in future studies.

      (6) Figure 8: It would be interesting to know what happens to steady-state mtDNA levels during YL-1 knockdown. If decreased, could overexpressing CG1603 in YL-1 knockdown cells rescue the phenotype?

      YL-1 knockdown reduced steady-state mtDNA levels in eyes, and overexpressing CG1603 restored mtDNA level in YL-1 knockdown cells. These results are included in the revised Figure 8-figure supplement C.

      Minor comments:

      (7) The paper is lucidly written, but there are minor typos in several places. The authors might proofread it to remove these errors.

      We corrected typos and other minor errors in the manuscript.

      (8) Quantification for Figure 8 - Supplementary needs to be included.

      We performed the quantification, and the result is shown in Figure 8—figure supplement B.

      Reviewer #2 (Recommendations For The Authors):

      (1) In lines 275-276 and Figure 6E, the authors mention that more than 800 nuclear-encoded mitochondrial genes were reduced by >2-folds in CG1603 mutants. One gene related to mitochondrial replication and three genes related to mtDNA transcription were among them. Was TFAM one of these candidates? What were the reduction levels of TFAM mRNA in RNA seq results? Can the author confirm it via RT-PCR?

      In RNAseq analyses, TFAM was differentially expressed with a log2 Fold-Change of “ -0.74”, corresponding to ~1.6-fold decrease, and hence was not one of these candidates that were down-regulated more than two folds in CG1603 mutant. Per reviewer’s suggestion, we carried out RT-PCR and found TFAM was downregulated about 2-fold in CG1603 mutant. We included this result in the revised Figure 6F and listed all differentially expressed genes in Supplementary file 5a.

      (2) In many places, the authors argued about the role of CG1603 in ETC biogenesis. Also, the RNA-seq data shows that 64 genes related to the ETC complex were reduced by > 2-fold in CG1603 mutant. Therefore, it would be critical to expand a little on this aspect. For example, what are these genes and related to which of the ETC complex? Can the authors show the reduced levels of some of the candidate genes from each complex via RT-PCR?

      We listed all ETC genes that were down-regulated more than two folds in CG1603 mutant in a separate sheet in Supplementary file 5b. We further validated the reduced expression of ETC genes by RT-PCR on three randomly selected candidate genes from each complex. The result is included in the revised Figure 6F.

      (3) To make their argument solid on the role of CG1603 on ETC biogenesis, it is important to show the assembly/integrity of ETC complexes as well as the functionality/activity of the ETC complexes in CG1603 mutants.

      We purified mitochondria, and assayed assembly/integrity of three ETC complexes (Complex I, II and IV) and their activities, using blue native PAGE analysis and in gel activity analysis, respectively.  The amount of these three complexes, and accordingly, their activities were all markedly reduced in CG1603 mutant compared to wt.  The result is included as Figure 4—figure supplement A.

      (4) CG1603 has already been named as cliff. Why do the authors not use this name, or alternatively propose one?

      We thank the reviewer for the note. The CG1603 has not been named as cliff when we were preparing this manuscript.

      (5) In lines 230-231, based on the TFAM-GFP and SDHA-mNG levels, the authors claim that "these results demonstrate that CG1603 promotes the expression of both nuclear and mtDNA-encoded ETC genes..." The authors may tone down this statement since it sounds overstating. It would be prudent to claim that a subset of genes are regulated by CG1603.

      We appreciate the reviewer’s suggestion. We revised the text to tone down this statement (page 8, line 201; page 9, line 229-230).

    1. Author response:

      Reviewer #1:

      Weaknesses:

      However, given that S1P is upstream NF-κB signaling, it is unclear if it offers conceptual innovations as compared to previous studies from the same team (Palazzo et al. 2020; 2022, 2023)

      We find distinct differences between the impacts of S1P- and NFkB-signaling on glial activation, neuronal differentiation of the progeny of MGPCs and neuronal survival in damaged retinas. In the current study we demonstrate that 2 consecutive daily intravitreal injections of S1P selectively activated mTor (pS6) and Jak/Stat3 (pStat3), but not MAPK (pERK1/2) signaling in Müller glia.  Further, inhibition of S1P synthesis (SPHK1 inhibitor) decreased ATF3, mTor (pS6) and pSmad1/5/9 levels in activated Müller glia in damaged retinas. Inhibition of NFkB-signaling in damaged chick retinas did not impact the above-mentioned cell signaling pathways (Palazzo et al., 2020). Thus, S1P-signaling impacts cell signaling pathways in MG that are distinct from NFκB, but we cannot exclude the possibility of cross-talk between NFkB and these pathways. Further, inhibition of NFκB-signaling potently decreases numbers of dying cells and increases numbers of surviving ganglion cells (Palazzo et al 2020). Consistent with these findings, a TNF orthologue, which presumably activates NFκB-signaling, exacerbates cell death in damage retinas (Palazzo et al., 2020). By contrast, 5 different drugs targeting S1P-signaling had no effect on numbers of dying cells and only one S1PR1 inhibitor modestly decreased numbers of dying cells (current study). In addition, inhibition of NFκB does not influence the neurogenic potential of MGPCs in damaged chick retinas (Palazzo et al., 2020), whereas inhibition of S1P receptors (S1PR1 and S1PR3) and inhibition of S1P synthesis (SPHK1) significantly increased the differentiation of amacrine-like neurons in damaged retinas (current study). Collectively, in comparison to the effects of pro-inflammatory cytokines and NFκB-signaling, our current findings indicate that S1P-signaling through S1PR1 and S1PR3 in Müller glia has distinct effects upon cell signaling pathways, neuronal regeneration and cell survival in damaged retinas. We will revise text in the Discussion to better highlight these important distinctions between NFκB- and S1P-signaling.

      Reviewer #2:

      Weaknesses:

      The methodology is not very clean. A number of drugs (inhibitors/ antagonists/agonists signal modulators) are used to modulate S1P expression or signaling in the retina without evidence that these drugs are reaching the target cells. No alternative evaluation if the drugs, in fact, are effective. The drug solubility in the vehicle and in the vitreous is not provided, and how did they decide on using a single dose of each drug to have the optimal expected effect on the S1P pathway?

      Müller glia are the predominant retinal cell type that expresses S1P receptors. Consistent with these patterns of expression, we report Müller glia-specific effects of different agonists and antagonists that increase or decrease S1P-signaling. Since we compare cell-level changes within contralateral eyes wherein one retina is exposed to vehicle and the other is exposed to vehicle plus drug, it seems highly probable that the drugs are eliciting effects upon the Müller glia. It is possible, but very unlikely, that the responses we observed could have resulted from drugs acting on extra-retinal tissues, which might secondarily release factors that elicit cellular responses in Müller glia. However, this seems unlikely given the distinct patterns of expression for different S1P receptors in Müller glia, and the outcomes of inhibiting Sphk1 or S1P lyase on retinal levels of S1P.

      For example, we provide evidence that S1PR1 and S1PR3 expression is predominant in Müller glia in the chick retina using single cell-RNA sequencing and fluorescence in situ hybridization (FISH). Thus, we expect that S1PR1/3-targeting small molecule inhibitors to directly act on Müller glia, which is consistent with our read-outs of cell signaling with injections of S1P in undamaged retinas. We show that SPHK1 and SGPL1, which encode the enzymes that synthesize or degrade S1P, are expressed by different retinal cell types, including the Müller glia. The efficacy of the drugs that target SPHK1 and SGPL1 was assessed by measuring levels of S1P in the retina. By using liquid chromatography and tandem mass spectroscopy (LC-MS/MS), we provide data that inhibition of S1P synthesis (inhibition of SPHK1) significantly decreased levels of S1P in normal retinas, whereas inhibition of S1P degradation (inhibition of SGPL1) increased levels of S1P in damaged retinas (Fig. 5).  These data suggest that the SPHK1 inhibitor and the SGPL1 inhibitor specifically act at the intended target to influence retinal levels of S1P.  Further, inhibition of SPHK1 (to decrease levels S1P) results in decreased levels of ATF3, pS6 (mTor) and pSMAD1/5/9 in Müller glia, consistent with the notion that reduced levels of S1P in the retina impacts signaling at Müller glia. Finally, we find similar cellular responses to chemically different agonists or antagonists, and we find opposite cellular responses to agonists and antagonists, which are expected to be complimentary if the drugs are specifically acting at the intended targets in the retina. We will revise the Discussion to better address caveats and concerns regarding the actions and specificity of different drugs within the retina following intravitreal delivery.

      We will provide the drug solubility specifications and estimates of the initial maximum dose per eye for each drug. For chick eyes between P7 and P14, these estimates will assume a volume of about 100 µl of liquid vitreous, 800 µl gel vitreous and an average eye weight of 0.9 grams. We will revise Table 1 (pharmacological compounds) with ranges of reported in vivo ED50’s (mg/kg) for drugs and we will list the calculated initial maximum dose (mg/kg equivalent per eye). Doses were chosen based on estimates of the initial maximum ocular dose that were within the range of reported ED50’s. However, as is the case for any in vivo model system, it is difficult to predict rates of drug diffusion out of the vitreous, how quickly the drugs are cleared from the entire eye, how much of the compound enters the retina, and how quickly the drug is cleared from the retina. Accordingly, we assessed drug specificity and sites of activation by relying upon readouts of cell signaling pathways, parsed with S1P receptor expression patterns, together with measurements of retinal levels of S1P following exposure to drugs targeting enzymes that catalyze synthesis or degradation of S1P, as described above.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      Shrestha et al report an investigation of mechanisms underlying gustatory preference for carboxylic acids in Drosophila. They begin with a screen of selected IR mutants, identifying 5 candidates - 2 IR co-receptors and 3 other IRs - whose loss of function causes defects in feeding preference for one or more of the three tested carboxylic acids. The requirement for IR51b, IR94a, and IR94h in carboxylic acid responses is evaluated in more detail using behavior, electrophysiology (labellar sensilla), and calcium imaging (pharyngeal neurons). The behavioral valence of IR94a and IR94h neurons is assessed using optogenetics. Overall the study uses a variety of approaches to test and validate the requirement of IRs in pharyngeal carboxylic acid taste.

      Strengths:

      The involvement of the identified IRs in gustatory responses to carboxylic acids is very clear from this study. The authors use mutants and transgenic rescue experiments and evaluate outcomes using electrophysiology, behavior, and imaging. Complementary approaches of loss-of-function and artificial activation support the main conclusion that the identified pharyngeal neurons sense carboxylic acids and convey a positive behavioral valence.

      Weaknesses:

      Some aspects of expression analysis and calcium imaging need to be clarified to better support the conclusions.

      (1) The conclusion of two parallel IR-mediated pathways rests on expression analysis of Ir94a-GAL4 and Ir94h-GAL4 lines and the observation that Ir51b expression driven by either can rescue the Ir51b mutant phenotype. However, the expression analysis is not as rigorous as it needs to be for such a conclusion. Prior work found co-expression of Ir94a and Ir94h in the LSO. Here, the co-expression of the two drivers has not been examined, and Ir94a-GAL4 does not appear to be expressed in the LSO. Given the challenges in validating expression patterns in pharyngeal organs, the possibility that the drivers do not entirely capture endogenous expression cannot be ruled out. Rescue experiments using feeding preference or single-cell imaging don't suffice as validation. Plus, the expression of Ir51b could not be defined.

      Based on current literature, Ir94a and Ir94h exhibit distinct expression patterns localized to different sensory regions. Specifically, Ir94a is primarily expressed in the V5 region of the VCSO, where it co-localizes with Ir94c-GAL4 (Chen et al., 2017). Conversely, Ir94h is found in the L7-7 sensilla of the LSO, where it co-expresses with Ir94f, and also within the V2 cells of the VCSO. Notably, the projections of Ir94a and Ir94h into the dorso-anterior subesophageal ganglion suggest divergent expression patterns rather than co-expression in the pharyngeal regions (Koh et al., 2014). Regarding co-expression of Ir94a and Ir94h in the LSO, we did not find any evidence to support this claim. Our data reinforce this view, showing that Ir94a-GAL4 expression is limited to the VCSO, while Ir94h-GAL4 is present in both the LSO and VCSO. Thus, the notion of co-expression of Ir94a and Ir94h in the LSO is not substantiated by current evidence.

      As a reviewer suggested, it is possible that the GAL4 drivers utilized may not fully reflect the endogenous expression of these receptors. Despite this limitation, our behavioral, expression, and physiological analyses strongly suggest that Ir94a and Ir94h are located in distinct regions, supporting a model of two parallel IR-mediated pathways operating within the sensory system.

      In addition, RT-PCR analysis confirmed the presence of Ir51b. However, due to methodological constraints, we were unable to conduct cell-type-specific expression studies using Ir51b-GAL4. This limitation, which we have acknowledged in the manuscript, does not detract from our core findings but highlights an area for future research. Further studies utilizing cell-specific expression analysis and co-expression studies with additional drivers could offer more definitive insights into IR51b’s functional role and its interactions within broader IR-mediated pathways.

      (2) The description of methods and results for the ex vivo calcium imaging is not satisfactory. Details about which cells are being analyzed, and in which organs are not included. No solvent stimulus is tested. The temporal dynamics of the responses are not presented. Movies of the imaging are not included as supplementary information - it would be important to visualize those with what was considered modest movement.

      We appreciate this valuable feedback. As discussed above, Ir94h is specifically expressed in the L7-7 sensilla of the LSO, while Ir94a is expressed in the V2 cells of the VCSO. This evidence led us to focus specifically on these cells in our calcium imaging study to ensure accuracy and relevance. In our experiments, Adult hemolymph solution (AHL) (108 mM NaCl, 5 mM KCl, 8.2 mM MgCl2, 2 mM CaCl2, 4 mM NaHCO3, 1 mM NaH2PO4, 5 mM HEPES, pH 7.5) was used as the solvent and employed as a pre-stimulus (as mentioned in the Methods section). During this phase, we observed no changes in fluorescence, indicating that AHL itself did not influence the responses. Fluorescence changes occurred only when the test chemical, dissolved in AHL, was introduced. To further confirm that AHL had no impact on the results, we conducted continuous recordings with AHL alone before beginning our main experiments, and these trials confirmed the absence of fluorescence alterations. We have included the temporal dynamics and supplementary video recordings to provide a more comprehensive understanding of our findings.

      (3) The observed differences in phenotypes of Ir25a and Ir76b mutants are intriguing, as are those between the co-receptor mutants and Ir51b, Ir94a, and Ir94h, but have not been sufficiently considered. Prior studies have also found roles for other response modes (OFF response), other IRs and GRs, and other organs (labellum, tarsi) in behavioral responses to carboxylic acids. Overall, the authors' model may be overly simplistic, and the discussion does not do justice to how their model reconciles with the body of work that already exists.

      Stanley et al. (2021) reported that the gustatory detection of lactic acid requires both IRs and GRs functioning together. Specifically, they found that IR25a mediates the onset peak response (ON response) to lactic acid, while GRs dampen this response and contribute to a removal peak (OFF response). Interestingly, in Ir25a mutants, a small onset peak still occurred, while Gr64a-f mutants showed an enhanced onset, suggesting that IRs and GRs interact dynamically to modulate taste responses.

      In our previous work, we also observed the role of sweet GRs, in addition to Ir25a and Ir76b, in detecting carboxylic acids in the labellum (Shrestha et al., 2021). This raises the possibility of a similar interplay with carboxylic acids in our current study, where different IRs may contribute to distinct aspects of sensory responses in the pharynx, leading to the phenotypic differences we observed. Moreover, Chen et al. (2017) demonstrated that sour-sensing neurons in the tarsi express both IR76b and IR25a and specifically respond to carboxylic and inorganic acids without reacting to sweet or bitter compounds. This finding points to a specialized role for these receptors in sour detection and suggests a coordinated response involving multiple sensory organs—such as the labellum, tarsi, and pharynx.

      The phenotypic differences observed in our mutants align with a more integrated model of carboxylic acid detection, in which multiple receptors and sensory organs contribute to the overall behavioral response. This supports the idea that our current model offers a more detailed understanding of how different carboxylic acids are detected and processed by the gustatory system.

      Reviewer #2 (Public review):

      Shrestha et al investigated the role of IR receptors in the detection of 3 carboxylic acids in adult Drosophila. A low concentration of either of these carboxylic acids added to 2 mM sucrose (1% lactic acid (LA), citric acid (CA), or glycolic acid (GA)) stimulates the consumption of adult flies in choice conditions. The authors use this behavioral test to screen the impact of mutations within 33 receptors belonging to the IR family, a large family of receptors derived from glutamate receptors and expressed both in the olfactory and gustatory sensilla of insects. Within the panel of mutants tested, they observed that 3 receptors (IR25a, IR51b, and IR76b) impaired the detection of LA, CA, and GA, and that 2 others impacted the detection of CA and GA (IR94a and IR94h). Interestingly, impairing IR51b, IR94a, and IR94h did not affect the electrophysiological responses of external gustatory sensilla to LA, CA, and GA. Thanks to the use of GAL4 strains associated with these receptors and thanks to the use of poxn mutants (which do not develop external gustatory sensilla but still have functional internal receptors), they show evidence that IR94a and IR94h are only expressed in two clusters of gustatory neurons of the pharynx, respectively in the VCSO (ventral cibarial sense organ) and in the VCSO + LSO (labral sense organ). As for IR51b, the GAL4 approach was not successful but RT-PCR made on different parts of the insect showed an expression both in the pharyngeal organs and in peripheral receptors. These main findings are then complemented by a host of additional experiments meant to better understand the respective roles of IR94a and IR94h, by using optogenetics and brain calcium imaging using GCamp6. They also report a failed attempt to co-express IR51b, IR94a, and IR94h into external receptors, a co-expression which did not confer the capability of bitter-sensitive cells (expressing GR33a-GAL4) to detect either of the carboxylic acids. These data complete and expand previous observations made on this group and others, and dot to 2 new IR receptors which show an unsuspected specific expression, into organs that still remain difficult to study.

      The conclusions of this paper are supported by the data presented, but it remains difficult to make general conclusions as concerns the mechanisms by which carboxylic acids are detected.

      (1) All experiments were done with 1% of carboxylic acids. What is the dose dependency of the behavioral responses to these acids, and is it conceivable that other receptors are involved at other concentrations?

      In our study, we conducted experiments to examine the dose dependency of behavioral responses to carboxylic acids, with results presented in Supplementary Figure 1. We found that lower concentrations of carboxylic acids are perceived as attractive, while higher concentrations are aversive. This differential response suggests that the receptors identified in our study are primarily tuned to detect low concentrations of these acids. Since higher concentrations elicited aversive responses, it is plausible that additional receptors, beyond the scope of our study, may be involved in sensing these higher concentrations. These receptors could be part of other gustatory receptor neurons that respond specifically to increased acid levels, as fruit flies tend to avoid higher concentrations. We propose that future research could investigate these alternative pathways to gain a complete understanding of the behavioral responses to carboxylic acids. In summary, our findings suggest that specific receptors are involved in detecting low concentrations, while distinct receptor pathways—possibly mediated by other GRNs—may regulate responses to higher concentrations.

      (2) One result needs to be better discussed and hypotheses proposed - which is why the mutations of most receptors lead to a loss of detection (mutant flies become incapable of detecting the acid) while mutations in IR94a and IR94h make CA and GA potent deterrents. Does it mean that CA and GA are detected by another set of receptors that, when activated, make flies actively avoid CA and GA? In that case, do the authors think that testing receptors one by one is enough to uncover all the receptors participating in the detection of these substances?

      As we mentioned above, it is possible that distinct receptor pathways mediate avoidance of GA and CA. This suggests that CA and GA might activate different sets of receptors that trigger avoidance behavior, pointing to a more complex interplay of receptor activity than we initially considered. Certain acids may indeed be detected by multiple receptors, with each receptor contributing uniquely to the behavioral response. Regarding the sufficiency of testing receptors individually, we recognize the limitations of this approach. Examining receptors one by one may not reveal the full spectrum of receptors involved, especially due to potential interactions or compensatory mechanisms that only emerge when certain receptors are inactive. Therefore, a more holistic approach—such as genetic screens for behavioral responses or using complex genetic models to disrupt multiple receptors simultaneously—could provide deeper insights. Moving forward, incorporating receptor interactions that modulate each other, along with more comprehensive assays, could help explain these discrepancies by uncovering previously overlooked receptor functions.

      (3) The paper needs to be updated with a recent paper published by Guillemin et al (2024), indicating that LA is detected externally by a combination of IR94e, IR76b and IR25a. IR25a might help to form a fully functional receptor in GR33a neurons (a former study from Chen et al (2017) indicate that IR25a is expressed in all gustatory neurons of the pharynx).

      According to Guillemin et al. (2024), the combination of IR94e, IR76b, and IR25a is required for amino acid detection but not for detecting lactic acid (LA). In their calcium imaging experiments, 100 mM LA elicited a response similar to the vehicle control, suggesting that these receptors do not play a role in LA detection.

      (4) Although it was not the main focus of the paper, it would have been most interesting if the cells expressing IR94a and IR94h were identified, and placed on the functional map proposed by the group of Dahanukar (Chen et al 2017 Cell Reports, Chen et al 2019 Cell Reports).

      The expression patterns of IR94a and IR94h were previously detailed by Chen et al. (2017), showing that IR94h is expressed in the labial sense organ (LSO, specifically in L7-7) and the ventral cibarial sense organ (VCSO, V2), while IR94a is expressed in the VCSO (V5). Given this established information, we referenced these known expression patterns without replicating the mapping in our study. Our primary focus was to investigate the functional role of these neurons within the pharynx, and we believe we have successfully highlighted their specific contributions. However, we recognize that integrating the functional mapping of these neurons in alignment with the work of Dahanukar’s group would have strengthened our findings and provided a more comprehensive understanding. We acknowledge this as a limitation of our study and appreciate your suggestion, as it points to a valuable direction for future research.

      Reviewer #3 (Public review):

      Summary:

      In this work, the authors investigated the molecular and cellular basis of sour taste perception in Drosophila melanogaster, focusing on identifying receptors that mediate attractive responses to certain carboxylic acids. It builds on previous work from the same group that had identified the IR co-receptors IR25a and IR76b for this sensory process, screening a set of mutants in IRs to identify three, IR51b, IR94a, and IR94h, required for feeding preference responses to some or all of the tested acids.

      Strengths:

      The work is of interest because it assigns sensory roles to IRs of previously unknown function, in particular IR94a and IR94h, and points to pharyngeal neurons in which these receptors are expressed as the relevant sensory neurons (potentially with different roles for IR94a- and IR94h-expressing neurons). The work combines elegant genetics, simple but effective feeding and taste assays, chemo-/opto-genetic activation, and some calcium imaging. Overall the presented data look solid and well-controlled.

      Weaknesses:

      The in situ expression analysis relies entirely on transgenic driver lines for IR94a and IR94h (which had been previously described, though not fully cited in this work). Importantly, given that many of the behavioral experiments (genetic rescue, physiology, artificial activation) use the IR94a and IR94h GAL4 driver lines, it would be helpful to validate that these faithfully reflect IR94a and IR94h expression (as far as I can tell, such validation wasn't done in the original papers describing these lines as part of a large collection of IR drivers). For IR51b, pharyngeal expression is concluded indirectly from non-quantitative RT-PCR analysis (genetic reporters did not work). The lack of direct detection of gene/protein expression (for example, through RNA FISH, immunofluorescence, or protein tagging) would have made for a more complete characterization of these receptors (for example, there is no direct evidence that they also express IR25a and IR76b, as one might expect). Finally, the relationship of IR94a and IR94h neurons to other types of pharyngeal neurons remains unclear, as are their projection patterns in the SEZ.

      Conceptually, the work is of interest mostly to those in the immediate field; there have been a very large number of studies in the past decade (several from this lab) characterizing the contributions of different IRs to various chemosensory processes. The current work doesn't lend much insight into the nature of the minimal functional unit of gustatory IRs (reconstitution of a functional IR in a heterologous neuron/cell has not been achieved here, but this is a limitation of many other previous studies), nor to how different pharyngeal sensory pathways might collaborate to control behavior. Nevertheless, the findings provide a useful contribution to the literature.

      We appreciate your thoughtful feedback. As noted in our response, our primary objective was to investigate the sensory functions of IR94a and IR94h. To this end, we conducted behavioral assays, which we validated with additional approaches including genetic rescue, physiological tests, and artificial activation. Throughout these experiments, we extensively utilized Ir94a- and Ir94h-GAL4 driver lines. To ensure these lines accurately reflect the expression of IR94a and IR94h, we verified their expression patterns using immunohistochemistry across various body parts. Our results align with previous findings that show both receptors are exclusively expressed in the pharynx. Regarding IR51b, we employed RT-PCR due to its high sensitivity and specificity, which supported our hypothesis. Nonetheless, we agree that more direct detection methods would have provided a stronger validation of IR51b expression. Our previous study (Sang et al., 2024) also demonstrated the pharyngeal expression of co-expressed receptors, specifically IR25a and IR76b. However, we recognize that the lack of direct evidence for their co-expression with IR51b remains a significant gap. This limitation primarily stems from the unavailability of specific reagents needed for direct assays targeting IR51b, which restricted our experimental approach.

      You also raised the potential relationship between IR94a and IR94h neurons and other pharyngeal neuron types, including their projection patterns in the subesophageal zone. This is indeed an important area for future research that could clarify neural connectivity and further our understanding of sensory mechanisms. However, our study was focused on exploring sensory mechanisms in peripheral regions rather than detailed neural mapping in the SEZ. Investigating these connections would undoubtedly provide valuable insights into the neural circuitry involved and represents an intriguing direction for future research.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Syngnathid fishes (seahorses, pipefishes, and seadragons) present very particular and elaborated features among teleosts and a major challenge is to understand the cellular and molecular mechanisms that permitted such innovations and adaptations. The study provides a valuable new resource to investigate the morphogenetic basis of four main traits characterizing syngnathids, including the elongated snout, toothlessness, dermal armor, and male pregnancy. More particularly, the authors have focused on a late stage of pipefish organogenesis to perform single-cell RNA-sequencing (scRNA-seq) completed by in situ hybridization analyses to identify molecular pathways implicated in the formation of the different specific traits. 

      The first set of data explores the scRNA-seq atlas composed of 35,785 cells from two samples of gulf pipefish embryos that authors have been able to classify into major cell types characterizing vertebrate organogenesis, including epithelial, connective, neural, and muscle progenitors. To affirm identities and discover potential properties of clusters, authors primarily use KEGG analysis that reveals enriched genetic pathways in each cell types. While the analysis is informative and could be useful for the community, some interpretations appear superficial and data must be completed to confirm identities and properties. Notably, supplementary information should be provided to show quality control data corresponding to the final cell atlas including the UMAP showing the sample source of the cells, violin plots of gene count, UMI count, and mitochondrial fraction for the overall

      dataset and by cluster, and expression profiles on UMAP of selected markers characterizing cluster identities. 

      We thank the reviewer for these suggestions, and have added several figures and supplemental files in response. We added a supplemental UMAP showing the sample that each cell originated (S1). We also added supplemental violin plots for each sample showing the gene count, unique molecular identifier (UMI) count, mitochondrial fraction, and the doublet scores (S2). We added feature plots of zebrafish marker genes for these major cell types and marker genes identified from our dataset to the supplement (S3:S57). We also provided two supplemental files with marker genes. These changes should clarify the work that went into labeling the clusters. Although some of the cluster labels are general, we decided it would be unwise to label clusters with speculated specific annotations. We only gave specific annotations to clusters with concrete markers and/or in situ hybridization (ISH) results that cemented an annotation.  As shown in the new supplemental figures and files, certain clusters had clear, specific markers while others did not. Therefore, we used caution when we annotated clusters without distinct markers. 

      The second set of data aims to correlate the scRNA-seq analysis with in situ hybridizations (ISH) in two different pipefish (gulf and bay) species to identify and characterize markers spatially, and validate cell types and signaling pathways active in them. While the approach is rational, the authors must complete the data and optimize labeling protocols to support their statements. One major concern is the quality of ISH stainings and images; embryos show a high degree of pigmentation that could hide part of the expression profile, and only subparts and hardly detectable tissues/stainings are presented. The authors should provide clear and good-quality images of ISH labeling on whole-mount specimens, highlighting the magnification regions and all other organs/structures (positive controls) expressing the marker of interest along the axis. Moreover, ISH probes have been designed and produced on gulf pipefish genome and cDNA respectively, while ISH labeling has been performed indifferently on bay or gulf pipefish embryos and larvae. The authors should specify stages and species on figure panels and should ensure sequence alignment of the probe-targeted sequences in the two species to validate ISH stainings in the bay pipefish. Moreover, spatiotemporal gene expression being a very dynamic process during embryogenesis, interpretations based on undefined embryonic and larval stages of pipefish development and compared to 3dpf zebrafish are insufficient to hypothesize on developmental specificities of pipefish features, such as on the absence of tooth primordia that could represent a very discrete and transient cell population. The ISH analyses would require a clean and precise spatiotemporal expression comparison of markers at the level of the entire pipefish and zebrafish specimens at well-defined stages, otherwise, the arguments proposed on teleost innovations and adaptations turn out to be very speculative. 

      We are appreciative of the reviewer’s feedback. We primarily used the in situ hybridization (ISH) data as supplementary to the scRNAseq library and we are aware that further evidence is necessary to identify origins of syngnathid’s evolutionary novelties. Our goal was to provide clues for the developmental genetic basis of syngnathid derived features.  We hope that our study will inspire future investigations and are excited for the prospect that future research could include this reviewer’s ideas. 

      All of the developmental stages and species information for the embryos used were in the figure captions as well as in supplemental file 6. Because we primarily used wild caught embryos, we did not have specific ages of most embryos. Syngnathid species are challenging to culture in the laboratory, and extracting embryos requires euthanizing the father which makes it difficult to obtain enough embryos for ISH. In addition, embryos do not survive long when removed from the brood pouch prematurely. We supplemented our ISH with bay pipefish caught off the Oregon coast because these fish have large broods. Wild caught pregnant male bay pipefish were immediately euthanized, and their broods were fixed. Because we did not have their age, we classified them based on developmental markers such as presence of somites and the extent of craniofacial elongation. Although these classification methods are not ideal, they are consistent with the syngnathid literature (Sommer et al. 2012). Since the embryos used for the ISH were primarily wild caught, we had a few different developmental stages represented in our ISH data. For our tooth primordia search, we used embryos from the same brood (therefore, same stage) for these experiments.

      We understand the concern for the degree of pigmentation in the samples. We completed numerous bleach trials before embarking on the in situ hybridization experiments. After completing a bleach trial with a probe created from the gene tnmd for ISH_,_ we noticed that the bleached embryos were missing expression domains found in the unbleached embryos. We were, therefore, concerned that using bleached embryos for our experiments would result incorrect conclusions about the expression domains of these genes. We sparingly used bleaching at older stages, hatched larvae, where it was fundamentally necessary to see staining. As stated above, the primary goal of this manuscript was to generate and annotate the first scRNA-seq atlas in a syngnathid, and the ISHs were utilized to support inferred cluster annotations only through a positive identification of marker gene expression in expected tissues/cells. Therefore, the obscuring of gene expression by pigmentation would have resulted in the absence of evidence for a possible cluster annotation, not an incorrect annotation.

      For the ease of viewing the ISHs, we improved annotations and clarity. We increased the brightness and contrast of images. In the original submission, we had to lower the image resolution to make the submission file smaller. We hope that these improvements plus the true image quality improves clarity of ISH results. We also included alignments in our supplementary files of bay pipefish sequences to the Gulf pipefish probes to showcase the high degree of sequence similarity. 

      Sommer, S., Whittington, C. M., & Wilson, A. B. (2012). Standardised classification of pre-release development in male-brooding pipefish, seahorses, and seadragons (Family Syngnathidae). BMC Developmental Biology, 12, 12–15. 

      To conclude, whereas the scRNA-seq dataset in this unconventional model organism will be useful for the community, the spatiotemporal and comparative expression analyses have to be thoroughly pushed forward to support the claims. Addressing these points is absolutely necessary to validate the data and to give new insights to understand the extraordinary evolution of the Syngnathidae family. 

      We really appreciate the reviewer’s enthusiasm for syngnathid research, and hope that the additional files and explanation of the supporting role of the ISHs have adequately addressed their concerns. We share the reviewer’s enthusiasm and are excited for future work that can extend this study. 

      Reviewer #2 (Public Review):

      Summary: 

      The authors present the first single-cell atlas for syngnathid fishes, providing a resource for future evolution & development studies in this group. 

      Strengths: 

      The concept here is simple and I find the manuscript to be well written. I like the in situ hybridization of marker genes - this is really nice. I also appreciate the gene co-expression analysis to identify modules of expression. There are no explicit hypotheses tested in the manuscript, but the discovery of these cell types should have value in this organism and in the determination of morphological novelties in seahorses and their relatives.  

      We are grateful for this reviewer’s appreciation of the huge amount of work that went into this study, and we agree that the in situ hybridizations (ISHs) support the scRNAseq study as we intended. We appreciate that the reviewer thinks that this work will add value to the syngnathid field.

      Weaknesses: 

      I think there are a few computational analyses that might improve the generality of the results. 

      (1) The cell types: The authors use marker gene analysis and KEGG pathways to identify cell types. I'd suggest a tool like SAMap (https://elifesciences.org/articles/66747) which compares single-cell data sets from distinct organisms to identify 'homologous' cell types - I imagine the zebrafish developmental atlases could serve as a reasonable comparative reference. 

      We appreciate the reviewer’s request, and in fact we would have loved to integrate our dataset with zebrafish. However, syngnathid’s unique craniofacial development makes it challenging to determine the appropriate stage for comparison. While 3 days post fertilization (dpf) zebrafish data were appropriate for comparisons of certain cell types (e.g. epidermal cells), it would have been problematic for other cell types (e.g. osteoblasts) that are not easily detectable until older zebrafish stages. Therefore, determining equivalent stages between these species is difficult and contains potential for error. Future research should focus on trying to better match stages across syngnathids and zebrafish (and other fish species such as stickleback). Studies of this nature promise to uncover the role of heterochrony in the evo-devo of syngnathid’s unique snouts.

      (2) Trajectory analyses: The authors suggest that their analyses might identify progenitor cell states and perhaps related differentiated states. They might explore cytoTRACE and/or pseudotime-based trajectory analyses to more fully delineate these ideas.

      We thank the reviewer for this suggestion! We added a trajectory analysis using cytoTRACE to the manuscript. It complemented our KEGG analysis well (L172-175; S73) and has improved the manuscript.

      (3) Cell-cell communication: I think it's very difficult to identify 'tooth primordium' cell types, because cell types won't be defined by an organ in this way. For instance, dental glia will cluster with other glia, and dental mesenchyme will likely cluster with other mesenchymal cell types. So the histology and ISH is most convincing in this regard. Having said this, given the known signaling interactions in the developing tooth (and in development generally) the authors might explore cell-cell communication analysis (e.g., CellChat) to identify cell types that may be interacting. 

      We agree! It would have been a wonderful addition to the paper to include a cell-cell communication analysis. One limitation of CellChat is that it only includes mouse and human orthologs. Given concerns of reviewer #3 for mouse-syngnathid comparisons, we decided to not pursue CellChat for this study. We are looking forward to future cell communication resources that include teleost fishes.

      Reviewer #3 (Public Review): 

      Summary: 

      This study established a single-cell RNA sequencing atlas of pipefish embryos. The results obtained identified unique gene expression patterns for pipefish-specific characteristics, such as fgf22 in the tip of the palatoquadrate and Meckel's cartilage, broadly informing the genetic mechanisms underlying morphological novelty in teleost fishes. The data obtained are unique and novel, potentially important in understanding fish diversity. Thus, I would enthusiastically support this manuscript if the authors improve it to generate stronger and more convincing conclusions than the current forms. 

      Thank you, we appreciate the reviewer’s enthusiasm!

      Weaknesses: 

      Regarding the expression of sfrp1a and bmp4 dorsal to the elongating ethmoid plate and surrounding the ceratohyal: are their expression patterns spatially extended or broader compared to the pipefish ancestor? Is there a much closer species available to compare gene expression patterns with pipefish? Did the authors consider using other species closely related to pipefish for ISH? Sfrp1a and bmp4 may be expressed in the same regions of much more closely related species without face elongation. I understand that embryos of such species are not always accessible, but it is also hard to argue responsible genes for a specific phenotype by only comparing gene expression patterns between distantly related species (e.g., pipefish vs. zebrafish). Due to the same reason, I would not directly compare/argue gene expression patterns between pipefish and mice, although I should admit that mice gene expression patterns are sometimes helpful to make a hypothesis of fish evolution. Alternatively, can the authors conduct ISH in other species of pipefish? If the expression patterns of sfrp1a and bmp4 are common among fishes with face elongation, the conclusion would become more solid. If these embryos are not available, is it possible to reduce the amount of Wnt and BMP signal using Crispr/Cas, MO, or chemical inhibitor? I do think that there are several ways to test the Wnt and/or BMP hypothesis in face elongation. 

      We appreciate the reviewer’s suggestion, and their recognition for challenges within this system. In response to this comment, we completed further in situ hybridization experiments in threespine stickleback, a short snouted fish that is much more closely related to syngnathids than is zebrafish, to make comparisons with pipefish craniofacial expression patterns (S76-S79). We added ISH data for the signaling genes (fgf22, bmp4, and sfrp1a) as well as prdm16. Through adding this additional ISH results, we speculated that craniofacial expression of bmp4, sfrp1a, and prdm16 is conserved across species. However, compared to the specific ceratohyal/ethmoid staining seen in pipefish, stickleback had broad staining throughout the jaws and gills. These data suggest that pipefish have co-opted existing developmental gene networks in the development of their derived snouts. We added this interpretation to the results and discussion of the manuscript (L244-L248; L262-277; L444-470).

      Recommendations for the authors:  

      Reviewing Editor (Recommendations for the Authors)

      We hope that the eLife assessment, as well as the revisions specified here, prove helpful to you for further revisions of your manuscript. 

      Revisions considered essential: 

      (1) Marker genes and single-cell dataset analyses. While these analyses have been performed to a good standard in broad terms, there is a majority view here that cell type annotations and trajectory analyses can be improved. In particular, there is question about the choice of marker genes for the current annotation. For one it can depend on the use of single marker genes (see tnnti1 example for clusters 17 and 31). Here, we recommend incorporating results from SAMap and trajectory analysis (e.g., cytoTRACE or standard pseudotime).

      Because of the reviewer comments, we became aware that we insufficiently communicated how cell clusters were annotated. We did mention in the manuscript that we did not use single marker genes to annotate clusters, but instead we used multiple marker genes for each cluster for the annotation process. We used both marker genes derived from our dataset and marker genes identified from zebrafish resources for cluster annotation. We chose single marker genes for each cluster for visualization purposes and for in situ hybridizations. However, it is clear from the reviewers’ comments that we needed to make more clear how the annotations were performed. To make this effort more clear in our revision, we included two new supplementary files – one with Seurat derived marker genes and one with marker genes derived from our DotPlot method. We also included extensive supplementary figures highlighting different markers. Using Daniocell, we identified 6 zebrafish markers per major cell type and showed their expression patterns in our atlas with FeaturePlots. We also included feature plots of the top 6 marker genes for each cluster. We hope that the addition of these 40+ plots (S3:S57) to the supplement fully addresses these concerns. 

      We appreciated the suggestion of cytotrace from reviewer #2! We ran cytotrace on three major cell lineages (neural, muscle, and connective; S73) which complemented our KEGG analysis in suggesting an undifferentiated fate for clusters 8, 10, and 16. We chose to not run SAMap because it is a scRNA-seq library integration tool. Although we compared our lectin epidermal findings to 3 dpf zebrafish scRNA-seq data, we did not integrate the datasets out of concern that we could draw erroneous conclusions for other cell types.  Future work that explores this technical challenge may uncover the role of heterochrony in syngnathid craniofacial development. We detail these changes more fully in our responses to reviewers.

      (2) The claims regarding evolutionary novelty and/or the genes involved are considered speculative. In part, this comes from relying too heavily on comparisons against zebrafish, as opposed to more closely related species. For example, the discussion regarding C-type lectin expression in the epidermis and KEGG enrichment (lines 358 - 364) seems confusing. Another good example here is the discussion on sfrp1a (lines 258 - 261). Here, the text seems to suggest craniofacial sfrp1a expression (or specifically ethmoid expression?) is connected to the development of the elongated snout in pipefish. However, craniofacial expression of sfrp1a is also reported in the arctic charr, which the authors grouped into fishes with derived craniofacial structures. Separately, sfrp2 expression was also reported in stickleback fish, for example. Do these different discussions truly support the notion that sfrp1a expression is all that unique in pipefish, rather than that pipefish and zebrafish are only distantly related and that sfrp1a was a marker gene first, and co-opted gene second? The authors should respond to the comments in the public review related to this aspect, and include more informative comparison and discussion. 

      A much more nuanced discussion with appropriate comparisons and caveats would be strongly recommended here.  

      We appreciate this insight and used it as a motivator to complete and add select comparative ISH data to this manuscript. We added in situ hybridization experiments from stickleback fish for craniofacial development genes (sfrp_1a, prdm16, bmp4_, and fgf22; S76-S79).  After adding stickleback ISH to the manuscript, we were able to make comparisons between pipefish and stickleback patterns and draw more informed conclusions (L244-L248; L262-277; L444-470). We added additional nuance to the discussion of the head, tooth (L485-489), and male pregnancy (L358-L391) sections to address concerns of study limitations. We describe in more detail these additional data in response to reviewers.

      (3) In situ hybridization results: as already included above, there is generally weak labeling of species, developmental stages, and other markings that can provide context. The collective feeling here is that as it is currently presented, the ISH results do not go too far beyond simply illustrative purposes. To take these results further, more detailed comparison may be needed. At a minimum, far better labeling can help avoid making the wrong impression. 

      Based on the reviewers’ comments, we made changes to improve ISH clarity and add select comparative ISH findings. ISH was used to further interpretation of the scRNAseq atlas. All the developmental stages and species information for the embryos used were in the figure captions as well as in supplemental file 4. Since we primarily used wild caught embryos, we did not have specific ages of most embryos. The technical challenges of acquiring and staging Syngnathus embryos are detailed above. Because we did not have their age, we classified them based on developmental markers (such as presence of somites and the extent of craniofacial elongation). Although these classification methods are not ideal, they are consistent with the syngnathid literature (Sommer et al. 2012).  

      We followed reviewer #1’s recommendations by adding an annotated graphic of a pipefish head, aligning bay and Gulf pipefish sequences for the probe regions, expanding out our supplemental figures for ISH into a figure for each probe, and improving labeling. These changes improved the description of the ISH experiments and have increased the quality of the manuscript.

      We would have loved to complete detailed comparative studies as suggested, but doing such a complete analysis was not feasible for this study. Therefore, we completed an additional focused analysis. We followed reviewer #3’s idea and added ISHs from threespine stickleback, a short snouted fish, for 4 genes (sfrp1a, prdm16, fgf22, and bmp4). While more extensive ISHs tracking all marker genes through a variety of developmental stages in pipefish and stickleback would have provided crucial insights, we feel that it is beyond the scope of this study and would require a significant amount of additional work. We, thus, primarily interpreted the ISH results as illustrative data points in our discussion. As we state in the response to reviewer 1, the generation and annotation of the first scRNA-seq atlas in a syngnathid is the primary goal of this manuscript.  The ISHs were utilized primarily to support inferred cluster annotations if a positive identification of marker gene expression in expected tissues/cells occurred. 

      Reviewer #1 (Recommendations For The Authors): 

      While the scRNA-seq dataset offers a valuable resource for evo-devo analyses in fish and the hypotheses are of interest, critical aspects should be strengthened to support the claims of the study. 

      Concerning the scRNA-seq dataset, the major points to be addressed are listed below: 

      - Supplementary file 3 reports the single markers used to validate cluster annotations. To confirm cluster identities, more markers specific to each cluster should be highlighted and presented on the UMAP. 

      We recognize the reviewer’s concern and had in reality used numerous markers to annotate the clusters. Based upon the reviewer’s comment we decided to make this clear by creating feature plots for every cluster with the top 6 marker genes. These plots showcase gene specificity in UMAP space. We also added feature plots for zebrafish marker genes for key cell types. Through these changes and the addition of 54 supplementary figures (S3:S57), we hope that it is clear that numerous markers validated cluster identity.

      For example, as clusters 17 and 37 share the same tnnti1 marker, which other markers permit to differentiate their respective identity. 

      This is a fair point. Cluster 17 and 37 both are marked by a tnni1 ortholog.

      Different paralogous co-orthologs mark each cluster (cluster 17: LOC125989146; cluster 37: LOC125970863). In our revision to the above comment, additional (6) markers per cluster were highlighted which should remedy this concern. 

      - L146: the low number of identified cartilaginous cells (only 2% of total connective tissue cells) appears aberrant compared to bone cell number, while Figure 1 presents a welldeveloped cartilaginous skeleton with poor or no signs of ossification. Please discuss this point. 

      We also found this to be interesting and added a brief discussion on this subject to the results section (L147-L149). Single cell dissociations can have variable success for certain cell types. It is possible that the cartilaginous cells were more difficult to dissociate than the osteoblast cells.

      - L162: pax3a/b are not specific to muscle progenitors as the genes are also expressed in the neural tube and neural crest derivatives during organogenesis. Please confirm cluster 10 identity.  

      Thank you for the reminder, we added numerous feature plots that explored zebrafish (from Daniocell) and pipefish markers (identified in our dataset). Examining zebrafish satellite muscle markers (myog, pabpc4, and jam2a) shows a strong correspondence with cluster #10.

      - L198: please specify in the text the pigment cell cluster number. 

      We completed this change.

      - L199: it is not clear why considering module 38 correlated to cluster 20 while modules 2/24 appear more correlated according to the p-value color code. 

      We thank the reviewer for pointing this confusing element out! Although the t-statistic value for module 38 (3.75) is lower than the t-statistics for modules 2 and 24 (5.6 and 5.2, respectively), we chose to highlight module 38 for its ‘connectivity dependence’ score. In our connectivity test, we examined whether removing cells from a specific cell cluster reduced the connectivity of a gene network. We found that removing cluster 20 led to a decrease in module 38’s connectivity (-.13, p=0) while it led to an increase in modules 2 and 24’s connectivity (.145, p=1; .145, p=9.14; our original supplemental files 9-10). Therefore, the connectivity analysis showed that module 38’s structure was more dependent on cluster 20 than in comparison with modules 2 and 24. Although you highlighted an interesting quandary, we decided that this is tangential to the paper and did not add this discussion to the manuscript. 

      - Please describe in the text Figure 4A. 

      Completed, we thank the reviewer for catching this! 

      Concerning embryo stainings, the major points to be addressed are listed below: 

      - Figure 1: please enhance the light/contrast of figures to highlight or show the absence of alcian/alizarin staining. Mineralized structures are hardly detectable in the head and slight differences can be seen between the two samples. The developmental stage should be added. Please homogenize the scale bar format (remove the unit on panels E and, G as the information is already in the text legend). It would be useful to illustrate the data with a schematic view of the structures presented in panels B, and E, and please annotate structures in the other panels.  

      We thank the reviewer for these suggestions to improve our figure. We increased the brightness and contrast for all our images. We also added an illustration of the head with labels of elements. As discussed, we used wild caught pregnant males and, therefore, do not know the exact age of the specimens. However, we described the developmental stage based on morphological observations. Slight differences in morphology between samples is expected. We and others have noticed that

      developmental rate varies, even within the same brood pouch, for syngnathid embryos. We observed several mineralization zones including in the embryos including the upper and lower jaws, the mes(ethmoid), and the pectoral fin. We recognize the cartilage staining is more apparent than the bone staining, though increasing image brightness and contrast did improve the visibility of the mineralization front.

      - All ISH stainings and images presented in Figures 4-6/ Figures S2-3 should be revised according to comments provided in the public review. 

      We thank the reviewer for providing thorough comments, we provided an in-depth response to the public review. We made several improvements to the manuscript to address their concerns. 

      - Figure 4: Figure 4B should be described before 4C in the text or inverse panels / L222 the Meckel's cartilage is not shown on Figure 4C. The schematic views in H should be annotated and the color code described / the ISH data must be completed to correlate spatially clusters to head structures. 

      We thank the reviewer for pointing this out, we fixed the issues with this figure and added annotations to the head schematics.

      - Figure 5: typo on panels 'alician' = alcian. 

      We completed this change. 

      - Figures S2-3: data must be better presented, polished / typo in captions 'relavant'= relevant. 

      Thank you for this critique, we created new supplementary figures to enhance interpretation of the data (S59-S71). In these new figures, we included a feature plot for each gene and respective ISHs.

      - Figure S3: soat2 = no evidence of muscle marker neither by ISH presented nor in the literature. 

      We realized this staining was not clear with the previous S2/S3 figures. Our new changes in these supplementary figures based on the reviewer’s ideas made these ISH results clearer. We observed soat2 staining in the sternohyoideus muscle (panel B in S71).

      Other points: 

      - The cartilage/bone developmental state (Alcian/alizarin staining) and/or ISH for classical markers of muscle development (such as pax3/myf5) could be used to clarify the This could permit the completion of a comparative analysis between the two species and the interpretation of novel and adaptative characters.  

      We appreciate this idea! We thought deeply about a well characterized comparative analysis between pipefish and zebrafish for this study. We discussed our concerns in our public response to reviewer 2. We found that it was challenging to stage match all cell types, and were concerned that we could make erroneous conclusions. For example, our pipefish samples were still inside the male brood pouch and possessed yolk sacs. However, we found osteoblast cells in our scRNAseq atlas, and in alizarin staining. Although zebrafish literature notes that the first zebrafish bone appears at 3 dpf (Kimmel et al. 1995), osteoblasts were not recognized until 5 dpf in two scRNAseq datasets (Fabian et al. 2022; Lange et al. 2023). A 5dpf zebrafish is considered larval and has begun hunting. Therefore, we chose to not integrate our data out of concern that osteoblast development may occur at different timelines between the fishes. 

      Fabian, P., Tseng, K.-C., Thiruppathy, M., Arata, C., Chen, H.-J., Smeeton, J., Nelson, N., & Crump, J. G. (2022). Lifelong single-cell profiling of cranial neural crest diversification in zebrafish. Nature Communications 2022 13:1, 13(1), 1–13. 

      Lange, M., Granados, A., VijayKumar, S., Bragantini, J., Ancheta, S., Santhosh, S., Borja, M., Kobayashi, H., McGeever, E., Solak, A. C., Yang, B., Zhao, X., Liu, Y., Detweiler, A. M., Paul,

      S., Mekonen, H., Lao, T., Banks, R., Kim, Y.-J., … Royer, L. A. (2023). Zebrahub – Multimodal Zebrafish Developmental Atlas Reveals the State-Transition Dynamics of Late-Vertebrate Pluripotent Axial Progenitors. BioRxiv, 2023.03.06.531398. 

      Kimmel, C., Ballard, S., Kimmel, S., Ullmann, B., Schilling, T. (1995). Stages of Embryonic Development of the Zebrafish. Developmental Dynamics 203:253:-310.

      'in situs' in the text should be replaced by 'in situ experiments'.  

      We made this change (L395, L663, L666, L762).

      - Lines 562-565: information on samples should be added at the start of the result section to better apprehend the following scRNA-seq data.

      We thank the reviewer for pointing out this issue. Although we had a few sentences on the samples in the first paragraph of the result section, we understand that it was missing some critical pieces of information. Therefore, we added these additional details to the beginning of the results section (L126-L132). 

      - Lines 629-665: PCR with primers designed on gulf pipefish genome could be performed in parallel on bay and gulf cDNA libraries, and amplification products could be sequenced to analyze alignment and validate the use of gulf pipefish ISH probes in bay pipefish embryos. Probe production could also be performed using gulf primers on bay pipefish cDNA pools. 

      After the submission of this manuscript, a bay pipefish genome was prepared by our laboratory. We used this genome to align our probes, these alignments demonstrate strong sequence conservation between the species. We included these alignments in our supplemental files.

      - L663: the bleaching step must be optimized on pipefish embryos. 

      We understand this concern and had completed several bleach optimization experiments prior to publication. Although we found that bleaching improved visibility of staining, we noticed with the probe tnmd that bleached embryos did not have complete staining of tendons and ligaments. The unbleached embryos had more extensive staining than the bleached embryos. We were concerned that bleaching would lead to failures to detect expression domains (false negatives) important for our analysis. Therefore, we did not use bleaching with our in situs experiments (except with hatched fish with a high degree of pigmentation). 

      - Indicate the number of specimens analyzed for each labeling condition.  

      We thank the reviewer for noticing this issue. We added this information to the methods (L766-767).

      - Describe the fixation and pre-treatment methods previous to ISH and skeleton stainings

      We thank the reviewer for pointing out this issue, we added these descriptions (L765-766; L772-774). 

      Reviewer #3 (Recommendations For The Authors): 

      (1) If sfrp1a expression is observed also in other fish species with derived craniofacial structures, it's important to discuss this more in the Discussion. This could be a common mechanism to modify craniofacial structures, although functional tests are ultimately required (but not in this paper, for sure). Can lines 421-428 involve the statement "a prolonged period of chondrocyte differentiation" underlies craniofacial diversity?

      This is a great idea, and we added a sentence that captures this ethos (L451-452).

      (2) Lines 334-346 need to be rephrased. It's hard to understand which genes are expressed or not in pipefish and zebrafish. Did "23 endocytosis genes" show significant enrichment in zebrafish epidermis, or are they expressed in zebrafish epidermis? 

      We thank the reviewer for this comment, we re-phrased this section for clarity (L365-368).

      (3) Figure 4 is missing the "D" panel and two "E" panels. 

      We thank the reviewer for noticing this, we fixed this figure.

      (4) Line 302: "whole-mount" or "whole mount"

      We thank the reviewer for the catch!

    1. Author response:

      Reviewer #1 (Public review):

      Comment 1: In the Results section, the rationale behind selecting the beta band for the central (C3, CP3, Cz, CP4, C4) regions and the theta band for the fronto-central (Fz, FCz, Cz) regions is not clearly explained in the main text. This information is only mentioned in the figure captions. Additionally, why was the beta band chosen for the S-ROI central region and the theta band for the S-ROI fronto-central region? Was this choice influenced by the MVPA results?

      We thank the reviewer for the question regarding the rationale for the S-ROI selection in our study. The beta band was chosen for the central region due to its established relevance in motor control (Engel & Fries, 2010), movement planning (Little et al., 2019) and motor inhibition (Duque et al., 2017). The fronto-central theta band (or frontal midline theta) was a widely recognized indicator in cognitive control research (Cavanagh & Frank, 2014), associated with conflict detection and resolution processes. Moreover, recent empirical evidence suggested that the fronto-central theta reflected the coordination and integration between stimuli and responses (Senoussi et al., 2022). Although we have described the cognitive processes linked to these different frequencies in the introduction and discussion sections, along with the potential patterns of results observed in Stroop-related studies, we did not specify the involved cortical areas. Therefore, we have specified these areas in the introduction to enhance the clarity of the revised version (in the fourth paragraph of the Introduction section).

      Regarding whether the selection of S-ROIs was influenced by the MVPA results, we would like to clarify here that we selected the S-ROIs based on prior research and then conducted the decoding analysis. Specifically, we first extracted the data representing different frequency indicators (three F-ROIs and three S-ROIs) as features, followed by decoding to obtain the MVPA results. Subsequently, the time-frequency analysis, combined with the specific time windows during which each frequency was decoded, provided detailed interaction patterns among the variables for each indicator. The specifics of feature selection are described in the revised version (in the first paragraph of the Multivariate Pattern Analysis section).

      Comment 2: In the Data Analysis section, line 424 states: “Only trials that were correct in both the memory task and the Stroop task were included in all subsequent analyses. In addition, trials in which response times (RTs) deviated by more than three standard deviations from the condition mean were excluded from behavioral analyses.” The percentage of excluded trials should be reported. Also, for the EEG-related analyses, were the same trials excluded, or were different criteria applied?

      We thank the reviewer for this suggestion. Beyond the behavioral exclusion criteria, trials with EEG artifacts were also excluded from the data for the EEG-related analyses. We have now reported the percentage of excluded trials for both behavioral and EEG data analyses in the revised version (in the second paragraph of the EEG Recording and Preprocessing section and the first paragraph of the Behavioral Analysis section).

      Comment 3: In the Methods section, line 493 mentions: “A 400-200 ms pre-stimulus time window was selected as the baseline time window.” What is the justification in the literature for choosing the 400-200 ms pre-stimulus window as the baseline? Why was the 200-0 ms pre-stimulus period not considered?

      We thank the reviewer for this question and would like to provide the following justification. First, although a baseline ending at 0 ms is common in ERP analyses, it may not be suitable for time-frequency analysis. Due to the inherent temporal smoothing characteristic of wavelet convolution in time-frequency decomposition, task-related early activities can leak into the pre-stimulus period (before 0 ms) (Cohen, 2014). This means that extending the baseline to 0 ms will include some post-stimulus activity in the baseline window, thereby increasing baseline power and compromising the accuracy of the results. Second, an ideal baseline duration is recommended to be around 10-20% of the entire trial of interest (Morales & Bowers, 2022). In our study, the epoch duration was 2000 ms, making 200-400 ms an appropriate baseline length. Third, given that the minimum duration of the fixation point before the stimulus in our experiment was 400 ms, we chose the 400 ms before the stimulus as the baseline point to ensure its purity. In summary, considering edge effects, duration requirements, and the need to exclude other influences, we selected a baseline correction window of -400 to -200 ms. To enhance the clarity of the revised version, we have provided the rationale for the selected time windows along with relevant references (in the first paragraph of the Time-frequency analysis section).

      Comment 4: Is the primary innovation of this study limited to the methodology, such as employing MVPA and RSA to establish the relationship between late theta activity and behavior?

      We thank the reviewer for this insightful question and would like to clarify that our research extends beyond mere methodological innovation; rather, it utilized new methods to explore novel theoretical perspectives. Specifically, our research presents three levels of innovation: methodological, empirical, and theoretical. First, methodologically, MVPA overcame the drawbacks of traditional EEG analyses based on specific averaged voltage intensities, providing new perspectives on how the brain dynamically encoded particular neural representations over time. Furthermore, RSA aimed to identify which indicators among the decoded were directly related to behavioral representation patterns. Second, in terms of empirical results, using these two methods, we have identified for the first time three EEG markers that modulate the Stroop effect under verbal working memory load: SP, late theta, and beta, with late theta being directly linked to the elimination of the behavioral Stroop effect. Lastly, from a theoretical perspective, we proposed the novel idea that working memory played a crucial role in the late stages of conflict processing, specifically in the stimulus-response mapping stage (the specific theoretical contributions are detailed in the second-to-last paragraph of the Discussion section).

      Comment 5: On page 14, lines 280-287, the authors discuss a specific pattern observed in the alpha band. However, the manuscript does not provide the corresponding results to substantiate this discussion. It is recommended to include these results as supplementary material.

      We thank the reviewer for this suggestion. We added a new figure along with the corresponding statistical results that displayed the specific result patterns for the alpha band (Supplementary Figure 1).

      Comment 6: On page 16, lines 323-328, the authors provide a generalized explanation of the findings. According to load theory, stimuli compete for resources only when represented in the same form. Since the pre-memorized Chinese characters are represented semantically in working memory, this explanation lacks a critical premise: that semantic-response mapping is also represented semantically during processing.

      We thank the reviewer for this insightful suggestion. We fully agree with the reviewer’s perspective. As stated in our revised version, load theory suggests that cognitive resources are limited and dependent on a specific type (in the second paragraph of the Discussion section). The previously memorized Chinese characters are stored in working memory in the form of semantic representations; meanwhile the stimulus-response mapping should also be represented semantically, leading to resource occupancy. We have included this logical premise in the revised version (in the third-to-last paragraph of the Discussion section).

      Comment 7: The classic Stroop task includes both a manual and a vocal version. Since stimulus-response mapping in the vocal version is more automatic than in the manual version, it is unclear whether the findings of this study would generalize to the impact of working memory load on the Stroop effect in the vocal version.

      We fully agree with the reviewer’s point that the verbal version of the Stroop task differs from the manual version in terms of the degree of automation in the stimulus-response mapping. Specifically, the verbal version relies on mappings that are established through daily language use, while the manual version involves arbitrary mappings created in the laboratory. Therefore, the stimulus-response mapping in the verbal response version is more automated and less likely to be suppressed. However, our previous research indicated that the degree of automation in the stimulus-response mapping was influenced by practice (Chen et al., 2013). After approximately 128 practice trials, semantic conflict almost disappears, suggesting that the level of automation in stimulus-response mapping for the verbal Stroop task is comparable to that of the manual version (Chen et al., 2010). Given that participants in our study completed 144 practice trials (in the Procedure section), we believe these findings can be generalized to the verbal version.

      Comment 8: While the discussion section provides a comprehensive analysis of the study’s results, the authors could further elaborate on the theoretical and practical contributions of this work.

      We thank the reviewer for the constructive suggestions. We recognize that the theoretical and practical contributions of the study were not thoroughly elaborated in the original manuscript. Therefore, we have now provided a more detailed discussion. Specifically, the theoretical contributions focus on advancing load theory and highlighting the critical role of working memory in conflict processing. The practical contributions emphasize the application of load theory and the development of intervention strategies for enhancing inhibitory control. A more detailed discussion can be found in the revised version (in the second-to-last paragraph of the Discussion section).

      Reviewer #2 (Public review):

      Comment 1: As the researchers mentioned, a previous study reported a diminished Stroop effect with concurrent working memory tasks to memorize meaningless visual shapes rather than memorize Chinese characters as in the study. My main concern is that lower-level graphic processing when memorizing visual shapes also influences the Stroop effect. The stage of Stroop conflict processing affected by the working memory load may depend on the specific content of the concurrent working memory task. If that’s the case, I sense that the generalization of this finding may be limited.

      We thank the reviewer for this insightful concern. As mentioned in the manuscript, this may be attributed to the inherent characteristics of Chinese characters. In contrast to English words, the processing of Chinese characters relies more on graphemic encoding and memory (Chen, 1993). Therefore, the processing of line patterns essentially occupies some of the resources needed for character processing, which aligns with our study’s hypothesis based on dimensional overlap. Additionally, regarding the results, even though the previous study presents lower-level line patterns, the results still showed that the working memory load modulated the later theta band. We hypothesize that, regardless of the specific content of the pre-presented working memory load, once the stimulus disappears from view, these loads are maintained as representations in the working memory platform. Therefore, they do not influence early perceptual processing, and resource competition only occurs once the distractors reach the working memory platform. Lastly, previous study has shown that spatial loads, which do not overlap with either the target or distractor dimensions, do not influence conflict effect (Zhao et al., 2010). Taken together, we believe that regardless of the specific content of the concurrent working memory tasks, as long as they occupy resources related to irrelevant stimulus dimensions, they can influence the late-stage processing of conflict effect. Perhaps our original manuscript did not convey this clearly, so we have rephrased it in a more straightforward manner (in the second paragraph of the Discussion section).

      Comment 2: The P1 and N450 components are sensitive to congruency in previous studies as mentioned by the researchers, but the results in the present study did not replicate them. This raised concerns about data quality and needs to be explained.

      We thank the reviewer for this insightful concern. For P1, we aimed to convey that the early perceptual processing represented by P1 is part of the conflict processing process. Therefore, we included it in our analysis. Additionally, as mentioned in the discussion, most studies find P1 to be insensitive to congruency. However, we inappropriately cited a study in the introduction that suggested P1 shows differences in congruency, which is among the few studies that hold this perspective. To prevent confusion for readers, we have removed this citation from the introduction.

      As for N450, most studies have indeed found it to be influenced by congruency. In our manuscript, we did not observe a congruency effect at our chosen electrodes and time window. However, significant congruency effects were detected at other central-parietal electrodes (CP3, CP4, P5, P6) during the 350-500 ms interval. The interaction between task type and consistency remained non-significant, consistent with previous results. Furthermore, with respect to the location of the electrodes chosen, existing studies on N450 vary widely, including central-parietal electrodes and frontal-central electrodes (for a review, see Heidlmayr et al., 2020). We speculate that this phenomenon may be related to the extent of practice. With fewer total trials, the task may involve more stimulus conflicts, engaging more frontal brain areas. On the other hand, with more total trials, the task may involve more response conflicts, engaging more central-parietal brain areas (Chen et al., 2013; van Veen & Carter, 2005). Due to the extensive practice required in our study, we identified a congruency N450 effect in the central-parietal region. We apologize for not thoroughly exploring other potential electrodes in the previous manuscript, and we have revised the results and interpretations regarding N450 accordingly in the revised version (in the N450 section of the ERP results and the third paragraph of the Discussion section).

      Reference

      Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414–421. https://doi.org/10.1016/j.tics.2014.04.012

      Chen, M. J. (1993). A Comparison of Chinese and English Language Processing. In Advances in Psychology (Vol. 103, pp. 97–117). North-Holland. https://doi.org/10.1016/S0166-4115(08)61659-3

      Chen, X. F., Jiang, J., Zhao, X., & Chen, A. (2010). Effects of practice on semantic conflict and response conflict in the Stroop task. Psychol. Sci., 33, 869–871.

      Chen, Z., Lei, X., Ding, C., Li, H., & Chen, A. (2013). The neural mechanisms of semantic and response conflicts: An fMRI study of practice-related effects in the Stroop task. NeuroImage, 66, 577–584. https://doi.org/10.1016/j.neuroimage.2012.10.028

      Cohen, M. X. (2014). Analyzing Neural Time Series Data: Theory and Practice. The MIT Press. https://doi.org/10.7551/mitpress/9609.001.0001

      Duprez, J., Gulbinaite, R., & Cohen, M. X. (2020). Midfrontal theta phase coordinates behaviorally relevant brain computations during cognitive control. NeuroImage, 207, 116340. https://doi.org/10.1016/j.neuroimage.2019.116340

      Duque, J., Greenhouse, I., Labruna, L., & Ivry, R. B. (2017). Physiological Markers of Motor Inhibition during Human Behavior. Trends in Neurosciences, 40(4), 219–236. https://doi.org/10.1016/j.tins.2017.02.006

      Engel, A. K., & Fries, P. (2010). Beta-band oscillations—Signalling the status quo? Current Opinion in Neurobiology, 20(2), 156–165. https://doi.org/10.1016/j.conb.2010.02.015

      Heidlmayr, K., Kihlstedt, M., & Isel, F. (2020). A review on the electroencephalography markers of Stroop executive control processes. Brain and Cognition, 146, 105637. https://doi.org/10.1016/j.bandc.2020.105637

      Little, S., Bonaiuto, J., Barnes, G., & Bestmann, S. (2019). Human motor cortical beta bursts relate to movement planning and response errors. PLOS Biology, 17(10), e3000479. https://doi.org/10.1371/journal.pbio.3000479

      Morales, S., & Bowers, M. E. (2022). Time-frequency analysis methods and their application in developmental EEG data. Developmental Cognitive Neuroscience, 54, 101067. https://doi.org/10.1016/j.dcn.2022.101067

      Senoussi, M., Verbeke, P., Desender, K., De Loof, E., Talsma, D., & Verguts, T. (2022). Theta oscillations shift towards optimal frequency for cognitive control. Nature Human Behaviour, 6(7), Article 7. https://doi.org/10.1038/s41562-022-01335-5

      van Veen, V., & Carter, C. S. (2005). Separating semantic conflict and response conflict in the Stroop task: A functional MRI study. NeuroImage, 27(3), 497–504. https://doi.org/10.1016/j.neuroimage.2005.04.042

      Zhao, X., Chen, A., & West, R. (2010). The influence of working memory load on the Simon effect. Psychonomic Bulletin & Review, 17(5), 687–692. https://doi.org/10.3758/PBR.17.5.687

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In the work: "Endosomal sorting protein SNX4 limits synaptic vesicle docking and release" Josse Poppinga and collaborators addressed the synaptic function of Sortin-Nexin 4 (SNX4). Employing a newly developed in vitro KO model, with live imaging experiments, electrophysiological recordings, and ultrastructural analysis, the authors evaluate modifications in synaptic morphology and function upon loss of SNX4. The data demonstrate increased neurotransmitter release and alteration in synapse ultrastructure with a higher number of docked vesicles and shorter AZ. The evaluation of the presynaptic function of SNX4 is of relevance and tackles an open and yet unresolved question in the field of presynaptic physiology.

      Strengths:

      The sequential characterization of the cellular model is nicely conducted and the different techniques employed are appropriate for the morpho-functional analysis of the synaptic phenotype and the derived conclusions on SNX4 function at presynaptic site. The authors succeeded in presenting a novel in vitro model that resulted in chronical deletion of SNX4 in neurons. A convincing sequence of experimental techniques is applied to the model to unravel the role of SNX4, whose functions in neuronal cells and at synapses are largely unknown. The understanding of the role of endosomal sorting at the presynaptic site is relevant and of high interest in the field of synaptic physiology and in the pathophysiology of the many described synaptopathies that broadly result in loss of synaptic fidelity and quality control at release sites.

      We thank the reviewer for their positive evaluation of our manuscript.

      Weaknesses:

      The flow of the data presentation is mostly descriptive with several consistent morphological and functional modifications upon SNX loss. The paper would benefit from a wider characterization that would allow us to address the physiological roles of SNX4 at the synaptic site and speculate on the underlying molecular mechanisms. In addition, due to the described role of SNX4 in autophagy and the high interest in the regulation of synaptic autophagy in the field of synaptic physiology, an initial evaluation of the autophagy phenotype in the neuronal SNX4KO model is important, and not to be only restricted to the discussion section.

      We thank the reviewer for their suggestions and agree that broader characterization would help us speculate on the underlying mechanism. To address this, we have conducted additional independent experiments investigating the role of SNX4 in neuronal autophagy, as suggested by this reviewer. These experiments are now included in the main figures and are no longer limited to the discussion section. Please see the detailed responses to this reviewer's recommendations below.

      Reviewer #2 (Public Review):

      Summary:

      SNX4 is thought to mediate recycling from endosomes back to the plasma membrane in cells. In this study, the authors demonstrate the increases in the amounts of transmitter release and the number of docked vesicles by combining genetics, electrophysiology, and EM. They failed to find evidence for its role in synaptic vesicle cycling and endocytosis, which may be intuitively closer to the endosome function.

      Strengths:

      The electrophysiological data and EM data are in principle, convincing, though there are several issues in the study.

      We thank the reviewer for their positive evaluation of our manuscript.

      Weaknesses:

      It is unclear why the increase in the amounts of transmitter release and docked vesicles happened in the SNX4 KO mice. In other words, it is unclear how the endosomal sorting proteins in the end regulate or are connected to presynaptic, particularly the active zone function.

      We thank the reviewer for their suggestions and agree that further characterization would help to understand how endosomal sorting proteins regulate presynaptic neurotransmission. We have now added extra data on electrophysiological recordings clarifying SNX4’s role in the synapse. Please see the detailed responses to this reviewer's recommendations below.

      Reviewer #3 (Public Review):

      Summary:

      The study aims to determine whether the endosomal protein SNX4 performs a role in neurotransmitter release and synaptic vesicle recycling. The authors exploited a newly generated conditional knockout mouse to allow them to interrogate the SNX4 function. A series of basic parameters were assessed, with an observed impact on neurotransmitter release and active zone morphology. The work is interesting, however as things currently stand, the work is descriptive with little mechanistic insight. There are a number of places where the data appear to be a little preliminary, and some of the conclusions require further validation.

      Strengths:

      The strengths of the work are the state-of-the-art methods to monitor presynaptic function.

      We thank the reviewers for their positive evaluation of our manuscript.

      Weaknesses:

      The weaknesses are the fact that the work is largely descriptive, with no mechanistic insight into the role of SNX4. Further weaknesses are the absence of controls in some experiments and the design of specific experiments.

      We thank the reviewer for their suggestions and agree that addition of extra control groups and experiments would strengthen interpretation of the observed phenotype. To address this, we have now performed experiments to investigate the miniature excitatory postsynaptic currents and added extra control groups such as overexpression of SNX4 on control background. In addition, we assessed SNX4-mediated neuronal autophagy as a potential molecular mechanism by which SNX4 affects synaptic output. Please see the detailed responses to this reviewers’ recommendations below.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The characterization of the neurite outgrowth presented in Figure 1 is a necessary starting point for the characterization of the model and the interpretation of the following data. Being the analysis conducted at 21 DIV, a significant portion of the neurite tree is out of the analyzed field. Adding sholl analysis will better indicate the complexity of the that appears to be influenced by SNX4 loss in the representative images shown in Figure 1f.

      We fully agree and have now performed a Sholl analysis of dendrite branches to investigate dendritic complexity. (Figure 1(i), page 2-3, line 86-88). SNX4 depletion does not affect dendrite length or dendrite branching.

      (2) Analogously, the characterization of synapse number is of relevance for the interpretation of the data. For a better flow of the data, Figure 4 might be presented as Figure 2 (without the repetition of panel h in Figure 1). An explanation of how VAMP2 puncta are processed is necessary in the method section. A double labelling with a postsynaptic marker would allow trafficking organelles to be distinguished from mature synaptic contacts. Indeed, the analysis of VAMP2 intensity along neurite in mature 21DIV neurons should reveal peaks in the intensity profile that represent synaptic contacts. For unexplained reasons, the profile is rather flat in the two experimental groups. Focusing on axonal branches will surely result in a peaked profile for VAMP2 labelling.

      We fully agree that the characterization of synapses is relevant for the interpretation of the data. We have now added a section in our Material and Methods how the VAMP2 puncta are processed (p14 line 517-520). Instead of labeling mature synapses using double labeling of VAMP2 and PSD95, we analyzed the number of active synapses in live neurons using SypHy (Fig. 3g). The reviewer is correct that the VAMP2 data presented in Fig 1I and Fig 4 is part of the same dataset and we have clarified this in the figure legend. In Fig 1I only the total number of VAMP2 puncta is plotted as a marker for synapse number, while in Fig 4 we assess VAMP2 as potential SNX4 sorting cargo (Ma et al., 2017). Because of these different aims, we prefer to keep the figures separate. The analysis of VAMP2 intensity along the distance of the soma is a Sholl analysis (Fig. 4d), represents the average VAMP2 intensity over distance from the soma of 35-41 neurons per group. In contrast to a line scan of a single neurite, this average profile lacks the peaks of individual synapses.

      (3) Miniature excitatory postsynaptic currents recordings would strengthen the synaptic characterization and complement the electrophysiological recordings shown in Figure 2. Analyzing frequency and amplitude parameters would complement the data on the number of synaptic connections defined by the pre and postsynaptic colocalization puncta as suggested above and may support the data shown in Figure 3 g that suggests a decreased number of active synapses in SNX4-KO cells.

      We fully agree that the characterization of miniature excitatory postsynaptic currents would strengthen the synaptic characterization and complement the other electrophysiological data. Therefore, we have now added additional experiments showing the mEPSCs (Fig. 2k-m, page 4) in SNX4 cKO neurons versus control. This data shows that the amplitude and frequency of spontaneous miniature EPSCs (mEPSCs) were not affected upon SNX4 depletion, consistent with a normal first evoked EPSC and RRP estimate. Furthermore, these data suggest that it is unlikely that the observed increase in neurotransmission is due to post-synaptic effects.

      (4) Recordings on the first evoked response shown in Figure 2 b and quantified in Figures c and d suggest that SNX4 overexpression per se exerts some effect on the Amplitude and the Charge of the first evoked response. This is also evident in the supplementary Figure 2 with lower frequency trains. An additional experimental group, namely control+SNX4 is needed for the correct interpretation of the observed phenotype. The possibility that SNX4 per se exerts an effect on evoked transmission could be discussed in terms of putative mechanisms and interactions.

      We thank the reviewer for their suggestion and agree that an additional experimental group (control + SNX4) would strengthen interpretation of the observed phenotype. We have now added a new experimental condition with overexpression of SNX4 on a control background (Supplementary Fig. 3, page 20). This data shows that the amplitude and charge of the first evoked response were not affected in control + SNX4 neurons compared to control, and no differences were detected in the response to the 40 Hz stimulation train (Supplementary Fig. 3a-e).  Together, these data suggest that SNX4 overexpression in itself does not affect the neurotransmission protocols studied in SNX4 cKO experiments.

      (5) To correctly interpret the SyPhy experiments and exclude an effect of SNX silencing on SV recycling, it is suggested to repeat the experiments shown in Figure 3 in the absence and in the presence of bafilomycin. Indeed, the quantifications shown in Figure 3 d and f do not represent "release fraction" as stated (lines 139/140) but they rather refer to an average difference between release fraction and recovered fraction. With the use of bafilomycin, the comparison of the deltaFmax/deltaFNH4Cl with and without bafilomycin would enable the release fraction to be correctly evaluated and compared.

      We appreciate the reviewer’s suggestion and agree on the importance of considering the impact of SV recycling when evaluating the released fraction. We agree that the presence of bafilomycin is critical to isolate the released component during stimulation. We have now rephrased this conclusion. To assess synaptic recycling in these assays, bafilomycin in not critically required and we show by multiple independent experiments, including SypHy and FM64 dye assays, that SV recycling is either not affected or the effect is too small to be detected by these methods.

      (6) In the ultrastructural analysis, additional quantifications are needed to exclude the accumulation of endosome-like structures. It is not clear if, in the evaluation of total SV number (Figure 5e), the authors counted all vesicles or vesicles < 50nm. This has to be explained and additional quantification of # of SV < 50nm and # SV > 50nm is informative, taking into account the endosomal nature of SNX4. Indeed, although the average size of SV is not changed (fig. 5 d), the density of "bigger vesicle" may result from endosomal-like structure accumulation. An additional suggested quantification is on vesicle # SV > 80nm as previously reported in the cited references dealing with endosomal proteins and presynaptic morphology.

      We fully agree that the characterization of vesicle size is important and that it was not clearly stated which vesicles were included in the total number of SV (Fig. 5e). We have now added this to the figure description. We have also added a histogram that contains the vesicle numbers of different bin sizes for SNX4 cKO synapses and control synapses (Supplementary Fig. 4, page 21) including # SVs > 80nm. (Whilst it seems that there are more “bigger” vesicles in the KO, further analysis revealed that this is mostly driven by one experiment and this effect is not consistent.)

      (7) Due to the high scientific interest in presynaptic autophagy for SV recycling and degradation, and the paucity of experimental work assessing the proteins involved, an initial evaluation of the neuronal autophagy process (by western blot analysis and immunocytochemistry) for the characterization of the model will better support the paragraph in the discussion (lines 314-322) and contribute to future work in the field. Although very rare, autophagosomes quantification at presynaptic sites can also be performed from the already acquired images. A double membrane structure with the material inside is evident in the representative control image presented!

      We appreciate the reviewer’s suggestion and agree that presynaptic autophagy is an interesting potential mechanism that would elaborate our current working model. To address the reviewers’ suggestion, we added multiple independent experiments to investigate basal autophagy markers such as ATG5 using western blot analysis, characterization of p62 levels using immunohistochemistry and performed additional morphometric analysis on the electron microscopy data (Supplementary Fig. 5). In SNX4 cKO neurons, there was no significant difference in P62 puncta numbers or P62 somatic intensity under basal conditions or after blocking autophagic P62 degradation by bafilomycin treatment, suggesting that autophagic flux remains normal. Also, no changes in total ATG5 protein levels were observed and ultrastructural analysis revealed no differences in the total number of autophagosomes. Collectively, these data indicate that SNX4 depletion does not impact the basal autophagic flux, ATG5 protein levels, or the number of autophagosomes.

      Minor points:

      (1) Dorrbaun et al. 2018 is missing from the reference list. In the legend to figure 1 there is an incorrect reference to Figure 6, rather than Figure 4.

      We have now adjusted the figure legend and added the reference (page 16, line 604).

      (2) Information on the construct employed for the rescue is missing. Is it a fluorescent tag construct? Representative images of the three autaptic neurons (control, KO, KO+SNX4) would nicely complement data presentation in Figure 2. 

      We have now elaborated on this in material and methods section (p12, line 418-421). Unfortunately, we did not obtain pictures of autaptic neurons used for electrophysiology experiments.

      Reviewer #2 (Recommendations For The Authors):

      (1) Figure 2d and f are somewhat inconsistent. Total charges for the 1st EPSCs differ almost 2-fold in the same condition.

      We appreciate the reviewer’s concern. The average EPSCs charge of the first evoked was 89, 122 and 57 pC for control, KO and rescued neurons respectfully. The average charge of the first pulse of 40Hz train was 41,58 and 32 pC for control, KO and rescued neurons respectfully, which is roughly 50% of the naïve response of the same cells. These trains were recorded after 2 or 3 other stimulation paradigms, which can have affected the total charge released in the 40Hz train. That said, the proportional difference between groups is high comparable, with a 37% increased average charge released in SNX4 cKO compared to control in the naïve response and 41% increased response in the first response of the 40 Hz train, and rescued cells show a 53% reduction in average released charge compared to control in the naïve response compared to a 44% reduction in the first response of the 40 Hz train. Although the absolute values differ between these readouts, we conclude that the biological comparison between groups is consistent.

      (2) Figure 2h. This type of analysis has a drawback. See Neher (2015) for the problems associated with this analysis.

      We fully agree with the reviewer’s comment. As noted in our discussion (page 9 line 285), while this analysis has its limitations, it can still provide an indication of the ready releasable pool.   

      (3) The EPSC phenotype may be due to postsynaptic effects. This should be excluded by additional experiments (mEPSC analysis) or further clarification.

      We fully agree that the characterization of miniature excitatory postsynaptic currents recording would strengthen the synaptic characterization and complement the electrophysiological recordings. Therefore, we have now added additional experiments showing the mEPSCs (Fig. 2k-m) in SNX4 cKO neurons versus control. This data shows that the amplitude and frequency of spontaneous miniature EPSCs (mEPSCs) were not affected upon SNX4 depletion, suggesting that it is unlikely that the observed increase in neurotransmission is due to post-synaptic effects.

      (4) The increased number of docked vesicles observed in EM and the increased slope (vesicle recruitment, Figure 2h) are not consistent with each other. Maybe the definition of docked vesicles is unclear in this version of the manuscript.

      As noted in our material & methods (page 15, line 547-548), SVs were defined as docked if there was no distance visible between the SV membrane and the active zone membrane. We have added the pixel size for clarification. Indeed, we do not observe an increase in release probability or first evoked response, which would correspond with an increased docked pool. However, we think that the increase in docked vesicles might contribute to an enhanced SV recruitment (see discussion).

      (5) Figure 3: Vesicle cycling was monitored in only a limited condition. It is known that there are multiple pathways of vesicle cycling. Ideally, these pathways should be dissected. At least, the authors mention the possibility that they have missed some "positive" conditions.

      We fully agree with the reviewer’s comment that vesicle recycling is complex with several parallel pathways involved. While we did not study individual endocytosis pathways, we used different assays covering various recycling pathways. The SypHy assay (Fig. 3c & f) combined with the 100 AP stimulation paradigm at room temperature predominantly addresses clathrin-mediated endocytosis. Additionally, the FM-64 dye assay at 37 degrees Celsius covers ultrafast endocytosis pathways as well as bulk endocytosis routes. Since neither assay showed major effects, we decided not to pursue further experiments focusing on different endocytosis pathways.

      Reviewer #3 (Recommendations For The Authors):

      Major points:

      (1) Since all of the work here is culture-focussed, the in vivo phenotype is not as relevant, however the in vitro properties are. The incomplete Cre-dependent removal of SNX4 is concerning (especially axonal SNX4 levels identified via immunofluorescence), however, the main concern is that there was no profiling of the other molecular changes within these cultures. This is important, since there may be considerable alterations in the expression of a number of presynaptic proteins which may explain the observed phenotypes. Ideally, these cultures could have been profiled in an unbiased manner via mass spectrometry to identify potential changes in the presynaptic proteome, or at the very least the levels of key fusion molecules would have been assessed via Western blotting.

      We thank the reviewer for their suggestion and agree that mass spectrometry would strengthen the interpretation of the observed phenotype. However, due to contractual constraints, we are unable to pursue a mass spectrometry follow-up experiment. We agree that characterizing key fusion molecules is of potential interest. Therefore, based on literature, we selected a likely candidate, VAMP2, which did not show any alterations in expression levels when knocking out SNX4. Given the previously described role of SNX4 in the degradation pathway, one would expect increased degradation of key fusion molecules if they are recycled by SNX4. Other literature indicates that reduced levels of key fusion molecules, such as synaptotagmin or SNAP-25 (Broadie et al., 1994; Washbourne et al., 2001) , do not mimic our phenotype.

      (2) The experiments reported in Figure 2, in particular those in 2c and 2d, suggest that overexpression of SNX4 has a dominant-negative effect on neurotransmitter release. This is strongly supported by the supplementary data during a stimulus train (particularly the start point of the 5 Hz train in Supplementary Figure 2). Therefore, the perceived rescue of EPSC charge in Figure 2f, 2g may be a result of SNX4 inhibiting neurotransmitter release. A determination of the impact of SNX4 overexpression (and level of overexpression) in WT neurons is essential to show that this is a bonefide rescue, rather than a direct inhibition by SNX4 overexpression.

      We thank the reviewer for their suggestion and agree that an additional experimental group (control + SNX4) would strengthen interpretation of the observed phenotype. We have now added a new experiment with an extra experimental condition with overexpression of SNX4 on a control background (Supplementary Fig. 3 page 21). This data shows that the amplitude and charge of the first evoked response were not affected in control + SNX4 neurons compared to control, and no differences were detected in the response to the 40 Hz stimulation train (Supplementary Fig. 3a-e).  Together, these data suggest that SNX4 overexpression in itself does not affect the neurotransmission protocols studied in SNX4 cKO experiments.

      (3) The experiments in Figure 3 clearly reveal a lack of effect of SNX4 depletion on synaptic vesicle endocytosis. However, the assumption that synaptic vesicle recycling is unaffected is a little premature. The fact that the second evoked SypHy peak is significantly larger than the first (Figures 3c-e) suggests that more vesicles may be recycling in KO neurons. Furthermore, the FM dye experiments do not aid interpretation, since there may be insufficient time (10 min) for new vesicles to be generated from endosomal intermediates experiments. Therefore, to confirm an absence of effect on recycling, the authors could either 1) perform the same experiment as 3c, but with 4 stimulation trains (to drive the system harder to reveal any phenotype) or 2) repeat the FM dye experiment but increase the time between loading and unloading to 30 min.

      We fully agree with the reviewers' comment that vesicle recycling is an important component to consider and is complex with several parallel pathways involved. We conducted multiple independent experiments covering the most significant recycling pathways. The SypHy assay (Fig. 3c & f) combined with the 100 AP stimulation paradigm at room temperature predominantly addresses clathrin-mediated endocytosis. Additionally, the FM-64 dye assay at 37 degrees Celsius covers ultrafast endocytosis pathways as well as bulk endocytosis routes. To further challenge the system and reveal recycling phenotypes, we included a second 100 AP stimulation in our SypHy assay. While only the increase of the second SypHy peak is significant, the absolute numbers do not differ much from the first peak (0,17 for control and 0,21 for KO second peak and 0,19 for control and 0,22 for KO first peak, Supplementary table1). We nevertheless do not see any effects on recycling after the second peak (mean decay time is 27 for control and 26 for KO Supplementary Table 1). A single 100 AP 40 Hz train depletes all the synchronous release (not shown) and most of the evoked charge (see Fig 2f), hence two of these trains with one minute recovery is already a very demanding protocol. Although increasing the time between loading and unloading to 30 minutes might uncover other recycling components, it has been shown that ultrafast endocytosis occurs within 30 seconds (Watanabe et al., 2013), suggesting that 10 minutes should provide enough time for synaptic vesicle recycling. This is also evident from the fact that we can significantly destain synapses loaded with FM dye by electrical stimulation (Fig 3j), indicating that synaptic vesicle recycling took place. Since neither assay showed major effects, we concluded that under these circumstances, synaptic recycling is not significantly affected. However, we cannot exclude the possibility that recycling deficits in SNX4 cKO neurons could be detected in other paradigms,

      (4) There is no obvious effect on VAMP2 levels or location in SNX4 KO neurons (Figure 4). However, when one considers that SNX4 is proposed to have a role in VAMP2 trafficking, it is surprising that an experiment examining the live trafficking of VAMP2-SypHy was not performed. This would have revealed activity-dependent alterations that would have been missed by simply measuring VAMP2 expression and localization, and potentially provided a molecular explanation for the enhanced neurotransmitter release during a stimulus train.

      We appreciate the reviewer’s suggestion and agree that it could be a valuable experiment However, overexpressing a VAMP2-pHluorin construct might obscure potential phenotypes related to VAMP2 trafficking. SNX4 is expected to be involved in VAMP2 recycling, even with activity-dependent changes. Mis-sorted VAMP2 would accumulate in acidic vesicles, which could be masked by the VAMP2-pHluorin construct. Similarly, mis-sorting of other SNX4 cargo, such as the transferrin receptor, has been identified through lysosomal degradation, as shown by Western blot analysis of expression levels of the endogenous protein. We did not detect any differences in endogenous levels of VAMP2 within 21 days of SNX4 deletion (Fig 4), indicating that SNX4-dependent endosome sorting is not essential for VAMP2 recycling.

      (5) The morphological data in Figure 5 report a series of small changes in docked vesicles and active zone length. In many cases, significance is obtained due to synapses being used as the experimental n, and thus inflating the statistical power. When one considers that no significant effect was observed on evoked release (apart from during a stimulus train), it suggests that the number of docked vesicles does not alter release probability in this system (which the authors point out). Instead, they suggest that an increased supply of vesicles is responsible, via increased recruitment to RRP/releasable pool (but not via increased recycling). If this is the case, it should have been reflected as an increase in the evoked SypHy response in Fig 2c,d (which is borderline significant). What may help is to determine the morphological landscape immediately after a stimulus strain, since this is the only condition where enhanced release is observed, and thus provide a morphological correlate to the physiological data.

      We fully agree with the reviewer’s suggestion that an ultrastructural characterization immediately after a stimulus train would be informative. Unfortunately, contract constraints prevent us from performing this experiment. For our ultrastructural morphological data, we treated synapses as individual experimental n since it is not possible to determine whether synapses in a micronetwork on one sapphire originate from the same neuron. We used 18 independent sapphires from 3 independent pups to ensure the technical and biological replication of our data and measuring independent neurons. We fully agree with the reviewers comment to be careful with ‘inflating the statistical power’ due to potential nesting effects when using synapses as experimental n. To mitigate the potential nesting effect of analyzing multiple synapses per neuron, the intracluster correlation (ICC) is calculated per variable and per nesting effect. If ICC was close to 0.1, indicating that a considerable portion of the total variance can be attributed to e.g. synapse or sapphire, multilevel analysis was performed to accommodate nested data (Aarts et al., 2014).

      Minor points

      (1) When a new mouse model is generated, it is usually accompanied by a thorough characterization of its properties. However, in this case, there was no information provided about the conditional SNX4 knockout mouse. This is surprising and at a minimum, the following should be provided a) the background strain, b) method of generation, c) the number of animals used to establish the colony, d) breeding strategy, e) backcrossing strategy, f) genotyping protocol.

      We apologize that a thorough characterization of our novel mouse model was lacking and therefore added this to our material & methods section (page 11, line 377-391).

      (2) There is a noticeable difference between WT and KO neurons during train stimulation in Figure 2f, however, this appears to be due to the fact that there is a far higher EPSC charge to begin with in KO neurons. Why is there such a disparity when there is no difference in response to single pulses (Figures 2b-d) or presynaptic plasticity (Figure 2e)?

      We understand the reviewer’s concern. We excluded an outlier (3x SD) in the KO dataset that drove the initial far higher EPSC charge in the graph (was already excluded for the statistics, Supplementary table 1). The average charge of the first pulse of 40Hz train is 41 pC and for KO neurons 58 pC, which did not differ significantly.  These trains of Fig. 2f were recorded after 2 or 3 other stimulation paradigms, which can have affected the total charge released in the 40Hz train. That said, the proportional difference between groups is high comparable between Fig 2b-d and 2f, with a 37% increased average charge released in SNX4 cKO compared to control in the naïve response (Fig. 2d) and 41% increased response in the first response of the 40 Hz train (Fig. 2f), and rescued cells show a 53% reduction in average released charge compared to control in the naïve response compared to a 44% reduction in the first response of the 40 Hz train. Although the absolute values differ between these readouts, we conclude that the biological comparison between groups is consistent.

      (3) Line 343-344 - "(Supplementary Figure 1a)" should be "(Figure 1a)".

      We thank the reviewer for this comment and adjusted this in the manuscript.

    1. Author response:

      Reviewer 2:

      (1) It appears that the purified γ-secretase complex generates the same amount of Aβ40 and Aβ42, which is quite different in cellular and biochemical studies. Is there any explanation for this?

      Roughly equal production of Aβ40 and Aβ42 is a phenomenon seen with purified enzyme assays, and the reason for this has not been identified. However, we suggest that what is meaningful in our studies is the relative difference between the effects of FAD-mutant vs. WT PSEN1 on each proteolytic processing step. All FAD mutations are deficient in multiple cleavage steps in γ-secretase processing of APP substrate, and these deficiencies correlate with stabilization of E-S complexes.

      (2) It has been reported the Aβ production lines from Aβ49 and Aβ48 can be crossed with various combinations (PMID: 23291095 and PMID: 38843321). How does the production line crossing impact the interpretation of this work?

      In the cited reports, such crossover was observed when using synthetic Aβ intermediates as substrate. In PMID 2391095 (Okochi M et al, Cell Rep, 2013), Aβ43 is primarily converted to Aβ40, but also to some extent to Aβ38. In PMID: 38843321 (Guo X et al, Science, 2024), Aβ48 is ultimately converted to Aβ42, but also to a minor degree to Aβ40. We have likewise reported such product line “crossover” with synthetic Aβ intermediates (PMID: 25239621; Fernandez MA et al, JBC, 2014). However, when using APP C99-based substrate, we did not detect any noncanonical tri- and tetrapeptide co-products of Aβ trimming events in the LC-MS/MS analyses (PMID: 33450230; Devkota S et al, JBC, 2021). In the original report on identification of the small peptide coproducts for C99 processing by γ-secretase using LC-MS/MS (PMID: 19828817; Takami M et al, J Neurosci, 2009), only very low levels of noncanonical peptides were observed. In the present study, we did not search for such noncanonical trimming coproducts, so we cannot rule out some degree of product line crossover.

      (3) In Figure 5, did the authors look at the protein levels of PS1 mutations and C99-720, as well as secreted Aβ species? Do the different amounts of PS1 full-length and PS1-NTF/CTF influence FILM results?

      This is a good question. Our preliminary investigation by Western Blot shows no correlation between C99 and PSEN1 expressions and FLIM results, but we will fully address the concern in our point-by-point responses submitted with a revised manuscript. 

      (4) It is interesting that both Aβ40 and Aβ42 Elisa kits detect Aβ43. Have the authors tested other kits in the market? It might change the interpretation of some published work.

      We have not tested other ELISA kits. In light of our findings, it would be a good idea for other investigators to test whatever ELISAs they use for specificity vis-à-vis Aβ43.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer 1:

      Weaknesses:

      The match between fractal and classical cycles is not one-to-one. For example, the fractal method identifies a correlation between age and cycle duration in adults that is not apparent with the classical method. This raises the question as to whether differences are due to one method being more reliable than another or whether they are also identifying different underlying biological differences. It is not clear for example whether the agreement between the two methods is better or worse than between two human scorers, which generally serve as a gold standard to validate novel methods. The authors provide some insight into differences between the methods that could account for differences in results. However, given that the fractal method is automatic it would be important to clearly identify criteria for recordings in which it will produce similar results to the classical method.

      We thank the reviewer for the insightful suggestions. In the revised Manuscript, we have added a number of additional analyses that provide a quantitative comparison between the classical and fractal cycle approaches aiming to identify the source of the discrepancies between classical and fractal cycle durations. Likewise, we assessed the intra-fractal and intra-classical method reliability.

      Reviewer 2:

      One weakness of the study, from my perspective, was that the IRASA fits to the data (e.g. the PSD, such as in Figure 1B), were not illustrated. One cannot get a sense of whether or not the algorithm is based entirely on the fractal component or whether the oscillatory component of the PSD also influences the slope calculations. This should be better illustrated, but I assume the fits are quite good.

      Thank you for this suggestion. In the revised Manuscript, we have added a new figure (Fig.S1 E, Supplementary Material 2), illustrating the goodness of fit of the data as assessed by the IRASA method.

      The cycles detected using IRASA are called fractal cycles. I appreciate the use of a simple term for this, but I am also concerned whether it could be potentially misleading? The term suggests there is something fractal about the cycle, whereas it's really just that the fractal component of the PSD is used to detect the cycle. A more appropriate term could be "fractal-detected cycles" or "fractal-based cycle" perhaps?

      We agree that these cycles are not fractal per se. In the Introduction, when we mention them for the first time, we name them “fractal activity-based cycles of sleep” and immediately after that add “or fractal cycles for short”. In the revised version, we renewed this abbreviation with each new major section and in Abstract. Nevertheless, given that the term “fractal cycles” is used 88 times, after those “reminders”, we used the short name again to facilitate readability. We hope that this will highlight that the cycles are not fractal per se and thus reduce the possible confusion while keeping the manuscript short.

      The study performs various comparisons of the durations of sleep cycles evaluated by the IRASA-based algorithm vs. conventional sleep scoring. One concern I had was that it appears cycles were simply identified by their order (first, second, etc.) but were not otherwise matched. This is problematic because, as evident from examples such as Figure 3B, sometimes one cycle conventionally scored is matched onto two fractal-based cycles. In the case of the Figure 3B example, it would be more appropriate to compare the duration of conventional cycle 5 vs. fractal cycle 7, rather than 5 vs. 5, as it appears is currently being performed.

      In cases where the number of fractal cycles differed from the number of classical cycles (from 34 to 55% in different datasets as in the case of Fig.3B), we did not perform one-to-one matching of cycles. Instead, we averaged the duration of the fractal and classical cycles over each participant and only then correlated between them (Fig.2C). For a subset of the participants (45 – 66% of the participants in different datasets) with a one-to-one match between the fractal and classical cycles, we performed an additional correlation without averaging, i.e., we correlated the durations of individual fractal and classical cycles (Fig.4S of Supplementary Material 2). This is stated in the Methods, section Statistical analysis, paragraph 2.

      There are a few statements in the discussion that I felt were either not well-supported. L629: about the "little biological foundation" of categorical definitions, e.g. for REM sleep or wake? I cannot agree with this statement as written. Also about "the gradual nature of typical biological processes". Surely the action potential is not gradual and there are many other examples of all-or-none biological events.

      In the revised Manuscript, we have removed these statements from both Introduction and Discussion.

      The authors appear to acknowledge a key point, which is that their methods do not discriminate between awake and REM periods. Thus their algorithm essentially detected cycles of slow-wave sleep alternating with wake/REM. Judging by the examples provided this appears to account for both the correspondence between fractal-based and conventional cycles, as well as their disagreements during the early part of the sleep cycle. While this point is acknowledged in the discussion section around L686. I am surprised that the authors then argue against this correspondence on L695. I did not find the "not-a-number" controls to be convincing. No examples were provided of such cycles, and it's hard to understand how positive z-values of the slopes are possible without the presence of some wake unless N1 stages are sufficient to provide a detected cycle (in which case, then the argument still holds except that its alterations between slow-wave sleep and N1 that could be what drives the detection).

      In the revised Manuscript, we have removed the “NaN analysis” from both Results and Discussion. We have replaced it with the correlation between the difference between the durations of the classical and fractal cycles and proportion of wake after sleep onset. The finding is as follows:

      “A larger difference between the durations of the classical and fractal cycles was associated with a higher proportion of wake after sleep onset in 3/5 datasets as well as in the merged dataset (Supplementary Material 2, Table S10).” Results, section “Fractal cycles and wake after sleep onset”, last two sentences. This is also discussed in Discussion, section “Fractal cycles and age”, paragraph 1, last sentence. 

      To me, it seems important to make clear whether the paper is proposing a different definition of cycles that could be easily detected without considering fractals or spectral slopes, but simply adjusting what one calls the onset/offset of a cycle, or whether there is something fundamentally important about measuring the PSD slope. The paper seems to be suggesting the latter but my sense from the results is that it's rather the former.

      Thank you for this important comment. Overall, our paper suggests that the fractal approach might reflect the cycling nature of sleep in a more precise and sensitive way than classical hypnograms. Importantly, neither fractal nor classical methods can shed light on the mechanism underlying sleep cycle generation due to their correlational approach. Despite this, the advantages of fractal over classical methods mentioned in our Manuscript are as follows:

      (1) Fractal cycles are based on a real-valued metric with known neurophysiological functional significance, which introduces a biological foundation and a more gradual impression of nocturnal changes compared to the abrupt changes that are inherent to hypnograms that use a rather arbitrary assigned categorical value (e.g., wake=0, REM=-1, N1=-2, N2=-3 and SWS=-4, Fig.2 A).

      (2) Fractal cycle computation is automatic and thus objective, whereas classical sleep cycle detection is usually based on the visual inspection of hypnograms, which is time-consuming, subjective and error-prone. Few automatic algorithms are available for sleep cycle detection, which only moderately correlated with classical cycles detected by human raters (r’s = 0.3 – 0.7 in different datasets here).

      (3) Defining the precise end of a classical sleep cycle with skipped REM sleep that is common in children, adolescents and young adults using a hypnogram is often difficult and arbitrary.   The fractal cycle algorithm could detect such cycles in 93% of cases while the hypnogram-based agreement on the presence/absence of skipped cycles between two independent human raters was 61% only; thus, 32% lower.

      (4) The fractal analysis showed a stronger effect size, higher F-value and R-squared than the classical analysis for the cycle duration comparison in children and adolescents vs young adults. The first and second fractal cycles were significantly shorter in the pediatric compared to the adult group, whereas the classical approach could not detect this difference.

      (5) Fractal – but not classical – cycle durations correlated with the age of adult participants.

      These bullets are now summarized in Table 5 that has been added to the Discussion of the revised manuscript.

      Reviewer #1 (Recommendations for the authors):

      The authors have added a lot of quantifications to provide a more complete comparison of classical and fractal cycles that address the points I raised.

      Regarding, the question of skipped REM cycles: I am not sure the comparison of skipped cycle accuracies between fractal and manual methods makes sense. To make a fair comparison fractal and 2nd scorer classifications should be compared to the same baseline dataset which doesn't seem to be the case since the number of skipped cycles is not the same. Moreover, it's not indicated whether the fractal method identifies any false positive skipped cycles.

      Thank you for this comment. In the revised Manuscript, we have reported the number of false positive skipped cycles identified by the fractal algorithm. Likewise, we have added the comparison between the fractal algorithm and the second scorer detection of cycles with skipped REM sleep (Results, the section “Skipped cycles”, last paragraph). The text has been revised as follows:

      “Visual inspection of the hypnograms from Datasets 1 – 6 was performed by two independent researchers. Scorer 1 and Scorer 2 detected that out of 226 first sleep cycles 58 (26%) and 64 (28%), respectively, lacked REM episodes. The agreement on the presence of skipped cycles between two human raters equaled 91% (58 cycles detected by both raters out of 64 cycles detected by either one or two scorers). The fractal cycle algorithm detected skipped cycles in 57 out of 58 (98%) cases detected by Scorer 1 with one false positive (which, however, was tagged as a skipped cycle by Scorer2), and in 58 out of 64 (91%) cases detected by Scorer 2 with no false positives.”

      Minor points

      I suggest reporting the values of inter-method / inter-scorer correlations with the classical method in the main text since otherwise interpreting the value for fractal vs classical is impossible.

      Thank you for this comment. In the revised Manuscript, we have moved this section to the main text (Table 3).

      Table 5 + text of discussion: cycle identification based on hypnograms is claimed to be. "based on arbitrary assigned categorical values" the categories are not arbitrary since they correspond to well-validate sleep states, only the number associated it and this does not seem to be very important since it's only for visualization purposes.

      Thank you for this comment. In the revised Manuscript, we have removed the phrase “arbitrary assigned“.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Comment 1: In the Results section, the rationale behind selecting the beta band for the central (C3, CP3, Cz, CP4, C4) regions and the theta band for the fronto-central (Fz, FCz, Cz) regions is not clearly explained in the main text. This information is only mentioned in the figure captions. Additionally, why was the beta band chosen for the S-ROI central region and the theta band for the S-ROI fronto-central region? Was this choice influenced by the MVPA results?

      We thank the reviewer for the question regarding the rationale for the S-ROI selection in our study. The beta band was chosen for the central region due to its established relevance in motor control (Engel & Fries, 2010), movement planning (Little et al., 2019) and motor inhibition (Duque et al., 2017). The fronto-central theta band (or frontal midline theta) was a widely recognized indicator in cognitive control research (Cavanagh & Frank, 2014), associated with conflict detection and resolution processes. Moreover, recent empirical evidence suggested that the fronto-central theta reflected the coordination and integration between stimuli and responses (Senoussi et al., 2022). Although we have described the cognitive processes linked to these different frequencies in the introduction and discussion sections, along with the potential patterns of results observed in Stroop-related studies, we did not specify the involved cortical areas. Therefore, we have specified these areas in the introduction to enhance the clarity of the revised version (in the fourth paragraph of the Introduction section).

      Regarding whether the selection of S-ROIs was influenced by the MVPA results, we would like to clarify here that we selected the S-ROIs based on prior research and then conducted the decoding analysis. Specifically, we first extracted the data representing different frequency indicators (three F-ROIs and three S-ROIs) as features, followed by decoding to obtain the MVPA results. Subsequently, the time-frequency analysis, combined with the specific time windows during which each frequency was decoded, provided detailed interaction patterns among the variables for each indicator. The specifics of feature selection are described in the revised version (in the first paragraph of the Multivariate Pattern Analysis section).

      Comment 2: In the Data Analysis section, line 424 states: “Only trials that were correct in both the memory task and the Stroop task were included in all subsequent analyses. In addition, trials in which response times (RTs) deviated by more than three standard deviations from the condition mean were excluded from behavioral analyses.” The percentage of excluded trials should be reported. Also, for the EEG-related analyses, were the same trials excluded, or were different criteria applied?

      We thank the reviewer for this suggestion. Beyond the behavioral exclusion criteria, trials with EEG artifacts were also excluded from the data for the EEG-related analyses. We have now reported the percentage of excluded trials for both behavioral and EEG data analyses in the revised version (in the second paragraph of the EEG Recording and Preprocessing section and the first paragraph of the Behavioral Analysis section).

      Comment 3: In the Methods section, line 493 mentions: “A 400-200 ms pre-stimulus time window was selected as the baseline time window.” What is the justification in the literature for choosing the 400-200 ms pre-stimulus window as the baseline? Why was the 200-0 ms pre-stimulus period not considered?

      We thank the reviewer for this question and would like to provide the following justification. First, although a baseline ending at 0 ms is common in ERP analyses, it may not be suitable for time-frequency analysis. Due to the inherent temporal smoothing characteristic of wavelet convolution in time-frequency decomposition, task-related early activities can leak into the pre-stimulus period (before 0 ms) (Cohen, 2014). This means that extending the baseline to 0 ms will include some post-stimulus activity in the baseline window, thereby increasing baseline power and compromising the accuracy of the results. Second, an ideal baseline duration is recommended to be around 10-20% of the entire trial of interest (Morales & Bowers, 2022). In our study, the epoch duration was 2000 ms, making 200-400 ms an appropriate baseline length. Third, given that the minimum duration of the fixation point before the stimulus in our experiment was 400 ms, we chose the 400 ms before the stimulus as the baseline point to ensure its purity. In summary, considering edge effects, duration requirements, and the need to exclude other influences, we selected a baseline correction window of -400 to -200 ms. To enhance the clarity of the revised version, we have provided the rationale for the selected time windows along with relevant references (in the first paragraph of the Time-frequency analysis section).

      Comment 4: Is the primary innovation of this study limited to the methodology, such as employing MVPA and RSA to establish the relationship between late theta activity and behavior?

      We thank the reviewer for this insightful question and would like to clarify that our research extends beyond mere methodological innovation; rather, it utilized new methods to explore novel theoretical perspectives. Specifically, our research presents three levels of innovation: methodological, empirical, and theoretical. First, methodologically, MVPA overcame the drawbacks of traditional EEG analyses based on specific averaged voltage intensities, providing new perspectives on how the brain dynamically encoded particular neural representations over time. Furthermore, RSA aimed to identify which indicators among the decoded were directly related to behavioral representation patterns. Second, in terms of empirical results, using these two methods, we have identified for the first time three EEG markers that modulate the Stroop effect under verbal working memory load: SP, late theta, and beta, with late theta being directly linked to the elimination of the behavioral Stroop effect. Lastly, from a theoretical perspective, we proposed the novel idea that working memory played a crucial role in the late stages of conflict processing, specifically in the stimulus-response mapping stage (the specific theoretical contributions are detailed in the second-to-last paragraph of the Discussion section).

      Comment 5: On page 14, lines 280-287, the authors discuss a specific pattern observed in the alpha band. However, the manuscript does not provide the corresponding results to substantiate this discussion. It is recommended to include these results as supplementary material.

      We thank the reviewer for this suggestion. We added a new figure along with the corresponding statistical results that displayed the specific result patterns for the alpha band (Supplementary Figure 1).

      Comment 6: On page 16, lines 323-328, the authors provide a generalized explanation of the findings. According to load theory, stimuli compete for resources only when represented in the same form. Since the pre-memorized Chinese characters are represented semantically in working memory, this explanation lacks a critical premise: that semantic-response mapping is also represented semantically during processing.

      We thank the reviewer for this insightful suggestion. We fully agree with the reviewer’s perspective. As stated in our revised version, load theory suggests that cognitive resources are limited and dependent on a specific type (in the second paragraph of the Discussion section). The previously memorized Chinese characters are stored in working memory in the form of semantic representations; meanwhile the stimulus-response mapping should also be represented semantically, leading to resource occupancy. We have included this logical premise in the revised version (in the third-to-last paragraph of the Discussion section).

      Comment 7: The classic Stroop task includes both a manual and a vocal version. Since stimulus-response mapping in the vocal version is more automatic than in the manual version, it is unclear whether the findings of this study would generalize to the impact of working memory load on the Stroop effect in the vocal version.

      We fully agree with the reviewer’s point that the verbal version of the Stroop task differs from the manual version in terms of the degree of automation in the stimulus-response mapping. Specifically, the verbal version relies on mappings that are established through daily language use, while the manual version involves arbitrary mappings created in the laboratory. Therefore, the stimulus-response mapping in the verbal response version is more automated and less likely to be suppressed. However, our previous research indicated that the degree of automation in the stimulus-response mapping was influenced by practice (Chen et al., 2013). After approximately 128 practice trials, semantic conflict almost disappears, suggesting that the level of automation in stimulus-response mapping for the verbal Stroop task is comparable to that of the manual version (Chen et al., 2010). Given that participants in our study completed 144 practice trials (in the Procedure section), we believe these findings can be generalized to the verbal version.

      Comment 8: While the discussion section provides a comprehensive analysis of the study’s results, the authors could further elaborate on the theoretical and practical contributions of this work.

      We thank the reviewer for the constructive suggestions. We recognize that the theoretical and practical contributions of the study were not thoroughly elaborated in the original manuscript. Therefore, we have now provided a more detailed discussion. Specifically, the theoretical contributions focus on advancing load theory and highlighting the critical role of working memory in conflict processing. The practical contributions emphasize the application of load theory and the development of intervention strategies for enhancing inhibitory control. A more detailed discussion can be found in the revised version (in the second-to-last paragraph of the Discussion section).

      Reviewer #2 (Public review):

      Comment 1: As the researchers mentioned, a previous study reported a diminished Stroop effect with concurrent working memory tasks to memorize meaningless visual shapes rather than memorize Chinese characters as in the study. My main concern is that lower-level graphic processing when memorizing visual shapes also influences the Stroop effect. The stage of Stroop conflict processing affected by the working memory load may depend on the specific content of the concurrent working memory task. If that’s the case, I sense that the generalization of this finding may be limited.

      We thank the reviewer for this insightful concern. As mentioned in the manuscript, this may be attributed to the inherent characteristics of Chinese characters. In contrast to English words, the processing of Chinese characters relies more on graphemic encoding and memory (Chen, 1993). Therefore, the processing of line patterns essentially occupies some of the resources needed for character processing, which aligns with our study’s hypothesis based on dimensional overlap. Additionally, regarding the results, even though the previous study presents lower-level line patterns, the results still showed that the working memory load modulated the later theta band. We hypothesize that, regardless of the specific content of the pre-presented working memory load, once the stimulus disappears from view, these loads are maintained as representations in the working memory platform. Therefore, they do not influence early perceptual processing, and resource competition only occurs once the distractors reach the working memory platform. Lastly, previous study has shown that spatial loads, which do not overlap with either the target or distractor dimensions, do not influence conflict effect (Zhao et al., 2010). Taken together, we believe that regardless of the specific content of the concurrent working memory tasks, as long as they occupy resources related to irrelevant stimulus dimensions, they can influence the late-stage processing of conflict effect. Perhaps our original manuscript did not convey this clearly, so we have rephrased it in a more straightforward manner (in the second paragraph of the Discussion section).

      Comment 2: The P1 and N450 components are sensitive to congruency in previous studies as mentioned by the researchers, but the results in the present study did not replicate them. This raised concerns about data quality and needs to be explained.

      We thank the reviewer for this insightful concern. For P1, we aimed to convey that the early perceptual processing represented by P1 is part of the conflict processing process. Therefore, we included it in our analysis. Additionally, as mentioned in the discussion, most studies find P1 to be insensitive to congruency. However, we inappropriately cited a study in the introduction that suggested P1 shows differences in congruency, which is among the few studies that hold this perspective. To prevent confusion for readers, we have removed this citation from the introduction.

      As for N450, most studies have indeed found it to be influenced by congruency. In our manuscript, we did not observe a congruency effect at our chosen electrodes and time window. However, significant congruency effects were detected at other central-parietal electrodes (CP3, CP4, P5, P6) during the 350-500 ms interval. The interaction between task type and consistency remained non-significant, consistent with previous results. Furthermore, with respect to the location of the electrodes chosen, existing studies on N450 vary widely, including central-parietal electrodes and frontal-central electrodes (for a review, see Heidlmayr et al., 2020). We speculate that this phenomenon may be related to the extent of practice. With fewer total trials, the task may involve more stimulus conflicts, engaging more frontal brain areas. On the other hand, with more total trials, the task may involve more response conflicts, engaging more central-parietal brain areas (Chen et al., 2013; van Veen & Carter, 2005). Due to the extensive practice required in our study, we identified a congruency N450 effect in the central-parietal region. We apologize for not thoroughly exploring other potential electrodes in the previous manuscript, and we have revised the results and interpretations regarding N450 accordingly in the revised version (in the N450 section of the ERP results and the third paragraph of the Discussion section).

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Comment 1: In the Introduction, line 108 states: “Second, alpha oscillations (8-13 Hz) can serve as a neural inverse index of mental activity or alertness, while a decrease in alpha power reflects increased alertness or enhanced attentional inhibition of distractors (Arakaki et al., 2022; Tafuro et al., 2019; Zhou et al., 2023; Zhu et al., 2023).” Please clarify which specific psychological process related to conflict processing is reflected by alpha oscillations.

      We appreciate your suggestion and we have clearly highlighted the role of alpha oscillations in attentional engagement during conflict processing in the revised version (in the third-to-last paragraph of the introduction).

      Comment 2: In Figures 3C and 3E, a space is needed between “amplitude” and the preceding parenthesis. Similar adjustments are required in Figures 4A, 4B, 4C, 5C, and 6C. Additionally, in Figures 3B and 3D, a space should be added between the numbers and “ms.” This issue also appears in Figure 8. Please review all figures for these formatting inconsistencies.

      We apologize for the inconsistency in formatting and have corrected them throughout the revised version.

      Comment 3: There are some clerical errors in the manuscript that need correction. For instance, on page 19, line 403: “Participants were asked to answer by pressing one of two response buttons (“S with the left ring finger and “L” with the left ring finger).” This should be corrected to: “L” with the right ring finger. I recommend that the authors carefully proofread the manuscript to identify and correct such errors.

      We sincerely apologize for the errors present in the manuscript and have now carefully proofread it (in the Procedure section).

      Comment 4: On page 13, line 254, the elimination of the Stroop effect should not be interpreted as an improvement in processing.

      We greatly appreciate your suggestion. We agree that the elimination of the Stroop effect should not be confused with improvements in processing. We have corrected this in the revised version (the second paragraph of the Discussion section).

      Reviewer #3 (Recommendations for the authors):

      Comment 1: In the introduction section, the N450 was introduced as “a frontal-central negative deflection”, but in the methods part the N450 was computed using central-parietal electrodes. This inconsistency is confusing and needs to be clarified.

      We apologize for this confusion. We have provided a detailed explanation regarding the differences in electrodes and the rationale behind choosing central-parietal electrodes in our response to Reviewer 2’s second comment. To clarify, we have updated the introduction to consistently label them as central-parietal deflections (in the third paragraph of the Introduction section).

      Comment 2: I speculate the “beta” was mistakenly written as “theta” in line 212.

      We sincerely apologize for this mistake. We have corrected this error (in the RSA results section).

      Comment 3: The speculation that “changes in beta bands may be influenced by theta bands, thereby indirectly influencing the behavioral Stroop effect” needs to be rationalized.

      We appreciate your suggestion. What we intended to convey is that we found an interaction effect in the beta bands; however, the RSA results did not show a correlation with the behavioral interaction effect. We speculate that beta activity might be influenced by the theta bands. On the one hand, we realize that the idea of beta bands indirectly influencing the behavioral Stroop effect was inappropriate, and we have removed this point in the revised version. On the other hand, we have provided rational evidence for the idea that beta bands may be influenced by theta bands. This is based on the biological properties of theta oscillations, which support communication between different cortical neural signals, and their functional role in integrating and transmitting task-relevant information to response execution (in the third-to-last paragraph of the Discussion section).

      Comment 4: Typo in line 479: [10,10].

      We sincerely apologize for this mistake. We have corrected this error: [-10,10] (in the Multivariate pattern analysis section).

      Reference

      Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414–421. https://doi.org/10.1016/j.tics.2014.04.012

      Chen, M. J. (1993). A Comparison of Chinese and English Language Processing. In Advances in Psychology (Vol. 103, pp. 97–117). North-Holland. https://doi.org/10.1016/S0166-4115(08)61659-3

      Chen, X. F., Jiang, J., Zhao, X., & Chen, A. (2010). Effects of practice on semantic conflict and response conflict in the Stroop task. Psychol. Sci., 33, 869–871.

      Chen, Z., Lei, X., Ding, C., Li, H., & Chen, A. (2013). The neural mechanisms of semantic and response conflicts: An fMRI study of practice-related effects in the Stroop task. NeuroImage, 66, 577–584. https://doi.org/10.1016/j.neuroimage.2012.10.028

      Cohen, M. X. (2014). Analyzing Neural Time Series Data: Theory and Practice. The MIT Press. https://doi.org/10.7551/mitpress/9609.001.0001

      Duprez, J., Gulbinaite, R., & Cohen, M. X. (2020). Midfrontal theta phase coordinates behaviorally relevant brain computations during cognitive control. NeuroImage, 207, 116340. https://doi.org/10.1016/j.neuroimage.2019.116340

      Duque, J., Greenhouse, I., Labruna, L., & Ivry, R. B. (2017). Physiological Markers of Motor Inhibition during Human Behavior. Trends in Neurosciences, 40(4), 219–236. https://doi.org/10.1016/j.tins.2017.02.006

      Engel, A. K., & Fries, P. (2010). Beta-band oscillations—Signalling the status quo? Current Opinion in Neurobiology, 20(2), 156–165. https://doi.org/10.1016/j.conb.2010.02.015

      Heidlmayr, K., Kihlstedt, M., & Isel, F. (2020). A review on the electroencephalography markers of Stroop executive control processes. Brain and Cognition, 146, 105637. https://doi.org/10.1016/j.bandc.2020.105637

      Little, S., Bonaiuto, J., Barnes, G., & Bestmann, S. (2019). Human motor cortical beta bursts relate to movement planning and response errors. PLOS Biology, 17(10), e3000479. https://doi.org/10.1371/journal.pbio.3000479

      Morales, S., & Bowers, M. E. (2022). Time-frequency analysis methods and their application in developmental EEG data. Developmental Cognitive Neuroscience, 54, 101067. https://doi.org/10.1016/j.dcn.2022.101067

      Senoussi, M., Verbeke, P., Desender, K., De Loof, E., Talsma, D., & Verguts, T. (2022). Theta oscillations shift towards optimal frequency for cognitive control. Nature Human Behaviour, 6(7), Article 7. https://doi.org/10.1038/s41562-022-01335-5

      van Veen, V., & Carter, C. S. (2005). Separating semantic conflict and response conflict in the Stroop task: A functional MRI study. NeuroImage, 27(3), 497–504. https://doi.org/10.1016/j.neuroimage.2005.04.042

      Zhao, X., Chen, A., & West, R. (2010). The influence of working memory load on the Simon effect. Psychonomic Bulletin & Review, 17(5), 687–692. https://doi.org/10.3758/PBR.17.5.687

    1. Author response:

      The following is the authors’ response to the previous reviews.

      We are grateful to the editors and reviewers for their careful reading and constructive comments. We have now done our best to respond to them fully through additional analyses and text revisions. In the sections below, the original reviewer comments are in black, and our responses are in red.

      To summarize, the major changes in this round of review are as follows:

      (1) We have included a new introductory figure (Figure 1) to explain the distinction between feature-based tasks and property-based tasks.

      (2) We have included a section on “key predictions” and a section on “overview of this study” in the Introduction to clearly delineate our key predictions and provide a overview of our study.

      (3) We have included additional analyses to address the reviewers’ concerns about circularity in Experiments 1 & 2. We show that distance-to-center or visual homogeneity computations performed on object representations obtained from deep networks (instead of the perceptual dissimilarities from Experiment 1) also yields comparable predictions of target-present and target-absent responses in Experiment 2. 

      (4) We have extensively reworked the manuscript wherever possible to address the specific concerns raised by the reviewers.

      We hope that the revised manuscript adequately addresses the concerns raised in this round of review, and we look forward to a positive assessment.

      eLife Assessment

      This study uses carefully designed experiments to generate a useful behavioural and neuroimaging dataset on visual cognition. The results provide solid evidence for the involvement of higher-order visual cortex in processing visual oddballs and asymmetry. However, the evidence provided for the very strong claims of homogeneity as a novel concept in vision science, separable from existing concepts such as target saliency, is inadequate.

      Thank you for your positive assessment. We agree that visual homogeneity is similar to existing concepts such as target saliency, memorability etc. We have proposed it as a separate concept because visual homogeneity has an independent empirical measure (the reciprocal of target-absent search time in oddball search, or the reciprocal of same response time in a same-different task, etc) that may or may not be the same as other empirical measures such as saliency and memorability. Investigating these possibilities is beyond the scope of our study but would be interesting for future work. We have now clarified this in the revised manuscript (Discussion, p. 42).

      However, we’d like to emphasize that the question of whether visual homogeneity is novel or related to existing concepts misses entirely the key contribution of our study.

      Our key contribution is a quantitative, falsifiable model for how the brain could be solving property-based tasks like same-different, oddball or symmetry. Most theories of decision making consider feature-based tasks where there is a well-defined feature space and decision variable. Property-based tasks pose a significant challenge to standard theories since it is not clear how these tasks could be solved. In fact, oddball search, same-different and symmetry tasks have been considered so different that they are rarely even mentioned in the same study. Our study represents a unifying framework showing that all three tasks can be understood as solving the same underlying fundamental problem, and presents evidence in favor of this solution.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors define a new metric for visual displays, derived from psychophysical response times, called visual homogeneity (VH). They attempt to show that VH is explanatory of response times across multiple visual tasks. They use fMRI to find visual cortex regions with VH-correlated activity. On this basis, they declare a new visual region in human brain, area VH, whose purpose is to represent VH for the purpose of visual search and symmetry tasks.

      Thank you for your accurate and positive assessment.

      Strengths:

      The authors present carefully designed experiments, combining multiple types of visual judgments and multiple types of visual stimuli with concurrent fMRI measurements. This is a rich dataset with many possibilities for analysis and interpretation.

      Thank you for your accurate and positive assessment.

      Weaknesses:

      The datasets presented here should provide a rich basis for analysis. However, in this version of the manuscript, I believe that there are major problems with the logic underlying the authors' new theory of visual homogeneity (VH), with the specific methods they used to calculate VH, and with their interpretation of psychophysical results using these methods. These problems with the coherency of VH as a theoretical construct and metric value make it hard to interpret the fMRI results based on searchlight analysis of neural activity correlated with VH.

      We respectfully disagree with your concerns, and have done our best to respond to them fully below.

      In addition, the large regions of VH correlations identified in Experiments 1 and 2 vs. Experiments 3 and 4 are barely overlapping. This undermines the claim that VH is a universal quantity, represented in a newly discovered area of visual cortex, that underlies a wide variety of visual tasks and functions.

      We respectfully disagree with your assertion. First of all, there is partial overlap between the VH regions, for which there are several other obvious explanations that must be considered first before dismissing VH outright as a flawed construct. We acknowledge these alternatives in the Results (p. 27), and the relevant text is reproduced below.

      “We note that it is not straightforward to interpret the overlap between the VH regions identified in Experiments 2 & 4. The lack of overlap could be due to stimulus differences (natural images in Experiment 2 vs silhouettes in Experiment 4), visual field differences (items in the periphery in Experiment 2 vs items at the fovea in Experiment 4) and even due to different participants in the two experiments. There is evidence supporting all these possibilities: stimulus differences (Yue et al., 2014), visual field differences (Kravitz et al., 2013) as well as individual differences can all change the locus of neural activations in object-selective cortex (Weiner and Grill-Spector, 2012a; Glezer and Riesenhuber, 2013). We speculate that testing the same participants on search and symmetry tasks using similar stimuli and display properties would reveal even larger overlap in the VH regions that drive behavior.”

      Maybe I have missed something, or there is some flaw in my logic. But, absent that, I think the authors should radically reconsider their theory, analyses, and interpretations, in light of detailed comments below, in order to make the best use of their extensive and valuable datasets combining behavior and fMRI. I think doing so could lead to a much more coherent and convincing paper, albeit possibly supporting less novel conclusions.

      We respectfully disagree with your assessment, and we hope that our detailed responses below will convince you of the merit of our claims.

      THEORY AND ANALYSIS OF VH

      (1) VH is an unnecessary, complex proxy for response time and target-distractor similarity.<br /> VH is defined as a novel visual quality, calculable for both arrays of objects (as studied in Experiments 1-3) and individual objects (as studied in Experiment 4). It is derived from a center-to-distance calculation in a perceptual space. That space in turn is derived from multi-dimensional scaling of response times for target-distractor pairs in an oddball detection task (Experiments 1 and 2) or in a same different task (Experiments 3 and 4).  Proximity of objects in the space is inversely proportional to response times for arrays in which they were paired. These response times are higher for more similar objects. Hence, proximity is proportional to similarity. This is visible in Fig. 2B as the close clustering of complex, confusable animal shapes.

      VH, i.e. distance-to-center, for target-present arrays is calculated as shown in Fig. 1C, based on a point on the line connecting target and distractors. The authors justify this idea with previous findings that responses to multiple stimuli are an average of responses to the constituent individual stimuli. The distance of the connecting line to the center is inversely proportional to the distance between the two stimuli in the pair, as shown in Fig. 2D. As a result, VH is inversely proportional to distance between the stimuli and thus to stimulus similarity and response times. But this just makes VH a highly derived, unnecessarily complex proxy for target-distractor similarity and response time. The original response times on which the perceptual space is based are far more simple and direct measures of similarity for predicting response times.

      Thank you for carefully thinking through our logic. We agree that a distance-to-centre calculation is entirely unnecessary as an explanation for target-present visual search. The difficulty of target-present search is already known to be directly proportional to the similarity between target and distractor, so there is nothing new to explain here.

      However, this is a narrow and selective interpretation of our findings because you are focusing only on our results on target-present searches, which are only half of all our data. The other half is the target-absent responses which previously have had no clear explanation. You are also missing the fact that we are explaining same-different and symmetry tasks as well using the same visual homogeneity computation.

      We urge you to think more deeply about the problem of how to decide whether an oddball is present or not in the first place. How do we actually solve this task? There must be some underlying representation and decision process. Our study shows that a distance-to-centre computation can actually serve as a decision variable to solve disparate property-based visual tasks. These tasks pose a major challenge to standard models of decision making, because the underlying representation and decision variable have been unclear. Our study resolves this challenge by proposing a novel computation that can be used by the brain to solve all these disparate tasks, and bring these tasks into the ambit of standard theories of decision making.  

      Our results also explain several interesting puzzles in the literature. If oddball search was driven only by target-distractor similarity, the time taken to respond when a target is absent should not vary at all, and should actually take longer than all target-present searches. But in fact, systematic variations in target-absent times have been observed always in the literature, but have never been explained using any theoretical models. Our results explain why target-absent times vary systematically – it is due to visual homogeneity.

      Similarly, in same-different tasks, participants are known to take longer to make a “different” response when the two items differ only slightly. By this logic, they should take the longest to make a “same” response, but in fact, paradoxically, participants are actually faster to make “same” responses. This fast-same effect has been noted several times, but never explained using any models. Our results provide an explanation of why “same” responses to an image vary systematically – it is due to visual homogeneity. 

      Finally, in symmetry tasks, symmetric objects evoke fast responses, and this has always been taken as evidence for special symmetry computations in the brain. But we show that the same distance-to-center computation can explain both responses to symmetric and asymmetric objects. Thus there is no need for a special symmetry computation in the brain.

      (2) The use of VH derived from Experiment 1 to predict response times in Experiment 2 is circular and does not validate the VH theory.<br /> The use of VH, a response time proxy, to predict response times in other, similar tasks, using the same stimuli, is circular. In effect, response times are being used to predict response times across two similar experiments using the same stimuli. Experiment 1 and the target present condition of Experiment 2 involve the same essential task of oddball detection. The results of Experiment 1 are converted into VH values as described above, and these are used to predict response times in experiment 2 (Fig. 2F). Since VH is a derived proxy for response values in Experiment 1, this prediction is circular, and the observed correlation shows only consistency between two oddball detection tasks in two experiments using the same stimuli.

      You are indeed correct in noting that both Experiment 1 & 2 involve oddball search, and so at the superficial level, it looks circular that the oddball search data of Experiment 1 is being used to explain the oddball search data of Experiment 2.

      However a deeper scrutiny reveals more fundamental differences: Experiment 1 consisted of only oddball search with the target appearing on the left or right, whereas Experiment 2 consisted of oddball search with the target either present or completely absent. In fact, we were merely using the search dissimilarities from Experiment 1 to reconstruct the underlying object representation, because it is well known that neural dissimilarities are predicted well by search dissimilarities (Sripati & Olson, 2009; Zhivago et al, 2014).

      To thoroughly refute any lingering concern about circularity, we reasoned that the model predictions for Experiment 2 could have been obtained by a distance-to-center computation on any brain like object representation. To this end, we used object representations from deep neural networks pretrained on object categorization, whose representations are known to match well with the brain, and asked if a distance-to-centre computation on these representations could predict the search data in Experiment 2. This was indeed the case, and these results are now included an additional section in Supplementary Material (Section S1).

      (3) The negative correlation of target-absent response times with VH as it is defined for target-absent arrays, based on distance of a single stimulus from center, is uninterpretable without understanding the effects of center-fitting. Most likely, center-fitting and the different VH metric for target-absent trials produce an inverse correlation of VH with target-distractor similarity.

      Unfortunately, as we have mentioned above, target-distractor similarity cannot explain how target-absent searches behave, since there is no distractor in such searches.

      We do understand your broader concern about the center-fitting algorithm itself. We performed a number of additional analyses to confirm the generality of our results and reject alternate explanations – these are summarized in a new section titled “Confirming the generality of visual homogeneity” (p. 12), and the section is reproduced below for your convenience.   

      “Confirming the generality of visual homogeneity

      We performed several additional analyses to confirm the generality of our results, and to reject alternate explanations.

      First, it could be argued that our results are circular because they involve taking oddball search times from Experiment 1 and using them to explain search response times in Experiment 2. This is a superficial concern since we are using the search dissimilarities from Experiment 1 only as a proxy for the underlying neural representation, based on previous reports that neural dissimilarities closely match oddball search dissimilarities (Sripati and Olson, 2010; Zhivago and Arun, 2014). Nonetheless, to thoroughly refute this possibility, we reasoned that we would get similar predictions of the target present/absent responses in Experiment using any other brain-like object representation. To confirm this, we replaced the object representations derived from Experiment 1 with object representations derived from deep neural networks pretrained for object categorization, and asked if distance-to-center computations could predict the target present/absent responses in Experiment 2. This was indeed the case (Section S1). 

      Second, we wondered whether the nonlinear optimization process of finding the best-fitting center could be yielding disparate optimal centres each time. To investigate this, we repeated the optimization procedure with many randomly initialized starting points, and obtained the same best-fitting center each time (see Methods).

      Third, to confirm that the above model fits are not due to overfitting, we performed a leave-one-out cross validation analysis. We left out all target-present and target-absent searches involving a particular image, and then predicted these searches by calculating visual homogeneity estimated from all other images. This too yielded similar positive and negative correlations (r = 0.63, p < 0.0001 for target-present, r = -0.63, p < 0.001  for target-absent).

      Fourth, if heterogeneous displays indeed elicit similar neural responses due to mixing, then their average distance to other objects must be related to their visual homogeneity. We confirmed that this was indeed the case, suggesting that the average distance of an object from all other objects in visual search can predict visual homogeneity (Section S1).

      Fifth, the above results are based on taking the neural response to oddball arrays to be the average of the target and distractor responses. To confirm that averaging was indeed the optimal choice, we repeated the above analysis by assuming a range of relative weights between the target and distractor. The best correlation was obtained for almost equal weights in the lateral occipital (LO) region, consistent with averaging and its role in the underlying perceptual representation (Section S1).

      Finally, we performed several additional experiments on a larger set of natural objects as well as on silhouette shapes. In all cases, present/absent responses were explained using visual homogeneity (Section S2).”

      The construction of the VH perceptual space also involves fitting a "center" point such that distances to center predict response times as closely as possible. The effect of this fitting process on distance-to-center values for individual objects or clusters of objects is unknowable from what is presented here. These effects would depend on the residual errors after fitting response times with the connecting line distances. The center point location and its effects on distance-to-center of single objects and object clusters are not discussed or reported here.

      While it is true that the optimal center needs to be found by fitting to the data, there no particular mystery to the algorithm: we are simply performing a standard gradient-descent to maximize the fit to the data. We have described the algorithm clearly and are making our codes public. We find the algorithm to yield stable optimal centers despite many randomly initialized starting points. We find the optimal center to be able to predict responses to entirely novel images that were excluded during model training. We are making no assumption about the location of centre with respect to individual points. Therefore, we see no cause for concern regarding the center-finding algorithm. 

      Yet, this uninterpretable distance-to-center of single objects is chosen as the metric for VH of target-absent displays (VHabsent). This is justified by the idea that arrays of a single stimulus will produce an average response equal to one stimulus of the same kind. But it is not logically clear why response strength to a stimulus should be a metric for homogeneity of arrays constructed from that stimulus, or even what homogeneity could mean for a single stimulus from this set. And it is not clear how this VHabsent metric based on single stimuli can be equated to the connecting line VH metric for stimulus pairs, i.e. VHpresent, or how both could be plotted on a single continuum.

      Most visual tasks, such as finding an animal, are thought to involve building a decision boundary on some underlying neural representation. Even visual search has been portrayed as a signal-detection problem where a particular target is to be discriminated from a distractor. However none of these formulations work in the case of property-based visual tasks, where there is no unique feature to look for.

      We are proposing that, when we view a search array, the neural response to the search array can be deduced from the neural responses to the individual elements using well known rules, and that decisions about an oddball target being present or absent can be made by computing the distance of this neural response from some canonical mean firing rate of a population of neurons. This distance to center computation is what we denote as visual homogeneity. We have revised our manuscript throughout to make this clearer and we hope that this helps you understand the logic better. 

      It is clear, however, what *should* be correlated with difficulty and response time in the target-absent trials, and that is the complexity of the stimuli and the numerosity of similar distractors in the overall stimulus set. Complexity of the target, similarity with potential distractors, and number of such similar distractors all make ruling out distractor presence more difficult. The correlation seen in Fig. 2G must reflect these kinds of effects, with higher response times for complex animal shapes with lots of similar distractors and lower response times for simpler round shapes with fewer similar distractors.

      You are absolutely correct that the stimulus complexity should matter, but there are no good empirically derived measures for stimulus complexity, other than subjective ratings which are complex on their own and could be based on any number of other cognitive and semantic factors. But considering what factors are correlated with target-absent response times is entirely different from asking what decision variable or template is being used by participants to solve the task.

      The example points in Fig. 2G seem to bear this out, with higher response times for the deer stimulus (complex, many close distractors in the Fig. 2B perceptual space) and lower response times for the coffee cup (simple, few close distractors in the perceptual space). While the meaning of the VH scale in Fig. 2G, and its relationship to the scale in Fig. 2F, are unknown, it seems like the Fig. 2G scale has an inverse relationship to stimulus complexity, in contrast to the expected positive relationship for Fig. 2F. This is presumably what creates the observed negative correlation in Fig. 2G.

      Taken together, points 1-3 suggest that VHpresent and VHabsent are complex, unnecessary, and disconnected metrics for understanding target detection response times. The standard, simple explanation should stand. Task difficulty and response time in target detection tasks, in both present and absent trials, are positively correlated with target-distractor similarity.

      We strongly disagree. Your assessment seems to be based on only considering target-present searches, which are of course driven by target-distractor similarity. Your  argument is flawed because systematic variations in target-absent trials cannot be linked to any target-distractor similarity since there are no targets in the first place in such trials.

      We have shown that target-absent response times are in fact, independent of experimental context, which means that they index an image property that is independent of any reference target (Results, p. 15; Section S4). This property is what we define as visual homogeneity.

      I think my interpretations apply to Experiments 3 and 4 as well, although I find the analysis in Fig. 4 especially hard to understand. The VH space in this case is based on Experiment 3 oddball detection in a stimulus set that included both symmetric and asymmetric objects. But the response times for a very different task in Experiment 4, a symmetric/asymmetric judgment, are plotted against the axes derived from Experiment 3 (Fig. 4F and 4G). It is not clear to me why a measure based on oddball detection that requires no use of symmetry information should be predictive of within-stimulus symmetry detection response times. If it is, that requires a theoretical explanation not provided here.

      We were simply using an oddball detection task to construct the underlying object representation, on the basis of observations that search dissimilarities are strongly correlated with neural   dissimilarities. In Section S1, we show that similar results could have been obtained using other object representations such as deep networks, as long as the representation is brain-like.

      (4) Contrary to the VH theory, same/different tasks are unlikely to depend on a decision boundary in the middle of a similarity or homogeneity continuum.

      We have provided empirical proof for our claims, by showing that target-present response times in a visual search task are correlated with “different” responses in the same-different task, and that target-absent response times in the visual search task are correlated with “same” responses in the same-different task (Section S4).

      The authors interpret the inverse relationship of response times with VHpresent and VHabsent, described above, as evidence for their theory. They hypothesize, in Fig. 1G, that VHpresent and VHabsent occupy a single scale, with maximum VHpresent falling at the same point as minimum VHabsent. This is not borne out by their analysis, since the VHpresent and VHabsent value scales are mainly overlapping, not only in Experiments 1 and 2 but also in Experiments 3 and 4. The authors dismiss this problem by saying that their analyses are a first pass that will require future refinement. Instead, the failure to conform to this basic part of the theory should be a red flag calling for revision of the theory.

      Again, the opposite correlations between target present/absent search times with VH are the crucial empirical validation of our claims that a distance-to-center calculation explain how we perform these property-based tasks. The VH predictions do not fully explain the data. We have explicitly acknowledged this shortcoming, so we are hardly dismissing it as a problem. 

      The reason for this single scale is that the authors think of target detection as a boundary decision task, along a single scale, with a decision boundary somewhere in the middle, separating present and absent. This model makes sense for decision dimensions or spaces where there are two categories (right/left motion; cats vs. dogs), separated by an inherent boundary (equal left/right motion; training-defined cat/dog boundary). In these cases, there is less information near the boundary, leading to reduced speed/accuracy and producing a pattern like that shown in Fig. 1G.

      Finding an oddball, deciding if two items are same or different and symmetry tasks are disparate visual tasks that do not fit neatly into standard models of decision making. The key conceptual advance of our study is that we propose a plausible neural representation and decision variable that allow all three property-based visual tasks to be reconciled with standard models of decision making.

      This logic does not hold for target detection tasks. There is no inherent middle point boundary between target present and target absent. Instead, in both types of trial, maximum information is present when target and distractors are most dissimilar, and minimum information is present when target and distractors are most similar. The point of greatest similarity occurs at then limit of any metric for similarity. Correspondingly, there is no middle point dip in information that would produce greater difficulty and higher response times. Instead, task difficulty and response times increase monotonically with similarity between targets and distractors, for both target present and target absent decisions. Thus, in Figs. 2F and 2G, response times appear to be highest for animals, which share the largest numbers of closely similar distractors.        

      Your alternative explanation rests on vague factors like “maximum information” which cannot be quantified. By contrast we are proposing a concrete, falsifiable model for three property-based tasks – same/different, oddball present/absent and object symmetry. Any argument based solely on item similarity to explain visual search or symmetry responses cannot explain systematic variations observed for target-absent arrays and for symmetric objects, for the reasons explained earlier.

      DEFINITION OF AREA VH USING fMRI

      (1) The area VH boundaries from different experiments are nearly completely non-overlapping.

      In line with their theory that VH is a single continuum with a decision boundary somewhere in the middle, the authors use fMRI searchlight to find an area whose responses positively correlate with homogeneity, as calculated across all of their target present and target absent arrays. They report VH-correlated activity in regions anterior to LO. However, the VH defined by symmetry Experiments 3 and 4 (VHsymmetry) is substantially anterior to LO, while the VH defined by target detection Experiments 1 and 2 (VHdetection) is almost immediately adjacent to LO. Fig. S13 shows that VHsymmetry and VHdetection are nearly non-overlapping. This is a fundamental problem with the claim of discovering a new area that represents a new quantity that explains response times across multiple visual tasks. In addition, it is hard to understand why VHsymmetry does not show up in a straightforward subtraction between symmetric and asymmetric objects, which should show a clear difference in homogeneity.

      We respectfully disagree. The partial overlap between the VH regions identified in Experiments 1 & 2 can hardly be taken as evidence against the quantity VH itself, because there are several other obvious alternate explanations for this partial overlap, as summarized earlier as well. The VH region does show up in a straightforward subtraction  between symmetric and asymmetric objects (Section S7), so we are not sure what the Reviewer is referring to here.

      (2) It is hard to understand how neural responses can be correlated with both VHpresent and VHabsent.

      The main paper results for VHdetection are based on both target-present and target-absent trials, considered together. It is hard to interpret the observed correlations, since the VHpresent and VHabsent metrics are calculated in such different ways and have opposite correlations with target similarity, task difficulty, and response times (see above). It may be that one or the other dominates the observed correlations. It would be clarifying to analyze correlations for target-present and target-absent trials separately, to see if they are both positive and correlated with each other.

      Thanks for raising this point. We have now confirmed that the positive correlation between VH and neural response holds even when we do the analysis separately for target-present and -absent searches (correlation between neural response in VH region and visual homogeneity (n = 32, r = 0.66, p < 0.0005 for target-present searches & n = 32, r = 0.56, p < 0.005 for target-absent searches).

      (3) Definition of the boundaries and purpose of a new visual area in the brain requires circumspection, abundant and convergent evidence, and careful controls.

      Even if the VH metric, as defined and calculated by the authors here, is a meaningful quantity, it is a bold claim that a large cortical area just anterior to LO is devoted to calculating this metric as its major task. Vision involves much more than target detection and symmetry detection. Cortex anterior to LO is bound to perform a much wider range of visual functionalities. If the reported correlations can be clarified and supported, it would be more circumspect to treat them as one byproduct of unknown visual processing in cortex anterior to LO, rather than treating them as the defining purpose for a large area of visual cortex.

      We totally agree with you that reporting a new brain region would require careful interpretation and abundant and converging evidence. However, this requires many studies worth of work, and historically category-selective regions like the FFA have achieved consensus only after they were replicated and confirmed across many studies. We believe our proposal for the computation of a quantity like visual homogeneity is conceptually novel, and our study represents a first step that provides some converging evidence (through replicable results across different experiments) for such a region. We have reworked our manuscript to make this point clearer (Discussion, p 32).

      Reviewer #3 (Public Review):

      Summary:

      This study proposes visual homogeneity as a novel visual property that enables observers perform to several seemingly disparate visual tasks, such as finding an odd item, deciding if two items are same, or judging if an object is symmetric. In Exp 1, the reaction times on several objects were measured in human subjects. In Exp 2, visual homogeneity of each object was calculated based on the reaction time data. The visual homogeneity scores predicted reaction times. This value was also correlated with the BOLD signals in a specific region anterior to LO. Similar methods were used to analyze reaction time and fMRI data in a symmetry detection task. It is concluded that visual homogeneity is an important feature that enables observers to solve these two tasks.

      Thank you for your accurate and positive assessment.

      Strengths:

      (1) The writing is very clear. The presentation of the study is informative.

      (2) This study includes several behavioral and fMRI experiments. I appreciate the scientific rigor of the authors.

      We are grateful to you for your balanced assessment and constructive comments.

      Weaknesses:

      (1) My main concern with this paper is the way visual homogeneity is computed. On page 10, lines 188-192, it says: "we then asked if there is any point in this multidimensional representation such that distances from this point to the target-present and target-absent response vectors can accurately predict the target-present and target-absent response times with a positive and negative correlation respectively (see Methods)". This is also true for the symmetry detection task. If I understand correctly, the reference point in this perceptual space was found by deliberating satisfying the negative and positive correlations in response times. And then on page 10, lines 200-205, it shows that the positive and negative correlations actually exist. This logic is confusing. The positive and negative correlations emerge only because this method is optimized to do so. It seems more reasonable to identify the reference point of this perceptual space independently, without using the reaction time data. Otherwise, the inference process sounds circular. A simple way is to just use the mean point of all objects in Exp 1, without any optimization towards reaction time data.

      We disagree with you since the same logic applies to any curve-fitting procedure. When we fit data to a straight line, we are finding the slope and intercept that minimizes the error between the data and the straight line, but we would hardly consider the process circular when a good fit is achieved – in fact we take it as a confirmation that the data can be fit linearly. In the same vein, we would not have observed a good fit to the data, if there did not exist any good reference point relative to which the distances of the target-present and target-absent search arrays predicted these response times.

      In Section S2, we show that the visual homogeneity estimates for each object is strongly correlated with the average distance of each object to all other objects (r = 0.84, p<0.0005, Figure S1).

      We have performed several additional analyses to confirm the generality of our results and to reject alternate explanations (see Results, p. 12, Section titled “Confirming the generality of visual homogeneity”). In particular, to confirm that the results we obtained are not due to overfitting, we performed a cross-validation analysis, where we removed all searches involving a particular image and predicted these response times using visual homogeneity. This too revealed a significant model correlation confirming that our results are not due to overfitting.

      (2) Visual homogeneity (at least given the current from) is an unnecessary term. It is similar to distractor heterogeneity/distractor variability/distractor statics in literature. However, the authors attempt to claim it as a novel concept. The title is "visual homogeneity computations in the brain enable solving generic visual tasks". The last sentence of the abstract is "a NOVEL IMAGE PROPERTY, visual homogeneity, is encoded in a localized brain region, to solve generic visual tasks". In the significance, it is mentioned that "we show that these tasks can be solved using a simple property WE DEFINE as visual homogeneity". If the authors agree that visual homogeneity is not new, I suggest a complete rewrite of the title, abstract, significance, and introduction.

      We respectfully disagree that visual homogeneity is an unnecessary term. Please see our comments to Reviewer 1 above. Just like saliency and memorability can be measured empirically, we propose that visual homogeneity can be empirically measured as the reciprocal of the target-absent search time in a search task, or as the reciprocal of the “same” response time in a same-different task. Understanding how these three quantities interact will require measuring them empirically for an identical set of images, which is beyond the scope of this study but an interesting possibility for future work.

      (3) Also, "solving generic tasks" is another overstatement. The oddball search tasks, same-different tasks, and symmetric tasks are only a small subset of many visual tasks. Can this "quantitative model" solve motion direction judgment tasks, visual working memory tasks? Perhaps so, but at least this manuscript provides no such evidence. On line 291, it says "we have proposed that visual homogeneity can be used to solve any task that requires discriminating between homogeneous and heterogeneous displays". I think this is a good statement. A title that says "XXXX enable solving discrimination tasks with multi-component displays" is more acceptable. The phrase "generic tasks" is certainly an exaggeration.

      Thank you for your suggestion. We have now replaced the term “generic tasks” with the term property-based tasks, which we feel is more appropriate and reflect the fact that oddball search, same-different and symmetry tasks all involve looking for a specific image property.

      (4) If I understand it correctly, one of the key findings of this paper is "the response times for target-present searches were positively correlated with visual homogeneity. By contrast, the response times for target-absent searches were negatively correlated with visual homogeneity" (lines 204-207). I think the authors have already acknowledged that the positive correlation is not surprising at all because it reflects the classic target-distractor similarity effect. But the authors claim that the negative correlations in target-absent searches is the true novel finding.

      (5) I would like to make it clear that this negative correlation is not new either. The seminal paper by Duncan and Humphreys (1989) has clearly stated that "difficulty increases with increased similarity of targets to nontargets and decreased similarity between nontargets" (the sentence in their abstract). Here, "similarity between nontargets" is the same as the visual homogeneity defined here. Similar effects have been shown in Duncan (1989) and Nagy, Neriani, and Young (2005). See also the inconsistent results in Nagy & Thomas, 2003, Vicent, Baddeley, Troscianko & Gilchrist, 2009. More recently, Wei Ji Ma has systematically investigated the effects of heterogeneous distractors in visual search. I think the introduction part of Wei Ji Ma's paper (2020) provides a nice summary of this line of research. I am surprised that these references are not mentioned at all in this manuscript (except Duncan and Humphreys, 1989).

      You are right in noting that Duncan and Humphreys (1989) propose that searches are more difficult when nontargets are dissimilar. However, since our searches have identical distractors, the similarity between nontargets is always constant across target-absent searches, and therefore this cannot predict any systematic variation in target-absent search that is observed in our data. By contrast, our results explain both target-absent searches and target-present searches.

      Thank you for pointing us to previous work. These studies show that it is not just the average distractor similarity but the statistics of the distractor similarity that drive visual search. However these studies do not explain why target-absent searches should vary systematically. 

      (6) If the key contribution is the quantitative model, the study should be organized in a different way. Although the findings of positive and negative correlations are not novel, it is still good to propose new models to explain classic phenomena. I would like to mention the three studies by Wei Ji Ma (see below). In these studies, Bayesian observer models were established to account for trial-by-trial behavioral responses. These computational models can also account for the set-size effect, behavior in both localization and detection tasks. I see much more scientific rigor in their studies. Going back to the quantitative model in this paper, I am wondering whether the model can provide any qualitative prediction beyond the positive and negative correlations? Can the model make qualitative predictions that differ from those of Wei Ji's model? If not, can the authors show that the model can quantitatively better account for the data than existing Bayesian models? We should evaluate a model either qualitatively or quantitatively.

      Thank you for pointing us to prior work by Wei Ji Ma. These studies systematically examined visual search for a target among heterogeneous distractors using simple parametric stimuli and a Bayesian modeling framework. By contrast, our experiments involve searching for single oddball targets among multiple identical distractors, so it is not clear to us that the Wei Ji Ma models can be easily used to generate predictions about these searches used in our study. 

      We are not sure what you mean by offering quantitative predictions beyond positive and negative correlations. We have tried to explain systematic variation in target-present and target-absent response times using a model of how these decisions are being made. Our model explains a lot of systematic variation in the data for both types of decisions.

      (7) In my opinion, one of the advantages of this study is the fMRI dataset, which is valuable because previous studies did not collect fMRI data. The key contribution may be the novel brain region associated with display heterogeneity. If this is the case, I would suggest using a more parametric way to measure this region. For example, one can use Gabor stimuli and systematically manipulate the variations of multiple Gabor stimuli, the same logic also applies to motion direction. If this study uses static Gabor, random dot motion, object images that span from low-level to high-level visual stimuli, and consistently shows that the stimulus heterogeneity is encoded in one brain region, I would say this finding is valuable. But this sounds like another experiment. In other words, it is insufficient to claim a new brain region given the current form of the manuscript.

      We agree that parametric stimulus manipulations are important for studying early visual areas where stimulus dimensions are known (e.g. orientation, spatial frequency). Using parametric stimulus manipulations for more complex stimuli is fraught with issues because the underlying representation may not be encoding the dimensions being manipulated. This is the reason why we attempted to recover the underlying neural representation using dissimilarities measured using visual search, and then asked whether a decision making process operating on this underlying representation can explain how decisions are made. Therefore we disagree that parametric stimulus manipulations are the only way to obtain insight into such tasks.

      We have proposed a quantitative model that explains how decisions about target present and absent can be made through distance-to-center computations on an underlying object representation. We feel that the behavioural and the brain imaging results strongly point to a novel computation that is being performed in a localized region in the brain. These results represent an important first step in understanding how complex, property-based tasks are performed by the brain. We have revised our manuscript to make this point clearer.

      REFERENCES

      - Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433-458. doi: 10.1037/0033-295x.96.3.433

      - Duncan, J. (1989). Boundary conditions on parallel processing in human vision. Perception, 18(4), 457-469. doi: 10.1068/p180457

      - Nagy, A. L., Neriani, K. E., & Young, T. L. (2005). Effects of target and distractor heterogeneity on search for a color target. Vision Research, 45(14), 1885-1899. doi: 10.1016/j.visres.2005.01.007

      - Nagy, A. L., & Thomas, G. (2003). Distractor heterogeneity, attention, and color in visual search. Vision Research, 43(14), 1541-1552. doi: 10.1016/s0042-6989(03)00234-7

      - Vincent, B., Baddeley, R., Troscianko, T., & Gilchrist, I. (2009). Optimal feature integration in visual search. Journal of Vision, 9(5), 15-15. doi: 10.1167/9.5.15

      - Singh, A., Mihali, A., Chou, W. C., & Ma, W. J. (2023). A Computational Approach to Search in Visual Working Memory.

      - Mihali, A., & Ma, W. J. (2020). The psychophysics of visual search with heterogeneous distractors. BioRxiv, 2020-08.

      - Calder-Travis, J., & Ma, W. J. (2020). Explaining the effects of distractor statistics in visual search. Journal of Vision, 20(13), 11-11.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      The authors have not made substantive changes to address my major concerns. Instead, they have responded with arguments about why their original manuscript was good as written. I did not find these arguments persuasive. Given that, I've left my public review the same, since it still represents my opinions about the paper. Readers can judge which viewpoints are more persuasive.

      We respectfully disagree: we have tried our best to address your concerns with additional analysis wherever feasible, and by acknowledging any limitations.

      Reviewer #3 (Recommendations For The Authors):

      (1) As I mentioned above, please consider rewriting title, abstract, introduction, and significance. Please remove the word "visual homogeneity" and instead use distractor heterogeneity/distractor variability/distractor statistics as often used in literature.

      To clarify, visual homogeneity is NOT the same as distractor homogeneity. Visual homogeneity refers to a distance-to-center computation and represents an image-computable property that can vary systematically even when all distractors are identical. By contrast distractor heterogeneity varies only when distractors are different from each other.

      (2) Better to remove the phrase "generic tasks".

      Thanks for your suggestions. We now refer to these tasks as property-based tasks. 

      (3) Better to explicitly specify the predictions made by the quantitative model beyond positive and negative correlations.

      The predictions of the quantitative model are to explain systematic variation in the response times. We are not sure what else is there to predict in the response times.

      (4) If the quantitative model is the key contribution, better to highlight the details and algorithmic contribution of the model, and show the advantage of this model either qualitatively and quantitatively.

      Please see our responses above. Our quantitative model explains behavior and brain imaging data on three disparate tasks – the same/different, oddball visual search and symmetry tasks. 

      (5) If the new brain region is the key contribution, better to downplay the quantitative model.

      Please see our responses above. Our quantitative model explains behavior and brain imaging data on three disparate tasks – the same/different, oddball visual search and symmetry tasks.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer 1 (Public Review):

      The authors explain that an action potential that reaches an axon terminal emits a small electrical field as it ”annihilates”. This happens even though there is no gap junction, at chemical synapses. The generated electrical field is simulated to show that it can affect a nearby, disconnected target membrane by tens of microvolts for tenths of a microsecond. Longer effects are simulated for target locations a few microns away.

      To simulate action potentials (APs), the paper does not use the standard Hodgkin-Huxley formalism because it fails to explain AP collision. Instead, it uses the Tasaki and Matsumoto (TM) model which is simplified to only model APs with three parameters and as a membrane transition between two states of resting versus excited. The authors expand the strictly binary, discrete TM method to a Relaxing Tasaki Model (RTM) that models the relaxation of the membrane potential after an AP. They find that the membrane leak can be neglected in determining AP propagation and that the capacitive currents dominate the process.

      The strength of the work is that the authors identified an important interaction between neurons that is neglected by the standard models. A weakness of the proposed approach is the assumptions that it makes. For instance, the external medium is modeled as a homogeneous conductive medium, which may be further explored to properly account for biological processes.

      The authors provide convincing evidence by performing experiments to record action potential propagation and collision properties and then developing a theoretical framework to simulate the effect of their annihilation on nearby membranes. They provide both experimental evidence and rigorous mathematical and computer simulation findings to support their claims. The work has the potential of explaining significant electrical interaction between nerve centers that are connected via a large number of parallel fibers.

      We thank the reviewer for the distinct analysis of our work and the assessment that we ’identified an important interaction between neurons that is neglected by standard models’.

      Indeed, we modeled the external (extracellular) medium as homogeneous conductive medium and, compared to real biological systems, this is a simplification. Our intention is to keep our formal model as general as possible, however, it can be extended to account for specific properties. Accessory structures at axon terminals (such as the pinceau at Purkinje cells) most likely evolved to shape ephaptic coupling. In addition, the extracellular medium is neither homogeneous nor isotropic, and to fully mimic a particular neural connection this has to be implemented in a model as well. We agree and look forward to see how specific modification of the external medium in biological systems will affect ephaptic coupling. We hope to facilitate progress on this question by providing our source code for further exploration. Using the tools that have been developed by the BRIAN community one can generate or import arbitrary complex cell morphologies (e.g. NeuroML files). Our source code adds the TM- and RTM model, which allows exploring the direct impact of extracellular properties on target neurons.

      Reviewer 2 (Public Review):

      In this study, the authors measured extracellular electrical features of colliding APs travelling in different directions down an isolated earthworm axon. They then used these features to build a model of the potential ephaptic effects of AP annihilation, i.e. the electrical signals produced by colliding/annihilating APs that may influence neighbouring tissue. The model was then applied to some different hypothetical scenarios involving synaptic connections. The conclusion was that an annihilating AP at a presynaptic terminal can ephaptically influence the voltage of a postsynaptic cell (this is, presumably, the ’electrical coupling between neurons’ of the title), and that the nature of this influence depends on the physical configuration of the synapse.

      As an experimental neuroscientist who has never used computational approaches, I am unable to comment on the rigour of the analytical approaches that form the bulk of this paper. The experimental approaches appear very well carried out, and here I just have one query - an important assumption made is that the conduction velocity of anti- and orthodromically propagating APs is identical in every preparation, but this is never empirically/statistically demonstrated.

      My major concern is with the conclusions drawn from the synaptic modelling, which, disappointingly, is never benchmarked against any synaptic data. The authors state in their Introduction that a ’quantitative physical description’ of ephaptic coupling is ’missing’, however, they do not provide such a description in this manuscript. Instead, modelled predictions are presented of possible ephaptic interactions at different types of synapses, and these are then partially and qualitatively compared to previous published results in the Discussion. To support the authors’ assertion that AP annihilation induces electrical coupling between neurons, I think they need to show that their model of ephaptic effects can quantitatively explain key features of experimental data pertaining to synaptic function. Without this, the paper contains some useful high-precision quantitative measurements of axonal AP collisions, some (I assume) high-quality modelling of these collisions, and some interesting theoretical predictions pertaining to synaptic interactions, but it does not support the highly significant implications suggested for synaptic function.

      We thank the reviewer for highlighting the potential and the limitation of our model. We demonstrated with empirical data that measured conduction velocities of anti- and orthodromic propagating APs are indeed very similar and values are provided in Appendix 3 – table 1.

      In order to address how our model ’of ephaptic effects can quantitatively explain key features of experimental data’, we used the measured modulation of AP rates in Purkinje fibers by Blot and Babour (2014) and our results are now included in the manuscript. In our model, we implemented the ephaptic coupling of the Basket cell (with an annihilating AP) and predicted the modulation of AP rate in the Purkinje cell. Our model predictions are compared to the measured modulation of AP-rates in Purkinje cells and is added as Fig. 5 to the main manuscript (line 264 to 284 ). With this example, we show that ephaptic coupling as described with our RTM model can quantitatively describe key features of experimental data. Both, the rapid inhibition and the rebound activity is described by our model with implementation of non-excitable parts at the pinceau of the Basket cell. Future, experimental research can use the provided formalism to investigate in more detail the ephaptic coupling in systems like the Mauthner cell and the Purkinje cell by exploring how accessory structures and concomitant physical parameters, e.g. the extracellular properties impact ephaptic coupling.

      Reviewer 3 (Public Review):

      This manuscript aims to exploit experimental measurements of the extracellular voltages produced by colliding action potentials to adjust a simplified model of action potential propagation that is then used to predict the extracellular fields at axon terminals. The overall rationale is that when solving the cable equation (which forms the substrate for models of action potential propagation in axons), the solution for a cable with a closed end can be obtained by a technique of superposition: a spatially reflected solution is added to that for an infinite cable and this ensures by symmetry that no axial current flows at the closed boundary. By this method, the authors calculate the expected extracellular fields for axon terminals in different situations. These fields are of potential interest because, according to the authors, their magnitude can be larger than that of a propagating action potential and may be involved in ephaptic signalling. The authors perform direct measurements of colliding action potentials, in the earthworm giant axon, to parameterise and test their model.

      Although simplified models can be useful and the trick of exploiting the collision condition is interesting, I believe there are several significant problems with the rationale, presentation, and application, such that the validity and potential utility of the approach is not established.

      Simplified model vs. Hogdkin and Huxley

      The authors employ a simplified model that incorporates a two-state membrane (in essence resting and excited states) and adds a recovery mechanism. This generates a propagating wave of excitation and key observables such as propagation speed and action potential width (in space) can be adjusted using a small number of parameters. However, even if a Hodgkin-Huxley model does contain a much larger number of parameters that may be less easy to adjust directly, the basic formalism is known to be accurate and typical modifications of the kinetic parameters are very well understood, even if no direct characterisations already exist or cannot be obtained. I am therefore unconvinced by the utility of abandoning the HodgkinHuxley version.

      In several places in the manuscript, the simplified model fits the data well whereas the Hodgkin-Huxley model deviates strongly (e.g. Fig. 3CD). This is unsatisfying because it seems unlikely that the phenomenon could not be modelled accurately using the HH formulation. If the authors really wish to assert that it is ”not suitable to predict the effects caused by AP [collision]” (p9) they need to provide a good deal more analysis to establish the mechanism of failure.

      We are not as convinced as the reviewer that, at the current state of parameter estimation, the HH model is suited for predicting ephaptic coupling after ’adjusting’ parameters. There are strong arguments against such an approach. A major function of a model is to make testable predictions rather than to just mimic a biological phenomenon. The predictive power of a model heavily depends on how reasonable model parameters can be estimated or measured. As the reviewer correctly points out in the specific comments (”... the parameters adjusted to fit the model are the membrane capacitance and intracellular resistance. These have a physical reality and could easily be measured or estimated quite accurately...”), our model contains only parameters that can be assessed experimentally, thus it has a better predictive power compared to the HH model with a multitude of parameters for which ”no direct characterisations already exist or cannot be obtained” (citing reviewer from above).

      Already the founders of the HH model were well aware of the limitations, as stated by Hodgkin and Huxley in 1952 (J Physiol 117:500–544):

      An equally satisfactory description of the voltage clamp data could no doubt have been achieved with equations of very different form ... The success of the equations is no evidence in favour of the mechanism of permeability change that we tentatively had in mind when formulating them.

      A catchy but sloppy description for the problem of overfitting with too many parameters is given by the quote of John von Neumann: With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.

      We do not rule out the possibility that the HH model eventually can be used to predict ephaptic coupling. However, at the moment, parameter estimation for the HH model prevents its usability for predicting ephaptic coupling.

      (In)applicability of the superposition principle

      The reflecting boundary at the terminal is implemented using the symmetry of the collision of action potentials. However, at a closed cable there is no reflecting boundary in the extracellular space and this implied assumption is particularly inappropriate where the extracellular field is one objective of the modelling, as here. I believe this assumption is not problematic for the calculation of the intracellular voltage, because extracellular voltage gradients can usually be neglected1, but the authors need to explain how the issue was dealt with for the calculation of the extracellular fields of terminals. I assume they were calculated from the membrane currents of one-half of the collision solution, but this does not seem to be explained. It might be worth showing a spatial profile of the calculated field.

      We disagree with the reviewer’s statement ’...at a closed cable there is no reflecting boundary in the extracellular space and this implied assumption is particularly inappropriate...’. We do not imply this assumption in our model! We do not assume any symmetry or boundary condition in the extracellular space. Instead, the extracellular field is calculated for an infinite homogeneous volume conductor (Eq.

      6).

      We conduct separate calculations for (1) source membrane current, (2) resulting extracellular field, and (3) impact upon a target neuron. The boundary condition used for our calculations only refers to the axial current being zero at the axon terminal. Consequently all the internal current that enters the last compartment must leave the last compartment as membrane current and contributes to the extracellular current and field.

      The extracellular field around the axon terminal is not symmetric, as can be seen by it’s impact upon a target in Figure 4—figure supplement 1 which is also not symmetric. The symmetry of the extracellular field when APs are colliding (Cf. symmetry in Fig 1C) is merly the result of the symmetric stimulation and counterpropagation of two APs. We now are describing more specifically the bounday condition for colliding and terminating APs already in the introduction: ’A suitable boundary condition (intracellular, axial current equals zero) can be generated experimentally by a collision of two counter-propagating APs ... Within any cable model, the very same boundary condition also exists within the axon at the synaptic terminal due to the broken translation symmetry for the current loops ...’ Later, at the result section (Discharge of colliding APs), we continue with ’AP propagation is blocked when the axial current is shut down at a boundary condition, e.g. by reaching the axon terminal or by AP collision....’ and implement this condition in our calculations for the axon terminals.

      Missing demonstrations

      Central analytical results are stated rather brusquely, notably equations (3) and (4) and the relation between them. These merit an expanded explanation at the least. A better explanation of the need for the collision measurements in parameterising the models should also be provided.

      We thank the reviewer for pointing out the insufficient explanation of the equations 3 and 4. We rephrased the paragraph ’Discharge of colliding APs’ in order to clarify the origin and the function of the two equations (eq. 3: how much charge is expelled and eq. 4: the resulting extracellular potential that is used for model validation).

      Later, in the Discussion, we rephrased the paragraph where we describe the annihilation process and explain further that one term of eq. 4 sometimes is refered to ’activating function’ when using microelectrodes for stimulation.

      With respect to the ’explanation of the need for the collision measurement’, we think that the explanations we give at several locations in the manuscript are sufficient as is. We explain and elaborate in the introduction: ’We explore the behaviour of APs at boundaries ... In this study, we first focus on collisions of APs. Our experimental observation of colliding APs provides unique access to the spatial profile of the extracellular potential around APs that are blocked by collisions and thus annihilate..... Recording propagating APs allows to determine both the propagation velocity and the amplitude of the extracellular electric potentials. The collision experiment provides additional information ... In the results we recall: ’The width of the collision is a measure of the characteristic length λ⋆ of the AP and is uniquely revealed by a collision sweep experiment.’

      Adjusted parameters

      I am uncomfortable that the parameters adjusted to fit the model are the membrane capacitance and intracellular resistance. These have a physical reality and could easily be measured or estimated quite accurately. With a variation of more than 20-fold reported between the different models in Appendix 2 we can be sure that some of the models are based upon quite unrealistic physical assumptions, which in turn undermines confidence in their generality.

      The fact that the parameters of our model have physical realities is clearly in favor of our models. We rephrased the legend of the table, now explaining the procedure for the model fitting and the rational behind. Although the values of g⋆ can differ by a factor of 15 and the resulting amplitude is very different, the relationship ri cm \= vpλ⋆ is very similar, independently of the model used and this confirms our analytical framework.

      p8 - the values of both the extracellular (100 Ohm m) and intracellular resistivity (1 Ohm m) appear to be in error, especially the former.

      We have the following justification for the resistivity values we used. For the intracellular resistivity, literature values range from 0.4 - 1.5 Ohm m, and therefore we selected 1 Ohm m. See: Carpenter et al (1975) doi: 10.1085/jgp.66.2.139; Cole et al (1975) doi: 10.1085/jgp.66.2.133; Bekkers (2014) doi: 10.1007/978-1-46147320-6 35-2.

      Estimating extracellular resistivity is less straight forward, since it depends crucially on the structure around the synapse which consists of conducting saline and insulating fatty tissue. Ranges from 3 to 600 Ohm m are reported (Linden et al (2011) doi: 10.1016/j.neuron.2011.11.006) and Bakiri et al (2011) doi: 10.1113/jphysiol.2010.201376). Weiss et al (2008; doi: 10.1073/pnas.0806145105) report extracellular resistivities in the Mauthner Cap between 50-600 Ohm m in SI. Since the pinceau is structurally similar to the Mauthner cells axon cap, we argue that a value of 100 Ohm m is a reasonable choice for our calculations. Additionally, we derived a value from Blot and Barbour (doi:c10.1038/nn.3624), rephrased the paragraph in the main text and added our calculation to the supplementary material (Appendix 1).

      (In)applicability to axon terminals

      The rationale of the application of the collision formalism to axon terminals is somewhat undermined by the fact that they tend not to be excitable. There is experimental evidence for this in the Calyx of Held and the cerebellar pinceau.

      The solution found via collision is therefore not directly applicable in these cases.

      We do not agree with the reviewer’s statement that ’the solution found via collision is (therefore) not directly applicable...’. Our model is well suited for application on axon terminals that are not excitable, e.g. the pinceau of the basket cell, as the reviewer points out. We have included a calculation for this case and present the results in the new Fig. 5 (main text line 264 to 284 ).

      Comparison with experimental data

      More effort should be made to compare the modelling with the extracellular terminal fields that have been reported in the literature.

      As outlined above (see: Reponse to reviewer 2), we now compare directly the predictions of our models with measured modulation of AP rates in Purkinje fibers (Blot and Babour 2014) and our results are included in the manuscript (Fig. 5 and main text line 264 to 284). See also our response to reviewer 2 in which we address how our model ’of ephaptic effects can quantitatively explain key features of experimental data’.

      Choice of term ”annihilation”

      The term annihilation does not seem wholly appropriate to me. The dictionary definitions are something along the lines of complete destruction by an external force or mutual destruction, for example of an electron and a positron. I don’t think either applies exactly here. I suggest retaining the notion of collision which is well understood in this context.

      Experimentally, we generated a collision of APs and showed that colliding APs dissapear and do not pass each other. For this process the term annihilation is used in our and in other studies (see e.g. Berg et al (2017) doi: 10.1103/PhysRevX.7.028001; Johnson et al (2018) doi: 10.3389/fphys.2018.00779; Follmann (2015) doi: 10.1103/PhysRevE.92.032707; Shrivastava et al (2018) doi: 10.1098/rsif.2017.0803). The physical processes involved in the termination of an AP at a closed end are essentially identical to those of two colliding APs. This we think justifies using the term annihilation for those processes.

      Recommendations for the authors:

      We believe the work is of high quality and should motivate future experimental work. We are including the review comments here for your information. The main piece of feedback we are offering is that the broad claims need to be adjusted to the strength of evidence provided: as is, the manuscript provides compelling predictions but the claim that these predictions are in full agreement with data remains to be substantiated. A technical concern raised by the reviewers is that the reflecting boundary condition may need further justification. The authors may wish to respond to this issue in a rebuttal and/or adjust the manuscript as necessary.

      We substantiated our claim that our predictions are in full agreement with experimental data. We added to the manuscript a section in which we compare our models’ predictions to published, experimental data. To this aim, we extracted date from the publication of Blot and Babour (2014), we elaborated on the parameters used and run our model accordingly. We added to the Results/Model of ephaptic coupling a paragraph on ’The modulation of activity in Purkinje cells...’ (line 264), where we describe our results and we also included another figure to the main text for illustration (Fig. 5).

      We clarified the term ’boundary condition’ by rephrasing parts of the introduction and we explain the rational behind in ’Discharge of colliding APs (...AP propagation is blocked when axial current is shut down...) and in ’Model of ephaptic coupling (Within any cable model, the same boundary...). See also our response to the general comments of reviewer 3 above.

      Reviewer 1 (Recommendations For The Authors):

      Major:

      Accessing data and code requires signing in, which should not be required. The link provided also seems to be not accessible yet - could be pending review.

      The repository is now publicly availible. We did provide an access code within the letter to the editor, this code is no longer required.

      Line 74: how about morphology? Authors should clarify and emphasize in the introduction that the TM model is a spatially continuous model with partial differential equations as opposed to discrete morphological models to simulate HH equations.

      The reviewer is correct that the TM model is continous. However, so is the HH model. The difference between HH and TM is only that the TM model can be solved analytically, which yields a spatially homogeneous analytical solution. It should be noted that this analytical solution can only be valid for a homogeneous (therefore infinite) nerve. Every numerical computation, be it HH or TM, requires a finite number of discrete compartments. In our calculations, we used identical compartment models for HH, TM and RTM model. In each compartment, the differential equations are solved numerically. Since there is no fundamental difference between these models, we obstain from changing the text.

      Minor:

      Major typo: ventral nerve cord, not ”chord”. Repeated in several places.

      Thank you for indicating this typo to us.

      Line 25: inhibition, excitation, and modulation?

      We changed the line to: ... leads to modulation, e.g. excitation or inhibition

      Line 70: better term for ”length” of AP would be ”duration”. Also, the sentence could be simplified to use either ”its” or ”of the AP”

      Space and time are not interchangable. Thus, the term lenght can not be replaced by duration. We simplified the structure of the sentence as suggested.

      Fig 1A/B: it’s strange that panel B precedes panel A.

      Exchanged

      Fig 1C: don’t see the ”horizontal line”; also regarding ”The recording was at a medial position”, the caption is not clear until one reads the main text.

      We changed the legend to: ... The collision is captured in the recording line at y-position 0 mm, while orthodromic propagation is at the top and antidromic propagation is at the bottom. (D) The peak amplitude as a function of the distance to the collision. Examples of four sweeps at three positions along the nerve cord....

      Line 127: the per distance measures could be named as ”specific” conductivity, etc.

      We explicitly provide the units thereby defining the quantities unambigously.

      Line 176: typo ”ad-hoc”.

      Thank you.

      Fig 4B: should clarify that the circle in the schematic is not the soma but a synaptic bouton.

      We rephrased to ’...(B,C) when the AP is annihilating at a bouton of a neuron terminal (upper neuron in end-to-shaft geometry, similar to the Basket cell–Purkinje cell synapse)...’, and we added a label to Fig 4B.

      Reviewer 2 (Recommendations For The Authors):

      Can the authors’ model be quantitatively compared with experimental data of ephaptic interactions at synapses (e.g. the Blot & Barbour study described in the Discussion)?

      We did so as outlined in our response to the reviewer above.

      Can statistical evidence be provided that the velocities of anti- and orthodromic APs are indeed identical in the earthworm nerve recordings?

      These data and statistics are available in Appendix 2, now 3 – table 1

      Why not reorder ABCD in Fig1 so the subpanels run from left to right?

      We adjusted the labels accordingly.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This paper contains what could be described as a "classic" approach towards evaluating a novel taste stimuli in an animal model, including standard behavioral tests (some with nerve transections), taste nerve physiology, and immunocytochemistry of the tongue. The stimulus being tested is ornithine, from a class of stimuli called "kokumi", which are stimuli that enhance other canonical tastes, increasing essentially the hedonic attributes of these other stimuli; the mechanism for ornithine detection is thought to be GPRC6A receptors expressed in taste cells. The authors showed evidence for this in an earlier paper with mice; this paper evaluates ornithine taste in a rat model.

      Strengths:

      The data show the effects of ornithine on taste: in two-bottle and briefer intake tests, adding ornithine results in a higher intake of most, but not all, stimuli tests. Bilateral nerve cuts or the addition of GPRC6A antagonists decrease this effect. Small effects of ornithine are shown in whole-nerve recordings.

      Weaknesses:

      The conclusion seems to be that the authors have found evidence for ornithine acting as a taste modifier through the GPRC6A receptor expressed on the anterior tongue. It is hard to separate their conclusions from the possibility that any effects are additive rather than modulatory. Animals did prefer ornithine to water when presented by itself. Additionally, the authors refer to evidence that ornithine is activating the T1R1-T1R3 amino acid taste receptor, possibly at higher concentrations than they use for most of the study, although this seems speculative. It is striking that the largest effects on taste are found with the other amino acid (umami) stimuli, leading to the possibility that these are largely synergistic effects taking place at the tas1r receptor heterodimer.

      We would like to thank Reviewer #1 for the valuable comments. Our basis for considering ornithine as a taste modifier stems from our observation that a low concentration of ornithine (1 mM), which does not elicit a preference on its own, enhances the preference for umami substances, sucrose, and soybean oil through the activation of the GPRC6A receptor. Notably, this receptor is not typically considered a taste receptor. The reviewer suggested that the enhancement of umami taste might be due to potentiation occurring at the TAS1R receptor heterodimer. However, we propose that a different mechanism may be at play, as an antagonist of GPRC6A almost completely abolished this enhancement. In the revised manuscript, we will endeavor to provide additional information on the role of ornithine as a taste modifier acting through the GPRC6A receptor.

      Reviewer #2 (Public review):

      Summary:

      The authors used rats to determine the receptor for a food-related perception (kokumi) that has been characterized in humans. They employ a combination of behavioral, electrophysiological, and immunohistochemical results to support their conclusion that ornithine-mediated kokumi effects are mediated by the GPRC6A receptor. They complemented the rat data with some human psychophysical data. I find the results intriguing, but believe that the authors overinterpret their data.

      Strengths:

      The authors examined a new and exciting taste enhancer (ornithine). They used a variety of experimental approaches in rats to document the impact of ornithine on taste preference and peripheral taste nerve recordings. Further, they provided evidence pointing to a potential receptor for ornithine.

      Weaknesses:

      The authors have not established that the rat is an appropriate model system for studying kokumi. Their measurements do not provide insight into any of the established effects of kokumi on human flavor perception. The small study on humans is difficult to compare to the rat study because the authors made completely different types of measurements. Thus, I think that the authors need to substantially scale back the scope of their interpretations. These weaknesses diminish the likely impact of the work on the field of flavor perception.

      We would like to thank Reviewer #2 for the valuable comments and suggestions. Regarding the question of whether the rat is an appropriate model system for studying kokumi, we have chosen this species for several reasons: it is readily available as a conventional experimental model for gustatory research; the calcium-sensing receptor (CaSR), known as the kokumi receptor, is expressed in taste bud cells; and prior research has demonstrated the use of rats in kokumi studies involving gamma Glu-Val-Gly (Yamamoto and Mizuta, Chem. Senses, 2022). We acknowledge that fundamentally different types of measurements were conducted in the human psychophysical study and the rat study. Kokumi can indeed be assessed and expressed in humans; however, we do not currently have the means to confirm that animals experience kokumi in the same way that humans do. Therefore, human studies are necessary to evaluate kokumi, a conceptual term denoting enhanced flavor, while animal studies are needed to explore the potential underlying mechanisms of kokumi. We believe that a combination of both human and animal studies is essential, as is the case with research on sugars. While sugars are known to elicit sweetness, it is unclear whether animals perceive sweetness identically to humans, even though they exhibit a strong preference for sugars. In the revised manuscript, we will incorporate additional information to address the comments raised by the reviewer. We will also carefully review and revise our previous statements to ensure accuracy and clarity.

      Reviewer #3 (Public review):

      Summary:

      In this study, the authors set out to investigate whether GPRC6A mediates kokumi taste initiated by the amino acid L-ornithine. They used Wistar rats, a standard laboratory strain, as the primary model and also performed an informative taste test in humans, in which miso soup was supplemented with various concentrations of L-ornithine. The findings are valuable and overall the evidence is solid. L-Ornithine should be considered to be a useful test substance in future studies of kokumi taste and the class C G protein-coupled receptor known as GPRC6A (C6A) along with its homolog, the calcium-sensing receptor (CaSR) should be considered candidate mediators of kokumi taste.

      Strengths:

      The overall experimental design is solid based on two bottle preference tests in rats. After determining the optimal concentration for L-Ornithine (1 mM) in the presence of MSG, it was added to various tastants, including inosine 5'-monophosphate; monosodium glutamate (MSG); mono-potassium glutamate (MPG); intralipos (a soybean oil emulsion); sucrose; sodium chloride (NaCl); citric acid and quinine hydrochloride. Robust effects of ornithine were observed in the cases of IMP, MSG, MPG, and sucrose, and little or no effects were observed in the cases of sodium chloride, citric acid, and quinine HCl. The researchers then focused on the preference for Ornithine-containing MSG solutions. The inclusion of the C6A inhibitors Calindol (0.3 mM but not 0.06 mM) or the gallate derivative EGCG (0.1 mM but not 0.03 mM) eliminated the preference for solutions that contained Ornithine in addition to MSG. The researchers next performed transections of the chord tympani nerves (with sham operation controls) in anesthetized rats to identify the role of the chorda tympani branches of the facial nerves (cranial nerve VII) in the preference for Ornithine-containing MSG solutions. This finding implicates the anterior half-two thirds of the tongue in ornithine-induced kokumi taste. They then used electrical recordings from intact chorda tympani nerves in anesthetized rats to demonstrate that ornithine enhanced MSG-induced responses following the application of tastants to the anterior surface of the tongue. They went on to show that this enhanced response was insensitive to amiloride, selected to inhibit 'salt tastant' responses mediated by the epithelial Na+ channel, but eliminated by Calindol. Finally, they performed immunohistochemistry on sections of rat tongue demonstrating C6A positive spindle-shaped cells in fungiform papillae that partially overlapped in its distribution with the IP3 type-3 receptor, used as a marker of Type-II cells, but not with (i) gustducin, the G protein partner of Tas1 receptors (T1Rs), used as a marker of a subset of type-II cells; or (ii) 5-HT (serotonin) and Synaptosome-associated protein 25 kDa (SNAP-25) used as markers of Type-III cells.

      Weaknesses:

      The researchers undertook what turned out to be largely confirmatory studies in rats with respect to their previously published work on Ornithine and C6A in mice (Mizuta et al Nutrients 2021).

      The authors point out that animal models pose some difficulties of interpretation in studies of taste and raise the possibility in the Discussion that umami substances may enhance the taste response to ornithine (Line 271, Page 9). They miss an opportunity to outline the experimental results from the study that favor their preferred interpretation that ornithine is a taste enhancer rather than a tastant.

      At least two other receptors in addition to C6A might mediate taste responses to ornithine: (i) the CaSR, which binds and responds to multiple L-amino acids (Conigrave et al, PNAS 2000), and which has been previously reported to mediate kokumi taste (Ohsu et al., JBC 2010) as well as responses to Ornithine (Shin et al., Cell Signaling 2020); and (ii) T1R1/T1R3 heterodimers which also respond to L-amino acids and exhibit enhanced responses to IMP (Nelson et al., Nature 2001). While the experimental results as a whole favor the authors' interpretation that C6A mediates the Ornithine responses, they do not make clear either the nature of the 'receptor identification problem' in the Introduction or the way in which they approached that problem in the Results and Discussion sections. It would be helpful to show that a specific inhibitor of the CaSR failed to block the ornithine response. In addition, while they showed that C6A-positive cells were clearly distinct from gustducin-positive, and thus T1R-positive cells, they missed an opportunity to clearly differentiate C6A-expressing taste cells and CaSR-expressing taste cells in the rat tongue sections.

      It would have been helpful to include a positive control kokumi substance in the two-bottle preference experiment (e.g., one of the known gamma-glutamyl peptides such as gamma-glu-Val-Gly or glutathione), to compare the relative potencies of the control kokumi compound and Ornithine, and to compare the sensitivities of the two responses to C6A and CaSR inhibitors.

      The results demonstrate that enhancement of the chorda tympani nerve response to MSG occurs at substantially greater Ornithine concentrations (10 and 30 mM) than were required to observe differences in the two bottle preference experiments (1.0 mM; Figure 2). The discrepancy requires careful discussion and if necessary further experiments using the two-bottle preference format.

      We would like to thank Reviewer #3 for the valuable comments and helpful suggestions. We propose that ornithine has two stimulatory actions: one acting on GPRC6A, particularly at lower concentrations, and another on amino acid receptors such as T1R1/T1R3 at higher concentrations. Consequently, ornithine is not preferable at lower concentrations but becomes preferable at higher concentrations. For our study on kokumi, we used a low concentration (1 mM) of ornithine. The possibility mentioned in the Discussion that 'the umami substances may enhance the taste response to ornithine' is entirely speculative. We will reconsider including this description in the revised version. As the reviewer suggested, in addition to GPRC6A, ornithine may bind to CaSR and/or T1R1/T1R3 heterodimers. However, we believe that ornithine mainly binds to GPRC6A, as a specific inhibitor of this receptor almost completely abolished the enhanced response to umami substances, and our immunohistochemical study indicated that GPRC6A-expressing taste cells are distinct from CaSR-expressing taste cells (see Supplemental Fig. 3). We conducted essentially the same experiments using gamma-Glu-Val-Gly in Wistar rats (Yamamoto and Mizuta, Chem. Senses, 2022) and compared the results in the Discussion. The reviewer may have misunderstood the chorda tympani results: we added the same concentration (1 mM) used in the two-bottle preference test to MSG (Fig. 5-B). Fig. 5-A shows nerve responses to five concentrations of plain ornithine. In the revised manuscript, we will strive to provide more precise information reflecting the reviewer’s comments.

    1. Author response:

      We thank both reviewers for their considerate reviews. In this provisional response we would like to make a few key points.

      Given that we introduced a bespoke likelihood model for the second dataset, Reviewer 1 asks whether "every unique dataset requires a tailored prior or likelihood to produce the best results". Our intention is to advocate for the horseshoe prior model as a 'standard' first analysis for any cell count dataset. If extra knowledge about the data is available, or if any data artefacts are detected, more elaborate likelihoods could be introduced as needed in a follow-up analysis. Our introduction of the zero-inflated Poisson likelihood for the second dataset was one such example, but many alternatives could exist. This iterative approach to model building, sometimes referred to as a `Bayesian workflow' is seen as good practise in Bayesian data analysis literature. In the revised version of the paper, we will try to explain the recommendations and modelling philosophy behind this method while emphasising that tailoring or bespoke modelling is not required for our `standard analysis', what we would regard as the Bayesian replacement for a t-test on counts.

      Reviewer 1 notes that "the differences between the results produced by the two Bayesian models in case study 2 are not discussed". We agree that this discrepancy, arising from the specific assumptions of each model is an interesting issue which we should better explore in the paper. In Figure 6 we plotted the actual data values alongside posterior and confidence intervals to explain how the results from the ZIP likelihood and Horseshoe prior compare with those from a t-test. However, our example regions did not highlight cases where differences could be noted between the the two Bayesian models. In the revised version of the paper, we will extend Figure 6 to include further brain regions, such as those mentioned by the referee, and will use that as an opportunity to discuss the broader issue of what to do when the Bayesian models give conflicting results.

      We agree with reviewer 2's point that the model description terminology could be made clearer for the target eLife audience. We tried to strike a balance between introducing the reader to the conventional technical terminology used in the Bayesian data analysis necessary for understanding the model while avoiding exhaustive statistical terminology. We erred too much on the side of the latter instead of providing clear links between the model construction and experimental data. In the revised version of the paper, we will augment any technical terms with more biological language and provide a Glossary for reader reference.

    1. Author response:

      Reviewer #1:

      We agree with Reviewer 1 that the flexibility of SPRAWL also makes it difficult to interpret its outputs. We consider SPRAWL to be a hypothesis-generation tool to answer simple questions of subcellular localization in a statistically robust manner. In this paper we include examples of how it can be incorporated with other tools and wetlab experimentation to build biological intuition. Our hope is that the SPRAWL software, or even the underlying simple statistical ideas are of use to others in the field.

      Reviewer #2:

      We agree with Reviewer #2 that this manuscript does not demonstrate biological significance of the observed results of applying SPRAWL to massively multiplexed FISH datasets. We agree it would require additional wetlab experiments such as cell-type specific and isoform-resolved fluorescence in-situ hybridization, which we consider beyond the scope of this paper. We believe that the observed correlations of subcellular localization detected by SPRAWL and the differential 3’ UTR usage detected by ReadZS are compelling, although not conclusive, as are the Timp3 experimental studies.

      Our understanding is that Baysor is primarily a cell-segmentation algorithm, which is not what SPRAWL attempts to achieve. Baysor states that it identifies “cells of a distinct type will give rise to small molecular neighborhoods with stereotypical transcriptional composition, making it possible to interpret such neighborhoods without performing explicit cell segmentation” which we understand to mean that Baysor identifies spatial groupings of cells with “stereotypical transcriptional composition” rather than subcellular RNA localization. We do not think that SPRAWL and Baysor are comparable, but instead Baysor could be used as an upstream step to SPRAWL to potentially improve cell segmentation.

      Reviewer #3:

      We thank Reviewer #3 for identifying discrepancies in the paper which we addressed to the best of our abilities.

    1. Author response:

      Reviewer 1:

      Many thanks for your positive review and clear overview of our paper. We also agree with your interpretation of our results that ‘the information that is decodable and the information that is task-relevant may relate in very different ways’ and we could have emphasised this point more in the paper.

      With regards to the qualitative similarities between our models and our data, we agree that due to the fact that one can achieve any desired level of activity, decoding accuracy, performance, etc in a model, we focussed on changes over learning of key metrics that are commonly used in the field. Although this can appear qualitative at times because the raw values can differ between the data and our models, our main results are ultimately strongly quantitative (e.g., Fig. 3c,d, and Fig. 5f). We note that we could have fine tuned the models to have similar activity levels, decoding accuracies etc to our data, and on the face of it this may have made the results appear more convincing, but we felt that such trivial fine tuning does not change any of our key results in any fundamental way and is not the aim of computational modelling. The model one chooses to analyse will always be abstracted from biology in some way, by definition.

      Reviewer 2:

      Thank you very much for your kind comments and clear overview of our paper. We also hope that our paper ‘provides a valuable analysis of the effect of two parameters on representations of irrelevant stimuli in trained RNNs.’

      With regards to our suggested mechanism of suppressing dynamically irrelevant stimuli, we are sorry that we did not provide a sufficient enough explanation of suppressing color representations when they are irrelevant. We hopefully provide a longer explanation here. Our mechanism of suppression of dynamically irrelevant stimuli does not suggest that it becomes un-suppressed later, only the behaviourally relevant variable should be decodable when it is needed (i.e., XOR). Although color decodability did increase slightly in the data and some of the models from the color period to the shape period, it was typically not significant and was therefore not a result that we emphasise in the paper (although this could be analysed further to see if additional mechanisms might explain it). We emphasise throughout that color decoding is typically similar between color and shape periods (either high or low) and either decreases or increases over time in both periods. We also focus on whether color decodability increases or decreases over learning during the color period when it is irrelevant (which we call ‘early color decoding’). Importantly, decoding of color or shape is not needed to perform the task, only decoding of XOR is needed to perform the task. For example, in our two-neuron networks, we observe perfect XOR decoding and only 75% decoding of color and shape, and decoding during the shape period is the same as the network at initialisation before any training. The mechanism we suggest of suppressing dynamically irrelevant stimuli does not predict that that stimulus should be un-suppressed later, only the behaviourally relevant variable should be decodable (i.e., XOR). Instead, what we try to explain is that color inputs can generate 0 firing rate during the color period, when that input does not need to be used and is therefore irrelevant (and color decoding decreases during the color period over learning), but these inputs can be combined with shape inputs later to create a perfectly decodable XOR response.

      With regards to interpretation of our results based on metabolic cost constraints, we feel that this is an unnecessarily strong criticism to say that it ‘is not backed up by the presented data/analyses.’ All of our models were trained with only a metabolic cost constraint, a noise strength, and a task performance term. Therefore, the results of the models are directly attributable to the strength of metabolic cost that we use. Additionally, although one could in principle pick any of infinitely many different parameters to change and measure the response in an optimized network, varying metabolic cost and noise are two of the most fundamental phenomena that neural circuits must contend with, and many studies have analysed the impact they have on neural circuit dynamics. Furthermore, in line with previous studies (Yang et al., 2019, Whittington et al., 2022, Sussillo et al., 2015, Orhan et al., 2019, Kao et al., 2021, Cueva et al., 2020, Driscoll et al., 2022, Song et al., 2016, Masse et al., 2019, Schimel et al., 2023), we operationalized metabolic cost in our models through L2 firing rate regularization. This cost penalizes high overall firing rates. (Such an operationalization of metabolic cost also makes sense for our models because network performance is based on firing rates rather than subthreshold activities.) There are however alternative conceivable ways to operationalize a metabolic cost; for example L1 firing rate regularization has been used previously when optimizing neural networks and promotes more sparse neural firing. Interestingly, although our L2 is generally conceived to be weaker than L1 regularization, we still found that it encouraged the network to use purely sub-threshold activity in our task. The regularization of synaptic weights may also be biologically relevant because synaptic transmission uses the most energy in the brain compared to other processes (Faria-Pereira et al., 2022, Harris et al., 2012). Additionally, even subthreshold activity could be regularized as it also consumes energy (although orders of magnitude less than spiking (Zhu et al., 2019)). Therefore, future work will be needed to examine how different metabolic costs affect the dynamics of task-optimized networks.

      With regards to color representations in PFC only qualitatively matching those in our models, in line with the comment from Reviewer 1, we agree that due to the fact that one can achieve any desired level of activity, decoding accuracy, performance, etc in a model, we focussed on changes over learning of key metrics that are commonly used in the field. Although this can appear qualitative at times because the raw values can differ between the data and our models, our main results are ultimately strongly quantitative (e.g., Fig. 3c,d, and Fig. 5f). We note that we could have fine tuned the models to have similar activity levels, decoding accuracies etc to our data, and on the face of it this may have made the results appear more convincing, but we felt that such trivial fine tuning does not change any of our key results in any fundamental way and is not the aim of computational modelling. The model one chooses to analyse will always be abstracted from biology in some way, by definition. Finally, of course we note that changes in color decoding could result from other causes, but we focussed on two key phenomena that neural circuits must contend with: noise and metabolic costs. Therefore, it is likely that these two variables play a strong role in stimulus representations in neural circuits

      Reviewer 3:

      Thank you very much for your thorough and clear overview of our paper and we agree that it is important to investigate phenomena and manipulations in computational models that are almost impossible to do in vivo and we are pleased you found our mathematical analyses rigorous and nicely documented.

      Although we agree that it can be useful to study the responses of individual neurons, we focussed on population analyses of all available neurons without omitting or specifically selecting neurons based on their dynamics. We are also not suggesting that the activities of individual ‘neurons’ in the models and data should be similar since our models are highly abstract firing rate models. But rather, the overall computational strategy, which one can access through population decoding and cross-generalised decoding, was what we were interested in comparing between the models and the data and is arguably the correct level of analysis of such models (an data) given our key questions (Vyas et al., 2020, Churchland et al., 2012, Mante et al., 2013, Ebitz et al., 2021).

      We also certainly agree and are more than open to the fact that suppression of irrelevant stimuli may already be happening on the inputs arriving in PFC. Indeed, we actually suggest this as the mechanism in Fig. 5 (together with recurrent circuit dynamics that make use of these inputs).

      With regards to the dynamics of the two-neuron networks not being ‘informative of what happens in brain networks’, we agree that these models are very simplified and may only contain very fundamental similarities with biological neurons. However, we only used them to illustrate the fundamental mechanism of generating 0 firing rate during the color epoch so that it is more easily understandable for readers as they can see the entire 2-dimensional state space and the entire computational strategy can be seen (Fig. 5a-d). We also note that we did this for both rectified linear and tanh networks, thus showing that such a mechanism is preserved across fundamentally different firing rate nonlinearities. Additionally, after illustrating this fundamental mechanism of networks receiving color information but generating 0 firing rate, we show that the exact same mechanism is at play in the large networks we use throughout the paper (Fig. 5e). We also only compare the large networks to our neural recordings. We do agree though that it would be interesting to further compare fundamental similarities and differences between our models and our neural recordings (always at the right level of analysis that makes sense for our chosen models) to show that the mechanisms we uncover in our models are also strongly relevant for our data.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors have used full-length single-cell sequencing on a sorted population of human fetal retina to delineate expression patterns associated with the progression of progenitors to rod and cone photoreceptors. They find that rod and cone precursors contain a mix of rod/cone determinants, with a bias in both amounts and isoform balance likely deciding the ultimate cell fate. Markers of early rod/cone hybrids are clarified, and a gradient of lncRNAs is uncovered in maturing cones. Comparison of early rods and cones exposes an enriched MYCN regulon, as well as expression of SYK, which may contribute to tumor initiation in RB1 deficient cone precursors.

      Strengths:

      (1) The insight into how cone and rod transcripts are mixed together at first is important and clarifies a long-standing notion in the field.

      (2) The discovery of distinct active vs inactive mRNA isoforms for rod and cone determinants is crucial to understanding how cells make the decision to form one or the other cell type. This is only really possible with full-length scRNAseq analysis.

      (3) New markers of subpopulations are also uncovered, such as CHRNA1 in rod/cone hybrids that seem to give rise to either rods or cones.

      (4) Regulon analyses provide insight into key transcription factor programs linked to rod or cone fates.

      (5) The gradient of lncRNAs in maturing cones is novel, and while the functional significance is unclear, it opens up a new line of questioning around photoreceptor maturation.

      (6) The finding that SYK mRNA is naturally expressed in cone precursors is novel, as previously it was assumed that SYK expression required epigenetic rewiring in tumors.

      Weaknesses:

      (1) The writing is very difficult to follow. The nomenclature is confusing and there are contradictory statements that need to be clarified.

      (2) The drug data is not enough to conclude that SYK inhibition is sufficient to prevent the division of RB1 null cone precursors. Drugs are never completely specific so validation is critical to make the conclusion drawn in the paper.

      We thank the reviewer for describing the study’s strengths and weaknesses.  In the upcoming revision, we will:

      (1) improve the writing and clarify the nomenclature and contradictory statements, particularly those noted in the Reviewer’s Recommendations for Authors; and

      (2) scale back the claims related to the role of SYK in the cone precursor response to RB1 loss; we agree that genetic perturbation of SYK is required to prove it’s role and will perform such analyses in a separate study.

      Reviewer #2 (Public review):

      Summary:

      The authors used deep full-length single-cell sequencing to study human photoreceptor development, with a particular emphasis on the characteristics of photoreceptors that may contribute to retinoblastoma.

      Strengths:

      This single-cell study captures gene regulation in photoreceptors across different developmental stages, defining post-mitotic cone and rod populations by highlighting their unique gene expression profiles through analyses such as RNA velocity and SCENIC. By leveraging full-length sequencing data, the study identifies differentially expressed isoforms of NRL and THRB in L/M cone and rod precursors, illustrating the dynamic gene regulation involved in photoreceptor fate commitment. Additionally, the authors performed high-resolution clustering to explore markers defining developing photoreceptors across the fovea and peripheral retina, particularly characterizing SYK's role in the proliferative response of cones in the RB loss background. The study provides an in-depth analysis of developing human photoreceptors, with the authors conducting thorough analyses using full-length single-cell RNA sequencing. The strength of the study lies in its design, which integrates single-cell full-length RNA-seq, long-read RNA-seq, and follow-up histological and functional experiments to provide compelling evidence supporting their conclusions. The model of cell type-dependent splicing for NRL and THRB is particularly intriguing. Moreover, the potential involvement of the SYK and MYC pathways with RB in cone progenitor cells aligns with previous literature, offering additional insights into RB development.

      Weaknesses:

      The manuscript feels somewhat unfocused, with a lack of a strong connection between the analysis of developing photoreceptors, which constitutes the bulk of the manuscript, and the discussion on retinoblastoma. Additionally, given the recent publication of several single-cell studies on the developing human retina, it is important for the authors to cross-validate their findings and adjust their statements where appropriate.

      We thank the reviewer for summarizing the main findings and for noting the compelling support for the conclusions, the intriguing cell type-dependent splicing of rod and cone lineage factors, and the insights into retinoblastoma development. 

      We concur that some studies of developing photoreceptors were not well connected to retinoblastoma, which diminished the focus.  However, we suggest that it was valuable to highlight how deep, long read sequencing provided new insights into retinoblastoma. For example, our demonstration of similar rod- and cone-related gene expression in early cones and RB cells addressed concerns with the proposed cone cell-of-origin, adding disease relevance.

      We will address the Reviewer’s request to cross-validate our findings with those of other single-cell studies of developing human retina and to adjust the related statements in our upcoming revision.

      Reviewer #3 (Public review):

      Summary:

      The authors use high-depth, full-length scRNA-Seq analysis of fetal human retina to identify novel regulators of photoreceptor specification and retinoblastoma progression.

      Strengths:

      The use of high-depth, full-length scRNA-Seq to identify functionally important alternatively spliced variants of transcription factors controlling photoreceptor subtype specification, and identification of SYK as a potential mediator of RB1-dependent cell cycle reentry in immature cone photoreceptors.

      Human developing fetal retinal tissue samples were collected between 13-19 gestational weeks and this provides a substantially higher depth of sequencing coverage, thereby identifying both rare transcripts and alternative splice forms, and thereby representing an important advance over previous droplet-based scRNA-Seq studies of human retinal development.

      Weaknesses:

      The weaknesses identified are relatively minor. This is a technically strong and thorough study, that is broadly useful to investigators studying retinal development and retinoblastoma.

      We thank the reviewer for describing the strengths of the study. Our upcoming revision will address the minor concerns that were raised separately in the Reviewer’s Recommendations for Authors.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Minor Concern (Original Comment 1):

      “We think that this is sufficient to address our concern. Some citations may be in order to underpin the new text.”

      We appreciate the reviewer’s assessment that the revised text clarifies the complexity of the upstream circuitry beyond the retina, including inputs from the thalamus. As recommended, we have now included additional citations in the revised manuscript to support these points.

      Major Concern (Original Comment 5):

      “We do not feel that this important concern has been addressed. The stats are definitively negative. There is no statistical evidence from these data that multisensory integration is occurring in this assay. The anesthesia, paralysis, and low n may provide explanations for this negative result, but it is still a negative result (p=0.5269). To show two examples of multisensory integration for subthreshold stimuli fits the narrative, but this result is not supported. Examples where individual stimuli caused APs (and combined stimuli did not) also occurred, presumably, and at a rate that is statistically indistinguishable to the examples shown in Figure 5. As such, if results from this assay are going to be in the manuscript, acoustic-only and tectum-only examples should be shown as well, although they would not fit the narrative. To be meaningful, this experiment would have to show that multisensory integration is happening in this circuit. Frustrating though it must be, the experiment has given a negative result to that question.”

      We understand the reviewer’s concern regarding Figure 5C and the firing of action potentials (APs) in response to multisensory stimuli. We acknowledge that our assay is not suited to answer this question definitively and that our results do not provide statistical support for this hypothesis. In response, we have removed the examples previously shown in Figure 5C, along with the related description in the Results section (lines 420–426), to avoid implying unsupported integration in suprathreshold conditions.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this study, the authors describe the construction of an extremely large-scale anatomical model of juvenile rat somatosensory cortex (excluding the barrel region), which extends earlier iterations of these models by expanding across multiple interconnected cortical areas. The models are constructed in such a way as to maintain biological detail from a granular scale - for example, individual cell morphologies are maintained, and synaptic connectivity is founded on anatomical contacts. The authors use this model to investigate a variety of properties, from cell-type specific targeting (where the model results are compared to findings from recent large-scale electron microscopy studies) to network metrics. The model is also intended to serve as a platform and resource for the community by being a foundation for simulations of neuronal circuit activity and for additional anatomical studies that rely on the detailed knowledge of cellular identity and connectivity.

      Strengths:

      As the authors point out, the combination of scale and granularity of their model is what makes this study valuable and unique. The comparisons with recent electron microscopy findings are some of the most compelling results presented in the study, showing that certain connectivity patterns can arise directly from the anatomical configuration, while other discrepancies highlight where more selective targeting rules (perhaps based on molecular cues) are likely employed. They also describe intriguing effects of cortical thickness and curvature on circuit connectivity and characterize the magnitude of those effects on different cortical layers.

      The detailed construction of the model is drawn on a wide range of data sources (cellular and synaptic density measures, neuronal morphologies, cellular composition measures, brain geometry, etc.) that are integrated together; other data sources are used for comparison and validation. This consolidation and comparison also represent a valuable contribution to the overall understanding of the modeled system.

      We thank the reviewer for the kind comments.

      Weaknesses:

      The scale of the model, which is a primary strength, also can carry some drawbacks. In order to integrate all the diverse data sources together, many specific decisions must be made about, for example, translating findings from different species or regions to the modeled system, or deciding which aspects of the system can be assumed to be the same and which should vary. All these decisions will have effects on the predicted results from the model, which could limit the types of conclusions that can be made (both by the others and by others in the community who may wish to use the model for their own work).

      We agree that this is a downside of the principle of biophysically detailed modeling that is best addressed by continuous refinement in collaboration with the community. We would like to once again invite any interested party to participate in this process.

      As an example, while it is interesting that broad brain geometry has effects on network structure (Figure 7), it is not clear how those effects are actually manifested. I am not sure if some of the effects could be due to the way the model is constructed - perhaps there may be limited sets of morphologies that fit into columns of particular thicknesses, and those morphologies may have certain idiosyncrasies that could produce different statistics of connectivities where they are heavily used. That may be true to biology, but it may also be somewhat artifactual if, for example, the only neurons in the library that fit into that particular part of the cortex differ from the typical neurons that are actually found in that region (but may not have been part of the morphological sampling).

      We agree that the limited pool of morphological reconstructions can lead to artifactual results in the way the reviewer pointed out. To investigate that hypothesis, we added a supplementary figure (S14) where we characterize (1): to what degree the morphological composition of a columnar subvolume reflects the overall composition of the model; and (2): The level of morphological diversity in each columnar subvolume. We discuss the results at the end of section 2.6. Briefly, while we cannot fully rule out the possibility of an artificial result, we found a high and virtually uniform level of morphological diversity in all columns and layers. This makes it unlikely that individual idiosyncratic morphologies strongly affect the local connectivity. However, we acknowledge that the minimum level of morphological diversity required is unknown. We believe that at this stage all we can do is characterize this and leave final interpretation to the reader.

      I also wonder how much the assumption that the layers have the same relative thicknesses everywhere in the cortex affects these findings, since layer thicknesses do in fact vary across the cortex.

      We agree that layer thickness variation would affect circuit properties. Variability of layer thickness can be split into two components: variability stemming from differences in total thickness, which our model covers, and variability of relative, i.e., normalized layer thickness, which we miss. In this region of cortex, though, data on the relative thickness of cortical layers is sparse. The Waxholm Atlas does not distinguish somatosensory cortical layers in its labels [Kleven et al, 2023]. Yusufoğulları (2015) compares layer thicknesses of rat hindlimb and barrel field regions. After normalization against total thickness, the relative difference increased towards the superficial layers from 0 in L6 to 33% in L1. Variability of normalized thicknesses within developed rat barrel cortex, based on layer boundaries reported in Narayanan et al. (2017) vary by 2% to 5% over approximately 2 mm. One major effect of such variability would be to scale the number of neurons in a given layer locally by the corresponding factors. For comparison, the resulting variability in neuron counts due to differences in conicality (Fig. 7D1) was around +-25%. A further effect of variable relative layer thickness would be its impact on the selection of suitable morphologies to be placed in the volume.

      In summary, adjustment of layer thickness is a refinement which should be done in future versions of the model, once more data is available. The discussion section has been updated to acknowledge this limitation. However, as outlined at the beginning of this point-by-point reply, we will not conduct such updates to the model in the context of this manuscript, as it describes the version of the model used for a number of follow-up studies.

      In addition, the complexity of the model means that some complicated analyses and decisions are only presented in this manuscript with perhaps a single panel and not much textual explanation. I find, for example, that the panels of Figure S2 seem to abstract or simplify many details to the point where I am not clear about what they are actually illustrating - how does Figure S2D represent the results of "the process illustrated in B"? Why are there abrupt changes in connectivity at region borders (shown as discontinuous colors), when dendrites and axons span those borders and so would imply interconnectivity across the borders? What do the histograms in E1 and E2 portray, and how are they related to each other?

      We apologize for the confusion. We have updated the figure caption of Figure S2 to better explain its contents.

      Overall, the model presented in this study represents an enormous amount of work and stands as a unique resource for the community, but also is made somewhat unwieldy for the community to employ due to the weight of its manifold specific construction decisions, size, and complexity.

      Reviewer #2 (Public Review):

      Summary:

      The authors build a colossal anatomical model of juvenile rat non-barrel primary somatosensory cortex, including inputs from the thalamus. This enhances past models by incorporating information on the shape of the cortex and estimated densities of various types of excitatory and inhibitory neurons across layers. This is intended to enable an analysis of the micro- and mesoscopic organisation of cortical connectivity and to be a base anatomical model for large-scale simulations of physiology.

      Strengths:

      • The authors incorporate many diverse data sources on morphology and connectivity.

      • This paper takes on the challenging task of linking micro- and mesoscale connectivity.

      • By building in the shape of the cortex, the authors were able to link cortical geometry to connectivity. In particular, they make an unexpected prediction that cortical conicality affects the modularity of local connectivity, which should be testable.

      • The author's analysis of the model led to the interesting prediction that layer 5 neurons connect local modules, which may be testable in the future, and provide a basis to link from detailed anatomy to functional computations.

      • The visualisation of the anatomy in various forms is excellent.

      • A subnetwork of the model is openly shared (but see question below).

      We thank the reviewer for their kind comments.

      Weaknesses:

      • Why was non-barrel S1 of the juvenile rat cortex selected as the target for this huge modelling effort? This is not explained.

      We have added an explanation of this decision to the third paragraph of the introduction.

      • There is no effort to determine how specific or generalisable the findings here are to other parts of the cortex. Although there is a link to physiological modelling in another paper, there is no clear pathway to go from this type of model to understand how the specific function of the modelled areas may emerge here (and not in other cortical areas).

      With respect to generality against specific findings, our philosophy is as follows: Despite the fact that most of our source data comes from juvenile rat somatosensory cortex, we also had to generalize many data sources across organisms, ages or regions. Hence, in this iteration we focused on investigating the general features of the (multi-region) mammalian cortex, e.g., high-order motifs, connected by L5 neurons across subregions or the effect of curvature on the connectivity. In the future, more specific data sources can be used to build diverging versions of the model, e.g. one for adult vs. juvenile rat. They can then be used to contrast the ages and focus on more specific findings. We already defined a number of structural metrics that can be used to contrast more specific versions of the model quantitatively.

      We now clarify this pathway to understanding more specific function in the last paragraph of the discussion.

      • In a few places the manuscript could be improved by being more specific in the language, for example:

      - "our anatomy-based approach has been shown to be powerful", I would prefer instead to read about specific contributions of past papers to the field, and how this builds on them.

      - similarly: "ensuring that the total number of synapses in a region-to-region pathway matches biology." Biology here is a loose term and implies too much confidence in the matching to some ground truth. Please instead describe the source of the data, including the type of experiment.

      We have removed or rewritten the mentioned parts. We now clarify that we work based on biological estimates from experiments and cite the experiment sources. We also provide brief descriptions of the types of data and how they were derived.

      • Some of the decisions seem a little ad-hoc, and the means to assess those decisions are not always available to the reader e.g.

      - pg. 10. "Based on these results, we decided that the local connectome sufficed to model connectivity within a region.". What is the basis for this decision? Can it be formalised?

      - "In the remaining layers the results of the objective classification were used to validate the class assignments of individual pyramidal cells. We found the objective classification to match the expert classification closely (i.e., for 80-90% of the morphologies). Consequently, we considered the expert classification to be sufficiently accurate to build the model." The description of the validation is a little informal. How many experts were there? What are their initials? Was inter-rater or intra-rater reliability assessed? What are these numbers? The match with Kanari's classification accuracy should be reported exactly. There are clearly experts among the author list, but we are all fallible without good controls in place, and they should be more explicit about those controls here, in my opinion.

      - "Morphology selection was then performed as previously (Markram et al., 2015), that is, a morphology was selected randomly from the top 10% scorers for a given position." A lot of the decisions seem a little ad-hoc, without justification other than this group had previously done the same thing. For example, why 10% here? Shouldn't this be based on selecting from all of the reasonable morphologies?

      We have clarified that the density of local connectivity is verified against the validation datasets by comparing the diagonals in Figure 4B, in addition to the quantification of Figure 4C.

      For the classification, we have now published a detailed preprint describing the objective confirmation of expert classification by a variety of methods (see Kanari et al. 2024 https://www.biorxiv.org/content/10.1101/2024.09.13.612635v1). We cannot include the full methodology in the current paper, due to its large extent. For the benefit of the reader, we have included the appropriate citation and extended the short description of the methodology. As described in this paper, the classification accuracy varies per layer, cell type, etc. We have now described in more details these results, that can be accessed in details in out preprint.

      • I would like to know if one of the key results relating to modularity and cortical geometry can be further explored. In particular, there seem to be sharp changes in the data at the end of the modelled cortical regions, which need to be explored or explained further.

      We now explore these results further in supplementary figure S15, which we discuss in the results Section 2.6.

      • The shape of the juvenile cortex - a key novelty of this work - was based on merely a scalar reduction of the adult cortex. This is very surprising, and surely an oversimplification. Huge efforts have gone into modelling the complex nonlinear development of the cortex, by teams including the developing Human Connectome Project. For such a fundamental aspect of this work, why isn't it possible to reconstruct the shape of this relatively small part of the juvenile rat cortex?

      We agree that a more complex approach should be used in the future. However, as outlined at the beginning of this point-by-point reply, we will not conduct such updates to the model in the context of this manuscript, as it describes the version of the model used for a number of follow-up studies.

      • The same relative laminar depths are used for all subregions. This will have a large impact on the model. However, relative laminar depths can change drastically across the cortex (see e.g. many papers by Palomero-Gallagher, Zilles, and colleagues). The authors should incorporate the real laminar depths, or, failing that, show evidence to show that the laminar depth differences across the subregions included in the model are negligible.

      This point has also been raised by reviewer #1 above. For convenience, we repeat our reply below.

      We agree that layer thickness variation would affect circuit properties. Variability of layer thickness can be split into two components: variability stemming from differences in total thickness, which our model covers, and variability of relative, i.e., normalized layer thickness, which we miss. In this region of cortex, though, data on the relative thickness of cortical layers is sparse. The Waxholm Atlas does not distinguish somatosensory cortical layers in its labels [Kleven et al, 2023]. Yusufoğulları (2015) compares layer thicknesses of rat hindlimb and barrel field regions. After normalization against total thickness, the relative difference increased towards the superficial layers from 0 in L6 to 33% in L1. Variability of normalized thicknesses within developed rat barrel cortex, based on layer boundaries reported in Narayanan et al. (2017) vary by 2% to 5% over approximately 2 mm. One major effect of such variability would be to scale the number of neurons in a given layer locally by the corresponding factors. For comparison, the resulting variability in neuron counts due to differences in conicality (Fig. 7D1) was around +-25%. A further effect of variable relative layer thickness would be its impact on the selection of suitable morphologies to be placed in the volume.

      In summary, adjustment of layer thickness is a refinement which should be done in future versions of the model, once more data is available. The discussion section has been updated to acknowledge this limitation. However, as outlined at the beginning of this point-by-point reply, we will not conduct such updates to the model in the context of this manuscript, as it describes the version of the model used for a number of follow-up studies.

      • The authors perform an affine mapping between mouse and rat cortex. This is again surprising. In human imaging, affine mappings are insufficient to map between two individual brains of the same species and nonlinear transformations are instead used. That an affine transformation should be considered sufficient to map between two different species is then very surprising. For some models, this may be fine, but there is a supposed emphasis here on biological precision in terms of anatomical location.

      We agree that this is a weakness that we will address in future revisions of the model.

      • One of the most interesting conclusions, that the connectivity pattern observed is in part due to cooperative synapse formation, is based on analyses that are unfortunately not shown.

      We originally decided not to show this part as we underestimated the interest in this particular result. We have now included the result in supplementary figure S10 and discuss the figure in the results.

      • Open code:

      - Why is only a subvolume available to the community?

      We have now made the entire model available under doi.org/10.7910/DVN/HISHXN. The Data and Code availability section has been updated to clarify this.

      - Live nature of the model. This is such a colossal model, and effort, that I worry that it may be quite difficult to update in light of new data. For example, how much person and computer time would it take to update the model to account for different layer sizes across subregions? Or to more precisely account for the shape of the juvenile rat cortex?

      To provide more information to people interested in participating in model refinements, we have added a new Figure 9. We discuss potential opportunities for refinement at the end of the discussion section.

      Reviewer #3 (Public Review):

      This manuscript reports a detailed model of the rat non-barrel somatosensory cortex, consisting of 4.2 million morphologically and biophysically detailed neuron models, arranged in space and connected according to highly sophisticated rules informed by diverse experimental data. Due to its breadth and sophistication, the model will undoubtedly be of interest to the community, and the reporting of anatomical details of modeling in this paper is important for understanding all the assumptions and procedures involved in constructing the model. While a useful contribution to this field, the model and the manuscript could be improved by employing data more directly and comparing simple features of the model's connectivity - in particular, connection probabilities - with relevant experimental data.

      The manuscript is well-written overall but contains a substantial number of confusing or unclear statements, and some important information is not provided.

      Below, major concerns are listed, followed by more specific but still important issues.

      Major issues

      (1) Cortical connectivity.

      Section 2.3, "Local, mid-range and extrinsic connectivity modeled separately", and Figure 4: I am confused about what is done here and why. The authors have target data for connectivity (Figure 4B1). But then they use an apposition-based algorithm that results in connectivity that is quite different from the data (Figure 4B2, C). They then use a correction based on the data (Figure 4E) to arrive at a more realistic connectivity. Why not set the connectivity based on the data right away then? That would seem like a more straightforward approach.

      We have completely re-written our description and discussion of connectivity in the model. We now more explicitly motivate our connectivity modeling choices in the first paragraph of section 2.3 of the results and in the second paragraph of the discussion.

      The same comment applies to Section 2.4., "Specificity of axonal targeting": the distributions of synapses on different types of target cell compartments were not well captured by the original model based on axon-dendrite overlap and pruning, so the authors introduced further pruning to match data specificity. While details of this process and what worked and what didn't may be interesting to some, overall it is not surprising, as it has been well known that cell types exhibit connectivity that is much more specific than "Peters rule" or its simple variations. The question is, since one has the data, why not use the data in the first place to set up the connectivity, instead of using the convoluted process of employing axon-dendrite overlap followed by multiple corrections?

      We would like to point out that we are not employing “Peters rule”, we now make this explicit in the revision in the first paragraph of section 2.3 of the results. Furthermore, we would argue that the match to the Motta et al. data indicates that our approach is more than just a “simple variation”. Finally, we believe that there is important insight in: 1. The specific ways in which the algorithm had to be changed to match the Schneider-Mizell data, e.g. that the connectivity of SST positive neurons did not have to be adapted at all. 2. That the specificity of the other two types could still be matched by a selection of a subset of axonal appositions (i.e., of potential synapses).

      Most importantly, what is missing from the whole paper is the characterization of connection probabilities, at least for the local circuit within one area. Such connection probabilities can be obtained from the data that the authors already use here, such as the MICRONS dataset. Another good source of such data is Campagnola et al., Science, 2022. Both datasets are for mouse V1, but they provide a comprehensive characterization across all cortical layers, thus offering a good benchmark for comparison of the model with the data. It would be important for the authors to show how connection probabilities realized in their model for different cell types compared to these data.

      We now report connection probabilities in the reworked figure 4 and compare them to reported connection probabilities from many different sources and labs in supplementary figure S8. We prefer a comparison to a wide range of sources to relying on a single report.

      (2) Section 2.5, "Structure of thalamic inputs" and Figure 6.

      The text in section 2.5 should provide more details on what was done - namely, that the thalamic axons were generated based on the axon density profiles and then synapses were established based on their overall with cortical dendrites. Figure S10 where the target axon densities from data and the model axon densities are compared is not even mentioned here. Now, Figure S10 only shows that the axon densities were generated in a way that matches the data reasonably well. However, how can we know that it results in connectivity that agrees with data? Are there data sources that can be used for that purpose? For example, the authors show that in their model "the peaks of the mean number of thalamic inputs per neuron occur at lower depths than the peaks of the synaptic density". Is this prediction of the model consistent with any available data?

      Most importantly, the authors should show how the different cell types in their model are targeted by the thalamic inputs in each layer. Experimental studies have been done suggesting specificity in targeting of interneuron types by thalamic axons, such as PV cells being targeted strongly whereas SST and VIP cells being targeted less.

      We have updated the Results section to provide context for the thalamic axon placement, and referred the reader to the methods for more detail. A reference to Figure S10 has now been added to this section as well.

      As for validations of the structure of the thalamo-cortical inputs: We found that the existing literature on the topic, such as Cruikshank et al., 2007, 2010 and more recently Sermet et al., 2019, is predominately on the physiological strengths of the pathways. We acknowledge that the authors provide compelling arguments that their findings are likely partially due to differences in the anatomical innervation strengths. On the other hand, Sporns, 2013 cautioned against mixing up structural and functional connectivity. Overall, we believe that it is simply cleaner to perform this validation in the accompanying manuscript (“Part II: Physiology and Experimentation”), using the full physiological model. Note that we have actually performed that validation in the manuscript (see preprint under the following doi: 10.1101/2023.05.17.541168, Figure 3H1).

      Note that a higher physiological strength onto PV+ neurons is observed.

      (3) "We have therefore made not only the model but also most of our tool chain openly available to the public (Figure 1; step 7)."

      In fact it is not the whole model that is made publicly available, but only about 5% of it (211,000 out of 4,200,000 neurons). Also, why is "most" of the tool chain made openly available, and not the whole tool chain?

      We have now made the entire model available under doi.org/10.7910/DVN/HISHXN. This has also been added to the Key resource table.

      With regard to the tool chain, everything is on our public github (https://github.com/BlueBrain/) except for the algorithm for detecting axonal appositions. For that tool there are currently unresolved potential copyright issues with former collaboration partners. We are working to resolve them.

      Other issues

      "At each soma location, a reconstruction of the corresponding m-type was chosen based on the size and shape of its dendritic and axonal trees (Figure S6). Additionally, it was rotated to according to the orientation towards the cortical surface at that point."

      After this procedure, were cells additionally rotated around the white matter-pia axis? If yes, then how much and randomly or not? If not, then why not? Such rotations would seem important because otherwise additional order potentially not present in the real cortex is introduced in the model affecting connectivity and possibly also in vivo physiology (such as the dynamics of the extracellular electric field).

      They are indeed additionally randomly rotated. We have clarified this in the revision.

      The term "new in vivo reconstructions" for the 58 neurons used in this paper in addition to "in vitro reconstructions" is a misnomer. It is not straightforward to see where the procedure is described, but then one finds that the part of Methods that describes experimental manipulations is mostly about that (so, a clearer pointer to that part of Methods could be useful). However, the description in Methods makes it clear that it is only labeling that is done in vivo; the microscopy and reconstruction are done subsequently in vitro. I would recommend changing the terminology here, as it is confusing. Also, can the authors show reconstructions of these neurons in the supplementary figures? Is the reconstruction shown in Figure 4A representative?

      The term is used because the staining is done in vivo. To the best of our knowledge, the reconstruction process cannot be performed in vivo. However, to avoid any confusion we modified the text to clarify this distinction to in-vivo stained.

      With respect to the reconstruction in Figure 4: The intent of the panel is to demonstrate the concept of targeted long-range axons that our morphologies are missing, necessitating the use of a second algorithm for longer-range connectivity. As such, it is not one of the reconstructions we used, but one of Janelia MouseLight. While we mentioned MouseLight in the figure caption, we formulated it in a way that could be misunderstood to mean that we merely used the MouseLight browser to render one of our morphologies. We apologize for the confusion, and we have fixed the figure caption.

      In this revision we have added exemplars of representative morphology reconstructions (in slice stained and in vivo stained) in a new supplementary figure, as requested (Figure S5). It is referenced in the last paragraph of section 2.1.

      In the Discussion, "This was taken into account during the modeling of the anatomical composition, e.g. by using three-dimensional, layer-specific neuron density profiles that match biological measurements, and by ensuring the biologically correct orientation of model neurons with respect to the orientation towards the cortical surface. As local connectivity was derived from axo-dendritic appositions in the anatomical model, it was strongly affected by these aspects.

      However, this approach alone was insufficient at the large spatial scale of the model, as it was limited to connections at distances below 1000μm."

      As mentioned above, it is not clear that this approach was sufficient for local connectivity either. It would be great if the authors showed a systematic comparison of local connection probabilities between different cell types in their model with experimental data and commented here in the Discussion about how well the model agrees with the data.

      As mentioned in the reply to a previous comment, we now report connection probabilities.

      In the Discussion: "The combined connectome therefore captures important correlations at that level, such as slender-tufted layer 5 PCs sending strong non-local cortico-cortical connections, but thick-tufted layer 5 PCs not." (Also the corresponding findings in Results.)

      If I understand this statement correctly, it may not agree with biological data. See analysis from MICRONS dataset in Bodor et al., https://www.biorxiv.org/content/10.1101/2023.10.18.562531v1.

      Our statement was indeed misleading and formulated too strongly. While thick-tufted pyramidal cells do form long-range intra-cortical connections, the structural strength of these pathways is weaker than for slender-tufted PCs, which are associated with the IT (intra-telencephalic) projection type. We have made this clear in the revision.

      Table 2 is confusing. What do pluses and minuses mean? What does it mean that some entries have two pluses? This table is not mentioned anywhere else in the text. If pluses mean some meaningful predictions of the model, then their distribution in the table seems quite liberal and arbitrary. It is not clear to me that the model makes that many predictions, especially for type-specificity and plasticity. Also, why is the hippocampus mentioned in this table? I don't see anything about the hippocampus anywhere else in the paper.

      We have clarified the description of the table in its caption and removed references to hippocampus, which were left from an earlier draft of the paper.

      In the Discussion, "Thus, we made the tools to improve our model also openly available (see Data and Code availability section)."

      As mentioned before, the authors themselves write that they made "most of our tool chain openly available to the public", but not all of it.

      With regard to the tool chain, everything is on our public github (https://github.com/BlueBrain/) except for the algorithm for detecting axonal appositions. For that tool there are currently unresolved potential copyright issues with former collaboration partners. We are working to resolve them.

      Table S2 has multiple question marks. It is not clear whether the "predictions" listed in that table are truly well-thought-out and/or whether experimental confirmations are real.

      Some of the citations in that table were broken due to technical difficulties with the citation manager used. We apologize and have fixed this in the revision.

      Introduction: It would be quite appropriate to cite here Einevoll et al., Neuron, 2019 ("The Scientific Case for Brain Simulations").

      We now reference this important work.

      Recommendations for the authors:

      Reviewing Editor's note:

      Consultation with the reviewers highlighted three main issues: the integration of connection probability profiles, non-uniform cortical thickness, and the overall organization of the manuscript.

      Reviewer #1 (Recommendations For The Authors):

      Apart from the points discussed in the public review, my main concern is that the manuscript itself is not as tightly constructed as it should be, to the detriment of the reader's ability to understand the model itself and the conclusions from the presented analyses.

      There are places where the text references seemingly incorrect figure panels or refers to panels that don't exist:

      - Section 2.2, first paragraph - refers to Figure 2D, E but those panels do not exist in Figure 2.

      - Section 2.2, second paragraph - refers to Figure 3D3 - perhaps it should be 3B3?

      - Section 2.8, first paragraph - has no figure references but seems like it should be referring to parts of Figure 8 (perhaps Figure 8B1 specifically?)

      - Is the reference to Figure S11A on page 16 supposed to be to S12A?

      In other places, figure labels and descriptions are not clear, and terminology is not always well-defined or explained.

      - Figure 8 and the associated section 2.8 are very difficult to draw conclusions from as presented - several of the terms used are opaque and not clearly defined in the text or legends. I could not easily infer how the normalization works for the "normalized node participation per layer", or what "position in simplex" means for "unique neurons in core", and what their "relative counts" are relative to.

      - Are "targets" in Figure S12A the same as "sinks"? If so, it would be better to use a single term consistently throughout.

      - Figure S12 - figures in part B do not have enough labels to interpret - what is the y-axis of the "rich-club analysis" graph? Also, the figures in part B bottom are labeled "long-range" rather than "mid-range" connections.

      In general, I found the use of both letters and numbers for figure panels (e.g. Figure 7E1) more confusing than helpful - it didn't seem like panels with the same letter were visually grouped consistently, and it sometimes made it more difficult to follow the flow of a figure. I would recommend using only letters in nearly every case here.

      We thank the reviewer for directing our attention to these issues. We have fixed them in the revision. However, we have decided to keep our original panel numbering scheme. Panels with the same letter are meant to be conceptually grouped as they address related or similar measures.

      Other minor points:

      - Section 2.4 - paragraph 2 - sentence 5 "inhbititory" -> "inhibitory".

      - Figure 5B figure legend - references Schneider-Mizell et al. 2023 but probably should be Motta et al. 2019?

      - Figure 5C - figure key "expcected" -> "expected".

      - The lower part of Figure 7C looks like it belongs to panel D2 instead of panel C due to relative spacing.

      We once again thank the reviewer, and we have fixed the listed issues.

      Reviewer #2 (Recommendations For The Authors):

      (1) Abstract:

      - Is it really 'integrating whole brain-scale data'? This seems a bit misleading.

      - "We delineated the limits of determining connectivity from anatomy" - here I think you mean determining connectivity from morphology, or dendrite/axon appositions. Electron microscopy is still anatomy and presumably would be much closer to function.

      We originally used the term “anatomy” as connectivity depends on the correct placement of neurons in addition to their morphology. However, as the reviewer points out, this term is misleading as it would encompass electron microscopy, which can go beyond what we do with the model. We have updated the text to read “morphology and placement”.

      (2) Introduction:

      "Investigating the multi-scale interactions that shape perception requires a model of multiple cortical subregions with inter-region connectivity, but it also requires the subcellular resolution provided by a morphologically detailed model." - This statement, as written, is not true in my opinion. You can argue for the value of morphologically-detailed neuron models to the study of perception, but they are not required for the investigation of perception.

      We have updated the text to be clearer: subcellular resolution is only required for certain aspects that are related to perception.

      (3) Results:

      - Pg. 9/10. There are three sentences in a row that are of the style: "ensuring that the total number of synapses in a region-to-region pathway matches biology." Biology here is a loose term and implies too much confidence in the matching to some ground truth. Please instead describe the source of the data, including the type of experiment here already. o Pg. 10. On the first read, I found it quite hard to follow what exactly was done in Figure 4.

      What are the target values adapted from Reimann et al., 2019, for example?

      - Pg. 10. "Based on these results, we decided that the local connectome sufficed to model connectivity within a region.". What is the basis for this decision? Can it be formalised? o Pg. 16, Figure 7 B-C. The apparent effect of geometry on modularity is potentially very interesting. However, are the sharp drop-offs in values for modularity (but also conicality and height) true, or are some artefacts due to columns at the edges of the sampled area?

      We have discussed these points above in the general comments and strengths and weaknesses.

      - Pg. 18. Simplicial cores define central subnetworks, tied together by mid-range connections. This work, in particular leading to the conclusion of the layer 5 highway hubs, stands out as being a successful attempt to simplify the highly detailed model to a degree that it generates useable new understanding.

      We thank the reviewer for the kind comment.

      (4) Figures:

      Figure 2: The caption doesn't seem to match the Figure (e.g. there are no brain regions depicted in A). o Figure 4f. This is a key panel, but is squished into a small corner of Figure 4, and therefore hard-to-read.

      We have fixed this in the revision.

      Reviewer #3 (Recommendations For The Authors):

      In Major comments, point (1) discusses the issue of connectivity known from data. For all the aspects of connectivity mentioned there, I would recommend the authors re-build their model using the connectivity data directly. It would be interesting to test whether a model constructed in such a way would have any difference in simulated neural activity relative to the model they have constructed.

      This is indeed a very interesting avenue of research. However, we believe that it is best conducted in separate manuscripts. First, in Pokorny et al., 2024 (https://doi.org/10.1101/2024.05.24.593860) we conduct this investigation, comparing the emerging activity in the model to the one for simpler connectivity models. Additionally, in Egas-Santander et al., 2024 (https://www.biorxiv.org/content/10.1101/2024.03.15.585196v3) we found that simpler connectomes lead to less reliable spiking activity globally. Finally, in the accompanying manuscript (https://www.biorxiv.org/content/10.1101/2023.05.17.541168v5) we compare activity with and without the targeting specificity of Schneider-Mizell et al.

      In Major comments, point (2) discusses thalamic inputs. I would recommend the authors to address the issues mentioned there.

      We have replied to those comments above.

      In addition, panels F and G of Figure 6 are mentioned in the caption but are not shown in the figure. In panel B, the choice of visualization is strange. It would make sense to show box plots for all the data instead of bars for mean values and points for randomly selected 50 cells. Panels E1 and E2 lack units.

      We have removed mentions of panels F and G and changed the style of plot. Units for E1 and E2 are now explained in the figure caption.

      In Major comments, point (3) touches upon model and tool sharing. I would recommend making such statements more accurate and reflecting what exactly is provided to the community since not everything is shared.

      We have now made the entire model available under doi.org/10.7910/DVN/HISHXN.

      With regard to the tool chain, everything is on our public github (https://github.com/BlueBrain/) except for the algorithm for detecting axonal appositions. For that tool there are currently unresolved potential copyright issues with former collaboration partners. We are working to resolve them.

      I would recommend the authors address all the other points mentioned in the public review as well. In addition, below are some smaller issues that should be fixed.

      Figure 2: the caption appears to be partially wrong and partially misassigned to the figure panels.

      We fixed the issue.

      Also, note that in L6 the types L6_TPC:A and L6_TPC:C are listed in the figure, but L6_TPC:B is not mentioned.

      There is indeed no TPC:B type in layer 6. The distinction between TPC:A and TPC:B is based on early or late bifurcations of the apical dendrite and is only observed in layer 5.

      Figure 3, panel B2: the caption refers to colors in panel (C), but the authors probably meant to refer to panel (A).

      We fixed the issue.

      "The placement of morphological reconstructions matched expectation, showing an appropriately layered structure with only small parts of neurites leaving the modeled volume (Figure 2D, E)."

      Figure 2 does not have panels D and E.

      "The volume was clearly dominated by dendrites, filling between 23% and 47% of the space, compared to 2% to 11% for axons (Figure 3D3)." There is no panel D or D3 in Figure 3.

      "Recently, the MICrONS dataset (MICrONS-Consortium et al., 2021) has been analyzed with respect to the axonal targeting of inhibitory subtypes in a 100 x 100 μm subvolume spanning all layers (Schneider-Mizell et al., 2023)."

      100 x 100 μm is an area (and should be 100 x 100 μm^2), not a volume.

      Figure S11B requires a legend for the color map.

      We fixed the issues.

      Table S1: What is the difference between L6_BP and L6_BPC? They both are referred to as L6 bipolar cells.

      We have changed the description of L6_BPC to “Layer 6 bitufted pyramidal cell”.

    1. Author response:

      Reviewer #1:

      We sincerely thank you for your thoughtful review and constructive comments on our work and we appreciate your positive assessment of our study’s innovative design, which allows for improved observation of 3D cell spheroids from an additional lateral view. Your comments underscore the importance of our approach in advancing methods for investigating cell behaviors in tumor organoid studies.

      In response to your suggestions, we will first add a detailed image of the ‘First surface mirror’ in Fig. 1 to provide a reference for readers and other researchers, thereby facilitating broader use of this method in similar observations. Regarding the suitable sample sizes for this device, as the spheroid sizes are relatively small compared to the mirror and culture dish, we have been able to image samples up to 5 mm in height, which provides ample capacity for most spheroids under 1 mm. We will include additional experiments and explanations in the manuscript to clarify this further.

      Concerning the ring-shaped seeding pattern of spheroids, we have conducted extensive culture experiments to optimize this method. The agarose microwells-based method has proven to be highly tolerant of variations. Within these microwells, cells have a propensity to self-aggregate, leading to the formation of spheroid structures. We will add a discussion in the revised manuscript to address this issue.

      Lastly, this device can accommodate the fluorescence imaging of 3D spheroid samples. We will supplement the discussion with a schematic illustrating the principles of fluorescence imaging using this device, providing a foundation for future work in this area. We will also regarding language improvements to enhance the overall quality of the manuscript.

      Thank you once again for your valuable insights, which have greatly contributed to the strengthening of our manuscript.

      Reviewer #2:

      We sincerely thank you for your detailed and supportive review of our manuscript. Your recognition of our system’s capabilities for in situ observation of 3D structures along multiple axes, as well as its potential applications in studying therapeutic effects, is highly encouraging. Your comments on the advantages of this system for analyzing cell migration, morphological changes, and responses to therapeutic agents are especially appreciated.

      Thank you again for your thoughtful feedback and for highlighting the contributions of our work. Your insights have been invaluable in refining the focus and clarity of our study, and we hope that our revisions meet your expectations.

    1. Author response:

      Public reviews:

      Reviewer #1:

      Epigenetic regulation complex (PRC2) is essential for neural crest specification, and its misregulation has been shown to cause severe craniofacial defects. This study shows that Eed, a core PRC2 component, is critical for craniofacial osteoblast differentiation and mesenchymal proliferation after neural crest induction. Using mouse genetics and single-cell RNA sequencing, the researcher found that conditional knockout of Eed leads to significant craniofacial hypoplasia, impaired osteogenesis, and reduced proliferation of mesenchymal cells in post-migratory neural crest populations.

      Overall, the study is superficial and descriptive. No in-depth mechanism was analyzed and the phenotype analysis is not comprehensive.

      We thank the reviewer for sharing their expertise and for taking the time to provide a helpful suggestion to improve our study. We are gratified that the striking phenotypes we report from Eed loss in post-migratory neural crest craniofacial tissues were appreciated. The breadth and depth of our phenotyping techniques, including skeletal staining, micro-CT, echocardiogram, immunofluorescence, histology, and unbiased single-cell gene expression analysis, provide comprehensive data in support our conclusion that PRC2 is required for craniofacial osteoblast differentiation. We hypothesize that epigenetic regulation of chromatin accessibility downstream of PRC2 activity is the molecular mechanism that underlies these phenotypes. To test this hypothesis in our revision, we are using CUT&Tag to profile H3K27me3 epigenetic modifications genome-wide and at the loci encoding the differentially expressed genes revealed by our single-cell transcriptomics in developing craniofacial structures. We anticipate that these experiments will reveal an epigenetic mechanism underlying the phenotypes we report from Eed loss in post-migratory neural crest craniofacial tissues.

      Reviewer #2:

      Summary:The role of PRC2 in post-neural crest induction was not well understood. This work developed an elegant mouse genetic system to conditionally deplete EED upon SOX10 activation. Substantial developmental defects were identified for craniofacial and bone development. The authors also performed extensive single-cell RNA sequencing to analyze differentiation gene expression changes upon conditional EED disruption.

      Strengths:

      (1) Elegant genetic system to ablate EED post neural crest induction.

      (2) Single-cell RNA-seq analysis is extremely suitable for studying the cell type-specific gene expression changes in developmental systems.

      We thank the reviewer for their generous and helpful comments on our study. We are pleased that our mouse genetic and single-cell RNA sequencing approaches were appropriate in pairing the craniofacial phenotypes we report with distinct gene expression changes in post-migratory neural crest tissues upon Eed deletion.

      Weaknesses:

      (1) Although this study is well designed and contains state-of-the-art single-cell RNA-seq analysis, it lacks the mechanistic depth in the EED/PRC2-mediated epigenetic repression. This is largely because no epigenomic data was shown.

      Thank you for this suggestion. As described in response to Reviewer #1, we will include H2K27me3 CUT&Tag data in craniofacial tissue harvested from E12.5 and E16.5 Sox10-Cretg+ Eedfl/fl and Sox10-Cretg+ Eedfl/wt  embryos in our revision. Our analyses will including genome-wide and targeted metaplot visualizations across genotypes and developmental timepoints and assess how H3K27me3 occupancy relates to gene expression changes in our single-cell RNA sequencing data.

      (2) The mouse model of conditional loss of EZH2 in neural crest has been previously reported, as the authors pointed out in the discussion. What is novel in this study to disrupt EED? Perhaps a more detailed comparison of the two mouse models would be beneficial.

      We acknowledge the study the reviewer has indicated (Schwarz et al. Development 2014). This elegant investigation uses Wnt1-Cre to delete Ezh2 and found a similar phenotype to ours in the form of catastrophic craniofacial hypoplasia. We sought to add depth to the study of PRC2’s vital role in neural crest development by ablating Eed, which has a unique function in the PRC2 complex by binding to H3K27me3 and allosterically activating Ezh2. In this sense, we sought to test if phenotypes arising from deletion of Eed, the PRC2 “reader”, differ from phenotypes arising from deletion of Ezh2, the PRC2 “writer”, in neural crest derived tissues. Due to limitations associated with the Wnt1-Cre transgene (Lewis et al. Developmental Biology 2013), we used the Sox10-Cre allele which targets the migratory neural crest and is completely recombined by E10.5, instead of Wnt1-Cre which targets pre-migratory neural crest cells. A more detailed comparison of these mouse models will be included in the Discussion section of our revised manuscript, and we thank the reviewer for this thoughtful suggestion.

      (3) The presentation of the single-cell RNA-seq data may need improvement. The complexity of the many cell types blurs the importance of which cell types are affected the most by EED disruption.

      We agree with the reviewer’s critique of the scRNA-seq data presentation. Because Sox10+ cells were not sorted (via FACS, for example) from craniofacial tissues before single-cell RNA sequencing, we identified a breath of cell types in UMAP space unrelated to epigenetic disruption of neural crest derived tissues. We will include subcluster visualization plots in the figures of our revised manuscript to highlight specific changes in clusters, such as osteoblasts and mesenchymal stem cells, that arise from Eed loss in post-migratory neural crest craniofacial tissues.

      (4) While it's easy to identify PRC2/EED target genes using published epigenomic data, it would be nice to tease out the direct versus indirect effects in the gene expression changes (e.g Figure 4e).

      We agree with the reviewer that our single-cell RNA sequencing data do not provide insight into direct versus indirect changes in gene expression downstream of PRC2. We hope that the aforementioned CUT&Tag experiment will provide the necessary mechanistic insight into H3K27me3 occupancy and direct effects on gene expression resulting from PRC2 inactivation in our mouse model.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      One of the roadblocks in PfEMP1 research has been the challenges in manipulating var genes to incorporate markers to allow the transport of this protein to be tracked and to investigate the interactions taking place within the infected erythrocyte. In addition, the ability of Plasmodium falciparum to switch to different PfEMP1 variants during in vitro culture has complicated studies due to parasite populations drifting from the original (manipulated) var gene expression. Cronshagen et al have provided a useful system with which they demonstrate the ability to integrate a selectable drug marker into several different var genes that allows the PfEMP1 variant expression to be 'fixed'. This on its own represents a useful addition to the molecular toolbox and the range of var genes that have been modified suggests that the system will have broad application. As well as incorporating a selectable marker, the authors have also used selective linked integration (SLI) to introduce markers to track the transport of PfEMP1, investigate the route of transport, and probe interactions with PfEMP1 proteins in the infected host cell.

      What I particularly like about this paper is that the authors have not only put together what appears to be a largely robust system for further functional studies, but they have used it to produce a range of interesting findings including:

      - Co-activation of rif and var genes when in a head-to-head orientation.

      - The reduced control of expression of var genes in the 3D7-MEED parasite line.

      - More support for the PTEX transport route for PfEMP1.

      - Identification of new proteins involved in PfEMP1 interactions in the infected erythrocyte, including some required for cytoadherence.

      In most cases the experimental evidence is straightforward, and the data support the conclusions strongly. The authors have been very careful in the depth of their investigation, and where unexpected results have been obtained, they have looked carefully at why these have occurred.

      (1) In terms of incorporating a drug marker to drive mono-variant expression, the authors show that they can manipulate a range of var genes in two parasite lines (3D7 and IT4), producing around 90% expression of the targeted PfEMP1. Removal of drug selection produces the expected 'drift' in variant types being expressed. The exceptions to this are the 3D7-MEED line, which looks to be an interesting starting point to understand why this variant appears to have impaired mutually exclusive var gene expression and the EPCR-binding IT4var19 line. This latter finding was unexpected and the modified construct required several rounds of panning to produce parasites expressing the targeted PfEMP1 and bind to EPCR. The authors identified a PTP3 deficiency as the cause of the lack of PfEMP1 expression, which is an interesting finding in itself but potentially worrying for future studies. What was not clear was whether the selected IT4var19 line retained specific PfEMP1 expression once receptor panning was removed.

      This is a very interesting point. We do not have systematic long-term data for the Var19 line but medium-term data. After panning the Var19 line, the binding assays were done within 3 months without additional panning. The first binding assay was 2 months after the panning and the last binding assays three weeks later. While there is inherent variation in these assays that precludes detection of smaller changes, the last assay showed the highest level of binding, giving no indication for rapid loss of the binding phenotype. Hence, we can say that the binding phenotype appears to be stable for many weeks without panning the cells again and there was no indication for a rapid loss of binding in these parasites.

      Systematic long-term experiments to assess how long the Var19 parasites retain binding would be interesting, but given that the binding-phenotype appears to remain stable over many weeks, this would only make sense if done for a much longer time (6 months or more). Due to the time needed to carry out such an experiment this would not be practical to still include into the present study. But this might be advisable if the Var19 line is used in future experiments that go over extended periods of time. We intend to include a statement in the discussion of the revised manuscript to highlight that if long-term work with this line is planned, monitoring the binding phenotype and potentially re-panning might be advisable.

      (2) The transport studies using the mDHFR constructs were quite complicated to understand but were explained very clearly in the text with good logical reasoning.

      We are aware of this being a complex issue and are glad this was nevertheless understandable.

      (3) By introducing a second SLI system, the authors have been able to alter other genes thought to be involved in PfEMP1 biology, particularly transport. An example of this is the inactivation of PTP1, which causes a loss of binding to CD36 and ICAM-1. It would have been helpful to have more insight into the interpretation of the IFAs as the anti-SBP1 staining in Figure 5D (PTP-TGD) looks similar to that shown in Figure 1C, which has PTP intact. The anti-EXP2 results are clearly different.

      We realize the description of the PTP1-TGD IFA data and that of the other TGDs was rather cursory. We intend to amend this in the revision.

      (4) It is good to see the validation of PfEMP1 expression includes binding to several relevant receptors. The data presented use CHO-GFP as a negative control, which is relevant, but it would have been good to also see the use of receptor mAbs to indicate specific adhesion patterns. The CHO system if fine for expression validation studies, but due to the high levels of receptor expression on these cells, moving to the use of microvascular endothelial cells would be advisable. This may explain the unexpected ICAM-1 binding seen with the panned IT4var19 line.

      We agree with the reviewer that it is desirable to have better binding systems for studying individual binding interactions. As the main purpose of this paper was to introduce the system and show binding, we did not move to more complicated binding systems. However, we would like to point out that the CSA binding was done on receptor alone in addition to the CSA-expressing HBEC-5i cells and was competed successfully with soluble CSA. In addition, apart from the additional ICAM1-binding of the Var19 line, all binding phenotypes were conform with expectations. We therefore hope the tools used for binding studies are acceptable at this stage of introducing the system while future work interested in specific PfEMP1 receptor interactions are advised to use better systems, ideally including also endothelial organoid models, inhibitory antibodies and possibly domain competition. We intend to add a sentence to the discussion highlighting that future work using this system to study individual receptor-interactions could benefit from using optimized binding systems.

      (5) The proxiome work is very interesting and has identified new leads for proteins interacting with PfEMP1, as well as suggesting that KAHRP is not one of these. The reduced expression seen with BirA* in position 3 is a little concerning but there appears to be sufficient expression to allow interactions to be identified with this construct. The quantitative impact of reduced expression for proxiome experiments will clearly require further work to define it.

      This is a valid point. Clearly there seems to be some impact on binding when BirA* is placed in the extracellular domain (either through reduced presentation or direct reduction of binding efficiency of the modified PfEMP1). The exact impact on the proxiome is indeed difficult to assess. However, we hope that the general coverage of proteins proximal to PfEMP1 with the 3 PfEMP1-BirA* constructs will aid in the identification of proteins involved in PfEMP1 transport and surface display as illustrated with two of the hits targeted here.

      (6) The reduced receptor binding results from the TryThrA and EMPIC3 knockouts were very interesting, particularly as both still display PfEMP1 on the surface of the infected erythrocyte. While care needs to be taken in cross-referencing adhesion work in P. berghei and whether the machinery truly is functionally orthologous, it is a fair point to make in the discussion. The suggestion that interacting proteins may influence the "correct presentation of PfEMP1" is intriguing and I look forward to further work on this.

      We hope we future work will be able to shed light on this.

      Overall, the authors have produced a useful and reasonably robust system to support functional studies on PfEMP1, which may provide a platform for future studies manipulating the domain content in the exon 1 portion of var genes. They have used this system to produce a range of interesting findings and to support its use by the research community.<br /> Finally, a small concern. Being able to select specific var gene switches using drug markers could provide some useful starting points to understand how switching happens in P. falciparum. However, our trypanosome colleagues might remind us that forcing switches may show us some mechanisms but perhaps not all.

      Point noted! From non-systematic data with the Var01 line that has been cultured for extended periods of time (several years), it seems other non-targeted vars remain silent in our SLI “activation” lines but how much SLI-based var-expression “fixing” tampers with the integrity of natural switching mechanisms is indeed very difficult to gage at this stage. We intend to add a statement to the manuscript that even if mutually exclusive expression is maintained, it is not certain the mechanisms controlling var expression all remain intact.

      Reviewer #2 (Public review):

      Summary

      Croshagen et al develop a range of tools based on selection-linked integration (SLI) to study PfEMP1 function in P. falciparum. PfEMP1 is encoded by a family of ~60 var genes subject to mutually exclusive expression. Switching expression between different family members can modify the binding properties of the infected erythrocyte while avoiding the adaptive immune response. Although critical to parasite survival and Malaria disease pathology, PfEMP1 proteins are difficult to study owing to their large size and variable expression between parasites within the same population. The SLI approach previously developed by this group for genetic modification of P. falciparum is employed here to selectively and stably activate the expression of target var genes at the population level. Using this strategy, the binding properties of specific PfEMP1 variants were measured for several distinct var genes with a novel semi-automated pipeline to increase throughput and reduce bias. Activation of similar var genes in both the common lab strain 3D7 and the cytoadhesion competent FCR3/IT4 strain revealed higher binding for several PfEMP1 IT4 variants with distinct receptors, indicating this strain provides a superior background for studying PfEMP1 binding. SLI also enables modifications to target var gene products to study PfEMP1 trafficking and identify interacting partners by proximity-labeling proteomics, revealing two novel exported proteins required for cytoadherence. Overall, the data demonstrate a range of SLI-based approaches for studying PfEMP1 that will be broadly useful for understanding the basis for cytoadhesion and parasite virulence.

      Comments

      (1) While the capability of SLI to actively select var gene expression was initially reported by Omelianczyk et al., the present study greatly expands the utility of this approach. Several distinct var genes are activated in two different P. falciparum strains and shown to modify the binding properties of infected RBCs to distinct endothelial receptors; development of SLI2 enables multiple SLI modifications in the same parasite line; SLI is used to modify target var genes to study PfEMP1 trafficking and determine PfEMP1 interactomes with BioID. Curiously, Omelianczyk et al activated a single var (Pf3D7_0421300) and observed elevated expression of an adjacent var arranged in a head-to-tail manner, possibly resulting from local chromatin modifications enabling expression of the neighboring gene. In contrast, the present study observed activation of neighboring genes with head-to-head but not head-to-tail arrangement, which may be the result of shared promoter regions. The reason for these differing results is unclear although it should be noted that the two studies examined different var loci.

      The point that we are looking at different loci is very valid and we realize this is not mentioned in the discussion. In the revision we intend to add this as a possible reason for this discrepancy. As stated in the discussion, the head-to-head scenario was observed before in lines obtained with panning. However, given the rather few examples where this was analyzed, it is well possible that this varies with gene locus and we will make sure that the revised version of the manuscript will be careful to highlight that it is not clear how much this observation in our work can be generalized.

      (2) The IT4var19 panned line that became binding-competent showed increased expression of both paralogs of ptp3 (as well as a phista and gbp), suggesting that overexpression of PTP3 may improve PfEMP1 display and binding. Interestingly, IT4 appears to be the only known P. falciparum strain (only available in PlasmoDB) that encodes more than one ptp3 gene (PfIT_140083100 and PfIT_140084700). PfIT_140084700 is almost identical to the 3D7 PTP3 (except for a ~120 residue insertion in 3D7 beginning at residue 400). In contrast, while the C-terminal region of PfIT_140083100 shows near-perfect conservation with 3D7 PTP3 beginning at residue 450, the N-terminal regions between the PEXEL and residue 450 are quite different. This may indicate the generally stronger receptor binding observed in IT4 relative to 3D7 results from increased PTP3 activity due to multiple isoforms or that specialized trafficking machinery exists for some PfEMP1 proteins.

      We thank the reviewer for pointing this out, it is an interesting idea that the PTP3 duplication could be a reason for the superior binding of IT4. We intend to add this point to the discussion of the revision.

      So far it seems the PTP3 issue occurred only with Var19. The thought of an extra layer of control, particularly for PfEMP1 variants that might be associated with virulence such as Var19, is very attractive. At present, the manuscript alludes to the possibility of an extra layer of control in the discussion. As var-type specificity and existence of such mechanisms in vivo are so far not known we decided not to speculate on this.

      Reviewer #3 (Public review):

      Summary:

      The submission from Cronshagen and colleagues describes the application of a previously described method (selection linked integration) to the systematic study of PfEMP1 trafficking in the human malaria parasite Plasmodium falciparum. PfEMP1 is the primary virulence factor and surface antigen of infected red blood cells and is therefore a major focus of research into malaria pathogenesis. Since the discovery of the var gene family that encodes PfEMP1 in the late 1990s, there have been multiple hypotheses for how the protein is trafficked to the infected cell surface, crossing multiple membranes along the way. One difficulty in studying this process is the large size of the var gene family and the propensity of the parasites to switch which var gene is expressed, thus preventing straightforward gene modification-based strategies for tagging the expressed PfEMP1. Here the authors solve this problem by forcing the expression of a targeted var gene by fusing the PfEMP1 coding region with a drug-selectable marker separated by a skip peptide. This enabled them to generate relatively homogenous populations of parasites all expressing tagged (or otherwise modified) forms of PfEMP1 suitable for study. They then applied this method to study various aspects of PfEMP1 trafficking.

      Strengths:

      The study is very thorough, and the data are well presented. The authors used SLI to target multiple var genes, thus demonstrating the robustness of their strategy. They then perform experiments to investigate possible trafficking through PTEX, they knock out proteins thought to be involved in PfEMP1 trafficking and observe defects in cytoadherence, and they perform proximity labeling to further identify proteins potentially involved in PfEMP1 export. These are independent and complimentary approaches that together tell a very compelling story.

      Weaknesses:

      (1) When the authors targeted IT4var19, they were successful in transcriptionally activating the gene, however, they did not initially obtain cytoadherent parasites. To observe binding to ICAM-1 and EPCR, they had to perform selection using panning. This is an interesting observation and potentially provides insights into PfEMP1 surface display, folding, etc. However, it also raises questions about other instances in which cytoadherence was not observed. Would panning of these other lines have been successfully selected for cytoadherent infected cells? Did the authors attempt panning of their 3D7 lines? Given that these parasites do export PfEMP1 to the infected cell surface (Figure 1D), it is possible that panning would similarly rescue binding. Likewise, the authors knocked out PTP1, TryThrA, and EMPIC3 and detected a loss of cytoadhesion, but they did not attempt panning to see if this could rescue binding. To ensure that the lack of cytoadhesion in these cases is not serendipitous (as it was when they activated IT4var19), they should demonstrate that panning cannot rescue binding.

      These are very important points. Indeed, we had repeatedly attempted to pan 3D7 when we failed to get the SLI-generated 3D7 PfEMP1 expressor lines to bind, but this had not been successful. After the move to IT4 which readily bound we made no further efforts to understand why 3D7 does not bind but the fact that PfEMP1 is on the surface indicates this is not a PTP3 issue. Also, as the parent 3D7 could not be panned, we assumed it is not easily fixed.

      Panning the TGD lines: we see the reasoning for conducting panning experiments with the TGD lines, but on second thought we are unsure this should be attempted. The outcome might not be easily interpretable if panning leads to increased binding and considerable follow up analyses would be needed to define what has happened. The reason for this is that at least two forces will contribute to the selection in panning experiments with TGD lines that lost binding. Firstly, panning would work against the SLI of the TGD, resulting in a tug of war between the TGD-SLI and binding: a very low frequency of parasites can be expected to loop out the TGD plasmid and would normally be eliminated during standard culturing due to the SLI drug used for the TGD. These revertant cells would bind and the panning would enrich them (hence, panning and SLI are opposed in the case of a TGD abolishing binding). It is unclear how strong such an effect can be, but this might lead to mixed populations that complicate interpretations. The second selecting force are possible compensatory changes to restore binding. These can come in two flavors: reversal of potential independent changes that may have occurred in the TGD parasites and that are in reality causing the binding loss (the concern of the reviewer) or new changes to compensate the loss of the TGD target (in case the TGD is the cause of the binding loss). As both of the TGDs in the paper show some residual binding and have VAR01 on the surface to at least some extent, it is possible that new compensatory changes might indeed occur that indirectly increase binding again. In summary, even if more binding after panning of the lines occurs, it is not clear whether this is due to a compensatory change ameliorating the TGD or reversal of an unrelated change. The impact of repeated panning against SLI is also unknown. To determine the cause, the panned TGD lines would need to be subjected to a complex and time-consuming analysis (WGS, RNASeq, possibly Maurer’s clefts IFA phenotype) to find out whether they had an unrelated chance change that was reverted or a new compensatory change that helps binding.

      The detection of VAR01 on the surface of these TGDs speaks against a PTP3 effect. While we can’t fully exclude other changes in the TGDs that might affect binding, we conducted WGS which did not show any obvious alterations that could be responsible. To fully exclude loss of ptp3 expression as the reason as seen with Var19 (something we would not have seen in the WGS if it is only due to a transcriptional change), we intend to carry out RNASeq with the two TGD lines. The third TGD mentioned by the reviewer (targeting ptp1) was a positive control of a known PfEMP1 trafficking protein, so we assume this does not need to be further validated.

      (2) The authors perform a series of trafficking experiments to help discern whether PfEMP1 is trafficked through PTEX. While the results were not entirely definitive, they make a strong case for PTEX in PfEMP1 export. The authors then used BioID to obtain a proxiome for PfEMP1 and identified proteins they suggest are involved in PfEMP1 trafficking. However, it seemed that components of PTEX were missing from the list of interacting proteins. Is this surprising and does this observation shed any additional light on the possibility of PfEMP1 trafficking through PTEX? This warrants a comment or discussion.

      This is an interesting comment and we agree we should have discussed this. A likely reason why PTEX components are not picked up as interactors is that BirA* is expected to become unfolded when it passes through the channel and in that state can’t biotinylate. Labelling likely would only be possible if PfEMP1 lingered at the PTEX translocation step before BirA* became unfolded to go through the channel which we would not expect under physiological conditions. We intend to add a sentence to the discussion why we think PTEX components would not be detected in our BioIDs even if PfEMP1 passes through it but that this might also be an argument against it passing through PTEX.

    1. Author response:

      Reviewer #1 (Public review):

      The results of this manuscript look at the interplay between pleiotropy, standing genetic variation, and parallelism (i.e. predictability of evolution) in gene expression. Ultimately, their results suggest that (a) pleiotropic genes typically have a smaller range in variation/expression, and (b) adaptation to similar environments tends to favor changes in pleiotropic genes, which leads to parallelism in mechanisms (though not dramatically). However, it is still uncertain how much parallelism is directly due to pleiotropy, instead of a complex interplay between them and ancestral variation.

      I have a few things that I was uncertain about. It may be these things are easily answered but require more discussion or clarity in the manuscript.

      (1) The variation being talked about in this manuscript is expression levels, and not SNPs within coding regions (or elsewhere). The cause of any specific gene having a change in expression can obviously be varied - transcription factors, repressors, promoter region variation, etc. Is this taken into account within the "network connectivity" measurement? I understand the network connectivity is a proxy for pleiotropy - what I'm asking is, conceptually, what can be said about how/why those highly pleiotropic genes have a change (or not) in expression. This might be a question for another project/paper, but it feels like a next step worth mentioning somewhere.

      In current study, we are only able to detect significant and repeatable expression changes but unable to identify the underlying causal variants. An eQTL study in the founder population in combination with genomic resequencing for both evolved and ancestral populations would be required to address this question.

      (2) The authors do have a passing statement in line 361 about cis-regulatory regions. Is the assumption that genetic variation in promoter regions is the ultimate "mechanism" driving any change in expression? In the same vein, the authors bring up a potential confounding factor, though they dismiss it based on a specific citation (lines 476-481; citation 65). I'm of the mindset that in order to more confidently disregard this "issue" based on previous evidence, it requires more than one citation. Especially since the one citation is a plant. That specific point jumps out to me as needing a more careful rebuttal.

      It was not our intention to claim that the expression changes in our experiment are caused by cis-regulatory variation only. We believe that the observed expression variation has both cis- and trans-genetic components, where as some studies tend to estimate much higher cisvariation for gene expression in Drosophila populations (e.g. [1, 2]). We mentioned the positive correlation between cis-regulatory polymorphism and expression variation to (1) highlight the genetic control of gene expression and (2) make the connection between polygenic adaptation and gene expression evolutionary parallelism.

      (3) I feel like there isn't enough exploration of tissue specificity versus network connectivity. Tissue specificity was best explained by a model in which pleiotropy had both direct and indirect effects on parallelism; while network connectivity was best explained (by a small margin) via the model which was mostly pleiotropy having a direct effect on ancestral variation, that then had a direct effect on parallelism. When the strengths of either direct/indirect effects were quantified, tissue specificity showed a stronger direct effect, while network connectivity had none (i.e. not significant). My confusion is with the last point - if network connectivity is explained by a direct effect in the best-supported model, how does this work, since the direct effect isn't significant? Perhaps I am misunderstanding something.

      To clarify, for network connectivity, there’s a significant “indirect” effect on parallelism (i.e. network connectivity affect ancestral gene expression and ancestral gene expression affect parallelism). Hence, in table 2, the direct effect of network connectivity on parallelism is weak and not significant while the indirect effect via ancestral variation is significant.

      Also, network connectivity might favor the most pleiotropic genes being transcription factor hubs (or master regulators for various homeostasis pathways); while the tissue specificity metric perhaps is a kind of a space/time element. I get that a gene having expression across multiple tissues does fit the definition of pleiotropy in the broad sense, but I'm wondering if some important details are getting lost - I'm just thinking about the relative importance of what tissue specificity measurements say versus the network connectivity measurement.

      We examined the statistical relationship between the two measures and found a moderate positive correlation on the basis of which we argued that the two measures may capture different aspects of pleiotropy. We appreciate the reviewer’s suggestions about the biological basis of the two estimates of pleiotropy, but we think that without further experimental insights, an extended discussion of this topic is too premature to provide meaningful insights to the readership.

      Reviewer #2 (Public review):

      Summary:

      Lai and collaborators use a previously published RNAseq dataset derived from an experimental evolution set up to compare the pleiotropic properties of genes whose expression evolved in response to fluctuating temperature for over 100 generations. The authors correlate gene pleiotropy with the degree of parallelisms in the experimental evolution set up to ask: are genes that evolved in multiple replicates more or less pleiotropic?

      They find that, maybe counter to expectation, highly pleiotropic genes show more replicated evolution. Such an effect seems to be driven by direct effects (which the authors can only speculate on) and indirect effects through low variance in pleiotropic genes (which the authors indirectly link to genetic variation underlying gene expression variance).

      Weaknesses:

      The results offer new insights into the evolution of gene expression and into the parameters that constrain such evolution, i.e., pleiotropy. Although the conclusions are supported by the data, I find the interpretation of the results a little bit complicated.

      Major comment:

      The major point I ask the authors to address is whether the connection between polygenic adaptation and parallelism can indeed be used to interpret gene expression parallelism. If the answer is not, please rephrase the introduction and discussion, if the answer is yes, please make it explicit in the text why it is so.

      Our answer is yes, we interpreted gene expression parallelism (high ancestral variance -> less parallelism) using the same framework that links polygenic adaptation and parallelism (high polygenicity = less trait parallelism). We believe that our response covers several of the reviewer’s concerns.

      The authors' argument: parallelism in gene expression is the same as parallelism in SNP allele frequency (AFC) (see L389-383 here they don't mention that this explanation is derived from SNP parallelism and not trait parallelism, and see Figure 1 b). In previous publications, the authors have explained the low level of AFC parallelism using a polygenic argument. Polygenic traits can reach a new trait optimum via multiple SNPs and therefore although the trait is parallel across replicates, the SNPs are not necessarily so.

      Importantly, our rationale is based on the idea that gene expression is rarely the direct target of selection, but rather an intermediate trait [3]. Recently, we have specifically tested this assumption for gene expression and metabolite concentrations and our analysis showed that both traits were are redundant [4], as previously shown for DNA sequences [5]. The important implication for this manuscript is that gene expression is also redundant, so that adaptation can be achieved by distinct changes in gene expression in replicate populations adapting to the same selection pressure. This implies that we can use the same simulation framework for gene expression as for sequencing data. In our case different SNP frequencies correspond to different expression levels (averaged across individuals from a population), which in turn increases fitness by modifying the selected trait. Importantly, the selected trait in our simulations is not gene expression, but a not defined high level phenotype. A key insight from our simulations is that with increasing polygenicity the expression of a gene is more variable in the ancestral population.

      In the current paper, they seem to be exchanging SNP AFC by gene expression, and to me, those are two levels that cannot be interchanged. Gene expression is a trait, not an SNP, and therefore the fact that a gene expression doesn't replicate cannot be explained by a polygenic basis, because again the trait is gene expression itself. And, actually, the results of the simulations show that high polygenicity = less trait parallelism (Figure 4).

      As detailed above, because adaptation can be reached by changes in gene expression at different sets of genes, redundancy is also operating on the expression level not just on the level of SNPs. To clarify, the x-axis of Fig. 4 is the expression variation in the ancestral population.

      Now, if the authors focus on high parallel genes (present in e.g. 7 or more replicates) and they show that the eQTLs for those genes are many (highly polygenic) and the AFC of those eQTLs are not parallel, then I would agree with the interpretation. But, given that here they just assess gene expression and not eQTL AFC, I do not think they can use the 'highly polygenic = low parallelism' explanation.

      The interpretation of the results to me, should be limited to: genes with low variance and high pleiotropy tend to be more parallel, and the explanation might be synergistic pleiotropy.

      While we understand the desire to model the full hierarchy from eQTLs to gene expression and adaptive traits, we raise caution that this would be a very challenging task. eQTLs very often underestimate the contribution of trans-acting factors, hence the understanding of gene expression evolution based on eQTLs is very likely incomplete and cannot explain the redundancy of gene expression during adaptation. Hence, we think that the focus on redundant gene expression is conceptually simpler and thus allows us to address the question of pleiotropy without the incorporation of allele frequency changes.  

      Reviewer #3 (Public review):

      The authors aim to understand how gene pleiotropy affects parallel evolutionary changes among independent replicates of adaptation to a new hot environment of a set of experimental lines of Drosophila simulans using experimental evolution. The flies were RNAsequenced after more than 100 generations of lab adaptation and the changes in average gene expression were obtained relative to ancestral expression levels from reconstructed ancestral lines. Parallelism of gene expression change among lines is evaluated as variance in differential gene expression among lines relative to error variance. Similarly, the authors ask how the standing variation in gene expression estimated from a handful of flies from a reconstructed outbred line affects parallelism. The main findings are that parallelism in gene expression responses is positively associated with pleiotropy and negatively associated with expression variation. Those results are in contradiction with theoretical predictions and empirical findings. To explain those seemingly contradictory results the authors invoke the role of synergistic pleiotropy and correlated selection, although they do not attempt to measure either.

      Strengths:

      (1) The study uses highly replicated outbred laboratory lines of Drosophila simulans evolved in the lab under a constant hot regime for over 100 generations. This allows for robust comparisons of evolutionary responses among lines.

      (2) The manuscript is well written and the hypotheses are clearly delineated at the onset.

      (3) The authors have run a causal analysis to understand the causal dependencies between pleiotropy and expression variation on parallelism.

      (4) The use of whole-body RNA extraction to study gene expression variation is well justified.

      Weaknesses:

      (1) It is unclear how well phenotypic variation in gene expression of the evolved lines has been estimated by the sample of 20 males from a reconstructed outbred line not directly linked to the evolved lines under study. I see this as a general weakness of the experimental design.

      Our intention was not to measure the phenotypic variance of the evolved lines, but rather to estimate the phenotypic variance at the beginning of the experiment. Hence, we measured and investigated the variation of gene expression in the ancestral population since this was the beginning of the replicated experimental evolution. Furthermore, since the ancestral population represents the natural population in Florida, the gene expression variation reflects the history of selection history acting on it.

      (2) There are no estimates of standing genetic variation of expression levels of the genes under study, only phenotypic variation. I wished the authors had been clear about that limitation and had discussed the consequences of the analysis. This also constitutes a weakness of the study.

      The reviewer is correct that we do not aim to estimate the standing genetic variation, which is responsible for differences in gene expression. While we agree that it could be an interesting research question to use eQTL mapping to identify the genetic basis of gene expression, we caution that trans-effects are difficult to estimate and therefore an important component of gene expression evolution will be difficult to estimate. Hence, we consider that our focus on variation in gene expression without explicit information about the genetic basis is simpler and sufficient to address the question about the role of pleiotropy.

      (3) Moreover, since the phenotype studied is gene expression, its genetic basis extends beyond expressed sequences. The phenotypic variation of a gene's expression may thus likely misrepresent the genetic variation available for its evolution. The genetic variation of gene expression phenotypes could be estimated from a cross or pedigree information but since individuals were pool-sequenced (by batches of 50 males), this type of analysis is not possible in this study.

      We agree with the reviewer that gene expression variation may also have a non-genetic basis, we discuss this in depth in the discussion of the manuscript.  

      (4) The authors have not attempted to estimate synergistic pleiotropy among genes, nor how selection acts on gene expression modules. It makes any conclusion regarding the role of synergistic pleiotropy highly speculative.

      We mentioned synergistic pleiotropy as a possible explanation for our results. A positive correlation between the fitness effect of gene expression variation would predict more replicable evolutionary changes. A similar argument has been made by [6]. 

      I don't understand the reason why the analysis would be restricted to significantly differentially expressed genes only. It is then unclear whether pleiotropy, parallelism, and expression variation do play a role in adaptation because the two groups of adaptive and non-adaptive genes have not been compared. I recommend performing those comparisons to help us better understand how "adaptive" genes differentially contribute to adaptation relative to "nonadaptive" genes relative to their difference in population and genetic properties.

      We agree with the reviewer that the comparison between the pleiotropy of adaptive and nonadaptive genes is interesting. We performed the analysis but omitted from the current manuscript for simplicity. Similar to the results in [6], non-adaptive genes are more pleiotropic than the adaptive genes. For adaptive genes we find a positive correlation between the level of pleiotropy and evolutionary parallelism. Thus, high pleiotropy limits the evolvability of a gene, but moderate and potentially synergistic pleiotropy increases the repeatability of adaptive evolution. We included this result in the revised manuscript and discuss it.

      There is a lack of theoretical groundings on the role of so-called synergistic pleiotropy for parallel genetic evolution. The Discussion does not address this particular prediction. It could be removed from the Introduction.

      We modestly disagree with the reviewer, synergistic pleiotropy is covered by theory and empirical results also support the importance of synergistic pleiotropy. 

      References

      (1) Genissel A, McIntyre LM, Wayne ML, Nuzhdin SV. Cis and trans regulatory effects contribute to natural variation in transcriptome of Drosophila melanogaster. Molecular biology and evolution. 2008;25(1):101-10. Epub 20071112. doi: 10.1093/molbev/msm247. PubMed PMID: 17998255.

      (2) Osada N, Miyagi R, Takahashi A. Cis- and Trans-regulatory Effects on Gene Expression in a Natural Population of Drosophila melanogaster. Genetics. 2017;206(4):2139-48. Epub 20170614. doi: 10.1534/genetics.117.201459. PubMed PMID: 28615283; PubMed Central PMCID: PMCPMC5560811.

      (3) Barghi N, Hermisson J, Schlötterer C. Polygenic adaptation: a unifying framework to understand positive selection. Nature reviews Genetics. 2020;21(12):769-81. Epub 2020/07/01. doi: 10.1038/s41576-020-0250-z. PubMed PMID: 32601318.

      (4) Lai WY, Otte KA, Schlötterer C. Evolution of Metabolome and Transcriptome Supports a Hierarchical Organization of Adaptive Traits. Genome biology and evolution. 2023;15(6). Epub 2023/05/26. doi: 10.1093/gbe/evad098. PubMed PMID: 37232360; PubMed Central PMCID: PMCPMC10246829.

      (5) Barghi N, Tobler R, Nolte V, Jaksic AM, Mallard F, Otte KA, et al. Genetic redundancy fuels polygenic adaptation in Drosophila. PLoS biology. 2019;17(2):e3000128. Epub 2019/02/05. doi: 10.1371/journal.pbio.3000128. PubMed PMID: 30716062.

      (6) Rennison DJ, Peichel CL. Pleiotropy facilitates parallel adaptation in sticklebacks. Molecular ecology. 2022;31(5):1476-86. Epub 2022/01/09. doi: 10.1111/mec.16335. PubMed PMID: 34997980; PubMed Central PMCID: PMCPMC9306781.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife Assessment 

      This valuable study is a detailed investigation of how chromatin structure influences replication origin function in yeast ribosomal DNA, with a focus on the role of the histone deacetylase Sir2 and the chromatin remodeler Fun30. Convincing evidence shows that Sir2 does not affect origin licensing but rather affects local transcription and nucleosome positioning which correlates with increased origin firing. Overall, the evidence is solid and the model plausible. However, the methods employed do not rigorously establish a key aspect of the mechanism where initiation precisely occurs or rigorously exclude alternative models and the effect of Sir2 on transcription is not re-examined in the fun30 context. 

      Clarification on Sir2 Effect on Transcription in the fun30 Context

      We appreciate the reviewers’ thorough assessment but would like to clarify that the effect of Sir2 on transcription in the fun30 context was addressed in both the original and revised manuscripts. However, we recognize that the presentation of the qPCR results may have been unclear, as we initially plotted absolute transcript levels without normalizing for rDNA array size differences among the genotypes. We have now corrected this.

      After normalizing for copy number variations, the qPCR data show that the sir2 fun30 double mutant results in a ~40-fold increase in C-pro transcription relative to WT, compared to a 4-fold and 19-fold increase in fun30 and sir2 single mutants, respectively (Figure 5, figure supplement 6). These results have been discussed in the manuscript result section, where we note that "C-pro RNA levels were approximately twice as high in sir2 fun30 compared to sir2 cells when adjusted for rDNA size differences." This observation is critical for addressing both alternative models of MCM disappearance and for pinpointing transcription initiation sites, as detailed in the following sections.

      Public Reviews: 

      Reviewer #1 (Public review): 

      Summary: 

      This paper presents a mechanistic study of rDNA origin regulation in yeast by SIR2. Each of the ~180 tandemly repeated rDNA gene copies contains a potential replication origin. Earlyefficient initiation of these origins is suppressed by Sir2, reducing competition with origins distributed throughout the genome for rate-limiting initiation factors. Previous studies by these authors showed that SIR2 deletion advances replication timing of rDNA origins by a complex mechanism of transcriptional de-repression of a local PolII promoter causing licensed origin proteins (MCMcomplexes) to re-localize (slide along the DNA) to a different (and altered) chromatin environment. In this study, they identify a chromatin remodeler, FUN30, that suppresses the sir2∆ effect, and remarkably, results in a contraction of the rDNA to about onequarter it's normal length/number of repeats, implicating replication defects of the rDNA. Through examination of replication timing, MCM occupancy and nucleosome occupancy on the chromatin in sir2, fun30, and double mutants, they propose a model where nucleosome position relative to the licensed origin (MCM complexes) intrinsically determines origin timing/efficiency. While their interpretations of the data are largely reasonable and can be interpreted to support their model, a key weakness is the connection between Mcm ChEC signal disappearance and origin firing. While the cyclical chromatin association-dissociation of MCM proteins with potential origin sequences may be generally interpreted as licensing followed by firing, dissociation may also result from passive replication and as shown here, displacement by transcription and/or chromatin remodeling. Moreover, linking its disappearance from chromatin in the ChEC method with such precise resolution needs to be validated against an independent method to determine the initiation site(s). Differences in rDNA copy number and relative transcription levels also are not directly accounted for, obscuring a clearer interpretation of the results. Nevertheless, this paper makes a valuable advance with the finding of Fun30 involvement, which substantially reduces rDNA repeat number in sir2∆ background. The model they develop is compelling and I am inclined to agree, but I think the evidence on this specific point is purely correlative and a better method is needed to address the initiation site question. The authors deserve credit for their efforts to elucidate our obscure understanding of the intricacies of chromatin regulation. At a minimum, I suggest their conclusions on these points of concern should be softened and caveats discussed. Statistical analysis is lacking for some claims. 

      Strengths are the identification of FUN30 as suppressor, examination of specific mutants of FUN30 to distinguish likely functional involvement. Use of multiple methods to analyze replication and protein occupancies on chromatin. Development of a coherent model. 

      Weaknesses are failure to address copy number as a variable; insufficient validation of ChEC method relationship to exact initiation locus; lack of statistical analysis in some cases. 

      Review of revised version and response letter: 

      In the response, the authors make some improvements by better quantifying 2D gels, adding some missing statistical analyses, analyzing the effect of fun30 on rDNA replication in strains with reduced rDNA copy number, and using ChIP-seq of MCMs to support the ChEC-seq data. However, these additions do not address the main issue that is at the heart of their model: where initiation precisely occurs and whether the location is altered in the mutant(s). Thus, mechanistic insight is limited.

      We discuss the issue regarding the initiation site below.

      Under the section "Addressing Alternative Explanations", the authors claim that processes like transcription and passive replication cannot affect the displaced complex specifically. Why? They are not on same DNA (as mentioned in the Fig 1 legend). 

      Premature origin activation, not transcription, drives the disappearance of repositioned MCM complexes in sir2 mutants in HU.

      Indeed, the reviewer is correct in suggesting that C-pro transcription confined to rDNA units with repositioned MCM complexes could selectively displace those complexes, potentially explaining the selective disappearance of displaced MCMs in sir2 cells. However, our analysis of C-pro transcription and MCM occupancy in G1 versus HU across the genotypes allows us to rule out this possibility.

      We show that the fraction of repositioned MCMs in G1 cells is proportional to the level of C-pro transcription (WT < fun30 << sir2 < sir2 fun30), consistent with the involvement of transcription in the repositioning process during MCM loading in G1. Accordingly, with approximately twice the transcription in sir2 fun30 compared to sir2, we observe more repositioned MCMs in sir2 fun30 cells than in sir2 cells in G1 (Fig 5C).

      However, if the disappearance of repositioned MCMs in HU were solely due to C-pro transcription rather than origin activation, we would expect the repositioned MCMs to disappear more quickly in sir2 fun30 cells. Contrary to this expectation, our data show that repositioned MCM complexes are more stable in sir2 fun30 mutants compared to sir2 mutants, indicating that transcription is not the primary factor in the disappearance of displaced MCM complexes in HU; rather, rDNA origin activation appears to be the key factor.

      Replication initiation site in sir2. Using multiple independent approaches, including 2D gels, ChIP-seq, and EdU incorporation, we have demonstrated that rDNA origins fire prematurely in sir2 mutants, a conclusion that the reviewer does not contest. Once an origin fires, the MCM signal disappears from the site of its initial deposition, as expected, and this is confirmed in our MCM ChIP and HU ChEC data, both at rDNA origins and across the genome.

      Given that the majority of MCM complexes in sir2 mutants are repositioned, it is expected that these repositioned complexes disappear following premature origin activation. With less than half of the licensed origins (or <30% of total rDNA copies) retaining MCM at non-repositioned sites in sir2 mutants, if only these non-repositioned complexes were firing, and the repositioned MCM complexes were disappearing via mechanisms other than replication initiation (e.g., transcription), rDNA replication in sir2 mutants would be severely compromised rather than accelerated. Given this, and the strong experimental evidence that repositioned MCM complexes fire prematurely, continued focus on alternative explanations for MCM complex disappearance seems unwarranted.

      We present this analysis in the results section as follows:

      “Finally, although deletion of FUN30 could suppress replication initiation at the rDNA either by inhibiting the firing of the active, repositioned MCM complex or by preventing MCM repositioning to the "active location" in the first place, our results suggest that suppression occurs through the former mechanism. Consistent with previous reports that fun30 mutants are deficient in transcriptional silencing (Neves-Costa et al. 2009), C-pro RNA levels were approximately twice as high in sir2 fun30 cells compared to sir2 cells when adjusted for rDNA size (Figure 5—figure supplement 6).

      Moreover, deletion of FUN30 shifts the distribution toward the repositioned MCM location over the non-repositioned one in G1 cells (Figure 5C), aligning with the increased C-pro transcription observed in fun30 mutants. This shift is evident in both sir2 and SIR2 cells. Despite the increased transcription-mediated repositioning in sir2 fun30 cells compared to sir2 cells during G1, repositioned MCM persists longer in sir2 fun30 cells than in sir2 cells after release into HU. Additionally, sir2 fun30 mutants exhibit reduced MCM accumulation at the RFB compared to sir2 mutants after release into HU, supporting the conclusion that MCM disappearance in HU reflects origin activation rather than transcription-mediated displacement.”

      The model in Fig 7 implies that initiation sites are different in WT versus the mutants and this determines their timing/efficiency. But they also suggest that the same site might be used with different efficiencies in this response. I agree that both are possibilities and are not resolved. 

      Adjustment of the model to account for repositioned MCMs in WT cells In Figure 5—figure supplement 5, we demonstrate that even in WT cells, a small fraction of repositioned MCMs (~5%) can be detected, and that these repositioned MCM complexes disappear prematurely. However, because this represents a very small fraction of MCMs in WT cells, we initially did not include it in our overall model in Figure 7. In light of the reviewer's comment, we have now revised the model to incorporate this detail.

      Supporting their model requires better resolution to determine the actual replication initiation site. While this may be challenging, it should be feasible with methods to map nascent strands like DNAscent, or Okazaki fragment mapping.

      The initiation site in sir2 mutants has been thoroughly analyzed and supported by extensive experimental data, as discussed above. While high-resolution techniques such as DNAscent or Okazaki fragment mapping could potentially offer another layer of validation, the likelihood of obtaining finer detail that would change the conclusions is minimal. The methods we employed provide sufficient resolution to pinpoint the initiation site, and our results align consistently with established replication models.

      Further experimentation would not only be redundant but also unlikely to provide new insights beyond revalidation. Given the strength of our current data, we believe the conclusions regarding replication initiation are robust and well-supported, making additional experiments unnecessary at this stage. Our priority is to focus on advancing other aspects of the research that require deeper exploration.

      The 2D gel analysis of strains with reduced rDNA copy numbers adequately addresses the copy number variable with regard to the replication effect. 

      Overall, the paper is improved by providing additional data and improved analysis. The paper nicely characterizes the effect of Fun30. The model is reasonable but remains lacking in precise details of mechanism. 

      Reviewer #2 (Public review): 

      Summary: 

      In this manuscript, the authors follow up on their previous work showing that in the absence of the Sir2 deacetylase the MCM replicative helicase at the rDNA spacer region is repositioned to a region of low nucleosome occupancy. Here they show that the repositioned displaced MCMs have increased firing propensity relative to non-displaced MCMs. In addition, they show that activation of the repositioned MCMs and low nucleosome occupancy in the adjacent region depend on the chromatin remodeling activity of Fun30. 

      Strengths: 

      The paper provides new information on the role of a conserved chromatin remodeling protein in regulation of origin firing and in addition provides evidence that not all loaded MCMs fire and that origin firing is regulated at a step downstream of MCM loading. 

      Weaknesses: 

      The relationship between the authors results and prior work on the role of Sir2 (and Fob1) in regulation of rDNA recombination and copy number maintenance is not explored, making it difficult to place the results in a broader context. Sir2 has previously been shown to be recruited by Fob1, which is also required for DSB formation and recombination-mediated changes in rDNA copy number. Are the changes that the authors observe specifically in fun30 sir2 cells related to this pathway? Is Fob1 required for the reduced rDNA copy number in fun30 sir2 double mutant cells? 

      Reviewer #3 (Public review): 

      Summary: 

      Heterochromatin is characterized by low transcription activity and late replication timing, both dependent on the NAD-dependent protein deacetylase Sir2, the founding member of the sirtuins. This manuscript addresses the mechanism by which Sir2 delays replication timing at the rDNA in budding yeast. Previous work from the same laboratory (Foss et al. PLoS Genetics 15, e1008138) showed that Sir2 represses transcription-dependent displacement of the Mcm helicase in the rDNA. In this manuscript, the authors show convincingly that the repositioned Mcms fire earlier and that this early firing partly depends on the ATPase activity of the nucleosome remodeler Fun30. Using read-depth analysis of sorted G1/S cells, fun30 was the only chromatin remodeler mutant that somewhat delayed replication timing in sir2 mutants, while nhp10, chd1, isw1, htl1, swr1, isw2, and irc5 had no effect. The conclusion was corroborated with orthogonal assays including two-dimensional gel electrophoresis and analysis of EdU incorporation at early origins. Using an insightful analysis with an Mcm-MNase fusion (Mcm-ChEC), the authors

      show that the repositioned Mcms in sir2 mutants fire earlier than the Mcm at the normal position in wild type. This early firing at the repositioned Mcms is partially suppressed by Fun30. In addition, the authors show Fun30 affects nucleosome occupancy at the sites of the repositioned Mcm, providing a plausible mechanism for the effect of Fun30 on Mcm firing at that position. However, the results from the MNAse-seq and ChEC-seq assays are not fully congruent for the fun30 single mutant. Overall, the results support the conclusions providing a much better mechanistic understanding how Sir2 affects replication timing at rDNA, 

      Strengths 

      (1) The data clearly show that the repositioned Mcm helicase fires earlier than the Mcm in the wild type position. 

      (2) The study identifies a specific role for Fun30 in replication timing and an effect on nucleosome occupancy around the newly positioned Mcm helicase in sir2 cells. 

      Weaknesses 

      (1) It is unclear which strains were used in each experiment. 

      (2) The relevance of the fun30 phospho-site mutant (S20AS28A) is unclear. 

      (3) For some experiments (Figs. 3, 4, 6) it is unclear whether the data are reproducible and the differences significant. Information about the number of independent experiments and quantitation is lacking. This affects the interpretation, as fun30 seems to affect the +3 nucleosome much more than let on in the description. 

      Recommendations for the authors:  

      Reviewer #2 (Recommendations for the authors)

      The authors have addressed my concerns by the addition of new experiments and analysis. 

      One point remains unclear regarding additional support for the Mcm-ChEC results using ChIP experiments to verify whether MCM redistributes in sir2D cells. In their rebuttal, the authors state that, "New supporting based evidence: ChIP at rDNA Origins. Our ChIP analysis also shows that the disappearance of the MCM signal at rDNA origins in sir2Δ cells released into HU is accompanied by signal accumulation at the replication fork barrier (RFB), indicative of stalled replication forks at this location (Figure 5 figure supplement 3)...." The ChIP data in Figure 5 supplement 3 show accumulation of the Mcm2 ChIP signal to the left of the RFB in sir2D cells but it doesn't look like there is any decrease in the MCM signal in sir2D relative to wild-type cells for the peak C-Pro. There is a new MCM peak suggesting perhaps a new MCM loading event. 

      Figure 5 figure supplement 3 shows the relative abundance of the MCM ChIP signal across the ~2 kb rDNA region, spanning from the MCM loading site at the rDNA origin (on the left) to the replication fork barrier (RFB) on the right. The MCM-ChIP data are normalized to the highest signal within this rDNA region rather than across the entire genome, meaning that only the relative abundance of MCM within this region is represented, and not comparisons between different conditions. We have now presented the results with the same axes for both alpha factor and HU.

      In wild-type (WT) cells, the MCM signal remains primarily at the initial loading site. However, in sir2 mutants, a significant portion of the MCM signal shifts rightward, consistent with rDNA origin activation and the movement of MCM along with the progressing replication fork. While some replication forks stall at the RFB, others are positioned between the MCM loading site and the RFB. The additional MCM peak observed does not represent a new MCM loading event, as the experiment was conducted during S-phase, when new MCM loading is not possible.

      Reviewer #3 (Recommendations for the authors): 

      In this revision the authors addressed my concerns and improved the manuscript and the presentation of the data. All my recommendations were implemented.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #2 (Public review):

      Summary:

      In their manuscript the authors report that fecal transplantation from young mice into old mice alleviates susceptibility to gout. The gut microbiota in young mice is found to inhibit activation of the NLRP3 inflammasome pathway and reduce uric acid levels in the blood in the gout model.

      Strengths:

      They focused on the butanoate metabolism pathway based on the results of metabolomics analysis after fecal transplantation and identified butyrate as the key factor in mitigating gout susceptibility. In general, this is a well-performed study.

      Weaknesses:

      The discussion on the current results and previous studies regarding the effect of butyrate on gout symptoms is insufficient. The authors need to provide a more thorough discussion of other possible mechanisms and relevant literature.

      Reviewer #2 (Recommendations for the authors):

      General comments:

      I appreciate the authors' efforts to answer the comments raised in my previous review (as Reviewer#2). However, I still detect some issues that need to be fully addressed, with inadequate or even no answers for several comments.

      Thank you for your valuable feedback. Your previous suggestions have been incredibly helpful for our paper. Although we have strived to make the article as comprehensive as possible, there may still be some areas that are not perfectly refined.

      The response to comment 1: The author's statement is not very convincing. What are the trends of inflammation factors? The data in Figure 1G-H suggest that butyrate may not be the only factor to explain this phenomenon. Authors should carefully interpret the data in Figure 1G-H.

      Sorry for the inadequate clarification on your question. We utilize antibiotics for treatment in order to establish the relationship between gut microbiota, age, and gout. Our research findings indicate that there is a trend for serum uric acid levels to increase with age, and we also observe that the older the age, the more pronounced the stimulation to MSU. We found that after clearing the gut microbiota and then stimulating with MSU, the trend of inflammation factors and serum uric acid level changing with age disappears. Thus, we can preliminarily draw the conclusion that the gut microbiota is closely associated with age, gout, and hyperuricemia.

      The response to comment 2: I understand the importance of evaluating a range of indicators, but food thickness is the most crucial clinical marker for diagnosing goats. Please move the data from Supplemental Figure 1A to the main figure.

      Thank you for your suggestions. We have included the most significant results in the main figure, and the description of “foot thickness” has already been provided descriptively in the manuscript. Additionally, considering the layout and arrangement of the images, we have placed it in the supplementary figures 1.

      The response to comment 3: The immunostaining for ZO-1 and Occludin is unclear. Please provide higher magnification images to confirm the specific staining.

      Thank you for your valuable feedback. We have enhanced the clarity of the images. In addition to adding immunohistochemical images in Supplementary Material 4, we have also submitted independent images.

      The response to comment 4: The authors still haven't directly addressed my comment.

      Please accept our sincere apologies for not providing a clearer response to your question. The indicators related to uric acid-producing enzymes and uric acid transporters have been separately analyzed according to different age groups. The specific results are detailed in section " The expression of uric acid-producing enzymes activity and uric acid transporters at the mRNA level across different age groups" of Supplementary Material 4.

      No response was given for comment 5. Please address it.

      In a PCoA plot, the distance between samples reflects the similarity in the structure of the microbial communities: the closer the distance, the more similar the composition of the communities; the greater the distance, the more pronounced the differences. We judge based on the relative distances of each group in the plot, observing their degree of proximity.

      The response to comment 6: I understand the author's statement, and I suggest incorporating it into the discussion section of the revised manuscript.

      Thank you for your suggestions. We have incorporated the relevant content into our discussion.

      The response to comment 7: Again, please incorporate this statement into the discussion section of the revised manuscript.

      Thank you for your suggestions. We have incorporated the relevant content into our discussion.

      Reviewer #3 (Public review):

      Summary:

      The revised manuscript presents interesting findings on the role of gut microbiota in gout, focusing on the interplay between age-related changes, inflammation, and microbiota-derived metabolites, particularly butyrate. The study provides valuable insights into the therapeutic potential of microbiota interventions and metabolites for managing hyperuricemia and gout. While the authors have addressed many of the previous concerns, a few areas still require clarification and improvements to strengthen the manuscript's clarity and overall impact.

      (1) While the authors mention that outliers in the data do not affect the conclusions, there remains a concern about the reliability of some figures (e.g., Figure 2D-G). It is recommended to provide a more detailed explanation of the statistical analysis used to handle outliers. Additionally, the clarity of the Western blot images, particularly IL-1β in Figure 3C, should be improved to ensure clear and supportive evidence for the conclusions.

      Thank you for your suggestion. We respond as follows: (1) Outliers can occasionally constitute intrinsic elements of the dataset, reflecting genuine occurrences within the experimental context. The elimination of such outliers has the potential to introduce bias into the results, thereby facilitating misconceptions regarding the underlying phenomenon under investigation. In order to maintain the transparency and integrity of the dataset, we have elected to retain the outliers within our analysis. This decision is based on the recognition that these values may represent genuine experimental observations or unique conditions that are inherently meaningful to the phenomenon under investigation. By preserving these data points, we aim to provide a comprehensive and unbiased representation of the experimental results, allowing for a more nuanced interpretation of the findings. (2) Due to the scarcity of samples, we are unable to fulfill your request in the short term. Furthermore, we have noted that the band for IL-1β in Figure 3C is indeed visible and we consider it suitable for subsequent analysis.

      (2) The manuscript raises a key question about why butyrate supplementation and FMT have different effects on uric acid metabolism and excretion. While the authors have addressed this by highlighting the involvement of multiple bacterial genera, it is still recommended to expand on the differences between these interventions in the discussion, providing more mechanistic insights based on available literature.

      Thank you for your suggestion. We have enriched the discussion in the manuscript and included additional comparisons

      (3) It is noted that IL-6 and TNF-α results in foot tissue were requested and have been added to supplementary material. However, the main text should clearly reference these additions, and the supplementary figures should be thoroughly reviewed for consistency with the main findings. The use of abbreviations (e.g., ns for no significant difference) and labeling should also be carefully checked across all figures.

      Thank you for your valuable feedback. We have revised the manuscript in accordance with your suggestions.

      (4) The manuscript presents butyrate as a key molecule in gout therapy, yet there are lingering concerns about its central role, especially given that other short-chain fatty acids (e.g., acetic and propionic acids) also follow similar trends. The authors should consider further acknowledging these other SCFAs and discussing their potential contribution to gout management. Additionally, the rationale for focusing primarily on butyrate in subsequent research should be made clearer.

      Thank you for your input. We have incorporated additional evidence into the discussion, explaining why we ultimately chose butyrate in subsequent research.

      (5) The full-length uncropped Western blot images should be provided as requested, to ensure transparency and reproducibility of the data.

      Thank you for your suggestion. We have already included the relevant explanations in the manuscript.

      (6) Despite the authors' revisions, several references still lack page numbers. Please ensure that all references are properly formatted, including complete page ranges.

      Thank you for your suggestions; we will make more detailed revisions to the references.

      The manuscript has improved with the revisions made, particularly regarding clarifications on experimental design and the inclusion of supplementary data. However, some concerns about data quality, mechanistic insights, and clarity in the figures remain. Addressing these points will enhance the overall impact of the work and its potential contribution to the understanding of the gut microbiome in gout and hyperuricemia. A final revision, with careful attention to both major and minor points, is highly recommended before resubmission.

      Once again, we are grateful for your suggestions and recognition. Your input has been of immense help to our manuscript and has also provided us with a valuable learning opportunity.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife Assessment

      The aim of this valuable study is to identify novel genes involved in sleep regulation and memory consolidation. It combines transcriptomic approaches following memory induction with measurements of sleep and memory to discover molecular pathways underlying these interlinked behaviors. The authors explore transcriptional changes in specific mushroom body neurons and suggest roles for two genes involved in RNA processing, Polr1F and Regnase-1, in the regulation of sleep and memory. Although this work exploits convincing and validated methodology, the strength of the evidence is incomplete to support the main claim that these two genes establish a definitive link between sleep and memory consolidation.

      We appreciate the reconsideration of our manuscript and recognize that we should have toned down the claims, especially with respect to the link between sleep and memory consolidation.  We have now changed the title, the abstract and the main text and also Figure 5 to essentially just state our findings.  While there is a little speculation in the Discussion, we point out that future work would be required to draw conclusions. We believe the manuscript still represents a considerable advance in showing the modulation of RNA processing genes during sleep-dependent memory consolidation in the relevant neurons, and also showing how one such gene affects sleep and translation and a second affects sleep and memory. 

      Public Reviews:

      Reviewer #2 (Public review):

      Prior work by the Sehgal group has shown that a small group of neurons in the fly brain (anterior posterior (ap) α'β' mushroom body neurons (MBNs)) promote sleep and sleep-dependent appetitive memory specifically under fed conditions (Chouhan et al., (2021) Nature). Here, Li, Chouhan et al. combine cell-specific transcriptomics with measurements of sleep and memory to identify molecular processes underlying this phenomenon. They define transcriptional changes in ap α'β' MBNs and suggest a role for two genes downregulated following memory induction (Polr1F and Regnase-1) in regulating sleep and memory.

      The transcriptional analyses in this manuscript are impressive. The authors have now included additional experiments that define acute and developmental roles for Polr1F and Regnase-1 respectively in regulating sleep. They have also provided additional data to strengthen their conclusion that Polr1F knockdown in α'β' mushroom body neurons enhances sleep.

      The resubmitted work represents a convincing investigation of two novel sleep-regulatory proteins that may also play important roles in memory formation.

      The authors have comprehensively addressed my comments, which I very much appreciate. I congratulate them on this excellent work.

      We very much appreciate the reviewer’s positive feedback. Thank you!

      Reviewer #3 (Public review):

      Previous work (Chouhan et al., 2022) from the Sehgal group investigated the relationship between sleep and long-term memory formation by dissecting the role of mushroom body intrinsic neurons, extrinsic neurons, and output neurons during sleep-dependent and sleep-independent memory consolidation. In this manuscript, Li et al., profiled transcriptome in the anterior-posterior (ap) α'/β' neurons and identified genes that are differentially expressed after training in fed condition, which supports sleep-dependent memory formation. By knocking down candidate genes systematically, the authors identified Polr1F and Regnase-1 as two important hits that play potential roles in sleep and memory formation. What is the function of sleep and how to create a memory are two long-standing questions in science. The present study used a new approach to identify novel components that may link sleep and memory consolidation in a specific type of neuron. Importantly, these components implicated that RNA processing may play a role in these processes.

      While I am enthusiastic about the innovative approach employed to identify RNA processing genes involved in sleep regulation and memory consolidation, I feel that the data presented in the manuscript is insufficient to support the claim that these two genes establish a definitive link between sleep and memory consolidation. First, the developmental role of Regnase-1 in reducing sleep remains unclear because knocking down Regnase-1 using the GeneSwitch system produced neither acute nor chronic sleep loss phenotype. In the revised manuscript, the author used the Gal80ts to restrict the knockdown of Regnase-1 in adult animals and concluded that Regnase-1 RNAi appears to affect sleep through development. Conducting overexpression experiments of Regnase-1 would lend some credibility to the phenotypes, however, this is not pursued in the revised manuscript. Second, while constitutive Regnase-1 knockdown produced robust phenotypes for both sleep-dependent and sleep-independent memory, it also led to a severe short-term memory phenotype. This raises the possibility that flies with constitutive Regnase-1 knockdown are poor learners, thereby having little memory to consolidate. The defect in learning could be simply caused by chronic sleep loss before training. Thus, this set of results does not substantiate a strong link between sleep and long-term memory consolidation. Lastly, the discussion on the sequential function of training, sleep, and RNA processing on memory consolidation appears speculative based on the present data.

      We thank the reviewer for the enthusiasm about the approach. As noted above, we have now removed all claims about a link between sleep and memory, and instead just emphasize that we have identified RNA processing genes that affect sleep and memory.  We agree with the reviewer that the basis of the Regnase-1 memory phenotype is unclear as the flies may be poor learners.  Also, the learning/memory defects could be secondary to sleep loss or, as Reviewer 4 below suggests, all the behavioral deficits could be caused by impaired development/function of the relevant ap ɑ′/β′ cells. We have now included this possibility in the discussion of the manuscript.  And we have modified the discussion on training, RNA processing, sleep and memory to emphasize the need for future experiments to address the sequence and relationship of these different processes. 

      Reviewer #4 (Public review):

      Summary:

      Li and Chouhan et al. follow up on a previous publication describing the role of anterior-posterior (ap) and medial (m) ɑ′/β′ Kenyon cells in mediating sleep-dependent and sleep-independent memory consolidation, respectively, based on feeding state in Drosophila melanogaster. The authors sequenced bulk RNA of ap ɑ′/β′ Kenyon cells 1h after flies were either trained-fed, trained-starved or untrained-fed and find a small number of genes (59) differentially expressed (3 upregulated, 56 downregulated) between trained-fed and trained-starved conditions. Many of these genes encode proteins involved in the regulation of gene expression. The authors then screened these differentially expressed genes for sleep phenotypes by expressing RNAi hairpins constitutively in ap ɑ′/β′ Kenyon cells and measuring sleep patterns. Two hits were selected for further analysis: Polr1F, which promoted sleep, and Regnase-1, which reduced sleep. The pan-neuronal expression of Polr1F and Regnase-1 RNAi constructs was then temporally restricted to adult flies using the GeneSwitch system. Polr1F sleep phenotypes were still observed, while Regnase-1 sleep phenotypes were not, indicating developmental defects. Appetitive memory was then assessed in flies with constitutive knockdown of Polr1F and Regnase-1 in ap ɑ′/β′ Kenyon cells. Polr1F knockdown did not affect sleep-dependent or sleep-independent memory, while Regnase-1 knockdown disrupted sleep-dependent memory, sleep-independent memory, as well as learning. Polr1F knockdown increased pre-ribosomal RNA transcripts in the brain, as measured by qPCR, in line with its predicted role as part of the RNA polymerase I complex. A puromycin incorporation assay to fluorescently label newly synthesized proteins also indicated higher levels of bulk translation upon Polr1F knockdown. Regnase-1 knockdown did not lead to observable changes in measurements of bulk translation.

      Strengths:

      The proposed involvement of RNA processing genes in regulating sleep and memory processes is interesting, and relatively unexplored. The methods are satisfactory.

      Weaknesses:

      The main weakness of the paper is in the overinterpretation of their results, particularly relating to the proposed link between sleep and memory consolidation, as stated in the title. Constitutive Polr1F knockdown in ap ɑ′/β′ Kenyon cells had no effect on appetitive long-term memory, while constitutive Regnase-1 knockdown affected both learning and memory. Since the effects of constitutive Regnase-1 knockdown on sleep could be attributed to developmental defects, it is quite plausible that these same developmental defects are what drive the observed learning and memory phenotypes. In this case, an alternative explanation of the authors' findings is that constitutive Regnase-1 knockdown disrupts the entire functioning of ap ɑ′/β′ Kenyon cells, and as a consequence behaviors involving these neurons (i.e. learning, memory and sleep) are disrupted. It will be important to provide further evidence of the function of RNA processing genes in memory in order to substantiate the memory link proposed by the authors.

      As noted above, we have removed claims of a link between sleep and memory and instead focused the manuscript on our findings of RNA processing genes modulated during sleep-dependent memory. We concur that impaired development of ap ɑ′/β′neurons could account for the sleep and memory phenotype observed and have included this possibility in the manuscript.

      Recommendations for the authors:

      Reviewer #4 (Recommendations for the authors):

      The title of the paper should be reconsidered to reflect the results. The evidence for a link between RNA processing genes and memory is weak.

      We have changed the title.

      Line 328. The term "central dogma" is misused. The central dogma refers to the unidirectional flow of information from DNA to protein. Instead the authors mean "gene expression".

      Changed, thank you.

      A couple of minor comments relating to the figures:

      Figure 1b. It is not clear what the number 10570 in the bottom right corner refers to.

      Fixed.

      Figure 3b. RU- and RU+ annotation is missing (as shown in 3d).

      Fixed.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review)

      (1) The identification of the proximal to distal degeneration of the tailgut within the human tail is difficult to distinguish with the current images present in Figure 3. A picture within a picture of the area containing the tail gut could be provided to prominently demonstrate the cellular architecture. Additionally, quantification of the localization of apoptosis would strongly support this observation, as well as provide a visualization of the tail's regression overall. For example, a graph plotting the number of apoptotic cells versus the rostral to caudal locations of the transverse sections while accounting for the CS stage of each analyzed embryo could be created; this could even be further broken down by region of tail, for example, tailgut, ventral ectodermal ridge, somite, etc.

      To provide more information on apoptosis, we prepared serial sections from an additional 6 human tails, 5 of which were processed for fluorescence anti-caspase 3 immunohistochemistry with DAPI staining (Fig 4) and H&E (Fig 6). This confirmed our previous finding of apoptosis especially in the tailgut and ventral mesoderm. We have not quantified the apoptosis, given the difficulty of deciding whether anti-caspase signals represent single or multiple dying cells. Instead, we performed a tissue area analysis from caudal to rostral along the tail (new section on p 9). This shows a progressive enlargement of the neural tube, no change in the notochord and a striking reduction in tailgut area (Fig 4C,D). The smaller tailgut has fewer nuclei in cross section rostrally compared with more caudally (Fig 4E). Given that apoptosis is present in the tailgut at all rostro-caudal levels, this is consistent with a rostralto-caudal loss of the tailgut, as is also found in mouse and rat embryos.

      (2) The identification of the mode of formation of the secondary neural tube is probably the most interesting question to be addressed, however, Figure 7's evidence is not completely satisfying in its current form. While I agree that it is unlikely that multiple polarization foci form within the most caudal part of the tail and coalesce more rostrally, I am equally unsure that a single polarization would form rostrally and then split and re-coalesce as it moves caudally, as is currently depicted by 7B. Multiple groups have recently shown the influence of geometric confinement on neuroectoderm and its ability to polarize and form a singular central lumen (Karzbrun 2021, Knight 2018), or the inverse situation of a lack of confinement resulting in the presence of multiple lumens. The tapering of the diameter of the tail and its shared perimeter and curvature with the polarization bears a striking resemblance to this controlled confinement. An interesting quantification to depict would include the number of lumens versus the transverse section diameter and CS stage to see if there is any correlation between embryo size and the number of multiple polarizations. Anecdotally, the fusion of multiple polarizations/lumens tends to occur often in these human organoid-type platforms, while splitting to multiple lumens as the tissues mature does not. Other supplements to Figure 7 could include 3D renderings of lumens of interest as depicted in Catala 2021, especially if it demonstrates the recoalescence as seen in 7B. The non-pathologic presence of multiple polarizations in human tails compared to the rodent pathogenic counterpart is interesting given that rodents obviously maintain this appendage while it is lost in humans.   

      The additional 6 sectioned human embryo tails (as described above) provide further information in support of the original findings of the paper: (i) that the secondary neural tube formation initially involves a single lumen, and (ii) that neural tube duplication occurs in many tails at more rostral levels. Neural tube duplication was observed in 15/25 of our sectioned tails: hence, overall 60% of human tails exhibited neural tube duplication in this study. We have replaced all the cross sectional images in the original Fig 7 (now Fig 6) to better illustrate the findings of neural tube duplication at relatively rostral levels of the human tail. Additionally, the axial position of sections containing duplicated neural tube are indicated by arrows in the graph of neural tube areas (Fig 4C). From this analysis it appears that neural tube duplication is not contingent on an increasing tail diameter, as raised by the reviewer, because some tails show a transition to neural tube duplication, and then return to an single lumen morphology more rostrally. While the 3D renderings of lumens would be interesting, we consider it beyond the scope of the present study.

      (3) Of potential interest is the process of junctional neurulation describing the mechanistic joining of the primary and secondary neural tube, which has recently been explored in chick embryos and demonstrated to have relevance to human disease (Dady 2014, Eibach 2017, Kim 2021). While it is clear this paper's goal does not center on the relationship between primary and secondary neurulation, such a mechanism may be relevant to the authors' interpretation of their observations of lumen coalescence. I wonder if the embryos studied provide any evidence to support junctional neurulation.  

      We agree this is an important point to address in the paper, and a new section has been inserted in the Discussion: ‘Transition from primary to secondary neurulation’ (pp 13-14). In brief, we find no evidence for a specific mode of ‘junctional neurulation’ in the human embryos. In any event, its existence is hypothetical in humans, suggested largely as an ‘embryological explanation’ for the finding of rare interrupted spinal cord defects in neurosurgical patients (Eibach, 2017). In chick neurulation there is longitudinal dorso-ventral overlap between the primary and secondary neural tubes (Dryden, 1980), with the junctional zone derived from ingressing cells at the node-streak border (Dady, 2014), a known source of neuromesodermal progenitors (NMPs). However, this is a very different developmental situation from the human so-called ‘junctional neurulation’ defect (Eibach, 2017), in which the spinal cord is physically and functionally interrupted, with only a rudimentary filament connecting the rostral and caudal parts.

      Reviewer #1 (Recommendations For The Authors):

      (1) Figures 3, 4, and 7, would be easier to digest quickly with inclusions of labels that mark the rostral and caudal transverse sections. For example, "caudal" over 3G and "rostral" over 3F.  

      Figures 3 and 4 have been combined to form revised Figure 3, and the rostral/caudal sections are no longer included, as these are superseded by the new Figure 4. Similarly Figure 7 has been replaced by new images in the revised Figure 6, with clear labelling of axial levels.

      (2) The manuscript does a nice job of comparing and contrasting the human findings to mouse, however, there are several instances where it would be nice to continue this trend within the text, such as including the rate of somite formation for rodents in the sections that you state the quantified human and published organoid findings, as well as the total number of somite rodents' exhibit. Additionally, the last sentence of the "Morphology of human PNP closure" section correctly states that human PNP's seem to close via Mode 2 neurulation that is seen in the mouse. However, my read of the literature (published by Dr. Copp) demonstrates that the PNP in mice actually closes via Mode 3 at the most caudal portion. If this is the case, it would be pointed to explicitly state that regionally dependent morphogenetic difference between the two species.  

      We agree these are important points to include. The additional somite data (for mouse) has been inserted in the Results section on ‘Somite formation’ (p 8), and the apparent absence of Mode 3 during human spinal neural tube closure is now included in the new Discussion section, ‘Transition from primary to secondary neurulation’ (pp 13-14).

      (3) The introduction to secondary neural tube formation with the hypothesis diagrams in Figure 7 is slightly jarring. At the beginning of the Figure, a schematic depicting the morphogenetic differences between primary and secondary would be helpful in introducing the readership to these complex embryologic events. An example of this could be similar to Figure 1 in Dr. Copp's paper:

      Nikolopoulou, E., et al. Neural tube closure: cellular, molecular and biomechanical mechanisms. Development 144, 552-566 (2017).  

      We feel that a summary diagram of primary and secondary neurulation would simply reproduce diagrams that are already widespread in the literature. As noted by the Reviewer, our article in Development (Nikolopoulou, 2017) contains just such a summary diagram as Figure 1. Therefore, we prefer to explicitly cite this article/figure in our Introduction (see modified first sentence, third paragraph, p 3), so that readers can consult the freely accessible Nikolopoulou review for more detail. The diagram in Figure 7 (now revised Figure 6) has been completely redrawn to make much clearer the hypotheses being examined in the study of human secondary neural tube formation, and neural tube duplication.

      (4) Finally, a matter of semantics, the second paragraph of the introduction describes myelomeningocele as a neurodegenerative defect, while it is true amniotic fluid further degrades exposed neural tissue while exposed, to me, the term neurodegenerative defect suggests a lifelong degeneration, which is not the case for human patients. Perhaps shortening to neurological defect is a compromise. Thank you for the important and interesting work.  

      We agree that ‘neurodegenerative’ can mean different things to different people. Literally, it refers to degeneration of neural tissue, which of course includes neuroepithelial loss due to amniotic fluid action in the uterus. Nevertheless, to avoid confusion, the word has been removed and the sentence expanded to include a reference to the adverse effects of amniotic fluid on the exposed neuroepithelium (see Introduction, second paragraph, p 3).

      Reviewer #2 (Public Review)

      It is not clear how the gestational age of the specimens was determined or how that can be known with certainty. There is no information given in the methods on this. With this in mind, bunching the samples at 2-day intervals in Figure 1J will lead to inaccuracies in assessing the rate of somite formation. This is pointed out as a major difference between specimens and organoids in the abstract but a similar result in the results section. The data supporting either of these statements is not convincing.

      Human embryos were assigned to Carnegie stages based on standard morphological criteria. This was stated, with references, in the first Results paragraph, and we have now also included this information in the Methods (first paragraph, p 19). We assigned the embryos to 2-day intervals based on the standard literature timing of these Carnegies stages, as described in O’Rahilly and Muller (1987). We have clarified both Carnegie staging and assignment of embryos to 2-day intervals in a new sentence within the Methods, first paragraph, p 19. “Embryos were assigned to Carnegie Stages (CS) using morphological criteria (O'Rahilly and Muller 1987; Bullen and Wilson 1997) and to 2-day post-conception intervals for regression analysis based on timings in Table 0-1 of O’Rahilly and Muller (1987).” This has also been inserted in the legend to Figure 1J.

      The regression analysis of somite number against days post-conception (Figure 1J) allowed a conclusion to be drawn on the rate of somite formation in early human embryos. We have added 95% confidence intervals to our finding of a new somite formed every 7.1 h in humans. We consider this to be important for comparison with non-human species and organoid systems. On p 8, second paragraph, we simply state our finding of a 7.1 h somite periodicity in human embryos, compared with 5 h in the organoid system (and 2 h in mouse and rat – as suggested by Reviewer 1). We are careful not to say it is a ‘major difference’ or ‘similar result’ in different parts of the paper, as the Reviewer has drawn attention to.

      Whenever possible, give the numbers of specimens that had the described findings. For example, in Figure 2C - how many embryos were examined with the massive rounded end at CS13? Apoptosis in Figures 3 and 4?  

      Numbers of embryos analysed in Figures 2 and 3 (the latter now a combined version of the original Figures 3 and 4) are shown in Table 2. We have also created a new Supplementary Figure 1 to show additional examples of human embryonic tails, which illustrate the consistency of morphology through the stages from CS13 to CS18. Numbers of samples that contributed to Figures 4-6 are detailed in the legends.

      For Figure 2I-K, it would be informative to superimpose the individual data points on the box plots distinguishing males from females, as in Figure 1I.  

      This was attempted but the data points overlie the box plots and look confusing. Instead, we have created Supplementary Table 2 which gives the raw data on which Figure 2I-K are

      based. We have also drawn attention to the fact that not all embryos yielded all types of measurement, especially tail lengths.

      Is it possible to quantitate apoptosis and proliferation data?  

      We have not quantified apoptosis, given the difficulty of deciding whether anti-caspase signals represent single or multiple dying cells. Instead, we performed a new tissue area analysis along the body axis, which has shed light on the possible direction (rostral to caudal) of tailgut loss in the human caudal region (see response to Reviewer 1 above). Since the cell proliferation data were limited in extent, and not a major focus of the paper, we have removed that analysis completely from the revised version.

      The Tunel staining in Figure 3 is difficult to make out.  

      We have extended our analysis of anti-caspase 3 immunohistochemisty and removed the TUNEL images.

      Reviewer #2 (Recommendations For The Authors)

      The anatomy of the sections in Figures 3, 4, and 7 is difficult to discern. Is it possible to insert adjacent panels tracing and labeling the structures in each panel? Also, drawings showing the axial level of each section would be helpful.

      To clarify the axial levels of sections, we have inserted images of mouse and human embryos as parts A and B of the revised Figure 3. We have tried to clarify the morphology of sections by labelling all relevant structures in the sections themselves.   

      High-magnification views of the tailbud in Figure 5 would be more informative. Staining is difficult to see after CS13. The low-magnification views can be shown in an insert. Figures 5 and 6 can be combined.

      At the reviewer’s suggestion, we have merged Figures 5 and 6 into a revised Figure 5. Now, the sections provide higher magnification images of the areas of expression as shown in the lower magnification whole mount images. We feel this makes the gene expression findings much clearer than before.

      Some of the writing in the abstract, introduction, and results is very descriptive, with a lack of summary and integration of information. For instance, the abstract could be rewritten to include an overall conclusion at the end and a better description of the longstanding questions addressed. Moreover, the abstract suggests multiple lumens are not found in human specimens. Another example is the second paragraph of the introduction lists various NTDs but doesn't provide an integrative conclusion of the information. The discussion is much better but lacks a conclusion at the end.

      We agree that more concluding sentences should be used, as the Reviewer suggests. To this end, we have rewritten the Abstract (p 2) to emphasise the long-standing questions that our study addresses, and concluding sentences are now included in other places (e.g. somite results, p 8). A new ‘Conclusions’ section has been added at the end of the Discussion (pp 17-18).

      ADDITIONAL CHANGES MADE TO REVISED MANUSCRIPT

      Title. This has been amended to: “Spinal neural tube formation and tail development in human embryos” to reflect the greater focus on developmental events, and less on tail regression.

      Additional studies have been added to Supplementary Table 1, to include the main transcriptomic studies of human embryos in the primary/secondary neurulation stage range. This takes the number of previous studies to 28 and the total number of embryos to 925. See p 4, top and p 12, first paragraph for corresponding changes to the text.

      We added a sentence to the Discussion (p 13, first paragraph) to counter the claim that humans have undergone ‘tail-loss’, as included in Xia et al, 2024, “On the genetic basis of tail-loss evolution in humans and apes”. Nature 626:1042-8. Clearly, the human embryo is tailed, which undermines these authors’ statement.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In the paper, Yan and her colleagues investigate at which stage of development different categorical signals can be detected with EEG using a steady-state visual evoked potential paradigm. The study reports the development trajectory of selective responses to five categories (i.e., faces, limbs, corridors, characters, and cars) over the first 1.5 years of life. It reveals that while responses to faces show significant early development, responses to other categories (i.e., characters and limbs) develop more gradually and emerge later in infancy. The paper is well-written and enjoyable, and the content is well-motivated and solid.

      Strengths:

      (1) This study contains a rich dataset with a substantial amount of effort. It covers a large sample of infants across ages (N=45) and asks an interesting question about when visual category representations emerge during the first year of life.

      (2) The chosen category stimuli are appropriate and well-controlled. These categories are classic and important for situating the study within a well-established theoretical framework.

      (3) The brain measurements are solid. Visual periodicity allows for the dissociation of selective responses to image categories within the same rapid image stream, which appears at different intervals. This is important for the infant field, as it provides a robust measure of ERPs with good interpretability.

      Weaknesses:

      The study would benefit from a more detailed explanation of analysis choices, limitations, and broader interpretations of the findings. This includes:

      a) improving the treatment of bias from specific categories (e.g., faces) towards others;

      b) justifying the specific experimental and data analysis choices;

      c) expanding the interpretation and discussion of the results.

      I believe that giving more attention to these aspects would improve the study and contribute positively to the field.

      We thank the reviewer for their clear summary of the work and their constructive feedback. To address the reviewer’s concerns, in the revised manuscript we now provide a detailed explanation of analysis choices, limitations, and broader interpretations, as summarized in the point-by-point responses in the section: Reviewer #1 (Recommendations For The Authors) below, for which we give here an overview in points (a), (b), and (c):

      (a) The reviewer is concerned that using face stimuli as one of the comparison categories may hinder the detection of selective responses to other categories like limbs. Unfortunately, because of the frequency tagging design of our study we cannot compare the responses to one category vs. only some of the other categories (e.g. limbs vs objects but not faces). In other words, our experimental design does not enable us to do this analysis suggested by the reviewer. Nonetheless, we underscore that faces compromise only ¼ of contrast stimuli and we are able to detect significant selective responses to limbs, corridors and characters in infants after 6-8 months of age even as faces are included in the contrast and the response to faces continues to increase (see Fig 4). We discuss the reviewer’s point regarding how contrast can contribute to differences in findings in the discussion on pages 12-13, lines 344-351. Full details below in Reviewer 1: Recommendations for Authors - Frequency tagging category responses.

      (b) We expanded the justification of specific experimental and data analysis choices, see details below in Reviewer 1: Recommendations for Authors ->Specific choices for experiment and data analysis.

      (c) We expand the interpretation and discussion, see details below in Reviewer 1: Recommendations for Authors -> More interpretation and discussion.

      Reviewer #2 (Public Review):

      Summary:

      The current work investigates the neural signature of category representation in infancy. Neural responses during steady-state visually-evoked potentials (ssVEPs) were recorded in four age groups of infants between 3 and 15 months. Stimuli (i.e., faces, limbs, corridors, characters, and cars) were presented at 4.286 Hz with category changes occurring at a frequency of 0.857 Hz. The results of the category frequency analyses showed that reliable responses to faces emerge around 4-6 months, whereas responses to libs, corridors, and characters emerge at around 6-8 months. Additionally, the authors trained a classifier for each category to assess how consistent the responses were across participants (leave-one-out approach). Spatiotemporal responses to faces were more consistent than the responses to the remaining categories and increased with increasing age. Faces showed an advantage over other categories in two additional measures (i.e., representation similarity and distinctiveness). Together, these results suggest a different developmental timing of category representation.

      Strengths:

      The study design is well organized. The authors described and performed analyses on several measures of neural categorization, including innovative approaches to assess the organization of neural responses. Results are in support of one of the two main hypotheses on the development of category representation described in the introduction. Specifically, the results suggest a different timing in the formation of category representations, with earlier and more robust responses emerging for faces over the remaining categories. Graphic representations and figures are very useful when reading the results.

      Weaknesses:

      (1) The role of the adult dataset in the goal of the current work is unclear. All results are reported in the supplementary materials and minimally discussed in the main text. The unique contribution of the results of the adult samples is unclear and may be superfluous.

      (2) It would be useful to report the electrodes included in the analyses and how they have been selected.

      We thank the reviewer for their constructive feedback and for summarizing the strengths and weaknesses of our study. We revised the manuscript to address these two weaknesses.

      (1) The reviewer indicates that the role of the adult dataset is unclear. The goal of testing adult participants was to validate the EEG frequency tagging paradigm. We chose to use adults because a large body of fMRI research shows that both clustered and distributed responses to visual categories are found in adults’ high-level visual cortex. Therefore, the goal of the adult data is to determine whether with the same amount of data as we collect on average in infants, we have sufficient power to detect categorical responses using the frequency tagging experimental paradigm as we use in infants. Because this data serves as a methodological validation purpose, we believe it belongs to the supplemental data.

      We clarify this in the Results, second paragraph, page 5 where now write: “As the EEG-SSVEP paradigm is novel and we are restricted in the amount of data we can obtain in infants, we first tested if we can use this paradigm and a similar amount of data to detect category-selective responses in adults. Results in adults validate the SSVEP paradigm for measuring category-selectivity: as they show that (i) category-selective responses can be reliably measured using EEG-SSVEP with the same amount of data as in infants (Supplementary Figs S1-S2), and that (ii) category information from distributed spatiotemporal response patterns can be decoded with the same amount of data as in infants (Supplementary Fig S3).”

      (2) The reviewer asks us to report the electrodes used in the analysis and their selection. We note that the selection of electrodes included in the analyses has been reported in our original manuscript (Methods, section: Univariate EEG analyses). On pages 18-19, lines 530-538, we write: “Both image update and categorical EEG visual responses are reported in the frequency and time domain over three regions-of-interest (ROIs): two occipito-temporal ROIs (left occipitotemporal (LOT): channels 57, 58, 59, 63, 64, 65 and 68; right occipitotemporal (ROT) channels: 90, 91, 94, 95, 96, 99, and 100) and one occipital ROI (channels 69, 70, 71, 74, 75, 76, 82, 83 and 89). These ROIs were selected a priori based on a previously published study51. We further removed several channels in these ROIs for two reasons: (1) Three outer rim channels (i.e., 73, 81, and 88) were not included in the occipital ROI for further data analysis for both infant and adult participants because they were consistently noisy. (2) Three channels (66, 72, and 84) in the occipital ROI, one channel (50) in the LOT ROI, and one channel (101) in the ROT ROI were removed because they did not show substantial responses in the group-level analyses.”

      In the section Reviewer 2, Recommendations for the authors, we also addressed the reviewer’s minor points.

      Reviewer #3 (Public Review):

      Yan et al. present an EEG study of category-specific visual responses in infancy from 3 to 15 months of age. In their experiment, infants viewed visually controlled images of faces and several non-face categories in a steady state evoked potential paradigm. The authors find visual responses at all ages, but face responses only at 4-6 months and older, and other category-selective responses at later ages. They find that spatiotemporal patterns of response can discriminate faces from other categories at later ages.

      Overall, I found the study well-executed and a useful contribution to the literature. The study advances prior work by using well-controlled stimuli, subgroups of different ages, and new analytic approaches.

      I have two main reservations about the manuscript: (1) limited statistical evidence for the category by age interaction that is emphasized in the interpretation; and (2) conclusions about the role of learning and experience in age-related change that are not strongly supported by the correlational evidence presented.

      We thank the reviewer for their enthusiasm and their constructive feedback.

      (1) The overall argument of the paper is that selective responses to various categories develop at different trajectories in infants, with responses to faces developing earlier. Statistically, this would be most clearly demonstrated by a category-by-age interaction effect. However, the statistical evidence for a category by interaction effect presented is relatively weak, and no interaction effect is tested for frequency domain analyses. The clearest evidence for a significant interaction comes from the spatiotemporal decoding analysis (p. 10). In the analysis of peak amplitude and latency, an age x category interaction is only found in one of four tests, and is not significant for latency or left-hemisphere amplitude (Supp Table 8). For the frequency domain effects, no test for category by age interaction is presented. The authors find that the effects of a category are significant in some age ranges and not others, but differences in significance don't imply significant differences. I would recommend adding category by age interaction analysis for the frequency domain results, and ensuring that the interpretation of the results is aligned with the presence or lack of interaction effects.

      The reviewer is asking for additional evidence for age x category interaction by repeating the interaction analysis in the frequency domain. The reason we did not run this analysis in the original manuscript is that the categorical responses of interest are reflected in multiple frequency bins: the category frequency (0.857 Hz) and its harmonics, and there are arguments in the field as to how to quantify response amplitudes from multiple frequency bins (Peykarjou, 2022). Because there is no consensus in the field and also because how the different harmonics combine depends not just on their amplitudes but also on their phase, we chose to transform the categorical responses across multiple frequency bins from the frequency domain to the time domain. The transformed signal in the time domain includes both phase and amplitude information across the category frequency and its harmonics. Therefore, subsequent analyses and statistical evaluations were done in the time domain.

      However, we agree with the reviewer that adding category by age interaction analysis for the frequency domain results can further solidify the results. Thus, in the revised manuscript we added a new analysis, in which we quantified the root mean square (RMS) amplitude value of the responses at the category frequency (0.857 Hz) and its first harmonic (1.714 Hz) for each category condition and infant. Then we used a LMM to test for an age by category interaction. The LMM was conducted separately for the left and right lateral occipitotemporal ROIs. Results of this analysis find a significant category by age interaction, that is, in both hemispheres, the development of response RMS amplitudes varied across category (left occipitotemporal ROIs: βcategory x age = -0.21, 95% CI: -0.39 – -0.04, t(301) = -2.40, pFDR < .05; right occipitotemporal ROIs: βcategory x age = -0.26, 95% CI: -0.48 – -0.03, t(301) = -2.26, pFDR < .05). We have added this analysis in the manuscript, pages 7-8, lines 186-193: “We next examined the development of the category-selective responses separately for the right and left lateral occipitotemporal ROIs. The response amplitude was quantified by the root mean square (RMS) amplitude value of the responses at the category frequency (0.857 Hz) and its first harmonic (1.714 Hz) for each category condition and infant. With a  LMM analysis, we found significant development of response amplitudes in the both occipitotemporal ROIs which varied by category (left occipitotemporal ROIs: βcategory x age = -0.21, 95% CI: -0.39 – -0.04, t(301) = -2.40, pFDR < .05; right occipitotemporal ROIs: βcategory x age = -0.26, 95% CI – -0.48 – -0.03, t(301) = -2.26, pFDR < .05, LMM as a function of log (age) and category; participant: random effect).” We also added the formula for the LMM analysis in Table 1 in the Methods section, page 21.

      (2) The authors argue that their results support the claim that category-selective visual responses require experience or learning to develop. However, the results don't bear strongly on the question of experience. Age-related changes in visual responses could result from experience or experience-independent maturational processes. Finding age-related change with a correlational measure does not favor either of these hypotheses. The results do constrain the question of experience, in that they suggest against the possibility that category-selectivity is present in the first few months of development, which would in turn suggest against a role of experience. However the results are still entirely consistent with the possibility of age effects driven by experience-independent processes. The manner in which the results constrain theories of development could be more clearly articulated in the manuscript, with care taken to avoid overly strong claims that the results demonstrate a role of experience.

      Thanks for the comment. We agree with this nuanced point. It is possible that development of category-selective visual responses is a maturational process. In response to this comment, we have revised the manuscript to discuss both perspectives, see revised discussion section – A new insight about cortical development: different category representations emerge at different times during infancy, pages 14-15, lines 403-426, where we now write: “In sum, the key finding from our study is that the development of category selectivity during infancy is non-uniform: face-selective responses and representations of distributed patterns develop before representations to limbs and other categories. We hypothesize that this differential development of visual category representations may be due to differential visual experience with these categories during infancy. This hypothesis is consistent with behavioral research using head-mounted cameras that revealed that the visual input during early infancy is dense with faces, while hands become more prevalent in the visual input later in development and especially when in contact with objects 41,42. Additionally, a large body of research has suggested that young infants preferentially look at faces and face-like stimuli 17,18,33,34, as well as look longer at faces than other objects 41, indicating that not only the prevalence of faces in babies’ environments but also longer looking times may drive the early development of face representations. Further supporting the role of visual experience in the formation of category selectivity is a study that found that infant macaques that are reared without seeing faces do not develop face-selectivity but develop selectivity to other categories in their environment like body parts40. An alternative hypothesis is that differential development of category representations is maturational. For example, we found differences in the temporal dynamics of visual responses among four infant age groups, which suggests that the infant’s visual system is still developing during the first year of life. While the mechanisms underlying the maturation of the visual system in infancy are yet unknown, they may include myelination and cortical tissue maturation 66-71. Future studies can test these alternatives by examining infants’ visual diet, looking behavior, and brain development and examine responses using additional behaviorally relevant categories such as food 72–74. These measurements can test how environmental and individual differences in visual experiences may impact infants’ developmental trajectories. Specifically, a visual experience account predicts that differences in visual experience would translate into differences in development of cortical representations of categories, but a maturational account predicts that visual experience will have no impact on the development of category representations.”

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Major points:

      Bias from faces to other categories:

      - Frequency tagging category responses:

      We see faces from non-face objects and limbs from non-limb objects. Non-limb objects include faces; I suspect that finding the effects of limbs is challenging with faces in the non-limbs category. How would you clarify the choice of categories, and to what extent are the negative (i.e., non-significant) effects on other categories not because of the heavy bias to faces?

      The reviewer is concerned that using face stimuli as one of the comparison categories may hinder the ability to detect selective responses to other categories like limbs in our study. Unfortunately, because of the frequency tagging design of our study, we cannot compare the responses to one category to only some of the other categories (e.g. limbs vs objects but not faces), so our experimental design does not enable us to do the analysis suggested by the reviewer. Nonetheless, we underscore that faces compromise only ¼ of contrast stimuli in the category frequency tagging and we are able to detect significant selective responses to limbs, corridors and characters in infants after 6-8 months of age, when faces are included in the contrast and the responses to faces continue to increase more than for other categories (see Fig 4).

      We address this point in the discussion where we consider differences between our findings and those of Kosakowski et al. 2022, on pages 12-13, lines 344-351 we write: “We note that, the studies differ in several ways: (i) measurement modalities (fMRI in 27 and EEG here), (ii) the types of stimuli infants viewed: in 27 infants viewed isolated, colored and moving stimuli, but in our study, infants viewed still, gray-level images on phase-scrambled backgrounds, which were controlled for several low level properties, and (iii) contrasts used to detect category-selective responses, whereby in 27 the researchers identified within predefined parcels – the top 5% of voxels that responded to the category of interest vs. objects, here we contrasted the category of interest vs. all other categories the infant viewed. Thus, future research is necessary to determine whether differences between findings are due to differences in measurement modalities, stimulus format, and data analysis choices.”

      - Decoding analyses:

      Figure 5 Winner-take-all classification. First, the classifier may be biased towards the categories with strong and clean data, similar to the last point, this needs clarification on the negative effect. Second, it could be helpful to see how exactly the below-chance decoded categories were being falsely classified to which categories at the group level. Decoding accuracy here means a 20% chance the selection will go to the target category, but the prediction and the exact correlation coefficient the winner has is not explicit; concerning a value of 0.01 correlation could take the winner among negative or pretty bad correlations with other categories. It would be helpful to report how exactly the category was correlated, as it could be a better way to define the classification bias, for example, correlation differences between hit and miss classification. Also, the noise ceiling of the correlation within each group should be provided. Third, this classifier needs improvement in distinguishing between noise and signals to identify the type of information it extracts. Do you have thoughts about that?

      Thanks for the questions, answers below:

      In the winner-take-all (WTA) classifier analysis, at each iteration, the LOOCV classifier computed the correlation between each of the five category vectors from the left-out participant (test data, for an unknown stimulus) and each of the mean spatiotemporal vectors across the N-1 participants (training data, labeled data). The winner-take-all (WTA) classifier classifies the test vector to the category that yields the highest correlation with the training vector. For a given test pattern, correct classification yielded a score of 1 and an incorrect classification yielded a score of 0. Then we computed the group mean decoding performance across all N iterations for each category and the group mean decoding accuracies across five categories.

      For the classification data in Fig 5, the statistics and differences from chance are provided in 5B, where we report overall classification across all categories from an infant’s brain data. Like the reviewer, we were interested in assessing if successful classification is uniform across categories or is driven by some categories. As is visible in 5C, decoding success is non-uniform across categories, and is higher for faces than other categories. Because this is broken by category we cannot compare to chance, and what is reported in Fig 5c is percentage infants in each age group that a particular category was successfully decoded. Starting from 4 months of age, faces can be decoded from distributed brain data in a majority of infants, but other categories only in 20-40% of infants. 

      The reviewer also asks about what levels of correlations drive the classification. The analysis of RSMs in Fig 6a shows the mean correlations of distributed responses to different images within and between categories per age group. As is evident from the RSM, reproducible responses for a category only start to emerge at 4-6 months of age and the highest within category correlations are for faces. To quantify what drives the classification we measure distinctiveness - within category minus between-category correlations of distributed responses; all individual infant data per category are in Fig 6C. Distinctiveness values vary by age and category, see text related to Fig 6 in section: What is the nature of categorical spatiotemporal patterns in individual infants?

      Figure 6 Category distinctiveness. An analysis that runs on a "single item level" would ideally warrant a more informative category distinction. Did you try that? Does it work?

      Thanks for the question. We agree that doing an analysis at the single item level would be interesting. However, none of the images were repeated, so we do not have sufficient SNR to perform this analysis.

      Specific choices for experiment and data analysis:

      - Although using the SSVEP paradigm is familiar to the field, the choice could be detailed for understanding or evaluation of the effectiveness of the paradigm. For example, how the specific frequency for entrainment was chosen, and are there any theories or related warrants for studying in infants?

      Thanks for the questions. We choose to use the SSVEP paradigm over traditional ERP designs for several reasons, as described which have been listed in our original manuscript (Results part, first paragraph, pages 4-5, lines 90-94): “We used the EEG-SSVEP approach because: (i) it affords a high signal-to-noise ratio with short acquisitions making it effective for infants 23,46, (ii) it has been successfully used to study responses to faces in infants23,46,49, and (iii) it enables measuring both general visual response to images by examining responses at the image presentation frequency (4.286 Hz), as well as category-selective responses by examining responses at the category frequency (0.857 Hz, Fig 1A).”

      With regards to our choice of presentation rate, a previous study in 4-6-month-olds by de Heering and Rossion (2015) used SSVEP showing infants faces and objects presented the visual stimuli at 6 Hz (i.e. 167 ms per image) to study infants’ categorical responses to natural faces relative to objects. Here, we chose to use a relatively slower presentation rate, which was 4.286 Hz (i.e. 233 ms per image), so that our infant participants would have more time to process each image yet still unlikely to make eye movements across a stimulus. Both de Heering et (2015) and our study have found significant selective responses to faces relative to other categories in 4-6-month-olds, across these presentation rates. As discussed in a recent review of frequency tagging with infants: The visual oddball paradigm (Peykarjou, 2022), there are many factors to consider when adapting SSVEP paradigms to infants. We agree that an interesting direction for future studies is examination of how SSVEP parameters such as stimulus and oddball presentation rate, and overall duration of acquisition affects the sensitivity of the SSVEP paradigm in infants. We added a discussion point on this on page 12, lines 332-334 where we write: “As using SSVEP to study high-level representations is a nascent field52–54, future work can further examine how SSVEP parameters such as stimulus and target category presentation rate may affect the sensitivity of measurements in infants (see review by54).”

      - There is no baseline mentioned in the study. How was the baseline considered in the paradigm and data analysis? The baseline is important for evaluating how robust/ reliable the periodic responses within each group are in the first place. It also helps us to see how different the SNR changes in the fast periodic responses from baseline across age groups. Would the results be stable if the response amplitudes were z-scored by a baseline?

      Thanks for the question. Previous studies using a similar frequency tagging paradigm have compared response amplitude at stimulus-related frequencies to that of neighboring frequency bins as their baseline for differentiating signal from noise. We use a more statistically powerful method, the Hotelling’s T2 statistic to test whether response amplitudes were statistically different from 0 amplitude. Importantly, this method takes into consideration both the amplitude and phase information of the response. That is, a significant response is expected to have consistent phase information across participants as well as significant amplitude.

      - Statistical inferences: could the variance of data be considered appropriately in your LLM? Why?

      As we have explained in our original manuscript (Methods part, section-Statistical Analyses of Developmental Effects, page 21 lines 611-615): “LMMs allow explicit modeling of both within-subject effects (e.g., longitudinal measurements) and between-subject effects (e.g., cross-sectional data) with unequal number of points per participants, as well as examine main and interactive effects of both continuous (age) and categorical (e.g., stimulus category) variables. We used random-intercept models that allow the intercept to vary across participants (term: 1|participant).” This statistical model is widely used in developmental studies that combine both longitudinal and cross-sectional measurements (e.g. Nordt et al. 2022, 2023; Natu et al. 2021; Grotheer et al. 2022).

      - The sampling of the age groups. Why are these age groups considered, as 8-12 months are not considered? Or did the study first go with an equal sampling of the ages from 3 to 15 months? Then how was the age group defined? The log scale of age makes sense for giving a simplified view of the effects, but the sampling procedure could be more detailed.

      Thanks for the question. Our study recruited infants longitudinally for both anatomical MRI and EEG studies. Some of the infants participated in both studies and some only in one of the studies. Infants were recruited at around newborn, 3 months, 6 months, and 12 months. We did not recruit infants between 8-12 months of age because around 9 months there is little contrast between gray and white matter in anatomical MRI scans that were necessary for the MRI study. For the EEG study we binned the subjects by age group such that there were a similar number of participants across age groups to enable similar statistical power. The division of age groups was decided based on the distribution of the infants included in the analyses.

      We have now added the sampling procedure details in the Methods, part, under section: Participants, pages 15-16, lines 440-445: “Sixty-two full-term, typically developing infants were recruited. Twelve participants were part of an ongoing longitudinal study that obtained both anatomical MRI and EEG data in infants. Some of the infants participated in both studies and some only in one of the studies. Infants were recruited at around newborn, 3 months, 6 months, and 12 months. We did not recruit infants between 8-12 months of age because around 9 months there is little contrast between gray and white matter in anatomical MRI scans that were necessary for the MRI study.”

      - 30 Hz cutoff is arbitrary, but it makes sense as most EEG effects can be expected in a lower frequency band than higher. However, this specific choice is interesting and informative, when faced with developmental data and this type of paradigm. Would the results stay robust as the cutoff changes? Would the results benefit from going even lower into the frequency cutoff?

      In the time domain analyses, we choose the 30 Hz cutoff to be consistent with previous EEG studies including those done with infants. However, as our results from the frequency domain (Fig 3, right panel, and supplementary Fig S6-S9) show that there are barely any selective categorical responses above about 6 Hz. Therefore, we expect that using a lower frequency cutoff, such as 10 Hz, will not lead to different results.

      More interpretation and discussion:

      - You report the robust visual responses in occipital regions, the responses that differ across age groups, and their characteristics (i.e., peak latency and amplitude) in time curves. This part of the results needs more interpretation to help the data be better situated in the field; I wondered whether this relates to the difference in the signal processing of the information. Could this be the signature of slow recurrence connection development? Or how could this be better interpreted?

      Thanks for the question. Changes in speed of processing can arise from several related reasons including (i) myelination of white matter connections that would lead to faster signal transmission (Lebenberg et al. 2019; Grotheer et al. 2022), (ii) maturation of cortical visual circuits affecting temporal integration time, and (iii) development of feedback connections. Our data cannot distinguish among these different mechanisms. Future studies that combine functional high temporal resolution measurements with structural imaging of tissue properties could elucidate changes in cortical dynamics over development.

      We added this as a discussion point, on page 15 lines 416-420 we write: “For example, we found differences in the temporal dynamics of visual responses among four infant age groups, which suggests that the infant’s visual system is still developing during the first year of life. While underlying maturational mechanisms are yet unknown, they may include myelination and cortical tissue maturation68–73.”

      - The supplementary material includes a detailed introduction to the methods when facing the developing visual acuity, which justifies the choice of the paradigm. I appreciate this thorough explanation. Interestingly, high visual acuity has its potential developmental downside; for instance, low visual acuity would aid in the development of holistic processing associated with face recognition (as discussed by Vogelsang et al., 2018, in PNAS). How do you view this point in relation to the emergence of complex cognitive processes, as here the category-selective responses?

      Thanks for linking this to the Vogelsang (2018) study. Just as faces are processed in a hierarchical manner, starting with low-level features (edges, contours) and progressing to high-level features (identity, expression), other complex visual categories like cars, scenes, and body parts follow similar hierarchies. Early holistic processing could provide a foundation for recognizing objects quickly and efficiently, while feature-based processing might allow for more precise recognition and categorization as acuity increases. Therefore, as visual acuity improves, an infant’s brain can integrate finer details into those holistic representations, supporting more refined and complex cognitive processes. The balance between low- and high-level visual acuity highlights the intricate interplay between sensory processing and cognitive development across various domains.

      Minor points:

      Paradigm:

      - Are the colored cartoon images for motivating infants' fixation counterbalanced across categories in the paradigm? Or how exactly were the cartoon images presented in the paradigm?

      Response: Yes, the small cartoon images that were presented at the center of the screen during stimuli presentation were used to engage infants’ attention and accommodation to the screen. For each condition, they were randomly drawn from a pool of 70 images (23 flowers, 22 butterflies, 25 birds) from categories unrelated to the ones under test. They were presented in random order with durations uniformly distributed between 1 and 1.5 s.  We have added these details of the paradigm to the Methods section, page 17, lines 479-481: “To motivate infants to fixate and look at the screen, we presented at the center of the screen small (~1°) colored cartoon images such as butterflies, flowers, and ladybugs. They were presented in random order with durations uniformly distributed between 1 and 1.5 s.”

      Analysis:

      - Are the visual responses over the occipital cortex different across different category conditions in the first place? I guess this should not be different; this probably needs one more supplementary figure.

      The visual responses reflect the responses to images that are randomly drawn from the five stimuli categories at a presentation frequency of 4.286 Hz. The only difference between the five conditions is that the stimuli presentation order is different. Therefore, the visual response over the occipital cortex across conditions should not be different within an age group.

      In the revised manuscript, we have added Supplementary Figure S5 that shows the frequency spectra distribution and the response topographies of the visual response at 4.286 Hz and its first 3 harmonics separately for each condition and age group and a new Supplementary Materials section: 5. Visual responses over occipital cortex per condition for all age groups. On page 5, lines 116-120, we now write: “Analysis of visual responses in the occipital ROI separately by category condition revealed that visual responses were not significantly across category condition (Supplementary Fig S5, no significant main effect of category (βcategory = 0.08, 95% CI: -0.08 – 0.24, t(301) \= 0.97, p = .33), or category by age interaction (βcategory x age = -0.04, 95% CI: -0.11 – 0.03, t(301) \= -1.09, p = .28, LMM on RMS of response to first three harmonics).”

      - The summary of epochs used for each category for each age group needs to be included; this is important while evaluating whether the effects are due to not having enough data for categories or others.

      This part of information is provided in the manuscript in the Methods section, page 18 lines 521-524, and supplementary Table S2. Our analysis shows that there was no significant difference in the number of pre-processed epochs across different age groups (F(3,57) = 1.5, p \= .2).

      - Numbers of channels of EEG being interpolated should be provided; is that a difference across age groups?

      Thanks for the suggestion. We have now added information about the number of channels being interpolated for each age groups in the Methods section (page 18, lines 525-528): “The number of electrodes being interpolated for each age group were 10.0 ± 4.8 for 3-4-month-olds, 9.9 ± 3.7 for 4-6-month-olds, 9.9 ± 3.9 for 6-8-month-olds, and 7.7 ± 4.7 for 12-15-month-olds. There was no significant difference in the number of electrodes being interpolated across infant age-groups (F(3,55) = 0.78, p = .51).”

      - I noticed that the removal of EEG artifacts (i.e., muscles and eye-blinks) for data analysis is missing; did the preprocessing pipeline involve any artifacts removing procedures that are typically used in both infants and adults SSVEP data analysis? If so, please provide more information.

      In our analysis, artifact rejection was performed in two steps. First, the continuous filtered data were evaluated according to a sample-by-sample thresholding procedure to locate consistently noisy channels. Channels with more than 20% of samples exceeding a 100-150 μV amplitude threshold were replaced by the average of their six nearest spatial neighbors. Once noisy channels were interpolated in this fashion, the EEG was re-referenced from the Cz reference used during the recording to the common average of all sensors and segmented into epochs (1166.7-ms). Finally, EEG epochs that contained more than 15% of time samples exceeding threshold (150-200 microvolts) were excluded on a sensor-by-sensor basis. This method is provided in the manuscript under Methods section, page 18 lines 510-516.

      Figure:

      - Supplementary Figure 8. The illustration of the WTA classifier was not referred to anywhere in the main text.

      Thanks for pointing this out. The supplementary Figure 8 should be noted as supplementary Figure 10 instead. We have now mentioned it in the manuscript, page 10, line 267.

      - Figure 5 WTA classifier needed to be clarified. It was correlation-based but used to choose the most correlated response patterns averaged across the N-1 subjects for the leave-one-out subject. The change from correlation coefficients to decoding accuracy could be clearer as I spent some time making sense of it. The correlation coefficient here evaluates how correlated the two vectors are, but the actual decoding accuracy estimated at the end is the percentage of participants who can be assigned to the "ground truth" label, so one step in between is missing. Can this be better illustrated?

      Thanks for surfacing that this is not described sufficiently clearly and for your suggestions. The spatiotemporal vector was calculated separately for each category. This is illustrated in Fig 5A. At each iteration, the LOOCV classifier computed the correlation between each of the five category vectors from the left-out participant (test data, for an unknown stimulus) and each of the mean spatiotemporal vectors across the N-1 participants (training data, labeled data). The winner-take-all (WTA) classifier classifies the test vector to the category that yields the highest correlation with the training vector. This is illustrated in Fig 5A, with spatiotemporal patterns and correlation values from an example infant shown.  For a given test pattern, correct classification yields a score of 1 and an incorrect classification yields a score of 0.  We compute the percentage correct across all categories for each left-out-infant, and then mean decoding performance across all participants in an age group (Fig 5B). We have now added these details in the Methods part, section – Decoding analyses, Group-level, page 20 lines 590-597, where we write: “At each iteration, the LOOCV classifier computed the correlation between each of the five category vectors from the left-out participant (test data, for an unknown stimulus) and each of the mean spatiotemporal vectors across the N-1 participants (training data, labeled data). The winner-take-all (WTA) classifier classifies the test vector to the category of the training vector that yields the highest correlation with the training vector (Fig 5A). For a given test pattern, correct classification yields a score of 1 and an incorrect classification yields a score of 0.  For each left-out infant, we computed the percentage correct across all categories, and then the mean decoding performance across all participants in an age group (Fig 5B).”

      Reviewer #2 (Recommendations For The Authors):

      I only have some minor comments.

      Typo on line 90 ("Infants participants in 5 conditions, which [...]").

      Thanks for pointing this out. We have now corrected ‘participants’ to ‘participated’.

      Typo on lines 330: "[...] in example 4-5-months-olds.".

      Thanks for pointing this out. We changed ‘4-5-months-olds’ to ‘4-5-month-olds’.

      Figure 2 - bar plots: rotating and spacing out values on the x-axis may improve readability. Ditto for the line plots in Figure 4.

      Thanks for the suggestions. In the revised manuscript, we have improved the readability of Figure 2.

      Caption of Figure 6: description of the distinctiveness plots may refer to panel C, instead of the bottom panels of section B.

      Thanks for pointing this out. We have now corrected this information in the manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Opioids and related drugs are powerful analgesics that reduce suffering from pain. Unfortunately, their use often leads to addiction and there is an opioid-abuse epidemic that affects people worldwide. This study represents an ongoing effort to develop non-opioid analgesics for pain management. The findings point to an alternative approach to control post-surgical pain in lieu of opioid medications.

      Strengths:

      (1) The study responds to the urgent need for the development of non-opioid analgesics.

      (2) The study demonstrates the efficacy of Clarix Flo (FLO) and HC-HA/PTX3 from the human amniotic membrane (AM) in reducing pain in a mouse model without the adverse effects of opioids.

      (3) The study further explored the underlying mechanisms of how HC-HA/PTX3 produces its effects on neurons, suggesting the molecules/pathways involved in pain relief.

      (4) The potential use of naturally derived biologics from human birth tissues (AM) is safe and sustainable, compared to synthetic pharmaceuticals.

      (5) The study was conducted with scientific rigor, involving purification of active components, comparative analysis with multiple controls, and mechanistic explorations.

      Weaknesses:

      (1) It should be cautioned that while the preclinical findings are promising, these results still need to be translated into clinical settings that are complex and often unpredictable.

      (2) The study shows the efficacy of FLO and HC-HA/PTX3 in one preclinical model of post-surgical pain. The observed effect may be variable in other pain conditions.

      We thank the reviewer for these good comments and support! We agree with your suggestions and have provided more information in the discussion (Pages 11-12) and conclusion to address these comments.

      Reviewer #2 (Public review):

      Summary:

      This is an outstanding piece of work on the potential of FLO as a viable analgesic biologic for the treatment of postsurgical pain. The authors purified the HC-HA/PTX3 from FLO and demonstrated its potential as an effective non-opioid therapy for postsurgical pain. They further unraveled the mechanisms of action of the compound at cellular and molecular levels.

      Strengths:

      Prominent strengths include the incorporation of behavioral assessment, electrophysiological and imaging recordings, the use of knockout and knockdown animals, and the use of antagonist agents to verify biological effects. The integrated use of these techniques, combined with the hypothesis-driven approach and logical reasoning, provides compelling evidence and novel insight into the mechanisms of the significant findings of this work.

      Weaknesses:

      I did not find any significant weaknesses even with a critical mindset. The only minor suggestion is that the Results section may focus on the results from this study and minimize the discussions of background information.

      We thank the reviewer for your support! We revised the result section as suggested and reduced the discussion of background information.   

      Reviewer #3 (Public review):

      Summary:

      Non-opioid analgesics derived from human amniotic membrane (AM) product represents a novel and unique approach to analgesia that may avoid the traditional harms associated with opioids. Here, the study investigators demonstrate that HC-HAPTX3 is the primary bioactive component of the AM product FLO responsible for anti-nociception in mouse-model and in-vitro dorsal root ganglion (DRG) cell culture experiments. The mechanism is demonstrated to be via CD44 with an acute cytoskeleton rearrangement that is induced that inhibits Na+ and Ca++ current through ion channels. Taken together, the studies reported in the manuscript provide supportive evidence clarifying the mechanisms and efficacy of HC-HAPTX3 antinociception and analgesia.

      Strengths:

      Extensive experiments including murine behavioral paw withdrawal latency and Catwalk test data demonstrating analgesic properties. The breadth and depth of experimental data are clearly supporting mechanisms and antinociceptive properties.

      Weaknesses:

      A few changes to the text of the manuscript would be recommended but no major weaknesses were identified.

      We thank the reviewer for your support! We revised these texts as suggested. 

      Recommendations for the authors: Reviewer #1 (Recommendations for the authors):

      (1) The study showed an effect on baseline nociception and acute post-surgical pain. Chronic post-surgical pain is a major problem and should be considered.

      We thank the reviewer for this comment. To further improve the translational potential, we will extend current findings and employ chronic post-surgical pain models, such as skin/muscle incision and retraction (SMIR) in the thigh of the rodent,(1-3) as well as chronic pain models such as neuropathic pain in the future.  We acknowledged this limitation in the discussion. (Page 12)

      (2) Indicate the source of cultures DRGs.

      We added “Method 15 Culturing DRG neurons” in the revised manuscript.   

      (3) The size of DRG neurons was described in cross-sectional area (Figure 2 caption) and diameter (method). Be consistent.

      We thank the reviewer for this comment. Cross-sectional area has often been used for describing the size of DRG neurons for in vivo calcium imaging studies, including our previous work (4, 5). In order to keep consistent and make data comparable between studies, we also used the cross-sectional area in current study in Fig 2 in vivo calcium imaging experiment.  On the other hand, cell-diameter has been routinely/widely used for in vitro experiments such as in vitro electrophysiology recording and immunofluorescence staining of cultured DRG neurons. To be consistent with this tradition, we used cell-diameter in these experiments.  Methods for measuring the area and diameter are explicitly described for each experimental setting, and consistent between the current study and our previous studies (6). In the manuscript, our previously published studies have also been cited in the Methods section. (Method “4 In vivo calcium imaging in mice” and “10.2 Intrinsic excitability studies of DRG neurons”).

      (4) Clarify what "% of total" means in Figure 2. For bar graphs in 2B-D, the percent of total activated neurons (small, medium, and large) does not add up to 100.

      “% of total” represented the proportion of activated neurons relative to the total number of neurons counted from the same analyzed image. This information was added to the figure legend of Figure 2 (B-C) and Method “4 In vivo calcium imaging in mice”  in the revised manuscript. At the end of each experiment, we can over-exposure the image to unravel all neuronal profiles and count the total number of neurons on that field/image. Only a small portion of neurons in each size category responded to the test stimulation, and hence the total does not add up to 100.

      (5) Discuss clinical data or human studies to validate the efficacy and safety of FLO or HC-HA/PTX3 in patients.

      Thanks for the great suggestion. We provided a brief discussion (Page 11-12).

      Cryopreserved AM/UC has been clinically validated through several hundred peer-reviewed publications since 1995, including 12 studies specifically assessing FLO (Clarix Flo). These studies collectively support the safety and preliminary effectiveness of Clarix Flo in managing some clinical pain conditions such as knee osteoarthritis(7, 8), discogenic pain (9), rotator cuff tears(10), and painful neuropathy of the lower extremities (11). Currently, HC-HA/PTX3 is limited to pre-clinical research, and to our knowledge, there are no available data on its clinical efficacy and safety.

      (6) Introduction, last sentence of the second paragraph, delete "also".

      Thanks for carefully examining our manuscript. It was revised as suggested.

      Reviewer #2 (Recommendations for the authors):

      My only recommendation for improving the writing and presentation is to shorten the discussion of background information in Results.

      We thank the reviewer for your support and comments!  We previously intended to provide some background information to help readers understand the premise and rationale of the study, before illustrating our findings. Nevertheless, we reduced some background information in the result section as suggested by this reviewer to make it more straightforward. 

      Reviewer #3 (Recommendations for the authors):

      P4 last sentence - "Our findings highlight the potential of a naturally derived biologic from human birth tissues as an effective non-opioid treatment for post-surgical pain and unravel the underlying mechanisms." - another sentence clause is required before "unravel".

      As advised, we revised the sentence to: “Collectively, our findings highlight the potential of naturally derived biologics from human birth tissues as an effective non-opioid treatment for post-surgical pain. Moreover, we unravel the underlying mechanisms of pain inhibition induced by FLO and HC-HA/PTX3.”

      P7 second paragraph - please edit the following sentence for clarity: "Since HC-HA/PTX3 mimics FLO in producing pain inhibition, and it has high purity and is more water-soluble than FLO, making it suitable for probing cellular mechanisms.".

      As advised, we have revised the sentence. “Since HC-HA/PTX3 mimics FLO in its ability to inhibit pain and has higher purity and greater water solubility compared to FLO, it is well-suited for investigating cellular mechanisms.”

      References:

      (1) Flatters SJ. Characterization of a model of persistent postoperative pain evoked by skin/muscle incision and retraction (SMIR). Pain. 2008;135(1-2):119-30.

      (2) Ying YL, Wei XH, Xu XB, She SZ, Zhou LJ, Lv J, et al. Over-expression of P2X7 receptors in spinal glial cells contributes to the development of chronic postsurgical pain induced by skin/muscle incision and retraction (SMIR) in rats. Experimental neurology. 2014;261:836-43.

      (3) Cao S, Bian Z, Zhu X, and Shen SR. Effect of Epac1 on pERK and VEGF Activation in Postoperative Persistent Pain in Rats. Journal of molecular neuroscience : MN. 2016;59(4):554-64.

      (4) Chen Z, Huang Q, Song X, Ford NC, Zhang C, Xu Q, et al. Purinergic signaling between neurons and satellite glial cells of mouse dorsal root ganglia modulates neuronal excitability in vivo. Pain. 2022;163(8):1636-47.

      (5) Chen Z, Zhang C, Song X, Cui X, Liu J, Ford NC, et al. BzATP Activates Satellite Glial Cells and Increases the Excitability of Dorsal Root Ganglia Neurons In Vivo. Cells. 2022;11(15).

      (6) Ford NC, Barpujari A, He SQ, Huang Q, Zhang C, Dong X, et al. Role of primary sensory neurone cannabinoid type-1 receptors in pain and the analgesic effects of the peripherally acting agonist CB-13 in mice. Br J Anaesth. 2022;128(1):159-73.

      (7) Castellanos R, and Tighe S. Injectable Amniotic Membrane/Umbilical Cord Particulate for Knee Osteoarthritis: A Prospective, Single-Center Pilot Study. Pain Med. 2019;20(11):2283-91.

      (8) Mead OG, and Mead LP. Intra-Articular Injection of Amniotic Membrane and Umbilical Cord Particulate for the Management of Moderate to Severe Knee Osteoarthritis. Orthop Res Rev. 2020;12:161-70.

      (9) Buck D. Amniotic Umbilical Cord Particulate for Discogenic Pain. J Am Osteopath Assoc. 2019;119(12):814-9.

      (10) Ackley JF, Kolosky M, Gurin D, Hampton R, Masin R, and Krahe D. Cryopreserved amniotic membrane and umbilical cord particulate matrix for partial rotator cuff tears: A case series. Medicine (Baltimore). 2019;98(30):e16569.

      (11) Buksh AB. Ultrasound-guided injections of amniotic membrane/umbilical cord particulate for painful neuropathy of the lower extremity. Cogent Medicine. 2020;7(1):1724067.

    1. Author response:

      eLife Assessment

      “The work presented is important for our understanding of the development of the cardiac conduction system and its regulation by T-box transcription factors. The conclusions are supported by convincing data. Overall, this is an excellent study that advances our understanding of cardiac biology and has implications beyond the immediate field of study.”

      We appreciate the positive assessment of this work and the recognition of its importance in advancing our understanding of the cardiac conduction system, its regulation by T-box transcription factors, and contribution beyond the immediate field.

      Reviewer #1 (Public review):

      Summary:

      In a heroic effort, Ozanna Burnicka-Turek et al. have made and investigated conduction system-specific Tbx3-Tbx5 deficient mice and investigated their cardiac phenotype. Perhaps according to expectations, given the body of literature on the function of the two T-box transcription factors in the heart/conduction system, the cardiomyocytes of the ventricular conduction system seemed to convert to "ordinary" ventricular working myocytes. As a consequence, loss of VCS-specific conduction system propagation was observed in the compound KO mice, associated with PR and QRS prolongation and elevated susceptibility to ventricular tachycardia.

      Strengths:

      Great genetic model. Phenotypic consequences at the organ and organismal levels are well investigated. The requirement of both Tbx3 and Tbx5 for maintaining VCS cell state has been demonstrated.

      We thank Reviewer #1 for acknowledging the effort involved in generating and characterizing the Tbx3/Tbx5 double conditional knockout mouse model and for highlighting the significance of this work in elucidating the role of these transcription factors in maintaining the functional and transcriptional identity of the ventricular conduction system.

      Weaknesses:

      The actual cell state of the Tbx3/Tbx5 deficient conducting cells was not investigated in detail, and therefore, these cells could well only partially convert to working cardiomyocytes, and may, in reality, acquire a unique state.

      We agree with Reviewer #1 that the Tbx3/Tbx5 double mutant ventricular conduction myocardial cells may only partially convert to working cardiomyocytes or may acquire a unique state.  The transcriptional state of the double mutant VCS cells was investigated by bulk profiling of key genes associated with specific conduction and non-conduction cardiac regions, including fast conduction, slow conduction, or working myocardium. Neither the bulk transcriptional approaches nor the optical mapping approaches we employed capture single-cell data; in both cases, the data represents aggregated signals from multiple cells (1, 2). Single cell approaches for transcriptional profiling and cellular electrophysiology would clarify this concern and are appropriate for future studies.

      (1) O’Shea C, Nashitha Kabri S, Holmes AP, Lei M, Fabritz L, Rajpoot K, Pavlovic D (2020) Cardiac optical mapping – State-of-the-art and future challenges. The International Journal of Biochemistry & Cell Biology 126:105804. doi: 10.1016/j.biocel.2020.105804.

      (2) Efimov IR, Nikolski VP, and Salama G (2004) Optical Imaging of the Heart. Circulation Research 95:21-33. doi: 10.1161/01.RES.0000130529.18016.35.

      Reviewer #2 (Public review):

      Summary:

      The goal of this work is to define the functions of T-box transcription factors Tbx3 and Tbx5 in the adult mouse ventricular cardiac conduction system (VCS) using a novel conditional mouse allele in which both genes are targeted in cis. A series of studies over the past 2 decades by this group and others have shown that Tbx3 is a transcriptional repressor that patterns the conduction system by repressing genes associated with working myocardium, while Tbx5 is a potent transcriptional activator of "fast" conduction system genes in the VCS. In a previous work, the authors of the present study further demonstrated that Tbx3 and Tbx5 exhibit an epistatic relationship whereby the relief of Tbx3-mediated repression through VCS conditional haploinsufficiency allows better toleration of Tbx5 VCS haploinsufficiency. Conversely, excess Tbx3-mediated repression through overexpression results in disruption of the fast-conduction gene network despite normal levels of Tbx5. Based on these data the authors proposed a model in which repressive functions of Tbx3 drive the adoption of conduction system fate, followed by segregation into a fast-conducting VCS and slow-conduction AVN through modulation of the Tbx5/Tbx3 ratio in these respective tissue compartments.

      The question motivating the present work is: If Tbx5/Tbx3 ratio is important for slow versus fast VCS identity, what happens when both genes are completely deleted from the VCS? Is conduction system identity completely lost without both factors and if so, does the VCS network transform into a working myocardium-like state? To address this question, the authors have generated a novel mouse line in which both Tbx5 and Tbx3 are floxed on the same allele, allowing complete conditional deletion of both factors using the VCS-specific MinK-CreERT2 line, convincingly validated in previous work. The goal is to use these double conditional knockout mice to further explore the model of Tbx3/Tbx5 co-dependent gene networks and VCS patterning. First, the authors demonstrate that the double conditional knockout allele results in the expected loss of Tbx3 and Tbx5 specifically in the VCS when crossed with Mink-CreERT2 and induced with tamoxifen. The double conditional knockout also results in premature mortality. Detailed electrophysiological phenotyping demonstrated prolonged PR and QRS intervals, inducible ventricular tachycardia, and evidence of abnormal impulse propagation along the septal aspect of the right ventricle. In addition, the mutants exhibit downregulation of VCS genes responsible for both fast conduction AND slow conduction phenotypes with upregulation of 2 working myocardial genes including connexin-43. The authors conclude that loss of both Tbx3 and Tbx5 results in "reversion" or "transformation" of the VCS network to a working myocardial phenotype, which they further claim is a prediction of their model and establishes that Tbx3 and Tbx5 "coordinate" transcriptional control of VCS identity.

      We appreciate Reviewer #2’s detailed summary of the study’s aims, methodologies, and findings, as well as their thoughtful suggestions for further analysis. We are grateful for their recognition of our genetic model’s novelty and robustness.

      Overall Appraisal:

      As noted above, the present study does not further explore the Tbx5/Tbx3 ratio concept since both genes are completely knocked out in the VCS. Instead, the main claims are that the absence of both factors results in a transcriptional shift of conduction tissue towards a working myocardial phenotype, and that this shift indicates that Tbx5 and Tbx3 "coordinate" to control VCS identity and function.

      We agree with this reviewer’s assessment of the assertions in our manuscript.  The novel combined Tbx5/Tbx3 double mutant model does not further explore the TBX5/TBX3 ratio concept, which we previously examined in detail (1). Instead, as the Reviewer notes, this manuscript focuses on testing a model that the coordinated activity of Tbx3 and Tbx5 defines specialized ventricular conduction identity.

      (1) Burnicka-Turek O, Broman MT, Steimle JD, Boukens BJ, Petrenko NB, Ikegami K, Nadadur RD, Qiao Y, Arnolds DE, Yang XH, Patel VV, Nobrega MA, Efimov IR, Moskowitz IP (2020) Transcriptional Patterning of the Ventricular Cardiac Conduction System. Circulation Research 127:e94-e106. doi:10.1161/CIRCRESAHA.118.314460. 

      Strengths:

      (1) Successful generation of a novel Tbx3-Tbx5 double conditional mouse model.

      (2) Successful VCS-specific deletion of Tbx3 and Tbx5 using a VCS-specific inducible Cre driver line.

      (3) Well-powered and convincing assessments of mortality and physiological phenotypes.

      (4) Isolation of genetically modified VCS cells using flow.

      We thank Reviewer #2 for acknowledging the listed strengths of our study.

      Weaknesses:

      (1) In general, the data is consistent with a long-standing and well-supported model in which Tbx3 represses working myocardial genes and Tbx5 activates the expression of VCS genes, which seem like distinct roles in VCS patterning. However, the authors move between different descriptions of the functional relationship and epistatic relationship between these factors, including terms like "cooperative", "coordinated", and "distinct" at various points. In a similar vein, sometimes terms like "reversion" are used to describe how VCS cells change after Tbx3/Tbx5 conditional knockout, and other times "transcriptional shift" and at other times "reprogramming". But these are all different concepts. The lack of a clear and consistent terminology for describing the phenomena observed makes the overarching claims of the manuscript more difficult to evaluate.

      We discriminate prior work on the “long-standing and well-supported model’ supported by investigation of the role of Tbx5 and Tbx3 independently from this work examining the coordinated role of Tbx5 and Tbx3. Prior work demonstrated that Tbx3 represses working myocardial genes and Tbx5 activates expression of VCS genes, consistent with the reviewer’s suggestion of their distinct roles in VCS patterning. However, the current study uniquely evaluates the combined role of Tbx3 and Tbx5 in distinguishing specialized conduction identify from working myocardium, for the first time.

      We appreciate Reviewer #2’s feedback regarding the need for consistent terminology when describing the impact of the double Tbx3 and Tbx5 mutant. We will edit the manuscript to replace terms like “reversion” with “transcriptional shift” or “transformation” when describing the observed phenotype, and we will use “coordination” to describe the combined role of Tbx5 and Tbx3 in maintaining VCS-specific identity.

      (2) A more direct quantitative comparison of Tbx5 Adult VCS KO with Tbx5/Tbx3 Adult VCS double KO would be helpful to ascertain whether deletion of Tbx3 on top of Tbx5 deletion changes the underlying phenotype in some discernable way beyond mRNA expression of a few genes. Superficially, the phenotypes look quite similar at the EKG and arrhythmia inducibility level and no optical mapping data from a single Tbx5 KO is presented for comparison to the double KO.

      We thank Reviewer #2 for the suggestions that a direct comparison between Tbx5 single conditional knockout and Tbx3/Tbx5 double conditional knockout models may help isolate the specific contribution of Tbx3 deletion in addition to Tbx5 deletion.

      Previous studies have assessed the effect of single Tbx5 CKO in the VCS of murine hearts (1, 3, 5). Arnolds et al. demonstrated that the removal of Tbx5 from the adult ventricular conduction system results in VCS slowing, including prolonged PR and QRS intervals, prolongation of the His duration and His-ventricular (HV) interval (3). Furthermore, Burnicka-Turek et al. demonstrated that the single conditional knockout of Tbx5 in the adult VCS caused a shift toward a pacemaker cell state, with ectopic beats and inappropriate automaticity (1). Whole-cell patch clamping of VCS-specific Tbx5-deficient cells revealed action potentials characterized by a slower upstroke (phase 0), prolonged plateau (phase 2), delayed repolarization (phase 3), and enhanced phase 4 depolarization - features characteristic of nodal action potentials rather than typical VCS action potentials (3). These observations were interpreted as uncovering nodal potential of the VCS in the absence of Tbx5. Based on the role of Tbx3 in CCS specification (2), we hypothesized that the nodal state of the VCS uncovered in the absence of Tbx5 was enabled by maintained Tbx3 expression. This motivated us to generate the double Tbx5 / Tbx3 knockout model to examine the state of the VCS in the absence of both T-box TFs.

      In the current study, we demonstrate that the VCS-specific deletion of Tbx3 and Tbx5 results in the loss of fast electrical impulse propagation in the VCS, similar to that observed in the single Tbx5 mutant. However, unlike the Tbx5 single mutant, the Tbx3/Tbx5 double deletion does not cause a gain of pacemaker cell state in the VCS. Instead, the physiological data suggests a transition toward non-conduction working myocardial physiology. This conclusion is supported by the presence of only a single upstroke in the optical action potential (OAP) recorded from the His bundle region and VCS cells in Tbx3/Tbx5 double conditional knockout mice. The electrical properties of VCS cells in the double knockout are functionally indistinguishable from those of ventricular working myocardial cells. As a result, ventricular impulse propagation is significantly slowed, resembling activation through exogenous pacing rather than the rapid conduction typically associated with the VCS. We will edit the text of the manuscript to more carefully distinguish the observations between these models, as suggested.

      (1) Burnicka-Turek O, Broman MT, Steimle JD, Boukens BJ, Petrenko NB, Ikegami K, Nadadur RD, Qiao Y, Arnolds DE, Yang XH, Patel VV, Nobrega MA, Efimov IR, Moskowitz IP (2020) Transcriptional Patterning of the Ventricular Cardiac Conduction System. Circulation Research 127:e94-e106. doi:10.1161/CIRCRESAHA.118.314460. 

      (2) Mohan RA, Bosada FM, van Weerd JH, van Duijvenboden K, Wang J, Mommersteeg MTM, Hooijkaas IB, Wakker V, de Gier-de Vries C, Coronel R, Boink GJJ, Bakkers J, Barnett P, Boukens BJ, Christoffels VM (2020) T-box transcription factor 3 governs a transcriptional program for the function of the mouse atrioventricular conduction system. Proc Natl Acad Sci U S A. 117:18617-18626. doi: 10.1073/pnas.1919379117.

      (3) Arnolds DE, Liu F, Fahrenbach JP, Kim GH, Schillinger KJ, Smemo S, McNally EM, Nobrega MA, Patel VV, Moskowitz IP (2012) TBX5 drives Scn5a expression to regulate cardiac conduction system function. The Journal of Clinical Investigation 122:2509–2518. doi: 10.1172/JCI62617.

      (4) Frank DU, Carter KL, Thomas KR, Burr RM, Bakker ML, Coetzee WA, Tristani-Firouzi M, Bamshad MJ, Christoffels VM, Moon AM (2012) Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis. Proc Natl Acad Sci U S A. 109:E154-63. doi: 10.1073/pnas.1115165109.

      (5) Moskowitz IP, Pizard A, Patel VV, Bruneau BG, Kim JB, Kupershmidt S, Roden D, Berul CI, Seidman CE, Seidman JG (2004) The T-Box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system. Development 131:4107-4116. doi: 10.1242/dev.01265. PMID: 15289437.

      (3) The authors claim that double knockout VCS cells transform to working myocardial fate, but there is no comparison of gene expression levels between actual working myocardial cells and the Tbx3/Tbx5 DKO VCS cells so it's hard to know if the data reflect an actual cell state change or a more non-specific phenomenon with global dysregulation of gene expression or perhaps dedifferentiation. I understand that the upregulation of Gja1 and Smpx is intended to address this, but it's only two genes and it seems relevant to understand their degree of expression relative to actual working myocardium. In addition, the gene panel is somewhat limited and does not include other key transcriptional regulators in the VCS such as Irx3 and Nkx2-5. RNA-seq in these populations would provide a clearer comparison among the groups.

      And

      the main claims are that the absence of both factors results in a transcriptional shift of conduction tissue towards a working myocardial phenotype, and that this shift indicates that Tbx5 and Tbx3 "coordinate" to control VCS identity and function. However, only limited data are presented to support the claim of transcriptional reprogramming since the knockout cells are not directly compared to working myocardial cells at the transcriptional level and only a small number of key genes are assessed (versus genome-wide assessment).

      We appreciate Reviewer #2’s suggestion to expand the gene expression analysis in Tbx3/Tbx5-deficient VCS cells by including other specific genes and comparisons with “native”/actual working ventricular myocardial cells and broadening the gene panel. In this study, we evaluated core cardiac conduction system markers, revealing a loss of conduction system-specific gene expression in the double mutant VCS. Furthermore, we evaluated key working myocardial markers normally excluded from the conduction system, Gja1 and Smpx, revealing a shift towards a working myocardial state in the double mutant VCS (Figure 4). We agree that a more comprehensive analysis, such as transcriptome-wide approaches, would offer greater clarity on the extent and specificity of the observed shift from conduction to non-conduction identity. These approaches are appropriate directions for future studies.

      (4) From the optical mapping data, it is difficult to distinguish between the presence of (a) a focal proximal right bundle branch block due to dysregulation of gene expression in the VCS but overall preservation of the right bundle and its distal ramifications; from (b) actual loss of the VCS with reversion of VCS cells to a working myocardial fate. Related to this, the authors claim that this experiment allows for direct visualization of His bundle activation, but can the authors confirm or provide evidence that the tissue penetration of their imaging modality allows for imaging of a deep structure like the AV bundle as opposed to the right bundle branch which is more superficial? Does the timing of the separation of the sharp deflection from the subsequent local activation suggest visualization of more distal components of the VCS rather than the AV bundle itself? Additional clarification would be helpful.

      And

      In addition, the optical mapping dataset is incomplete and has alternative interpretations that are not excluded or thoroughly discussed.

      We agree with Reviewer #2 that the resolution of the optical mapping experiment may be insufficient to precisely localize the conduction block due to the limited signal strength from the VCS. It is possible that the region defined as the His Bundle also includes portions of the right bundle branch. Our control mice show VCS OAP upstrokes consistent with those reported by Tamaddon et al. (2000) using Di-4-ANEPPS (1). We appreciate the Reviewer’s attention to alternative interpretations, and we will incorporate these caveats into the manuscript text.

      (1) Tamaddon HS, Vaidya D, Simon AM, Paul DL, Jalife J, Morley GE (2000) High-resolution optical mapping of the right bundle branch in connexin40 knockout mice reveals slow conduction in the specialized conduction system. Circulation Research 87:929-36. doi: 10.1161/01.res.87.10.929. 

      Impact:

      The present study contributes a novel and elegantly constructed mouse model to the field. The data presented generally corroborate existing models of transcriptional regulation in the VCS but do not, as presented, constitute a decisive advance.

      And

      In sum, while this study adds an elegantly constructed genetic model to the field, the data presented fit well within the existing paradigm of established functions of Tbx3 and Tbx5 in the VCS and in that sense do not decisively advance the field. Moreover, the authors' claims about the implications of the data are not always strongly supported by the data presented and do not fully explore alternative possibilities.

      We appreciate Reviewer # 2’s acknowledgment of the elegance and novelty of the mouse model we generated. However, we respectfully disagree with their assessment that this work merely corroborates existing models without providing a decisive advance. Previous studies have investigated single Tbx5 or Tbx3 gene knockouts in-depth and established the T-box ratio model for distinguishing fast VCS from slow nodal conduction identity (1) that the reviewer alludes to in earlier comments. In contrast, this study aimed to explore a different model, that the combined effects of Tbx5 and Tbx3 distinguish adult VCS identity from non-conduction working myocardium. The coordinated Tbx3 and Tbx5 role in conduction system identify remained untested due to the lack of a mouse model that allowed their simultaneous removal. The very model the reviewer recognizes as “novel and elegantly constructed” has allowed the examination of the coordinated role of Tbx5 and Tbx3 for the first time. While we acknowledge the opportunity for additional depth of investigation of this model in future studies, the data we present provides consistent experimental support for the coordinated requirement of both Tbx5 and Tbx3 for ventricular cardiac conduction system identity.

      (1) Burnicka-Turek O, Broman MT, Steimle JD, Boukens BJ, Petrenko NB, Ikegami K, Nadadur RD, Qiao Y, Arnolds DE, Yang XH, Patel VV, Nobrega MA, Efimov IR, Moskowitz IP (2020) Transcriptional Patterning of the Ventricular Cardiac Conduction System. Circulation Research 127:e94-e106. doi:10.1161/CIRCRESAHA.118.314460. 

      Reviewer #3 (Public review):

      Summary:

      In the study presented by Burnicka-Turek et al., the authors generated for the first time a mouse model to cause the combined conditional deletion of Tbx3 and Tbx5 genes. This has been impossible to achieve to date due to the proximity of these genes in chromosome 5, preventing the generation of loss of function strategies to delete simultaneously both genes. It is known that both Tbx3 and Tbx5 are required for the development of the cardiac conduction system by transcription factor-specific but also overlapping roles as seen in the common and diverse cardiac defects found in patients with mutations for these genes. After validating the deletion efficiency and specificity of the line, the authors characterized the cardiac phenotype associated with the cardiac conduction system (CCS)-specific combined deletion of T_bx5_ and Tbx3 in the adult by inducing the activation of the CCS-specific tamoxifen-inducible Cre recombination (MinK-creERT) at 6 weeks after birth. Their analysis of 8-9-week-old animals did not identify any major morphological cardiac defects. However, the authors found conduction defects including prolonged PR and QTR intervals and ventricular tachycardia causing the death of the double mutants, which do not survive more than 3 months after tamoxifen induction. Molecular and optical mapping analysis of the ventricular conduction system (VCS) of these mutants concluded that, in the absence of Tbx5 and Tbx3 function, the cells forming the ventricular conduction system (VCS) become working myocardium and lose the specific contractile features characterizing VCS cells. Altogether, the study identified the critical combined role of Tbx3 and Tbx5 in the maintenance of the VCS in adulthood.

      Strengths:

      The study generated a new animal model to study the combined deletion of Tbx5 and Tbx3 in the cardiac conduction system. This unique model has provided the authors with the perfect tool to answer their biological questions. The study includes top-class methodologies to assess the functional defects present in the different mutants analyzed, and gathered very robust functional data on the conduction defects present in these mutants. They also applied optical action potential (OAP) methods to demonstrate the loss of conduction action potential and the acquisition of working myocardium action potentials in the affected cells because of Tbx5/Tbx3 loss of function. The study used simpler molecular and morphological analysis to demonstrate that there are no major morphological defects in these mutants and that indeed, the conduction defects found are due to the acquisition of working myocardium features by the VCS cells. Altogether, this study identified the critical role of these transcription factors in the maintenance of the VCS in the adult heart.

      We appreciate the Reviewer’s comments regarding the originality and utility of our model and the strengths of our methodological approach. The Reviewer’s appreciation of the molecular and morphological analyses as well as their constructive feedback is highly valuable.

      Weaknesses:

      In the opinion of this reviewer, the weakness in the study lies in the morphological and molecular characterization. The morphological analysis simply described the absence of general cardiac defects in the adult heart, however, whether the CCS tissues are present or not was not investigated. Lineage tracing analysis using the reporter lines included in the crosses described in the study will determine if there are changes in CCS tissue composition in the different mutants studied. Similarly, combining this reporter analysis with the molecular markers found to be dysregulated by qPCR and western blot, will demonstrate that indeed the cells that were specified as VCS in the adult heart, become working myocardium in the absence of Tbx3 and Tbx5 function.

      We appreciate the reviewer’s concern regarding the morphology of the cardiac conduction system in the Tbx3/Tbx5 double conditional knockout model. We did not observe any structural abnormalities, as the Reviewer notes. We agree with their suggestion for using Genetic Inducible Fate Mapping to mark cardiac conduction cells expressing MinKCre. In fact, we utilized this approach to isolate VCS cells for transcriptional profiling. Specifically, we combined the tamoxifen-inducible MinKCreERT allele with the Cre-dependent R26Eyfp reporter allele to label MinKCre-expressing cells in both control VCS and VCS-specific double Tbx3/Tbx5 knockouts. EYFP-positive cells were isolated for transcriptional studies, ensuring that our analysis exclusively targeted conduction system-lineage marked cells. The ability to isolate MinKCre-marked cells from both controls and Tbx5/Tbx3 double mutants indicates that VCS cells persisted in the double knockout. Nonetheless, the suggestion for in-vivo marking by Genetic Inducible Fate Mapping and morphologic analysis is a valuable recommendation for future studies.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Mutations in CDHR1, the human gene encoding an atypical cadherin-related protein expressed in photoreceptors, are thought to cause cone-rod dystrophy (CRD). However, the pathogenesis leading to this disease is unknown. Previous work has led to the hypothesis that CDHR1 is part of a cadherin-based junction that facilitates the development of new membranous discs at the base of the photoreceptor outer segments, without which photoreceptors malfunction and ultimately degenerate. CDHR1 is hypothesized to bind to a transmembrane partner to accomplish this function, but the putative partner protein has yet to be identified.

      The manuscript by Patel et al. makes an important contribution toward improving our understanding of the cellular and molecular basis of CDHR1-associated CRD. Using gene editing, they generate a loss of function mutation in the zebrafish cdhr1a gene, an ortholog of human CDHR1, and show that this novel mutant model has a retinal dystrophy phenotype, specifically related to defective growth and organization of photoreceptor outer segments (OS) and calyceal processes (CP). This phenotype seems to be progressive with age. Importantly, Patel et al, present intriguing evidence that pcdh15b, also known for causing retinal dystrophy in previous Xenopus and zebrafish loss of function studies, is the putative cdhr1a partner protein mediating the function of the junctional complex that regulates photoreceptor OS growth and stability.

      This research is significant in that it:

      (1) provides evidence for a progressive, dystrophic photoreceptor phenotype in the cdhr1a mutant and, therefore, effectively models human CRD; and

      (2) identifies pcdh15b as the putative, and long sought after, binding partner for cdhr1a, further supporting the theory of a cadherin-based junction complex that facilitates OS disc biogenesis.

      Nonetheless, the study has several shortcomings in methodology, analysis, and conceptual insight, which limits its overall impact.

      Below I outline several issues that the authors should address to strengthen their findings.

      Major comments:

      (1) Co-localization of cdhr1a and pcdh15b proteins

      The model proposed by the authors is that the interaction of cdhr1a and pcdh15b occurs in trans as a heterodimer. In cochlear hair cells, PCDH15 and CDHR23 are proposed to interact first as dimers in cis and then as heteromeric complexes in trans. This was not shown here for cdhr1a and pcdh15b, but it is a plausible configuration, as are single heteromeric dimers or homodimers. Regardless, this model depends on the differential compartmental expression of the cdhr1a and pcdh15b proteins. Data in Figure 1 show convincing evidence that these two proteins can, at least in some cases, be distributed along the length of photoreceptor membranes that are juxtaposed, as would be the case for OS and CP. If pcdh15b is predominantly expressed in CPs, whereas cdhr1a is predominantly expressed in OS, then this should be confirmed with actin double labeling with cdhr1a and pcdh15b since the apicobasal oriented (vertical) CPs would express actin in this same orientation but not in the OS. This would help to clarify whether cdhr1a and pcdh15b can be trafficked to both OS and CP compartments or whether they are mutually exclusive.

      First let me thank the reviewer for taking the time to comprehensively evaluate our work and provide constructive criticism which will improve the quality of our final version.

      To address this issue, we are undertaking imaging of actin/cdhr1a and actin/pcdh15b using SIM in both transverse and axial sections. Additionally, we have recently established an immuno-gold-TEM protocol and are going to provide data showcasing co-labeling of cdhr1a and pcdh15b at TEM resolution.

      Photoreceptor heterogeneity goes beyond the cone versus rod subtypes discussed here and it is known that in zebrafish, CP morphology is distinct in different cone subtypes as well as cone versus rod. It would be important to know which specific photoreceptor subtypes are shown in zebrafish (Figures 1A-C) and the non-fish species depicted in Figures 1E-L. Also, a larger field of view of the staining patterns for Figures 1E-L would be a helpful comparison (could be added as a supplementary figure).

      The revised manuscript will include clear labeling of the different cone cell types as well as lower magnification images to be included as supplemental figures.

      (2) Cdhr1a function in cell culture

      The authors should explain the multiple bands in the anti-FLAG blots. Also, it would be interesting to confirm that the cdhr1a D173 mutant prevents the IP interaction with pcdh15b as well as the additive effects in aggregate assays of Figure 2.

      We believe that the D173 mutation results in no cdhr1a polypeptide, based on the lack of in situ signal in our WISH studies (figures showing absence of cdhr1a mRNA will be provided in a new supplemental figure). However, we will clone the D173 mutant and attempt co-IP with pchd15b in our cell culture system as well as the aggregation assay using K562 cells.

      Is it possible that the cultured cells undergo proliferation in the aggregation assays shown in Figure 2? Cells might differentially proliferate as clusters form in rotating cultures. A simple assay for cell proliferation under the different transfection conditions showing no differences would address this issue and lend further support to the proposed specific changes to cell adhesion as a readout of this assay.

      This is a possibility, however we did not use rotating cultures, this was a monolayer culture. We did not observe any differences in total cell number between the differing transfections. As such, we do not feel proliferation explains the aggregation of K562 cells.

      Also, the authors report that the number of clusters was normalized to the field of view, but this was not defined. Were the n values different fields of view from one transfection experiment, or were they different fields of view from separate transfection experiments? More details and clarification are needed.

      This will be clarified in the revised manuscript, in short we replicated this experiment 3 times, quantifying 5 different fields of view in each replicate.

      (3) Methodological issues in quantification and statistical analyses

      Were all the OS and CP lengths counted in the observation region or just a sample within the region? If the latter, what were the sampling criteria? For CPs, it seems that the length was an average estimate based on all CPs observed surrounding one cone or one-rod cell. Is this correct? Again, if sampled, how was this implemented? In Fig 4M', the cdhr1a-/- ROS mostly looks curvilinear. Did the measurements account for this, or were they straight linear dimension measurements from base to tip of the OS as depicted in Fig 5A-E? A clearer explanation of the OS and CP length quantification methodology is required.

      The revised manuscript will clearly outline measurement methods. In short, we measured every CP/OS in the imaged regions. We did not average CPs/cell, we simply included all CP measurements in our analysis. All our CP measurements (actin or cdhr1a or pcdh15), were done in the presence of a counter stain, WGA, prph2, gnb1 or PNA to ensure proper measurements (landmark) and association with proper cell type.

      All measurements were taken as best as possible to reflect a straight linear dimension for consistency.

      How were cone and rod photoreceptor cell counts performed? The legend in Figure 4 states that they again counted cells in the observation region, but no details were provided. For example, were cones and rods counted as an absolute number of cells in the observation region (e.g., number of cones per defined area) or relative to total (DAPI+) cell nuclei in the region? Changes in cell density in the mutant (smaller eye or thinner ONL) might affect this quantification so it would be important to know how cell quantification was normalized.

      The revised manuscript will clearly outline measurement methods. In short, rod and cone cell counts were based on the number of outer segments that were observed in the imaging region and previously measured for length. We did not observe any eye size differences in our mutant fish.

      In Figure 6I, K, measuring the length of the signal seems problematic. The dimension of staining is not always in the apicobasal (vertical) orientation. It might be more accurate to measure the cdhr1a expression domain relative to the OS (since the length of the OS is already reduced in the mutants). Another possible approach could be to measure the intensity of cdhr1 staining relative to the intensity within a Prph2 expression domain in each group. The authors should provide complementary evidence to support their conclusion.

      The revised manuscript will clearly outline measurement methods. In short, all of our CP measurements (actin or cdhr1a or pcdh15), were done in the presence of a counter stain, WGA, prph2, gnb1 or PNA to ensure proper measurements and association with proper cell type.

      A better description of the statistical methodology is required. For example, the authors state that "each of the data points has an n of 5+ individuals." This is confusing and could indicate that in Figure 4F alone there were ~5000 individuals assayed (~100 data points per treatment group x n=5 individuals per data point x 10 treatment groups). I don't think that is what the authors intended. It would be clearer if the authors stated how many OS, CP, or cells were counted in their observation region averaged per individual, and then provided the n value of individuals used per treatment group (controls and mutants), on which the statistical analyses should be based.

      This will be addressed in the revised manuscript. In short we had an n=5 (individual fish) analyzed for each genotype/time point. We will also include numbers of OS/CP quantified in the observation regions.

      There are hundreds of data points in the separate treatment groups shown in several of the graphs. It would not be correct to perform the ANOVA on the separate OS or CP length measurements alone as this will bias the estimates since they are not all independent samples. For example, in Figure 6H, 5dpf pcdh15b+/- have shorter CPs compared to WT but pcdh15b-/- have longer compared to WT. This could be an artifact of the analysis. Moreover, the authors should clarify in the Methods section which ANOVA post hoc tests were used to control for multiple pairwise comparisons.

      This will be clarified in the revised manuscript.

      (4) Cdhr1a function in photoreceptors

      The cdhr1a IHC staining in 5dpf WT larvae in Figure 3E appears different from the cdhr1a IHC staining in 5dpf WT larvae in Figure 1A or Figure 6I. Perhaps this is just the choice of image. Can the authors comment or provide a more representative image?

      The image in figure 3E was captured using a previous non antigen retrieval protocol which limits the resolution of the cdhr1a signal along the CP. In the revised manuscript we will include an image that better represents cdhr1a staining in the WT and mutant.

      The authors show that pcdh15b localization after 5dpf mirrored the disorganization of the CP observed with actin staining. They also show in Figure 5O that at 180dpf, very little pcdh15b signal remains. They suggest based on this data that total degradation of CPs has occurred in the cdhr1a-/- photoreceptors by this time. However, although reduced in length, COS and cone CPs are still present at 180dpf (Figure 5E, E'). Thus, contrary to the authors' general conclusion, it is possible that the localization, trafficking, and/or turnover of pcdh15b is maintained through a cdhr1a-dependent mechanism, irrespective of the degree to which CPs are maintained. The experiments presented here do not clearly distinguish between a requirement for maintenance of localization versus a secondary loss of localization due to defective CPs.

      We agree, this point will be addressed in our revised manuscript.

      (5) Conceptual insights

      The authors claim that cdhr1a and pcdh15b double mutants have synergistic OS and CP phenotypes. I think this interpretation should be revisited.

      First, assuming the model of cdhr1a-pcdh15b interaction in trans is correct, the authors have not adequately explained the logic of why disrupting one side of this interaction in a single mutant would not give the same severity of phenotype as disrupting both sides of this interaction in a double mutant.

      Second, and perhaps more critically, at 10dpf the OS and CP lengths in cdhr1a-/- mutants (Figure 7J, T) are significantly increased compared to WT. In contrast, there are no significant differences in these measurements in the pcdh15b-/- mutants. Yet in double homozygous mutants, there is a significant reduction of ~50% in these measurements compared to WT. A synergistic phenotype would imply that each mutant causes a change in the same direction and that the magnitude of this change is beyond additive in the double mutants (but still in the same direction). Instead, I would argue that the data presented in Figure 7 suggest that there might be a functionally antagonistic interaction between cdhr1a and pcdh15b with respect to OS and CP growth at 10dpf.

      If these proteins physically interacted in vivo, it would appear that the interaction is complex and that this interaction underlies both OS growth-promoting and growth-restraining (stabilizing) mechanisms working in concert. Perhaps separate homodimers or heterodimers subserve distinct CP-OS functional interactions. This might explain the age-dependent differences in mutant CP and OS length phenotypes if these mechanisms are temporally dynamic or exhibit distinct OS growth versus maintenance phases. Regardless of my speculations, the model presented by the authors appears to be too simplistic to explain the data.

      We agree with the reviewer, as such we will address this conclusion in our revised manuscript. To do so we will revise our final model and include more flexibility in the proposed mechanisms.

      Reviewer #2 (Public review):

      Summary:

      The goal of this study was to develop a model for CDHR1-based Con-rod dystrophy and study the role of this cadherin in cone photoreceptors. Using genetic manipulation, a cell binding assay, and high-resolution microscopy the authors find that like rods, cones localize CDHR1 to the lateral edge of outer segment (OS) discs and closely oppose PCDH15b which is known to localize to calyceal processes (CPs). Ectopic expression of CDHR1 and PCDH15b in K652 cells indicates these cadherins promote cell aggregation as heterophilic interactants, but not through homophilic binding. This data suggests a model where CDHR1 and PCDH15b link OS and CPs and potentially stabilize cone photoreceptor structure. Mutation analysis of each cadherin results in cone structural defects at late larval stages. While pcdh15b homozygous mutants are lethal, cdhr1 mutants are viable and subsequently show photoreceptor degeneration by 3-6 months.

      Strengths:

      A major strength of this research is the development of an animal model to study the cone-specific phenotypes associated with CDHR1-based CRD. The data supporting CDHR1 (OS) and PCDH15 (CP) binding is also a strength, although this interaction could be better characterized in future studies. The quality of the high-resolution imaging (at the light and EM levels) is outstanding. In general, the results support the conclusions of the authors.

      Weaknesses:

      While the cellular phenotyping is strong, the functional consequences of CDHR1 disruption are not addressed. While this is not the focus of the investigation, such analysis would raise the impact of the study overall. This is particularly important given some of the small changes observed in OS and CP structure. While statistically significant, are the subtle changes biologically significant? Examples include cone OS length (Figures 4F, 6E) as well as other morphometric data (Figure 7I in particular). Related, for quantitative data and analysis throughout the manuscript, more information regarding the number of fish/eyes analyzed as well as cells per sample would provide confidence in the rigor. The authors should also note whether the analysis was done in an automated and/or masked manner.

      First let me thank the reviewer for taking the time to comprehensively evaluate our work and provide constructive criticism which will improve the quality of our final version.

      The revised manuscript will clearly outline both methods and statistics used for quantitation of our data. (please see comments from reviewer 1). While we do not include direct evidence of the mechanism of CDHR1 function, we do propose that its role is important in anchoring the CP and the OS, particularly in the cones, while in rods it may serve to regulate the release of newly formed disks (as previously proposed in mice). We do plan to test both of these hypothesis directly, however, that will be the basis of our future studies.

      Reviewer #3 (Public review):

      Summary:

      The manuscript by Patel et al investigates the hypothesis that CDHR1a on photoreceptor outer segments is the binding partner for PCDH15 on the calyceal processes, and the absence of either adhesion molecule results in separation between the two structures, eventually leading to degeneration. PCDH15 mutations cause Usher syndrome, a disease of combined hearing and vision loss. In the ear, PCDH15 binds CDH23 to form tip links between stereocilia. The vision loss is less understood. Previous work suggested PCDH15 is localized to the calyceal processes, but the expression of CDH23 is inconsistent between species. Patel et al suggest that CDHR1a (formerly PCDH21) fulfills the role of CDH23 in the retina.

      The experiments are mainly performed using the zebrafish model system. Expression of Pcdh15b and Cdhr1a protein is shown in the photoreceptor layer through standard confocal and structured illumination microscopy. The two proteins co-IP and can induce aggregation in vitro. Loss of either Cdhr1a or Pcdh15, or both, results in degeneration of photoreceptor outer segments over time, with cones affected primarily.

      The idea of the study is logical given the photoreceptor diseases caused by mutations in either gene, the comparisons to stereocilia tip links, and the protein localization near the outer segments. The work here demonstrates that the two proteins interact in vitro and are both required for ongoing outer segment maintenance. The major novelty of this paper would be the demonstration that Pcdh15 localized to calyceal processes interacts with Cdhr1a on the outer segment, thereby connecting the two structures. Unfortunately, the data presented are inadequate proof of this model.

      Strengths:

      The in vitro data to support the ability of Pcdh15b and Cdhr1a to bind is well done. The use of pcdh15b and cdhr1a single and double mutants is also a strength of the study, especially being that this would be the first characterization of a zebrafish cdhr1a mutant.

      Weaknesses:

      (1) The imaging data in Figure 1 is insufficient to show the specific localization of Pcdh15 to calyceal processes or Cdhr1a to the outer segment membrane. The addition of actin co-labelling with Pcdh15/Cdhr1a would be a good start, as would axial sections. The division into rod and cone-specific imaging panels is confusing because the two cell types are in close physical proximity at 5 dpf, but the cone Cdhr1a expression is somehow missing in the rod images. The SIM data appear to be disrupted by chromatic aberration but also have no context. In the zebrafish image, the lines of Pcdh15/Cdhr1a expression would be 40-50 um in length if the scale bar is correct, which is much longer than the outer segments at this stage and therefore hard to explain.

      First let me thank the reviewer for taking the time to comprehensively evaluate our work and provide constructive criticism which will improve the quality of our final version.

      To address this issue, we are undertaking imaging of actin/cdhr1a and actin/pcdh15b using SIM in both transverse and axial sections. Additionally, we have recently established an immuno-gold-TEM protocol and are going to provide data showcasing co-labeling of cdhr1a and pcdh15b at TEM resolution. We are also going to include lower magnification images to complement the SIM images presented in figure 1.

      (2) Figure 3E staining of Cdhr1a looks very different from the staining in Figure 1. It is unclear what the authors are proposing as to the localization of Cdhr1a. In the lab's previous paper, they describe Cdhr1a as being associated with the connecting cilium and nascent OS discs, and fail to address how that reconciles with the new model of mediating CP-OS interaction. And whether Cdhr1a localizes to discrete domains on the disc edges, where it interacts with Pcdh15 on individual calyceal processes.

      The image in figure 3E was captured using a previous non antigen retrieval protocol which limits the resolution of the cdhr1a signal along the CP. In the revised manuscript we will include an image that better represents cdhr1a staining in the WT and mutant.

      (3) The authors state "In PRCs, Pcdh15 has been unequivocally shown to be localized in the CPs". However, the immunostaining here does not match the pattern seen in the Miles et al 2021 paper, which used a different antibody. Both showed loss of staining in pcdh15b mutants so unclear how to reconcile the two patterns.

      We agree that our staining appears different, but we attribute this to our antigen retrieval protocol which differed from the Miles et al paper. We also point to the fact that pcdh15b localization has been shown to be similar to our images in other species (monkey and frog). As such, we believe our protocol reveals the proper localization pattern which might be lost/hampered in the procedure used in Miles et al 2021.

      (4) The explanation for the CRISPR targets for cdhr1a and the diagram in Figure 3 does not fit with crRNA sequences or the mutation as shown. The mutation spans from the latter part of exon 5 to the initial portion of exon 6, removing intron 5-6. It should nevertheless be a frameshift mutation but requires proper documentation.

      This was an overlooked error in figure making, we apologize and will address this typo in the revised manuscript.

      (5) There are complications with the quantification of data. First, the number of fish analyzed for each experiment is not provided, nor is the justification for performing statistics on individual cell measurements rather than using averages for individual fish. Second, all cone subtypes are lumped together for analysis despite their variable sizes. Third, t-tests are inappropriately used for post-hoc analysis of ANOVA calculations.

      As we discussed for reviewer 1 and 2, all methods and quantification/statistics will be clearly described in the revised manuscript.

      (6) Unclear how calyceal process length is being measured. The cone measurements are shown as starting at the external limiting membrane, which is not equivalent to the origin of calyceal processes, and it is uncertain what defines the apical limit given the multiple subtypes of cones. In Figure 5, the lines demonstrating the measurements seem inconsistently placed.

      As we discussed for reviewer 1 and 2, all methods and quantification/statistics will be clearly described in the revised manuscript.

      (7) The number of fish analyzed by TEM and the prevalence of the phenotype across cells are not provided. A lower magnification view would provide context. Also, the authors should explain whether or not overgrowth of basal discs was observed, as seen previously in cdhr1-null frogs (Carr et al., 2021).

      The revised manuscript will include the aforementioned stats and lower magnification images. We will also compare our results directly to Carr 2021.

      (8) The statement describing the separation between calyceal processes and the outer segment in the mutants is not backed up by the data. TEM or co-labelling of the structures in SIM could be done to provide evidence.

      We will work to include more TEM and co-labeling data for the revised manuscript (see comments to reviewer 1)

      (9) "Based on work in the murine model and our own observations of rod CPs, we hypothesize that zebrafish rod CPs only extend along the newly forming OS discs and do not provide structural support to the ROS." Unclear how murine work would support that conclusion given the lack of CPs in mice, or what data in the manuscript supports this conclusion.

      In the revised manuscript we will improve our discussion of murine CPs, in that we still detect the juxtaposition of cdhr1 and pcdh15, along a potential remanent of the CP as previously described in SEM studies. Our findings do not indicate that mice or rats have CPs, we simply wanted to outline that the behavior of cdhr1 and pcdh15 still remains conserved, despite the absence of long traditional CPs.

      (10) The authors state "from the fact that rod CPs are inherently much smaller than cone CPs" without providing a reference. In the manuscript, the measurements do show rod CPs to be shorter, but there are errors in the cone measurements, and it is possible that the RPE pigment is interfering with the rod measurements.

      We will include a reference where rod CPs have been found to be shorter (monkey and frog data). We have no doubt that in zebrafish the rod CPs are significantly shorter. All our CP measurements are done with a counter stain for rods and cones to be sure that we are measuring the correct cell type.

      (11) The discussion should include a better comparison of the results with ocular phenotypes in previously generated pcdh15 and cdhr1 mutant animals.

      In the revised manuscript we will include this in our discussion.

      (12) The images in panels B-F of the Supplemental Figure are uncannily similar, possibly even of the same fish at different focal planes.

      We assure the reviewer that each of the images in supplemental figure 1 are distinct and represent different in situ experiments.

    1. Author response:

      We thank the reviewers for the positive and constructive feedback on our manuscript. We appreciate you highlighting the importance of our work in advancing our understanding of HIV latency and viral reactivation. The reviewers had mostly minor comments that we are in the process of addressing by completing additional experiments that are responsive to reviewer comments as well as some clarification of the text. These include:

      (1) The impact of INTS12 knockout on cell viability.

      We did not see an effect of the knockout of INTS12 on cell viability in the flow cytometry gating of live/dead cells, nor a gross difference in cell proliferation. However, we will test cell viability and proliferation more quantitatively and include this data in the revision.

      (2) The effect of INTS12 knockout on additional LRAs.

      There is published data that the Integrator complex inhibits HIV reactivation via additional LRAs that we will better highlight in the revision. In addition, we have data that we did not include in the original submission suggesting that INST12 knockout affects the degree of HIV reactivation with additional LRAs. We will confirm these results and include the data in the revision.

      (3) Extend the discussion on how exquisitely sensitive HIV transcription is to pausing and transcriptional elongation and the insights this provides about general HIV transcriptional regulation.

      Yes, we agree with this and will extend the discussion in this manner. We will also include additional data that we recently obtained that further emphasizes this point.

      (4) Comparison to another CRISPR screen using the same library (Hsieh et al., PLOS Pathogens, 2023).

      Indeed, INST12 was one of the hits in the previous paper (Hsieh et al., 2023) but was not specifically described or validated in that paper. We will point that out in the revision. Also, the Hsieh et al paper already described the library in more detail, but we will include additional text in the revision to emphasize that it casts a wide net on processes involved in transcriptional regulation.

      (5) We made a mistake on the numbering of the supplemental figures which lead to some misunderstanding. We will correct this as well as add other suggestions of the reviewers for clarifications.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      D'Oliviera et al. have demonstrated cleavage of human TRMT1 by the SARS-CoV-2 main protease in vitro. Following, they solved the structure of Mpro (Nsp5)-C145A bound to TRMT1 substrate peptide, revealing binding conformation distinct from most viral substrates. Overall, this work enhances our understanding of substrate specificity for a key drug target of CoV2. The paper is well-written and the data is clearly presented. It complements the companion article by demonstrating interaction between Mpro and TRMT1, as well as TRMT1 cleavage under isolated conditions in vitro. They show that cleaved TRMT1 has reduced tRNA binding affinity, linking a functional consequence to TRMT1 cleavage by MPro. Importantly, the revelation for flexible substrate binding of Nsp5 is fundamental for understanding Nsp5 as a drug target. Trmt1 cleavage assays by Mpro revealed similar kinetics for TRMT1 cleavage as compared to nsp8/9 viral polyprotein cleavage site. They purify TRMT1-Q350K, in which there is a mutation in the predicted cleavage consensus sequence, and confirm that it is resistant to cleavage by recombinant Mpro. I am unable to comment critically on the structural analyses as it is outside of my expertise. Overall, I think that these findings are important for confirming TRMT1 as a substrate of Mpro, defining substrate binding and cleavage parameters for an important drug target of SARS-CoV-2, and may be of interest to researchers studying RNA modifications.

      We thank the reviewer for their positive assessment and summary of our work in this paper!

      Reviewer #2 (Public review):

      Summary:

      The manuscript 'Recognition and Cleavage of Human tRNA Methyltransferase TRMT1 by the SARS-CoV-2 Main Protease' from Angel D'Oliviera et al., uncovers that TRMT1 can be cleaved by SARS-CoV-2 main protease (Mpro) and defines the structural basis of TRMT1 recognition by Mpro. They use both recombinant TRMT1 and Mpro as well as endogenous TRMT1 from HEK293T cell lysates to convincingly show cleavage of TRMT1 by the SARS-CoV-2 protease. Using in vitro assays, the authors demonstrate that TRMT1 cleavage by Mpro blocks its enzymatic activity leading to hypomodification of RNA. To understand how Mpro recognizes TRMT1, they solved a co-crystal structure of Mpro bound to a peptide derived from the predicted cleavage site of TRMT1. This structure revealed important protein-protein interfaces and highlights the importance of the conserved Q530 for cleavage by Mpro. They then compare their structure with previous X-ray crystal structures of Mpro bound to substrate peptides derived from the viral polyprotein and propose the concept of two distinct binding conformations to Mpro: P3´-out and P3´-in conformations (here P3´ stands for the third residue downstream of the cleavage site). It remains unknown what is the physiological role of these two binding conformations on Mpro function, but the authors established that Mpro has dramatically different cleavage efficiencies for three distinct substrates. In an effort to rationalize this observation, a series of mutations in Mpro's active site and the substrate peptide were tested but unexpectedly had no significant impact on cleavage efficiency. While molecular dynamic simulations further confirmed the propensity of certain substrates to adopt the P3´-out or P3´-in conformation, it did not provide additional insights into the dramatic differences in cleavage efficiencies between substrates. This led the authors to propose that the discrimination of Mpro for preferred substrates might occur at a later stage of catalysis after binding of the peptide. Overall, this work will be of interest to biologists studying proteases and substrate recognition by enzymes and RNA modifications as well as help efforts to target Mpro with peptide-like drugs.

      We thank the reviewer for this thorough and accurate summary of our work in this manuscript.

      Strengths:

      • The authors' statements are well supported by their data, and they used relevant controls when needed. Indeed, they used the Mpro C145A inactive variant to unambiguously show that the TRMT1 cleavage detected in vitro is solely due to Mpro's activity. Moreover, they used two distinct polyclonal antibodies to probe TRMT1 cleavage.

      • They demonstrate the impact of TRMT1 cleavage on RNA modification by quantifying both its activity and binding to RNA.

      • Their 1.9 Å crystal structure is of high quality and increases the confidence in the reported protein-protein contacts seen between TRMT1-derived peptide and Mpro.

      • Their extensive in vitro kinetic assay was performed in ideal conditions although it is sometimes unclear how many replicates were performed.

      • They convincingly show how Mpro cleavage is conserved among most but not all mammalian TRMT1 bringing an interesting evolutionary perspective on virus-host interactions.

      • The authors test multiple hypotheses to rationalize the preference of Mpro for certain substrates.

      • While this reviewer is not able to comment on the rigor of the MD simulations, the interpretations made by the authors seem reasonable and convincing.

      • The concept of two binding conformations (P3´-out or P3´-in) for the substrate in the active site of Mpro is significant and can guide drug design.

      We thank the reviewer for these positive assessments of manuscript strengths!

      Weaknesses:

      • The two polyclonal antibodies used by the authors seem to have strong non-specific binding to proteins other than TRMT1 but did not impact the author's conclusions or statements. This is a limitation of the commercially available antibodies for TRMT1.

      Yes, there are some levels of non-specific binding for all of the TRMT1 antibodies we have tested (this limitation of commercially available TRMT1 antibodies is also observed and noted by Zhang et al), but we agree that this does not impact the overall conclusions and that by using multiple different antibodies to show the same effects, we can have high confidence in the Western blot analysis and interpretation.

      • Despite the reasonable efforts of the authors, it remains unknown why Mpro shows higher cleavage efficiency for the nsp4/5 sequence compared to TRMT1 or nsp8/9 sequences. This is a challenging problem that will take substantially more effort by several labs to decipher mechanistically.

      True! To our knowledge and despite significant past efforts of many research groups studying similar coronavirus proteases (e.g. SARS-CoV-1 Mpro) a clear understanding of the detailed mechanistic relationship between cleavage sequence and cleavage kinetics remains mostly undefined. This is a great and important problem for mechanistic and computational groups with deep interests in proteases to tackle in the future! To highlight these and similar open questions, we have added a short paragraph to the Discussion section (second from the last paragraph).

      • The peptide cleavage kinetic assay used by the authors relies on a peptide labelled with a fluorophore (MCA) on the N-terminus and a quencher (Dpn) on the C-terminus. This design allows high-throughput measurements compatible with plate readers and is a robust and convenient tool. Nevertheless, the authors did not control for the impact of the labels (MCA and Dpn) on the activity of Mpro. While in most cases the introduced fluorophore/quencher do not impact activity, sometimes it can.

      Yes, we agree that it is possible the MCA and Dnp labels could have effects on the measured cleavage rates. These fluorophore/quencher peptide cleavage assays are the standard assays used by many labs in the protease field to study diverse proteases and diverse cleavage targets. When other labs have compared cleavage kinetic parameters measured with fluorophore/quencher-based peptide cleavage assays versus HPLC-based peptide cleavage assays, these are often found to be quite similar (e.g. Lee, J., Worrall, L.J., Vuckovic, M. et al. Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site. Nat Commun 11, 5877 (2020). https://doi.org/10.1038/s41467-020-19662-4), although there are also examples where differences arise. In any case, we agree there could be some effects on the cleavage kinetics introduced by the fluorophore and/or quencher groups. However, our main focus in this paper is to show how a sequence in the human tRNA-modifying enzyme TRMT1 is cleaved by Mpro (and in this revision we have also added new data to show the functional effects of cleavage on TRMT1 activity); it will take significant future work to fully dissect the detailed relationships between peptide sequence, including the quantitative effects of fluorophore/quencher labels, and protease-directed cleavage kinetics. Based on our work in this paper and many past studies of similar proteases, understanding how peptide sequence or conformation relates to cleavage efficiency is a longer-term and very challenging problem that we view as beyond the scope of this work. We have added a brief section elaborating on this in the Discussion.

      • An unanswered question not addressed by the authors is if the peptides undergo conformational changes upon Mpro binding or if they are pre-organized to adopt the P3´-out and P3´-in conformations. This might require substantially more work outside the scope of this immediate article.

      We agree this is unanswered; we considered additional MD experiments to address this, but ultimately decided that since both of these sequences are cleaved in the context of much larger polypeptides (FL TRMT1 or the viral polypeptide), any simple analysis to assess the possibility of pre-organization and relate this preferred binding conformation to cleavage kinetics would be difficult to interpret in a biologically meaningful way. We think this and similar questions about how pre-organization of peptides or amino acid sequences in the polypeptides might influence protease binding and cleavage activity are interesting and important future questions for protease-focused groups in this field.

      Reviewer #3 (Public review):

      Summary:

      In this manuscript, the authors have used a combination of enzymatic, crystallographic, and in silico approaches to provide compelling evidence for substrate selectivity of SARS-CoV-2 Mpro for human TRMT1.

      Strengths:

      In my opinion, the authors came close to achieving their intended aim of demonstrating the structural and biochemical basis of Mpro catalysis and cleavage of human TRMT1 protein. The revised version of the manuscript has addressed most of the questions I had posed in my earlier review.

      We thank the reviewer for their positive assessment of this work, and we are glad to hear the manuscript revisions were helpful in addressing the first round of reviews and questions.

      Weaknesses:

      Although several new hypotheses are generated from the Mpro structural data, the manuscript falls a bit short of testing them in functional assays, which would have solidified the conclusions the authors have drawn.

      Toward showing some of the functional effects of TRMT1 cleavage, in this revised version of the manuscript we have added new data and a new results section (‘Cleavage of TRMT1 results in complete loss of tRNA m2,2G modification activity and reduced tRNA binding in vitro’) showing that cleavage of TRMT1 results in reduced tRNA binding to TRMT1 (Figure 2D) and the complete loss of TRMT1-mediated tRNA modification activity in vitro (Figure 2C). This complements the in-cell data presented by Zhang et al showing that cleavage of TRMT1 in SARS-CoV-2 infected human cells results in the reduction of m2,2G modification levels. We think these data are a strong addition to this paper that broadens the impacts of our reported results more directly into the RNA modifications field.

      In terms of showing the further, downstream biological effects of TRMT1 cleavage and/or the specific impacts of TRMT1 cleavage on SARS-CoV-2 propagation and replication, while we agree further functional assays could absolutely heighten the overall impact, we view the main focus of our paper as showing how TRMT1 is recognized and cleaved by Mpro at the structural level and characterizing the biochemistry of the TRMT1-Mpro interaction and the effects of cleavage on TRMT1 tRNA-modifying activity. Zhang et al present some cellular data suggesting that loss of TRMT1 and/or TRMT1 cleavage during infection is actually detrimental to SARS-CoV-2 replication and infectivity. However, a full understanding of how TRMT1-mediated m2,2G modification of tRNA impacts viral translation, whether TRMT1 plays other roles during the viral life cycle, or whether TRMT1 cleavage (even if not important for viral fitness) contributes to cellular phenotypes during infection, will take a significant amount of future cell biology and virology work to unravel. Indeed, our understanding is that characterizing some of the endogenous cleavage targets for the HIV protease and determining the downstream biological effects and impacts on HIV infection took well over a decade. We hope that the biochemical and structural characterization of the Mpro-TRMT1 interaction presented in our paper will provide the necessary fundamental groundwork and impetus for future virology and cellular biochemistry studies to further investigate the biological roles of TRMT1 cleavage by SARS-CoV-2 Mpro.

      ---

      The following is the authors’ response to the original reviews.

      eLife Assessment:

      This manuscript provides important structural insights into the recognition and degradation of the host tRNA methyltransferase by SARS-CoV-2 protease nsp5 (Mpro). The data convincingly support the main conclusions of the paper. These results will be of interest to researchers studying structures and substrate recognition and specificity of viral proteases.

      We thank the eLife editors and reviewers for handling this manuscript and the overall positive assessment of our work.

      In this revised version of the manuscript we have included significant, new experimental data with recombinant purified, catalytically active TRMT1 that directly shows cleavage of TRMT1 reduces its tRNA binding affinity (by gel shift assays) and results in the complete loss of tRNA modifying activity in vitro (by radiolabel-based methyltransferase assays). Because these added experiments provide new information about how Mpro-mediated cleavage specifically impacts TRMT1 tRNA binding and m2,2G modification activity, and thus new information about the functional effects of loss of the TRMT1 Zn finger domain, we would strongly suggest adding that “this work may be of interest to researchers studying RNA modifications”, or a similar phrase, in the eLife assessment.

      Please find below our point-by-point response to each of the reviewer comments, which outlines additional changes to the manuscript.

      Public Reviews:

      Reviewer #1 (Public Review):

      D'Oliviera et al. have demonstrated cleavage of human TRMT1 by the SARS-CoV-2 main protease in vitro. Following this, they solved the structure of Mpro-C145A bound to TRMT1 substrate peptide, revealing binding conformation distinct from most viral substrates. Overall, this work enhances our understanding of substrate specificity for a key drug target of CoV2. The paper is well-written and the data is clearly presented. It complements the companion article by demonstrating the interaction between Mpro and TRMT1 and TRMT1 cleavage under isolated conditions in vitro. Importantly, the revelation of flexible substrate binding of Nsp5 is fundamental for understanding Nsp5 as a drug target. Trmt1 cleavage assays revealed similar kinetics for TRMT1 cleavage as compared to the nsp8/9 viral polyprotein cleavage site, however, it would have been more rigorous for the authors to independently reproduce the kinetics reported for nsp8/9 using their specific experimental conditions. The finding that murine TRMT1 lacks a conserved consensus sequence is interesting, but is not experimentally tested here and is reported elsewhere. I am unable to comment critically on the structural analyses as it is outside of my expertise. Overall, I think that these findings are important for confirming TRMT1 as a substrate of Mpro and defining substrate binding and cleavage parameters for an important drug target of SARS-CoV-2.

      We thank the reviewer for their positive assessment and summary of our work in this paper!

      We absolutely agree that comparing to nsp8/9 cleavage kinetics measured in our own hands would be more rigorous here, and we have carried out these measurements in triplicate under the same conditions as were used to measure all the other peptide cleavage kinetics in this manuscript. Figures 5A & B (as well as Table S3 and Dataset S2) have been updated with our new nsp8/9 kinetic data (kcat = 0.019 +/- 0.002 s-1 and KM = 40 +/- 7.5 µM). As expected, our newly measured nsp8/9 kinetic parameters are very similar to those that we had previously cited from MacDonald et al (kcat = 0.013 +/- 0.001 s-1, KM = 36 +/- 6.0 µM), and show that Mpro-mediated TRMT1 peptide cleavage has similar proteolysis kinetics to the nsp8/9 viral polypeptide cleavage site.

      We have also purified full-length human TRMT1 Q530K, which is the key change in the cleavage consensus sequence that likely makes murine TRMT1 resistant to Mpro-mediated cleavage. In in vitro cleavage assays we find that indeed TRMT1 Q530K is entirely resistant to cleavage by recombinant Mpro and we have added this data to the manuscript in Figure 6D. These findings are consistent with previously cited data from Lu et al, which suggest mouse and hamster TRMT1 are not cleaved in HEK293T cells expressing Mpro.

      With the addition of the TRMT1 Q530K mutant data, we decided to move the evolutionary analysis together with this kinetic data to a new section in the Results. We think these additions and changes make the paper stronger and clearer, and thank the reviewer for these suggestions!

      Reviewer #2 (Public Review):

      Summary:

      The manuscript 'Recognition and Cleavage of Human tRNA Methyltransferase TRMT1 by the SARS-CoV-2 Main Protease' from Angel D'Oliviera et al., uncovers that TRMT1 can be cleaved by SARS-CoV-2 main protease (Mpro) and defines the structural basis of TRMT1 recognition by Mpro. They use both recombinant TRMT1 and Mpro as well as endogenous TRMT1 from HEK293T cell lysates to convincingly show cleavage of TRMT1 by the SARS-CoV-2 protease. To understand how Mpro recognizes TRMT1, they solved a co-crystal structure of Mpro bound to a peptide derived from the predicted cleavage site of TRMT1. This structure revealed important protein-protein interfaces and highlights the importance of the conserved Q530 for cleavage by Mpro. They then compared their structure with previous X-ray crystal structures of Mpro bound to substrate peptides derived from the viral polyprotein and proposed the concept of two distinct binding conformations to Mpro: P3´-out and P3´-in conformations (here P3´ stands for the third residue downstream of the cleavage site). It remains unknown what is the physiological role of these two binding conformations on Mpro function, but the authors established that Mpro has dramatically different cleavage efficiencies for three distinct substrates. In an effort to rationalize this observation, a series of mutations in Mpro's active site and the substrate peptide were tested but unexpectedly had no significant impact on cleavage efficiency. While molecular dynamic simulations further confirmed the propensity of certain substrates to adopt the P3´-out or P3´-in conformation, they did not provide additional insights into the dramatic differences in cleavage efficiencies between substrates. This led the authors to propose that the discrimination of Mpro for preferred substrates might occur at a later stage of catalysis after binding of the peptide. Overall, this work will be of interest to biologists studying proteases and substrate recognition by enzymes as well as help efforts to target Mpro with peptide-like drugs.<br />

      We thank the reviewer for this thorough and accurate summary of our work in this manuscript.

      Strengths:

      • The authors' statements are well supported by their data, and they used relevant controls when needed. Indeed, they used the Mpro C145A inactive variant to unambiguously show that the TRMT1 cleavage detected in vitro is solely due to Mpro's activity. Moreover, they used two distinct polyclonal antibodies to probe TRMT1 cleavage.

      • Their 1.9 Å crystal structure is of high quality and increases the confidence in the reported protein-protein contacts seen between TRMT1-derived peptide and Mpro.

      • Their extensive in vitro kinetic assay was performed in ideal conditions although it is unclear how many replicates were performed.

      • The authors test multiple hypotheses to rationalize the preference of Mpro for certain substrates.

      • While this reviewer is not able to comment on the rigor of the MD simulations, the interpretations made by the authors seem reasonable and convincing.

      • The concept of two binding conformations (P3´-out or P3´-in) for the substrate in the active site of Mpro is significant and can guide drug design.

      We thank the reviewer for these positive assessments of manuscript strengths!

      Weaknesses:

      • While the authors convincingly show that TRMT1 is cleaved by Mpro, the exact cleavage site was never confirmed experimentally. It is most likely that the predicted site is the main cleavage site as proposed by the authors (region 527-534). Nevertheless, in Fig 1C (first lane from the right) there are two bands clearly observed for the cleavage product containing the MT Domain. If the predicted site was the only cleavage site recognized by Mpro, then a single band for the MT domain would be expected. This observation suggests that there might be two cleavage sites for Mpro in TRMT1. Indeed, residues RFQANP (550-555) in TRMT1 might be a secondary weaker cleavage site for Mpro, which would explain the two observed bands in Fig 1C. A mass spectrometry analysis of the cleaved products would clarify this.

      We agree with the reviewer that based on the originally presented data it is possible there could be an additional Mpro-targeted cleavage site in TRMT1 beyond the 527-534 region that we validated through peptide cleavage assays of the TRMT1 526-536 peptide. Because it may be difficult to unambiguously identify and differentiate other putative cleavage sites that are nearby to 527-534 (e.g. the suggested possibility of 550-555) by mass spectrometry, we instead carried out additional in vitro cleavage assays with purified FL TRMT1 Q530K. Mutation of the invariant P1 Gln residue in the cleavage sequence is expected to prevent cleavage at this site, and allow us to probe whether there are other sites in TRMT1 that can be cleaved by Mpro (and if so, more straightforwardly identify them by mass spectrometry). We compared cleavage of purified WT FL TRMT1 and FL TRMT1 Q530K with recombinant Mpro in in vitro cleavage assays and found that TRMT1 Q530K is not cleaved by Mpro over the course of a 2h cleavage reaction. In these experiments, we also saw clear cleavage of WT FL TRMT1 over the course of 2h into only a single detectable band. Together, both of these pieces of data strongly suggest that the 527-534 region is the only Mpro-targeted cleavage site in TRMT1 (if there was an additional cleavage site, we should have seen some amount of cleavage in the Q530K mutant, but we do not). Overall, we feel that the updated WT and Q530K experiments clearly demonstrate that there is only one Mpro-mediated cleavage site in human TRMT1, which also is consistent with experiments in Zhang et al showing that Q530N mutations also block TRMT1 cleavage by co-expressed Mpro in human cells.

      The updated WT and Q530K cleavage assays have been added to the manuscript in Figure 6D.

      • A control is missing in Fig 1D. Since the authors use western blots to show the gradual degradation of endogenous TRMT1, a control with a protein that does not change in abundance over the course of the measurement is important. This is required to show that the differences in intensity of TRMT1 by western blotting are not due to loading differences etc.

      Yes, we agree this is an important control and have repeated these experiments and blotted for TRMT1 and GAPDH as a loading control. The updated Western blots are now shown in Figure 2B, and show the same result as the older data.

      • The two polyclonal antibodies used by the authors seem to have strong non-specific binding to proteins other than TRMT1 but did not impact the author's conclusions. This is a limitation of the commercially available antibodies for TRMT1, and unless the authors select a new monoclonal antibody specific to TRMT1 (costly and lengthy process), this limitation seems out of their control.

      Yes, there are some levels of non-specific binding for all of the TRMT1 antibodies we have tested (this limitation of commercially available TRMT1 antibodies is also observed and noted by Zhang et al), but we agree that this does not impact the overall conclusions and that by using multiple different antibodies to show the same effects, we can have high confidence in the Western blot analysis and interpretation.

      • The recombinantly purified TRMT1 seems to have some non-negligible impurities (extra bands in Fig 1C). This does not impact the conclusions of the authors but might be relevant to readers interested in working with TRMT1 for biochemical, structural, or other purposes.

      Yes, our initial isolations of recombinant TRMT1 for the first version of this paper produced smaller amounts of TRMT1 with some impurities; we agree that these do not impact the conclusions of the cleavage experiments. However, since our first submission, we have optimized our purification protocols for TRMT1 and are now able to obtain larger quantities of higher purity recombinant human TRMT1 from bacterial cells and we have used this material for the TRMT1 activity and tRNA binding assays added in this revision; we have also included updates to the expression and purification section for recombinant TRMT1. We hope that these improvements will be helpful to readers interested in working on TRMT1.

      • Despite the reasonable efforts of the authors, it remains unknown why Mpro shows higher cleavage efficiency for the nsp4/5 sequence compared to TRMT1 or nsp8/9 sequences.

      True! To our knowledge and despite significant past efforts of many research groups studying similar coronavirus proteases (e.g. SARS-CoV-1 Mpro) a clear understanding of the detailed mechanistic relationship between cleavage sequence and cleavage kinetics remains mostly undefined. This is a great and important problem for mechanistic and computational groups with deep interests in proteases to tackle in the future! To highlight these and similar open questions, we have added a short paragraph to the Discussion section (second from the last paragraph).

      • The peptide cleavage kinetic assay used by the authors relies on a peptide labelled with a fluorophore (MCA) on the N-terminus and a quencher (Dpn) on the C-terminus. This design allows high-throughput measurements compatible with plate readers and is a robust and convenient tool. Nevertheless, the authors did not control for the impact of the labels (MCA and Dpn) on the activity of Mpro. It is possible that the differences in cleavage efficiencies between peptides are due to unexpected conformational changes in the peptide upon labelling. Moreover, the TRMT1 peptide has an E at the N-terminus and an R at the C-terminus (while the nsp4/5 peptide has an S and M, respectively). It is possible that these two terminal residues form a salt bridge in the TRMT1 peptide that might constrain the conformation of the peptide and thus reduce its accessibility and cleavage by Mpro. Enzymatic assays in the absence of labels and MD simulations with the bona fide peptides (including the labels) used in the kinetic measurements are needed to prove that the cleavage efficiencies are not biased by the fluorescence assay.

      These fluorophore/quencher peptide cleavage assays are the standard assays used by many labs in the protease field to study diverse proteases and diverse cleavage targets. When other labs have compared cleavage kinetic parameters measured with fluorophore/quencher-based peptide cleavage assays versus HPLC-based peptide cleavage assays, these are often found to be quite similar (e.g. Lee, J., Worrall, L.J., Vuckovic, M. et al. Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site. Nat Commun 11, 5877 (2020). https://doi.org/10.1038/s41467-020-19662-4), although there are also examples where differences arise. In any case, we agree there could be some effects on the cleavage kinetics introduced by the fluorophore and/or quencher groups or sequence-specific conformational preferences of the peptides. However, because our main focus in this paper is to show how a sequence in the human tRNA-modifying enzyme TRMT1 is cleaved by Mpro (and in this revision we have also added new data to show the functional effects of cleavage on TRMT1 activity), and the broad focus of our lab is understanding the mechanisms controlling the function and activity of RNA-modifying enzymes, we will leave it to other labs focused more specifically on protease biochemistry to fully dissect the detailed relationships between peptide sequence and conformation to protease-directed cleavage kinetics. As discussed above, based on our work in this paper and many past studies of similar proteases, understanding how sequence relates to cleavage efficiency is a longer-term and very challenging problem that we view as beyond the scope of this work. As noted above, we have added a brief section explaining this in the Discussion.

      • The authors used A431S variant in TRMT1-derived peptide to disrupt the P3´-in conformation. While this reviewer agrees with the rationale behind A431S design, it is important to confirm experimentally that the mutation disrupted the P3´-in conformation in favor of the P3´-out conformer. The authors could use their MD simulations to determine if the TRMT1 A431S variant favors the P3´-out conformation.

      Thank you for this suggestion; we agree and have carried out the suggested MD simulations with TRMT1 A531S peptides bound to Mpro. Surprisingly, these simulations suggest that the A531S peptide can still readily adopt the P3’-in conformation by orienting the Ser sidechain in a different way as compared to its positioning in the Mpro-nsp4/5 structure. Since this somewhat changes our interpretation of the results of the A531S kinetic experiments, we have rewritten this section of the manuscript by: (a) removing the ‘TRMT1 mutations predicted to alter peptide binding conformation have little effect on cleavage kinetics’ section in the Results, (b) instead adding several sentences talking about the A531S mutation to the previous section of the results, and including this mutation as another example of how mutations to either Mpro or TRMT1 residues that might be expected to impact cleavage kinetics do not in fact affect cleavage rates, and finally (c) adding the new MD simulation results to the A531S kinetic data in Figure S5 in the Supporting Information. We thank the reviewer for suggesting this important follow-up simulation!

      • An unanswered question not addressed by the authors is if the peptides undergo conformational changes upon Mpro binding or if they are pre-organized to adopt the P3´-out and P3´-in conformations.

      We agree this is unanswered; we considered additional MD experiments to address this, but ultimately decided that since both of these sequences are cleaved in the context of much larger polypeptides (FL TRMT1 or the viral polypeptide), any simple analysis to assess the possibility of pre-organization and relate this preferred binding conformation to cleavage kinetics would be difficult to interpret in a biologically meaningful way. We think this and similar questions about how pre-organization of peptides or amino acid sequences in the polypeptides might influence protease binding and cleavage activity are interesting and important future questions for protease-focused groups in this field.

      • While the authors describe at great length the hydrogen bonds involved in the substrate recognition by Mpro, they occluded to highlight important stacking interactions in this interface. For instance, Phe533 from TRMT1 stacks with Met49 while L529 from TRMT1 packs against His41 of Mpro. Both hydrogen bonding and stacking interactions seem important for TRMT1-derived peptide recognition by Mpro.

      Thank you for these suggestions toward additional structural analysis. We have added a short description of L529 packing in the S2 pocket to the main text and Figure S3B. We have also added a short description of F533 packing in the S3’ pocket to the main text and Figure S3C.

      Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors have used a combination of enzymatic, crystallographic, and in silico approaches to provide compelling evidence for substrate selectivity of SARS-CoV-2 Mpro for human TRMT1.

      Strengths:

      In my opinion, the authors came close to achieving their intended aim of demonstrating the structural and biochemical basis of Mpro catalysis and cleavage of human TRMT1 protein. The combination of orthogonal approaches is highly commendable.

      We thank the reviewer for their positive assessment of this work!

      Weaknesses:

      It would have been of high scientific impact if the consequences of TRMT1 cleavage by Mpro on cellular metabolism were provided. Furthermore, assays to investigate the effect of inhibition of this Mpro activity on SARS-CoV-2 propagation and infection would have been extremely useful in providing insights into host- SARS-CoV-2 interactions.

      Toward showing some of the consequences of TRMT1 cleavage, in this revised version of the manuscript we have added new data and a new results section (‘Cleavage of TRMT1 results in complete loss of tRNA m2,2G modification activity and reduced tRNA binding in vitro’) showing that cleavage of TRMT1 results in reduced tRNA binding to TRMT1 (Figure 2D) and the complete loss of TRMT1-mediated tRNA modification activity in vitro (Figure 2C). This complements the in-cell data presented by Zhang et al showing that cleavage of TRMT1 in SARS-CoV-2 infected human cells results in the reduction of m2,2G modification levels. We think these data are a strong addition to this paper that broadens the impacts of our reported results more directly into the RNA modifications field.

      In terms of showing the further, downstream biological effects of TRMT1 cleavage and/or the specific impacts of TRMT1 cleavage on SARS-CoV-2 propagation and replication, while we agree this would absolutely heighten the overall impact, we view the main focus of our paper as showing how TRMT1 is recognized and cleaved by Mpro at the structural level and characterizing the biochemistry of the TRMT1-Mpro interaction and the effects of cleavage on TRMT1 tRNA-modifying activity. Zhang et al present some cellular data suggesting that loss of TRMT1 and/or TRMT1 cleavage during infection is actually detrimental to SARS-CoV-2 replication and infectivity. However, a full understanding of how TRMT1-mediated m2,2G modification of tRNA impacts viral translation, whether TRMT1 plays other roles during the viral life cycle, or whether TRMT1 cleavage (even if not important for viral fitness) contributes to cellular phenotypes during infection, will take a significant amount of future cell biology and virology work to unravel. Indeed, our understanding is that characterizing some of the endogenous cleavage targets for the HIV protease and determining the downstream biological effects and impacts on HIV infection took well over a decade. We hope that the biochemical and structural characterization of the Mpro-TRMT1 interaction presented in our paper will provide the necessary fundamental groundwork and impetus for future virology and cellular biochemistry studies to further investigate the biological roles of TRMT1 cleavage by SARS-CoV-2 Mpro.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Please list Mpro alias Nsp5 in the Abstract and Introduction, as this is the nomenclature used in the companion article.

      OK, we have made these changes.

      Reviewer #2 (Recommendations For The Authors):

      In addition to the points mentioned in the public review, this reviewer encourages the authors to address the following points:

      • Citation 14 is important for this work since the authors used multiple structures from that earlier study for comparison. Citation 14 seems outdated since it refers to a preprint that has been published since then in Nat Comm. The authors should cite the peer-reviewed work https://pubmed.ncbi.nlm.nih.gov/35729165/

      Thank you, we have updated this reference.

      • The description of the hydrogen bonds is tedious to read. The authors could instead classify them into two groups. Hydrogen bonds between main chain backbones or hydrogen bonds between side chains. For instance, they mention the contact between Mpro Glu166-TRMT1 Arg528. This can lead to confusion that a salt bridge is formed while these two residues interact only via their main chain backbones. Indeed, the side chain of R528 is exposed to the solvent.

      OK, we have taken this suggestion and tried to simplify and clarify this portion of the text (along with the accompanying structure Figure 3 showing key hydrogen bonds; see below).

      • For Figure 2, please label the residues of the peptide with the TRMT1 numbering. This will help the reader to follow the text while looking at the figure.

      OK we have added the TRMT1 numbering to what is now Figure 3A, and labeled key TRMT1 residues in Figures 3B, C, and D.

      • Fig 2B is important but crowded. The authors could use two panels to show two different views of this interface.

      Thank you for this suggestion, we have split B (now C and D in Figure 3) into two panels, rotated 90 degrees from one another, with each view showing a different subset of TRMT1-Mpro interactions. These updated panels are less crowded, and will hopefully be much clearer to readers.

      • For increased clarity, the authors could color P3´-out in orange and P3´-in teal in Fig 3D.

      OK, we have made this change.

      • Please proofread the method section. There should be a space between values and their units. For example, 20mM HEPES should be 20 mM HEPES.

      Thank you, we have corrected these formatting errors in the methods section of the revised version of the manuscript.

      • The authors did not identify the mechanism for the higher efficiency of nsp4/5 cleavage despite testing several mutants and MD simulations. Did the author consider changes in the network of water molecules that might be identified in the MD simulations?

      We did look at the positioning of waters in nsp4/5 vs nsp8/9 vs TRMT1 MD simulations. In the nsp4/5 simulation we do see a slightly higher density of water molecules positioned at approximately reasonable attack angles for substrate hydrolysis. If we consider water molecules with an attack angle on the scissile amide of 82 – 96 degrees and an attack distance of 4 Å or closer, the probabilities for these conditions in the simulations are: nsp4/5 – 19%, nsp8/9 – 9%, TRMT1 – 6%. More water positioned at reasonable attack positions for nsp4/5 might be consistent with its higher cleavage efficiency, but: (a) these are relatively small differences in water positioning across these 3 Mpro-substrate simulations that would not be enough to clearly explain the large differences in observed kinetics, and (b) hydrolysis happens in the later steps of the catalytic cycle, so to accurately capture this we would likely need to simulate reaction intermediates formed after initial attack of the active site Cys.

      We very much appreciate the reviewer’s enthusiasm in pushing us to understand the mechanistic basis for Mpro-directed cleavage efficiencies, and we would have absolutely loved to figure this out! (As it appears to be a long-standing question in the field!) But as discussed above and in the manuscript, we think that it will take a detailed dissection of different steps in the catalytic cycle to understand where and how this selectivity arises. We will leave it to research groups focused more exclusively on the details of protease biochemistry and simulations of reactive intermediates to take up these significant and long-term challenges!

      • In the PDB deposition, Y154 from chain B should be fixed.

      • In the PDB deposition, some added glycerols seem to conflict. Although this is not important for the biological work discussed in this study, the authors should check if glycerol 403 in chain A and 402, 403 in chain B are properly modeled. Does the density justify placing a glycerol there?

      • In the PDB deposition, there are over 51 RSRZ outliers. The authors should double-check if they cannot fix them with additional refinements. While such outliers in poorly defined linkers are understandable, this is unexpected for well-defined regions in the map.

      We have made a number of updates to our PDB deposition to address the above three points. (1) We have reexamined and tweaked the loop region at Y154 chain B; this region of the structure has relatively poorly defined electron density, but we now have a model where Y154 is no longer a Ramachandran outlier. The PDB model is now free of any Ramachandran outliers. (2) We have reexamined each of the modeled glycerol molecules and removed one of these (GOL 402), which had a weaker fit to the electron density. The remaining two glycerols appear to be well-modeled (omit maps leaving out each glycerol show strong Fo-Fc density that clearly looks like a glycerol in shape, adding each glycerol back into the model decreases Rwork and Rfree, and the refined 2Fo-Fc map fits well to the modeled glycerols). (3) We agree there are a large number of RSRZ outliers in this structure. We have reexamined many of these, and come to the same conclusion as for our original deposition: that most of these result from residues where there is clear enough density for placing the backbone into the map, but very poor density for the sidechain. Modeling different sidechain positions for the RSRZ outliers we reexamined did not appreciably improve the model fit or change their RSRZ outlier status. For example, Y154 in chains A and B remain some of the worst RSRZ outliers; while the density for these loop regions is generally not very good, it is clear that the backbone atoms of Y154 can be modeled into the structure, but there is very very weak density for the sidechain. We tried modeling alternative and/or multiple sidechain conformations for Y154, but this did not significantly reduce the size of the RSRZ outlier. In short, while we could remove some of these residues or truncate the sidechain where the sidechain density is very poor to lower the total number of RSRZ outliers, we think the best model is one where we leave these residues built into the structure and accept the higher number of RSRZ outliers. Importantly, none of the significant RSRZ outliers are key residues of biological interest that would affect our interpretation of the structure and/or TRMT1-Mpro biochemistry.

      We have deposited a new, re-refined PDB model (9DW6) that incorporates these changes and supersedes our old PDB entry (8D35). We have updated the manuscript with the new PDB ID. We thank the reviewer for these suggestions that improved the overall structural model.

      Reviewer #3 (Recommendations For The Authors):

      The crystal structure entry in the PDB should mention the Cys-to-Ala substitution in Mpro.

      Thank you, we have made this change

      Fig 2A and 2B: Can the authors highlight the Gln520-Ala531 peptide bind with a different color, please? It gets lost in panel B.

      Yes, we have made significant revisions to what is now Figure 3, and have highlighted the scissile peptide bond atoms in orange in each of these panels. Thank you for this suggestion, we agree it helps readers to orient themselves within the structure.

      "Importantly, the identified Mpro-targeted residues in human TRMT1 are conserved in the human population (i.e. no missense polymorphisms), showing that human TRMT1 can be recognized and cleaved by SARS-CoV-2 Mpro." Is TRMT1 prone to a high frequency of missense polymorphisms? If so, then this point makes sense. If not, it is not clear if this really informs on any biologically relevant mechanism.

      Given (i) that primate TRMT1 was previously identified under positive selection (i.e. rapid evolution) in an evolutionary screen (Cariou et al PNAS 2022) and (ii) that our study is mostly in vitro, we thought it was important to, first, make sure that this sequence of TRMT1 used in functional assays is not specific to a reference sequence that we tested in vitro, but is actually the sequence of TRMT1 in the human population. Further, we were also looking for whether some variations in the Mpro cleavage site of TRMT1 were possibly present in some humans (could these be linked with severe COVID or susceptibility, for example?).

      Overall, this statement aims to anchor our in vitro results to the TRMT1 sequences actually present in humans. However, we agree this does not inform “biologically relevant mechanism”. We therefore took out the “Importantly” that was probably misleading.

      "TRMT1 engages the Mpro active site in a distinct binding conformation."

      This is reported as an observation with little analysis. What is the structural basis of this conformational difference between the bound peptides? Why are the psi angles different? Is there a steric factor that is different between these peptide chains? This section can be substantially improved in detail from its current state.

      See our related answer to the next comment below.

      "Molecular dynamics simulations suggest kinetic discrimination happens during later steps of Mpro-catalyzed substrate cleavage." This section could have partly addressed my previous comment. It is not clear why there is such a large difference in the psi-angle. With access to several peptide-bound structures, the authors should derive and provide insights into the underlying fundamental principles. After all, this is a major point of discovery in their investigation.

      We agree that it is not entirely clear why TRMT1 seems to favor the P3’-in conformation when binding to Mpro. The only other known peptide-bound structure that adopts a similar P2’ psi angle is nsp6/7, but there are not clear sequence, steric, or interaction features that distinguish TRMT1 and nsp6/7 from the other 6 peptide-Mpro structures that favor a P3’-out conformation with larger P2’ psi angle. In particular, the identity of the P1’ and P3’ residues, which would probably be expected to have the largest impact on this conformation, have no clear commonality in TRMT1 and nsp6/7 that give hints about why these adopt this unique conformation. As we describe in the discussion section of the manuscript, and has been observed by many other studies of Mpro, the protease active site is very plastic and able to accommodate a diverse range of sequences surrounding the invariant P1 Gln. Furthermore, while the crystal structures of TRMT1 and other nsp cleavage sequences bound to Mpro show a single peptide conformation in the active site, our MD simulations suggest that both P3’-in and P3’-out type conformations are present in solution for TRMT1, nsp4/5, and nsp8/9, just with different populations. It is very likely that there is a delicate energetic balance between these conformations that may depend subtly on multiple sequence features of the peptide and how they interact with each other and the flexible Mpro active site. As with our replies to questions from Reviewer 2 above about deciphering the underlying principles that connect peptide sequence to cleavage efficiency, we expect that dissecting the detailed links between sequence and binding conformation will be a long-term challenge for mechanistic and biocomputational groups focused on viral protease enzymes; systematic mutation of all residues in the cleavage sequence to multiple different amino acid identities followed by structure determination either experimentally and/or computationally will likely be required to uncover the key sequence or steric properties and interactions that underly and drive favored peptide binding conformations.

      To highlight these questions as significant and difficult future challenges toward understanding the fundamental principles underlying SARS-CoV Mpro proteolysis, we have added an additional paragraph (second from the last paragraph) in the discussion section.

      This work can be taken to a whole new level if the authors were to provide insights into how TRMT1 degradation by Mpro affects host cell biology and how the inhibition of this activity affects CoV biology.

      We certainly agree that showing the biological effects of TRMT1 degradation on host cell biology and/or viral biology could raise the impact of this work. But as discussed in more detail above in our response to the weakness listed in Reviewer 3’s public review, we see the main focus of this work as showing the biochemical and structural basis for TRMT1 recognition and cleavage by SARS-CoV-2 Mpro, and directly showing the immediate effects of this cleavage on the TRMT1-tRNA interaction and modification activity. As was the case with other viral proteases, like the HIV-1 protease, understanding the potentially diverse and nuanced downstream biological effects of host protein cleavage and its impacts on cellular phenotypes or viral fitness could take many years of careful cell biology and virology work. We hope that our paper provides the key first steps to viral biology labs taking on this significant but important challenge for TRMT1!

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This work investigated the role of CXXC-finger protein 1 (CXXC1) in regulatory T cells. CXXC1-bound genomic regions largely overlap with Foxp3-bound regions and regions with H3K4me3 histone modifications in Treg cells. CXXC1 and Foxp3 interact with each other, as shown by co-immunoprecipitation. Mice with Treg-specific CXXC1 knockout (KO) succumb to lymphoproliferative diseases between 3 to 4 weeks of age, similar to Foxp3 KO mice. Although the immune suppression function of CXXC1 KO Treg is comparable to WT Treg in an in vitro assay, these KO Tregs failed to suppress autoimmune diseases such as EAE and colitis in Treg transfer models in vivo. This is partly due to the diminished survival of the KO Tregs after transfer. CXXC1 KO Tregs do not have an altered DNA methylation pattern; instead, they display weakened H3K4me3 modifications within the broad H3K4me3 domains, which contain a set of Treg signature genes. These results suggest that CXXC1 and Foxp3 collaborate to regulate Treg homeostasis and function by promoting Treg signature gene expression through maintaining H3K4me3 modification.

      Strengths:

      Epigenetic regulation of Treg cells has been a constantly evolving area of research. The current study revealed CXXC1 as a previously unidentified epigenetic regulator of Tregs. The strong phenotype of the knockout mouse supports the critical role CXXC1 plays in Treg cells. Mechanistically, the link between CXXC1 and the maintenance of broad H3K4me3 domains is also a novel finding.

      Weaknesses:

      (1) It is not clear why the authors chose to compare H3K4me3 and H3K27me3 enriched genomic regions. There are other histone modifications associated with transcription activation or repression. Please provide justification.

      Thank you for highlighting this important point. We prioritized H3K4me3 and H3K27me3 because they are well-established markers of transcriptional activation and repression, respectively. These modifications provide a robust framework for investigating the dynamic interplay of chromatin states in Treg cells, particularly in regulating the balance between activation and suppression of key genes. While histone acetylation, such as H3K27ac, is linked to enhancer activity and transcriptional elongation, our focus was on promoter-level regulation, where H3K4me3 and H3K27me3 are most relevant. Although other histone modifications could provide additional insights, we chose to focus on these two to maintain clarity and feasibility in our analysis. We are happy to further elaborate on this rationale in the manuscript if necessary.

      (2) It is not clear what separates Clusters 1 and 3 in Figure 1C. It seems they share the same features.

      We apologize for not clarifying these clusters clearly. Cluster 1 and 3 are both H3K4me3 only group, with H3K4me3 enrichment and gene expression levels being higher in Cluster 1. At first, we divided the promoters into four categories because we wanted to try to classify them into four categories: H3K4me3 only, H3K27me3 only, H3K4me3-H3K27me3 co-occupied, and None. However, in actual classification, we could not distinguish H3K4me3-H3K27me3 co-occupied group. Instead, we had two categories of H3K4me3 only, with cluster 1 having a higher enrichment level for H3K4me3 and gene expression levels.

      (3) The claim, "These observations support the hypothesis that FOXP3 primarily functions as an activator by promoting H3K4me3 deposition in Treg cells." (line 344), seems to be a bit of an overstatement. Foxp3 certainly can promote transcription in ways other than promoting H3K3me3 deposition, and it also can repress gene transcription without affecting H3K27me3 deposition. Therefore, it is not justified to claim that promoting H3K4me3 deposition is Foxp3's primary function.

      We appreciate the reviewer’s thoughtful observation regarding our claim about FOXP3’s role in promoting H3K4me3 deposition. We acknowledge that FOXP3 is a multifunctional transcription factor with diverse mechanisms of action, including transcriptional activation independent of H3K4me3 deposition and transcriptional repression that does not necessarily involve H3K27me3 deposition.

      Our intention was not to imply that promoting H3K4me3 deposition is the exclusive or predominant function of FOXP3 but rather to highlight that this mechanism contributes significantly to its role in regulating Treg cell function. We agree that our wording may have overstated this point, and we will revise the text to provide a more nuanced interpretation. Specifically, we will clarify that our observations suggest FOXP3 can facilitate transcriptional activation, in part, by promoting H3K4me3 deposition, but this does not preclude its other regulatory mechanisms.

      (4) For the in vitro suppression assay in Figure S4C, and the Treg transfer EAE and colitis experiments in Figure 4, the Tregs should be isolated from Cxxc1 fl/fl x Foxp3 cre/wt female heterozygous mice instead of Cxxc1 fl/fl x Foxp3 cre/cre (or cre/Y) mice. Tregs from the homozygous KO mice are already activated by the lymphoproliferative environment and could have vastly different gene expression patterns and homeostatic features compared to resting Tregs. Therefore, it's not a fair comparison between these activated KO Tregs and resting WT Tregs.

      Thank you for this insightful comment and for pointing out the potential confounding effects associated with using Treg cells from homozygous Foxp3Cre/Cre (or Cre/Y) Cxxc1fl/fl mice. We agree that using Treg cells from _Foxp3_Cre/+ _Cxxc1_fl/fl (referred to as “het-KO”) and their littermate _Foxp3_Cre/+ _Cxxc1_fl/+ (referred to as “het-WT”) female mice would provide a more balanced comparison, as these Treg cells are less likely to be influenced by the activated lymphoproliferative environment present in homozygous KO mice.

      To address this concern, we will perform additional experiments using Treg cells isolated from _Foxp3_Cre/+ _Cxxc1_fl/fl (“het-KO”) and their littermate _Foxp3_Cre/+ _Cxxc1_fl/+ (“het-WT”) female mice. We will update the manuscript with these new data to provide a more accurate assessment of the impact of CXXC1 deficiency on Treg cell function.

      (5) The manuscript didn't provide a potential mechanism for how CXXC1 strengthens broad H3K4me3-modified genomic regions. The authors should perform Foxp3 ChIP-seq or Cut-n-Taq with WT and Cxxc1 cKO Tregs to determine whether CXXC1 deletion changes Foxp3's binding pattern in Treg cells.

      Thank you for your insightful comments and valuable suggestions. We greatly appreciate your recommendation to explore the potential mechanism by which CXXC1 enhances broad H3K4me3-modified genomic regions.

      In response, we plan to conduct CUT&Tag experiments for Foxp3 in both WT and Cxxc1 cKO Treg cells.

      Reviewer #2 (Public review):

      FOXP3 has been known to form diverse complexes with different transcription factors and enzymes responsible for epigenetic modifications, but how extracellular signals timely regulate FOXP3 complex dynamics remains to be fully understood. Histone H3K4 tri-methylation (H3K4me3) and CXXC finger protein 1 (CXXC1), which is required to regulate H3K4me3, also remain to be fully investigated in Treg cells. Here, Meng et al. performed a comprehensive analysis of H3K4me3 CUT&Tag assay on Treg cells and a comparison of the dataset with the FOXP3 ChIP-seq dataset revealed that FOXP3 could facilitate the regulation of target genes by promoting H3K4me3 deposition.

      Moreover, CXXC1-FOXP3 interaction is required for this regulation. They found that specific knockdown of Cxxc1 in Treg leads to spontaneous severe multi-organ inflammation in mice and that Cxxc1-deficient Treg exhibits enhanced activation and impaired suppression activity. In addition, they have also found that CXXC1 shares several binding sites with FOXP3 especially on Treg signature gene loci, which are necessary for maintaining homeostasis and identity of Treg cells.

      The findings of the current study are pretty intriguing, and it would be great if the authors could fully address the following comments to support these interesting findings.

      Major points:

      (1) There is insufficient evidence in the first part of the Results to support the conclusion that "FOXP3 functions as an activator by promoting H3K4Me3 deposition in Treg cells". The authors should compare the results for H3K4Me3 in FOXP3-negative conventional T cells to demonstrate that at these promoter loci, FOXP3 promotes H3K4Me3 deposition.

      We appreciate the reviewer’s critical observation regarding our claim about FOXP3’s role in promoting H3K4me3 deposition. We acknowledge that FOXP3 is a multifunctional transcription factor with diverse mechanisms of action, including transcriptional activation independent of H3K4me3 deposition and transcriptional repression that does not necessarily involve H3K27me3 deposition.

      Our intention was not to imply that promoting H3K4me3 deposition is the exclusive or predominant function of FOXP3 but rather to highlight that this mechanism contributes significantly to its role in regulating Treg cell function. We agree that our wording may have overstated this point, and we will revise the text to provide a more nuanced interpretation. Specifically, we will clarify that our observations suggest FOXP3 can facilitate transcriptional activation, in part, by promoting H3K4me3 deposition, but this does not preclude its other regulatory mechanisms.

      We will compare H3K4me3 levels at the promoter loci of interest between FOXP3-negative conventional T cells and FOXP3-positive regulatory T cells. This comparison will help elucidate whether FOXP3 directly promotes H3K4me3 deposition at these loci.

      (2) In Figure 3 F&G, the activation status and IFNγ production should be analyzed in Treg cells and Tconv cells separately rather than in total CD4+ T cells. Moreover, are there changes in autoantibodies and IgG and IgE levels in the serum of cKO mice?

      We appreciate the reviewer’s constructive feedback on the analyses presented in Figures 3F and 3G and the additional suggestion to investigate autoantibodies and serum immunoglobulin levels.

      Regarding Figures 3F and 3G, we agree that separating Treg cells and Tconv cells for analysis of activation status and IFN-γ production would provide a more precise understanding of the cellular dynamics in Cxxc1 cKO mice.

      To address this, we will reanalyze the data to examine Treg and Tconv cells independently and include these results in the revised manuscript.

      As for the changes in autoantibodies and serum IgG and IgE levels, we acknowledge that these parameters are important indicators of systemic immune dysregulation.

      We will now measure serum autoantibodies and immunoglobulin levels in Cxxc1 cKO mice and WT controls.

      (3) Why did Cxxc1-deficient Treg cells not show impaired suppression than WT Treg during in vitro suppression assay, despite the reduced expression of Treg cell suppression assay -associated markers at the transcriptional level demonstrated in both scRNA-seq and bulk RNA-seq?

      Thank you for your thoughtful question. We appreciate your interest in understanding the apparent discrepancy between the reduced expression of Treg-associated suppression markers at the transcriptional level and the lack of impaired suppression observed in the in vitro suppression assay.

      There are several potential explanations for this observation:

      (1) Functional Redundancy: Treg cell suppression is a complex, multi-faceted process involving various effector mechanisms such as cytokine production (e.g., IL-10, TGF-β), cell-cell contact, and metabolic regulation. Thus, even though the transcriptional signature of suppression-associated genes is altered, compensatory mechanisms may still allow Cxxc1-deficient Treg cells to retain functional suppression capacity under these specific in vitro conditions.

      (2) In Vitro Assay Limitations: The in vitro suppression assay is a simplified model of Treg function that may not capture all the complexities of Treg-mediated suppression in vivo. While we observed altered gene expression in Cxxc1-deficient Treg cells, this might not directly translate to a functional defect under the specific conditions of the assay. In vivo, additional factors such as cytokine milieu, cell-cell interactions, and tissue-specific environments may be required for full suppression, which could be missing in the in vitro assay.

      (4) Is there a disease in which Cxxc1 is expressed at low levels or absent in Treg cells? Is the same immunodeficiency phenotype present in patients as in mice?

      Thank you for your insightful question regarding the role of CXXC1 in Treg cells and its potential link to human disease. To our knowledge, no specific human disease has been identified where CXXC1 is expressed at low levels or absent specifically in Treg cells. There is currently no direct evidence of an immunodeficiency phenotype in human patients that parallels the one observed in Cxxc1-deficient mice.

      Reviewer #3 (Public review):

      In the report entitled "CXXC-finger protein 1 associates with FOXP3 to stabilize homeostasis and suppressive functions of regulatory T cells", the authors demonstrated that Cxxc1-deletion in Treg cells leads to the development of severe inflammatory disease with impaired suppressive function. Mechanistically, CXXC1 interacts with Foxp3 and regulates the expression of key Treg signature genes by modulating H3K4me3 deposition. Their findings are interesting and significant. However, there are several concerns regarding their analysis and conclusions.

      Major concerns:

      (1) Despite cKO mice showing an increase in Treg cells in the lymph nodes and Cxxc1-deficient Treg cells having normal suppressive function, the majority of cKO mice died within a month. What causes cKO mice to die from severe inflammation?

      Considering the results of Figures 4 and 5, a decrease in Treg cell population due to their reduced proliferative capacity may be one of the causes. It would be informative to analyze the population of tissue Treg cells.

      We thank the reviewer for this insightful comment and acknowledge the importance of understanding the causes of severe inflammation and early mortality in cKO mice. Based on our data and previous studies, we propose the following explanations:

      (1) Reduced Treg Proliferative Capacity: As shown in Figure 5I, the decreased proportion of FOXP3+Ki67+ Treg cells in cKO mice likely reflects impaired proliferative capacity, which may limit the expansion of functional Treg cells in response to inflammatory cues, particularly in peripheral tissues where active suppression is required.

      (2) Altered Treg Function and Activation: Cxxc1-deficient Treg cells exhibit increased expression of activation markers (Il2ra, Cd69) and pro-inflammatory genes (Ifng, Tbx21). This suggests a functional dysregulation that may impair their ability to suppress inflammation effectively, despite their presence in lymphoid organs.

      (3) Tissue Treg Populations: Although our study focuses on lymph node-resident Treg cells, tissue-resident Treg cells play a crucial role in maintaining local immune homeostasis. It is plausible that Cxxc1 deficiency compromises the accumulation or functionality of tissue Treg cells, contributing to uncontrolled inflammation in non-lymphoid organs. Unfortunately, we currently lack data on tissue Treg populations, which limits our ability to directly address this hypothesis.

      Regarding the suggestion to analyze tissue Treg populations, we agree that this would be an important next step in understanding the cause of the severe inflammation and early mortality in Cxxc1-deficient mice.

      We plan to perform detailed analyses of Treg cell populations in various tissues, including the gut, lung, and liver, to determine if there are specific defects in tissue-resident Treg cells that could contribute to the observed phenotype.

      (2) In Figure 5B, scRNA-seq analysis indicated that Mki67+ Treg subset are comparable between WT and Cxxc1-deficient Treg cells. On the other hand, FACS analysis demonstrated that Cxxc1-deficient Treg shows less Ki-67 expression compared to WT in Figure 5I. The authors should explain this discrepancy.

      Thank you for pointing out the apparent discrepancy between the scRNA-seq and FACS analyses regarding Ki-67 expression in Cxxc1-deficient Treg cells.

      In Figure 5B, the scRNA-seq analysis identified the Mki67+ Treg subset as comparable between WT and Cxxc1-deficient Treg cells. This finding reflects the overall proportion of cells expressing Mki67 transcripts within the Treg population. In contrast, the FACS analysis in Figure 5I specifically measures Ki-67 protein levels, revealing reduced expression in Cxxc1-deficient Treg cells compared to WT.

      To address this discrepancy more comprehensively, we will further analyze the scRNA-seq data to directly compare Mki67 mRNA expression levels between WT and Cxxc1-deficient Treg cells.

      In addition, the authors concluded on line 441 that CXXC1 plays a crucial role in maintaining Treg cell stability. However, there appears to be no data on Treg stability. Which data represent the Treg stability?

      We appreciate the reviewer’s observation and recognize that our wording may have been overly conclusive. Our data primarily highlight the impact of Cxxc1 deficiency on Treg cell homeostasis and transcriptional regulation, rather than providing direct evidence for Treg cell stability. Specifically, the downregulation of Treg-specific suppressive genes (Nt5e, Il10, Pdcd1) and the upregulation of pro-inflammatory markers (Gzmb, Ifng, Tbx21) indicate a shift in functional states. While these findings may suggest an indirect disruption in the maintenance of suppressive phenotypes, they do not constitute a direct measure of Treg cell stability.

      To address the reviewer’s concern, we will revise our conclusion to more accurately state that our data support a role for CXXC1 in maintaining Treg cell homeostasis and functional balance, without overextending claims about Treg cell stability. Thank you for bringing this to our attention, as it will help us improve the clarity and precision of our manuscript.

      (3) The authors found that Cxxc1-deficient Treg cells exhibit weaker H3K4me3 signals compared to WT in Figure 7. This result suggests that Cxxc1 regulates H3K4me3 modification via H3K4 methyltransferases in Treg cells. The authors should clarify which H3K4 methyltransferases contribute to the modulation of H3K4me3 deposition by Cxxc1 in Treg cells.

      Thank you for pointing out the need to clarify the role of H3K4 methyltransferases in the modulation of H3K4me3 deposition by CXXC1 in Treg cells.

      In our study, we found that Cxxc1-deficient Treg cells exhibit reduced H3K4me3 levels, as shown in Figure 7. CXXC1 has been previously reported to function as a non-catalytic component of the Set1/COMPASS complex, which contains H3K4 methyltransferases such as SETD1A and SETD1B. These methyltransferases are the primary enzymes responsible for H3K4 trimethylation.

      References:

      (1) Lee J.H., Skalnik D.G. CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J. Biol. Chem. 2005; 280:41725–41731.

      (2). J. P. Thomson, P. J. Skene, J. Selfridge, T. Clouaire, J. Guy, S. Webb, A. R. W. Kerr, A. Deaton, R. Andrews, K. D. James, D. J. Turner, R. Illingworth, A. Bird, CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464, 1082–1086 (2010).

      (3) Shilatifard, A. 2012. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem. 81:65–95.

      (4) Brown D.A., Di Cerbo V., Feldmann A., Ahn J., Ito S., Blackledge N.P., Nakayama M., McClellan M., Dimitrova E., Turberfield A.H. et al. The SET1 complex selects actively transcribed target genes via multivalent interaction with CpG Island chromatin. Cell Rep. 2017; 20:2313–2327.

      Furthermore, it would be important to investigate whether Cxxc1-deletion alters Foxp3 binding to target genes.

      Thank you for this important suggestion regarding the impact of Cxxc1 deletion on FOXP3 binding to target genes. We agree that understanding whether Cxxc1 deficiency affects FOXP3’s ability to bind to its target genes would provide valuable insight into the regulatory role of CXXC1 in Treg cell function.

      To address this, we plan to perform CUT&Tag experiments to assess FOXP3 binding profiles in Cxxc1-deficient versus wild-type Treg cells. These experiments will allow us to determine if Cxxc1 loss disrupts FOXP3’s occupancy at key regulatory sites, which may contribute to the observed functional impairments in Treg cells.

      (4) In Figure 7, the authors concluded that CXXC1 promotes Treg cell homeostasis and function by preserving the H3K4me3 modification since Cxxc1-deficient Treg cells show lower H3K4me3 densities at the key Treg signature genes. Are these Cxxc1-deficient Treg cells derived from mosaic mice? If Cxxc1-deficient Treg cells are derived from cKO mice, the gene expression and H3K4me3 modification status are inconsistent because scRNA-seq analysis indicated that expression of these Treg signature genes was increased in Cxxc1-deficient Treg cells compared to WT (Figure 5F and G).

      Thank you for the insightful comment. To clarify, the Cxxc1-deficient Treg cells analyzed for H3K4me3 modification in Figure 7 were indeed derived from Cxxc1 conditional knockout (cKO) mice, not mosaic mice.

      The scRNA-seq analysis presented in Figures 5F and G revealed an upregulation of Treg signature genes in Cxxc1-deficient Treg cells. This finding suggests that the loss of Cxxc1 drives these cells toward a pro-inflammatory, activated state, underscoring the pivotal role of CXXC1 in maintaining Treg cell homeostasis and suppressive function.

      Regarding the apparent discrepancy between the reduced H3K4me3 levels and the increased expression of these genes, it is important to note that H3K4me3 primarily functions as an epigenetic mark that facilitates chromatin accessibility and transcriptional regulation, acting as an upstream modulator of gene expression. However, gene expression levels are also influenced by downstream compensatory mechanisms and complex inflammatory environments. In this context, the reduction in H3K4me3 likely reflects the direct role of CXXC1 in epigenetic regulation, whereas the upregulation of gene expression in Cxxc1-deficient Treg cells may result as a side effect of the inflammatory environment.

      To further substantiate our findings, we performed RNA-seq analysis on Treg cells from Foxp3_Cre/+ _Cxxc1_fl/fl (“het-KO”) and their littermate _Foxp3_Cre/+ _Cxxc1_fl/+ (“het-WT”) female mice, as presented in Figure S6C. This analysis revealed a notable reduction in the expression of key Treg signature genes, including _Icos, Ctla4, Tnfrsf18, and Nt5e, in het-KO Treg cells. Importantly, the observed changes in gene expression were consistent with the altered H3K4me3 modification status, further supporting the epigenetic regulatory role of CXXC1. These results further emphasize the critical role of CXXC1 promotes Treg cell homeostasis and function by preserving the H3K4me3 modification.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      The manuscript by Rowell et al aims to identify differences in TCR recombination and selection between foetal and adult thymus in mice. Authors sequenced the unpaired bulk TCR repertoire in foetal and adult mice thymi and studied both TCRB and TCRa characteristics in the double positive (DP, CD4+CD8+) and single positive (SP4 CD4+CD8CD3+ and SP8 CD4-CD8+CD3+) populations. They identified age-related differences in TCRa and TCRB segment usage, including a preferential bias toward 3'TRAV and 5' TRAJ rearrangements in foetal cells compared to adults who had a larger perveance for 5'TRAV segments. By depleting the thymocyte population in adult thymi using hydrocortisone, the authors demonstrated that the repertoire became more foetal like, they therefore argue that the preferential 5'TRAV rearrangements in adults may be resulting from prolonged/progressive TCRa rearrangements in the adult thymocytes. In line with previous studies, Authors demonstrate that the foetal TCR repertoire was less diverse, less evenly distributed and had fewer non-template insertions while containing more clonal expansions. In addition, the authors claim that changes in V-J usage and CDR1 and CDR2 in the DP vs SP repertoires indicated that positive selection of foetal thymocytes are less dependent on interactions with the MHC. 

      Strengths: 

      Overall, the manuscript provides an extensive analysis of the foetal and adult TCR repertoire in the thymus, resulting in new insights in T cell development in foetal and adult thymi. 

      Weaknesses: 

      Three major concerns arise:

      (1) the authors have analysed TCR repertoires of only 4 foetal and 4 adult mice, considering the high spread the study may have been underpowered. 

      Given the concerns of the reviewer we have sequenced more libraries and added more data to include repertoires from 7 embryos and 6 young adults (biological replicates from different sorts). We believe that including more replicates has indeed strengthened our study. 

      Our experimental approach was to sequence TCR transcripts, and in studies using RNA-sequencing of inbred mice, often only 3 individuals (biological replicates) are sequenced.

      Our study sequenced from 7 foetal thymuses (generating TCRα and TCRβ repertoires from 4 FACS-sorted cell populations); 6 adult thymuses (generating TCRα and TCRβ repertoires from 4 FACS-sorted cell populations); and 5 adult thymuses from hydrocortisone-treated mice (generating TCRα and TCRβ repertoires from FACS-sorted CD3lo and CD3hi DP populations). We thus analysed 124 distinct repertoires from different populations and libraries, and many tens of thousands of unique sequences.  

      (2) Gating strategies are missing and 

      We have included gating strategies for cell-sorting as SFig7 and SFig8.

      (3) the manuscript is very technical and clearly aimed for a highly specialised audience with expertise in both thymocyte development and TCR analysis. Authors are recommended to provide schematics of the TCR rearrangements/their findings and include a summary conclusions/implications of their findings at the end of each results section rather than waiting till the discussion. This will help the reader to interpret their findings while reading the results. 

      We have modified the manuscript to include a more general introductory paragraph (page 3) to introduce the reader to the topic and we have included brief summaries of the findings at the end of each result section (pages 7,9,10,12,13,15).

      Reviewer #2 (Public Review): 

      Summary: 

      The authors comprehensively assess differences in the TCRB and TCRA repertoires in the fetal and adult mouse thymus by deep sequencing of sorted cell populations. For TCRB and

      TCRA they observed biased gene segment usage and less diversity in fetal thymocytes. The TCRB repertoire was less evenly distributed and displayed more evidence of clonal expansions and repertoire sharing among individuals in fetal thymocytes. In both fetal and adult thymocytes they show skewing of V segment (CDR1-2) repertoires in CD4 and CD8 as compared to DP thymocytes, which they attribute to MHC-I vs MHC-II restriction during positive selection. However the authors assess these effects to be weaker in fetal thymocytes, suggesting weaker MHC-restriction. They conclude that in multiple respects fetal repertoires are distinct from and more innate-like than adult. 

      Strengths: 

      The analyses of the F18.5 and adult thymic repertoires are comprehensive with respect to the cell populations analyzed and the diversity of approaches used to characterize the repertoires. Because repertoires were analyzed in pre- and post-selection thymocyte subsets, the data offer the potential to assess repertoire selection at different developmental stages. The analysis of repertoire selection in fetal thymocytes may be unique. 

      Weaknesses: 

      (1) Problematic experimental design and some lack of familiarity with prior work have resulted in highly problematic interpretations of the data, particularly for TCRA repertoire development. 

      The authors note fetal but not adult thymocytes to be biased towards usage of 3' V segments and 5'J segments. It should be noted that these basic observations were made 20 years ago using PCR approaches (Pasqual et al., J.Exp.Med. 196:1163 (2002)), and even earlier by others.

      We have cited this manuscript (Introduction, page 5) which used PCR of genomic DNA to investigate some TCRα VJ rearrangements in foetal and adult thymus. In contrast, our study uses next generation sequencing of transcripts to investigate all possible combinations of TCRα and TCRβ VJ combinations in different sorted thymocyte populations ex vivo. The greater sensitivity of this more modern technology has thus enabled us to detect many more TCRαVJ rearrangements than the 2002 study, and to conclude on basis of stringent statistical testing that the foetal repertoire is enriched for 3’V to 5’J combinations (Fig. 4). 

      The authors also note that in fetal thymus this bias persists after positive selection, and it can be reproduced in adults during recovery from hydrocortisone treatment. The authors conclude that there are fewer rounds of sequential TCRA rearrangements in the fetal thymus, perhaps due to less time spent in the DP compartment in fetus versus adult. However, the repertoire difference noted by the authors does not require such an explanation. What the authors are analyzing in the fetus is the leading edge of a synchronous wave of TCRA rearrangements, whereas what they are analyzing in adults is the unsynchronized steady state distribution. It is certainly true, as has been shown previously, that the earliest TCRA rearrangements use 3' TRAV and 5'TRAJ segments. But analysis of adult thymocytes has shown that the progression from use of 3' TRAV and 5' TRAJ to use of 5' TRAV and 3' TRAJ takes several days (Carico et al., Cell Rep. 19:2157 (2017)). The same kinetics, imposed on fetal development, would put development of a more complete TCRA repertoire at or shortly after birth. In fact, Pasqual showed exactly this type of progression from F18 through D1 after birth, and could reproduce the progression by placing F16 thymic lobes in FTOC. It is not appropriate to compare a single snapshot of a synchronized process in early fetal thymocytes to the unsynchronized steady state situation in adults. In fact, the authors' own data support this contention, because when they synchronize adult thymocytes by using hydroxycortisone, they can replicate the fetal distribution. Along these lines, the fact that positive selection of fetal thymocytes using 3' TRAV and 5' TRAJ segments occurs within 2 days of thymocyte entry into the DP compartment does not mean that DP development in the fetus is intrinsically rapid and restricted to 2 days. It simply means that thymocytes bearing an early rearranging TCR can be positively selected shortly after TCR expression. The expectation would be that those DP thymocytes that had not undergone early positive selection using a 3' TRAV and a 5' TRAJ would remain longer in the DP compartment and continue the progression of TCRA rearrangements, with the potential for selection several days later using more 5'TRAV and 3'TRAJ. 

      We agree with this summary provided by the reviewer which corresponds closely to the points we made ourselves in the manuscript. Indeed, we discuss the synchronization and kinetics of first wave of T-cell development in Results page 13 and Discussion page 17, which was the rationale for the hydrocortisone experiment.  We have also discussed findings from Carico et al 2017 in this context (see pages 13, 16, 17).  

      (2) The authors note 3' V and 5'J biases for TCRB in fetal thymocytes. The previously outlined concerns about interpreting TCRA repertoire development do not directly apply here. But it would be appropriate to note that by deep sequencing, Sethna (PNAS 114:2253 (2017)) identified skewed usage of some of the same TRBV gene segments in fetal versus adult.  It should also be noted that Sethna did not detect significantly skewed usage of TRBJ  segments. Regardless, one might question whether the skewed usage of TRBJ segments detected here should be characterized as relating to chromosomal location. There are two logical ways one can think about chromosomal location of TRBJ segments - one being TRBJ1 cluster vs TRBJ2 cluster, the other being 5' to 3' within each cluster. The variation reported here does not obviously fit either pattern. Is there a statistically significant difference in aggregate use of the two clusters? There is certainly no clear pattern of use 5' to 3' across each cluster. 

      We have included a statistical comparison of the aggregate TRBJ use between the J1 cluster and the J2 cluster (see SFig5) and Results page 9. 

      (3) The authors show that biases in TCRA and TCRB V and J gene usage between fetal and adult thymocytes are mostly conserved between pre- and post-selection thymocytes (Fig 2). In striking contrast, TCRA and TCRB combinatorial repertoires show strong biases preselection that are largely erased in post-selection thymocytes (Fig 3). This apparent discrepancy is not addressed, but interpretation is challenging. 

      I think the reviewer is referring to heatmaps for individual gene segment usage shown in Figure 2 in comparison to combinatorial usage shown in Figure 4. There is not a discrepancy in the data, but rather the differences between these two figures lie in the way in which the comparisons are made and visualised.  The heatmaps in Figure 2A-D show mean proportional usage of each individual gene segment for each cell type in the two life stages, clustered by Euclidian distance. This visualisation clearly shows bias in foetal 3’ TRAV usage and 5’TRAJ usage (looking at areas of red, which have higher usage), with less pronounced enrichment for TRBV and TRBJ.  The heatmaps also show differences in intensity between different cell populations in each life-stage. 

      In contrast, in Figure 4 the tiles show combinations with statistically significant (P<0.05) differences in mean counts for each VJ combination in each cell type between 7 foetal and 6 adult repertoires by Student’s t-test, after correcting for False discovery rate (FDR) due to multiple combinations.  It is the case, that there are fewer significant differences in proportional combinatorial VxJ use between foetal and adult repertoires after selection. We find this an interesting finding and have expanded our discussion of this aspect of the data (page 10).  More than half of the significant differences persist after repertoire selection, and the reduction in each individual SP population, of course in part reflects the lineage divergence.

      (4) The observation that there is a higher proportion of nonproductive TCRB rearrangements in fetal thymus compared to adult is challenging to interpret, given that the results are based upon RNA sequencing so are unlikely to reflect the ratio in genomic DNA due to processes like NMD.

      We have added two sentences to explain that transcripts of non-productive rearrangements are eliminated by nonsense-mediated decay (NMD), but some non-productive transcripts are detected in many studies of TCR repertoire sequencing, and we have cited three studies from different groups that document this (see Results, page 10-11). We have not commented on how the increase in non-productive TCR rearrangements in the foetal populations (in comparison to adult) relates to rearrangements in genomic DNA or NMD.   We have likewise not commented on the possible significance or biological role of nonproductive TCR transcripts, but simply reported our findings.

      (5) An intriguing and paradoxical finding is that fetal DP, CD4 and CD8 thymocytes all display greater sharing of TCRB CDR3 sequences among individuals than do adults (Fig 5DE), whereas DP and CD8 thymocytes are shown to display greater CDR3 amino acid triplet motif sharing in adults (with a similar trend in CD4). 

      As foetal DP, CD4SP and CD8SP TCRbeta repertoires have fewer non-template insertions and lower means CDR3 length, they are expected to share more CDR3 repertoires than their adult counterparts.  However, in the case of CDR3 amino acid triplet motifs (k-mers) what is being analysed is the sharing of each possible individual k-mer. If k-mers are shared more in the adult for some populations, but CDR3 repertoires are shared more in the foetus, we think it means that some k-mers appear in many different CDR3 sequences in the adult, so that they are over-represented in multiple different CDR3s (presumably due to selection processes, although we agree that this is just an assumption).  

      The authors attribute high amino acid triplet sharing to the result of selection of recurrent motifs by contact with pMHC during positive selection. But this interpretation seems highly problematic because the difference between fetal and adult thymocytes is dramatic even in unfractionated DP thymocytes, the vast majority of which have not yet undergone positive selection. How then to explain the differences in CDR3 sharing visualized by the different approaches? 

      The TCRβ repertoire has been selected in the adult DP population through the process of β-selection, which is believed to involve immune synapse formation and MHC-interactions (Allam et al 2021,10.1083/jcb.201908108). We have now included this reference in the introduction to make this clear (page 4). However, we agree with the reviewer’s comments that it is challenging to explain the k-mer analysis and that we have not been able to actually show that increased k-mer sharing in the adult is a direct consequence of increased positive selection: it was our interpretation of this seemingly paradoxical finding.  For clarity, we have therefore removed the k-mer analyses from the manuscript.

      (6) The authors conclude that there is less MHC restriction in fetal thymocytes, based on measures of repertoire divergence from DP to CD4 and CD8 populations (Fig. 6). But the authors point to no evidence of this in analysis of TRBV usage, either by PC or heatmap analyses (A,B,D). The argument seems to rest on PC analysis of TRAV usage (Fig S6), despite the fact that dramatic differences in the SP4 and SP8 repertoires are readily apparent in the fetal thymocyte heatmaps. The data do not appear to be robust enough to provide strong support for the authors' conclusion. 

      We have written the text very carefully so as not to make the claim too strong, stating in the abstract: “In foetus we identified less influence of MHC-restriction on α-chain and β-chain combinatorial VxJ usage and CDR1xCDR2 (V region) usage in SP compared to adult, indicating weaker impact of MHC-restriction on the foetal TCR repertoire.” We are not saying that MHC-restriction does not impact VJ gene usage in foetal repertoires, but rather that it has less influence (particularly when compared to life-stage).  Evidence for this comes from:  [1] Heatmaps in Fig2A-D which show that all repertoires cluster first by life-stage ahead of cell type; [2] Fig3A and B: PCA of adult and foetal TCRβ VXJ combinations: All repertoires cluster by life-stage on PC1.  PC2 separates adult repertoires by cell type (adult SP8 are positive on PC2 while adult SP4 are negative on PC2, and DP cells are between them) but for foetal repertoires the SP8 and SP4 are highly dispersed with some SP4 cells falling on positive side of PC2.  Only foetal DP repertoires cluster tightly. [3] Fig6A-C: PCA of β−chain CDR1xCDR2 (corresponding to Vβ gene segment usage) again shows the same pattern.  Adult repertoires separate by cell type on PC2, (SP8 positive on PC2, SP4 negative on PC2, with DP in between), but foetal SP8 repertoires are much more dispersed.  [5] SFig6J-K: PCA of α−chain CDR1xCDR2 (Vα usage) frequency distributions: adult repertoires cluster together and are separated by cell type on PC2 (SP4 positive, SP8 negative), but foetal populations are highly dispersed and fail to cluster by cell type on either axis. [6] We have additionally added new PCA analyses to explore differences in MHC-restriction between foetal and adult SP populations.  This is shown in the new Figure 7. We reasoned that in a PCA that included foetal and adult repertoires together, the foetal repertoires might not segregate by SP cell type (MHC-restriction) because of their overall bias towards particular VJ combinations, which would mean that effectively the PCA would be imposing adult MHC restriction on the foetal repertoires.  We therefore carried out PCA in which we analysed the adult repertoires separately from the foetal repertoires.  As expected for adult repertoires, PCA separated SP4 repertoires from SP8 repertoires on PC1 in each comparison (β-chain VxJ (Fig. 7B), α-chain VxJ (Fig. 7F), β-chain CDR1xCDR2 (V region) (Fig. 7H) and α-chain CDR1xCDR2 (V region) (Fig. 7L)). In contrast, for foetal TCRα repertoires (α-chain VxJ and α-chain CDR1xCDR2 (V region)), PCA failed to separate SP4 from SP8 repertoires on PC1 or PC2, so we did not detect impact of MHC-restriction on foetal TCRβ repertoires (Fig. 7E and K).  For foetal TCRβ repertoires, PCA separated SP4 β-chain VxJ from SP8 on PC2, accounting for only 11.1% of variance (Fig. 7A) (in contrast to the 44.2% of variance accounted for by MHC-restriction in adult β-chain VxJ PCA (Fig. 7B)). Thus, in adult repertoires ~4-fold more of the variance in β-chain VxJ usage can be accounted for by MHC-restriction than in foetal repertoires. PCA of foetal β-chain CDR1xCDR2 (V region) separated SP4 from SP8 on PC1, accounting for 28.8% of variance, whereas in PCA of adult β-chain CDR1xCDR2, MHCrestriction accounted for 56.1% (>2-foldmore than in foetus).  Thus, even when we  considered only V-region usage alone, we detected a stronger influence of MHC-restriction on the TCRβ repertoire in adult compared to foetal thymus.  

      Reviewer #3 (Public Review): 

      Summary:

      This study provides a comparison of TCR gene segment usage between foetal and adult thymus.

      Strengths:

      Interesting computational analyses was performed to find interesting differences in TCR gene usage within unpaired TCRa and TCRb chains between foetal and adult thymus.  

      Weaknesses:

      This study was significantly lacking insight and interpretation into what the data analysed actually means for the biology. The dataset discussed in the paper is from only two experiments. One comparing foetal and adult thymi from 4 mice per group and another which involved hydrocortisone treatment. The paper uses TCR sequencing methodology that sequences each TCR alpha and beta chains in an unpaired way, meaning that the true identity of the TCR heterodimer is lost. This also has the added problem of overestimating clonality, and underestimating diversity.

      We have discussed the limitations and benefits of our approach of sequencing TCRβ and TCRα repertoires separately in the Discussion (page 19).  This approach allows the analysis of thousands of sequences from different cell types and different individuals at relatively low cost. We have made no claims in our manuscript about overall diversity or pairing, and given that each chain’s gene locus rearranges at a different time point in development, we believe it is of interest to consider the repertoires individually within this context.

      Limited detail in the methods sections also limits the ability for readers to properly interpret the dataset. What sex of mice were used? Are there any sex differences? What were the animal ethics approvals for the study?

      We have included this information in the Methods (page 19).  Both sexes were used and we found no sex differences, although that was not the focus of our study. All animal experimentation in the UK is carried out under UK Home Office Regulations (following ethical review). This is included in the Methods (page 19).  

      Recommendations for the authors:  

      Reviewer #1 (Recommendations For The Authors): 

      Major points: 

      - Group sizes are very small (4 foetal and 4 adult mice). Considering the spread in TCR analysis (eg fig 1 B-H, Sup figures 2-4), the study is likely underpowered as it often looks like one mouse prevents or supports a statistical difference. Authors should therefore consider increasing the group size. 

      We have sequenced more libraries and included more data, from 7 foetal and 6 young adult animals (biological replicates).  

      - The authors should include a gating strategy for their sorted cells. This is essential to verify the quality of their findings. 

      We have added this to the Methods and SFig7 and SFig8.

      Authors should include a summary sentence at the end of each result section which interprets the main finding. Furthermore, the manuscript would greatly benefit from a schematic figure of their main findings, particularly with regards to the rearrangements and selection differences in foetal and adult thymi. 

      We have added a summary sentence to the end of each results section.

      - Authors should be more careful with their claim that MHC has less of an effect foetal TCR selection. Authors demonstrated that there is a difference in VJ recombination between the foetal and adult TCR repertoire, skewing the foetal TCR repertoire to certain variable and junctional segments. Since both CDR1 and CDR2 are encoded by the variable gene, this is likely to affect their ability to interact with the MHC during positive selection. Have Authors considered whether the selection process is actually a bystander effect of the differences in the rearrangement process? One way to support the authors claim is to demonstrate that mice with an alternative MHC background, have similar foetal/adult gene rearrangements but a different TCR repertoire in the SP populations. 

      Time and resources have prevented us from repeating our experiments in another strain of inbred mice.  However, we note that a previous PCR study that showed 3’TRAV to 5’TRAJ bias in foetal repertoires was carried out in BALB/c mice (Pasqual JEM 2002). We have added this point to the Discussion (page 17). 

      - (supplementary) tables have not been provided. 

      Supplementary Tables were uploaded with the submission.  STables 1 and 2 show antibodies used for cell sorts and STable 3 primers used.

      Moderate points: 

      - The loading plots in Figure 3 onward are visually strong. Authors could consider including an V and J (separate) loading plots for Figure 3 E, F and G to demonstrate preferential V and J usage. 

      We have included additional loading plots in Figure 7 for the new PCA we have added (see Fig. 7C, D,I and J).

      - "the proportion of non-productive rearrangements was higher in the foetal SP8 population than adults (Fig 5A)" Authors should explain how non-productive TCRs end up in SP populations as they need to pass positive and negative selection which both require interactions between the TCR and the MHC. 

      As we used RNA sequencing in our study, we did not comment on how the increase in nonproductive TCRbeta rearrangements in the foetal populations (in comparison to adult) relates to rearrangements in genomic DNA or to nonsense-mediated decay (NMD) that is believed to down-regulate transcripts of non-productively rearranged TCR.  We have not commented on the possible significance or biological role of non-productive TCR transcripts, but simply reported our findings. 

      - Authors have studied CDR3 sequential amino acid triplets (k-mers). However, CDR3 regions are longer than 3 amino acids in length, hence authors should provide 1) an overview/comparison of the identified k-mers in foetal or adult thymocytes 2) explain how different k-mers relate to each other, eg whether they are expressed in the same TCR. Have authors considered using alternative programs to identify CDR3 motifs that are based on the full CDR3amino acid sequence, eg TCRdist provides motifs and indicated which amino acids are germline encoded or inserted. 

      In light of this comment from this reviewer and also comments from Reviewer 2, we have removed the comparison of k-mers from the manuscript.  Please see response to point 5 of Reviewer 2.  

      - The term "innate-like" is confusing as it implies that foetal cells are not antigen specific.

      However, once in the circulation, foetal cells will respond in an antigen-specific manner.

      Hence authors should use another term. 

      We have removed the term “innate-like” from the abstract and the first time we used it in the first paragraph of the Discussion. However, the second time we used the term, we are actually taking it from the manuscript we cited (Beaudin et al 2016) and in this case we left it in. We agree that foetal cells are likely to respond in an antigen-specific manner. 

      - To support their hypothesis in the discussion "However, as TCRd gene segments are nested.... so that 5' TRAV segments are not favoured" can authors confirm that there are indeed less yd T cells in the foetal repertoire? 

      We have removed this section from the discussion, because although it is interesting, it is highly speculative, and the manuscript is already quite complicated to interpret.

      Minor points: 

      - The authors may find the publication by De Greef 2021 PNAS of interest to identify TRBD segments 

      - Authors need to clarify that they mean CDR3-beta in the sentence "The mean predicted CDR3 length.... compared to young adult" 

      We have included new data in the manuscript to show that mean CDR3 length is lower in all foetal populations of beta (Fig5C) and alpha (SFig5C) and clarified which we are referring to in the text. 

      - Authors should bring the section "During TCRb gene rearrangement, these segments.... Initiating the sequence of rearrangements" forward and include a schematic." Forward to figure 2 and provide the reader with a visual schematic of the foetal vs adult recombination events. 

      - Discussion: "The first wave of foetal abT-cells that leave the thymus... tolerant to both self and maternal MHC/antigens". Have Authors considered the alternative hypothesis published by Thomas 2019 in Curr Opin System Biol that the observed bias could potentially provide better protection against childhood pathogens? 

      We have indeed considered this, as stated in the first paragraph of the Discussion “The first wave of foetal αβT-cells that leave the thymus must provide early protection against infection in the neonatal animal”. We have now cited the Thomas 2019 study.

      - Discussion: Authors should rephrase the sentence "The transition from DP to SP cell in the foetus.... From DN3 to SP cell may be slower" as it is unclear what the authors mean. 

      We have rephrased this (see page 17)

      - Discussion "TRAV and TRAJ Array" do authors mean "TRAV and TRAJ area"? 

      We did indeed mean array (as in series of gene segments) but we have changed the wording for clarity (page 14).

      - Methods, Fluorescence activated cell sorting: can authors clarify whether they stained, sorted and sequenced the full thymus and /or specify how many cells were included. Can authors also explain why foetal and adult cells were treated differently (eg the volume of master mix)? 

      - Methods Fluorescence activated cell sorting authors should specify what they mean with "mastermix of either 1:50 (foetal thymus) or 1:100 (adult thymus)". Does this mean all antibodies in the foetal mastermix were 1:50 and all antibodies in the adult master mix were 1:100? If so, why were different concentrations used and why were antibodies not individually titrated before use?  

      We have clarified the methods and antibodies used are listed with clones in supplementary tables.

      Figures: 

      - Several figures did not fit on the page and therefore missed the top or side 

      - Figure 1A: missing a label on the Y axis

      This is visible

      - Figure 2A-D: please indicate the 5' and 3' terminus in each graph. The cell type legend should include two separate colours for the two DP populations. 

      We have added 5’ and 3’ labels.  The two DP populations are clearly labelled.

      - Figure 4: please indicate the 5' and 3' terminus in each graph. 

      We have added 5’ and 3’ labels.   

      - Figure 5C: y axis should read mean CDR3B length (aa), Figure 5D and E: y axis should read Jaccard Index CDR3B, Figure 5 F and G: y axis should read Jaccard index CDR3B k-mers. Same comment for Sup Fig 5 but then CDR3a. 

      We have added these labels for both Figure 5 and Supplementary Figure 6 (was SFig5 previously).

      - Figure 6C top label should read CDR1B x CDR2B with highest contribution 

      We have added this label.

      - Figure 7: please indicate the 5' and 3' terminus in each graph. 

      We have added 5’ and 3’ labels.  This is now Figure 8, as we have added new analyses (new Figure 7).

      - Supplementary Figure 1-4 are missing a colour legend next to the graphs.

      We have added the legends in.  

      Reviewer #2 (Recommendations For The Authors): 

      (1) The authors need to provide better support for the notion that the fetal thymus produces ab T cells with properties and functions that are distinct from adult T cells. There are several  ways they might provide a more meaningful assessment: (1) They could analyze the fetal repertoire at multiple time points. (2) They could compare instead the steady state distributions in early postnatal and adult thymus samples. (3) They could compare the peripheral T cell repertoires in the first week of life versus adult. This last approach would allow them to draw the most impactful conclusion. 

      We appreciate these suggestions.  Sadly, it is beyond our budget for the current manuscript and beyond the scope of our current study that we believe provides interesting new information.

      (2) Fig S2D shows TRBJ1-4 in black lettering meant to indicate no significant difference whereas the figure shows use of this gene segment to be elevated in adult. I believe TRBJ1-4 should be in blue lettering.

      This is now coloured correctly.

      (3) The figure call out on p11 (Fig5I-J) should be H-I.

      This is now corrected.

      (4) Please indicate in the main text that Jaccard analysis in Fig 5 D-E is for TCRB.

      This is now corrected.

      (5) The analysis of usage of TCRB CDR1xCDR2 combinations in Fig6D is said to "reflect the bias observed in their TRBV gene usage (Fig 2C)". Isn't it the case that every TRBV gene presents a distinct CDR1xCDR2 combination, meaning that there is no difference between TRBV usage and TRBV CDR1xCDR2 usage? If so, please make this clearer.

      Yes, this is the case, we have made this clearer in the text.

      Reviewer #3 (Recommendations For The Authors): 

      In general, although there is lots of interesting analyses that can be done with these large datasets, I feel as though the authors did not fully interpret the real meaning and significance of many of these results. Whilst there were some speculation on why a foetal repertoire might be different to those of adults in the discussion sections, the rationale for each individual analyses was not clearly explained. I would suggest that the rationale and a thorough explanation of each analyses be added to the results section, including a finishing sentence on what it means. 

      We have added short summaries to each results section to make the points we are making clearer.

      The authors did not mention how many cells were sorted for from each thymus for sequencing. Was the cell number normalised between each population? As this might have an influence on various downstream measurements of diversity, evenness and clonality, if there is a sampling issue. 

      This is explained in the methods.  We used sampling to allow comparisons between repertoires of different sizes, and this is also explained in the methods.

      The authors should include the cell sorting profiles and example flow cytometry plots, including gating strategies and the post sort purity of each sorted population. 

      We have included sorting strategies in the methods (SFig7 and SFig8).

      I think the manuscript could also be improved if there were some basic characterisation of foetal vs. adult thymus development. How many thymocytes are in a foetal vs adult thymus at the timepoints chosen? 

      I think there were some interesting findings in this paper. Given that overall, the foetal thymus appeared to be less diverse than that of the adult, one question I thought would be interesting to discuss was the overlap between the two repertoires. Is the foetal thymus simply a sub-fraction of the adult repertoire or is it totally distinct with no overlapping sequences? 

      Our analyses indicate that the repertoires are actually different. This is evident in Fig4 and in PCA loading plots shown in Fig, 3C and new Fig. 7C, D, I and J.

      I think that some of the interpretation in the results section may be a bit vague. "When we compaired by thymocyte population, each adult population clustered together, with adult SP4 separating from adult SP8 on PC2 and DP cells scoring in between, suggesting that PC2 might correspond to MHC restriction of the adult populations." - whilst I think I know what the authors mean, I do believe that this could be explained in clearer detail and more explicit. SP4 and SP8 are known to be positively selected in the thymus on distinct MHC class I and MHC class II molecules for example. 

      We have tried to clarify the text describing that PCA and additionally added a new Figure (new Fig. &) to compare the influence of MHC-restriction on the TCR repertoire in foetal and adult thymus.

      In the methods section, the age and sex of mice used were not explained at all. What was used in the experiment? Are there any sex differences? 

      Age and sex of mice is given in the methods.  We have not detected sex differences.

      This is a huge omission from the manuscript. In general, I don't believe the methods section has described the analysis in sufficient detail for replication. All analysis code and data should be publicly accessible and be in a format that allows for the reader to replicate the figures in the paper upon running the code. Perhaps even allowing them to run their own TCR datasets.  Overall, I think the manuscript needs some rewriting to include additional details and deeper interpretation of each individual analyses. 

      Sequencing data files will be made publicly available on UCL Research Data Repository.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors report compound heterozygous deleterious variants in the kinase domains of the non-receptor tyrosine kinases (NRTK) TNK2/ACK1 in familial SLE. They suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis.

      Strengths: 

      The identification of similar mutations in non-receptor tyrosine kinases (NRTKs) in two different families with familial SLE is a significant finding in human disease. Furthermore, the paper provides a detailed analysis of the molecular mechanisms behind the impairment of efferocytosis caused by mutations in ACK1 and BRK.

      Weaknesses: 

      A critical point in this paper is whether the loss of function of ACK1 or BRK contributes to the onset of familial SLE. The authors emphasize that inhibitors of ACK1/BRK worsened IgG deposition in the kidneys in a pristane-induced SLE model, which contributes not to the onset but to the exacerbation of SLE, thus only partially supporting their claim.

      The evidence supporting that the loss of function of ACK1 or BRK contributes to the onset of SLE in the patients from the 2 families mostly relies on the genetic analysis. As the reviewer states, the observation that inhibitors of ACK1/BRK worsened IgG deposition in the kidneys in a pristane-induced SLE model supports the genetic evidence.

      To further address the possible role of ACK1 or BRK variants in the onset of autoimmunity in vivo, we treated wild-type (WT) BALB/cByJ female mice with inhibitors in the absence of pristane.

      The results indicated that mice that had received a weekly injection of ACK1 or BRK inhibitors developed a large array of serum anti-nuclear IgG antibodies, including but not limited to autoantibodies associated with SLE such as anti-histones, anti-chromatin, anti U1-snRNP, anti-SSA, and anti-Ku in comparison to the control group inhibitor treated mice (Revised Fig 3A). However, they did not develop glomerular deposit of IgG after 12 weeks of treatment, in contrast to mice that have received Pristane (Revised Fig. 3B,C, Figure 3-figure supplement 1).

      These additional data suggests that inhibition of ACK1 and BRK stimulates the production of serum autoantibodies, which strengthen the claim that ACK1 and BRK kinase deficiency contribute to autoimmunity in BALB/cByJ.

      Reviewer #2 (Public Review):

      Summary: 

      In this manuscript, the authors revealed that genetic deficiencies of ACK1 and BRK are associated with human SLE. First, the authors found that compound heterozygous deleterious variants in the kinase domains of the non-receptor tyrosine kinases (NRTK) TNK2/ACK1 in one multiplex family and PTK6/BRK in another family. Then, by an experimental blockade of ACK1 or BRK in a mouse SLE model, they found an increase in glomerular IgG deposits and circulating autoantibodies. Furthermore, they reported that ACK and BRK variants from the SLE patients impaired the MERTK-mediated anti-inflammatory response to apoptotic cells in human induced pluripotent stem cells (hiPSC)-derived macrophages. This work identified new SLE-associated ACK and BRK variants and a role for the NRTK TNK2/ACK1 and PTK6/BRK in efferocytosis, providing a new molecular and cellular mechanism of SLE pathogenesis.

      Strengths: 

      This work identified new SLE-associated ACK and BRK variants and a role for the NRTK TNK2/ACK1 and PTK6/BRK in efferocytosis, providing a new molecular and cellular mechanism of SLE pathogenesis.

      Weaknesses: 

      Although the manuscript is well-organized and clearly stated, there are some points below that should be considered:

      In this study, the authors used forward genetic analyses to identify novel gene mutations that may cause SLE, combined with GWAS studies of SLE. To further explore the importance of these variants, haplotype analysis of two candidate genes could be performed, to observe the evolution and selection relationship of candidate genes in the population (UK 1000 biobank, for example). 

      To investigate whether ACK1/TNK2 or BRK/PTK6 were subject to selection, we gathered data using different metrics quantifying negative selection in the human genome. We collected the f parameter from SnIPRE1, lofTool2, and evoTol3, as well as intraspecies metrics from RVIS4, LOEUF5, and pLI6 (including pRec). We also used our in-house CoNeS metric7. None of these indicators suggest that the genes are under strong negative selection (Revised Figure 2-figure supplement 2). This is consistent with the deficiency being recessive. We also tested the variants with a MAF greater than 0.005. We found them to be neutral. We therefore did not test whether they were associated with any phenotype in the UK Biobank.

      Although the authors focused on SLE and macrophage efferocytosis in their studies, direct evidence of how macrophage efferocytosis significantly affects SLE is lacking. This point should at least be explicitly introduced and discussed by citing appropriate literature.

      We provide a more detailed description of the role of macrophage efferocytosis in autoimmunity and SLE in the revised manuscript. Specifically, we state (in the results section, paragraph: ACK1 and BRK kinase domain variants may lose the ability to link MERTK to RAC1, AKT and STAT3 activation for efferocytosis): “NRTKs such as ACK1 8 and PTK2/FAK 9 are also downstream targets of the TAM family receptor MERTK which is expressed on macrophages and controls the anti-inflammatory engulfment of apoptotic cells, a process known as efferocytosis 10-12. Efferocytosis allows for the clearance of apoptotic cells before they undergo necrosis and release intracellular inflammatory molecules, and simultaneously leads to increased production of anti-inflammatory molecules (TGFb, IL-10, and PGE2) and a decreased secretion of proinflammatory cytokines (TNF-alpha, IL-1b, IL-6) 10-14. In line with these findings, mice deficient in molecular components used by macrophages to efficiently perform efferocytosis, such as MFG-E8, MERTK, TIM4, and C1q, develop phenotypes associated with autoimmunity10,11,14-27. Furthermore, defects in efferocytosis are also observed in patients with SLE and glomerulonephritis14,28-31.“

      It is still not clear how the target molecules identified in this paper may influence macrophage efferocytosis. More direct evidence should be established. 

      Our studies show that wt -but not variants- of ACK1 and BRK are activated by MERTK, a key receptor that mediates the recognition of apoptotic cells. Our studies also show that wt -but not variants- activate RAC1 which is necessary for engulfment and phosphorylate AKT and STAT3 which are involved in the anti-inflammatory response to PtdSer recognition.

      The TAM family receptor MERTK mediates recognition of PtdSer on apoptotic cells via GAS6 and Protein S 10,15,32 leading to their engulfment, which involves activation of RAC1 for actin reorganization and the formation of a phagocytic cup 9,33. Using IP kinase assays we show that MERTK and GAS6 can activate the kinase activity of wild-type ACK1 8 or BRK but not of the patient’s ACK1 or BRK variant alleles (Figure 4D). To further support the role of ACK1 and BRK downstream from PtdSer recognition and uptake of apoptotic cells, we show that reference ACK1 and BRK alleles, in contrast to the patient variant alleles, can activate RAC1 to generate RAC-GTP which is necessary for engulfment 9,33 (Figure 4C).

      PtdSer recognition also typically stimulates an anti-inflammatory process mediated in part via AKT 34 and STAT3 and their target genes such as SOCS3 35-41 and results in the inhibition of LPS-mediated production of inflammatory mediators such as TNF and IL-1b, and the production of cytokines such as IL-10, TGFb 11,25-27,42. Consistent with this literature and the findings of the paper, we show that reference ACK1 and BRK, unlike the patient’s variant alleles, can phosphorylate AKT and STAT3 (Figure 4A, B). The role of ACK1 and BRK in these signaling pathways is further supported by our transcriptomics data comparing the response of controls, patients, and inhibitor-treated iPSC-derived macrophages to apoptotic thymocytes by RNA-seq. Specifically, we show Transcriptional repressors including the AKT targets ATF3, TGIF1, NFIL3, and KLF4, the STAT3 targets SOCS3 and DUSP5, as well as CEBPD and the inhibitor of E-BOX DNA Binding ID3 were among the top-ten genes which expression is induced by apoptotic cells in WT macrophages (Figure 4F), but this regulation was lost in mutant and inhibitor-treated macrophages (Figure 4F).

      For some transcriptional repressors mentioned in their studies, the authors should check whether there is clear experimental evidence. If not, it is recommended to supplement the experimental verifications for clarity.

      Transcriptional repressors including the AKT targets ATF3, TGIF1, NFIL3, and KLF4, the STAT3 targets SOCS3 and DUSP5, as well as CEBPD and the inhibitor of E-BOX DNA Binding ID3 were among the top-ten genes which expression is induced by apoptotic cells in WT macrophages (Figure 4F), but this regulation was lost in mutant and inhibitor-treated macrophages (Figure 4F).

      In the manuscript we cited published evidence, to the best of our knowledge, for the role of these genes in the regulation of inflammatory responses. Specifically we state: “ATF3, TGIF1, NFIL3, and KLF4 are involved in the negative regulation of inflammation in macrophages 35-38, SOCS3 is an inhibitor of the macrophage inflammatory response and DUSP5 is a negative regulator of ERK activation 39,40,43. These data suggest that the kinase domain of ACK1 and BRK contribute to the macrophage anti-inflammatory gene expression program driven by apoptotic cells.”

      In Figures 4C and 4D, it is seen that the usage of inhibitors causes cytoskeletal changes, however this reviewer would not have expected such large change. Did the authors check whether the cells die after heavy treatment by the inhibitors?

      We carefully examine the viability of Isogenic WT, BRK and ACK1 mutant macrophages (left panel) and of WT macrophages treated with ACK1 or BRK inhibitors and we did not observed changes in viability (Figure 4-figure supplement 2).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      A crucial step in the development of SLE is the production of autoantibodies. It is shown in Figure 2F that inhibitors of ACK1/BRK enhanced the production of autoantibodies against histones and SSA in a pristane-induced SLE model, which is a significant result that could support the authors' claim. Strangely, this autoantigen panel does not include double-stranded DNA, RNP, or Sm, which should be presented regarding antibody production.

      We thank the reviewer for this comment. In the revised manuscript (Revised Figure 3 – Supplement 1) we added the remainder of the autoantibody panel, which includes double-stranded DNA, RNP, and Sm autoantibody levels. We also added the results for serum IgG autoantibody levels in BALB/cByJ mice treated for three months with DMSO, ACK1, or BRK inhibitors but did not receive a pristane injection (Revised Figure 3A). This data shows that mice which received ACK1 or BRK inhibitors had increased serum IgG autoantibodies in comparison to DMSO treated controls.

      Additionally, if there is information that inhibitors of ACK1/BRK promote the differentiation of follicular helper T cells, memory B cells, and plasma cells in a pristane-induced SLE model, it could be considered indirect evidence supporting the authors' claims.

      These are not available at present to the best of our knowledge.

      Reviewer #2 (Recommendations For The Authors):

      Minor points:

      * In the literature, unpaired t-tests and ordinary one-way ANOVA (Tukey's multiple comparisons test) were used for statistical analysis, which requires data to be normally distributed. This part of the proposal is reflected in the text, and the non-conforming results need to be statistically analyzed using the non-parametric test of graphpad prism.

      We would like to thank the reviewer for pointing out this oversight. In the revised manuscript, for all applicable datasets, we tested whether the data was normally distributed using a Shapiro-Wilk normality test. For datasets that were normally distributed statistical significance was determined by a Student t test or ordinary one-way ANOVA with Tukey’s multiple comparisons test depending on the number of conditions being compared and the experimental setup. In contrast, for datasets that were not normally distributed statistical significance was determined using a Mann-Whitney, Kruskal-Wallis multiple comparisons tests, or Wilcoxon matched-pairs signed rank test depending on the experimental setup. P values below 0.05 were considered significant for all statistical tests.

      The authors used different methods to represent the level of significant difference. Therefore, it is suggested that the significance level should be expressed by letters. 

      As suggested by the reviewer, in the revised manuscript we have designated the significance level throughout all figures using letters (p, or q values).

      For RNA-seq, more information should be provided in the paper. For example, the correlation between sample biological replicates, the total number of differentially expressed genes, and randomly selected genes for qRT-PCR results verification.

      We would like to thank the reviewer for pointing out this oversight. In the revised manuscript we provided more information regarding the RNA-seq dataset, including a Principal Component Analysis (PCA) showing correlation between sample replicates (Revised Figure 4-figure supplement 1A), as well as a table indicating the number of upregulated and downregulated genes between relevant datasets (Revised Figure 4-figure supplement 1B).

      The results of the RNA-seq analysis indicated that ACK1 and BRK contribute to the macrophage anti-inflammatory gene expression program driven by apoptotic cells. MERTK-dependent anti-inflammatory program elicited by apoptotic cells on macrophages is best evidenced by the reduction of LPS-mediated production of inflammatory mediators such as TNF or IL1b 25-27,34,44. Therefore, to validate the RNA-seq results in a functional manner we tested the decrease of LPS-induced production of TNF and IL1b by apoptotic cells in isogenic WT, ACK1 deficient, and BRK deficient macrophages. Consistent with the RNA-seq data, the functional assays indicated that ACK1 and BRK kinase activities are required for the decrease of TNF and IL1b production induced by LPS in response to apoptotic cells (Revised Figure 4H,I).

      The raw data files for the RNA-seq analysis have been deposited in the NCBI Gene Expression Omnibus under accession number GEO: GSE118730.

      The authors did not have the formats for some of the citations correct. This should be fixed. 

      References were reformatted.

      (1) Eilertson, K. E., Booth, J. G. & Bustamante, C. D. SnIPRE: selection inference using a Poisson random effects model. PLoS Comput Biol 8, e1002806 (2012). https://doi.org:10.1371/journal.pcbi.1002806

      (2) Fadista, J., Oskolkov, N., Hansson, O. & Groop, L. LoFtool: a gene intolerance score based on loss-of-function variants in 60 706 individuals. Bioinformatics 33, 471-474 (2017). https://doi.org:10.1093/bioinformatics/btv602

      (3) Rackham, O. J., Shihab, H. A., Johnson, M. R. & Petretto, E. EvoTol: a protein-sequence based evolutionary intolerance framework for disease-gene prioritization. Nucleic Acids Res 43, e33 (2015). https://doi.org:10.1093/nar/gku1322

      (4) Petrovski, S., Wang, Q., Heinzen, E. L., Allen, A. S. & Goldstein, D. B. Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet 9, e1003709 (2013). https://doi.org:10.1371/journal.pgen.1003709

      (5) Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434-443 (2020). https://doi.org:10.1038/s41586-020-2308-7

      (6) Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285-291 (2016). https://doi.org:10.1038/nature19057

      (7) Rapaport, F. et al. Negative selection on human genes underlying inborn errors depends on disease outcome and both the mode and mechanism of inheritance. Proc Natl Acad Sci U S A 118 (2021). https://doi.org:10.1073/pnas.2001248118

      (8) Mahajan, N. P., Whang, Y. E., Mohler, J. L. & Earp, H. S. Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res 65, 10514-10523 (2005). https://doi.org:10.1158/0008-5472.CAN-05-1127

      (9) Wu, Y., Singh, S., Georgescu, M. M. & Birge, R. B. A role for Mer tyrosine kinase in alphavbeta5 integrin-mediated phagocytosis of apoptotic cells. J Cell Sci 118, 539-553 (2005). https://doi.org:10.1242/jcs.01632

      (10) Scott, R. S. et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411, 207-211 (2001). https://doi.org:10.1038/35075603

      (11) Henson, P. M. & Bratton, D. L. Antiinflammatory effects of apoptotic cells. J Clin Invest 123, 2773-2774 (2013). https://doi.org:10.1172/JCI69344

      (12) Henson, P. M. Cell Removal: Efferocytosis. Annu Rev Cell Dev Biol 33, 127-144 (2017). https://doi.org:10.1146/annurev-cellbio-111315-125315

      (13) deCathelineau, A. M. & Henson, P. M. The final step in programmed cell death: phagocytes carry apoptotic cells to the grave. Essays Biochem 39, 105-117 (2003). https://doi.org:10.1042/bse0390105

      (14) Nagata, S. Apoptosis and Clearance of Apoptotic Cells. Annu Rev Immunol 36, 489-517 (2018). https://doi.org:10.1146/annurev-immunol-042617-053010

      (15) Cohen, P. L. et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J Exp Med 196, 135-140 (2002). https://doi.org:10.1084/jem.20012094

      (16) Hanayama, R. et al. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304, 1147-1150 (2004). https://doi.org:10.1126/science.1094359

      (17) Miyanishi, M., Segawa, K. & Nagata, S. Synergistic effect of Tim4 and MFG-E8 null mutations on the development of autoimmunity. Int Immunol 24, 551-559 (2012). https://doi.org:10.1093/intimm/dxs064

      (18) Colonna, L., Parry, G. C., Panicker, S. & Elkon, K. B. Uncoupling complement C1s activation from C1q binding in apoptotic cell phagocytosis and immunosuppressive capacity. Clin Immunol 163, 84-90 (2016). https://doi.org:10.1016/j.clim.2015.12.017

      (19) Nagata, S., Hanayama, R. & Kawane, K. Autoimmunity and the clearance of dead cells. Cell 140, 619-630 (2010). https://doi.org:10.1016/j.cell.2010.02.014

      (20) Kimani, S. G. et al. Contribution of Defective PS Recognition and Efferocytosis to Chronic Inflammation and Autoimmunity. Front Immunol 5, 566 (2014). https://doi.org:10.3389/fimmu.2014.00566

      (21) Hanayama, R., Tanaka, M., Miwa, K., Shinohara, A., Iwamatsu, A. & Nagata, S. Identification of a factor that links apoptotic cells to phagocytes. Nature 417, 182-187 (2002). https://doi.org:10.1038/417182a

      (22) Kawano, M. & Nagata, S. Lupus-like autoimmune disease caused by a lack of Xkr8, a caspase-dependent phospholipid scramblase. Proc Natl Acad Sci U S A 115, 2132-2137 (2018). https://doi.org:10.1073/pnas.1720732115

      (23) Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314-317 (1992). https://doi.org:10.1038/356314a0

      (24) Singer, G. G., Carrera, A. C., Marshak-Rothstein, A., Martinez, C. & Abbas, A. K. Apoptosis, Fas and systemic autoimmunity: the MRL-lpr/lpr model. Current opinion in immunology 6, 913-920 (1994).

      (25) Cvetanovic, M. & Ucker, D. S. Innate immune discrimination of apoptotic cells: repression of proinflammatory macrophage transcription is coupled directly to specific recognition. J Immunol 172, 880-889 (2004). https://doi.org:10.4049/jimmunol.172.2.880

      (26) Fadok, V. A., Bratton, D. L., Konowal, A., Freed, P. W., Westcott, J. Y. & Henson, P. M. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101, 890-898 (1998). https://doi.org:10.1172/JCI1112

      (27) Voll, R. E., Herrmann, M., Roth, E. A., Stach, C., Kalden, J. R. & Girkontaite, I. Immunosuppressive effects of apoptotic cells. Nature 390, 350-351 (1997). https://doi.org:10.1038/37022

      (28) Herrmann, M., Voll, R. E., Zoller, O. M., Hagenhofer, M., Ponner, B. B. & Kalden, J. R. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum 41, 1241-1250 (1998). https://doi.org:10.1002/1529-0131(199807)41:7<1241::AID-ART15>3.0.CO;2-H

      (29) Baumann, I. et al. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum 46, 191-201 (2002). https://doi.org:10.1002/1529-0131(200201)46:1<191::AID-ART10027>3.0.CO;2-K

      (30) Schrijvers, D. M., De Meyer, G. R. Y., Kockx, M. M., Herman, A. G. & Martinet, W. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscl Throm Vas 25, 1256-1261 (2005). https://doi.org:10.1161/01.ATV.0000166517.18801.a7

      (31) Morioka, S., Maueroder, C. & Ravichandran, K. S. Living on the Edge: Efferocytosis at the Interface of Homeostasis and Pathology. Immunity 50, 1149-1162 (2019). https://doi.org:10.1016/j.immuni.2019.04.018

      (32) Seitz, H. M., Camenisch, T. D., Lemke, G., Earp, H. S. & Matsushima, G. K. Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. J Immunol 178, 5635-5642 (2007). https://doi.org:10.4049/jimmunol.178.9.5635

      (33) Mao, Y. & Finnemann, S. C. Regulation of phagocytosis by Rho GTPases. Small GTPases 6, 89-99 (2015). https://doi.org:10.4161/21541248.2014.989785

      (34) Sen, P. et al. Apoptotic cells induce Mer tyrosine kinase-dependent blockade of NF-kappaB activation in dendritic cells. Blood 109, 653-660 (2007). https://doi.org:10.1182/blood-2006-04-017368

      (35) Vergadi, E., Ieronymaki, E., Lyroni, K., Vaporidi, K. & Tsatsanis, C. Akt Signaling Pathway in Macrophage Activation and M1/M2 Polarization. J Immunol 198, 1006-1014 (2017). https://doi.org:10.4049/jimmunol.1601515

      (36) Byles, V. et al. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 4, 2834 (2013). https://doi.org:10.1038/ncomms3834

      (37) Liao, X. et al. Kruppel-like factor 4 regulates macrophage polarization. J Clin Invest 121, 2736-2749 (2011). https://doi.org:10.1172/JCI45444

      (38) Roberts, A. W., Lee, B. L., Deguine, J., John, S., Shlomchik, M. J. & Barton, G. M. Tissue-Resident Macrophages Are Locally Programmed for Silent Clearance of Apoptotic Cells. Immunity 47, 913-927 e916 (2017). https://doi.org:10.1016/j.immuni.2017.10.006

      (39) Matsukawa, A. et al. Stat3 in resident macrophages as a repressor protein of inflammatory response. J Immunol 175, 3354-3359 (2005).

      (40) Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122, 787-795 (2012). https://doi.org:10.1172/JCI59643

      (41) Yi, Z., Li, L., Matsushima, G. K., Earp, H. S., Wang, B. & Tisch, R. A novel role for c-Src and STAT3 in apoptotic cell-mediated MerTK-dependent immunoregulation of dendritic cells. Blood 114, 3191-3198 (2009). https://doi.org:10.1182/blood-2009-03-207522

      (42) Rothlin, C. V., Carrera-Silva, E. A., Bosurgi, L. & Ghosh, S. TAM receptor signaling in immune homeostasis. Annu Rev Immunol 33, 355-391 (2015). https://doi.org:10.1146/annurev-immunol-032414-112103

      (43) Seo, H. et al. Dual-specificity phosphatase 5 acts as an anti-inflammatory regulator by inhibiting the ERK and NF-kappaB signaling pathways. Sci Rep 7, 17348 (2017). https://doi.org:10.1038/s41598-017-17591-9

      (44) Camenisch, T. D., Koller, B. H., Earp, H. S. & Matsushima, G. K. A novel receptor tyrosine kinase, Mer, inhibits TNF-alpha production and lipopolysaccharide-induced endotoxic shock. J Immunol 162, 3498-3503 (1999).

    1. Author Response:

      eLife Assessment

      This manuscript makes an important contribution to the understanding of protein-protein interaction (PPI) networks by challenging the widely held assumption that their degree distributions uniformly follow a power law. The authors present convincing evidence that biases in study design, such as data aggregation and selective research focus, may contribute to the appearance of power-law-like distributions. While the power law assumption has already been questioned in network biology, the methodological rigor and correction procedures introduced here are valuable for advancing our understanding of PPI network structure.

      Thanks for this assessment which perfectly reflects our study.

      Reviewer #1 (Public Review):

      This manuscript was previously reviewed and this earlier evaluation resulted in two conflicting assessments. I fully endorse the favourable opinion of former Reviewer 1 and find most negative comments of former Reviewer 2 inappropriate.

      This work is absolutely necessary. Even though the authors find it difficult to be fully assertive in the end, their ground work in trying to demonstrate the existence of bias in PPI data is undeniably valuable. Other authors have tried before to show the limitation of unequivocally assigning the degree distribution to a power law but these doubts have had a weak impact. This new study is a great opportunity to discuss further a concern for a simplistic view of PPI network topology. The recent contribution of Broido & Clauset was definitely one to bounce on. The approach of this new manuscript is compelling. Dividing the study in several parts, each reflecting an attempt to bring out commonly used shortcuts in PPI network analyses, makes sense.

      Surprisingly, the authors do not refer to the endless controversy of labeling hubs as party or date, which is another manifestation of the interpretative bias of PPI data.

      This is a good point. In particular, it may be interesting if hub nodes that emerge from considering only prey interactions differ regarding party and date nodes. We now refer to this distinction in the Discussion:

      “[...] Further work will be needed to establish if true hub proteins exist in the PPI network and what their role is. For instance, it was previously claimed (Han et al., 2004) – and controversially discussed (Agarwal et al., 2010) – that the correlation of gene expression values between hub nodes with their interaction partners follows a bimodal distribution, leading to the distinction of party (high correlation) and date (low correlation) hubs. In the future, it would be interesting to study if the ratio of party and date hubs changes when considering prey degree only.”

      The only worthy point prompted by former Reviewer 2 is the effect of spoke expansion. In their response, the authors suggest that it would probably extend questioning and even if it is considered as future work, it could be mentioned in the main manuscript.

      Thank you for this comment. We agree that considering different expansion methods is an interesting research question regarding its effect on the PL property. We have added the following sentences to the Discussion to highlight the opportunity for future work:

      “[...] An additional complexity arising in AP-MS studies is that more than two interaction partners can be detected. These -ary interactions are commonly transformed into binary interactions using either the spoke model, which reports all interactions with the bait protein (as used by IntAct, for example), or the matrix expansion model, which reports all pairwise interactions. Both expansion models can, in principle, introduce false positives and it would be interesting to consider the effect of expansion model choice on the PL property in future work.”

      In the end, this submission is an invitation to constructively rethink the analysis of PPI networks and it feeds the discussion on modelling degree distributions that should not be considered as a solved issue.

      Reviewer #2 (Public Review):

      Many naturally occurring networks are assumed to have a power-law (PL) degree distribution. This assumption has certainly been widely held in the field of protein interactomes (PPIs), although important studies around 2010 have conclusively shown that many of these PL distributions are either the result of data mis-handling or of sloppy statistical procedures (see e.g. Porter and Stumpf in Science around 2014, which I would advise the authors to cite). The value of the present study is to introduce a new mechanism, experiment bias, to explain the appearance of such distributions in the PPI case, and in particular to show how correcting empirically for this mechanism can lead to a reappraisal of which proteins are genuine hubs in these networks. The claims are well supported by empirical evidence and some theoretical analysis. Overall, this is a worthwhile contribution and, while its significance is somewhat dented by the fact that the PL enthusiasm of many had already been tempered by the studies mentioned above,

      Thanks a lot for your constructive feedback. We now cite the work by Porter and Stumpf and have addressed your specific recommendations as detailed below.

      Reviewer #3 (Public Review):

      I would like to congratulate the authors to an impressive piece of work highlighting important real and potential biases, which may lead to power-law distributed node degrees in protein-protein interaction networks. This manuscript is easy to follow and very well written manuscript. I truly enjoyed the concise and convincing scientific presentation. Even if some of the concerns have already been discussed or raised in the past, the manuscript assesses potential biases in PPIs in a rigorous manner.

      I deem the following observations highly relevant to be communicated to the community again:

      (1) PL-like distributions emerge by aggregation of data sets alone.

      (2) Research interest in itself is PL-distributed and drives PL-like properties in PPI networks

      (3) Bait usage is a major driver of PL-like behaviour.

      (4) Accounting for biases changes the biological interpretation of the networks

      (5) Simulation studies further corroborate these findings.

      Thank you for this positive assessment of our work.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewing editor:

      The biological significance of the results presented in this manuscript is the potential absence of active sequestration mechanisms in certain species, leading to variation in their ability to transport and store specific compounds, such as alkaloids. The concept of passive accumulation is introduced as an evolutionary intermediate between toxin consumption and sequestration.

      I agree with the reviewers' comments on the limitations of the current manuscript. Additionally, I'd like to raise a point about combining data from LC/MS and GC/MS as these techniques have different sensitivities. GC-MS excels in annotation, allowing for confident identification of detected compounds. However, it may have limitations in the number of extractable substances. Conversely, LC-MS/MS offers a broader range of detectable substances, but annotation can be more challenging. While methods to bridge this gap exist, the current approach might not fully account for the potential influence of the analysis equipment on the observed differences in alkaloid numbers between the Texas and Panama samples analyzed by LC-MS/MS. To address this, consider including data from both methods (if possible) to gain a more comprehensive understanding of the alkaloid profiles. Alternatively, analyzing the Texas and Panama samples with GC-MS could be considered for a more focused comparison with the other samples.

      Thank you for the suggestion. Unfortunately, we do not have GC-MS data for the Texas and Panama samples. While the strength of these two datasets is that they present two independent lines of data corroborating that “undefended” frogs have detectable alkaloid levels, we have more explicitly made clear for readers that the datasets should not be compared directly. We reviewed the text to check that we carefully acknowledge in the manuscript the higher sensitivity of our LC-MS assay, and we added more detail about the differences between the two assay types (section 4d): “The UHPLC-HESI-MSMS pipeline used on the samples from Panama and Texas allows for higher sensitivity to detect a broader array of compounds compared to our GC-MS methods, but has lower retention-time resolution and produces less reliable structural predictions. Furthermore, due to the lack of liquid-chromatography-derived references for poison-frog alkaloids, precise alkaloid annotations from the UHPLC-HESI-MSMS dataset could not be obtained. Therefore, the UHPLC-HESI-MSMS and GC-MS datasets are not directly comparable, and UHPLC-HESI-MSMS data are not included in Fig. 2”. We have also revised the asterisk accompanying the table to further reinforce that alkaloid numbers between the two assay types should not be compared. It now states: “Note that the UHPLC-HESI-MS/MS and GC-MS assays differed in both instrument and analytical pipeline, so “Alkaloid Number” values from the two assay types should not be compared to each other directly”. We further point out differences between the two assay types in section 2b: “Similarly, the analysis of UHPLC-HESI-MS/MS data was untargeted, and thus enables a broader survey of chemistry compared to that from prior GC-MS studies.”

      Finally, we point out that the output from the analytical pipeline for UHPLC-HESI-MSMS annotates compounds as “alkaloids,” using broader criteria than the targeted GC-MS component of our study. In an effort to make the datasets more comparable, at least conceptually, we now include an assessment of which alkaloids identified by UHPLC-HESI-MSMS match known molecular formulae and structural classes in frogs (see Table S6 and revised text on lines 335-343 and 410-415.

      Reviewer #1 (Public Review):

      This is a very relevant study, clearly with the potential of having a high impact on future research on the evolution of chemical defense mechanisms in animals. The authors present a substantial number of new and surprising experimental results, i.e., the presence in low quantities of alkaloids in amphibians previously deemed to lack these toxins. These data are then combined with literature data to weave the importance of passive accumulation mechanisms into a 4-phases scenario of the evolution of chemical defense in alkaloid-containing poison frogs.

      In general, the new data presented in the manuscript are of high quality and high scientific interest, the suggested scenario compelling, and the discussion thorough. Also, the manuscript has been carefully prepared with a high quality of illustrations and very few typos in the text. Understanding that the majority of dendrobatid frogs, including species considered undefended, can contain low quantities of alkaloids in their skin provides an entirely new perspective to our understanding of how the amazing specializations of poison frogs evolved. Although only a few non-dendrobatids were included in the GCMS alkaloid screening, some of these also included minor quantities of alkaloids, and the capacity of passive alkaloid accumulation may therefore characterize numerous other frog clades, or even amphibians in general.

      Thank you for the kind evaluation.

      While the overall quality of the work is exceptional, major changes in the structure of the submitted manuscript are necessary to make it easier for readers to disentangle scope, hypotheses, evidence and newly developed theories.

      Based on reviewer comments, we revised the manuscript structure substantially to make the different aspects of the paper more readily identifiable to readers. Specifically we moved the content of Figure 2 into a new section in the introduction. We also added more introductory text to better introduce the main ideas of the new model and to summarize the scope and aim of the paper. We reorganized the result section headings and moved Figure 1 (now Fig. 3) down into section 2c.

      Reviewer #2 (Public Review):

      Summary:

      This was a well-executed and well-written paper. The authors have provided important new datasets that expand on previous investigations substantially. The discovery that changes in diet are not so closely correlated with the presence of alkaloids (based on the expanded sampling of non-defended species) is important, in my opinion.

      Strengths:

      Provision of several new expanded datasets using cutting edge technology and sampling a wide range of species that had not been sampled previously. A conceptually important paper that provides evidence for the importance of intermediate stages in the evolution of chemical defense and aposematism.

      Thank you for kind comments.

      Weaknesses:

      There were some aspects of the paper that I thought could be revised. One thing I was struck by is the lack of discussion of the potentially negative effects of toxin accumulation, and how this might play out in terms of different levels of toxicity in different species.

      Thank you for the suggestion. We now explicitly address the possible negative effects of toxin accumulation and how costs may play out with respect to varying levels of chemical defense among different organisms, including poison frogs. We note early on that, “short-term alkaloid feeding experiments (e.g., Daly et al., 1994; Sanchez et al., 2019) demonstrate that both defended and undefended dendrobatids can survive the immediate effects of alkaloid intake, although the degree of resistance and the alkaloids that different species can resist vary'' (section 2c), and we address the sparse literature suggesting some species-level variation in alkaloid resistance in frogs. Later, we make the point that, “origins of chemical defenses are also shaped by the cost of resisting and accumulating toxins, which can change over evolutionary time as animals adapt to novel relationships with toxins” (section 2d). We broadly discuss costs of target-site resistance, a common mode of molecular resistance in poison frogs and other animals, and compensatory molecular adaptations that offset the costs. We also discuss examples from the literature of negative effects of high levels of resistance and toxin accumulation that are not completely offset. We also note that to the best of our knowledge, potential lifetime fitness costs to alkaloid consumption by dendrobatids have not been evaluated.

      Further, are there aspects of ecology or evolutionary history that might make some species less vulnerable to the accumulation of toxins than others? This could be another factor that strongly influences the ultimate trajectory of a species in terms of being well-defended. I think the authors did a good job in terms of describing mechanistic factors that could affect toxicity (e.g. potential molecular mechanisms) but did not make much of an attempt to describe potential ecological factors that could impact trajectories of the evolution of toxicity. This may have been done on purpose (to avoid being too speculative), but I think it would be worth some consideration.

      We agree that other factors can influence the trajectory of chemical defense. We incorporated these ideas into the new section 2d, which provides a somewhat brief overview of ecological factors that could influence the origins of chemical defense, the physiological costs of toxin resistance and accumulation, and some of the possible eco-evo factors that shape chemical defense once it evolves.

      In the discussion, the authors make the claim that poison frogs don't (seem to) suffer from eating alkaloids. I don't think this claim has been properly tested (the cited references don't adequately address it). To do so would require an experimental approach, ideally obtained data on both lifespan and lifetime reproductive success.

      We agree with the reviewer that more data are necessary to make this broad claim, which we have removed. We revised this to state: “regardless, it is clear that all or nearly all dendrobatid poison frogs consume alkaloid-containing arthropods as part of their regular diet” (section 2c). We then expand on this statement with data from short-term experimental work that support the notion that at least some dendrobatids are resistant (i.e., can survive) the immediate effects of alkaloids. We also point out later in the manuscript that, “as far as we are aware, the possible lifetime fitness costs (e.g., in reproductive success) of alkaloid consumption in dendrobatids have not been measured” (section 2d).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      While in general I am very open to "unorthodox" ways to write a manuscript (i.e., differing from the standard structure intro-methods-results-discussion) I feel there is much room for improvement in this case. When reading the manuscript line by line, I was several times totally uncertain about the scope and content of the original data in the manuscript. It is too often unclear which of the outlined theories are new and why they are presented, which hypotheses were tested and why, which data were newly obtained, which technological improvements led to the novel and surprising results, and why no alternative hypotheses are tested. I feel the authors need to fundamentally reconsider the structure of the manuscript - which does not mean everything needs to be rewritten, but some major reshuffling of paragraphs from one section to the other may already lead to substantial improvement. I will in the following list (not ordered by priority) different issues that I encountered, without always providing a specific suggestion for improvement - please come up with an improved structure that removes these issues in one way or the other!

      Thank you for the suggestions. We did our best to improve the structure of the paper. Specifically, we substantially revised the introduction to provide a clearer background of the ideas leading up to the new evolutionary model. We moved most of what was previously figure 2 (now Fig. 1) into an earlier part of the introduction in the main text. We moved what was previously figure 1 (now Fig. 3) to much later in the discussion (section 2c). We attempted to clarify and separate throughout the text the new data from existing data. Please see our responses below for additional details.

      Line 42-45: Please provide a reference on this statement on traversing adaptive landscapes.

      We added the following reference: Martin, CH and PC Wainwright. 2013. Multiple fitness peaks on the adaptive landscape drive adaptive radiation in the wild. Science 339: 208-211. https://doi.org/10.1126/science.1227710

      Line 50: Why are these phases "likely" to occur? - no evidence is presented for this hypothesized high likelihood. Presenting this scenario already in the second paragraph of the intro is very weird. Are these really the only possible phases? Wouldn't it be possible to come up with totally different scenarios? In my opinion, this specific four-phase scenario should be more clearly labelled as a novel theory presented in this paper, and perhaps it should come much later in the introduction.

      Thank you for the suggestion. We moved this paragraph down into a new subsection of the introduction. We also revised the language to clarify that the model is a new evolutionary theory based on new and existing ideas.

      Line 51: Here you use for the first time the term "elimination". While it is intuitively clear what is meant by it, there still could be different meanings. The alkaloids could simply be passively excreted, or they could be actively biochemically decomposed. Later in the Discussion the authors imply that elimination requires some kind of metabolic process, but this perhaps should be made clearer already in the introduction.

      We now spend more time in the introduction describing pharmacokinetics as well as the terms we used (including elimination), which are slightly modified from terms in pharmacokinetics.

      Figure 1. I have major concerns about this figure. I found the figure very confusing, and the authors really need to reconsider and modify (simplify) it. The figure caption starts with "Major processes involved..." as if this was established textbook knowledge rather than a totally hypothetical illustration of how different factors (sequestration, elimination....) can lead to defended or undefended phenotypes. Only later on in the caption it becomes clear this is just a suggestion/hypothesis/model: "we hypothesize...".

      We revised the figure (now Fig. 3) and its legend. It now starts with the following text: “Hypothesized physiological processes that interact to determine the defense phenotype.” We also simplify the figure by removing two lines and recoding the table (see comment below).

      Secondly, the way the graph is drawn suggests some kind of experimental result where specific evolutionary pathways lead to very specific degrees of "defendedness", recognizable by the points on the right axis stacked very precisely one above the other. Do you really want to imply that you want to suggest such a specific model, where particular accumulation/intake/elimination rates lead to exactly these outcomes? Also, wouldn't it be possible to somewhat simplify the categories in the table? Again, why so specific, is there any experimental evidence for it? Why sometimes 1 plus, 2 plus, 3 plus? Wouldn't it be better to just suggest categories such as strong, weak and absent?

      We simplified the figure by removing the secondary (dashed) passive accumulation and active sequestration lines. We also changed the + signs to “low,” “med,” or “high” and tried to simplify the text in the figure and in the legend.

      Line 101-103: "We propose ..." Here, as the concluding statement of the introduction, the authors suggest a very general hypothesis which seems rather disconnected from the four-phase model and from the experimental results. Here, at the latest, I would have expected to learn (1) what the overall scope of the paper is, (2) which kind of approaches were followed and which novel experimental results will be presented in the following, and (3) how the experimental results will be used to derive a new theory / novel. Again, it is obvious that the scope of the paper is broader than testing just a single and narrow hypothesis, but rather to support and develop a broader theory and evolutionary model, but this should be clear to readers once they arrive at this line.

      Thank you for the suggestion. We added a paragraph to the end of the first section of the introduction that outlines the content of the rest of the paper. We also reorganized some of the subheadings to make the flow of ideas and the source of data in each subsection clearer. We split up and moved what was previously in section 2a into parts of the introduction and discussion. We moved the results text about diet and the discussion about resistance to section 2a, to better provide data and discussion of phases 1 and 2.

      Figure 2. My opinion on this figure is much less strong than on Fig. 1. However, the authors may want to reconsider whether it really makes sense to here show all the historical trees and theories (which are not really systematically reviewed in the text) or if they maybe wish to go on with panel D only (the most recent tree and scenario which is also used to consistently for further discussion in the manuscript).

      We moved the content from Fig. 2A–C to the main text (now section 1b) and narrowed the focus of Fig. 2 (now Fig. 1) to what was previously panel 2D.

      Results and Discussion: The whole section on phases 1 to 2 is not based on any new results. This is OK (as I said, I have no problems with "unorthodox" manuscript structure) but it should be clearer to readers why this is presented here and what it represents. A new theory? A recapitulation of textbook knowledge? Something necessary to later understand the experimental results?

      We split up and moved what was previously in section 2a into parts of the introduction and discussion. Now, section 2a still focuses on phases 1 and 2 but presents the diet data from our study (phase 1) and a review of known resistance mechanisms (phase 2; previously in the discussion section).

      Line 168. Here we have arrived at the "core" of the paper, that is, the actual experimental results. Surprisingly, you find alkaloids in dendrobatids usually considered "undefended". This is great, surprising and of high importance. However, I am missing at least some technical/methodological discussion about this finding, except for the statement that it was based on GCMS. Why have previous studies not detected these alkaloids? Did you use particularly sensitive GCMS instruments? Did you look more in depth than it was done in previous studies? Can you totally exclude these contaminations/artefacts?

      We added the following paragraph to section 2b: “The large number of structures that we identified is in part due to the way we reviewed GC-MS data: in addition to searching for alkaloids with known fragmentation patterns, we also searched for anything that could qualify as an alkaloid mass spectrometrically but that may not match a previously known structure in a reference database. Similarly, the analysis of UHPLC-HESI-MS/MS data was untargeted, and thus enables a broader survey of chemistry compared to that from prior GC-MS studies. Structural annotations in our UHPLC-HESI-MS/MS analysis were made using CANOPUS, a deep neural network that is able to classify unknown metabolites based on MS/MS fragmentation patterns, with 99.7% accuracy in cross-validation (Dührkop et al., 2021).” We also moved the paragraph on contamination from the methods section into section 2b.

      Line 169. This sentence (and several others in the subsequent paragraphs) do a poor job in explaining the taxon and specimen sampling. The particular sentence in this line is unclear: Did you include 27 species of dendrobatids AND IN ADDITION representatives of the main undefended clades, or did these 27 species INCLUDE representatives of the main undefended clades?

      We now present a brief overview of sampling in the last paragraph of the introduction (section 1c). We clarified sampling of the species: “In total we surveyed 104 animals representing 32 species of Neotropical frogs including 28 dendrobatid species, two bufonids, one leptodactylid, and one eleutherodactylid (see Methods). Each of the major undefended clades in Dendrobatidae (Fig. 1, Table 1) is represented in our dataset, with a total of 14 undefended dendrobatid species surveyed.” We also reviewed and clarified similar language in other places in the text (e.g., section 2b).

      Line 177. "undefended lineages" - of dendrobatids or of frogs in general? Given that you also include non-dendrobatids.

      Dendrobatids. The sentence now reads “Overall, we detected alkaloids in skins from 13 of 14 undefended dendrobatid species included in our study, although often with less diversity and relatively lower quantities than in defended lineages (Fig. 2, Table 1, Table S3, Table S4).”

      Line 188: "defe" should probably changed to "defended"?

      Corrected.

      Table 1. The taxon sampling clearly focuses on dendrobatids, with only a few other taxa. This is fine, however, it does not allow to test the hypothesis that something "special" predisposes dendrobatids to passive accumulation and alkaloid resistance. For this, a wider taxon sampling of other frog families would have been necessary to have a larger number of "control" data. Again, this is fine for the purpose of the study and is discussed later (line 399) but only very briefly. I feel it should be mentioned earlier on.

      Thank you for the suggestion. We now address this point earlier in the manuscript so that readers will not have the impression that there are sufficient data to infer that dendrobatids are predisposed to passive accumulation. We propose several phylogenetic alternatives, making it clear that determining the number and timing of origins of passive accumulation is not possible with our data (section 2c), ultimately noting that “discriminating a single origin [of passive accumulation] – no matter the timing – from multiple ones would require better phylogenetic resolution and more extensive alkaloid surveys, as we only assessed four non-dendrobatid species”.

      Reviewer #2 (Recommendations For The Authors):

      P2L60 - The description of figure 1 is somewhat confusing, as it first focuses on the graph in the bottom panel, then moves to describing aspects of the table (top panel), then back to the graph. I think it might make more sense to describe these two panels separately and in order.

      Thank you for the suggestion. We revised the figure (now Fig. 3) and its legend for clarity.

      P3L94 - Saying that three transitions makes this group "ideal" for studying complex phenotypic transitions is a bit hyperbolic, in my opinion. I suggest toning down this description.

      Thank you for the suggestion. We changed “ideal” to “suitable.”

      P3L101 - "We propose that changes in toxin metabolism through selection on mechanisms of toxin resistance likely play a major role in the evolution of acquired chemical defenses." This hypothesis appears to be a combination of earlier ideas, with a somewhat different emphasis. The authors acknowledge this and go through some of the earlier ideas, in the legend of figure 2. I would have preferred to see more discussion of this (particularly with reference to the history of the idea in reference to poison frogs) in the main body of the text.

      Thank you for the suggestion. We now more extensively discuss these prior studies in the introduction (section 1b and 1c). We also revised this figure (now Fig. 1) to focus on what was previously figure 2 panel D.

      P3L102 - Figure 2 - the phrase "Resistance to consuming some alkaloids" seems inappropriate - perhaps "Resistance to alkaloid poisoning after consumption" (or something similar) would be more accurate?

      We changed this to “Low alkaloid resistance”.

      P4L153 - "Accumulation of alkaloids in skin glands could help to prevent alkaloids from reaching their targets". This could be true, but why would skin glands be a preferred location of sequestration to avoid toxicity? The authors should explain why such glands would be particularly likely to serve as places of sequestration.

      Thank you for pointing out this ambiguity. We decided to remove our discussion of sequestration into skin glands, because it is challenging to discuss this process in toxin resistance without too much speculation.

      P4L154 - "Although direct evidence is lacking, some poison frogs may biotransform alkaloids into less toxic forms until they can be eliminated from the body, e.g., using cytochrome p450s". This would seem to contradict the argument of this process being a precursor to accumulating effective toxins.

      We agree that these processes seem contradictory. However, a few papers are starting to suggest that metabolic detoxification may be initially useful for lineages that eventually evolve toxin sequestration. This is because detoxification or elimination (clearance) of toxins allows increased intake of toxins. Because there is some delay in the removal of toxins from an animal’s body, increased consumption ultimately leads to higher toxin exposure and possible toxin diffusion into various body cavities, which can increase selective pressure to evolve other kinds of resistance mechanisms. This pattern was shown in an experiment with toxin-resistant fruit flies (Douglas et al., 2022). Many toxin-sequestering species still metabolize some toxins even if they sequester the majority – as we argue, the defense phenotype is the result of a balance among intake, elimination, and accumulation, all of which can interact simultaneously. In poison frogs specifically there is some evidence that p450s are upregulated after toxin consumption (Caty et al. 2019). One possible prediction is that the type of resistance that an animal has changes as toxin sequestration evolves. We talk a bit more about these patterns in section 2e.

      P5L186 - Table 1 legend - change "defe" to "defended"

      Corrected.

      P12L414 - "do not appear to suffer substantially from doing so as it is part of their regular diet". I don't think this claim has been properly tested, as of yet. It would require looking at the effects of a diet with and without toxins over the lifespan of the frogs, and the impact of that difference on both survival and fertility.

      Reviewer 1 also made this important observation, which we address above.

      P12L432 - "for toxin-resistant organisms, there is little cost to accumulating a toxin, yet there may be benefits in doing so." Yet toxin resistance may itself be a continuous trait, so there may be a cost that depends on the degree of toxin resistance. I don't see why the authors are proposing toxin resistance as a discrete trait when their main point is that toxin accumulation is not.

      We agree and removed this statement.

    1. Author response:

      ANALYTICAL

      (1) Figure 3 shows that the relationship between learning rate and informativeness for our rats was very similar to that shown with pigeons by Gibbon and Balsam (1981). We used multiple criteria to establish the number of trials to learn in our data, with the goal of demonstrating that the correspondence between the data sets was robust. To establish that they are effectively the same does require using an equivalent decision criterion for our data as was used for Gibbon and Balsam’s data. However, the criterion they used—at least one peck at the response key on at least 3 out of 4 consecutive trials—cannot be sensibly applied to our magazine entry data because rats make magazine entries during the inter-trial interval (whereas pigeons do not peck at the response key in the inter-trial interval). Therefore, evidence for conditioning in our paradigm must involve comparison between the response rate during CS and the baseline response rate. There are two ways one could adapt the Gibbon and Balsam criterion to our data. One way is to use a non-parametric signed rank test for evidence that the CS response rate exceeds the pre-CS response rate, and adopting a statistical criterion equivalent to Gibbon and Balsam’s 3-out-of-4 consecutive trials (p<.3125). The second method estimates the nDkl for the criterion used by Gibbon and Balsam. This could be done by assuming there are no responses in the inter-trial interval and a response probability of at least 0.75 during the CS (their criterion). This would correspond to an nDkl of 2.2 (odds ratio 27:1). The obtained nDkl could then be applied to our data to identify when the distribution of CS response rates has diverged by an equivalent amount from the distribution of pre-CS response rates.

      (2) A single regression line, as shown in Figure 6, is the simplest possible model of the relationship between response rate and reinforcement rate and it explains approximately 80% of the variance in response rate. Fixing the log-log slope at 1 yields the maximally simple model. (This regression is done in the logarithmic domain to satisfy the homoscedasticity assumption.) When transformed into the linear domain, this model assumes a truly scalar relation (linear, intercept at the origin) and assumes the same scale factor and the same scalar variability in response rates for both sets of data (ITI and CS). Our plot supports such a model. Its simplicity is its own motivation (Occam’s razor).

      If regression lines are fitted to the CS and ITI data separately, there is a small increase in explained variance (R2 = 0.82). We leave it to further research to determine whether such a complex model, with 4 parameters, is required. However, we do not think the present data warrant comparing the simplest possible model, with one parameter, to any more complex model for the following reasons:

      · When a brain—or any other machine—maps an observed (input) rate to a rate it produces (output rate), there is always an implicit scalar. In the special case where the produced rate equals the observed rate, the implicit scalar has value 1. Thus, there cannot be a simpler model than the one we propose, which is, in and of itself, interesting.

      · The present case is an intuitively accessible example of why the MDL (Minimum Description Length) approach to model complexity (Barron, Rissanen, & Yu, 1998; Grünwald, Myung, & Pitt, 2005; Rissanen, 1999) can yield a very different conclusion from the conclusion reached using the Bayesian Information Criterion (BIC) approach. The MDL approach measures the complexity of a model when given N data specified with precision of B bits per datum by computing (or approximating) the sum of the maximum-likelihoods of the model’s fits to all possible sets of N data with B precision per datum. The greater the sum over the maximum likelihoods, the more complex the model, that is, the greater its measured wiggle room, it’s capacity to fit data. Recall that von Neuman remarked to Fermi that with 4 parameters he could fit an elephant. His deeper point was that multi-parameter models bring neither insight nor predictive power; they explain only post-hoc, after one has adjusted their parameters in the light of the data. For realistic data sets like ours, the sums of maximum likelihoods are finite but astronomical. However, just as the Sterling approximation allows one to work with astronomical factorials, it has proved possible to develop readily computable approximations to these sums, which can be used to take model complexity into account when comparing models. Proponents of the MDL approach point out that the BIC is inadequate because models with the same number of parameters can have very different amounts of wiggle room. A standard illustration of this point is the contrast between logarithmic model and power-function model. Log regressions must be concave; whereas power function regressions can be concave, linear, or convex—yet they have the same number of parameters (one or two, depending on whether one counts the scale parameter that is always implicit). The MDL approach captures this difference in complexity because it measures wiggle room; the BIC approach does not, because it only counts parameters.

      · In the present case, one is comparing a model with no pivot and no vertical displacement at the boundary between the black dots and the red dots (the 1-parameter unilinear model) to a bilinear model that allows both a change in slope and a vertical displacement for both lines. The 4-parameter model is superior if we use the BIC to take model complexity into account. However, 4-parameter has ludicrously more wiggle room. It will provide excellent fits—high maximum likelihood—to data sets in which the red points have slope > 1, slope 0, or slope < 0 and in which it is also true that the intercept for the red points lies well below or well above the black points (non-overlap in the marginal distribution of the red and black data). The 1-parameter model, on the other hand, will provide terrible fits to all such data (very low maximum likelihoods). Thus, we believe the BIC does not properly capture the immense actual difference in the complexity between the 1-parameter model (unilinear with slope 1) to the 4-parameter model (bilinear with neither the slope nor the intercept fixed in the linear domain).

      · In any event, because the pivot (change in slope between black and red data sets), if any, is small and likewise for the displacement (vertical change), it suffices for now to know that the variance captured by the 1-parameter model is only marginally improved by adding three more parameters. Researchers using the properly corrected measured rate of head poking to measure the rate of reinforcement a subject expects can therefore assume that they have an approximately scalar measure of the subject’s expectation. Given our data, they won’t be far wrong even near the extremes of the values commonly used for rates of reinforcement. That is a major advance in current thinking, with strong implications for formal models of associative learning. It implies that the performance function that maps from the neurobiological realization of the subject’s expectation is not an unknown function. On the contrary, it’s the simplest possible function, the scalar function. That is a powerful constraint on brain-behavior linkage hypotheses, such as the many hypothesized relations between mesolimbic dopamine activity and the expectation that drives responding in Pavlovian conditioning (Berridge, 2012; Jeong et al., 2022; Y.  Niv, Daw, Joel, & Dayan, 2007; Y. Niv & Schoenbaum, 2008).

      The data in Figure 6 are taken from the last 5 sessions of training. The exact number of sessions was somewhat arbitrary but was chosen to meet two goals: (1) to capture asymptotic responding, which is why we restricted this to the end of the training, and (2) to obtain a sufficiently large sample of data to estimate reliably each rat’s response rate. We have checked what the data look like using the last 10 sessions, and can confirm it makes very little difference to the results.<br /> Finally, as noted by the reviews, the relationship between the contextual rate of reinforcement and ITI responding should also be evident if we had measured context responding prior to introducing the CS. However, there was no period in our experiment when rats were given unsignalled reinforcement (such as is done during “magazine training” in some experiments). Therefore, we could not measure responding based on contextual conditioning prior to the introduction of the CS. This is a question for future experiments that use an extended period of magazine training or “poor positive” protocols in which there are reinforcements during the ITIs as well as during the CSs. The learning rate equation has been shown to predict reinforcements to acquisition in the poor-positive case (Balsam, Fairhurst, & Gallistel, 2006).

      (3) One of us (CRG) has earlier suggested that responding appears abruptly when the accumulated evidence that the CS reinforcement rate is greater than the contextual rate exceeds a decision threshold (C.R.  Gallistel, Balsam, & Fairhurst, 2004). The new more extensive data require a more nuanced view. Evidence about the manner in which responding changes over the course of training is to some extent dependent on the analytic method used to track those changes. We presented two different approaches. The approach shown in Figures 7 and 8, extending on that developed by Harris (2022), assumes a monotonic increase in response rate and uses the slope of the cumulative response rate to identify when responding exceeds particular milestones (percentiles of the asymptotic response rate). This analysis suggests a steady rise in responding over trials. Within our theoretical model, this might reflect an increase in the animal’s certainty about the CS reinforcement rate with accumulated evidence from each trial. While this method should be able to distinguish between a gradual change and a single abrupt change in responding (Harris, 2022) it may not distinguish between a gradual change and multiple step-like changes in responding and cannot account for decreases in response rate.<br /> The other analytic method we used relies on the information theoretic measure of divergence, the nDkl (Gallistel & Latham, 2023), to identify each point of change (up or down) in the response record. With that method, we discern three trends. First, the onset tends to be abrupt in that the initial step up is often large (an increase in response rate by 50% or more of the difference between its initial value and its terminal value is common and there are instances where the initial step is to the terminal rate or higher). Second, there is marked within-subject variability in the response rate, characterised by large steps up and down in the parsed response rates following the initial step up, but this variability tends to decrease with further training (there tend to be fewer and smaller steps in both the ITI response rates and the CS response rate as training progresses). Third, the overall trend, seen most clearly when one averages across subjects within groups is to a moderately higher rate of responding later in training than after the initial rise. We think that the first tendency reflects an underlying decision process whose latency is controlled by diminishing uncertainty about the two reinforcement rates and hence about their ratio. We think that decreasing uncertainty about the true values of the estimated rates of reinforcement is also likely to be an important part of the explanation for the second tendency (decreasing within-subject variation in response rates). It is less clear whether diminishing uncertainty can explain the trend toward a somewhat greater difference in the two response rates as conditioning progresses. It is perhaps worth noting that the distribution of the estimates of the informativeness ratio is likely to be heavy tailed and have peculiar properties (as witness, for example, the distribution of the ratio of two gamma distributions with arbitrary shape and scale parameters) but we are unable at this time to propound an explanation of the third trend.

      (4) There is an error in the description provided in the text. The pre-CS period used to measure the ITI responding was 10 s rather than 20 s. There was always at least a 5-s gap between the end of the previous trial and the start of the pre-CS period.

      (5) Details about model fitting will be added in a revision. The question about fitting a single model or multiple models to the data in Figure 6 is addressed in response 2 above. In Figure 6, each rat provides 2 behavioural data points (ITI response rate and CS response rate) and 2 values for reinforcement rate (1/C and 1/T). There is a weak but significant correlation between the ITI and CS response rates (r = 0.28, p < 0.01; log transformed to correct for heteroscedasticity). By design, there is no correlation between the log reinforcement rates (r = 0.06, p = .404).

      CONCEPTUAL

      (1) It is important for the field to realize that the RW model cannot be used to explain the results of Rescorla’s (Rescorla, 1966; Rescorla, 1968, 1969) contingency-not-pairing experiments, despite what was claimed by Rescorla and Wagner (Rescorla & Wagner, 1972; Wagner & Rescorla, 1972) and has subsequently been claimed in many modelling papers and in most textbooks and reviews (Dayan & Niv, 2008; Y. Niv & Montague, 2008). Rescorla programmed reinforcements with a Poisson process. The defining property of a Poisson process is its flat hazard function; the reinforcements were equally likely at every moment in time when the process was running. This makes it impossible to say when non-reinforcements occurred and, a fortiori, to count them. The non-reinforcements are causal events in RW algorithm and subsequent versions of it. Their effects on associative strength are essential to the explanations proffered by these models. Non-reinforcements—failures to occur, updates when reinforcement is set to 0, hence also the lambda parameter—can have causal efficacy only when the successes may be predicted to occur at specified times (during “trials”). When reinforcements are programmed by a Poisson process, there are no such times. Attempts to apply the RW formula to reinforcement learning soon foundered on this problem (Gibbon, 1981; Gibbon, Berryman, & Thompson, 1974; Hallam, Grahame, & Miller, 1992; L.J. Hammond, 1980; L. J. Hammond & Paynter, 1983; Scott & Platt, 1985). The enduring popularity of the delta-rule updating equation in reinforcement learning depends on “big-concept” papers that don’t fit models to real data and discretize time into states while claiming to be real-time models (Y. Niv, 2009; Y. Niv, Daw, & Dayan, 2005).

      The information-theoretic approach to associative learning, which sometimes historically travels as RET (rate estimation theory), is unabashedly and inescapably representational. It assumes a temporal map and arithmetic machinery capable in principle of implementing any implementable computation. In short, it assumes a Turing-complete brain. It assumes that whatever the material basis of memory may be, it must make sense to ask of it how many bits can be stored in a given volume of material. This question is seldom posed in associative models of learning, nor by neurobiologists committed to the hypothesis that the Hebbian synapse is the material basis of memory. Many—including the new Nobelist, Geoffrey Hinton— would agree that the question makes no sense. When you assume that brains learn by rewiring themselves rather than by acquiring and storing information, it makes no sense.

      When a subject learns a rate of reinforcement, it bases its behavior on that expectation, and it alters its behavior when that expectation is disappointed. Subjects also learn probabilities when they are defined. They base some aspects of their behavior on those expectations, making computationally sophisticated use of their representation of the uncertainties (Balci, Freestone, & Gallistel, 2009; Chan & Harris, 2019; J. A. Harris, 2019; J.A. Harris & Andrew, 2017; J. A. Harris & Bouton, 2020; J. A. Harris, Kwok, & Gottlieb, 2019; Kheifets, Freestone, & Gallistel, 2017; Kheifets & Gallistel, 2012; Mallea, Schulhof, Gallistel, & Balsam, 2024 in press).

      (2) Rate estimation theory is oblivious to the temporal order in which experience with different predictors occurs. The matrix computation finds the additive solution, if it exists, to the data so far observed, on the assumption that predicted rates have remained the same. This is the stationarity assumption, which is implicit in a rate computation and was made explicit in the formulation of RET (C.R. Gallistel, 1990). When the additive solution does not exist, the RET algorithm treats the compound of two predictors as a third predictor, and computes the additive solution to the 3-predictor problem. Because it is oblivious to the order in which the data have been acquired, it predicts one-trial overshadowing and retroactive blocking and unblocking (C.R. Gallistel, 1990 pp 439 & 452-455).

      The RET algorithm is but one component of the information-theoretic model of associative learning (aka, TATAL, The Analytic Theory of Associative Learning Wilkes & Gallistel, 2016)). It solves the assignment-of-credit problem, not the change-detection problem. Because rates of reinforcement do sometimes change, the stationarity assumption, which is essential to the RET algorithm, must be tested when each new reinforcement occurs and when the interval since the last reinforcement has become longer than would be expected or the number of reinforcements has become significantly fewer than would be expected given the current estimate of the probability of reinforcement (C. R. Gallistel, Krishan, Liu, Miller, & Latham, 2014). In the information-theoretic approach to associative learning, detecting non-stationarity is done by an information-theoretic change-detecting algorithm. The algorithm correctly predicts that omitted reinforcements to extinction will be a constant (C.R. Gallistel, 2024 under review; Gibbon, Farrell, Locurto, Duncan, & Terrace, 1980). To put the prediction another way, unreinforced trials to extinction will increase in proportional to the trials/reinforcement during training (C.R. Gallistel, 2012; Wilkes & Gallistel, 2016). In other words, it predicts the best and most systematic data on the partial reinforcement extinction effect (PREE) known to us. The profound challenge to neo-Hullian delta-rule updating models that is posed by the PREE has been recognized for the better part of a century. To the best of our knowledge, no other formalized model of associative learning has overcome this challenge (Dayan & Niv, 2008; Mellgren, 2012). Explaining extinction algorithmically is straightforward when one adopts an information-theoretic perspective, because computing reinforcement-by-reinforcement the Kullback-Leibler divergence in a sequence of earlier rate (or probability!) estimates from the most recent estimate and multiplying the vector of divergences by the vector of effective sample sizes (C. R. Gallistel & Latham, 2022) detects and localized changes in rates and probabilities of reinforcement (C.R. Gallistel, 2024 under review). The computation presupposes the existence of a temporal map, a time-stamped record of past events. This supposition is strongly resisted by neuroscience-oriented reinforcement-learning modelers, who try to substitute the assumption of decaying eligibility traces.

      The very interesting Pearce-Ganesan findings (Ganesan & Pearce, 1988) are not predicted by RET, but nor do they run counter its predictions. RET has nothing to say about how subjects categorize appetitive reinforcements; nor, at this time, does the information-theoretic approach to an understanding of associative have anything to say about that.

      The same is not true for the Betts, Brandon & Wagner results (Betts, Brandon, & Wagner, 1996). They pretrained a blocking cue that predicted a painful paraorbital shock to one eye of a rabbit. This cue elicited an anticipatory blink in the threatened eye. It also potentiated the startle reflex made to a loud noise in one ear. A new cue that was then introduced, which always occurred in compound with the pretrained blocking cue. In one group, the painful shock continued to be delivered to the same eye as before; in another group, it was delivered to the skin around the other eye. In the group that continued to receive the shock to the same eye, the old cue effectively blocked conditioning of the new cue for both the eyeblink and the potentiated startle response. However, in the group for which the location of the shock changed to the other eye, the old cue did not block conditioning of the eyeblink response to the new cue but did block conditioning of the startle response to the new cue. The information-theoretic analysis of associative learning focusses on the encoding of measurable predictive temporal relationships, rather than on general and, to our mind, vague notions like CS processing and US processing. A painful shock elicits fear in a rabbit no matter where on the body surface it is experienced, because fear is a reaction to a very broad category of dangers, and fear potentiates the startle reflex regardless of the threat that causes fear. Once that prediction of such a threat is encoded; redundant cues will not be encoded that same way because the RET algorithm blocks the encoding of redundant predictions. A painful shock near an eye elicits a blink of the threatened eye as well as the fear that potentiates the startle. An appropriate encoding for the eye blink must specify the location of the threat. RET will attribute prediction of the threat to the new eye to the new cue—and not to the old cue, the pretrained blocker— while continuing to attribute to the old cue the prediction of a fear-causing threat, because the change in location does not alter that prediction. Therefore, the new cue will be encoded as predicting the new location of the threat to the eye, but not as predicting the large category non-specific threats that elicit fear and the potentiation of the startle, because that prediction remains valid. Changing that prediction would violate the stationarity assumption; predictive relations do not change unless the data imply that they must have changed. Unless we have made a slip in our logic, this would seem to explain Betts et al’s (1996) results. It does so with no free parameters, unlike AESOP, which has a notoriously large number of free parameters.

      Balci, F., Freestone, D., & Gallistel, C. R. (2009). Risk assessment in man and mouse. Proceedings of the National Academy of Science U S A, 106(7), 2459-2463. doi:10.1073/pnas.0812709106

      Balsam, P. D., Fairhurst, S., & Gallistel, C. R. (2006). Pavlovian contingencies and temporal information. Journal of Experimental Psychology: Animal Behavior Processes, 32, 284-294.

      Barron, A., Rissanen, J., & Yu, B. (1998). The minimum description length principle in coding and modeling. IEEE Transactions on Information Theory, 44(6), 2743-2760.

      Berridge, K. C. (2012). From prediction error to incentive salience: Mesolimbic computation of reward motivation. European Journal of Neuroscience.

      Betts, S. L., Brandon, S. E., & Wagner, A. R. (1996). Dissociation of the blocking of conditioned eyeblink and conditioned fear following a shift in US locus. Animal Learning and Behavior, 24(4), 459-470.

      Chan, C. K. J., & Harris, J. A. (2019). The partial reinforcement extinction effect: The proportion of trials reinforced during conditioning predicts the number of trials to extinction. Journal of Experimental Psychology: Animal Learning and Cognition, 45(1). doi:http://dx.doi.org/10.1037/xan0000190

      Dayan, P., & Niv, Y. (2008). Reinforcement learning: The good, the bad and the ugly. Current Opinion in Neurobiology, 18(2), 185-196.

      Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: Bradford Books/MIT Press.

      Gallistel, C. R. (2012). Extinction from a rationalist perspective. Behav Processes, 90, 66-88. doi:10.1016/j.beproc.2012.02.008

      Gallistel, C. R. (2024 under review). Reconceptualized associative learning. Perspectives on Behavioral Science (Special Issue for SQAB 2024).

      Gallistel, C. R., Balsam, P. D., & Fairhurst, S. (2004). The learning curve: Implications of a quantitative analysis. Proceedings of the National Academy of Sciences, 101(36), 13124-13131.

      Gallistel, C. R., Krishan, M., Liu, Y., Miller, R. R., & Latham, P. E. (2014). The perception of probability. Psychological Review, 121, 96-123. doi:10.1037/a0035232

      Gallistel, C. R., & Latham, P. E. (2022). Bringing Bayes and Shannon to the Study of Behavioral and Neurobiological Timing. Timing & Time Perception. timing & TIME Perception, 1-61. doi:10.1163/22134468-bja10069

      Ganesan, R., & Pearce, J. M. (1988). Effect of changing the unconditioned stimulus on appetitive blocking. Journal of Experimental Psychology: Animal Behavior Processes, 14, 280-291.

      Gibbon, J. (1981). The contingency problem in autoshaping. In C. M. Locurto, H. S. Terrace, & J. Gibbon (Eds.), Autoshaping and conditioning theory (pp. 285-308). New York: Academic.

      Gibbon, J., & Balsam, P. (1981). Spreading association in time. In C. M. Locurto, H. S. Terrace, & J. Gibbon (Eds.), Autoshaping and conditioning theory (pp. 219-253). New York: Academic Press.

      Gibbon, J., Berryman, R., & Thompson, R. L. (1974). Contingency spaces and measures in classical and instrumental conditioning. Journal of the Experimental Analysis of Behavior, 21(3), 585-605. doi: 10.1901/jeab.1974.21-585

      Gibbon, J., Farrell, L., Locurto, C. M., Duncan, H. J., & Terrace, H. S. (1980). Partial reinforcement in autoshaping with pigeons. Animal Learning and Behavior, 8, 45–59. doi:doi.org/10.3758/BF03209729

      Grünwald, P. D., Myung, I. J., & Pitt, M. A. (2005). Advances in minimum description length: theory and applications. Cambridge, MA: MIT Press.

      Hallam, S. C., Grahame, N. J., & Miller, R. R. (1992). Exploring the edges of Pavlovian contingency space: An assessment of contignency theory and its various metrics. Learning and Motivation, 23, 225-249.

      Hammond, L. J. (1980). The effect of contingency upon the appetitive conditioning of free operant behavior. Journal of  the Experimental Analysis of Behavior, 34, 297-304. doi:10.1901/jeab.1980.34-297

      Hammond, L. J., & Paynter, W. E. (1983). Probabilistic contingency theories of animal conditioning: A critical analysis. Learning and Motivation, 14, 527-550. doi:10.1016/0023-9690(83)90031-0

      Harris, J. A. (2019). The importance of trials. Journal of Experimental Psychology: Animal Learning and Cognition, 45(4).

      Harris, J. A. (2022). The learning curve, revisited. Journal of Experimental Psychology: Animal Learning and Cognition, 48, 265-280.

      Harris, J. A., & Andrew, B. J. (2017). Time, Trials and Extinction. Journal of Experimental Psychology: Animal Learning and Cognition, 43(1), 15-29.

      Harris, J. A., & Bouton, M. E. (2020). Pavlovian conditioning under partial reinforcement: The effects of non-reinforced trials versus cumulative CS duration. The Journal of Experimental Psychology: Animal Learning & Cognition, 46, 256-272.

      Harris, J. A., Kwok, D. W. S., & Gottlieb, D. A. (2019). The partial reinforcement extinction effect depends on learning about nonreinforced trials rather than reinforcement rate. Journal of Experimental Psychology: Animal Behavior Learning and Cognition, 45(4). doi:10.1037/xan0000220

      Jeong, H., Taylor, A., Floeder, J. R., Lohmann, M., Mihalas, S., Wu, B., . . . Namboodiri, V. M. K. (2022). Mesolimbic dopamine release conveys causal associations. Science. doi:10.1126/science.abq6740

      Kheifets, A., Freestone, D., & Gallistel, C. R. (2017). Theoretical Implications of Quantitative Properties of Interval Timing and Probability Estimation in Mouse and Rat. Journal of the Experimental Analysis of Behavior, 108(1), 39-72. doi:doi.org/10.1002/jeab.261

      Kheifets, A., & Gallistel, C. R. (2012). Mice take calculated risks. Proceedings of the National Academy of Science, 109, 8776-8779. doi:doi.org/10.1073/pnas.1205131109

      Mallea, J., Schulhof, A., Gallistel, C. R., & Balsam, P. D. (2024 in press). Both probability and rate of reinforcement can affect the acquisition and maintenance of conditioned responses. Journal of Experimental Psychology: Animal Learning and Cognition.

      Mellgren, R. (2012). Partial reinforcement extinction effect. In N. M. Seel (Ed.), Encyclopedia of the Sciences of Learning. Boston, MA: Springer.

      Niv, Y. (2009). Reinforcement learning in the brain. Journal of Mathematical Psychology, 53, 139-154.

      Niv, Y., Daw, N. D., & Dayan, P. (2005). How fast to work: response vigor, motivation and tonic dopamine. In Y. Weiss, B. Schölkopf, & J. R. Platt (Eds.), NIPS 18 (pp. 1019–1026). Cambridge, MA: MIT Press.

      Niv, Y., Daw, N. D., Joel, D., & Dayan, P. (2007). Tonic dopamine: Opportunity costs and the control of response vigor. Psychopharmacology, 191(3), 507-520.

      Niv, Y., & Montague, P. R. (2008). Theoretical and empirical studies of learning. In  (., eds), pp. , Academic Press. In P. W. e. a. Glimcher (Ed.), Neuroeconomics: Decision-Making and the Brain (pp. 329–349). New York: Academic Press.

      Niv, Y., & Schoenbaum, G. (2008). Dialogues on prediction errors. Trends in Cognitive Sciences, 12(7), 265-272. doi:10.1016/j.tics.2008.03.006

      Rescorla, R. A. (1966). Predictability and the number of pairings in Pavlovian fear conditioning. Psychonomic Science, 4, 383-384.

      Rescorla, R. A. (1968). Probability of shock in the presence and absence of CS in fear conditioning. Journal of Comparative and Physiological Psychology, 66(1), 1-5. doi:10.1037/h0025984

      Rescorla, R. A. (1969). Conditioned inhibition of fear resulting from negative CS-US contingencies. Journal of Comparative and Physiological Psychology, 67, 504-509.

      Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II (pp. 64-99). New York: Appleton-Century-Crofts.

      Rissanen, J. (1999). Hypothesis selection and testing by the MDL principle. The Computer Journal, 42, 260–269. doi:10.1093/comjnl/42.4.260

      Scott, G. K., & Platt, J. R. (1985). Model of response-reinforcement contingency. Journal of  Experimental Psychology: Animal Behavior Processes, 11(2), 152-171.

      Wagner, A. R., & Rescorla, R. A. (1972). Inhibition in Pavlovian conditioning: Appllication of a theory. In R. A. Boakes & S. Halliday (Eds.), Inhibition and learning. New York: Academic.

      Wilkes, J. T., & Gallistel, C. R. (2016). Information Theory, Memory, Prediction, and Timing in Associative Learning (original long version).

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This important study addresses how 3' splice site choice is modulated by the conserved spliceosome-associated protein Fyv6. The authors provide compelling evidence Fyv6 functions to enable selection of 3' splice sites distal to a branch point and in doing so antagonizes more proximal, suboptimal 3' splice sites. The study would be improved through a more nuanced discussion of alternative possibilities and models, for instance in discussing the phenotypic impact of Fyv6 deletion.

      We thank the editors and reviewers for their supportive comments and assessment of this manuscript. We have improved the discussion at several points as suggested by the reviewers to include discussion of alternative possibilities.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      A key challenge at the second chemical step of splicing is the identification of the 3' splice site of an intron. This requires recruitment of factors dedicated to the second chemical step of splicing and exclusion of factors dedicated to the first chemical step of splicing. Through the highest resolution cyroEM structure of the spliceosome to-date, the authors show the binding site for Fyv6, a factor dedicated to the second chemical step of splicing, is mutually exclusive with the binding site for a distinct factor dedicated to the first chemical step of splicing, highlighting that splicing factors bind to the spliceosome at a specific stage not only by recognizing features specific to that stage but also by competing with factors that bind at other stages. The authors further reveal that Fyv6 functions at the second chemical step to promote selection of 3' splice sites distal to a branch point and thereby discriminate against proximal, suboptimal 3' splice site. Lastly, the authors show by cyroEM that Fyv6 physically interacts with the RNA helicase Prp22 and by genetics Fyv6 functionally interacts with this factor, implicating Fyv6 in 3'SS proofreading and mRNA release from the spliceosome. The evidence for this study is robust, with the inclusion of genomics, reporter assays, genetics, and cyroEM. Further, the data overall justify the conclusions, which will be of broad interest.

      Strengths:

      (1) The resolution of the cryoEM structure of Fyv6-bound spliceosomes at the second chemical step of splicing is exceptional (2.3 Angstroms at the catalytic core; 3.0-3.7 Angstroms at the periphery), providing the best view of this spliceosomal intermediate in particular and the core of the spliceosome in general.

      (2) The authors observe by cryoEM three distinct states of this spliceosome, each distinguished from the next by progressive loss of protein factors and/or RNA residues. The authors appropriately refrain from overinterpreting these states as reflecting distinct states in the splicing cycle, as too many cyroEM studies are prone to do, and instead interpret these observations to suggest interdependencies of binding. For example, when Fyv6, Slu7, and Prp18 are not observed, neither are the first and second residues of the intron, which otherwise interact, suggesting an interdependence between 3' splice site docking on the 5' splice site and binding of these second step factors to the spliceosome.

      (3) Conclusions are supported from multiple angles.

      (4) The interaction between Fyv6 and Syf1, revealed by the cyroEM structure, was shown to account for the temperature-sensitive phenotypes of a fyv6 deletion, through a truncation analysis.

      (5) Splicing changes were observed in vivo both by indirect copper reporter assays and directly by RT-PCR.

      (6) Changes observed by RNA-seq are validated by RT-PCR.

      (7) The authors go beyond simply observing a general shift to proximal 3'SS usage in the fyv6 deletion by RNA-seq by experimentally varying branch point to 3' splice site distance experimentally in a reporter and demonstrating in a controlled system that Fyv6 promotes distal 3' splice sites.

      (8) The importance of the Fyv6-Syf1 interaction for 3'SS recognition is demonstrated by truncations of both Fyv6 and of Syf1.

      (9) In general, the study was executed thoroughly and presented clearly.

      We thank the reviewer for their recognition of the strengths of our multi-faceted approach that led to highly supported conclusions.

      Weaknesses:

      (1) Despite the authors restraint in interpreting the three states of the spliceosome observed by cyroEM as sequential intermediates along the splicing pathway, it would be helpful to the general reader to explicitly acknowledge the alternative possibility that the difference states simply reflect decomposition from one intermediate during isolation of the complex (i.e., the loss of protein is an in vitro artifact, if an informative one).

      We thank the reviewer for noticing our restraint in interpreting these structures, and we agree that the scenario described by the reviewer is a possibility. We have now explicitly mentioned this in the Discussion on lines 755-757.

      (2) The authors acknowledge that for prp8 suppressors of the fyv6 deletion, suppression may be indirect, as originally proposed by the Query and Konarska labs - that is, that defects in the second step conformation of the spliceosome can be indirectly suppressed by compensating, destabilizing mutations in the first step spliceosome. Whereas some of the other suppressors of the fyv6 deletion can be interpreted as impacting directly the second step spliceosome (e.g., because the gene product is only present in the second step conformation), it seems that many more suppressors beyond prp8 mutants, especially those corresponding to bulky substitutions, which would more likely destabilize than stabilize, could similarly act indirectly by destabilization of first step conformation. The authors should acknowledge this where appropriate (e.g., for factors like Prp8 that are present in both first and second step conformations).

      We agree that this is also a possibility and have now included this on lines 480-486.

      Reviewer #2 (Public Review):

      In this manuscript, Senn, Lipinski, and colleagues report on the structure and function of the conserved spliceosomal protein Fyv6. Pre-mRNA splicing is a critical gene expression step that occurs in two steps, branching and exon ligation. Fyv6 had been recently identified by the Hoskins' lab as a factor that aids exon ligation (Lipinski et al., 2023), yet the mechanistic basis for Fyv6 function was less clear. Here, the authors combine yeast genetics, transcriptomics, biochemical assays, and structural biology to reveal the function of Fyv6. Specifically, they describe that Fyv6 promotes the usage of distal 3'SSs by stabilizing a network of interactions that include the RNA helicase PRP22 and the spliceosome subunit SYF1. They discuss a generalizible mechanism for splice site proofreading by spliceosomsal RNA helicases that could be modulated by other, regulatory splicing factors.

      This is a very high quality study, which expertly combines various approaches to provide new insights into the regulation of 3'SS choice, docking, and undocking. The cryo-EM data is also of excellent quality, which substantially extends on previous yeast P complex structures. This is also supported by the authors use of the latest data analysis tools (Relion-5, AlphaFold2 multimer predictions, Modelangelo). The authors re-evaluate published EM densities of yeast spliceosome complexes (B*, C,C*,P) for the presence or absence of Fyv6, substantiate Fyv6 as a 2nd step specific factor, confirm it as the homolog of the human protein FAM192A, and provide a model for how Fyv6 may fit into the splicing pathway. The biochemical experiments on probing the splicing effects of BP to 3'SS distances after Fyv6 KO, genetic experiments to probe Fyv6 and Syf1 domains, and the suppressor screening add substantially to the study and are well executed. The manuscript is clearly written and we particularly appreciated the nuanced discussions, for example for an alternative model by which Prp22 influences 3'SS undocking. The research findings will be of great interest to the pre-mRNA splicing community.

      We thank the reviewer for their positive comments on our manuscript.

      We have only few comments to improve an already strong manuscript.

      Comments:

      (1) Can the authors comment on how they justify K+ ion positions in their models (e.g. the K+ ion bridging G-1 and G+1 nucleotides)? How do they discriminate e.g. in the 'G-1 and G+1' case K+ from water?

      The assignment of K+ at this position is justified by both longer coordination distances and relatively high cryo-EM density compared to structured water molecules in the same vicinity. We have added a panel to figure3-figure supplement 4C to show the density for the G-1/G+1 bridging K+ ion and to show the adjacent density for putative water molecules which coordinate the ion. The K+ ion density is larger and has stronger signal than the adjacent water molecules. The coordination distances are also longer than would be expected for a Mg2+. For these reasons and because K+ was present in the purification buffer, we modelled the density as K+.

      (2) The authors comment on Yju2 and Fyv6 assignments in all yeast structures except for the ILS. Can the authors comment on if they have also looked into the assignment of Yju2 in the yeast ILS structure in the same manner? While it is possible that Fyv6 could dissociate and Yju2 reassociate at the P to ILS transition, this would merit a closer look given that in the yeast P complex Yju2 had been misassigned previously.

      We thank the reviewer for pointing out this very interesting topic! We have used ModelAngelo to analyze the S. cerevisiae ILS structure for support of density assignment as Yju2 (and not Fyv6). This analysis supports the assignment as Yju2 in this structure and we have no evidence to doubt its presence in those particular purified spliceosomes. We have updated Figure 4- figure supplement 1B accordingly.

      That being said, we do think that this issue should be studied more carefully in the future. The S. cerevisiae ILS structure (5Y88) was determined by purifying spliceosome complexes with a TAP-tag on Yju2. So the conclusion that Yju2 is part of the ILS spliceosome involves some circular logic: Yju2 is part of ILS spliceosome complexes because it is present in ILS complexes purified with Yju2. We also note that Yju2 was absent in ILS complexes recently determined from metazoans by the Plaschka group.  We have added some additional nuance to the Discussion to raise this important mechanistic point at lines 711-718.

      (3) For accessibility to a general reader, figures 1c, d, e, 2a, b, would benefit from additional headings or labels, to immediately convey what is being displayed. It is also not clear to us if Fig 1e might fit better in the supplement and be instead replaced by Supplementary Figure 1a (wt) , b (delta upf1), and a new c (delta fyv6) and new d (delta upf1, delta fyv6). This may allow the reader to better follow the rationale of the authors' use of the Fyv6/Upf1 double deletion.

      We thank the reviewer for the suggestion and have updated Figures 1 C-E to include additional information in the headings and labels. We have not changed the labels in Figures 2A, B but have added additional clarifying language to the legend.

      In terms of rearranging the figures, we thank the reviewer for the suggestion but have decided that the figures are best left in their current ordering.

      (4) The authors carefully interpret the various suppressor mutants, yet to a general reader the authors may wish to focus this section on only the most critical mutants for a better flow of the text.

      We thank the reviewer for this suggestion. While this section of the manuscript does contain (to quote Reviewer #3) “extensive new information regarding functional interactions”, it was a bit long. We have reduced this section of the manuscript by ~200 words for a more focused presentation for general readers.

      Reviewer #3 (Public Review):

      In this manuscript the authors expand their initial identification of Fyv6 as a protein involved in the second step of pre-mRNA splicing to investigate the transcriptome-wide impact of Fyv6 on splicing and gain a deeper understanding of the mechanism of Fyv6 action.

      They first use deep sequencing of transcripts in cells depleted of Fyv6 together with Upf1 (to limit loss of mis-spliced transcripts) to identify broad changes in the transcriptome due to loss of Fyv6. This includes both changes in overall gene expression, that are not deeply discussed, as well as alterations in choice of 3' splice sites - which is the focus of the rest of the manuscript

      They next provide the highest resolution structure of the post-catalytic spliceosome to date; providing unparalleled insight into details of the active site and peripheral components that haven't been well characterized previously.

      Using this structure they identify functionally critical interactions of Fyv6 with Syf1 but not Prp22, Prp8 and Slu7. Finally, a suppressor screen additionally provides extensive new information regarding functional interactions between these second step factors.

      Overall this manuscript reports new and essential information regarding molecular interactions within the spliceosome that determine the use of the 3' splice site. It would be helpful, especially to the non-expert, to summarize these in a table, figure or schematic in the discussion.

      We thank the reviewer for the positive comments and suggestions. We did include a summary figure in panel 7H. However, it was a bit buried. To highlight the summary figure more clearly, we have moved panel 7H to its own figure (Fig. 8).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The resolution of some panels is poor, nearly illegible (e.g., Supp Fig 1A, B).

      The resolution of panels in supplemental figure 1 has been increased. However, this may be an artifact of the PDF conversion process. We will pay attention to this during the publication process.

      (2) Panel S6B: 6HYU is a structure of DHX8, not DDX8

      We have corrected DDX8 to DHX8 in Supplemental Fig. S6D and associated figure legend.

      (3) The result that Syf1 truncations can suppress the Fyv6 deletion is impressive. The subsequent discussion seems muddled. A discussion of Fyv6 binding at the first step, instead of Yju2, doesn't seem relevant here (though worthy of consideration in the discussion), given that the starting mutation is the Fyv6 deletion. Further, conjuring rebinding of Yju2 based on the data in the paper seems unnecessarily speculative (assumes that biochemical state III is on pathway), unless I am unaware of some other evidence for such rebinding. Instead, a simpler explanation would seem to be that in the absence of Fyv6, Syf1 inappropriately binds Yju2 instead at the second step and that deletion of the common Fyv6/Yju2 binding site on Syf1 suppresses this defect. In this case, the ts phenotype of the Fyv6 deletion would result from inappropriate binding of Yju2, and the splicing defect would be due to loss of Fyv6 activity. Alternatively, especially considering the work of the labs of Query and Konarska, the authors should consider the possibility that i) the Fyv6 deletion destabilizes the second step conformation, shifting an equilibrium to the first step conformation, and that ii) the Syf1 truncation destabilizes binding of Yju2, thereby restoring the equilibrium. In this case the ts phenotype of the Fyv6 deletion is due to a disturbed equilibrium and the splicing defect is due to the failure of Fyv6 to function at the second step.

      We believe the reviewer is specifically referencing the final paragraph of this Results section (the paragraph that comes just before the section “Mutations in many different splicing factors…”). In retrospect, we agree that our discussion was convoluted. In particular, we emphasized rebinding of Yju2 based on its presence in the cryo-EM structure of the yeast ILS complex. However, given some uncertainties about whether or not Yju2 is a bona fide ILS component (as discussed above). We don’t think it is appropriate to over-emphasize rebinding of Yju2 and have decided to incorporate the elegant mechanisms proposed by the reviewer. This paragraph has now been edited accordingly (lines 386-395).

      (4) The authors imply they have performed biochemical studies, which I think is misleading. Of course, RT-PCR and primer extension assays for example are performed in vitro, but these are an analysis of RNA events that occurred in vivo. In my view a higher threshold should be used for defining "biochemistry". To me "biochemistry" would imply that the authors have, for example, investigated 3' splice site usage in splicing extracts of the fyv6 deletion or engaged in an analysis of the Syf1-Fyv6 interaction involving the expression of the interacting domains in bacteria followed by a binding analysis in the test tube.

      We disagree with the reviewer on this point. Biochemistry is defined as the “branch of sciences concerned with the chemical substances, reactions, and physico chemical processes which occur within living organisms; biological or physical chemistry.” (Oxford English Dictionary). Biochemical studies are not defined by whether or not they take place in vitro, in vivo, or even in silico. Indeed, much of the history of biochemistry (especially in studies of metabolism, for example) involved experiments occurring in vivo that reported on the molecular properties and mechanisms of biological processes. We think many of our experiments fall into this category including our structure/function analysis of splicing factors and the use of the ACT1-CUP1 reporter substrate.

      (5) The monovalents are shown; inositol phosphate is shown; is the binding of Prp22 to RNA shown?

      We have added a panel to Figure 3-figure supplement 4D showing density for the 3' exon within Prp22.

      (6) The authors invoke undocking of the 3'SS in the P complex. Where is the 3'SS in the ILS? The author's model predicts: undocked.

      In all ILS structures to date, the 3′ SS is undocked, in agreement with this prediction. We have now noted this observation in line 760.

      (7) Would be helpful to show fyv6 deletion in Fig 1b.

      We have included growth data for an additional fyv6 deletion strain (in a cup1Δ background) in Figure 1b. The results are quite similar to the upf1_Δ_ background except with slightly worse growth at 23°C.

      Reviewer #2 (Recommendations For The Authors):

      Minor comments

      (1) Fig.3b is the arrow indicating the right rotation?

      This typo has been fixed.

      (2) Fig.4b, panel H is annotated, which should read 'F'.

      This typo has been fixed.

      (3) Line 178: "Finally, we analyzed the sequence features of the alternative 3ʹ SS activated by loss of Fyv6." We would suggest 'used after' instead of 'activated by'.

      We have replaced ‘activated by’ with ‘with increased use after’.

      (4) In Line 544, the authors speculate on a Slu7 requirement for 3'SS docking and on 3'SS docking maintenance. In the results section (Line 265) they however only mention the latter possibility. These statements should be consistent.

      We thank the reviewer for pointing this out. We have added a reference to docking maintenance to the results section at line 325.

      (5) Line 476: "Unexpectedly, Prp22 I1133R was actually deleterious when Fyv6 was present for this reporter." We suggest removing "actually".

      We have removed ‘actually’.

      (6) The authors describe the observed changes in splicing events in absolute numbers (e.g. in Fig 1c). To better assess for the reader whether these numbers reflect large or small effects of Fyv6 in defining mRNA isoforms, it would be more useful to state these as percent changes of total events or to provide a reference number for how many introns are spliced in S.c. See for example the statements in Lines 132 and 145.

      We have added a percentage at line 138 that indicates ~20% of introns in yeast showed splicing changes.

      Reviewer #3 (Recommendations For The Authors):

      Do the authors have a proposed explanation for the observed DGE in non-intron containing genes in the Fyv6 depleted cells?

      The simplest explanation is that this is an indirect effect due to splicing changes occurring in other genes (such as transcription factors, ribosomal protein genes, etc..). It is possible that this can be further dissected in the future using shorter-term knockdown of Fyv6 using Anchors Away or AID-tagging. However, that is beyond the scope of the current manuscript, and we do not wish to comment on these non-intron containing genes further at present.

      Figure 2A - What is going on with the events that show no FAnS value under one condition (i.e. are up against the X or Y axis)? These are of interest as most on the Y- axis are blue.

      The events along one of the axes denote alternative splice sites that are only detected under one condition (either when Fyv6 is present or when it is absent). At this stage, we do not wish to interpret these events further since most have a relatively low number of reads overall.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This study reports single-cell RNA sequencing results of lung adenocarcinoma, comparing 4 treatment-naive and 5 post-neoadjuvant chemotherapy tumor samples.<br /> The authors claim that there are metabolic reprogramming in tumor cells as well as stromal and immune cells after chemotherapy.

      The most significant findings are in the macrophages that there are more pro-tumorigenic cells after chemotherapy, i.e. CD45+CD11b+ARG+ cells. In the treatment-naive samples, more anti-tumorigenic CD45+CD11b+CD86+ macrophages are found. They sorted each population and performed functional analyses.

      Strengths:

      Comparison of the treatment-naive and post-chemotherapy samples of lung adenocarcinoma.

      Weaknesses:

      (1) Lengthy descriptive clustering analysis, with indistinct direct comparisons between the treatment-naive and the post-chemotherapy samples.

      Thank you for your detailed review and valuable feedback. We have simplified the descriptive clustering analysis by removing redundant parts and retaining only the key content relevant to our findings. This should help readers to more easily grasp and focus on the main results.

      (2) No statistical analysis was performed for the comparison.

      We appreciate your constructive feedback and are committed to improving our research methodology and reporting to enhance the scientific rigor of our studies.

      (3) Difficult to match data to the text.

      Thank you for your feedback. We understand that there were difficulties in matching the data to the text. We have reviewed the manuscript carefully to ensure that all data points are clearly linked to the corresponding sections in the text.

      (4) ARG1 is a cytosolic enzyme that can be detected by intracellular staining after fixation. It is unclear how the staining and sorting was performed to measure function of sorted cells.

      We apologize for the error caused by miscommunication within our research team. We are currently using both ARG1 and CD206 antibodies in our studies. Due to a communication error, the technician mistakenly assumed ARG1 was another name for CD206 (MRC1), resulting in the incorrect labeling of CD206 as ARG1 in our experimental records. In reality, we used the CD206 antibody, which is consistent with the same surface marker shown in figure 6e. We have made corrections in the manuscript and experimental figures. Thank you for pointing this out, and we regret any misunderstanding this may have caused.

      Reviewer #2 (Public Review):

      In this study, Huang et al. performed a scRNA-seq analysis of lung adenocarcinoma (LUAD) specimens from 9 human patients, including 5 who received neoadjuvant chemotherapy (NCT), and 4 without treatment (control). The new data was produced using 10 × Genomics technology and comprises 83622 cells, of which 50055 and 33567 cells were derived from the NCT and control groups, respectively. Data was processed via R Seurat package, and various downstream analyses were conducted, including CNV, GSVA, functional enrichment, cell-cell interaction, and pseudotime trajectory analyses. Additionally, the authors performed several experiments for in vitro and in vivo validation of their findings, such as immunohistochemistry, immunofluorescence, flow cytometry, and animal experiments.

      The study extensively discusses the heterogeneity of cell populations in LUAD, comparing the samples with and without chemotherapy. However, there are several shortcomings that diminish the quality of this paper:

      • The number of cells included in the dataset is limited, and the number of patients from different groups is low, which may reduce the attractiveness of the dataset for other researchers to reuse. Additionally, there is no metadata on patients' clinical characteristics, such as age, sex, history of smoking, etc., which would be valuable for future studies.

      Thank you for your insightful feedback. We recognize that the limited number of cells and the small number of patients from different groups in our dataset may affect its appeal for reuse by other researchers. Additionally, we acknowledge the absence of metadata on patients' clinical characteristics, such as age, sex, and smoking history, which would indeed be valuable for future studies. We have compiled statistics on the patient's metadata and other information in the Supplementary Table 2.

      We appreciate your suggestions and will consider incorporating these aspects in future research to enhance the dataset's utility and attractiveness.

      • Several crucial details about the data analysis are missing: How many PCs were used for reduction? Which versions of Seurat/inferCNV/other packages were used? Why monocle2 was used and not monocle3 or other packages? Also, the authors use R version 3.6.1, and the current version is 4.3.2.

      Thank you for your detailed review and valuable suggestions. Below are our responses to the points you raised:

      Principal Components (PCs) Used for Reduction: We used the first 20 principal components (PCs) for dimensionality reduction. This choice was based on preliminary tests showing that 20 PCs captured the major variation in our data effectively.

      Versions of Packages: The versions of the packages used are as follows:

      Seurat: Version 4.0.1

      inferCNV: Version 1.18.1

      monocle2: Version 2.14.0

      Choice of monocle2 over monocle3 or Other Packages: We chose monocle2 because it performed better on our specific dataset, and its algorithms suited our research needs. Additionally, we are more familiar with the functionalities and outputs of monocle2, which allowed us to better interpret and apply the results.

      R Version: We used R version 3.6.1 at the beginning of our study to ensure consistency and reproducibility throughout the analysis. Although the current version of R is 4.3.2, we maintained the same version throughout our research. We will consider upgrading to the latest version of R and re-testing for compatibility and performance in future studies.

      We appreciate your attention to these details and will include this information in the revised manuscript.

      • It seems that the authors may lack a fundamental understanding of scRNA-seq data processing and the functions of Seurat. For instance, they state, 'Next, we classified cell types through dimensional reduction and unsupervised clustering via the Seurat package.' However, dimensional reduction and unsupervised clustering are not methods for cell classification. Typically, cell types are classified using marker genes or other established methods.

      Thank you for your insightful comments. We appreciate your guidance on the proper understanding and application of scRNA-seq data processing and the functions of Seurat.

      You are correct in noting that dimensional reduction and unsupervised clustering are not methods for cell classification. We apologize for the confusion in our original statement. What we intended to convey was that we performed dimensional reduction and unsupervised clustering using the Seurat package as preliminary steps in our analysis. Following these steps, we classified cell types based on established marker genes.

      "Therefore, to identify subclusters within each of these nine major cell types, we performed principal component analysis" (Line 127). Principal component analysis is a method for dimensionality reduction, not cell clustering.

      The authors did not mention the normalization or scaling of the data, which are crucial steps in scRNA-seq data preprocessing.

      Thank you for your insightful comments. We apologize for any confusion caused by our description in the manuscript. You are correct that principal component analysis (PCA) is primarily a method for dimensionality reduction rather than cell clustering. To clarify, we used PCA to reduce the dimensionality of our single-cell RNA-seq (scRNA-seq) data, which is a preliminary step before clustering the cells.

      In the revised manuscript, we have provided a more detailed description of our data preprocessing pipeline, including the normalization and scaling steps that are indeed crucial for scRNA-seq data analysis. Specifically, we performed the following steps:

      Normalization: We normalized the gene expression data to account for differences in sequencing depth and other technical variations.

      Scaling: We scaled the normalized data to ensure that each gene contributes equally to the PCA, which mitigates the effect of highly variable genes dominating the analysis.

      Following these preprocessing steps, we conducted PCA to reduce the dimensionality of the data, which facilitated the subsequent clustering of cells into subclusters.

      We hope this addresses your concerns, and we appreciate your valuable feedback that helped us improve the clarity and accuracy of our manuscript.

      • Numerous style and grammar mistakes are present in the main text. For instance, certain sections of the methods are written in the present tense, suggesting that parts of a protocol were copied without text editing. Furthermore, some sections of the introduction are written in the past tense when the present tense would be more suitable. Clusters are inconsistently referred to by numbers or cell types, leading to confusion. Additionally, the authors frequently use the term "evolution" when describing trajectory analysis, which may not be appropriate. Overall, significant revisions to the main text are required.

      Thank you for your detailed review and valuable feedback on our manuscript. We highly appreciate your suggestions and have made the following revisions to address the issues you pointed out:

      Tense Consistency: We have thoroughly reviewed and corrected the use of tenses throughout the manuscript. The Methods section now consistently uses the past tense, while the Introduction section uses the present tense where appropriate, ensuring coherence and consistency.

      Cluster Naming Consistency: We have standardized the naming conventions for clusters, consistently using either numbers or cell types to avoid any confusion.

      Appropriate Terminology: We have reviewed our use of the term "evolution" in the context of trajectory analysis. Where necessary, we have replaced it with more accurate terms such as "trajectory progression" or "developmental pathway" to better convey the intended meaning.

      • Some figures are not mentioned in order or are not referenced in the text at all, such as Figure 5l (where it is also unclear how the authors selected the root cells). Additionally, many figures have text that is too small to be read without zooming in. Overall, the quality of the figures is inconsistent and sometimes very poor.

      Thank you for your detailed review and valuable feedback on our manuscript. We have addressed the issues you raised as follows:

      Unreferenced Figures in the Text:

      We acknowledge the oversight regarding Figure 5l not being mentioned in the text. In the revised version, we will ensure that all figures are properly referenced and discussed within the relevant sections of the manuscript.

      Text Size in Figures:

      We understand the difficulty in reading small text within the figures. We will redesign all figures to ensure that text and annotations are legible at normal viewing sizes. This will involve increasing the resolution and text size in all figures to enhance readability.

      Inconsistent Quality of Figures:

      To address the inconsistency in figure quality, we will standardize the formatting of all figures and ensure they meet a high standard of clarity and presentation. This will improve the overall visual quality and professionalism of the manuscript.

      The results section lacks clarity on several points:<br /> • The authors state that "myofibroblasts exclusively originated from the control group". However, pathways up-regulated in myofibroblasts (such as glycolysis) were enhanced after chemotherapy, as indicated by GSVA score. Similarly, why are some clusters of TAMs from the control group associated with pathways enriched in chemotherapy group?

      Thank you for your insightful comments and questions regarding our manuscript. We appreciate the opportunity to clarify these points.

      Regarding the statement that "myofibroblasts exclusively originated from the control group," we acknowledge the confusion and would like to provide a more detailed explanation. While the initial identification indicated that myofibroblasts were predominantly found in the control group, subsequent analyses, including the Gene Set Variation Analysis (GSVA), revealed that certain pathways up-regulated in myofibroblasts, such as glycolysis, were indeed enhanced following chemotherapy. This suggests that chemotherapy may induce or enhance specific functional states in these cells that are not initially apparent from their origin alone.

      Similarly, the observation that some clusters of Tumor-Associated Macrophages (TAMs) from the control group are associated with pathways enriched in the chemotherapy group can be explained by the dynamic nature of cellular responses to treatment. TAMs, like other immune cells, can exhibit plasticity and adapt to the tumor microenvironment altered by chemotherapy. This plasticity may result in the activation of pathways typically associated with a chemotherapy response, even in cells originating from the control group.

      We will revise the manuscript to better articulate these findings and include additional data to support our explanations. This will help clarify the observed discrepancies and provide a more comprehensive understanding of the cellular dynamics in response to chemotherapy.

      • Further explanation is necessary regarding the distinctions between malignant and non-malignant cells, as well as regarding the upregulation of metabolism-related pathways in fibroblasts from the NCT group. Additionally, clarification is needed regarding why certain TAMs from the control group are associated with pathways enriched in the chemotherapy group.

      Thank you for your detailed review and for highlighting the areas that require further clarification. We appreciate the opportunity to provide additional explanations and improve our manuscript.

      We recognize the need to more clearly differentiate between malignant and non-malignant cells in our manuscript. We will include additional details on the criteria and markers used to distinguish these cell types. Specifically, we will elaborate on the molecular and phenotypic characteristics that were used to identify malignant cells, such as specific genetic mutations, aberrant signaling pathways, and distinct cell surface markers, as opposed to those used for identifying non-malignant cells.

      As mentioned above, the association of certain TAMs from the control group with pathways enriched in the chemotherapy group can be attributed to the inherent plasticity and adaptability of TAMs. We will provide a more detailed explanation of how TAMs can exhibit different functional states based on microenvironmental cues. This will include a discussion on the potential pre-existing heterogeneity within TAM populations and how even in the absence of direct chemotherapy exposure, some TAMs may display pathway activities similar to those seen in the chemotherapy group due to microenvironmental influences or intrinsic properties.

      • In the section titled 'Chemo-driven Pro-mac and Anti-mac Metabolic Reprogramming Exerted Diametrically Opposite Effects on Tumor Cells': The markers selected to characterize the anti- and pro-macrophages are commonly employed for describing M1 or M2 polarization. It is uncertain whether this new classification into anti- and pro-macrophages is necessary. Additionally, it should be noted that pro-macrophages are anti-inflammatory, while anti-macrophages are pro-inflammatory, which could lead to confusion. M2 macrophages are already recognized for their role in stimulating tumor relapse after chemotherapy.

      Thank you for your feedback. We appreciate the opportunity to clarify the rationale behind our terminology and the focus on functional phenotypic changes in macrophages before and after chemotherapy.

      Our intention in introducing the terms "pro-macrophages" and "anti-macrophages" was to highlight the distinct functional phenotypic changes in macrophages observed before and after chemotherapy. These terms were chosen to emphasize the functional roles these macrophages play in the tumor microenvironment in response to chemotherapy, rather than strictly adhering to the conventional M1/M2 polarization paradigm.

      We acknowledge that M2 macrophages are well-documented in stimulating tumor relapse after chemotherapy. Our use of "pro-macrophages" is intended to build on this established knowledge by providing a more nuanced understanding of their role in the post-chemotherapy tumor microenvironment. Similarly, "anti-macrophages" highlight the macrophages' role in mounting an anti-tumor response.

      • The authors suggest that there is "reprogramming of CD8+ cytotoxic cells" following chemotherapy (Line 409). It remains unclear whether they imply the reprogramming of other CD8+ T cells into cytotoxic cells. While it is indicated that cytotoxic cells from the control group differ from those in the NCT group and that NCT cytotoxic T cells exhibit higher cytotoxicity, the authors did not assess the expression of NK and NK-like T cell markers (aside from NKG7), which may possess greater cytotoxic potential than CD8+ cytotoxic cells. This could also elucidate why cytotoxic cells from the NCT and control groups are positioned on separate branches in trajectory analysis. Overall, with 22.5k T cells in the dataset, only 3 subtypes were identified, suggesting a need for improved cell annotations by the authors.

      Thank you for your valuable feedback regarding the classification and characterization of CD8+ cytotoxic cells following chemotherapy, and the need for improved cell annotations.

      We appreciate your point on the potential ambiguity around the "reprogramming of CD8+ cytotoxic cells" post-chemotherapy. In our study, we observed that CD8+ T cells from the control and NCT groups differ significantly in their cytotoxic profiles, with the NCT group's cytotoxic T cells displaying enhanced cytotoxicity. However, we did not imply the reprogramming of other CD8+ T cells into cytotoxic cells. Instead, our findings suggest a shift in the functional state of existing CD8+ cytotoxic cells, driven by chemotherapy, which aligns with the upregulation of genes associated with cytotoxic functions.

      We acknowledge that the expression of NK and NK-like T cell markers (apart from NKG7) was not comprehensively assessed. We agree that these markers may possess greater cytotoxic potential and could elucidate the separation observed in the trajectory analysis between cytotoxic cells from the NCT and control groups. This distinction may be attributed to differential cytotoxic potentials and functional states induced by chemotherapy.

      Furthermore, with 22,530 T cells in the dataset, only three subtypes were initially identified. We recognize the need for more refined cell annotations to capture the full spectrum of T cell diversity. This could involve a deeper analysis of additional markers to distinguish between various cytotoxic populations, including NK and NK-like T cells, and their respective roles in the tumor microenvironment post-chemotherapy.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I would recommend simplifying the manuscript and focusing on the differences between the treatment-naive and post-chemotherapy samples.

      Thank you for your valuable feedback on our manuscript. We greatly appreciate your suggestions and have carefully considered the proposed modifications.

      Upon re-evaluating our manuscript, we believe that the current structure and content most effectively convey our research findings. Our study aims to not only compare the treatment-naive and post-chemotherapy samples but also to highlight several important secondary findings that are integral to the overall research.

      Nevertheless, we understand your recommendation to simplify the manuscript. To address this, we have made some subtle adjustments to improve the readability and conciseness of the text. Additionally, we have included a section in the discussion that more explicitly highlights the differences between the treatment-naive and post-chemotherapy samples.

      IRB number for the human sample collection as well as animal experiments need to be provided.

      Thank you for your thorough review and for highlighting the need for the inclusion of the IRB number for the human sample collection and animal experiments.

      We apologize for this oversight and appreciate your attention to this important detail. The Institutional Review Board (IRB) approval number for the human sample collection is [B2019-436].

      This number has been added to the Methods section of our revised manuscript to ensure compliance with ethical standards and to provide transparency for our research.

      I put a question on the macrophage sorting experiment in the public review. Please clarify how the ARG1 staining was achieved with the preservation of cell viability.

      We apologize for the error caused by miscommunication within our research team. We are currently using both ARG1 and CD206 antibodies in our studies. Due to a communication error, the technician mistakenly assumed ARG1 was another name for CD206 (MRC1), resulting in the incorrect labeling of CD206 as ARG1 in our 0experimental records. In reality, we used the CD206 antibody, which is consistent with the same surface marker shown in figure 6e. We have made corrections in the manuscript and experimental figures. Thank you for pointing this out, and we regret any misunderstanding this may have caused.

      Reviewer #2 (Recommendations For The Authors):

      Minor comments:

      • Line 65- "Chemotherapy drugs, however, are very toxic and are prone to invalid". Line 75-77: "This heterogeneity in the TME includes the differences between tumor cells and tumor cells and the differences between various stromal cells and immune cells. Actively exploring the changes of multiple cells in the TME of LUAD after chemotherapy may finally find an excellent way to overcome chemotherapy resistance for LUAD." Please rewrite these parts.

      Thank you for your valuable comment. We have revised the manuscript according to your suggestion:

      Original (Line 65): "Chemotherapy drugs, however, are very toxic and are prone to invalid." Revised: "However, chemotherapy drugs are highly toxic and can often become ineffective."

      Original (Line 75-77): "This heterogeneity in the TME includes the differences between tumor cells and tumor cells and the differences between various stromal cells and immune cells. Actively exploring the changes of multiple cells in the TME of LUAD after chemotherapy may finally find an excellent way to overcome chemotherapy resistance for LUAD."

      Revised: "The heterogeneity within the tumor microenvironment (TME) encompasses not only the variations between different tumor cells but also among various stromal and immune cell types. Investigating the dynamic changes in multiple cell populations within the TME of LUAD following chemotherapy may provide crucial insights into overcoming chemotherapy resistance in LUAD."

      • Line 87: "The internal processes of the cells respectively drive immune cells and cancer cells to obtain glucose and glutamine preferentially."-> The internal metabolic changes in the cells drive...

      Thank you for your valuable comment. We have revised the manuscript according to your suggestion:

      Original (Line 87): "The internal processes of the cells respectively drive immune cells and cancer cells to obtain glucose and glutamine preferentially."

      Revised: "The internal metabolic changes in the cells drive immune cells and cancer cells to preferentially obtain glucose and glutamine."

      • Line 93: "an essential feature that affects the effect of chemotherapy"-> an essential feature that affects chemotherapy.

      Thank you for your valuable comment. We have revised the manuscript according to your suggestion:

      Original (Line 93): "Metabolic reprogramming in various cell types in the tumor microenvironment after undergoing chemotherapy may be an essential feature that affects the effect of chemotherapy."

      Revised: "Metabolic reprogramming in various cell types in the tumor microenvironment after undergoing chemotherapy may be an essential feature that affects chemotherapy."

      • Line 84: What do the immune cells depend on glucose for?

      Thank you for your valuable comment. We have revised the manuscript according to your suggestion:

      Original (Line 84): "However, recent studies have shown that tumor-infiltrating immune cells depend on glucose and immune cells especially macrophages consume more glucose than malignant cells."

      Revised: "However, recent studies have shown that tumor-infiltrating immune cells rely on glucose for their energy needs and functionality, with immune cells, particularly macrophages, consuming more glucose than malignant cells."

      • Line 223: "According to previous research, myofibroblast has been described"-> myofibroblasts have been described.

      Thank you for your valuable comment. We have revised the manuscript according to your suggestion:

      Original (Line 223): "According to previous research, myofibroblast has been described as a cancer-associated fibroblast that participated in extensive tissue remodeling, angiogenesis, and tumor progression."

      Revised: "According to previous research, myofibroblasts have been described as cancer-associated fibroblasts that participate in extensive tissue remodeling, angiogenesis, and tumor progression."

      • Line 239: "Considering the essential fibroblasts"-> Considering the essential role of fibroblasts.

      Thank you for your valuable comment. We have revised the manuscript according to your suggestion:

      Original (Line 239): "Considering the essential fibroblasts and their complicated function in shaping the tumor microenvironment..."

      Revised: "Considering the essential role of fibroblasts and their complicated function in shaping the tumor microenvironment..."

      • Line 251: "Further in vitro studies were required to elucidate these notable fibroblasts' potential function..." -> are required.

      Thank you for your valuable comments. We have revised the manuscript according to your suggestions:

      Original (Line 251): "Further in vitro studies were required to elucidate these notable fibroblasts' potential function..."

      Revised: "Further in vitro studies are required to elucidate these notable fibroblasts' potential function..."

      • Line 309: "Interestingly, we found that two subtypes, Anti-mac and Mix, can be converted to Pro-mac through pseudotime time analysis." -> via trajectory analysis we found that two subtypes...

      Thank you for your valuable comments. We have revised the manuscript according to your suggestions:

      Original (Line 309): "Interestingly, we found that two subtypes, Anti-mac and Mix, can be converted to Pro-mac through pseudotime time analysis."

      Revised: "Interestingly, via trajectory analysis we found that two subtypes, Anti-mac and Mix, can be converted to Pro-mac."

      • Line 458: "the interactions between malignant and macrophages"-> the interactions between malignant cells and macrophages.

      Thank you for your valuable comments. We have revised the manuscript according to your suggestions:

      Original (Line 458): "the interactions between malignant and macrophages"

      Revised: "the interactions between malignant cells and macrophages."

      • Line 486: "The 5-year survival rate is still gloomy" -> The 5-year survival rate is still low.

      Thank you for your valuable comments. We have revised the manuscript according to your suggestions:

      Original (Line 486): "The 5-year survival rate is still gloomy."

      Revised: "The 5-year survival rate is still low."

      • Line 491: "More and more efforts are devoted to targeted metabolism to overcome chemoresistance" -> More efforts are devoted to target cell metabolism...

      Thank you for your valuable comments. We have revised the manuscript according to your suggestions:

      Original (Line 491): "More and more efforts are devoted to targeted metabolism to overcome chemoresistance."

      Revised: "More efforts are devoted to targeting cell metabolism to overcome chemoresistance."

      • Line 594: "Repeat the above steps twice" -> This procedure was repeated twice.

      Thank you for your valuable comments. We have revised the manuscript according to your suggestions:

      Original (Line 594): "Repeat the above steps twice."

      Revised: "This procedure was repeated twice."

      • Line 620: How were the new potential markers verified? List the exact genes and experiments or a reference to a Figure.

      Thank you for your valuable comments. We have provided detailed information on how the new potential markers were verified, including the exact genes involved and the specific experiments conducted. A reference to the relevant Figure has also been added to the manuscript.

      • Line 637: Which immune cells were used as a background in CNV analysis? All immune cells or just T cells?

      Thank you for your valuable comments. In this study, all immune cells were used as background control cells.

      • Line 658: in a single cell

      Thank you for your valuable comments. We have revised the manuscript according to your suggestions.

      • Line 672: "a variety of environmental factors potentially affect" -> potentially affects/ may potentially affect.

      Thank you for your valuable comments. We have revised the manuscript according to your suggestions:

      Original (Line 672): "a variety of environmental factors potentially affect"

      Revised: "A variety of environmental factors may potentially affect"

      • Line 683: Which metabolites were tested?

      The metabolites tested included those related to glycolysis and oxidative phosphorylation (OXPHOS), such as glucose and various metabolites indicative of mitochondrial activity. The contents of these metabolites were analyzed to verify consistency with gene expression levels as mentioned in the analysis of metabolic pathways section.

      • Line 718: Required or acquired?

      The correct term should be "acquired" in the context of discussing drug resistance in tumor cells. The sentence likely refers to the "acquired drug resistance" of tumor cells, which is a common challenge in chemotherapy.

      • Line 726: What are the A549 cells?

      A549 cells are a human lung adenocarcinoma cell line commonly used in cancer research, particularly for studying lung cancer. In this study, A549 cells were used in animal experiments, mixed with tumor-associated macrophages (TAMs), and implanted into nude mice to study tumor formation and progression.

      • Line 631: "we set the following cut-off thresholds to reveal the marker genes of each cluster: adjusted P-value <0.01 and multiple changes >0.5." What metric is "multiple changes"? Commonly used measures are adjuster P-value and average Log2FC.

      Thank you for your valuable comment. We have revised the manuscript according to your suggestion. The term "multiple changes" was indeed a misstatement. The correct metric should be "log2 fold change (Log2FC)," which is a commonly used measure in gene expression studies. We have updated the manuscript to reflect this, using "adjusted P-value <0.01 and average Log2FC > 0.5" instead of "multiple changes > 0.5."

      • Figure 1f: "Samplied" -> Samples. What do the numbers on the left side of each column mean?

      Thank you for your valuable comment. The term "Samplied" was indeed a typographical error and has been corrected to "Samples". The numbers on the left side of each column likely represent cluster IDs or sample identifiers corresponding to the different patient samples or clusters analyzed in the study. We have clearly labeled these numbers in the figure to avoid any confusion.

      • Figure 2b: Please add a scale.

      Thank you for your valuable comment. We agree that adding a scale bar is crucial for accurately interpreting the size of the cells or structures shown in the figure. We have now included an appropriate scale bar during the figure preparation stage to provide this reference.

      • Figure 3d/4c: What is the matrix_27/3 metric? Is it average expression?

      Thank you for your valuable comment. The term "matrix_27/3" refers to a specific metric used in our analysis. This metric indeed represents the average expression levels of genes within a particular subset of the dataset. We will clarify this in the figure legend and the methods section to ensure that readers have a clear understanding of what the metric represents. Additionally, we will make sure that all such metrics are consistently and accurately described throughout the manuscript.

      • Figure 6e: Why CD206 staining is shown instead of ARG if ARG was chosen as the main gene for classification of Pro-macrophages?

      We apologize for the confusion regarding the use of CD206 staining in Figure 6e. This issue arose due to a miscommunication within our research team. While ARG1 was initially intended as the primary marker for Pro-macrophages, the technician mistakenly assumed ARG1 was another name for CD206 (MRC1), leading to the incorrect labeling of CD206 as ARG1 in our experimental records. In actuality, CD206 was used for the staining, which is consistent with the surface marker shown in Figure 6e. We have corrected this error in the manuscript and updated the experimental figures accordingly. We sincerely apologize for any misunderstanding this may have caused and appreciate the reviewer for bringing this to our attention.

      • Figures 6h and k: Please explain why do NCT Anti-macrophages show higher glucose and lactate uptake than the Anti-macrophages from the control group, while the size of tumors is the lowest in NCT Anti-macrophages in vivo?

      Thank you for your insightful comment. The observation that NCT Anti-macrophages exhibit higher glucose and lactate uptake while the tumor size is lowest could be attributed to the metabolic reprogramming induced by chemotherapy. It is possible that the enhanced metabolic activity in Anti-macrophages, characterized by increased glucose and lactate uptake, is linked to a more aggressive anti-tumor response in the NCT group. This heightened metabolic activity could reflect an increased energy demand necessary for sustaining enhanced immune functions, ultimately contributing to the reduction in tumor size. We will expand upon this explanation in the revised manuscript to provide a clearer interpretation of these findings.

      • The supplementary Table 1 needs a better legend/more explanation.

      Thank you for your valuable feedback. We have revised the legend for Supplementary Table 1 to provide a more detailed explanation of its contents.

      • No tSNE plot showing epithelial cells colored by patient, which may be important for observation of cell heterogeneity, especially in the epithelial cell population.

      Thank you for pointing this out. We agree that a tSNE plot showing epithelial cells colored by patient would be valuable for observing cell heterogeneity within the epithelial population.

      • Several acronyms not explained in the text (for example GSVA, NMF).

      Thank you for bringing this to our attention. We have ensured that all acronyms, including GSVA (Gene Set Variation Analysis) and NMF (Non-negative Matrix Factorization), are clearly defined in the text at their first mention.

      • Availability of data and material section: Please describe "other experimental data" in more detail.

      Thank you for your suggestion. We have expanded the "Availability of Data and Material" section to provide a more detailed description of the "other experimental data" referenced. This will include specific types of data generated, their formats, and 10how they can be accessed by other researchers. This clarification will enhance transparency and facilitate the reuse of our data by the research community.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1:

      (1) Given that this is one of the first studies to report the mapping of longitudinal intactness of proviral genomes in the globally dominant subtype C, the manuscript would benefit from placing these findings in the context of what has been reported in other populations, for example, how decay rates of intact and defective genomes compare with that of other subtypes where known.  

      Most published studies are from men living with HIV-1 subtype B and the studies are not from the hyperacute infection phase and therefore a direct head-to-head comparison with the FRESH study is difficult.  However, we can cite/highlight and contrast our study with a few a few examples from acute infection studies as follows.

      a. Peluso et. al., JCI, 2020, showed that in Caucasian men (SCOPE study), with subtype B infection, initiating ART during chronic infection virus intact genomes decayed at a rate of 15.7% per year, while defective genomes decayed at a rate of 4% per year.  In our study we showed that in chronic treated participants genomes decreased at a rate of 25% (intact) and 3% (defective) per month for the first 6 months of treatment.

      b. White et. al., PNAS, 2021, demonstrated that in a cohort of African, white and mixed-race American men treated during acute infection, the rate of decay of intact viral genomes in the first phase of decay was <0.3 logs copies in the first 2-3 weeks following ART initiation. In the FRESH cohort our data from acute treated participants shows a comparable decay rate of 0.31 log copies per month for virus intact genomes.

      c. A study in Thailand (Leyre et. al., 2020, Science Translational Medicine), of predominantly HIV-1 CRF01-AE subtype compared HIV-reservoir levels in participants starting ART at the earliest stages of acute HIV infection (in the RV254/SEARCH 010 cohort) and participants initiating ART during chronic infection (in SEARCH 011 and RV304/SEARCH 013 cohorts). In keeping with our study, they showed that the frequency of infected cells with integrated HIV DNA remained stable in participants who initiated ART during chronic infection, while there was a sharp decay in these infected cells in all acutely treated individuals during the first 12 weeks of therapy.  Rates of decay were not provided and therefore a direct comparison with our data from the FRESH cohort is not possible.

      d. A study by Bruner et. al., Nat. Med. 2016, described the composition of proviral populations in acute treated (within 100 days) and chronic treated (>180 days), predominantly male subtype B cohort. In comparison to the FRESH chronic treated group, they showed that in chronic treated infection 98% (87% in FRESH) of viral genomes were defective, 80% (60% in FRESH) had large internal deletions and 14% (31% in FRESH) were hypermutated.  In acute treated 93% (48% in FRESH) were defective and 35% (7% in FRESH) were hypermutated.  The differences frequency of hypermutations could be explained by the differences in timing of infection specifically in the acute treated groups where FRESH participants initiate ART at a median of 1 day after infection.  It is also possible that sex- or race-based differences in immunological factors that impact the reservoir may play a role.  

      This study also showed that large deletions are non-random and occur at hotspots in the HIV-1 genome. The design of the subtype B IPDA assay (Bruner et. al., Nature, 2019) is based on optimal discrimination between intact and deleted sequences - obtained with a 5′ amplicon in the Ψ region and a 3′ amplicon in Envelope. This suggest that Envelope is a hotspot for large while deletions in Ψ is the site of frequent small deletions and is included in larger 5′ deletions. In the FRESH cohort of HIV-1 subtype C, genome deletions were most frequently observed between Integrase and Envelope relative to Gag (p<0.0001–0.001).

      e. In 2017, Heiner et. al., in Cell Rep, also described genetic characteristics of the latent HIV-1 reservoir in 3 acute treated and 3 chronic treated male study participants with subtype B HIV.  Their data was similar to Bruner et. al. above showing proportions of intact proviruses in participants who initiated therapy during acute/early infection at 6% (94% defective) and chronic infection at 3% (97% defective). In contrast the frequencies in FRESH in acute treated were 52% intact and 48% defective and in chronic infection were 13% intact and 87% defective.  These differences could be attributed to the timing of treatment initiation where in the aforementioned study early treatment ranged from 0.6-3.4 months after infection.

      (2) Indeed, in the abstract, the authors indicate that treatment was initiated before the peak. The use of the term 'peak' viremia in the hyperacute-treated group could perhaps be replaced with 'highest recorded viral load'. The statistical comparison of this measure in the two groups is perhaps more relevant with regards to viral burden over time or area under the curve viral load as these are previously reported as correlates of reservoir size.

      We have edited the manuscript text to describe the term peak viraemia in hyperacute treated participants more clearly (lines 443-444). We have now performed an analysis of area under the curve to compare viral burden in the two study groups and found associations with proviral DNA levels after one year. This has been added to the results section (lines 162-163).

      Reviewer #2:

      (1) Other factors also deserve consideration and include age, and environment (e.g. other comorbidities and coinfections.)

      We agree that these factors could play a role however participants in this study were of similar age (18-23), and information on co-morbidities and coinfections are not known.

      Reviewer #3:

      (1) The word reservoir should not be used to describe proviral DNA soon after ART initiation. It is generally agreed upon that there is still HIV DNA from actively infected cells (phase 1 & 2 decay of RNA) during the first 6-12 months of ART. Only after a full year of uninterrupted ART is it really safe to label intact proviral HIV DNA as an approximation of the reservoir. This should be amended throughout.

      We agree and where appropriate have amended the use of the word reservoir to only refer to the proviral load after full viral suppression, i.e., undetectable viral load.

      (2) All raw, individualized data should be made available for modelers and statisticians. It would be very nice to see the RNA and DNA data presented in a supplementary figure by an individual to get a better grasp of intra-host kinetics.

      We will make all relevant data available and accessible to interested parties on request. We have now added a section on data availability (lines 489-491).

      (3) The legend of Supplementary Figure 2 should list when samples were taken.

      The data in this figure represents an overall analysis of all sequences available for each participant at all time points.  This has now been explained more clearly in the figure legend.

      Recommendations for The Authors:

      Reviewer #1:

      (1) It is recommended that the introduction includes information to set the scene regarding what is currently reported on the composition of the reservoir for those not in the immediate field of study i.e., the reported percentage of defective genomes and in which settings/populations genome intactness has been mapped, as this remains an area of limited information.

      We have now included summary of other reported findings in the field in the introduction (lines 89-92, 9498) and discussion (lines 345-350).  A more detailed overview has been provided in the response to public reviews.

      (2) It may be beneficial to state in the main text of the paper what the purpose of the Raltegravir was and that it was only administered post-suppression. Looking at Table 1, only the hyperacute treatment group received Raltegravir and this could be seen as a confounder as it is an integrase inhibitor. Therefore, this should be explained.

      Once Raltegravir became available in South Africa, all new acute infections in the study cohort had an intensified 4-drug regimen that included Raltegravir.  A more detailed explanation has now been included in the methods section (lines 435-437).

      (3) Can the authors explain why the viral measures at 6 months post-ART are not shown for chronictreated individuals in Figure 1 or reported on in the text?

      The 6 months post-ART time point has been added to Figure 1.

      (4) Can the authors indicate in the discussion, how the breakdown of proviral composition compares to subtype B as reported in the literature, for example, are the common sites of deletion similar, or is the frequency of hypermutation similar?

      Added to discussion (lines 345-350).

      (5) Do the numbers above the bars in Figure 3 represent the number of sampled genomes? If so, this should be stated.

      Yes, the numbers above the bars represent the number of sampled genomes. This has been added to the Figure 3 legend.

      (6) In the section starting on line 141, the introduction implies a comparison with immunological features, yet what is being compared are markers of clinical disease progression rather than immune responses. This should be clarified/corrected.

      This has been corrected (line 153).

      (7) Line 170 uses the term 'immediately' following infection, however, was this not 1 -3 days after?

      We have changed the word “immediately” to “1-3 days post-detection” (line 181).

      (8) Can the sampling time-points for the two groups be given for the longitudinal sequencing analysis?

      The sequencing time points for each group is depicted in Figure 2.

      (9) Line 183 indicates that intact genomes contributed 65% of the total sequence pool, yet it's given as 35% in the paragraph above. Should this be defective genomes?

      Yes, this was a typographical error.  Now corrected to read “defective genomes” (line 193).

      (10) The section on decay kinetics of intact and defective genomes seems to overlap with the section above and would flow better if merged.

      Well noted, however we choose to keep these sections separate.

      (11) Some references in the text are given in writing instead of numbering.

      This has been corrected.

      (12) In the clonal expansion results section, can it be indicated between which two time-points expansion was measured?

      This analysis was performed with all sequences available for each participant at all time points.  We have added this explanation to the respective Figure legend.

      Reviewer #2:

      (1) The statement on line 384 "Our data showed that early ART...preserves innate immune factors" - what innate immune factors are being referred to?

      We have removed this statement.

      (2) HLA genotyping methods are not included in the Methods section

      Now included and referenced (lines 481-483).

      (3) Are CD4:CD8 ratios available for the cohorts? This could be another informative clinical parameter to analyse in relation to HIV-1 proviral load after 1 year of ART – as done for the other variables (peak VL, and the CD4 measures).

      Yes, CD4:CD8 ratios are available. We performed the recommended analysis but found no associations with HIV-1 proviral load after 1 year of ART. We have added this to the results section (lines 163-164).

      (4) Reference formatting: Paragraph starting at line 247 (Contribution of clonal expansion...) - the two references in this paragraph are not cited according to the numbering system as for the rest of the manuscript. The Lui et al, 2020 reference is missing from the reference list - so will change all the numbering throughout.

      This has been corrected.

      Reviewer #3:

      (1) To allow comparison to past work. I suggest changing decay using % to half-life. I would also mention the multiple studies looking at total and intact HIV DNA decay rates in the intro.

      We do not have enough data points to get a good estimate of the half-life and therefor report decay as percentage per month for the first 6 months. 

      (2) Line 73: variability is the wrong word as inter-individual variability is remarkably low. I think the authors mean "difference" between intact and total.

      We have changed the word variability to difference as suggested.

      (3) Line 297: I am personally not convinced that there is data that definitively shows total HIV DNA impacting the pathophysiology of infection. All of this work is deeply confounded by the impact of past viremia. The authors should talk about this in more detail or eliminate this sentence.

      We have reworded the statement to read “Total HIV-1 DNA is an important biomarker of clinical outcomes.” (Lines 308-309).

      (4) Line 317; There is no target cell limitation for reservoir cells. The vast majority of CD4+ T cells during suppressive ART are uninfected. The mechanism listing the number of reservoir cells is necessarily not target cell limitation.

      We agree. The statement this refers to has been reworded as follows: “Considering, that the majority of CD4 T cells remain uninfected it is likely that this does not represent a higher number of target cells, and this warrants further investigation.” (lines 325-326).

      (5) Line 322: Some people in the field bristle at the concept of total HIV DNA being part of the reservoir as defective viruses do not contribute to viremia. Please consider rephrasing. 

      We acknowledge that there are deferring opinions regarding total HIV DNA being part of the reservoir as defective viruses do not contribute to viremia, however defective HIV proviruses may contribute to persistent immune dysfunction and T cell exhaustion that are associated comorbidities and adverse clinical outcomes in people living with HIV.  We have explained in the text that total HIV-DNA does not distinguish between replication-competent and -defective viruses that contribute to the viral reservoir.

      (6) Line 339: The under-sampling statement is an understatement. The degree of under-sampling is massive and biases estimates of clonality and sensitivity for intact HIV. Please see and consider citing work by Dan Reeves on this subject.

      We agree and have cited work by Dan Reeves (line 358).

      (7) Line 351: This is not a head-to-head comparison of biphasic decay as the Siliciano group's work (and others) does not start to consider HIV decay until one year after ART. I think it is important to not consider what happens during the first year of ART to be reservoir decay necessarily.

      Well noted.

      (8) Line 366-371: This section is underwritten. In nearly all PWH studies to date, observed reservoirs are highly clonal.

      We agree that observed reservoirs are highly clonal but have not added anything further to this section.

      (9) It would be nice to have some background in the intro & discussion about whether there is any a priori reason that clade C reservoirs, or reservoirs in South African women, might differ (or not) from clade B reservoirs observed in different study participants.

      We have now added this to the introduction (lines 94-103).

      (10) Line 248: This sentence is likely not accurate. It is probable that most of the reservoir is sustained by the proliferation of infected CD4+ T cells. 50% is a low estimate due to under-sampling leading to false singleton samples. Moreover, singletons can also be part of former clones that have contracted, which is a natural outcome for CD4+ T cells responding to antigens &/or exhibiting homeostasis. The data as reported is fine but more complex ecologic methods are needed to truly probe the clonal structure of the reservoir given severe under sampling.

      Well noted.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their time and thoughtful comments on our manuscript. 

      We realised a preliminary version of Figure 2 was initially submitted, which we are replacing now with a novel version. Differences between the two figures are : 1) The schematic in Figure 2a was replaced with a new one in line with that of Figure 3a; 2) in Figure 2c details about the statistical analysis were removed from the legend and one datapoint that was erroneously removed at day 5 for the ΔMYR1-Luc condition was included. Regardless, these changes do not affect the results and the conclusions initially drawn.

      Public Reviews:

      Reviewer #1 (Public review): 

      Previous studies have highlighted some of these paracrine activities of Toxoplasma - and Rasogi et al (mBio, 2020) used a single cell sequencing approach of cells infected in vitro with the WT or MYR KO parasites - and one of their conclusions was that MYR-1 dependent paracrine activities counteract ROP-dependent processes.

      Similarly, Chen et al (JEM 2020) highlighted that a particular rhoptry protein (ROP16) could be injected into uninfected macrophages and move them to an anti-inflammatory state that might benefit the parasite. 

      We are aware of both these studies, where the injection of rhoptry proteins into cells that the parasite does not invade alters the host transcriptional profile establishing a permissive environment. However, here we propose a different paracrine effect that goes beyond the injected/uninfected cell. Specifically, we propose that one or more MYR1-dependent effectors alter the cytokine secretion profile of infected cells, which leads to overall changes in the immune response such as cell types recruited to the site of infection, or the activation state. 

      There are caveats around immunity and as yet no insight into how this works. In Figure 2 there is a marked defect in the ability of the parasites to expand at day 2 and day 5. Together, these data sets suggest that this paracrine effect mediated by MYR-1 works early - well before the development of adaptive responses. 

      Yes, we also hypothesise an early effect based on the data. Growth continues until day 5 at least, and then plateaus towards day 7, which makes us believe that the effect takes place within the first 5 days. We agree with the reviewer that the MYR1-mediated rescue acts before the involvement of the adaptive immune response, which is supported by our results obtained in Rag2-/- mice shown in Figure 3e. 

      Reviewer #2 (Public review): 

      Summary: 

      In this manuscript by Torelli et al., the authors propose that the major function of MYR1 and MYR1-dependent secreted proteins is to contribute to parasite survival in a paracrine manner rather than to protect parasites from cell-autonomous immune response. The authors conclude that these paracrine effects rescue ∆MYR1 or knockouts of MYR1-dependent effectors within pooled in vivo CRISPR screens. 

      Strengths: 

      The authors raised a more general concern that pooled CRISPR screens (not only in Toxoplasma but also other microbes or cancers) would miss important genes by "paracrine masking effect". Although there is no doubt that pooled CRISPR screens (especially in vivo CRISPR screens) are powerful techniques, I think this topic could be of interest to those fields and researchers. 

      Weaknesses: 

      In this version, the reviewer is not entirely convinced of the 'paracrine masking effect' because the in vivo experiments should include appropriate controls (see major point 2). 

      (1) It is convincing that co-infection of WT and ∆MYR1 parasites could rescue the growth of ∆MYR1 in mice shown by in vivo luciferase imaging. Also, this is consistent with ∆MYR1 parasites showing no in vivo fitness defect in the in vivo CRISPR screens conducted by several groups. Meanwhile, it has been reported previously and shown in this manuscript that ∆MYR1 parasites have an in vitro growth defect; however, ∆MYR1 parasites show no in vitro fitness defect the in vitro pooled CRISPR screen. The authors show that the competition defect of ∆MYR1 parasites cannot be rescued by co-infection with WT parasites in Figure 1c, which might indicate that no paracrine rescue occurred in an in vitro environment. The authors seem not to mention these discrepancies between in vitro CRISPR screens and in vitro competition assays. Why do ∆MYR1 parasites possess neutral in vitro fitness scores in in vitro CRISPR screens? Could the authors describe a reasonable hypothesis? 

      The reviewer raises a very interesting point, which at this stage, we cannot fully explain. A technical explanation could be that the relatively small growth defect detected for clean KOs, is not well represented in the CRISPR screens due to the variability of guides, where smaller differences in growth are not reliably captured and hidden within the noise of the assays. Another technical explanation may be median-centering: if the majority of KOs in the pool have a small growth defect, median centering would push these towards a zero. We have observed and reported this phenomenon in Young et al., 2019 for libraries containing a larger fraction of genes with a negative fitness score. In the library used here focusing on secreted proteins, we have not observed a strong trend to negative fitness scores, but cannot exclude smaller shifts. Because we have no solid base to favour any of the above mentioned explanations, we have decided to not speculate too much on this in the manuscript. However, we wanted to show all the data as the difference between these results may not be technical, but biological, which could inform future studies or results by us and others.  

      (2) The authors developed a mixed infection assay with an inoculum containing a 20:80 ratio of ΔMYR1-Luc parasites with either WT parasites or ΔMYR1 mutants not expressing luciferase, showing that the in vivo growth defect of ∆MYR1 parasites is rescued by the presence of WT parasites. Since this experiment lacks appropriate controls, interpretation could be difficult. Is this phenomenon specific to MYR1? If a co-inoculum of ∆GRA12-Luc with either WT parasites or GRA12 parasites not expressing luciferase is included, the data could be appropriately interpreted. 

      We are not quite sure what appropriate controls the reviewer refers to. We show here in Figures 3c and 3f that increasing parasite load by co-infecting mice with ∆MYR1 parasites is not sufficient to rescue ∆MYR1-Luc parasite growth. Co-infection with WT parasites, however, does result in increased ∆MYR1-Luc parasitaemia at day 7 p.i., indicating that MYR1 competence is required for the in vivo trans-rescue we describe. As ∆GRA12 parasites have a very strong cell-autonomous restriction in vitro and severe growth defect in vivo (Torelli et al., BioRxiv), these parasites would be rapidly depleted, which is also observed in all CRISPR screens from various laboratories. Therefore we do not think that co-infection with GRA12-deficient parasites would be an informative experiment here. We do speculate that mutant parasites for other proteins required for export (i.e. MYR 2, 3, 4, ROP17) could also be trans-rescued in addition to mutants for other MYR-dependent proteins such as GRA24 and GRA28, which remodel cytokine secretion and could individually, or synergistically, affect host cell immunity. Dissecting which Toxoplasma factor/s and host cytokine signalling pathways drive this trans-rescue effect is highly interesting, but beyond the scope of this manuscript. Here, we focused on the basic concept that an individual mutant can be rescued in trans in vivo, which we think is of importance beyond the field of Toxoplasma research. 

      (3) In the Discussion part, the authors argue that the rescue phenotype of mixed infection is not due to co-infection of host cells (lines 307-310). This data is important to support the authors' paracrine hypothesis and should be shown in the main figure.

      We understand the reviewer’s concern for rescue by co-infection of the same cell, but we largely exclude this hypothesis as Toxoplasma cell-autonomous effectors, such as GRA12 and ROP18, would also be rescued if that were to happen on a larger scale. We previously performed an in vivo experiment to assess co-infection rates of peritoneal exudate cells (PECs) by imaging using infection doses comparable to those used in the trans-rescue experiments. The total infection rate of PECs was 2.3%, so the overall number of infected cells per image was low, and not suitable for publication purposes. We tried to capture more cells using FACS analysis, however, PECs are highly autofluorescent in the yellow/green channels, which prevented us from drawing adequate conclusions using our GFP and mCherry strains. Because we see no rescue of GRA12 or ROP18 in CRISPR screens, and the overall in vivo co-infection rates were very low as observed by imaging, we did not think that generating strains expressing different fluorochromes compatible with standard FACS analysis, and then performing more in vivo experiments was best use of resources at the time. 

      (4) In the Discussion part, the authors assume that the rescue phenotype is the result of multiple MYR1-dependent effectors. I admit that this hypothesis could be possible since a recently published paper described the concerted action of numerous MYR1-dependent or independent effectors contributing to the hypermigration of infected cells (Ten Hoeve et al., mBio, 2024). I think this paragraph would be kind of overstated since the authors did not test any of the candidate effectors. Since the authors possess ∆IST parasites, they can test whether IST is involved in the "paracrine masking effect" or not to support their claim. 

      MYR1 deletion impairs the export of multiple Toxoplasma effectors into the host cell, including GRA16, GRA24, GRA28, HCE1/TEEGR etc, many of which can influence cytokine levels. As such, we speculate that it is a combination of multiple effector proteins that are responsible for the trans-rescue. As stated above, which parasite effectors, host cell types and cytokines are involved in the phenotype we describe are part of ongoing and future studies. Here, we wanted to focus on the key message, that in in vivo CRISPR screens, paracrine rescue of individual mutants can occur. While we will test IST mutants, it is probably not the top candidate as it only prevents upregulation of ISGs after exposure to IFN-γ, but has probably no role in already stimulated cells. As we still observe strong rescue past day 3, when IFN-γ levels are already elevated (Nishiyama 2020 Parasitol Int), IST probably plays no dominant role. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors): 

      (1) Figure 1 - it's not obvious what concentration of IFN-gamma is being used in these assays (sorry if this is stated somewhere else). 

      All in vitro experiments were performed with 100 U/ml IFN-γ as stated in the Material & Methods section, however added this information in the figure legend of Figure 1.

      (2) Figure 3 This reviewer wonders if earlier differences are buried in the data sets. In Figure 3b it looks like there are early differences but this is lost in the collated data analysis in 3c. An early difference is quite apparent in Figure 2. 

      We agree with the reviewer that a difference is visible at day 3 and 5 in Figure 3b, however differences between experimental groups became statistically significant only at day 7 in Figure 3c (N = 4 biological replicates). We cannot compare results between Figure 3c and Figure 2c as the latter reports 100% WT or ΔMYR1 infections and not 20:80 mixes.

      (3) The authors conclude from their in vitro studies that MYR-1 is not required for in vitro growth in IFN-g activated macrophages. Given that the WT parasites still rescue MYR KO parasites in RAG mice it does imply that this paracrine effect would impact early innate responses. Since RAG mice do have a strong ILC/NK cell response that leads to the local production of IFN-g it would seem like a reasonable candidate. Do the authors know if the MYR KO have improved growth in the absence of IFN-g in vivo? This could be done using KO mice or with IFN-g neutralization. 

      MYR1 displayed a neutral score in CRISPR screens in IFN-γ KO mice (Tachibana et al Cell Reports 2023), suggesting that lack of IFN-γ does not specifically improve MYR1 mutant growth compared to other mutants in a pool. We believe that the rescue is rather driven by other cytokines that have been shown to be altered in a MYR1 dependent manner (i.e CCL2, IL-6, IL-12). But as laid out before, this is subject of future studies.  

      This is a submission that might benefit from a graphical model of how the authors view this system working. 

      We agree with the reviewer and we added a graphical model to the manuscript. 

      Reviewer #2 (Recommendations for the authors): 

      The authors previously published a study that combines CRISPR screens in Toxoplasma and host transcriptome by scRNA-seq (Butterworth et al., Cell Host Microbe 2023). I think the authors possess transcriptome of ∆MYR1-infected HFFs. Although I understand this screen is conducted in in-vitro culture and human fibroblasts, are there any differentially expressed genes or pathways that could explain the paracrine rescue phenomenon described in this manuscript?

      We thank the reviewer for this insightful comment, which is however hard to address.  Thousands of host cell genes within multiple pathways are affected by MYR1 deletion (Naor et al. mBio 2018; Butterworth et al. Cell Host Microbe 2023). Therefore the PerturbSeq dataset is not helpful to pinpoint specific immune mechanisms of rescue, and is speculative without any experimentation to back it up. However, we added a sentence in line 350 of the discussion to highlight known MYR1-related effects on immune-related pathways. “Individual MYR-related effectors that may be responsible for the paracrine rescue have not been investigated here and we hypothesise that the phenotype is likely the concerted result of multiple effectors that affect cytokine secretion. For example, previous studies showed that both GRA18 and GRA28 can induce release of CCL22 from infected cells (He 2018 eLife; Rudzki 2021 mBio), while GRA16 and HCE1/TEEGR impair NF-kB signalling and the potential release of pro-inflammatory cytokines such as IL-6, IL-1β and TNF (Seo 2020 Int J Mol Sci; Braun 2019 Nat Microbiol). Regardless of the effector(s), our results highlight an important novel function of MYR1-dependent effectors by establishing a supportive environment in trans for Toxoplasma growth within the peritoneum.”

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Strengths and weaknesses:

      Although the revised manuscript has significantly improved in the quality of pictures, there seems to be still a discrepancy in Figure 2A: quantification result suggested that NIC (1um) treatment increased the number of colonies from 300 to around 450 (1.5 folds), whereas representative picture shown that the difference was 3 to 12 living organoids (4 folds).

      As reviewer points out, the selected picture was not representative image of “control” group in Figure2A. We replaced it by the new representative image in this revised version.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      A minor point to be corrected:

      Please consider removing "In consistent with this notion", which is repetitive with "Similarly".

      " NIC is supposed to activate Wnt signaling via Hippo-YAP/TAZ and Notch signaling. In consistent with this notion. Similarly, the expression of target proteins (Sox9, TCF4 and, C-myc)..."

      We corrected it according to the reviewer’s suggestion.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In their manuscript, Gomez-Frittelli and colleagues characterize the expression of cadherin6 (and -8) in colonic IPANs of mice. Moreover, they found that these cdh6-expressing IPANs are capable of initiating colonic motor complexes in the distal colon, but not proximal and midcolon. They support their claim by morphological, electrophysiological, optogenetic, and pharmacological experiments.

      Strengths:

      The work is very impressive and involves several genetic models and state-of-the-art physiological setups including respective controls. It is a very well-written manuscript that truly contributes to our understanding of GI-motility and its anatomical and physiological basis. The authors were able to convincingly answer their research questions with a wide range of methods without overselling their results.

      We greatly appreciate the reviewer’s time, careful reading and support of our study.

      Weaknesses:

      The authors put quite some emphasis on stating that cdh6 is a synaptic protein (in the title and throughout the text), which interacts in a homophilic fashion. They deduct that cdh6 might be involved in IPAN-IPAN synapses (line 247ff.). However, Cdh6 does not only interact in synapses and is expressed by non-neuronal cells as well (see e.g., expression in the proximal tubuli of the kidney). Moreover, cdh6 does not only build homodimers, but also heterodimers with Chd9 as well as Cdh7, -10, and -14 (see e.g., Shimoyama et al. 2000, DOI: 10.1042/0264-6021:3490159). It would therefore be interesting to assess the expression pattern of cdh6-proteins using immunostainings in combination with synaptic markers to substantiate the authors' claim or at least add the possibility of cell-cell-interactions other than synapses to the discussion. Additionally, an immunostaining of cdh6 would confirm if the expression of tdTomato in smooth muscle cells of the cdh6-creERT model is valid or a leaky expression (false positive).

      We agree with the reviewer that Cdh6 could be mediating some other cell-cell interaction besides synapses between IPANs, and will include more on this in the discussion. Cdh6 primarily forms homodimers but, as the reviewer points out, has been known to also form heterodimers with some other cadherins. We performed RNAscope in the colonic myenteric plexus with Cdh7 and found no expression (data not shown). Cdh10 is suggested to have very low expression (Drokhlyansky et al., 2020), possibly in putative secretomotor vasodilator neurons, and Cdh14 has not been assayed in any RNAseq screens. We attempted to visualize Cdh6 protein via antibody staining (Duan et al., 2018) but our efforts did not result in sufficient signal or resolution to identify synapses in the ENS, which remain broadly challenging to assay. Similarly, immunostaining with Cdh6 antibody was unable to confirm Cdh6 protein in tdT-expressing muscle cells, or by RNAscope. We will address these caveats in the discussion section.

      (1) E. Drokhlyansky, C. S. Smillie, N. V. Wittenberghe, M. Ericsson, G. K. Griffin, G. Eraslan, D. Dionne, M. S. Cuoco, M. N. Goder-Reiser, T. Sharova, O. Kuksenko, A. J. Aguirre, G. M. Boland, D. Graham, O. Rozenblatt-Rosen, R. J. Xavier, A. Regev, The Human and Mouse Enteric Nervous System at Single-Cell Resolution. Cell 182, 1606-1622.e23 (2020).

      (2) X. Duan, A. Krishnaswamy, M. A. Laboulaye, J. Liu, Y.-R. Peng, M. Yamagata, K. Toma, J. R. Sanes, Cadherin Combinations Recruit Dendrites of Distinct Retinal Neurons to a Shared Interneuronal Scaffold. Neuron 99, 1145-1154.e6 (2018).

      Reviewer #2 (Public review):

      Summary:

      Intrinsic primary afferent neurons are an interesting population of enteric neurons that transduce stimuli from the mucosa, initiate reflexive neurocircuitry involved in motor and secretory functions, and modulate gut immune responses. The morphology, neurochemical coding, and electrophysiological properties of these cells have been relatively well described in a long literature dating back to the late 1800's but questions remain regarding their roles in enteric neurocircuitry, potential subsets with unique functions, and contributions to disease. Here, the authors provide RNAscope, immunolabeling, electrophysiological, and organ function data characterizing IPANs in mice and suggest that Cdh6 is an additional marker of these cells.

      Strengths:

      This paper would likely be of interest to a focused enteric neuroscience audience and increase information regarding the properties of IPANs in mice. These data are useful and suggest that prior data from studies of IPANs in other species are likely translatable to mice.

      We appreciate the reviewer’s support of our study and insightful critiques for its improvement.

      Weaknesses:

      The advance presented here beyond what is already known is minimal. Some of the core conclusions are overstated and there are multiple other major issues that limit enthusiasm. Key control experiments are lacking and data do not specifically address the properties of the proposed Cdh6+ population.

      Major weaknesses:

      (1) The novelty of this study is relatively low. The main point of novelty suggests an additional marker of IPANs (Cdh6) that would add to the known list of markers for these cells. How useful this would be is unclear. Other main findings basically confirm that IPANs in mice display the same classical characteristics that have been known for many years from studies in guinea pigs, rats, mice and humans.

      We appreciate the already existing markers for IPANs in the ENS and the existing literature characterizing these neurons. The primary intent of this study was to use these well established characteristics of IPANs in both mice and other species to characterize Cdh6-expressing neurons in the mouse myenteric plexus and confirm their classification as IPANs.

      (2) Some of the main conclusions of this study are overstated and claims of priority are made that are not true. For example, the authors state in lines 27-28 of the abstract that their findings provide the "first demonstration of selective activation of a single neurochemical and functional class of enteric neurons". This is certainly not true since Gould et al (AJP-GIL 2019) expressed ChR2 in nitrergic enteric neurons and showed that activating those cells disrupted CMC activity. In fact, prior work by the authors themselves (Hibberd et al., Gastro 2018) showed that activating calretinin neurons with ChR2 evoked motor responses. Work by other groups has used chemogenetics and optogenetics to show the effects of activating multiple other classes of neurons in the gut.

      We believe our phrasing in this sentence was misleading. Whilst single neurochemical classes of enteric neurons have been manipulated to alter gut functions, all such instances to date do not represent manipulation of a single functional class of enteric neurons. In the given examples, NOS and calretinin are each expressed to varying degrees across putative motor neurons, interneurons and IPANs. In contrast, Chd6 is restricted to IPANs and therefore this study is the first optogenetic investigation of enteric neurons from a single putative functional class. We will alter this segment in the revised manuscript to emphasize this point and differentiate this study from those previous.

      (3) Critical controls are needed to support the optogenetic experiments. Control experiments are needed to show that ChR2 expression a) does not change the baseline properties of the neurons, b) that stimulation with the chosen intensity of light elicits physiologically relevant responses in those neurons, and c) that stimulation via ChR2 elicits comparable responses in IPANs in the different gut regions focused on here.

      We completely agree controls are essential. However, our paper is not the first to express ChR2 in enteric neurons. Authors of our paper have shown in Hibberd et al. 2018 that expression of ChR2 in a heterogeneous population of myenteric neurons did not change network properties of the myenteric plexus. This was demonstrated in the lack of change in control CMC characteristics in mice expressing ChR2 under basal conditions (without blue light exposure). Regarding question (b), that it should be shown that stimulation with the chosen intensity of light elicits physiologically relevant responses in those neurons. We show the restricted expression of ChR2 in IPANs and that motor responses (to blue light) are blocked by selective nerve conduction blockade.

      Regarding question (c), that our study should demonstrate that stimulation via ChR2 elicits comparable responses in IPANs in the different gut regions. We would not expect each region of the gut to behave comparably. This is because the different gut regions (i.e. proximal, mid, distal) are very different anatomically, as is anatomy of the myenteric plexus and myenteric ganglia between each region, including the density of IPANs within each ganglia, in addition to the presence of different patterns of electrical and mechanical activity [Spencer et al., 2020]. Hence, it is difficult to expect that between regions stimulation of ChR2 should induce similar physiological responses. The motor output we record in our study (CMCs) is a unified motor program that involves the temporal coordination of hundreds of thousands of enteric neurons and a complex neural circuit that we have previously characterized [Spencer et al., 2018]. But, never has any study until now been able to selectively stimulate a single functional class of enteric neurons (with light) to avoid indiscriminate activation of other classes of neurons.

      (1) T. J. Hibberd, J. Feng, J. Luo, P. Yang, V. K. Samineni, R. W. Gereau, N. Kelley, H. Hu, N. J. Spencer, Optogenetic Induction of Colonic Motility in Mice. Gastroenterology 155, 514-528.e6 (2018).

      (2) N. J. Spencer, L. Travis, L. Wiklendt, T. J. Hibberd, M. Costa, P. Dinning, H. Hu, Diversity of neurogenic smooth muscle electrical rhythmicity in mouse proximal colon. American Journal of Physiology-Gastrointestinal and Liver Physiology 318, G244–G253 (2020).

      (3) N. J. Spencer, T. J. Hibberd, L. Travis, L. Wiklendt, M. Costa, H. Hu, S. J. Brookes, D. A. Wattchow, P. G. Dinning, D. J. Keating, J. Sorensen, Identification of a Rhythmic Firing Pattern in the Enteric Nervous System That Generates Rhythmic Electrical Activity in Smooth Muscle. J. Neurosci. 38, 5507–5522 (2018).

      (4) The electrophysiological characterization of mouse IPANs is useful but this is a basic characterization of any IPAN and really says nothing specifically about Cdh6+ neurons. The electrophysiological characterization was also only done in a small fraction of colonic IPANs, and it is not clear if these represent cell properties in the distal colon or proximal colon, and whether these properties might be extrapolated to IPANs in the different regions. Similarly, blocking IH with ZD7288 affects all IPANs and does not add specific information regarding the role of the proposed Cdh6+ subtype.

      Our electrophysiological characterization was guided to be within a subset of Cdh6+ neurons by Hb9:GFP expression. As in the prior comment (1) above, we used these experiments to confirm classification of Cdh6+ (Hb9:GFP+) neurons in the distal colon as IPANs. We will clarify that these experiments were performed in the distal colon and agree that we cannot extrapolate that these properties are also representative of IPANs in the proximal colon. We apologize that this was confusing. Finally, we agree with the reviewer that ZD7288 affects all IPANs in the ENS and will clarify this in the text.

      (5) Why SMP IPANs were not included in the analysis of Cdh6 expression is a little puzzling. IPANs are present in the SMP of the small intestine and colon, and it would be useful to know if this proposed marker is also present in these cells.

      We agree with the reviewer. In addition to characterizing Cdh6 in the myenteric plexus, it would be interesting to query if sensory neurons located within the SMP also express Cdh6. Our preliminary data (n=2) show ~6-12% tdT/Hu neurons in Cdh6-tdT ileum and colon (data not shown). We will add a sentence to the discussion.

      (6) The emphasis on IH being a rhythmicity indicator seems a bit premature. There is no evidence to suggest that IH and IT are rhythm-generating currents in the ENS.

      Regarding the statement there is no evidence to suggest that IH and IT are rhythm-generating currents in the ENS. We agree with the reviewer that evidence of rhythm generation by IH and IT in the ENS has not been explicitly confirmed. We are confident the reviewer agrees that an absence of evidence is not evidence of absence, although the presence of IH has been well described in enteric neurons. We will modify the text in the results to indicate more clearly that IH and IT are known to participate in rhythm generation in thalamocortical circuits, though their roles in the ENS remain unknown. Our discussion of the potential role of IH or IT in rhythm generation or oscillatory firing of the ENS is constrained to speculation in the discussion section of the text.

      (7) As the authors point out in the introduction and discuss later on, Type II Cadherins such as Cdh6 bind homophillically to the same cadherin at both pre- and post-synapse. The apparent enrichment of Cdh6 in IPANs would suggest extensive expression in synaptic terminals that would also suggest extensive IPAN-IPAN connections unless other subtypes of neurons express this protein. Such synaptic connections are not typical of IPANs and raise the question of whether or not IPANs actually express the functional protein and if so, what might be its role. Not having this information limits the usefulness of this as a proposed marker.

      We agree with the reviewer that the proposed IPAN-IPAN connection is novel although it has been proposed before (Kunze et al., 1993). As detailed in our response to Reviewer #1, we attempted to confirm Cdh6 protein expression, but were unsuccessful, due to insufficient signal and resolution. We therefore discuss potential IPAN interconnectivity in the discussion, in the context of contrasting literature.

      (1) W. A. A. Kunze, J. B. Furness, J. C. Bornstein, Simultaneous intracellular recordings from enteric neurons reveal that myenteric ah neurons transmit via slow excitatory postsynaptic potentials. Neuroscience 55, 685–694 (1993).

      (8) Experiments shown in Figures 6J and K use a tethered pellet to drive motor responses. By definition, these are not CMCs as stated by the authors.

      The reviewer makes a valid criticism as to the terminology, since tethered pellet experiments do not record propagation. We believe the periodic bouts of propulsive force on the pellet is triggered by the same activity underlying the CMC. In our experience, these activities have similar periodicity, force and identical pharmacological properties. Consistent with this, we also tested full colons (n = 2) set up for typical CMC recordings by multiple force transducers, finding that CMCs were abolished by ZD7288, similar to fixed pellet recordings (data not shown).

      (9) The data from the optogenetic experiments are difficult to understand. How would stimulating IPANs in the distal colon generate retrograde CMCs and stimulating IPANs in the proximal colon do nothing? Additional characterization of the Cdh6+ population of cells is needed to understand the mechanisms underlying these effects.

      We agree that the different optogenetic responses in the proximal and distal colon are challenging to interpret, but perhaps not surprising in the wider context. It is not only possible that the different optogenetic responses in this study reflect regional differences in the Chd6+ neuronal populations, but also differences in neural circuits within these gut regions. A study some time ago by the authors showed that electrical stimulation of the proximal mouse colon was unable to evoke a retrograde (aborally) propagating CMC (Spencer, Bywater, 2002), but stimulation of the distal colon was readily able to. We concluded that at the oral lesion site there is a preferential bias of descending inhibitory nerve projections, since the ascending excitatory pathways have been cut off. In contrast, stimulation of the distal colon was readily able to activate an ascending excitatory neural pathway, and hence induce the complex CMC circuits required to generate an orally propagating CMC. Indeed, other recent studies have added to a growing body of evidence for significant differences in the behaviors and neural circuits of the two regions (Li et al., 2019, Costa et al., 2021a, Costa et al., 2021b, Nestor-Kalinoski et al., 2022). We will expand this discussion.

      (1) N. J. Spencer, R. A. Bywater, Enteric nerve stimulation evokes a premature colonic migrating motor complex in mouse. Neurogastroenterology & Motility 14, 657–665 (2002).

      (2) Li Z, Hao MM, Van den Haute C, Baekelandt V, Boesmans W, Vanden Berghe P (2019) Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine. Elife 8.

      (3). Costa M, Keightley LJ, Hibberd TJ, Wiklendt L, Dinning PG, Brookes SJ, Spencer NJ (2021a) Motor patterns in the proximal and distal mouse colon which underlie formation and propulsion of feces. Neurogastroenterol Motil e14098.

      (4) Costa M, Keightley LJ, Hibberd TJ, Wiklendt L, Smolilo DJ, Dinning PG, Brookes SJ, Spencer NJ (2021b) Characterization of alternating neurogenic motor patterns in mouse colon. Neurogastroenterol Motil 33:e14047.

      (5) Nestor-Kalinoski A, Smith-Edwards KM, Meerschaert K, Margiotta JF, Rajwa B, Davis BM, Howard MJ (2022) Unique Neural Circuit Connectivity of Mouse Proximal, Middle, and Distal Colon Defines Regional Colonic Motor Patterns. Cell Mol Gastroenterol Hepatol 13:309-337.e303.

    1. Author response:

      We are very pleased to see these positive reviews of our preprint.

      Reviewers 1 and 3 raise issues around PIP-PP1 interactions.

      (1) Role of the “RVxF-ΦΦ-R-W string”

      Most PIPs interact with the globular PP1 catalytic core through short linear interaction motifs (SLiMs) and Choy et al (PNAS 2014) previously showed that many PIPs interact with PP1 through conserved trio of SLiMs, RVxF-ΦΦ-R, which is also present in the Phactrs.

      Previous structural analysis showed the trajectory of the PPP1R15A/B, Neurabin/Spinphilin (PPP1R9A/B), and PNUTS (PPP1R10) PIPs across the PP1 surface encompasses not only the RVxF-ΦΦ-R trio, but also additional sequences C-terminal to it (Chen et al, eLife, 2015). This extended trajectory is maintained in the Phactr1-PP1 complex (Fedoryshchak et al, eLife (2020). Based on structural alignment we proposed the existence of an additional hydrophobic “W” SLiM that interacts with the PP1 residues I133 and Y134.

      The extended “RVxF-ΦΦ-R-W” interaction brings sequences C-terminal to the “W” SLiM into the vicinity of the hydrophobic groove that adjoins the PP1 catalytic centre. In the Phactr1/PP1 complex, these sequences remodel the groove, generating a novel pocket that facilitates sequence-specific substrate recognition.

      This raises the possibility that sequences C-terminal to the extended “RVxF-ΦΦ-R-W string” in the other complexes also confer sequence-specific substrate recognition, and our study aims to test this hypothesis. Indeed, the hydrophobic groove structures of the Neurabin/Spinophilin/PP1 and Phactr1/PP1 complexes differ significantly (Ragusa et al, 2010; see Fedoryshchak et al 2020, Fig2 FigSupp1).

      (2) Orientation of the W side chain

      Reviewer 1 points out that in the substrate-bound PP1/PPP1R15A/Actin/eIF2 pre-dephosphorylation complex the W sidechain is inverted with respect to its orientation in  PP1-PPP1R15B complex (Yan et al, NSMB 2021). The authors proposed that this may reflect the role of actin in assembly of the quaternary complex. This does not necessarily invalidate the notion that sequences C-terminal to the “W” motif might play a role in actin-independent substrate recognition, and we therefore consider our inclusion of the R15A/B fusions in our analysis to be reasonable.

      (3) Conservation of W

      The motif ‘W’ does not mandate tryptophan - Phactrs and PPP1R15A/B indeed have W at this position but Neurabin/spinophilin contain VDP, which makes similar interactions. Similarly the _“_RVxF” motifs in Phactr1, Neurabin/Spinophilin, PPP1R15A/B and PNUTS are LIRF, KIKF, KV(R/T)F and TVTW respectively.

      In our revision, we will present comparisons of the differentially remodelled/modified PP1 hydrophobic groove in the various complexes, discuss the different orientations of the tryptophan in the previously published PPP1R15A/PP1 and PPP1R15B/PP1 structures. We will also address the other issues raised by the referees.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Ma, Yang et al. report a new investigation aimed at elucidating one of the key nutrients S. Typhimurium (STM) utilizes with the nutrient-poor intracellular niche within the macrophage, focusing on the amino acid beta-alanine. From these data, the authors report that beta-alanine plays an important role in mediating STM infection and virulence. The authors employ a multidisciplinary approach that includes some mouse studies and ultimately propose a mechanism by which panD, involved in B-Ala synthesis, mediates the regulation of zinc homeostasis in Salmonella. The impact of this work is questionable. There are already many studies reporting Salmonella-effector interactions, and while this adds to that knowledge it is not a significant advance over previous studies. While the authors are investigating an interesting question, the work has two important weaknesses; if addressed, the conclusions of this work and broader relevance to bacterial pathogenesis would be enhanced.

      Strengths:

      This reviewer appreciates the multidisciplinary nature of the work. The overall presentation of the figure graphics are clear and organized.

      Weaknesses:

      First, this study is very light on mechanistic investigations, even though a mechanism is proposed. Zinc homeostasis in cells, and roles in bacteria infections, are complex processes with many players. The authors have not thoroughly investigated the mechanisms underlying the roles of B-Ala and panD in impacting STM infection such that other factors cannot be ruled out. Defining the cellular content of Zn2+ STM in vivo would be one such route. With further mechanistic studies, the possibility cannot be ruled out that the authors have simply deleted two important genes and seen an infection defect - this may not relate directly to Zn2+ acquisition.

      Thank you for your patient and thoughtful reading as well as the constructive comments and advice about our manuscript. We will revise the manuscript based on your comments and suggestions.

      You are right that this work have not thoroughly investigated the mechanisms underlying the roles of β-Ala, panD and zinc in impacting Salmonella infection. We will perform additional experiments to detect the content of zinc during Salmonella infection in vivo and in vitro, according to your suggestions.

      We agree that other unknown mechanism(s) are also involved in the virulence regulation by β-Ala in Salmonella, as our results showed that the double mutant Δ_panD_Δ_znuA_ (cannot synthesis of β-Ala and uptake of zinc) is more attenuated than the single mutant Δ_znuA_ (Figure 5D), suggesting that the contribution of β-Ala to the virulence of Salmonella is partially dependent on zinc acquisition_._ We will reword the related description throughout the manuscript for clarity.

      Second, the authors hint at their newly described mechanism/pathway being important for disease and possibly a target for therapeutics. This claim is not justified given that they have employed a single STM strain, which was isolated from chickens and is not even a clinical isolate. The authors could enhance the impact of their findings and relevance to human disease by demonstrating it occurs in human clinical isolates and possibly other serovars. Further, the use of mouse macrophage as a model, and mice, have limited translatability to human STM infections.

      We thank your comments and advice regarding our manuscript and are delighted to accept them.

      You are right that our current findings are relatively limited and not sufficient for disease therapeutics. We will reword the related description throughout the manuscript. Based on this comment, we will also use Salmonella Typhi and human macrophages to perform additional experiments to extend our findings. Salmonella Typhi is a human-limited Salmonella serovar and the cause of typhoid fever, a severe lethal systemic disease. Salmonella Typhimurium (STM) cause systemic disease in mice, which is similar to the symptoms of typhoid fever in human and has been widely used to explore the pathogenesis of Salmonella.

      Reviewer #2 (Public review):

      Summary:

      Salmonella exploits host- and bacteria-derived β-alanine to efficiently replicate in host macrophages and cause systemic disease. β-alanine executes this by increasing the expression of zinc transporter genes and therefore the uptake of zinc by intracellular Salmonella

      Strengths:

      The experiments designed are thorough and the claims made are directly related to the outcome of the experiments. No overreaching claims were made.

      Weaknesses:

      A little deeper insight was expected, particularly towards the mechanistic aspects. For example, zinc transport was found to be the cause of the b-alanine-mediated effect on Salmonella intracellular replication. It would have been very interesting to see which are the governing factors that may get activated or inhibited due to Zn accumulation that supports such intracellular replication.

      We appreciate your review and advice. We will design and perform additional experiments to further investigate the mechanisms by which β-Ala, panD and zinc influence Salmonella infection, according to your suggestions. For example, we will detect the content of zinc during Salmonella infection in vivo and in vitro.

      Reviewer #3 (Public review):

      Summary:

      Salmonella is interesting due to its life within a compact compartment, which we call SCV or Salmonella containing vacuole in the field of Salmonella. SCV is a tight-fitting vacuole where the acquisition of nutrients is a key factor by Salmonella. The authors among many nutrients, focussed on beta-alanine. It is also known from many other studies that Salmonella requires beta-alanine. The authors have done in vitro RAW macrophage infection assays and In vivo mouse infection assays to see the life of Salmonella in the presence of beta-alanine. They concluded by comprehending that beta-alanine modulates the expression of many genes including zinc transporters which are required for pathogenesis.

      Strengths:

      This study made a couple of knockouts in Salmonella and did a transcriptomic investigation to understand the global gene expression pattern.

      Weaknesses:

      The following questions are unanswered:

      (1) It is not clear how the exogenous beta-alanine is taken up by macrophages.

      We thank the reviewer for the question. It is reported that β-alanine is delivered to eukaryotic cells through TauT (SLC6A6) and PAT1 (SLC36A1) transporters (Am J Physiol Cell Physiol. 2020 Apr 1;318(4):C777-C786; Br J Pharmacol 161: 589 –600, 2010; Biochim Biophys Acta 1194: 44 –52, 1994). We will add this information in the revised manuscript.

      (2) It is not clear how the Beta-alanine from the cytosol of the macrophage enters the SCV.

      Thank you for pointing it out. You are right that the above question is not clear. We will do our best to achieve this issue, via reviewing literature, designing and performing additional experiments.

      (3) It is not clear how the beta-alanine from SCV enters the bacterial cytosol.

      Thank you for the question. We have attempted to find the transporter of β-alanine in Salmonella, but we found that the CycA transporter transports β-alanine  in Escherichia coli but not in Salmonella, despite Salmonella is the closely related species of E. coli.

      According to your suggestion, we will perform additional experiments to verify whether BasC is involved in the transport of β-alanine into Salmonella cytosol.

      (4) There is no clarity on the utilization of exogenous beta-alanine of the host and the de novo synthesis of beta-alanine by panD of Salmonella.

      Thank you for the question. Our results showed that β-alanine concentrations were downregulated in the Salmonella-infected RAW264.7 cells, and the replication of Salmonella in RAW264.7 cells was significantly increased with the addition of β-alanine to the culture medium (RPMI) of RAW264.7 cells, implying that intracellular Salmonella use host-derived β-alanine for growth. Unfortunately, we have not found the transporter of exogenous β-alanine into Salmonella cytosol. We will perform additional experiments to verify whether BasC is involved in the transport of β-alanine into Salmonella cytosol, or search for other transporters that are responsible for the uptake of β-alanine into Salmonella.

      Upon confirming the β-alanine transporter in Salmonella, we will compare the intracellular replication and virulence between WT and the transporter mutant strain, via cell and mice infection assays. If the replication ability and virulence of the mutant strain decreases relative to WT, suggesting that Salmonella uptakes the exogenous beta-alanine of the host to enhance intracellular replication and its virulence in mice.

      We have found that the replication of Salmonella panD mutant in macrophages and the virulence in mice were significantly decreased relative to WT, suggesting that the de novo synthesis of β-alanine is important for Salmonella intracellular replication and virulence_. To further confirm that both uptake of host-derived β-alanine and de novo synthesis of β-alanine are critical for the full virulence of _Salmonella, we will generate the double mutant of panD and β-alanine transporter gene. If the replication ability and virulence of the double mutant decreases compared with each of the single mutant, suggesting that Salmonella both utilizes the exogenous beta-alanine of the host and de novo synthesis of β-alanine for full virulence.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      The paper by Tolossa et al. presents classification studies that aim to predict the anatomical location of a neuron from the statistics of its in-vivo firing pattern. They study two types of statistics (ISI distribution, PSTH) and try to predict the location at different resolutions (region, subregion, cortical layer).

      Strengths:

      This paper provides a systematic quantification of the single-neuron firing vs location relationship.

      The quality of the classification setup seems high.

      The paper uncovers that, at the single neuron level, the firing pattern of a neuron carries some information on the neuron's anatomical location, although the predictive accuracy is not high enough to rely on this relationship in most cases.

      Thank you for your thoughtful feedback. The level of predictive accuracy offered by our current approach, while far above chance, is insufficient for electrode localization in most cases. Although, we speculate that our results represent a lower limit on possible performance—future improvements are almost certain as larger datasets are generated, more diverse features of neural activity are employed, and more advanced ML tools are implemented. We note that the current performance indicates a far more reliable embedding of anatomy in spiking than precedented by the modest statistical significance previously described in the literature. It would have been impossible to achieve this without the tremendous resources provided by the Allen Institute. In our revision, we will clarify that major performance improvements are both possible and probable.

      Weaknesses:

      As the authors mention in the Discussion, it is not clear whether the observed differences in firing are epiphenomenal. If the anatomical location information is useful to the neuron, to what extent can this be inferred from the vicinity of the synaptic site, based on the neurotransmitter and neuromodulator identities? Why would the neuron need to dynamically update its prediction of the anatomical location of its pre-synaptic partner based on activity when that location is static, and if that information is genetically encoded in synaptic proteins, etc (e.g., the type of the synaptic site)? Note that the neuron does not need to classify all possible locations to guess the location of its pre-synaptic partner because it may only receive input from a subset of locations.  If an argument on activity-based estimation being more advantageous to the neuron than synaptic site-based estimation cannot be made, I believe limiting the scope of the paper (e.g., in the Introduction) to an epiphenomenal observation and its quantification will improve the scientific quality.

      Summarily, in response to the two reviewers, we will minimize our discussion of this question in the revision. However, given that our results are either epiphenomenal or functional, we feel that it is important to indicate these possibilities, even if this indication is succinct and conservative.

      In pursuit of a more concise revision, we will not expand our discussion to accommodate this interesting conversation with the reviewer, but we are excited to briefly offer our perspective here.

      Regarding the epiphenomenal nature of our observations: this is a complex question that would be challenging but not impossible to validate experimentally. It has been previously established that neurons, especially those that integrate inputs from a variety of regions and are involved in diverse functions, could benefit from mechanisms for dynamically parsing inputs (Gutig, Sompolinsky 2006). Neurotransmitter and neuromodulator identities may indeed convey some information about presynaptic neuron location (e.g., NE may originate from the locus coeruleus). However, hypothetically, the binding of a neurotransmitter only bears on the postsynaptic neuron via ionic current, or second messenger activity. Postsynaptic neurons do not consume or otherwise endocytose the neurotransmitter, thus the ability of a neuron to “know” the presynaptic identity is a function of induced postsynaptic activity. Certainly, there are multiple streams of information that can provide insight into anatomical location all taking the ultimate form of neural activity and membrane dynamics. This would be broadly consistent with (for example) reward prediction error which is evident in dopamine release, firing rates, spiking patterns, and oscillatory rhythms.

      We could imagine a possible role for the embedding of location in spiking patterns. It is important to note that many neurons in neighboring areas share common neurotransmitters (e.g., glutamate, GABA). Neurons receiving input from multiple regions with similar neurotransmitter profiles could benefit from additional information in the spiking patterns for distinguishing input sources, especially for multimodal integration. For instance, an inferior parietal lobule neuron or microcircuit could be downstream from both auditory cortex (listening) and Broca’s area (speaking). Imagine an individual is in a crowded coffee shop waiting for their drink order to be called while speaking to their friend. In this scenario, it may be important to recognize region-specific activity and thus selectively attend to it. Thus, it is unlikely that neurons actively update a “location prediction,” but rather that location-related information is passively embedded in spike patterning and this might be dynamically leveraged in computation. We emphasize that this is a simplified conceptual example and not a hypothesis that we test in the paper. This conversation, however, is a wonderful example of the thought experiments that we hope will grow from this type of work.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, Tolossa et al. analyze Inter-spike intervals from various freely available datasets from the Allen Institute and from a dataset from Steinmetz et al. They show that they can modestly decode between gross brain regions (Visual vs. Hippocampus vs. Thalamus), and modestly separate sub-areas within brain regions (DG vs. CA1 or various visual brain areas).

      Strengths:

      The paper is reasonably well written, and the definitions are quite well done. For example, the authors clearly explained transductive vs. inductive inference in their decoders. E.g., transductive learning allows the decoder to learn features from each animal, whereas inductive inference focuses on withheld animals and prioritizes the learning of generalizable features.

      Thank you!

      Weaknesses:

      However, even with some of these positive aspects, I still found the manuscript to be a laundry list of results, where some results are overly explained and not particularly compelling or interesting, whereas interesting results are not strongly described or emphasized. The overall problem is that the study is not cohesive, and the authors need to either come up with a tool or demonstrate a scientific finding. The current version attempts to split the middle and thus is not as impactful as it could be

      In our revision, we will endeavor to present our results in line with your suggestions. Thank you for the careful and thorough feedback that will improve the readability of our manuscript. We strove to be complete in establishing the logic leading to our ultimate finding—that a robust code for anatomical location can be extracted from single neuron spike trains, but not from more traditional descriptions of neural activity. Our detection of this code, albeit not perfect in performance, is, in most cases, both far above chance levels and is robust to animal identity and laboratory of origin. Our presentation of these results is cohesive in as much as we sequentially establish a series of results that build towards a concluding set of experiments. We start by establishing a baseline via standard measurements and then explore more challenging problems through more complex models that build toward our final test.  Based on your feedback, we will contract and expand elements of this sequence.

      While our findings raise the possibility of developing a computational tool for electrode localization, pending additional features and/or datasets, our current focus is on establishing the neurobiological principle of anatomical embedding in spike trains. The purpose of briefly mentioning a possible application is that we hope to encourage those engaged in machine-learning on multi-modal neural data that this problem is tractable, yet still open. Based on your feedback, we will clarify that the focus of our current work is not an introduction of a new tool.

    1. Author response:

      Public Reviews: 

      Reviewer #1 (Public review): 

      Summary: 

      Mitotic kinesins carry out crucial roles in intracellular motility and mitotic spindle organization. Although many mitotic kinesins have been extensively studied, a few conserved mitotic motors remain poorly explored, including chromosome-associated kinesins. Here, Furusaki et al reconstitute recombinant chromosome-associated kinesin or chromokinesin (Kid) and reveal processive plus-end motility along microtubules. The authors purify multiple versions of Kid, revealing dimeric organization and their processive microtubule plus-ended motility which depends on their conserved motor domains, neck linkers, and coiled-coil regions. The study reveals for the first time that KID can recruit and transport duplex DNA along microtubules using its conserved C-terminal DNA binding domain. The work provides crucial revised thinking about the mechanisms of Chromokinesins mitosis as physical processive motors that mobilize chromosomes towards the microtubule plus ends in early metaphase. 

      Strengths: 

      The authors reconstitute multiple chromosome-associated kinesin (KID) orthologs from Xenopus and humans with microtubules and determine their oligomerization. The study shows how coiled-coil and neck linker regions of KID are essential for its function as its deletion leads to non-processive motility. CHimeras placing the KID coiled-coil and neck linker on the KIF1A motor domain led to the production of a processive recombinant motor supporting the compatibility of their motility mechanisms. The KID c-terminal tail binds and transports only double-stranded DNA and its deletion or single-stranded DNA leads to defects in this activity.

      Thank you very much.

      Weaknesses: 

      A minor weakness in the studies is that they do not resolve the mechanisms of KID in binding large duplex DNA molecules or condensed chromatin. The authors suggest a model in which KID forms multimers along large chromosomes that lead to their transport, but this model was not directly tested. 

      Thank you very much for your suggestion.

      We will attempt to observe the movement of longer dsDNA and/or DNA-bead complexes and compare their motility with that of a single KID motor to elucidate the cooperativity of the motor protein.

      Reviewer #2 (Public review): 

      Summary: 

      Previous work in the field highlighted the role of the kinesin-10 motor protein Kid (KIF22) in the polar ejection force during prometaphase. However, the biochemical and biophysical properties of Kid that enabled it to serve in this role were unclear. The authors demonstrate that human and xenopus Kid proteins are processive kinesins that function as homodimeric molecules. The data are solid and support the findings although the text could use some editing to improve clarity. 

      Strengths: 

      A highlight of the work is the reconstitution of DNA transport in vitro. 

      A second highlight is the demonstration that the monomer vs dimer state is dependent on protein concentration. 

      Thank you very much.

      Weaknesses: 

      The authors make several assumptions of the monomer vs dimer state of various Kid constructs without verifying the protein state using e.g. size exclusion chromatography and/or nanophotometry. They also make statements about monomer-to-dimer transitions on the microtubule without showing or quantifying the data. 

      As reviewer suggests, the monomer-to-dimer transitions on the microtubule is a speculation. What we can measure in our hands are (1) monomer and dimer ratio in the solution and (2) particle movement on microtubules. At the pmol/L condition, Kid is monomeric in solution but exhibits processive movement on microtubules. Dimerization is generally required for the processivity. Therefore, we suggest Kid forms a dimer on microtubules.

      To show that Kid forms a dimer on microtubules, we will perform photobleaching assays and measure the fluorescent intensities of each particle on microtubules to determine their oligomeric state.

      The discussion needs to better put the work into context regarding the ability of non-processive motors to work in teams (formerly thought to be the case for Kid) and how their findings on Kid change this prevailing view in the case of polar ejection force. 

      We will look for the example of non-processive motors and include them in the Discussion and Citation. As described by this reviewer, Kid was originally thought to be a non-processive motor. We hope that our current work would change that view.  

      The authors also do not mention previous work on kinesins with non-conventional neck linker/neck coil regions that have been shown to move processively. Their work on Kid needs to be put into this context.

      We have thought that most kinesins, belonging to the cargo-transport classes, have conserved neck linker domain and neck coil domains, with Kid being exception. We will search for more citations, including non-transport classes of kinesins, and re-write the Discussion.

    1. Author response:

      The following is the authors’ response to the original reviews.

      First of all, we would like to thank the reviewers for their very constructive comments, which helped us to improve the manuscript! In response to the raised issues, we have performed new experiments and made necessary changes on the manuscript.

      eLife Assessment

      The study describes a valuable new technology in the field of targeted protein degradation that allows identification of E3-ubiquitin ligases that target a protein of interest. The presented data are convincing, however, it is unclear whether the proposed system can be successfully used in high throughput applications. This technology will serve the community in the initial stages of developing targeted protein degraders.

      We thank the eLife editors for the positive assessment and have clarified the scalability of our system for high throughput applications in the revised manuscript (see our response to both reviewer’s comment on weakness point 1).

      Reviewer #1 (Public Review):

      Summary:

      PROTACs are heterobifunctional molecules that utilize the Ubiquitin Proteasome System to selectively degrade target proteins within cells. Upon introduction to the cells, PROTACs capture the activity of the E3 ubiquitin ligases for ubiquitination of the targeted protein, leading to its subsequent degradation by the proteasome. The main benefit of PROTAC technology is that it expands the "druggable proteome" and provides numerous possibilities for therapeutic use. However, there are also some difficulties, including the one addressed in this manuscript: identifying suitable target-E3 ligase pairs for successful degradation. Currently, only a few out of about 600 E3 ligases are used to develop PROTAC compounds, which creates the need to identify other E3 ligases that could be used in PROTAC synthesis. Testing the efficacy of PROTAC compounds has been limited to empirical tests, leading to lengthy and often failure-prone processes. This manuscript addressed the need for faster and more reliable assays to identify the compatible pairs of E3 ligases-target proteins. The authors propose using the RiPA assay, which depends on rapamycin-induced dimerization of FKBP12 protein with FRB domain. The PROTAC technology is advancing rapidly, making this manuscript both timely and essential. The RiPA assay might be useful in identifying novel E3 ligases that could be utilized in PROTAC technology. Additionally, it could be used at the initial stages of PROTAC development, looking for the best E3 ligase for the specific target.

      The authors described an elegant assay that is scalable, easy-to-use, and applicable to a wide range of cellular models. This method allows for the quantitative validation of the degradation efficacy of a given pair of E3 ligase-target proteins, using luciferase activity as a measure. Importantly, the assay also enables the measurement of kinetics in living cells, enhancing its practicality.

      Strengths:

      (1) The authors have addressed the crucial needs that arise during PROTAC development. In the introduction, they nicely describe the advantages and disadvantages of the PROTAC technology and explain why such an assay is needed.

      (2) The study includes essential controls in experiments (important for generating new assay), such as using the FRB vector without E3 ligase as a negative control, testing different linkers (which may influence the efficacy of the degradation), and creating and testing K-less vectors to exclude the possibility of luciferase or FKBP12 ubiquitination instead of WDR5 (the target protein). Additionally, the position of the luc in the FKBP12 vector and the position of VHL in the FRB vector are tested. Different E3 ligases are tested using previously identified target proteins, confirming the assay's utility and accuracy.

      (3) The study identified a "new" E3 ligase that is suitable for PROTAC technology (FBXL).

      We greatly appreciate the reviewer’s positive feedback on our work. To evaluate our system further, in our revised manuscript we have conducted additional analysis on KRASG12D degradation via VHL and CRBN within our K-less system. Consistent with previous findings of VHL-harnessing PROTACs, our assay demonstrated that VHL mediated efficient degradation of KRASG12D while CRBN induced only a minor effect. This new data is presented in Figure 2 - figure supplement 1C of the revised manuscript.

      Weaknesses:

      · It is not clear how feasible it would be to adapt the assay for high-throughput screens.

      The design of our study is a well-based assay. It is therefore possible but not realistic to evaluate all 600 and more human E3 ligases. Nonetheless, if interested in all E3 ligases, our assay could be adapted for pooled experimental strategies, as demonstrated in Poirson, J., Cho, H., Dhillon, A. et al., Nature 628, 878–886 (2024).

      Our system offers several advantages over pooled screens, including the generation of more quantitative data and faster testing of selected candidates. Pooled screens, by contrast, require more time due to the necessity of next-generation sequencing and bioinformatics analysis. Moreover, in response to the reviewers comment, we have included a schematic in the revised manuscript (Figure 4 - figure supplement 1A) that outlines the assay duration and hands-on time for target and E3 ligase candidates.

      · In some experiments, the efficacy of WDR5 degradation tested by immunoblotting appears to be lower than luciferase activity (e.g., Figure 2G and H).

      We concur with the reviewer that in some instances, the degradation observed via immunoblotting appears lower than that indicated by luciferase activity. Thus, we have quantified the western and added it to the respective blots. This discrepancy may result from the non-linearity of western blots.

      Reviewer #2 (Public Review):

      Summary:

      Adhikari and colleagues developed a new technique, rapamycin-induced proximity assay (RiPA), to identify E3-ubiquitin (ub) ligases of a protein target, aiming at identifying additional E3 ligases that could be targeted for PROTAC generation or ligases that may degrade a protein target. The study is timely, as expanding the landscape of E3-ub ligases for developing targeted degraders is a primary direction in the field.

      Strengths:

      The study's strength lies in its practical application of the FRB:FKBP12 system. This system is used to identify E3-ub ligases that would degrade a target of interest, as evidenced by the reduction in luminescence upon the addition of rapamycin. This approach effectively mimics the potential action of a PROTAC.

      We are delighted with this assessment of our work by the reviewer. To evaluate our system further, in our revised manuscript we have conducted additional analysis on KRASG12D degradation via VHL and CRBN within our K-less system. Consistent with previous findings of VHL-harnessing PROTACs, our assay demonstrated that VHL mediated efficient degradation of KRASG12D while CRBN induced only a minor effect. This new data is presented in Figure 2 - figure supplement 1C of the revised manuscript.

      Weaknesses:

      (1) While the technique shows promise, its application in a discovery setting, particularly for high-throughput or unbiased E3-ub ligase identification, may pose challenges. The authors should provide more detailed insights into these potential difficulties to foster a more comprehensive understanding of RiPA's limitations.

      The design of our study is well-based assay . It is therefore possible but not realistic to evaluate all 600 and more human E3 ligases. Nonetheless, if interested in all E3 ligases, our assay could be adapted for pooled experimental strategies, as demonstrated in Poirson, J., Cho, H., Dhillon, A. et al., Nature 628, 878–886 (2024).

      Our system offers several advantages over pooled screens, including the generation of more quantitative data and faster testing of selected candidates. Pooled screens, by contrast, require more time due to the necessity of next-generation sequencing and bioinformatics analysis. Moreover, in response to the reviewers comment, we have included a schematic in the revised manuscript (Figure 4 - figure supplement 1A) that outlines the assay duration and hands-on time for target and E3 ligase candidates.

      We also added the following sentences to the Limitations of the study section of the revised manuscript (line 322-326): “While our system offers easy testing of different tagging approaches and due to its simple workflow facilitates the rapid characterization of novel E3 ligases across multiple targets, it is currently not optimized for high-throughput evaluation of all 600+ E3 ligases. Achieving such scale would necessitate further adaptations, including the incorporation of pooled experimental strategies.”

      (2) While RiPA will help identify E3 ligases, PROTAC design would still be empirical. The authors should discuss this limitation. Could the technology be applied to molecular glue generation?

      We agree with the reviewer that our assay rationalizes the choice of E3 ligases but that PROTAC design (“linkerology”) is still mostly empirical. To address this, we included the following line in the Limitations of the study section of our initial manuscript (line 327-330): “Conversely, it is also conceivable that an E3 ligase that can efficiently decrease the levels of a particular target in the RiPA setting may be less suitable for PROTACs, since PROTACs that mimic the steric interaction of the target/E3 pair may not be easily identified in the chemical space.”

      Regarding molecular glues, our assay could also be instrumental in identifying suitable E3 ligases for a target protein prior to screening for molecular glues, provided that the screening system specifically screens E3 ligase and target pairs. However, as most molecular glue screens are currently agnostic to specific E3 ligases or targets, our system may not be applicable in those cases. We have elaborated on this in the discussion section of the revised manuscript (line 271-274): “We envision that this setting will be valuable for identifying the most suitable E3 ligase candidates for PROTACs aimed at specific proteins, and for guiding E3 ligase selection when screening for molecular glues targeting specific E3 ligase and protein pairs.”

      (3) Controls to verify the intended mechanism of action are missing, such as using a proteasome inhibitor or VHL inhibitors/siRNA to verify on-target effects. Verification of the target E3 ligase complex after rapamycin addition via orthogonal approaches, such as IP, should be considered.

      We thank the reviewer for the comment. Particularly VHL siRNA is not beneficial in this setup, as we overexpress the E3 ligase rather than relying on endogenous protein.

      To verify mechanism of action, we performed additional experiments in the presence of proteosomal inhibitor MG132 and neddylation inhibitor MLN4924 with target KRASG12D and E3 ligase VHL. The results is shown in Figure 2H of the revised manuscript.

      Minor concern:

      The graphs in Figure 1E are missing.

      We thank the reviewer for pointing this out. We corrected the figure in the revised manuscript.

      Reviewer #1 (Recommendations For The Authors):

      •  Optionally, the authors could add control experiments with Aurora B and Crb vectors (there shouldn't be any degradation) and experiments confirming that the degradation occurs via the proteasome. For example, the addition of proteasome inhibitors (such as bortezomib) should decrease the efficiency of the target degradation and confirm that targets are degraded via the proteasome system.

      Regarding Aurora-B degradation, as far as we know, there are no specific Aurora-B PROTACs reported. Thus, there is no definitive evidence that CRBN could not degrade Aurora-B. Nevertheless, we performed assays with Aurora-B and VHL, CRBN, or FRB, and observed more effective degradation of Aurora-B by VHL than CRBN. This data is now included in Figure 2 - figure supplement 1B of the revised manuscript.

      • It would also be helpful to provide a possible explanation for why the ratio 1:1 of vectors did not induce the degradation (regarding Figure 1D).

      We believe the lack of degradation with 1:1 vector ratio is due to the differential expression levels of endogenous FKBP12 and mTOR in HEK293 cells. According to Human Protein Atlas, the normalized protein-coding transcripts per million (nTPM) for FKBP12 and mTOR in HEK293 cells are 160 and 24 respectively, indicating that FKBP12 is expressed at levels approximately 6.7 times higher than mTOR. This disparity likely limits the heterodimerization of exclusively fusion proteins upon rapamycin addition. To increase the likelihood of FKBP12 and FRB fusion protein dimerization, we used a higher ratio of the FRB component during transfection, considering the higher endogenous expression of FKBP12.

      • It would be helpful to add more explanation for the data in Figure 1F, including whether there is a difference between vectors with different positions of VHL and FRB and why the FRB-VHL vector is less expressed without rapamycin.

      We thank the reviewer for the comment. Regarding the vector orientations of VHL/FRB and WDR5/Luc/FKBP12, we have consistently observed different migration behaviors for WDR5 and VHL constructs, despite their same molecular weights. This observation aligns with literature reports where differential running behavior is noted when FRB or FKBP12 (or their mutants) are tagged to the N- or C-terminus of a protein (Bondeson, D.P., Mullin-Bernstein, Z., Oliver, S. et al. Nat Commun 13, 5495 (2022); Mabe, S., Nagamune, T. & Kawahara, M. Sci Rep 4, 6127 (2014)). We have now included the following explanation in the figure legend of Figure 1F of the revised manuscript: “WDR5 and VHL fusion proteins tagged at the N- and C-terminal show different migration behaviors despite having same molecular weight.”

      Additionally, the stabilizing effect of rapamycin on FRB (or its mutants), FRB fusion proteins, and FRB-containing proteins has been documented (Stankunas, K., Bayle, J.H., Havranek, J.J. et al. ChemBioChem, 8(10), 1162-1169 (2007); Stankunas, K., Bayle, J.H., Gestwicki J.E. et al. Mol Cell, 12(6), 1615–1624 (2003); Zhang, C., Cui, M., Cui, Y. et al. J. Vis. Exp. (150), e59656 (2019)). We believe that the degree of stabilization by rapamycin could differ between N- and C-terminal FRB fusion proteins.

      • Finally, the mistake in Figure 2G (where the lanes are wrongly labelled, BRBN-FRB and FRB) should be corrected. Also please correct the graph in Figure 1E (there seems to be a problem with bars for 1:100). There are some typos, such as in lines 38, 277, and 288.

      Thank you for bringing this to our attention. We have corrected all the mentioned errors.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      In this work, the authors examine the activity and function of D1 and D2 MSNs in dorsomedial striatum (DMS) during an interval timing task. In this task, animals must first nose poke into a cued port on the left or right; if not rewarded after 6 seconds, they must switch to the other port. Thus, this task requires animals to estimate if at least 6 seconds have passed after the first nose poke. After verifying that animals estimate the passage of 6 seconds, the authors examine striatal activity during this interval. They report that D1-MSNs tend to decrease activity, while D2MSNs increase activity, throughout this interval. They suggest that this activity follows a driftdiffusion model, in which activity increases (or decreases) to a threshold after which a decision is made. The authors next report that optogenetically inhibiting D1 or D2 MSNs, or pharmacologically blocking D1 and D2 receptors, increased the average wait time. This suggests that both D1 and D2 neurons contribute to the estimate of time, with a decrease in their activity corresponding to a decrease in the rate of 'drift' in their drift-diffusion model. Lastly, the authors examine MSN activity while pharmacologically inhibiting D1 or D2 receptors. The authors observe most recorded MSNs neurons decrease their activity over the interval, with the rate decreasing with D1/D2 receptor inhibition. 

      We appreciate the careful read by this reviewer. 

      Major strengths: 

      The study employs a wide range of techniques - including animal behavioral training, electrophysiology, optogenetic manipulation, pharmacological manipulations, and computational modeling. The question posed by the authors - how striatal activity contributes to interval timing - is of importance to the field and has been the focus of many studies and labs. This paper contributes to that line of work by investigating whether D1 and D2 neurons have similar activity patterns during the timed interval, as might be expected based on prior work based on striatal manipulations. However, the authors find that D1 and D2 neurons have distinct activity patterns. They then provide a decision-making model that is consistent with all results. The data within the paper is presented very clearly, and the authors have done a nice job presenting the data in a transparent manner (e.g., showing individual cells and animals). Overall, the manuscript is relatively easy to read and clear, with sufficient detail given in most places regarding the experimental paradigm or analyses used. 

      We are glad that our main points come clearly through.

      Major weaknesses: 

      One weakness to me is the impact of identifying whether D1 and D2 had similar or different activity patterns. Does observing increasing/decreasing activity in D2 versus D1, or different activity patterns in D1 and D2, support one model of interval timing over another, or does it further support a more specific idea of how DMS contributes to interval timing? 

      This is a great point - we were not clear.  We observe distinct patterns of D2 and D1-MSN activity, but that disrupting either D2-MSNs or D1-MSNs led to increased response time.  The model that this supports is that D2-MSNs and D1-MSN ensemble activity represents temporal evidence.  This is a very specific model that can be rigorously tested in future work.  We have now made this very clear in the abstract (Page 2). 

      “We found that D2-MSNs and D1-MSNs exhibited distinct dynamics over temporal intervals as quantified by principal component analyses and trial-by-trial generalized linear models. MSN recordings helped construct and constrain a fourparameter drift-diffusion computational model in which MSN ensemble activity represented the accumulation of temporal evidence. This model predicted that disrupting either D2-MSNs or D1-MSNs would increase interval timing response times and alter MSN firing. In line with this prediction, we found that optogenetic inhibition or pharmacological disruption of either D2-MSNs or D1-MSNs increased interval timing response times.”

      And in the results on Page 18:  

      “Because both D2-MSNs and D1-MSNs accumulate temporal evidence, disrupting either MSN type in the model changed the slope. The results were obtained by simultaneously decreasing the drift rate D (equivalent to lengthening the neurons’ integration time constant) and lowering the level of network noise 𝝈: D = 𝟎. 𝟏𝟐𝟗, 𝝈 = 𝟎. 𝟎𝟒𝟑 for D2-MSNs in Fig 4A (in red; changes in noise had to accompany changes in drift rate to preserve switch response time variance. See Methods); and 𝑫 = 𝟎. 𝟏𝟐𝟐, 𝝈 = 𝟎. 𝟎𝟒𝟑 for D1-MSNs in Fig 4B (in blue). The model predicted that disrupting either D2-MSNs or D1-MSNs would increase switch response times (Fig 4C and Fig 4D) and would shift MSN dynamics.” 

      And in the discussion (Page 30): 

      “Striatal MSNs are critical for temporal control of action (Emmons et al., 2017; Gouvea et al., 2015; Mello et al., 2015). Three broad models have been proposed for how striatal MSN ensembles represent time: 1) the striatal beat frequency model, in which MSNs encode temporal information based on neuronal synchrony (Matell and Meck, 2004); 2) the distributed coding model, in which time is represented by the state of the network (Paton and Buonomano, 2018); and 3) the DDM, in which neuronal activity monotonically drifts toward a threshold after which responses are initiated (Emmons et al., 2017; Simen et al., 2011; Wang et al., 2018). While our data do not formally resolve these possibilities, our results show that D2-MSNs and D1MSNs exhibit opposing changes in firing rate dynamics in PC1 over the interval. Past work by our group and others has demonstrated that PC1 dynamics can scale over multiple intervals to represent time (Emmons et al., 2020, 2017; Gouvea et al., 2015; Mello et al., 2015; Wang et al., 2018). We find that low-parameter DDMs account for interval timing behavior with both intact and disrupted striatal D2- and D1-MSNs. While other models can capture interval timing behavior and account for MSN neuronal activity, our model does so parsimoniously with relatively few parameters (Matell and Meck, 2004; Paton and Buonomano, 2018; Simen et al., 2011). We and others have shown previously that ramping activity scales to multiple intervals, and DDMs can be readily adapted by changing the drift rate (Emmons et al., 2017; Gouvea et al., 2015; Mello et al., 2015; Simen et al., 2011). Interestingly, decoding performance was high early in the interval; indeed, animals may have been focused on this initial interval (Balci and Gallistel, 2006) in making temporal comparisons and deciding whether to switch response nosepokes.”

      Regarding the reviewer’s specific question – it is not clear why D1-MSNs and D2-MSNs have opposing patterns of activity, as integration of temporal evidence can certainly be achieved increasing or decreasing firing rates alone. These patterns have been seen in motor control. Prefrontal neurons, which control striatal ramping, also ramp up and down. We have now included a paragraph on Page 30 explicitly discussing these ideas; however, future experiments will be required to investigate the source of the divergent patterns of activity among D2-MSNs and D1-MSNs.   

      “D2-MSNs and D1-MSNs play complementary roles in movement. For instance, stimulating D1-MSNs facilitates movement, whereas stimulating D2-MSNs impairs movement (Kravitz et al., 2010). Both populations have been shown to have complementary patterns of activity during movements with MSNs firing at different phases of action initiation and selection (Tecuapetla et al., 2016). Further dissection of action selection programs reveals that opposing patterns of activation among D2MSNs and D1-MSNs suppress and guide actions, respectively, in the dorsolateral striatum (Cruz et al., 2022). A particular advantage of interval timing is that it captures a cognitive behavior within a single dimension — time. When projected along the temporal dimension, it was surprising that D2-MSNs and D1-MSNs had opposing patterns of activity. Ramping activity in the prefrontal cortex can increase or decrease; and prefrontal neurons project to and control striatal ramping activity (Emmons et al., 2020, 2017; Wang et al., 2018).  It is possible that differences in D2MSNs and D1-MSNs reflect differences in cortical ramping, which may themselves reflect more complex integrative or accumulatory processes. Further experiments are required to investigate these differences. Past pharmacological work from our group and others has shown that disrupting D2- or D1-MSNs slows timing (De Corte et al., 2019b; Drew et al., 2007, 2003; Stutt et al., 2024) and are in agreement with pharmacological and optogenetic results in this manuscript. Computational modeling predicted that disrupting either D2-MSNs or D1-MSNs increased selfreported estimates of time, which was supported by both optogenetic and pharmacological experiments.”

      I found the results presented in Figures 2 and 3 to be a little confusing or misleading. In Figure 2, the authors appear to claim that D1 neurons decrease their activity over the time interval while D2 neurons increase activity. The authors use this result to suggest that D1/D2 activity patterns are different. In Figure 3, a different analysis is done, and this time D2 neurons do not significantly increase their activity with time, conflicting with Figure 2. While in both figures, there is a significant difference between the mean slopes across the population, the secondary effect of positive/negative slope for D2/D1 neurons changes. I find this especially confusing as the authors refer back to the positive/negative slope for D2/D1 neurons result throughout the rest of the text.  

      We were not clear.  First, we attempted to quantify these differences based on PCA and slope.  We have rephrased our characterization of these differences by changing text on (Page 9) to: 

      “These PETHs revealed that for the 6-second interval immediately after trial start, many putative D2-MSN neurons appeared to ramp up while many putative D1-MSNs appeared to ramp down. For 32 putative D2-MSNs average PETH activity increased over the 6-second interval immediately after trial start, whereas for 41 putative D1-MSNs, average PETH activity decreased. Accordingly, D2-MSNs and D1-MSNs had differences in activity early in the interval (0-5 seconds; F = 4.5, p = 0.04 accounting for variance between mice) but not late in the interval (5-6 seconds; F = 1.9, p = 0.17 accounting for variance between mice). Examination of a longer interval of 10 seconds before to 18 seconds after trial start revealed the greatest separation in D2-MSN and D1-MSN dynamics during the 6-second interval after trial start (Fig S2). Strikingly, these data suggest that D2-MSNs and D1-MSNs might display distinct dynamics during interval timing.” 

      We have rephrased our discussion on PCA to quantify differences in Fig 2G-H using data-driven methods (Page 12): 

      “To quantify differences between D2-MSNs vs D1-MSNs in Fig 2G-H, we turned to principal component analysis (PCA), a data-driven tool to capture the diversity of neuronal activity (Kim et al., 2017a). Work by our group and others has uniformly identified PC1 as a linear component among corticostriatal neuronal ensembles during interval timing (Bruce et al., 2021; Emmons et al., 2020, 2019, 2017; Kim et al., 2017a; Narayanan et al., 2013; Narayanan and Laubach, 2009; Parker et al., 2014; Wang et al., 2018). We analyzed PCA calculated from all D2-MSN and D1MSN PETHs over the 6-second interval immediately after trial start. PCA identified time-dependent ramping activity as PC1 (Fig 3A), a key temporal signal that explained 54% of variance among tagged MSNs (Fig 3B; variance for PC1 p = 0.009 vs 46 (44-49)% for any pattern of PC1 variance derived from random data; Narayanan, 2016). Consistent with population averages from Fig 2G&H, D2-MSNs and D1-MSNs had opposite patterns of activity with negative PC1 scores for D2MSNs and positive PC1 scores for D1-MSNs (Fig 3C; PC1 for D2-MSNs: -3.4 (-4.6 – 2.5); PC1 for D1-MSNs: 2.8 (-2.8 – 4.9); F = 8.8, p = 0.004 accounting for variance between mice (Fig S3A); Cohen’s d = 0.7; power = 0.80; no reliable effect of sex (F = 0.44, p = 0.51) or switching direction (F = 1.73, p = 0.19)).”

      And finally, we directly investigate the heart of the reviewer’s question by explicitly comparing PC1 scores – a data-driven analysis of neuronal patterns that explain the least variance – and show that they are less than 0 for D2-MSNs (i.e., negatively correlated with a down-ramping pattern, or ramping up), and greater than 0 for D1MSNs (i.e., positively correlated with an up-ramping pattern): 

      “Importantly, PC1 scores for D2-MSNs were significantly less than 0 (signrank D2MSN PC1 scores vs 0: p = 0.02), implying that because PC1 ramps down, D2-MSNs tended to ramp up. Conversely, PC1 scores for D1-MSNs were significantly greater than 0 (signrank D1-MSN PC1 scores vs 0: p = 0.05), implying that D1-MSNs tended to ramp down.  Thus, analysis of PC1 in Fig 3A-C suggested that D2-MSNs (Fig 2G) and D1-MSNs (Fig 2H) had opposing ramping dynamics.”

      We interpret these data on Page 16: 

      “Our analysis of average activity (Fig 2G-H) and PC1 (Fig 3A-C) suggested that D2MSNs and D1-MSNs might have opposing dynamics. However, past computational models of interval timing have relied on drift-diffusion dynamics that increases over the interval and accumulates evidence over time (Nguyen et al., 2020; Simen et al., 2011).”

      The reviewer mentions our analysis of ‘mean slopes across the population’ -which we clarify as trial-by-trial slope analysis, which is distinct from the population averages in 2G-H and 3A-C.  We have now made this clear (Page 12). 

      “To interrogate these dynamics at a trial-by-trial level, we calculated the linear slope of D2-MSN and D1-MSN activity over the first 6 seconds of each trial using generalized linear modeling (GLM) of effects of time in the interval vs trial-by-trial firing rate (Latimer et al., 2015).  Note that this analysis focuses on each trial rather than population averages in Fig 2G-H and Fig 3A-C.”

      Finally, as the reviewer suggests, we have removed the term ‘slope’ from the rest of the paper, as the increasing/decreasing comes from averages and analyses of PC1.  We have removed all discussion of ‘opposing’ slope or ‘increasing/decreasing’ slope. 

      It is a bit unclear to me how the authors chose the parameters for the model, and how well the model explains behavior is quantified. It seems that the authors didn't perform cross-validation across trials (i.e., they chose parameters that explained behavior across all trials combined, rather than choosing parameters from a subset of trials and determining whether those parameters are robust enough to explain behavior on held-out trials). I think this would increase the robustness of the result. 

      In addition, it remains a bit unclear to me how the authors changed the specific parameters they did to model the optogenetic manipulation. It seems these parameters were chosen because they fit the manipulation data. This makes me wonder if this model is flexible enough that there is almost always a set of parameters that would explain any experimental result; in other words, I'm not sure this model has high explanatory power. 

      We are glad the reviewer raised these points.  First, we have now included a complete exploration of the parameter space, exactly as the reviewer recommends.  These are described in the methods (Page 41): 

      “Selection of DDMs parameters. Our goal was to build DDMs with dynamics that produce “response times” according to the observed distribution of mice switch times. The selection of parameter values in Fig 4 was done in three steps. First, we fit the distribution of the mice behavioral data with a Gamma distribution and found its fitting values for shape 𝜶𝑴 and rate 𝜷𝑴 (Table S2 and Fig S8; R2 Data vs Gamma ≥ 𝟎. 𝟗𝟒). We recognized that the mean 𝝁𝑴 and the coefficient of variation 𝑪𝑽𝑴 are directly related to the shape and rate of the Gamma distribution by formulas 𝝁𝑴 \= 𝜶𝑴/𝜷𝑴 and 𝑪𝑽𝑴 \= 𝟏/√𝜶𝑴.  Next, we fixed parameters 𝑭 and 𝒃 in DDM (e.g., for D2-MSNs: 𝑭 = 𝟏, 𝒃 = 𝟎. 𝟓𝟐) and simulated the DDM for a range of values for 𝑫 and 𝝈. For each pair (𝑫, 𝝈), one computational “experiment” generated 500 response times with mean 𝝁 and coefficient of variation 𝑪𝑽. We repeated the “experiment” 10 times and took the group median of 𝝁 and 𝑪𝑽 to obtain the simulation-based statistical measures 𝝁𝑺 and 𝑪𝑽𝑺. Last, we plotted 𝑬𝝁 \= |(𝝁𝑺 − 𝝁𝑴)/𝝁𝑴| and 𝑬𝒄𝒗 \= |𝑪𝑽𝑺 − 𝑪𝑽𝑴|, the respective relative error and the absolute error to data (Fig S7). We considered that parameter values (𝑫, 𝝈) provided a good DDM fit of mice behavioral data whenever  𝑬𝝁 ≤ 𝟎. 𝟎𝟓    and 𝑬𝒄𝒗

      And included a new Fig S7 which shows the parameter space: 

      These new data clearly comment on the parameter space of our model. 

      Finally, the reviewer mentions cross-validation.  We did this at length on our model and data fits.  We used 10-fold cross-validation as fitlm needs enough data for the individual fits.  We found that the fit was extremely stable – i.e, we ended up with standard deviations in R2<0.004 for all comparisons.  Thus, we added the following point to the methods on Page 41:  

      “10-fold cross-validation revealed highly stable fits between gamma, models and data.”

      Lastly, the results are based on a relatively small dataset (tens of cells). 

      This is an important point.  Although it is a small optogenetically-tagged dataset, we have adequate statistical power and large effect sizes, which we now detail in the text on Page 12:

      “Consistent with population averages from Fig 2G&H, D2-MSNs and D1-MSNs had opposite patterns of activity with negative PC1 scores for D2-MSNs and positive PC1 scores for D1-MSNs (Fig 3C; PC1 for D2-MSNs: -3.4 (-4.6 – 2.5); PC1 for D1MSNs: 2.8 (-2.8 – 4.9); F = 8.8, p = 0.004 accounting for variance between mice (Fig S3A); Cohen’s d = 0.7; power = 0.80; no reliable effect of sex (F = 0.44, p = 0.51) or switching direction (F = 1.73, p = 0.19)).”

      And:  

      “GLM analysis also demonstrated that D2-MSNs had significantly different slopes (0.01 spikes/second (-0.10 – 0.10)), which were distinct from D1-MSNs (-0.20 (-0.47– 0.06; Fig 3D; F = 8.9, p = 0.004 accounting for variance between mice (Fig S3B); Cohen’s d = 0.8; power = 0.98; no reliable effect of sex (F = 0.02, p = 0.88) or switching direction (F = 1.72, p = 0.19)).”

      And we have included the reviewers point as a limitation on Page 33:  

      “Second, although we had adequate statistical power and medium-to-large effect sizes, optogenetic tagging is low-yield, and it is possible that recording more of these neurons would afford greater opportunity to identify more robust results and alternative coding schemes, such as neuronal synchrony.”

      Impact: 

      The task and data presented by the authors are very intriguing, and there are many groups interested in how striatal activity contributes to the neural perception of time. The authors perform a wide variety of experiments and analysis to examine how DMS activity influences time perception during an interval-timing task, allowing for insight into this process. However, the significance of the key finding -- that D1 and D2 activity is distinct across time -- remains somewhat ambiguous to me. 

      Again, we are glad that the reviewer appreciated our main point, and we very much appreciate the additional points about interpretation, model parameters, and statistical power. If there is any way we can clarify the text further we are happy to do so.  

      Reviewer #2 (Public Review):  

      (1) Regarding the results in Figure 2 and Figure 5: for the heatmaps in Fig.2F and Fig.2E, the overall activity pattern of D1 and D2 MSNs looks very similar, both D1 and D2 MSNs contains neurons showing decreasing or increasing activity during interval timing. And the optogenetic and pharmacologic inhibition of either D1 or D2 MSNs resulted in similar behavior outcomes. To me, the D1 and D2 MSN activities were more complementary than opposing. 

      This is a great point. In our last revision, R3 suggested that complementary means opposing – and suggested we change the title to reflect this.  Our original title was ‘Complementary cognitive roles for D2-MSNs and D1-MSNs during interval timing’ – and we have changed the title back to this. We have clarified what we meant by complementary in the abstract (Page 2):

      “Together, our findings demonstrate that D2-MSNs and D1-MSNs had opposing dynamics yet played complementary cognitive roles, implying that striatal direct and indirect pathways work together to shape temporal control of action.”

      And on Page 30: 

      “These data, when combined with our model predictions, demonstrate that despite opposing dynamics,  D2-MSNs and D1-MSN contribute complementary temporal evidence to controlling actions in time.”

      If the authors want to emphasize the opposing side of D1 and D2 MSNs, then the manipulation experiments need to be re-designed, since the average activity of D2 MSNs increased, while D1 MSNs decreased during interval timing, instead of using inhibitory manipulations in both pathways, the authors should use inhibitory manipulation in D2-MSNs, while using optogenetic or pharmacology to activate D1-MSNs. In this way, the authors can demonstrate the opposing role of D1 and D2 MSNs and the functions of increased activity in D2-MSNs and decreased activity in D1-MSNs. 

      These are great ideas, which we agree with.  We would like to emphasize the complementary nature as noted in our original title, and not the opposing side of D1/D2 MSNs. The experiments proposed by reviewer are certainly worth doing, but would likely be quite complex to find the right stimulation parameters to affect timing without affecting movement – and we have now included them as an important limitation / future direction (Page 33):

      “Fifth, we did not deliver stimulation to the striatum because our pilot experiments triggered movement artifacts or task-specific dyskinesias (Kravitz et al., 2010). Future stimulation approaches carefully titrated to striatal physiology may affect interval timing without affecting movement.”

      (2) Regarding the results in Figure 3 C and D, Figure 6 H and Figure 7 D, what is the sample size? From the single data points in the figures, it seems that the authors were using the number of cells to do statistical tests and plot the figures. For example, Figure 3 C, if the authors use n= 32 D2 MSNs and n= 41D1 MSNs to do the statistical test, it could make a small difference to be statistically significant. The authors should use the number of mice to do the statistical tests. 

      These are important points that were discussed at length in the prior review.  First, for the sample size, we now have detailed in our Table 1: 

      Second, we have detailed our statistical approach which explicitly deals with repeated observations of neurons across mice (Page 43):

      “Statistics. All data and statistical approaches were reviewed by the Biostatistics, Epidemiology, and Research Design Core (BERD) at the Institute for Clinical and Translational Sciences (ICTS) at the University of Iowa. All code and data are made available at http://narayanan.lab.uiowa.edu/article/datasets. We used the median to measure central tendency and the interquartile range to measure spread. We used Wilcoxon nonparametric tests to compare behavior between experimental conditions and Cohen’s d to calculate effect size. Analyses of putative single-unit activity and basic physiological properties were carried out using custom routines for MATLAB. For all neuronal analyses, variability between animals was accounted for using generalized linear-mixed effects models and incorporating a random effect for each mouse into the model, which allows us to account for inherent betweenmouse variability. We used fitglme in MATLAB and verified main effects using lmer in R. We accounted for variability between MSNs in pharmacological datasets in which we could match MSNs between saline, D2 blockade, and D1 blockade. P values < 0.05 were interpreted as significant.”   

      We have formally reviewed this approach with professional biostatisticians at the University of Iowa.

      Finally, we note that we do have adequate statistical power for analysis of Fig 3C and D:  we have adequate statistical power and large effect sizes, which we now detail in the text on Page 12:

      “Consistent with population averages from Fig 2G&H, D2-MSNs and D1-MSNs had opposite patterns of activity with negative PC1 scores for D2-MSNs and positive PC1 scores for D1-MSNs (Fig 3C; PC1 for D2-MSNs: -3.4 (-4.6 – 2.5); PC1 for D1MSNs: 2.8 (-2.8 – 4.9); F = 8.8, p = 0.004 accounting for variance between mice (Fig S3A); Cohen’s d = 0.7; power = 0.80; no reliable effect of sex (F = 0.44, p = 0.51) or switching direction (F = 1.73, p = 0.19)).”

      And, on Page 12:  

      “GLM analysis also demonstrated that D2-MSNs had significantly different slopes (0.01 spikes/second (-0.10 – 0.10)), which were distinct from D1-MSNs (-0.20 (-0.47– 0.06; Fig 3D; F = 8.9, p = 0.004 accounting for variance between mice (Fig S3B); Cohen’s d = 0.8; power = 0.98; no reliable effect of sex (F = 0.02, p = 0.88) or switching direction (F = 1.72, p = 0.19)).”

      And we have included the reviewers point as a limitation on Page 33: 

      “Second, although we had adequate statistical power and medium-to-large effect sizes, optogenetic tagging is low-yield, and it is possible that recording more of these neurons would afford greater opportunity to identify more robust results and alternative coding schemes, such as neuronal synchrony.”

      (3) Regarding the results in Figure 5, wly at is the reason for the increase in the response times? The authors should plot the position track during intervals (0-6 s) with or without optogenetic or pharmacologic inhibition. The authors can check Figures 3, 5, and 6 in the paper https://doi.org/10.1016/j.cell.2016.06.032 for reference to analyze the data. 

      These are key points, and we are glad the reviewer raised them.  Our interpretation is that response time increases – without reliable changes in other task-specific movements such as nosepoke reaction time or traversal time (Fig S9).  This was lacking in our prior manuscript, and we are glad the reviewer raised it.  We have now added this to Page 30

      “Our interpretation is that because the activity of D2-MSN and D1-MSN ensembles represents the accumulation evidence, pharmacological/optogenetic disruption of D2-MSN/D1-MSN activity slows this accumulation process, leading to slower interval timing-response times (Fig 5) without changing other task-specific movements (Fig S9).  These results provide new insight into how opposing patterns of striatal MSN activity control behavior in similar ways and show that they play a complementary role in elementary cognitive operations.”

      Regarding the tracking of velocity, we unfortunately do not have this information reliably across all conditions. This citation is a beautiful landmark paper, and we are working on collecting this information in our new datasets going forward.  We have included this as a major limitation (Page 34): 

      “Still, future work combining motion tracking/accelerometry with neuronal ensemble recording and optogenetics and including bisection tasks may further unravel timing vs. movement in MSN dynamics (Robbe, 2023; Tecuapetla et al., 2016).”

      Once again, we are appreciative of the thoughtful points raised by this reviewer.  

      Reviewer #3 (Public Review): 

      Summary: 

      The cognitive striatum, also known as the dorsomedial striatum, receives input from brain regions involved in high-level cognition and plays a crucial role in processing cognitive information. However, despite its importance, the extent to which different projection pathways of the striatum contribute to this information processing remains unclear. In this paper, Bruce et al. conducted a study using various causal and correlational techniques to investigate how these pathways collectively contribute to interval timing in mice. Their results were consistent with previous research, showing that the direct and indirect striatal pathways perform opposing roles in processing elapsed time. Based on their findings, the authors proposed a revised computational model in which two separate accumulators track evidence for elapsed time in opposing directions. These results have significant implications for understanding the neural mechanisms underlying cognitive impairment in neurological and psychiatric disorders, as disruptions in the balance between direct and indirect pathway activity are commonly observed in such conditions. 

      Strengths: 

      The authors employed a well-established approach to study interval timing and employed optogenetic tagging to observe the behavior of specific cell types in the striatum. Additionally, the authors utilized two complementary techniques to assess the impact of manipulating the activity of these pathways on behavior. Finally, the authors utilized their experimental findings to enhance the theoretical comprehension of interval timing using a computational model. 

      We very much appreciate the considered read and comments by the reviewer, and recognition of the breadth of techniques in this manuscript. 

      Weaknesses: 

      The behavioral task used in this study is best suited for investigating elapsed time perception, rather than interval timing. Timing bisection tasks are often employed to study interval timing in humans and animals. In the optogenetic experiment, the laser was kept on for too long (18 seconds) at high power (12 mW). This has been shown to cause adverse effects on population activity (for example, through heating the tissue) that are not necessarily related to their function during the task epochs. Given the systemic delivery of pharmacological interventions, it is difficult to conclude that the effects are specific to the dorsomedial striatum. Future studies should use the local infusion of drugs into the dorsomedial striatum. 

      These are important points.  We agree with them completely and have now included responses to them.  First, bisection tasks certainly have advantages – we have justified our approach in the discussion (Page 32):

      “Our task version has been used extensively to study interval timing in mice and humans (Balci et al., 2008; Bruce et al., 2021; Stutt et al., 2024; Tosun et al., 2016; Weber et al., 2023). However, temporal bisection tasks, in which animals hold during a temporal cue and respond at different locations depending on cue length, have advantages in studying how animals time an interval because animals are not moving while estimating cue duration (Paton and Buonomano, 2018; Robbe, 2023; Soares et al., 2016). Our interval timing task version – in which mice switch between two response nosepokes to indicate their interval estimate has elapsed – has been used extensively in rodent models of neurodegenerative disease (Larson et al., 2022; Weber et al., 2024, 2023; Zhang et al., 2021), as well as in humans (Stutt et al., 2024). This version of interval timing involves motor timing, which engages executive function and has more translational relevance for human diseases than perceptual timing or bisection tasks (Brown, 2006; Farajzadeh and Sanayei, 2024; Nombela et al., 2016; Singh et al., 2021).  Furthermore, because many therapeutics targeting dopamine receptors are used clinically, these findings help describe how dopaminergic drugs might affect cognitive function and dysfunction. Future studies of D2-MSNs and D1-MSNs in temporal bisection and other timing tasks may further clarify the relative roles of D2- and D1-MSNs in interval timing and time estimation.”

      Second – we have included an explicit control that has the same laser that is on for the same epoch as in the experimental animal – and find no effects.  This is now detailed in the methods: (Page 37): 

      “To control for heating and nonspecific effects of optogenetics, we performed control experiments in mice without opsins using identical laser parameters in D2-cre or D1-cre mice (Fig S6).”

      And in the results (Page 21): 

      “To control for heating and nonspecific effects of optogenetics, we performed control experiments in D2-cre mice without opsins using identical laser parameters; we found no reliable effects for opsin-negative controls (Fig S6).”

      And on Page 21:

      “As with D2-MSNs, we found no reliable effects with opsin-negative controls in D1MSNs (Fig S6).”

      We have now detailed these results in Figure S6:

      Regarding focal pharmacology, we performed this experiment with focal infusion of D1/D2 antagonists in our prior work, which we have now cited (Page 4):

      “Similar behavioral effects were found with systemic (Stutt et al., 2024) or focal infusion of D2 or D1 antagonists locally within the dorsomedial striatum (De Corte et al., 2019a).”

      Comments on revised version: 

      Thank you for the comprehensive revisions. Most of my (addressable) concerns were addressed. The current version of your manuscript appears significantly improved. 

      Once again, we appreciate the reviewer’s constructive and insightful comments and careful review of our manuscript.  Their comments have been extremely helpful.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      A subset of fibroblast growth factor (FGF) proteins (FGF11-FGF14; often referred to as fibroblast growth factor homologous factors because they are not thought to be secreted and do not seem to act as growth factors) have been implicated in modulating neuronal excitability, however, the exact mechanisms are unclear. In part, this is because it is unclear how different FGF isoforms alter ion channel activity in different neuronal populations. In this study, the authors explore the role of FGF 13 in epilepsy using a variety of FGF13 knock-out mouse models, including several targeted cell-type specific conditional knockout mouse lines. The study is intriguing as it indicates that FGF13 plays an especially important role in inhibitory neurons. Furthermore, although FGF13 has been studied as a regulator of neuronal voltage-gated sodium channels, the authors present data indicating that FGF13 knockout in inhibitory neurons induces seizures not by altering sodium current properties but by reducing voltage-gated potassium currents in inhibitory neurons. While intriguing, the data are incomplete in several aspects and thus the mechanisms by which various FGF13 variants induce Developmental and Epileptic Encephalopathies are not resolved by the data presented. 

      Strengths: 

      A major strength is the array of techniques used to assess the mice and the electrical activity of the neurons. 

      The multiple mouse knock-out models utilized are a strength, clearly demonstrating that FGF13 expression in inhibitory neurons, and possibly specific sub-populations of inhibitory neurons, is critically important. 

      The data on the increased sensitivity to febrile seizures in KO mice are very nice, provide clear evidence for regulation of excitability in inhibitory neurons by FGF13. 

      The Gad2Fgf13-KO mice indicated that several Fgf13 splice variants may be expressed in inhibitory neurons and suggest that the Fgf13-VY splice variants may have previously unrecognized specific roles in regulating neuronal excitability. 

      The data on males and females from the various KO mice lines indicates a clear gene dosage effect for this X-linked gene. 

      The unbiased metabolomic analysis supports the assertion that Fgf13 expression in inhibitory neurons is important in regulating seizure susceptibility. 

      Weaknesses: 

      The knockout approach can be powerful but also has distinct limitations. Multiple missense mutations in FGF13-S have been identified. The knockout models employed here are not appropriate for understanding how these missense variants lead to altered neuronal excitability. While the data show that complete loss of Fgf13 from excitatory forebrain neurons is not sufficient to induce seizure susceptibility, it does not rule out that specific variants (e.g., R11C) might alter the excitability of forebrain neurons. The missense variants may alter excitatory and/or inhibitory neuron excitability in distinct ways from a full FGF13 knockout. 

      We agree with this overall interpretation of our data and have updated our language in the Discussion to make the distinction between mechanisms attributable to a knockout compared to a missense variant. We note, however, that the proposed mechanism by which missense variants (e.g., R11C) drive seizures is through loss of long-term inactivation in excitatory neurons and our excitatory knockout model shows loss of long-term inactivation in excitatory neurons. Thus, our knockout model demonstrates that the mechanism(s) by which the missense variants alter neuronal excitability in excitatory neurons must exclude long-term inactivation, thereby providing some clarity regarding the proposed mechanism for those missense variants.

      The electrophysiological experiments are intriguing but not comprehensive enough to support all of the conclusions regarding how FGF13 modulates neuronal excitability. 

      We agree and have updated the language in our Discussion to clarify speculation from conclusions that are directly supported by data.

      Another concern is the use of different ages of neurons for different experiments. For example, sodium currents in Figures 2 and 5 (and Supplemental Figures 2 and 7) are recorded from cultured neurons, which may have very different properties (including changes in sodium channel complexes) from neurons in vivo that drive the development of seizure activity. 

      We agree and acknowledge the important differences between neurons examined in culture and in vivo, yet the in vitro vs in vivo preparations were necessitated by the specific experiments. While these differences are important, previous gene profiling studies comparing primary hippocampal neurons with developing mouse hippocampus have found that although gene expression is accelerated in vitro, gene expression profiles in vitro and in vivo are similar (PMID: 11438693). Moreover, the relative immaturity of the cultured neurons is balanced at least in part because the in vivo experiments were performed on very young animals (~P12), which also have relatively immature neurons. Thus, we predict that sodium channel complexes studied in vitro are informative for the in vivo aspects of this investigation.

      Reviewer #2 (Public Review): 

      Summary: 

      The authors address three primary questions: 

      (1) how FGF13 variants confer seizure susceptibility, 

      (2) the specific cell types involved, and 

      (3) the underlying mechanisms, particularly regarding Nav dysfunction. 

      They use different Cre drivers to generate cell type-specific knockouts (KOs). First, using Nestin-Cre to create a whole-brain Fgf13 KO, they observed spontaneous seizures and premature death. While KO of Fgf13 in excitatory neurons does not lead to spontaneous seizures, KO in inhibitory neurons recapitulates the seizures and premature death observed in the Nestin-Cre KO. They further narrow down the critical cell type to MGE-derived interneurons (INs), demonstrating that MGE-neuron-specific KO partially reproduces the observed phenotypes. "All interneuron" KOs exhibit deficits in synaptic transmission and interneuron excitability, not seen in excitatory neuron-specific KOs. Finally, they rescue the defects in the interneuron-specific KO by expressing specific Fgf13 isoforms. This is an elegant and important study adding to our knowledge of mechanisms that contribute to seizures. 

      Strengths 

      • The study provides much-needed cell type-specific KO models. 

      • The authors use appropriate Cre lines and characterize the phenotypes of the different KOs. 

      • The metabolomic analysis complements the rest of the data effectively. 

      • The study confirms and extends previous research using improved approaches (KO lines vs. in vitro KD or antibody infusion). 

      • The methods and analyses are robust and well-executed. 

      Weaknesses 

      • One weakness lies in the use of the Nkx2.1 line (instead of Nkx2.1CreER) in the paper. As a result, some answers to key questions are incomplete. For instance, it remains unclear whether the observed effects are due to Chandelier cells or NGFCs, potentially both MGE and CGE derived, explaining why Nkx2.1 alone does not fully replicate the overall inhibitory KO. Using Nkx2.1CreER could have helped address the cell specificity. With the Nkx2.1 line used in the paper, the answer is partial. 

      We agree that while our data is consistent with the possibility of a role for Fgf13 in chandelier function, the current Cre driver does not provide sufficient direct evidence. We performed preliminary experiments (unpublished) using a Nkx2.1CreER driver, with late embryonic induction with a tamoxifen dosage validated for sparse labeling of chandelier cells (30846310). While we successfully replicated sparse labeling of neocortical chandelier cells (using a Cre-dependent Ai9 reporter), we were unable to determine if there was a significant loss of FGF13 as measured by immunohistochemistry since FGF13+ cells are only a small subset of the already sparse cells. Because multiple snRNA-seq studies identified Fgf13 as a marker for chandelier cells, we speculated—now more carefully circumspect—about the role of chandelier cells vs NGFCs.

      • While the mechanism behind the reduced inhibitory drive in the IN-specific KO is suggested to be presynaptic, the chosen method does not allow them to exactly identify the mechanisms (spontaneous vs mEPSC/mIPSC), and whether it is a loss of inhibitory synapses (potentially axo-axonic) or release probability. 

      We agree that this is an important limitation of our work, and that we are unable to identify the exact mechanism behind the reduced inhibitory drive. We are continuing to explore this question in a follow-up study.

      • Some supporting data (e.g. Supplemental Figure 7 and 8) appear to come from only one (or two) WT and one (or two) KO mice. Supplementary data, like main data, should come from at least three mice in total to be considered complete/solid (even if the statistical analysis is done with cells). 

      All panels in the manuscript, including supplementary data, except supplementary 7D and 8A, have N(mouse)≥3. Time limitations (graduating student) prevented us from obtaining a larger N. Because those supplementary data are not critical for supporting our conclusions, we removed them.

      General Assessment 

      The general conclusions of this paper are supported by data. As it is, the claim that "these results enhance our understanding of the molecular mechanisms that drive the pathogenesis of Fgf13-related seizures" is partially supported. A more cautious term may be more appropriate, as the study shows the mechanism is not Nav-mediated and suggests alternative mechanisms without unambiguously identifying them. The conclusion that the findings "expand our understanding of FGF13 functions in different neuron subsets" is supported, although somewhat overstated, as the work is not conclusive about the exact neuron subtypes. However, it does indeed show differential functions for specific neuronal classes, which is a significant result. 

      Impact and Utility 

      This paper is undoubtedly valuable. Understanding that excitatory neurons are not the primary contributors to the observed phenotypes is crucial. The finding that the effects are not MGE-unique is also important. This work provides a solid foundation for further research and will be a useful resource for future studies. 

      Reviewer #3 (Public Review): 

      Summary: 

      The authors aimed to determine the mechanism by which seizures emerge in Developmental and Epileptic Encephalopathies caused by variants in the gene FGF13. Loss of FGF13 in excitatory neurons had no effect on seizure phenotype as compared to the loss of FGF13 in GABAergic interneurons, which in contrast caused a dramatic proseizure phenotype and early death in these animals. They were able to show that Fgf13 ablation and consequent loss of FGF13-S and FGF13-VY reduced overall inhibitory input from Fgf13-expressing interneurons onto hippocampal pyramidal neurons. This was shown to occur not via disruption to voltage-gated sodium channels but rather by reducing potassium currents and action potential repolarisation in these interneurons. 

      Strengths: 

      The authors employed multiple well-validated, novel mouse lines with FGF13 knocked out in specific cell types including all neurons, all excitatory cells, all GABAergic interneurons, or a subset of MGE-derived interneurons, including axo-axonic chandelier cells. The phenotypes of each of these four mouse lines were carefully characterised to reveal clear differences with the most fundamental being that Interneuron-targeted deletion of FGF13 led to perinatal mortality associated with extensive seizures and impaired the hippocampal inhibitory/excitatory balance while deletion of FGF13 in excitatory neurons caused no detectable seizures and no survival deficits. 

      The authors made excellent use of western blotting and in situ hybridisation of the different FGF13 isoforms to determine which isoforms are expressed in which cell types, with FGF3-S predominantly in excitatory neurons and FGF13-VY and FGF13-V predominantly in GABAergic neurons. 

      The authors performed a highly detailed electrophysiological analysis of excitatory neurons and GABAergic interneurons with FGF13 deficits using whole-cell patch clamp. This enabled them to show that FGF13 removal did not affect voltage-gated sodium channels in interneurons, but rather reduced the action of potassium channels, with the resultant effect of making it more likely that interneurons enter depolarisation block. These findings were strengthened by the demonstration that viral re-expression of different Fgf13 splice isoforms could partially rescue deficits in interneuron action potential output and restore K+ channel current size. 

      Additionally, the discussion was nuanced and demonstrated how the current findings resolved previous apparent contradictions in the field involving the function of FGF13. 

      These findings will have a significant impact on our understanding of how FGF13 causes seizures and death in DEEs, and the action of different FGF13 isoforms within different neuronal cell types, particularly GABAergic interneurons. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      The limitations of the KO model should be fully discussed in the discussion. It should be clear that knocking out FGF13 does not provide insight into how missense mutations such as R11C may alter excitatory and/or inhibitory neuron excitability. 

      We agree with this overall interpretation of our data and have updated our language in the Discussion to make the distinction between mechanisms attributable to a knockout compared to a missense variant. We note, however, that the proposed mechanism by which missense variants (e.g., R11C) drive seizures is through loss of long-term inactivation in excitatory neurons and our excitatory knockout model shows loss of long-term inactivation in excitatory neurons. Thus, our knockout model demonstrates that the mechanism(s) by which the missense variants alter neuronal excitability in excitatory neurons must exclude long-term inactivation, thereby providing some clarity regarding the proposed mechanism for those missense variants.

      It is important to know what sodium channel isoforms are expressed in the cultured neurons used in the experiments for Figures 2 and 5. Are Nav1.1, Nav1.2, Nav1.3, and Nav1.6 expressed at appropriate levels in the cultures? 

      We agree it is important to know that the sodium channel isoforms expressed in our hippocampal neurons are expressed at physiologically relevant levels, for further validation of our primary culture system. We have added RT-qPCR data from our hippocampal neuron cultures (Supplemental Figure 2B) showing the relative levels of SCN1A, SCN2A, SCN3A, and SCN8A, which are similar to the relative levels of voltage-gated sodium channel isoforms found in rodent and human forebrain in early development (Figure 1 in PMID: 35031483).

      The electrophysiological experiments are intriguing but limited. One, it would be helpful to report if there were any changes in resting membrane potential for the cells reported in Figure 5. It is also inappropriate to unequivocally state that "Nav currents were not significantly affected by Fgf13 knockout in Gad2Fghf13 KO neurons" as only a sampling of properties was investigated. Recovery from inactivation and persistent current amplitudes were not evaluated. Furthermore, while it looks like long-term inactivation is not altered, only one specific protocol was used and currents measured from cultured neurons may not be fully representative of neuronal properties in vivo. 

      We agree that we performed a selective analysis of Nav currents—selected because those are the major parameters that have been associated with FGF13 modulation. Because we did not observe significant differences in NaV currents, we therefore hypothesized that FGF13 affected other currents, as previously observed, and consequently assessed potassium currents, for which we did observe a difference. Further, we note that our sodium current and potassium current results are consistent with, and supportive of, our action potential data in which we find no deficit in AP initiation, but rather a deficit in AP repolarization. We revised the text to reflect the more limited analysis of Nav currents. Regarding long-term inactivation, we also agree that measurements in cultured neurons may not fully represent neuronal properties in vivo; however, we note that regulation of long-term inactivation by FGF13 has previously been assessed only in cultured cells (and not in neurons). Thus, our protocols were designed to query that modulation previously reported.

      The first sentence of the results section is misleading: "To determine how FGF13 variants contribute to seizure disorders, we developed genetic mouse models that eliminate Fgf13 in specific neuronal cell types." The knockouts do not target specific splice isoforms and do not help determine how missense variants contribute to DEE. This should be modified to reflect better what is actually being tested. 

      We agree and have revised our text to state that our goal was to assess how FGF13 contributes to neuronal excitability and thereby accurately reflect the cell type-specific, but not isoform specific, targeting.

      Reviewer #2 (Recommendations For The Authors): 

      • The sentence in the introduction stating "an unusual example of differential expression of an alternatively spliced neuronal gene in excitatory vs. inhibitor neurons" is factually incorrect, especially for transcripts regulating intrinsic properties like FGF13. Refer to PMID: 31451803 for more details and consider rephrasing this statement. 

      We updated our text to reflect the similarity of Fgf13’s cell type-specific alternative splicing to other genes known to control synaptic interactions and neuronal architecture and added the suggested reference.

      • Consistency is needed in the manuscript regarding the term "BASEscope" or "basescope"; the correct version is "BaseScope." 

      We corrected the text accordingly.

      • In the discussion, the term "reduced overall inhibitory drive" might be more appropriate than "input." 

      We updated the text accordingly.

      • The authors should refer to the Fgf13 data in the database from Furlanis et al., which complements their findings: https://scheiffele-splice.scicore.unibas.ch/

      We agree and now incorporate this reference.

      • The phrase "Fgf13 silencing in Nkx2.1 expressing neurons" should be clarified to include the use of CreER, which was crucial and effectively resulted in the labeling of a different subtype of interneurons, see PMID: 23180771. 

      We agree and have updated our text accordingly.

      • Be more cautious when discussing the role of FGF13 in chandelier function; while it seems probable, the current Cre driver used provides no direct evidence. 

      We agree (as noted above) that while our data are consistent with the possibility of a role for Fgf13 in chandelier function, the current Cre driver used is insufficient to offer direct evidence and therefore updated our text in the discussion.

      • The gene dosage effect is interesting, it would be interesting to explore it further in the future. 

      We agree. Because our data suggest that seizures result from loss of inhibitory neuron input, we hypothesize that the gene dosage effect derives from further loss of inhibitory neuron input and thus more hyperexcitability.

      • Another critical aspect not addressed here and of interest for the future is the distinction between the role of FGF13 in interneuron development versus general maintenance. Using Nkx2.1CreER could have helped address both cell specificity and developmental roles. 

      We agree that there may be an interesting distinction between the role of Fgf13 in development versus general maintenance. We have piloted an Nkx2.1-CreER targeted deletion of Fgf13 from cortical interneurons but have been unsuccessful with significant deletion of Fgf13, likely because the Nkx2.1-CreER strategy targets only a sparse subset of interneurons and FGF13 is expressed in only a subset of total interneurons. Thus, use of the Nkxs.1-CreER strategy is challenging. We are looking for ways to optimize.

      Reviewer #3 (Recommendations For The Authors): 

      This was a truly fabulous paper, with an exceptional quantity of beautiful data. I would like to congratulate the authors on their superb work. 

      In the discussion, the authors correctly draw attention to the fact that the clear pro-seizure phenotype they see when FGF13 was knocked out more specifically in a subset of interneurons including chandelier cells, adds to our understanding of the role of FGF13 in chandelier cells. More than that though, given that FGF13 is reducing excitability in these cells AND this results in a strong pro-seizure phenotype, they may want to postulate that this lends further weight to the argument that chandeliers cells are likely powerful regulators of network excitability despite suggestions in the field that they could potentially have a proexcitatory function (see Szabadics et al. Science 2006). 

      We agree this is interesting and have elaborated on our discussion of chandelier cells to include this point while also addressing the important caveats noted by reviewer 2.

      A minor point: 

      On page 26 the sentence: 

      "Here, we were able to assess FGF13-S and FGF13-VY, chosen because they are most abundantly expressed isoforms in the adult mouse brain, but the inability to rescue electrophysiological consequences completely with either isoform alone leaves open the possibility that other isoforms (e.g., FGF13-U, FGF13-V, and FGF13-VY) also make critical contributions." Should the last "FGF13-VY" be removed? 

      We thank the reviewer for noticing the error and have updated the text accordingly.

    1. Author response:

      Joint Public Review:

      In the microglia research community, it is accepted that microglia change their shape both gradually and acutely along a continuum that is influenced by external factors both in their microenvironments and in circulation. Ideally, a given morphological state reflects a functional state that provides insight into a microglia's role in physiological and pathological conditions. The current manuscript introduces MorphoCellSorter, an open-source tool designed for automated morphometric analysis of microglia. This method adds to the many programs and platforms available to assess the characteristics of microglial morphology; however, MorphoCellSorter is unique in that it uses Andrew's plotting to rank populations of cells together (in control and experimental groups) and presents "big picture" views of how entire populations of microglia alter under different conditions. Notably, MorphoCellSorter is versatile, as it can be used across a wide array of imaging techniques and equipment. For example, the authors use MorphoCellSorter on images of fixed and live tissues representing different biological contexts such as embryonic stages, Alzheimer's disease models, stroke, and primary cell cultures.

      This manuscript outlines a strategy for efficiently ranking microglia beyond the classical homeostatic vs. active morphological states. The outcome offers only a minor improvement over the already available strategies that have the same challenge: how to interpret the ranking functionally.

      We would like to thank the reviewers for their careful reading and constructive comments and questions. While MorphoCellSorter currently does not rank cells functionally based on their morphology, its broad range of application, ease of use and capacity to handle large datasets provide a solid foundation. Combined with advances in single-cell transcriptomics, MorphoCellSorter could potentially enable the future prediction of cell functions based on morphology.

      Strengths and Weaknesses:

      (1) The authors offer an alternative perspective on microglia morphology, exploring the option to rank microglia instead of categorizing them with means of clusterings like k-means, which should better reflect the concept of a microglia morphology continuum. They demonstrate that these ranked representations of morphology can be illustrated using histograms across the entire population, allowing the identification of potential shifts between experimental groups. Although the idea of using Andrews curves is innovative, the distance between ranked morphologies is challenging to measure, raising the question of whether the authors oversimplify the problem. 

      We have access to the distance between cells through the Andrew’s score of each cell. However, the challenge is that these distances are relative values and specific to each dataset. While we believe that these distances could provide valuable information, we have not yet determined the most effective way to represent and utilize this data in a meaningful manner.

      Also, the discussion about the pipeline's uniqueness does not go into the details of alternative models.The introduction remains weak in outlining the limitations of current methods (L90). Acknowledging this limitation will be necessary.

      Thank you for these insightful comments. The discussion about alternative methods was already present in the discussion L586-598 but to answer the request of the reviewers, we have revised the introduction and discussion sections to more clearly address the limitations of current methods, as well as discussed the uniqueness of the pipeline. Additionally, we have reorganized Figure 1 to more effectively highlight the main caveats associated with clustering, the primary method currently in use.

      (2) The manuscript suffers from several overstatements and simplifications, which need to be resolved. For example:

      a) L40: The authors talk about "accurately ranked cells". Based on their results, the term "accuracy" is still unclear in this context.

      Thank you for this comment. Our use of the term "accurately" was intended to convey that the ranking was correct based on comparison with human experts, though we agree that it may have been overstated. We have removed "accurately" and propose to replace it with "properly" to better reflect the intended meaning.

      b) L50: Microglial processes are not necessarily evenly distributed in the healthy brain. Depending on their embedded environment, they can have longer process extensions (e.g., frontal cortex versus cerebellum).

      Thank you for raising this point to our attention. We removed evenly to be more inclusive on the various morphologies of microglia cells in this introductory sentence

      c) L69: The term "metabolic challenge" is very broad, ranging from glycolysis/FAO switches to ATP-mediated morphological adaptations, and it needs further clarification about the author's intended meaning.

      Thank you for this comment, indeed we clarified to specify that we were talking about the metabolic challenge triggered by ischemia and added a reference as well.

      d) L75: Is morphology truly "easy" to obtain? 

      Yes, it is in comparison to other parameters such as transcripts or metabolism, but we understand the point made by the reviewer and we found another way of writing it.  As an alternative we propose: “morphology is an indicator accessible through…”

      e) L80: The sentence structure implies that clustering or artificial intelligence (AI) are parameters, which is incorrect. Furthermore, the authors should clarify the term "AI" in their intended context of morphological analysis.

      We apologize for this confusing writing, we reformulated the sentence as follows: “Artificial intelligence (AI) approaches such as machine learning have also been used to categorize morphologies (Leyh et al., 2021)”.

      f) L390f: An assumption is made that the contralateral hemisphere is a non-pathological condition. How confident are the authors about this statement? The brain is still exposed to a pathological condition, which does not stop at one brain hemisphere.

      We did not say that the contralateral is non-pathological but that the microglial cells have a non-pathological morphology which is slightly different. The contralateral side in ischemic experiments is classically used as a control (Rutkai et al 2022). Although It has been reported that differences in transcript levels can be found between sham operated animals and contralateral hemisphere in tMCAO mice (Filippenkov et al 2022) https://doi.org/10.3390/ijms23137308 showing that indeed the contralateral side is in a different state that sham controls, no report have been made on differences in term of morphology.

      We have removed “non-pathological” to avoid misinterpretations

      g) Methodological questions:

      a) L299: An inversion operation was applied to specific parameters. The description needs to clarify the necessity of this since the PCA does not require it.

      Indeed, we are sorry for this lack of explanation. Some morphological indexes rank cells from the least to the most ramified, while others rank them in the opposite order. By inverting certain parameters, we can standardize the ranking direction across all parameters, simplifying data interpretation. This clarification has been added to the revised manuscript as follows:

      “Lacunarity, roundness factor, convex hull radii ratio, processes cell areas ratio and skeleton processes ratio were subjected to an inversion operation in order to homogenize the parameters before conducting the PCA: indeed, some parameters rank cells from the least to the most ramified, while others rank them in the opposite order. By inverting certain parameters, we can standardize the ranking direction across all parameters, thus simplifying data interpretation.”

      b) Different biological samples have been collected across different species (rat, mouse) and disease conditions (stroke, Alzheimer's disease). Sex is a relevant component in microglia morphology. At first glance, information on sex is missing for several of the samples. The authors should always refer to Table 1 in their manuscript to avoid this confusion. Furthermore, how many biological animals have been analyzed? It would be beneficial for the study to compare different sexes and see how accurate Andrew's ranking would be in ranking differences between males and females. If they have a rationale for choosing one sex, this should be explained.

      As reported in the literature, we acknowledge the presence of sex differences in microglial cell morphology. Due to ethical considerations and our commitment to reducing animal use, we did not conduct dedicated experiments specifically for developing MorphoCellSorter. Instead, we relied on existing brain sections provided by collaborators, which were already prepared and included tissue from only one sex—either female or male—except in the case of newborn pups, whose sex is not easily determined. Consequently, we were unable to evaluate whether MorphoCellSorter is sensitive enough to detect morphological differences in microglia attributable to sex. Although assessing this aspect is feasible, we are uncertain if it would yield additional insights relevant to MorphoCellSorter’s design and intended applications.

      To address this, we have included additional references in Table 1 of the revised manuscript and clearly indicated the sex of the animals from which each dataset was obtained.

      c) In the methodology, the slice thickness has been given in a range. Is there a particular reason for this variability? 

      We could not spot any range in the text, we usually used 30µm thick sections in order to have entire or close to entire microglia cells.

      Although the thickness of the sections was identical for all the sections of a given dataset, only the plans containing the cells of interest were selected during the imaging for both of the ischemic stroke model. This explains why depending on how the cell is distributed in Z the range of the plans acquired vary.

      Also, the slice thickness is inadequate to cover the entire microglia morphology. How do the authors include this limitation of their strategy? Did the authors define a cut-off for incomplete microglia? 

      We found that 30 µm sections provide an effective balance, capturing entire or nearly entire microglial cells (consistent with what we observe in vivo) while allowing sufficient antibody penetration to ensure strong signal quality, even at the section's center. In our segmentation process, we excluded microglia located near the section edges (i.e., cells with processes visible on the first or last plane of image acquisition, as well as those close to the field of view’s boundary). Although our analysis pipeline should also function with thicker sections (>30 µm), we confirmed that thinner sections (15 µm or less) are inadequate for detecting morphological differences, as tested initially on the AD model. Segmented, incomplete microglia lack the necessary structural information to accurately reflect morphological differences thus impairing the detection of existing morphological differences.

      c) The manuscript outlines that the authors have used different preprocessing pipelines, which is great for being transparent about this process. Yet, it would be relevant to provide a rationale for the different imaging processing and segmentation pipelines and platform usages (Supplementary Figure 7). For example, it is not clear why the Z maximum projection is performed at the end for the Alzheimer's Disease model, while it's done at the beginning of the others.

      The same holds through for cropping, filter values, etc. Would it be possible to analyze the images with the same pipelines and compare whether a specific pipeline should be preferable to others?

      The pre-processing steps depend on the quality of the images in each dataset. For example, in the AD dataset, images acquired with a wide-field microscope were considerably noisier compared to those obtained via confocal microscopy. In this case, reducing noise plane-by-plane was more effective than applying noise reduction on a Z-projection, as we would typically do for confocal images. Given that accurate segmentation is essential for reliable analysis in MorphoCellSorter, we chose to tailor the segmentation approach for each dataset individually. We recommend future users of MorphoCellSorter take a similar approach. This clarification has been added to the discussion.

      On a note, Matlab is not open-access, 

      This is correct. We are currently translating this Matlab script in Python, this will be available soon on Github. 

      https://github.com/Pascuallab/MorphCellSorter.

      This also includes combining the different animals to see which insights could be gained using the proposed pipelines.

      Because of what we have been explaining earlier, having a common segmentation process for very diverse types of acquisitions (magnification, resolution and type of images) is not optimal in terms of segmentation and accuracy in the analysis. Although we could feed MorphoCellSorter with all this data from a unique segmentation pipeline, the results might be very difficult to interprete.

      d) L227: Performing manual thresholding isn't ideal because it implies the preprocessing could be improved. Additionally, it is important to consider that morphology may vary depending on the thresholding parameters. Comparing different acquisitions that have been binarized using different criteria could introduce biases.

      As noted earlier, segmentation is not the main focus of this paper, and we leave it to users to select the segmentation method best suited to their datasets. Although, we acknowledge that automated thresholding would be in theory ideal, we were confronted toimage acquisitions that were notuniform, even within the same sample. For instance, in ischemic brain samples, lipofuscin from cell death introduces background noise that can artificially impact threshold levels. We tested global and local algorithms to automatically binarize the cells but these approaches resulted often on imperfect and not optimized segmentation for every cell. In our experience, manually adjusting the threshold provides a more accurate, reliable, and comparable selection of cellular elements, even though it introduces some subjectivity. To ensure consistency in segmentation, we recommend that the same person performs the analysis across all conditions. This clarification has been added to the discussion.

      e) Parameter choices: L375: When using k-means clustering, it is good practice to determine the number of clusters (k) using silhouette or elbow scores. Simply selecting a value of k based on its previous usage in the literature is not rigorous, as the optimal number of clusters depends on the specific data structure. If they are seeking a more objective clustering approach, they could also consider employing other unsupervised techniques, (e.g. HDBSCAN) (L403f).

      We do agree with the referee’s comment but the purpose of the k-mean we used was just to illustrate the fact that the clusters generated are artificial and do not correspond to the reality of the continuum of microglia morphology. In the course of the study we used the elbow score to determine the k means but this did not work well because no clear elbow was visible in some datasets (probably because of the continuum of microglia morphologies). Anyway, using whatever k value will not change the problem that those clusters are quite artificial and that the boundaries of those clusters are quite arbitrary whatever the way k is determined manually or mathematically.

      L373: A rationale for the choice of the 20 non-dimensional parameters as well as a detailed explanation of their computation such as the skeleton process ratio is missing. Also, how strongly correlated are those parameters, and how might this correlation bias the data outcomes?

      Thank you for raising this point. There is no specific rationale beyond our goal of being as exhaustive as possible, incorporating most of the parameters found in the literature, as well as some additional ones that we believed could provide a more thorough description of microglial morphology.

      Indeed, some of these parameters are correlated. Initially, we considered this might be problematic, but we quickly found that these correlations essentially act as factors that help assign more weight to certain parameters, reflecting their likely greater importance in a given dataset. Rather than being a limitation, the correlated parameters actually enhance the ranking. We tested removing some of these parameters in earlier versions of MorphoCellSorter, and found that doing so reduced the accuracy of the tool.

      Differences between circularity and roundness factors are not coming across and require further clarification. 

      These are two distinct ways of characterizing morphological complexity, and we borrowed these parameters and kept the name from the existing literature, not necessarily in the context of microglia. In our case, these parameters are used to describe the overall shape of the cell. The advantage of using different metrics to calculate similar parameters is that, depending on the dataset, one method may be better suited to capture specific morphological features of a given dataset. MorphoCellSorter selects the parameter that best explains the greatest dispersion in the data, allowing for a more accurate characterization of the morphology.

      One is applied to the soma and the other to the cell, but why is neither circularity nor loudness factor applied to both?

      None of the parameters concern the cell body by itself. The cell body is always relative to another metric(s). Because these parameters and what they represent does not seem to be  very clear we will add a graphic representation of the type of measurements and measure they provide in the revised version of the manuscript.

      f) PCA analysis:

      The authors spend a lot of text to describe the basic principles of PCA. PCA is mathematically well-described and does not require such depth in the description and would be sufficient with references.

      Thank you for this comment indeed the description of PCA may be too exhaustive, we will simplify the text. 

      Furthermore, there are the following points that require attention:

      L321: PC1 is the most important part of the data could be an incorrect statement because the highest dispersion could be noise, which would not be the most relevant part of the data. Therefore, the term "important" has to be clarified.

      We are not sure in the case of segmented images the noise would represent most of the data, as by doing segmentation we also remove most of the noise, but maybe the reviewer is concerned about another type of noise? Nonetheless, we thank the reviewer for his comment and we propose the following change, that should solve this potential issue.

      “_PC_1 is the direction in which data is most dispersed.”

      L323: As before, it's not given that the first two components hold all the information.

      Thank you for this comment we modified this statement as follows: “The two first components represent most of the information (about 70%), hence we can consider the plan PC_1, PC_2 as the principal plan reducing the dataset to a two dimensional space”

      L327 and L331 contain mistakes in the nomenclature: Mix up of "wi" should be "wn" because "i" does not refer to anything. The same for "phi i = arctan(yn/wn)" should be "phi n".

      Thanks a lot for these comments. We have made the changes in the text as proposed by the reviewer.

      L348: Spearman's correlation measures monotonic correlation, not linear correlation. Either the authors used Pearson Correlation for linearity or Spearman correlation for monotonic. This needs to be clarified to avoid misunderstandings.

      Sorry for the misunderstanding, we did use Spearman correlation which is monotonic, we thus changed linear by monotonic in the text. Thanks a lot for the careful reading.

      g) If the authors find no morphological alteration, how can they ensure that the algorithm is sensitive enough to detect them? When morphologies are similar, it's harder to spot differences. In cases where morphological differences are more apparent, like stroke, classification is more straightforward.

      We are not entirely sure we fully understand the reviewer's comment. When data are similar or nearly identical, MorphoCellSorter performs comparably to human experts (see Table 1). However, the advantage of using MorphoCellSorter is that it ranks cells do.much faster while achieving accuracy similar to that of human experts AND gives them a value on an axis (andrews score), which a human expert certainly can't. For example, in the case of mouse embryos, MorphoCellSorter’s ranking was as accurate as that made by human experts. Based on this ranking, the distributions were similar, suggesting that the morphologies are generally consistent across samples.

      The algorithm itself does not detect anything—it simply ranks cells according to the provided parameters. Therefore, it is unlikely that sensitivity is an issue; the algorithm ranks the cells based on existing data. The most critical factor in the analysis is the segmentation step, which is not the focus of our paper. However, the more accurate the segmentation, the more distinct the parameters will be if actual differences exist. Thus, sensitivity concerns are more related to the quality of image acquisition or the segmentation process rather than the ranking itself. Once MorphoCellSorter receives the parameters, it ranks the cells accordingly. When cells are very similar, the ranking process becomes more complex, as reflected in the correlation values comparing expert rankings to those from MorphoCellSorter (Table 1). 

      Moreover, MorphoCellSorter does not only provide a ranking: the morphological indexes automatically computed offer useful information to compare the cells’ morphology between groups.

      h) Minor aspects:

      % notation requires to include (weight/volume) annotation.

      This has been done in the revised version of the manuscript

      Citation/source of the different mouse lines should be included in the method sections (e.g. L117).

      The reference of the mouse line has been added (RRID:IMSR_JAX:005582) to the revised version of the manuscript.

      L125: The length of the single housing should be specified to ensure no variability in this context.

      The mice were kept 24h00 individually, this is now stated in the text

      L673: Typo to the reference to the figure.

      This has been corrected, thank you for your thoughtful reading.

    1. Author response:

      We thank the editor and the reviewers for the positive evaluation of our manuscript and the thoughtful comments. Below we provide a provisional reply to the reviewers’ comments, which we will address in more detail in the revised manuscript.

      Reviewer 1 highlights three important alternative interpretations of our results: (1) sustained suppression, (2) enhancement followed by suppression, and (3) priming. We believe that these alternatives need to be addressed to improve the conclusions we can draw from the available data.

      (1) Sustained suppression: As outlined by R1, it is possible that participants suppressed the HPDL throughout the entire experiment, instead of proactively instantiating suppression on each trial. While possible, we believe that this account is unlikely to explain the present results, given the utilized analysis approach, a voxel-wise GLM fit to the BOLD data per run (see Materials and Methods for details). Specifically, we derived parameter estimates from this GLM per location to estimate the relative suppression. Sustained suppression would modulate BOLD responses throughout the run, i.e. also during the implicit baseline period used to estimate the contrast parameter estimates. Hence, a sustained suppression should not result in a differential modulation between locations, as the BOLD response at the HPDL during the baseline period would be equally suppressed as during the trial. We will discuss this important aspect in the revised manuscript.

      (2) Enhancement followed by suppression: R1 correctly points out that BOLD data, given the poor temporal resolution, do not allow for the detection of potential transient enhancements at the HPDL followed by a later and more pronounced suppression (akin to “search and destroy”). We agree with this assessment. However, we would also argue that a transient enhancement followed by sustained suppression before search onset constitutes proactive suppression in line with our interpretation, because suppression would still arise proactively (i.e., before search and hence distractor onset). Whether brief enhancement precedes suppression cannot be elucidated by our data, but we believe that it constitutes an interesting avenue for future studies using time-resolved and spatially specific recording methods. We will address this important addition in the updated manuscript.

      (3) Priming: It is possible that participants particularly suppress locations which on previous trials contained a distractor. This account constitutes a different perspective than statistical learning integrating across many trials. We believe that it is likely that both accounts contribute to the observed effect to some degree, as both the distant (but often repeated) and the most recent past should inform our priors. Indeed, arguably recent trials should be particularly informative for our predictions as natural environments vary across time, and hence the statistical learning system should remain sensitive to potential changes in the environment. In short, we agree with R1 that the n-1 trial may impact suppression, and therefore charting the potential contributions of this type of priming compared to statistical learning is a relevant addition to the manuscript. We will perform the suggested analysis; however, we also note that dividing trials based on the n-1 trial will significantly reduce the reliability of the parameter estimates (e.g. only ~1/3 of trials follow omissions).

      Reviewer 2 had two valuable suggestions to advance the inferences we can draw from the available data. In particular, R2 proposed two additional analyses, which we will consider during revision.

      First, R2 suggests separating the utilized early visual cortex (EVC) ROI mask into the three retinotopic areas comprising EVC (V1, V2, V3) and to perform the key analyses in surface space for each ROI separately. We agree that exploring distractor suppression across V1, V2 and V3 separately is an interesting extension to our results. Our reasoning to combine early visual areas into one mask was two-fold: First, we did not have an a priori reason to expected distinct neural suppression between these early ROIs. Therefore, we did not acquire retinotopy data to reliably separate V1, V2 and V3, instead opting to increase the number of search task trials. The lack of retinotopy data naturally limits the reliability of the resulting cortical segmentation. However, we believe that separating EVC into its constituent areas using anatomical data is nonetheless a promising addition to our primary analyses. Therefore, during revision we will explore the main suppression analyses split into V1, V2, and V3.

      Second, R2 highlights that behavioral facilitation and neural suppression could be correlated across participants. The rationale is that should neural suppression in EVC relate to the facilitation of behavioral responses, we may expect a positive relationship between neural suppression at the HPDL and RTs across participants. We agree with R2’s suggestion and will perform the analysis accordingly. However, we note that any results should be interpreted with caution, as the present sample size of n=28 is small for an across participant correlation analysis involving neural and behavioral difference scores.

      In summary, we believe that addressing the reviewers' suggestions will substantially improve our manuscript, particularly regarding the interpretation and scope of our findings.

    1. Author response:

      Reviewer #1 (Public review): 

      Summary: 

      The manuscript presents a significant and rigorous investigation into the role of CHMP5 in regulating bone formation and cellular senescence. The study provides compelling evidence that CHMP5 is essential for maintaining endolysosomal function and controlling mitochondrial ROS levels, thereby preventing the senescence of skeletal progenitor cells. 

      Strengths: 

      The authors demonstrate that the deletion of Chmp5 results in endolysosomal dysfunction, elevated mitochondrial ROS, and ultimately enhanced bone formation through both autonomous and paracrine mechanisms. The innovative use of senolytic drugs to ameliorate musculoskeletal abnormalities in Chmp5-deficient mice is a novel and critical finding, suggesting potential therapeutic strategies for musculoskeletal disorders linked to endolysosomal dysfunction. 

      Weaknesses: 

      The manuscript requires a deeper discussion or exploration of CHMP5's roles and a more refined analysis of senolytic drug specificity and effects. This would greatly enhance the comprehensiveness and clarity of the manuscript. 

      We thank the reviewer for these insightful comments. The tissue-specific roles of CHMP5 and the specificity of quercetin and dasatinib treatments in Chmp5-deficient mice will be further discussed and clarified in the revised manuscript. 

      Reviewer #2 (Public review): 

      Summary: 

      The authors try to show the importance of CHMP5 for skeletal development. 

      Strengths: 

      The findings of this manuscript are interesting. The mouse phenotypes are well done and are of interest to a broader (bone) field. 

      Weaknesses: 

      The mechanistic insights are mediocre, and the cellular senescence aspect poor. 

      In total, it has not been shown that there are actual senescent cells that are reduced after D+Q-treatment. These statements need to be scaled back substantially. 

      We thank the reviewer for these suggestive comments. Although multiple hallmarks of cell senescence were shown in CHMP5-deficient skeletal progenitors, we will detect and add additional markers of cell senescence in the revised manuscript. 

      In addition, the effects and specificity of the Q+D treatment will be further discussed and clarified with the revision.

      Reviewer #3 (Public review): 

      Summary: 

      In this study, Zhang et al. reported that CHMP5 restricts bone formation by controlling endolysosome-mitochondrion-mediated cell senescence. The effects of CHMP5 on osteoclastic bone resorption and bone turnover have been reported previously (PMID: 26195726), in which study the aberrant bone phenotype was observed in the CHMP5ctsk-CKO mouse model, using the same mouse model, Zhang et al., report a novel role of CHMP5 on osteogenesis through affecting cell senescence. Overall, it is an interesting study and provides new insights in the field of cell senescence and bone. 

      Strengths: 

      Analyzed the bone phenotype OF CHMP5-periskeletal progenitor-CKO mouse model and found the novel role of senescent cells on osteogenesis and migration. 

      Weaknesses: 

      (1) There are a lot of papers that have reported that senescence impairs osteogenesis of skeletal stem cells. In this study, the author claimed that Chmp5 deficiency induces skeletal progennitor cell senescence and enhanced osteogenesis. Can the authors explain the controversial results? 

      Different skeletal stem cell populations in time and space have been identified and reported. This study shows that Chmp5 deficiency in periskeletal and endosteal skeletal progenitors causes cell senescence and aberrant bone formation. Although cell senescence during aging can impair osteogenesis of certain skeletal stem cells, which contributes to diseases with low bone mass such as osteoporosis, aging can also increase heterotopic mineralization/calcification in musculoskeletal soft tissues such as ligaments and tendons, which is consistent with our results in this study. These reflect out-of-order musculoskeletal mineralization during aging. We will expand the discussion and clarify the results of CHMP5-regulated cell senescence in osteogenesis in the revised manuscript.

      (2) Co-culture of Chmp5-KO periskeletal progenitors with WT ones should be conducted to detect the migration and osteogenesis of WT cells in response to Chmp5-KO-induced senescent cells. In addition, the co-culture of WT periskeletal progenitors with senescent cells induced by H2O2, radiation, or from aged mice would provide more information.

      Increased osteogenesis of WT skeletal progenitors in the periskeletal lesion was shown to be a paracrine mechanism of abnormal bone formation in Chmp5Ctsk mice. The coculture experiment will help confirm the effect of Chmp5-deficient skeletal progenitors on the osteogenesis of neighboring WT skeletal progenitors.

      Notably, the cause and outcome of cell senescence are highly heterogeneous, and different causes of cell senescence can cause significantly different outcomes. Although the coculture of WT periskeletal progenitors with senescent cells induced by H2O2, radiation, or from aged mice would be very interesting, these are beyond the scope of the current study.

      (3) Many EVs were secreted from Chmp5-deleted periskeletal progenitors, compared to the rarely detected EVs around WT cells. Since EVs of BMSCs or osteoprogenitors show strong effects of promoting osteogenesis, did the EVs contribute to the enhanced osteogenesis induced by Chmp5-defeciency? 

      The WT skeletal progenitor cells from Chmp5Ctsk mice have an increased capacity of osteogenesis compared to the corresponding cells from control animals, suggesting that the EVs of the Chmp5-deleted periskeletal progenitors could promote osteogenesis of the WT skeletal progenitors, which represents a paracrine mechanism of abnormal bone formation in Chmp5 deficient animals. We will discuss and clarify these results in the revised manuscript.

      (4) EVs secreted from senescent cells propagate senescence and impair osteogenesis, why do EVs secreted from senescent cells induced by Chmp5-defeciency have opposite effects on osteogenesis? 

      The question is similar to comment #1. The functional heterogeneity of cellular senescence will be discussed in further detail and clarified in the revised manuscript.

      (5) The Chmp5-ctsk mice show accelerated aging-related phenotypes, such as hair loss and joint stiffness. Did Ctsk also label cells in hair follicles or joint tissue? 

      This is an interesting question. Although we did not check the expression of CHMP5 in hair follicles, which is outside the scope of the present study, the result in Fig. 1E showed the expression of CHMP5 in joint ligaments. Notably, abnormal periskeletal bone formation occurs predominantly at the joint ligament insertion site in Chmp5Ctsk mice, which will be elucidated and discussed in the revised manuscript.

      (6) Fifteen proteins were found to increase and five proteins to decrease in the cell supernatant of Chmp5Ctsk periskeletal progenitors. How about SASP factors in the secretory profile? 

      As mentioned above, the SASP phenotype and related factors of senescent cells could be highly heterogeneous depending on inducers, cell types, and timing of senescence. Most of the proteins we identified in the secretome analysis have previously been reported in the secretory profile of osteoblasts. Although we were also interested in the change of some common SASP factors, such as inflammatory cytokines, the experiment did not detect these factors because of their small molecular weights and the technical limitations of mass spec analysis. 

      (7) D+Q treatment mitigates musculoskeletal pathologies in Chmp5 conditional knockout mice. In the previously published paper (CHMP5 controls bone turnover rates by dampening NF-κB activity in osteoclasts), inhibition of osteoclastic bone resorption rescues the aberrant bone phenotype of the Chmp5 conditional knockout mice. Whether the effects of D+Q on bone overgrowth is because of the inhibition of bone resorption? 

      Although in Chmp5Ctsk mice we cannot exclude the effect of D+Q on osteoclasts, the effect of D+Q on osteoblast lineage cells, which is the focus of the current study, was verified in Chmp5Dmp1 mice. We will expand the discussion and make these results clearer with the revision.

      (8) The role of VPS4A in cell senescence should be measured to support the conclusion that CHMP5 regulates osteogenesis by affecting cell senescence. 

      We agree that additional experiments examining the role of VPS4A in cell senescence will provide more mechanistic insights. The focus of the current study is to report that CHMP5 restricts abnormal bone formation by preventing endolysosome-mitochondrion-mediated cell senescence. The roles of VPS4A in cell senescence and skeletal biology will be explored in separate studies.

      (9) Cell senescence with markers, such as p21 and H2AX, co-stained with GFP should be performed in the mouse models to indicate the effects of Chmp5 on cell senescence in vivo. 

      We will examine additional markers of cell senescence, as the reviewers suggest, in the revised manuscript.

      (10) ADTC5 cell as osteochondromas cells line, is not a good cell model of periskeletal progenitors. Maybe primary periskeletal progenitor cell is a better choice. 

      We were aware that ATDC5 cells are typically used as a chondrocyte progenitor cell line. However, our previous study showed that ATDC5 cells could also be used as a reasonable cell model for periskeletal progenitors. Furthermore, the corresponding results from primary periskeletal progenitors were shown. We will further clarify this in the revision.

      In general, the comments of these reviewers will help clarify our results and further strengthen our conclusion. We will address these comments and questions point to point in more detail in the revised manuscript.

    1. Author response:

      We sincerely thank the reviewers for their constructive feedback and the editor for facilitating this thorough review. We found the suggestions insightful and valuable for refining our manuscript.  We would like to clarify a few points in an initial response before presenting the fully updated manuscript. First of all, we would like to emphasize the multi-scale nature of our approach, where we derived insights from both atomistic and coarse-grained simulations. Reviewers focused mostly on the coarse-grained simulations, the drawbacks of which we are aware and were a strong motivation for starting with the atomistic approach. Reviewer 1 mentioned a lack of a proposed mechanism for the increased condensate forming propensity at 300K vs. 290K, and we feel we had clearly pointed to the aromatic contacts as a mechanism for this, but we will make sure to clarify this further in the revision. Furthermore, reviewer 1 was critical of our use of the 10% adjustment to Martini protein-water interactions, which has previously been thoroughly presented and assessed in the literature (see for example Tesei et al JCTC 2022). Furthermore, for our specific system we were encouraged by the favorable comparison of our Martini simulations to the atomistic simulations, e.g. for radius of gyration, contact propensity, and solvent accessibility. We will make sure to emphasize this more clearly in the revision. Finally, we are grateful for the feedback from both reviewers and will use their comments as a guide to incorporate additional analyses and extended simulations to strengthen our conclusions in an upcoming revision.

    1. Author response:

      We thank the reviewers for their thoughtful comments. 

      Based on their suggestions we will: 

      (1) Use more accurate language to describe the hypothalamus regions under investigation in this study. While we aimed to primarily investigate the medial preoptic area (MPOA), our dissections and sequencing data in fact capture several regions of the anterior hypothalamus including the anteroventral periventricular (AVPV), paraventricular (PVN), supraoptic (SON), suprachiasmatic nuclei (SCN), and more. We will revise the language in our manuscript to reflect that our study in fact investigates the cellular evolution of the anterior hypothalamus across behaviorally divergent deer mice.

      (2) Revise our language to clarify that while our study provides a rich dataset for generating hypotheses about which cell types may contribute to behavioral differences, it does not provide any evidence of causal relationships. We hope to investigate this further in future work.

      (3) Clarify specific methodological choices for which reviewers had questions, especially about the hypothalamic regions for which we did histology to validate cell abundance differences and methodological choices related to mapping our cell clusters to Mus cell types.

      Our responses to each reviewer’s specific comments are below.

      Reviewer #1:

      The major limitation of the study is the absence of causal experiments linking the observed changes in MPOA cell types to species-specific social behaviors. While the study provides valuable correlational data, it lacks functional experiments that would demonstrate a direct relationship between the neuronal differences and behavior. For instance, manipulating these cell types or gene expressions in vivo and observing their effects on behavior would have strengthened the conclusions, although I certainly appreciate the difficulty in this, especially in non-musculus mice. Without such experiments, the study remains speculative about how these neuronal differences contribute to the evolution of social behaviors.

      Yes, we agree the study lacks functional experiments. We hope that the dataset is of value for generating hypotheses about how hypothalamic neuronal cell types may govern species-specific social behaviors, and for these hypotheses to be functionally tested by us and others in future work.

      Reviewer #2:

      Some methodology could be further explained, like the decision of a 15% cutoff value for cell type assignment per cluster, or the necessity of a multi-step analysis pipeline for gene enrichment studies.

      A 15% cutoff value for cell type assignment was chosen to include all known homology correspondences between our dataset and the Mus atlas. For example, i14:Avp/Cck cells from the Mus atlas represent Avp cells from the suprachiasmatic nuclei (SCN). Though only 17.3% of cluster 15 maps to i14:Avp/Cck, we know these two clusters correspond based on the expression of Avp and additional SCN marker genes in cluster 15 (Supp Fig 6). We will further explain this cutoff in the revised manuscript.

      Our gene enrichment study includes a multi-step analysis pipeline because we wanted to control for confounders that may be introduced because of gene expression level. Genes that are more highly expressed are more accurately quantified and thus more likely to be identified as differentially expressed. Therefore, we wanted to test for gene enrichments in our set of DE genes against a background of genes with similar expression levels. We will clarify this motivation in the revised manuscript.

      The authors should exercise strong caution in making inferences about these differences being the basis of parental behavior. It is possible, given connections to relevant research, but without direct intervention, direct claims should be avoided. There should be clear distinctions of what to conclude and what to propose as possibilities for future research.

      Yes, we agree that we are unable to make direct claims about neuronal differences being the basis of parental behavior. We will revise our language to be clearer about which relationships we are hypothesizing and what we propose as possibilities for future research.

      Histology is not performed on all regions included in the sequencing analysis.

      We apologize that our language describing the hypothalamic regions included in the sequencing analysis and those included in the histology is unclear. We aimed to dissect the medial preoptic region for the sequencing analysis, but additionally captured parts of the anterior hypothalamus including the paraventricular (PVN), supraoptic (SON), and suprachiasmatic nuclei (SCN), and more.  Our histology was performed across the entire hypothalamus and includes all regions included in the sequencing data. We will revise the manuscript to more accurately describe the hypothalamic regions for which we investigated.

      Reviewer #3:

      My primary concern is that the dataset is limited: 52,121 neuronal nuclei across 24 samples, which does not provide many cells per cluster to analyze comparatively across sex and species, particularly given the heterogeneity of the region dissected. The Supplementary table reports lower UMIs/genes per cell than is typically seen as well. Perhaps additional information could be obtained from the data by not restricting the analyses to cells that can be assigned to Mus types. A direct comparison of the two Peromyscus species could be valuable as would a more complete Peromyscus POA atlas.

      Our dataset reports ~1,500 genes and ~1,000 UMIs per nuclei which is indeed lower than is typically reported in other single nuclei datasets. Some of this discrepancy is due to a lower quality genome and annotated transcriptome available for Peromyscus compared to Mus musculus, which results in a lower mapping rate than is typically reported in Mus studies. However, our dataset was sufficient to identify known peptidergic cell types (Supp Fig 6) and to map homology to Mus cell types for 34 (64%) of our 53 clusters. Additionally, although some of our clusters contain small numbers of cells, our differential abundance analysis accounts for the variance in cell numbers observed across samples and should be robust against any increase in variance due to small numbers. In fact, even differential abundance of very small cell clusters such as oxytocin neurons (cell type 40) was validated by histology. 

      We would like to clarify that all analyses were performed on all cell clusters, regardless of whether or not they could be assigned homology to a Mus cell type. All the cell types that we identified as differentially abundant or contained significant sex differences happened to be cell types for which homology to a Mus cell type could be defined. This may arise for a relatively uninteresting reason: cell types that have more distinct transcriptional signatures will be more accurately clustered, leading to more accurate identification of homology as well as more accurate measurements of differential abundance / expression. We will revise language to make this more clear in our manuscript.

      In Supplement 7, it appears that most neurons can be assigned as excitatory or inhibitory, but then so many of these cells remain in the unassigned "gray blob" seen in panel 1E. Clustering of excitatory and inhibitory neurons separately, as in prior cited work in Mus POA (refs 31 and 57) may boost statistical power to detect sex and species differences in cell types. Perhaps the cells that cannot be assigned to Mus contain too few reads to be useful, in which case they should be filtered out in the QC. The technical challenges of a comparative single-cell approach are considerable, so it benefits the scientific community to provide transparency about them.

      We are not certain about why we are unable to cluster and assign homology to many of our cells (i.e. cells in the unassigned “gray blob”). However, we note that even in the Mus atlas, many cells did not belong to obvious clusters by UMAP visualization and that several clusters lacked notable marker genes and were designated simply as “Gaba” and “Glut” clusters. Therefore, it is unsurprising that our own dataset also contains cells that lack the transcriptional signatures needed to be clustered and/or mapped to Mus cell types. We do know, however, that the median number of reads/nuclei is uniform across cell clusters and does not explain why some clusters could not be assigned to Mus. We will add this information to our revised manuscript. 

      We do not think that a two-stage clustering (i.e. clustering first by excitatory vs. inhibitory neurons) is expected to gain power to resolve cell types in this case. Excitatory vs. inhibitory neurons are clearly separable on our UMAP (Supp Fig 7) so that information is already being used by our clustering procedure. However, we will explore this further in our revised manuscript to see if doing so will boost statistical power.

      The Calb1 dimorphism as observed by immunostaining, appears much more extensive in P. maniculatus compared to P. polionotus (Figures 3 E and F). This finding is not reflected in the counts of the i20:Gal/Moxd1 cluster. The use of Calb1 staining as a proxy for the Gal/Moxd1 cluster would be strengthened if the number of POA Calb1+ neurons that are found in each cluster was apparent. There may be additional Calb+ neurons in the cells that are not annotated to a Mus cluster. This clarification would add support to the overall conclusion that there is reduced sexual dimorphism in P. polionotus.

      From the Mus MPOA atlas (which includes both single-cell sequencing data and imaging-based spatial information), it is known that the i20:Gal/Moxd1 cluster comprises sexually dimorphic cells that make up both the BNST and the SDN-POA. These sexually dimorphic cells are well-studied and known to be marked by Calb1, which we used in immunostaining as a proxy for i20:Gal/Moxd1. 

      However, we would like to clarify that in our study, the immunostaining of Calb1+ neurons and the sequencing counts of the i20:Gal/Moxd1 cluster are not completely reflective of each other because our sequencing dataset only captured the ventral portion of the BNST. Therefore our i20:Gal/Moxd1 counts contain a combination of some Calb1+ BNST cells and likely all Calb1+ SDN-POA cells and is difficult to interpret on its own. Our histology, however, covers the entire hypothalamus and is more reliable for identifying sex and species differences in each region. We will clarify this in the revised manuscript. 

      The relationship between the sex steroid receptor expression and the sex bias in gene expression would be improved if the sex bias in sex steroid receptor expression was included in Supplementary Figure 10.

      We will include this in the revised manuscript. 

      There is no explanation for the finding that there is a female bias in gene expression across all cell types in P. polionotus.

      We also find this observation interesting but don’t have a good explanation for why at this point. We plan to follow this up in future work.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      We thank Reviewer #1 for the relevant and insightful comments on our paper. Please find our detailed answers below in the Recommendations to the Authors section.

      Summary: 

      The researchers examined how individuals who were born blind or lost their vision early in life process information, specifically focusing on the decoding of Braille characters. They explored the transition of Braille character information from tactile sensory inputs, based on which hand was used for reading, to perceptual representations that are not dependent on the reading hand. 

      They identified tactile sensory representations in areas responsible for touch processing and perceptual representations in brain regions typically involved in visual reading, with the lateral occipital complex serving as a pivotal "hinge" region between them.

      In terms of temporal information processing, they discovered that tactile sensory representations occur prior to cognitive-perceptual representations. The researchers suggest that this pattern indicates that even in situations of significant brain adaptability, there is a consistent chronological progression from sensory to cognitive processing. 

      Strengths: 

      By combining fMRI and EEG, and focusing on the diagnostic case of Braille reading, the paper provides an integrated view of the transformation processing from sensation to perception in the visually deprived brain. Such a multimodal approach is still rare in the study of human brain plasticity and allows us to discern the nature of information processing in blind people's early visual cortex, as well as the time course of information processing in a situation of significant brain adaptability. 

      Weaknesses: 

      The lack of a sighted control group limits the interpretations of the results in terms of profound cortical reorganization, or simple unmasking of the architectural potentials already present in the normally developing brain. 

      We thank the reviewer for raising this important point! We acknowledge that our claims regarding the unmasking of architectural potentials in both the normally developing and visually deprived brain are limited by the study design we employed. However, we note that defining an appropriate control group and assessing non-visual reading in sighted participants is far from straightforward. We discuss these issues in our response to the Public Review of Reviewer 2.

      Moreover, the conclusions regarding the behavioral relevance of the sensory and perceptual representations in the putatively reorganized brain are limited due to the behavioral measurements adopted.

      We agree with the reviewer that the relation between behavior and neural representations as established via perceived similarity judgments are task-dependent, and that a richer assessment of behavior would be valuable. Please note, however, that this limitation pertains to any experimental task used to assess behavior in the laboratory. Our major goal was to assess whether the identified neural representations are suitably formatted to be used by the brain for at least one behavior rather than being epiphenomenal. We found that the representations are suitably formatted for similarity judgments, thus establishing that they are relevant for at least this behavior. We also argue that judging similarity is a complex task that may underlie many other relevant behaviors. We discuss this point further in response to the Recommendations to the Authors.

      Reviewer #2 (Public Review): 

      We thank the reviewer for the considerate and thoughtful suggestions. Please find a detailed description of the implemented changes below.

      Summary: 

      Haupt and colleagues performed a well-designed study to test the spatial and temporal gradient of perceiving braille letters in blind individuals. Using cross-hand decoding of the read letters, and comparing it to the decoding of the read letter for each hand, they defined perceptual and sensory responses. Then they compared where (using fMRI) and when (using EEG) these were decodable. Using fMRI, they showed that low-level tactile responses specific to each hand are decodable from the primary and secondary somatosensory cortex as well as from IPS subregions, the insula, and LOC. In contrast, more abstract representations of the braille letter independent from the reading hand were decodable from several visual ROIs, LOC, VWFA, and surprisingly also EVC. Using a parallel EEG design, they showed that sensory hand-specific responses emerge in time before perceptual braille letter representations. Last, they used RSA to show that the behavioral similarity of the letter pairs correlates to the neural signal of both fMRI (for the perceptual decoding, in visual and ventral ROIs) and EEG (for both sensory and perceptual decoding). 

      Strengths: 

      This is a very well-designed study and it is analyzed well. The writing clearly describes the analyses and results. Overall, the study provides convincing evidence from EEG and fMRI that the decoding of letter identity across the reading hand occurs in the visual cortex in blindness. Further, it addresses important questions about the visual cortex hierarchy in blindness (whether it parallels that of the sighted brain or is inverted) and its link to braille reading. 

      Weaknesses: 

      Although I have some comments and requests for clarification about the details of the methods, my main comment is that the manuscript could benefit from expanding its discussion. Specifically, I'd appreciate the authors drawing clearer theoretical conclusions about what this data suggests about the direction of information flow in the reorganized visual system in blindness, the role VWFA plays in blindness (revised from the original sighted role or similar to it?), how information arrives to the visual cortex, and what the authors' predictions would be if a parallel experiment would be carried out in sighted people (is this a multisensory recruitment or reorganization?). The data has the potential to speak to a lot of questions about the scope of brain plasticity, and that would interest broad audiences. 

      We thank the reviewer for the opportunity to provide clearer theoretical conclusions from our data. We elaborate on each of the points raised by the reviewer in the discussion section.

      Concerning the direction of information flow in the reorganized visual system in blindness, we focus on information arrival to EVC and information flow beyond EVC.

      p. 11, ll. 376-386, Discussion 4.1:

      “Overall, identifying braille letter representations in widespread brain areas raises the question of how information flow is organized in the visually deprived brain. Functional connectivity studies report deprivation-driven changes of thalamo-cortical connections which could explain both arrival of information to and further flow of information beyond EVC. First, the coexistence of early thalamic connections to both S1 and V1 (Müller et al., 2019) would enable EVC to receive from different sources and at different timepoints. Second, potentially overlapping connections from both sensory cortices to other visual or parietal areas (Ioannides et al., 2013) could enable the visually deprived brain to process information in a widespread and interconnected array of brain areas. In such a network architecture, several brain areas receive and forward information at the same time. In contrast to information discretely traveling from one processing unit to the next in the sighted brain’s processing cascade, we can rather picture information flowing in a spatially and functionally more distributed and overlapping fashion.”

      Regarding the role of VWFA, we propose that the functional organization of VWFA is modality-independent.

      p. 10, ll. 346-348, Discussion 4.1:

      “Second, we found that VWFA contains perceptual but not sensory braille letter representations. By clarifying the representational format of language representations in VWFA, our results support previous findings of the VWFA being functionally selective for letter and word stimuli in the visually deprived brain (Reich et al., 2011; Striem-Amit et al., 2012; Liu et al., 2023). Together, these findings suggest that the functional organization of the VWFA is modality-independent (Reich et al., 2011), depicting an important contribution to the ongoing debate on how visual experience shapes representations along the ventral stream (Bedny et al., 2021).” Lastly, we would like to share our thoughts about carrying out a parallel experiment in sighted people. 

      In general, we agree that it seems insightful to conduct a parallel, analogous experiment in sighted participants with the aim to disentangle whether the effects seen in blind participants are due to multisensory recruitment or reorganization. However, before making predictions regarding the outcome, we would have to define an analogous experiment in sighted participants that taps into the same mechanisms. This, however, is difficult to do as it is unclear what counts as analogous. For example, if we compare braille reading to reading visually presented braille dot arrays or Roman letters, we will assess visual object processing, a different mechanism from that involved in braille reading. Alternatively, if we compare braille reading to sighted participants reading embossed Roman letters haptically or ideally even reading Braille after extensive training, we still face the inherent problem that sighted participants have visual experiences and could use visual imagery strategies in these nonvisual tasks. As we cannot experimentally ensure that sighted participants do not use visual strategies to solve a task, this would always complicate drawing conclusions about the underlying processes. More specifically, we could never pinpoint whether differences between sighted and blind participants are due to measuring different mechanisms or measuring the same mechanism and unravelling underlying changes (i.e., multisensory recruitment or reorganization). Finally, apart from potential confounds due to visual imagery, considering populations of sighted readers and Braille readers as only differing with regard to their input modality and otherwise being comparable is problematic: In general, blind populations are more heterogenous than most typical samples due to various factors such as aetiologies, onset and severity (Merabet & Pascual-Leone, 2010). Even when carrying out studies in highly specific population subsamples, such as in congenitally blind braille readers, vast within-group differences remain, e.g., the quality and quantity of their braille education, as well as across braille and print readers, e.g., different passive exposure to braille versus written letters during childhood (Englebretson et al., 2023). Hence, to fully match the groups in terms of learning experience we would, for example, have to teach sighted infants braille reading in childhood and follow them up until a comparable age. This approach does not seem feasible. 

      p. 10, ll. 328-341, Discussion 4.1:

      “We note that our findings contribute additional evidence but cannot conclusively distinguish between the competing hypotheses that visually deprived brains dynamically adjust to the environmental constraints versus that they undergo a profound cortical reorganization. Resolving this debate would require an analogous experiment in sighted people which taps into the same mechanisms as the present study. Defining a suitable control experiment is, however, difficult. Any other type of reading would likely tap into different mechanism than braille reading. Further, whenever sighted participants are asked to perform a haptic reading task, outcomes can be confounded by visual imagery driving visual cortex (Dijkstra et al., 2019). Thus, the results would remain ambiguous as to whether observed differences between the groups index different mechanisms or plastic changes in the same mechanisms. Last, matching groups of sighted readers and braille readers such that they only differ with regard to their input modality seems practically unfeasible: There are vast differences within the blind population in general, e.g., aetiologies, onset and severity, and the subsample of congenitally blind braille readers more specifically, e.g., the quality and quantity of their braille education, as well as across braille and print readers, e.g., different passive exposure to braille versus written letters during childhood (Englebretson et al., 2023; Merabet & Pascual-Leone, 2010).”

      While we appreciate that the conclusions we can draw from our results are limited by our sample and defining an appropriate parallel experiment in sighted participants is difficult for the reasons discussed above, we would still like to share our speculations regarding the process underlying our result pattern. We think that our results, taken together with results of previous studies, suggest that EVC does not undergo fundamental reorganization in the case of visual deprivation. Rather, it can flexibly adjust to given processing requirements. This flexibility is not infinite; adjustments are limited by the area’s architectural and computational capacity. Importantly, we think that this claim refers to an unmasking of preexisting potential rather than multisensory recruitment.

      To aid in drawing even more concrete conclusions about the flow of information, I suggest that the authors also add at least another early visual ROI to plot more clearly whether EVC's response to braille letters arrives there through an inverted cortical hierarchy, intermediate stages from VWFA, or directly, as found in the sighted brain for spoken language. 

      We thank the reviewer for this comment. However, EVC here consists of V1 to V3, and we already also assess V4, LOC, VWFA and LFA. Thus, we assess regions at all levels of processing from mid- over low- to high-level and cannot add a further interim ROI. Our results using this ROI set do not allow us to arbitrate between the hypotheses raised by the reviewer.

      Similarly, it may be informative to look specifically at the occipital electrodes' time differences between decoding for the different parameters and their correlation to behavior.

      We thank the reviewer for this suggestion. However, the spatial resolution of EEG measurements is limited, and we cannot convincingly determine the neural source of signals being recorded from specific electrodes, i.e., occipital. When we reduce the number of electrodes before analysis, we primarily see comparable qualitative trends in the data albeit with a reduction in signal-to-noise-ratio.

      To illustrate, we repeated the EEG time decoding and the EEG-behavior RSA with only occipital and parieto-occipital electrodes (n=8) instead of all electrodes (n=63) and added the results to the Supplementary Material (see Supplementary Figure 3 and 4). Overall, we observe a reduction in signal-to-noise-ratio. This is not surprising given that the EEG searchlight decoding results (Figure 3b) reveal sources of the decoding signals extend beyond occipital and parieto-occipital electrodes. 

      In the EEG time decoding analysis, we see a comparable trend to the whole brain EEG analysis but do not find a significant difference in onsets of sensory and perceptual representation. 

      In the behavior-EEG RSA, we do find that the correlations between behavior and sensory representations emerge significantly earlier than correlations between behavior and perceptual representations. (N = 11, 1,000 bootstraps, one-tailed bootstrap test against zero, P< 0.001). This result is in line with the whole brain EEG analysis.

      Regarding the methods, further detail on the ability to read with both hands equally and any residual vision of the participants would be helpful.

      We thank the reviewer for raising this point. We assessed participants’ letter reading capabilities in a short screening task prior to the experiment. Participants read letters with both hands separately and we used the same presentation time as in the experiment. As the result showed that average performance for recognizing letters with the left hand (89%) and right hand (88%) were comparable. We did not measure continuous reading in the present study, and we did not assess further information about participants’ ability to read equally well with both hands. 

      While the information about the screening task was previously included in Methods section 5.3.2 EEG experiment, we now moved it into a separate section 5.3.3 Braille screening task to make the information better accessible. 

      p. 14, ll. 529-533, Methods 5.3.3:

      “Prior to the experiment, participants completed a short screening task during which each letter of the alphabet was presented for 500ms to each hand in random order. Participants were asked to verbally report the letter they had perceived to assess their reading capabilities with both hands using the same presentation time as in the experiment. The average performance for the left hand was 89% correct (SD = 10) and for the right hand it was 88% correct (SD = 13).”

      We thank the reviewer for the suggestion to include information regarding participant’s residual vision. We now added information about participants’ residual light perception to Supplementary Table 1.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      (1) ROI vs Searchlight Results: Figures 2 b and c do not seem to match. The ROI results (b) should be somehow consistent with the whole brain results (c), but "perceptual" decoding in the searchlight (in green) seems localized in sensorimotor areas while for the same classification, no sensorimotor ROI is significant. can the authors clarify this difference?

      Similarly, perceptual decoding does not emerge in EVC with the searchlight analysis, whereas is quite strong in ROI analysis.

      We agree that the results of the ROI and searchlight decoding do not show a direct match. We think that this difference is due to methodological reasons. For example, ROI decoding can be more sensitive when ROIs follow functionally relevant boundaries in the brain, in comparison to spheres used in searchlight decoding that do not. In turn, searchlight decoding may be more sensitive when information is distributed across functional boundaries that would be captured in different ROIs rather than combined, or when ROI definition is difficult (such as here in the visual system of blind participants).

      However, we point out that the primary goal of our searchlight decoding was to show that no other areas beyond our hypothesized ROIs contained braille letter representations, rather than reproducing the ROI results.

      Decoding accuracies are tested against chance (50% for pairwise classifications) according to methods. In the case of "sensory and perceptual" and "perceptual" classification, this is straightforward. In the case of the analysis that isolates "sensory" representations though the difference is computed between "sensory and perceptual" and "perceptual" decoding accuracies, the accuracies resulting from this difference should thus be centered around 0.

      Are the accuracies tested against 0 in this case? This is not specified in the methods. Furthermore, the data reported in Figure 2 and Figure 3. seem to have 0% as a baseline and the label states "decoding accuracy". Can the authors clarify whether the reported data are the difference in accuracy with an estimated empirical baseline or an expected baseline of 50%? 

      The reviewer is correct in stating that we tested “sensory and perceptual” and “perceptual” against chance level and the difference score “sensory” against 0 and that this information was missing in the methods section.

      We now specify in the methods that we are testing the accuracies for the “sensory” analysis against 0.

      p. 16, ll. 625-627, Methods 5.6:

      “We conducted subject-specific braille letter classification in two ways. First, we classified between letter pairs presented to one reading hand, i.e., we trained and tested a classifier on brain data recorded during the presentation of braille stimuli to the same hand (either the right or the left hand). This yields a measure of hand-dependent braille letter information in neural measurements. We refer to this analysis as within-hand classification. Second, we classified between letter pairs presented to different hands in that we trained a classifier on brain data recorded during the presentation of stimuli to one hand (e.g., right), and tested it on data related to the other hand (e.g., left). This yields a measure of hand-independent braille letter information in neural measurements. We refer to this analysis as across-hand classification. We tested both within-hand and across-hand pairwise classification accuracies against a chance level of 50%. We also calculated a within-across hand classification score which we compared against 0.”

      Regarding Figures 2 and 3, we plot the results as decoding accuracies minus chance level to standardize the y-axes for all three analyses, i.e., compare them to 0. We have corrected the y-axis labels accordingly. 

      In our analyses, we assumed an expected baseline of 50%. But in the response below we provide evidence that our results remain stable whether using an expected or empirical baseline.

      If my understanding is correct, a potential problem persists. The different analyses may not be comparable, because in the "sensory" analysis the baseline is empirically defined, being the classification accuracies of the "perceptual" decoding, while in the other two analyses, the baseline is set at 50%. There are suggestions in the literature to derive empirically defined baselines by randomly shuffling the trial labels and repeating the classification accuracies [grootswagers 2017]. In the context of the present work, its use will make the different statistical analyses more comparable. I would thus suggest the authors define the baseline empirically for all their analyses or, given the high computational demand of this analysis, provide evidence that the results are not affected by this difference in the baseline. 

      We thank the reviewer for raising this point. As the reviewer correctly stated, the “sensory” analysis has an empirically defined baseline because it is a difference score while in the other two analyses the baseline is set at 50%.

      To provide evidence that our results are not affected by this difference in baseline, we now re-ran the EEG time decoding. We derived null distributions from the empirical data for all three analyses, following the guidelines from Grootswagers 2017 (page 688, section “Evaluation of Classifier Performance and Group Level Statistical Testing Statistical”):

      “Another popular alternative is the permutation test, which entails repeatedly shuffling the data and recomputing classifier performance on the shuffled data to obtain a null distribution, which is then compared against observed classifier performance on the original set to assess statistical significance (see, e.g., Kaiser et al., 2016; Cichy et al., 2014; Isik et al., 2014). Permutation tests are especially useful when no assumptions about the null distribution can be made (e.g., in the case of biased classifiers or unbalanced data), but they take much longer to run (e.g., repeating the analysis 10,000 times).”

      Running a sign permutation test with 10,000 repetitions, we show that the results are comparable to the previously reported results based on one-sided Wilcoxon signed rank tests. We are, therefore, confident that our reported results are not affected by this difference in baseline. We now added this control analysis to the results section and supplementary material (see Supplementary Figure 5).

      p. 7-8, ll. 213-215, Results 3.2: 

      “Importantly, the temporal dynamics of sensory and perceptual representations differed significantly. Compared to sensory representations, the significance onset of perceptual representations was delayed by 107ms (21-167ms) (N = 11, 1,000 bootstraps, one-tailed bootstrap test against zero, P= 0.012). This results pattern was consistent when defining the analysis baseline empirically (see Supplementary Figure 5).”

      (2) According to the authors, perceptual rather than sensory braille letter representations identified in space are suitably formatted to guide behavior. However, they acknowledge that this finding is likely to be task-dependent because it is based on subject similarity ratings.

      Maybe they could use a more objective similarity measurement of Braille letters similarity?

      For instance, they can compare letters using Jaccard similarity (See for instance: Bottini et al. 2022). 

      We thank the reviewer for the opportunity to clarify. We acknowledge that our findings regarding the behavioral relevance of the identified neural representations are task-dependent. But, importantly, this is not because we use perceived similarity ratings as a measurement, but because we only use one measurement while there are infinitely many other potential tasks to assess behavior. This means that the same limitation holds when using another similarity measure like Jaccard similarity. We now clarify this in the Discussion section: 

      p. 12, ll. 419-420, Discussion 4.3:

      “Our results clarified that perceptual rather than sensory braille letter representations identified in space are suitably formatted to guide behavior. However, we only use one specific task to assess behavior and, therefore, acknowledge that this finding is taskdependent.”

      Nevertheless, we calculated Jaccard similarity based on the definition used in Bottini et. al. There are no significant correlations for the EEG-behavior or fMRI-behavior RSA when we use the Jaccard matrix and subject-specific EEG or fMRI RDMs (see Supplementary Figure 6).

      This demonstrates that braille letter similarity ratings are significantly correlated with neural representations in space and time but Jaccard similarity of braille dot overlaps is not. 

      (3) If the primacy of perceptual similarity holds also with more objective measures of letter similarity, I think the authors should spend a few more words characterizing the results in fMRI and EEG that are rather divergent (concerning this analysis). Indeed, EEG analysis shows a significant correlation between similarity ratings and within-hand classification accuracy, although this correlation does not emerge in the "sensory" ROIs. I think these findings can be put together, hypothesizing that sensory-based similarity correlates with behavior but only in perceptual ROIs. However, why so? Can the authors provide a more mechanistic explanation? Am I missing something? 

      We thank the reviewer for this intriguing idea. We now speculate about how we could harmonize the results from the behavior-EEG and behavior-fMRI RSAs in the discussion section. 

      p. 12, ll. 438-442, Discussion 4.3:

      “Similarity ratings and sensory representations as captured by EEG are correlated, and so are similarity ratings and representations in perceptual ROIs, but not sensory ROIs. This might be interpreted as suggesting a link between the sensory representations captured in EEG and the representations in perceptual ROIs. However, we do not have any evidence towards this idea. Differing signalto-noise ratios for the different ROIs and sensory versus perceptual analysis could be an alternative explanation.“

      (4) In the methods they state that EEG decoding is tested against chance at each time point but these results are not reported, only latency analysis is reported. Can the authors report the significant time points of the EEG time series decoding?  

      We thank the reviewer for catching this inconsistency! We have now added this information to Figure 3a.

      (5) In fMRI ROI definition procedure, the top 321 voxels of each anatomical ROI that had the highest functional activation were selected. The number of voxels is based on the smaller ROI, which to my understanding means that for this ROI all the voxels were selected potentially introducing noise and impacting the comparison between ROIs. Can the authors clarify which ROI was the smallest? 

      Thank you for the question! The smallest ROI was V4. This indeed means that for this ROI all voxels were selected. This could have led to our results being noisy in V4 but should not influence the results in other ROIs. We now added this information to the methods section.  p. 15, ll. 592, Methods 5.4.4:

      “The smallest mask was V4 which included 321 voxels.”

      (6) Finally, the author suggests that: "Importantly, higher-level computations are not limited to the EVC in visually deprived brains. Natural sound representations 41 and language activations 53 are also located in EVC of sighted participants. This suggests that EVC, in general, has the capacity to process higher-level information 54. Thus, EVC in the visually deprived brain might not be undergoing fundamental changes in brain organization 53. This promotes a view of brain plasticity in which the cortex is capable of dynamic adjustments within pre-existing computational capacity limits 4,53-55." - The presence of a sighted control group would have strengthened this claim. 

      We agree with the reviewer and now discuss the limitations of our approach in the discussion section (see response to weaknesses raised by Reviewer 2 in the Public Review above).

      Reviewer #2 (Recommendations For The Authors): 

      (1) Can the authors comment on the reaction time of the two reading hands? Completely ambidextrous reading is not necessarily common, so any differences in ability or response time across the hands may affect the EEG results. Alternatively, do the authors have any additional behavioral data about the participants' ability to read well with both hands? 

      We thank the reviewer for these questions! We did not assess reaction times and acknowledge this as a limitation. We did, however, measure accuracies and would have expected to see a speed-accuracy-trade off if reaction times would differ between hands, i.e., we would have expected lower accuracy for the hand with higher RTs. But this was not the case: our participants had comparable accuracy values when reading letters with both hands (see methods section 5.3.3 and answer to Public Review above). This measure indicated that participants recognized Braille letters presented for 500ms equally well with both index fingers.

      (2) Please add information about any residual sight in the blind participants (or are they all without light perception?)

      We have now added information about residual light perception in Supplementary Table 1 (see above in response to Public Review).

      (3) Is active tactile exploration involved, or are the participants not moving their fingers at all over the piezo-actuators? Can the authors elaborate more on how the participants used this passive input?

      We thank the reviewer for the opportunity to clarify. Our experimental setup does not involve tactile exploration or sliding motions. Instead, participants rest their index fingers on the piezo-actuators and feel the static sensation of dots pushing up against their fingertips. We assume that participants used the passive input of specific dot stimulation location on fingers to perceive a dot array which, in turn, led to the percept of a braille letter.

      We now specify this information in the methods section.

      p. 13, ll. 474-475, Methods 5.2:

      “The modules were taped to the clothes of a participant for the fMRI experiment and on the table for the EEG and behavioral experiment. This way, participants could read in a comfortable position with their index fingers resting on the braille cells to avoid motion confounds. Importantly, our experimental setup did not involve tactile exploration or sliding motions. We instructed participants to read letters regardless of whether the pins passively stimulated their immobile right or left index finger.”

      (4) I appreciated the RSA analysis, but remain curious about what the ratings were based on.

      Do the authors know what parameters participants used to rate for? Were these consistent across participants? That would aid in interpreting the results.

      We thank the reviewer for the interest in our representational similarity analyses linking the neural representations to behavior. 

      We do not know which parameters participants explicitly used to rate the similarity between letters. We instructed participants to freely compare the similarity of pairs of braille letters without specifying which parameters they should use for the similarity assessment. We speculate that participants used a mixture of low-level features such as stimulation location on fingers and higher-level features such as linguistic similarity between letters. We now clarify the free comparison of braille letter pairs in the methods section:

      p. 14, ll. 538-539, Methods 5.3.4:

      “Each pair of letters was presented once, and participants compared them with the same finger. We instructed participants to freely compare the similarity of pairs of Braille letters without specifying which parameters they should use for the similarity assessment. The rating was without time constraints, meaning participants decided when they rated the stimuli. Participants were asked to verbally rate the similarity of each pair of braille letters on a scale from 1 = very similar to 7 = very different and the experimenter noted down their responses.”

      (5) Can the authors provide confusion matrices for the decoding analyses in the supplementary materials? This could be informative in understanding what pairs of letters are most discernable and where. 

      We have added confusion matrices for within- and between-hand decoding for all ROIs and for the time points 100ms, 200ms, 300ms and 400ms to the Supplementary Material (see Supplementary Figures 7-10).

      (6) Was slice time correction done for the fMRI data? This is not reported. 

      We now added this information to the methods section - our fMRI preprocessing pipeline did not include slice timing correction.  

      p. 14, ll. 554, Methods 5.4.2:

      “We did not apply high or low-pass temporal filters and did not perform slice time correction.”

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #3 (Public review):

      Summary:

      Juan Liu et al. investigated the interplay between habitat fragmentation and climate-driven thermophilization in birds in an island system in China. They used extensive bird monitoring data (9 surveys per year per island) across 36 islands of varying size and isolation from the mainland covering 10 years. The authors use extensive modeling frameworks to test a general increase of the occurrence and abundance of warm-dwelling species and vice versa for cold-dwelling species using the widely used Community Temperature Index (CTI), as well the relationship between island fragmentation in terms of island area and isolation from the mainland on extinction and colonization rates of cold- and warm-adapted species. They found that indeed there was thermophilization happening during the last 10 years, which was more pronounced for the CTI based on abundances and less clearly for the occurrence based metric. Generally, the authors show that this is driven by an increased colonization rate of warm-dwelling and an increased extinction rate of cold-dwelling species. Interestingly, they unravel some of the mechanisms behind this dynamic by showing that warm-adapted species increased while cold-dwelling decreased more strongly on smaller islands, which is - according to the authors - due to lowered thermal buffering on smaller islands (which was supported by air temperature monitoring done during the study period on small and large islands). They argue, that the increased extinction rate of cold-adapted species could also be due to lowered habitat heterogeneity on smaller islands. With regards to island isolation, they show that also both thermophilization processes (increase of warm and decrease of cold-adapted species) was stronger on islands closer to the mainland, due to closer sources to species populations of either group on the mainland as compared to limited dispersal (i.e. range shift potential) in more isolated islands.

      The conclusions drawn in this study are sound, and mostly well supported by the results. Only few aspects leave open questions and could quite likely be further supported by the authors themselves thanks to their apparent extensive understanding of the study system.

      Strengths:

      The study questions and hypotheses are very well aligned with the methods used, ranging from field surveys to extensive modeling frameworks, as well as with the conclusions drawn from the results. The study addresses a complex question on the interplay between habitat fragmentation and climate-driven thermophilization which can naturally be affected by a multitude of additional factors than the ones included here. Nevertheless, the authors use a well balanced method of simplifying this to the most important factors in question (CTI change, extinction, colonization, together with habitat fragmentation metrics of isolation and island area). The interpretation of the results presents interesting mechanisms without being too bold on their findings and by providing important links to the existing literature as well as to additional data and analyses presented in the appendix.

      Weaknesses:

      The metric of island isolation based on distance to the mainland seems a bit too oversimplified as in real-life the study system rather represents an island network where the islands of different sizes are in varying distances to each other, such that smaller islands can potentially draw from the species pools from near-by larger islands too - rather than just from the mainland. Although the authors do explain the reason for this metric, backed up by earlier research, a network approach could be worthwhile exploring in future research done in this system. The fact, that the authors did find a signal of island isolation does support their method, but the variation in responses to this metric could hint on a more complex pattern going on in real-life than was assumed for this study.

      Thank you again for this suggestion. Based on the previous revision, we discussed more about the importance of taking the island network into future research. The paragraph is now on Lines 294-304:

      “As a caveat, we only consider the distance to the nearest mainland as a measure of fragmentation, consistent with previous work in this system (Si et al., 2014), but we acknowledge that other distance-based metrics of isolation that incorporate inter-island connections and island size could hint on a more complex pattern going on in real-life than was assumed for this study, thus reveal additional insights on fragmentation effects. For instance, smaller islands may also potentially utilize species pools from nearby larger islands, rather than being limited solely to those from the mainland. The spatial arrangement of islands, like the arrangement of habitat, can influence niche tracking of species (Fourcade et al., 2021). Future studies should use a network approach to take these metrics into account to thoroughly understand the influence of isolation and spatial arrangement of patches in mediating the effect of climate warming on species.”

      Recommendations for the authors:

      Reviewer #3 (Recommendations for the authors):

      Great job on the revision! The new version reads well and in my opinion all comments were addressed appropriately. A few additional comments are as follows:

      Thank you very much for your further review and recognition. We have carefully modified the manuscript according to all recommendations.

      (1) L 62: replace shifts with process

      Done. We also added the word “transforming” to match this revision. The new sentence is now on Lines 61-63:

      “Habitat fragmentation, usually defined as the process of transforming continuous habitat into spatially isolated and small patches”

      (2) L 363: Your metric for habitat fragmentation is isolation and habitat area and I think this could be introduced already in the introduction, where you somewhat define fragmentation (although it could be clearer still). You could also discuss this in the discussion more, that other measures of fragmentation may be interesting to look at.

      Thank you for this suggestion. We now introduced metric of habitat fragmentation in the Introduction part after habitat fragmentation was defined. The sentence is now on Lines 64-66:

      “Among the various ways in which habitat fragmentation is conceptualized and measured, patch area and isolation are two of the most used measures (Fahrig, 2003).”

      (3) L 384: replace for with because of

      Done.

      (4) L 388: "Following this filtering, 60 ...."

      Done.

      (5) Figure 1: In panels b-d you use different terms (fragmented, small, isolated) but aiming to describe the same thing. I would highly recommend to either use fragmented islands or isolated islands for all panels. Although I see that in your study fragmentation includes both, habitat loss and isolation. So make this clear in the figure caption too...

      Thank you very much for this suggestion. It’s important to maintain consistency in using “fragmentation”. We change “fragmented, small, isolated” into “Fragmented patches” in the caption of b-d. The modified caption is now on Line 771:

      (6) L 783: replace background with habitat (or landscape) and exhibit with exemplify

      Done. The new sentence is now on Lines 782-784:

      “The three distinct patches signify a fragmented landscape and the community in the middle of the three patches was selected to exemplify colonization-extinction dynamics in fragmented habitats.”

      (7) One bigger thing is the definition of fragmentation in your study for which you used habitat area (from habitat loss process) and isolation. This could still be clarified a bit more, especially in the figures. In Fig. 1 the smaller panels b-d could all be titled fragmented islands as this is what the different terms describe in your study (small, isolated) and thus the figure would become even clearer. Otherwise I'm happy with the changes made.

      Thank you for raising this important question. Yes, “habitat fragmentation” in our research includes both habitat loss and fragmentation per se. We have clarified the caption of b-d in Figure 1 as suggested by Recommendation (5). We believe this can make it clearer to the readers.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      Otero-Coronel et al. address an important question for neuroscience - how does a premotor neuron capable of directly controlling behavior integrate multiple sources of sensory inputs to inform action selection? For this, they focused on the teleost Mauthner cell, long known to be at the core of a fast escape circuit. What is particularly interesting in this work is the naturalistic approach they took. Classically, the M-cell was characterized, both behaviorally and physiologically, using an unimodal sensory space. Here the authors make the effort (substantial!) to study the physiology of the M-cell taking into account both the visual and auditory inputs. They performed well-informed electrophysiological approaches to decipher how the M-cell integrates the information of two sensory modalities depending on the strength and temporal relation between them.

      Strengths:

      The empirical results are convincing and well-supported. The manuscript is well-written and organized. The experimental approaches and the selection of stimulus parameters are clear and informed by the bibliography. The major finding is that multisensory integration increases the certainty of environmental information in an inherently noisy environment.

      Weaknesses:

      Even though the manuscript and figures are well organized, I found myself struggling to understand key points of the figures.

      For example, in Figure 1 it is not clear what are actually the Tonic and Phasic components. The figure will benefit from more details on this matter. Then, in Figure 4 the label for the traces in panel A is needed since I was not able to pick up that they were coming from different sensory pathways.

      We added an inset to Figure 1 showing how the tonic and phasic components are measured. We now use solid colors instead of transparencies, and the color scheme was modified for consistency. We added labels to the traces used as examples in Figure 4 panel A.

      In line 338 it should be optic tectum and not "optical tectum".

      We replaced two instances of the term “optical tectum” with “optic tectum”.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Otero-Coronel and colleagues use a combination of acoustic stimuli and electrical stimulation of the tectum to study MSI in the M-cells of adult goldfish. They first perform a necessary piece of groundwork in calibrating tectal stimulation for maximal M-cell MSI, and then characterize this MSI with slightly varying tectal and acoustic inputs. Next, they quantify the magnitude and timing of FFI that each type of input has on the M-cell, finding that both the tectum and the auditory system drive FFI, but that FFI decays more slowly for auditory signals. These are novel results that would be of interest to a broader sensory neuroscience community. By then providing pairs of stimuli separated by 50ms, they assess the ability of the first stimulus to suppress responses to the second, finding that acoustic stimuli strongly suppress subsequent acoustic responses in the M-cell, that they weakly suppress subsequent tectal stimulation, and that tectal stimulation does not appreciably inhibit subsequent stimuli of either type. Finally, they show that M-cell physiology mirrors previously reported behavioural data in which stronger stimuli underwent less integration.

      The manuscript is generally well-written and clear. The discussion of results is appropriately broad and open-ended. It's a good document. Our major concerns regarding the study's validity are captured in the individual comments below. In terms of impact, the most compelling new observation is the quantification of the FFI from the two sources and the logical extension of these FFI dynamics to M-cell physiology during MSI. It is also nice, but unsurprising, to see that the relationship between stimulus strength and MSI is similar for M-cell physiology to what has previously been shown for behavior. While we find the results interesting, we think that they will be of greatest interest to those specifically interested in M-cell physiology and function.

      Strengths:

      The methods applied are challenging and appropriate and appear to be well executed. Open questions about the physiological underpinnings of M-cell function are addressed using sound experimental design and methodology, and convincing results are provided that advance our understanding of how two streams of sensory information can interact to control behavior.

      Weaknesses:

      Our concerns about the manuscript are captured in the following specific comments, which we hope will provide a useful perspective for readers and actionable suggestions for the authors.

      Comment 1 (Minor):

      Line 124. Direct stimulation of the tectum to drive M-cell-projecting tectal neurons not only bypasses the retina, it also bypasses intra-tectal processing and inputs to the tectum from other sources (notably the thalamus). This is not an issue with the interpretation of the results, but this description gives the (false) impression that bypassing the retina is sufficient to prevent adaptation. Adding a sentence or two to accurately reflect the complexity of the upstream circuitry (beyond the retina) would be welcome.

      The reviewer is right in that direct tectal stimulation bypasses all neural processing upstream, not only that produced in the retina and that the tectum does not exclusively process visual information. The revised version now acknowledges (lines 245-252, revised manuscript) the complexity of the system.

      Comment 2 (Major): The premise is that stimulation of the tectum is a proxy for a visual stimulus, but the tectum also carries the auditory, lateral line, and vestibular information. This seems like a confound in the interpretation of this preparation as a simple audio-visual paradigm. Minimally, this confound should be noted and addressed. The first heading of the Results should not refer to "visual tectal stimuli".

      We changed the heading of the corresponding section of the Results section as requested and also omitted the term “optic” when we did not specifically refer to tectal circuits that process optic information.  

      Comment 3 (Major): Figure 1 and associated text.

      It is unclear and not mentioned in the Methods section how phasic and tonic responses were calculated. It is clear from the example traces that there is a change in tonic responses and the accumulation of subthreshold responses. Depending on how tonic responses were calculated, perhaps the authors could overlay a low-passed filtered trace and/or show calculations based on the filtered trace at each tectal train duration.

      The revised version of the manuscript now includes a description of how the phasic and tonic components were calculated (lines 163-172). We also modified the color scheme and the inset of Figure 1A to clarify how these two components were defined. Since we quantified the response in a 12 ms window, we did not include an overlayed low-pass filtered trace since it might be confusing with respect to the metric used.

      Comment 4 (Minor): Figure 3 and associated text.

      This is a lovely experiment. Although it is not written in text, it provides logic for the next experiment in choosing a 50ms time interval. It would be great if the authors calculated the first timepoint at which the percentage of shunting inhibition is not significantly different from zero. This would provide a convincing basis for picking 50ms for the next experiment. That said, I suspect that this time point would be earlier than 50 ms. This may explain and add further complexity to why the authors found mostly linear or sublinear integration, and perhaps the basis for future experiments to test different stimulus time intervals. Please move calculations to Methods.

      We moved calculations to the Methods section (lines 201-208). We mention the rationale for selecting the 50 ms interval in the next experiment (Figure 4, lines 369-371) and discuss in detail the potential contribution of FFI to the complexity of the integration taking place in the M-cell circuit (Discussion, lines 512-535).

      Comment 5 (Major): Figure 4C and lines 398-410.

      These are beautiful examples of M-cell firing, but the text suggests that they occurred rarely and nowhere close to significantly above events observed from single modalities. We do not see this as a valid result to report because there is insufficient evidence that the phenomenon shown is consistent or representative of your data.

      Our experimental conditions required anesthesia and paralysis, conditions designed to reduce neuronal firing and suppress motor output. We think it is valuable to report that we still see that simultaneous presentation subthreshold unisensory stimuli can add up to become suprathreshold, paralleling behavioral observations. We do not claim and acknowledge that those examples are representative of our recording conditions, but are likely to be more representative of the multisensory integration process taking place in freely moving fish. The revised manuscript adds context to these example traces to justify their inclusion (lines 420-426).

      Reviewer #2 (Recommendations For The Authors):

      Methods

      The Methods section on "Auditory stimuli" contains a long background on the biophysics of the M-cell and its inputs. This does not belong in Methods. The same is true, to a lesser degree, in the next heading. The argument that direct stimulation of the tectum is necessary to bypass adaptation should be in Results, not Methods.

      Following the reviewer recommendation, we have moved both paragraphs to the Results section.

      Figure 1 and associated text.

      Visually, the use of transparency to differentiate phasic and tonic calculations is difficult to read. Example traces are also cut off at the top and bottom at random sizes.

      We changed the color scheme to avoid the use of transparency and modified the inset of Figure 1A to clarify how the phasic and tonic components were calculated. We also modified the dimensions of the clipping mask used to trim the stimulation artifacts of sample traces to make them more similar while still enabling clear observation of the phasic and tonic components of the response.

      Line 338 "optical tectum" is not correct. "optic tectum" is more common, or better still, just "tectum".

      We apologize for the error. The two instances of “optical tectum” were replaced by the correct term (“optic tectum”).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Comments:

      (1) We find it interesting that the reshaped model showed decreased firing rates of the projection neurons. We note that maximizing the entropy <-ln p(x)> with a regularizing term -\lambda <\sum _i f(x_i)>, which reflects the mean firing rate, results in \lambda _i = \lambda for all i in the Boltzmann distribution. In other words, in addition to the homeostatic effect of synaptic normalization which is shown in Figures 3B-D, setting all \lambda_i = 1 itself might have a homeostatic effect on the firing rates. It would be better if the contribution of these two homeostatic effects be separated. One suggestion is to verify the homeostatic effect of synaptic normalization by changing the value of \lambda.

      This is an interesting question and we, therefore, explored the effects of different values of $\lambda$ on the performance of unconstrained reshaped RP models and their firing rates. The new supp. Figure 2B presents the results of this exploration: We found that for models with a small set of projections, a high value of $\lambda$ results in better performance than models with low ones, while for models with a large set of projections we find the opposite relation. The mean firing rates of the projection neurons for models with different values of $\lambda$ show a clear trend, where higher $\lambda$ values results in lower mean firing rates.

      Thus, these results suggest an interplay between the optimal size of the projection set and the value of $\lambda$ one should pick. For the population sizes and projection sets we have used here, $\lambda=1$ is a good choice, but, for different population sizes or data sets a different value of $\lambda$ might be better.

      Thus, in addition to supp. Figure 2B, we therefore added the following to the main text:

      “An additional set of parameters that might affect the Reshaped RP models are the coefficients $\lambda$, that weigh each of the projections. Above, we used $\lambda=1$ for all projections, here we investigated the effect of the value of $\lambda$ on the performance of the Reshaped RP models (supp. Figure 2B). We find that for models with a small projection set, high $\lambda$ values result in better performance than models with low values. We find an opposite relation for models with large number projection sets. (We submit that the performance decrease of Reshaped RP models with high value of $\lambda$, as the number of projections grows, is a reflection of the non-convex nature of the Reshaped RP optimization problem).

      The mean firing rates of the projection neurons for models with different values of $\lambda$ show a clear trend, higher $\lambda$ values results in lower mean firing rates. Thus, we conclude that there is an interplay between the number of projections and the value of $\lambda$ we should pick. For the sizes of projection sets we have used here, $\lambda=1$ is a good choice, but, we note that in general, one should probably seek the appropriate value of $\lambda$ for different population sizes or data sets.”

      In addition, we explored the effect of synaptic normalization on models with different values of $\lambda$ (supp. Figure 3). We found that homeostatic Reshaped RP models are superior to the non-homeostatic Reshaped RP models: For low values of $\lambda$, the homeostatic and Reshaped RP models show similar performance in terms of log-likelihood, whereas the homeostatic models are more efficient. For high values of $\lambda_i$ homeostatic models are not only more efficient but also show better performance. These results indicate that the benefit of the homeostatic model is insensitive to the specific choice of $\lambda$.

      In addition to supp. Figure 3, we added the following to the main text:

      “Exploring the effect of synaptic normalization on models with different values of $\lambda$ (supp. Figure 3), we find that homeostatic Reshaped RP models are superior to the non-homeostatic Reshaped RP models: For low values of $\lambda$, the homeostatic and Reshaped RP models show similar performance in terms of log-likelihood, whereas the homeostatic models are more efficient. Importantly, for high values of $\lambda_i$ homeostatic models are not only more efficient but also show better performance. We conclude that the benefit of the homeostatic model is insensitive to the specific choice of $\lambda$.”

      (2) As far as we understand, \theta_i (thresholds of the neurons) are fixed to 1 in the article. Optimizing the neural threshold as well as synaptic weights is a natural procedure (both biologically and engineeringly), and can easily be computed by a similar expression to that of a_ij (equation 3). Do the results still hold when changing \theta _i is allowed as well? For example,

      a. If \theta _i becomes larger, the mean firing rates will decrease. Does the backprop model still have higher firing rates than the reshaped model when \theta _i are also optimized?

      b. Changing \theta _i affects the dynamic range of the projection neurons, thus could modify the effect of synaptic constraints. In particular, does it affect the performance of the bounded model (relative to the homeostatic input models)?

      We followed the referee’s suggestion, and extended our current analysis, and added threshold optimization to the Reshape and Backpropagation models, which is now shown in supp. Figure 2A.  Comparing the performance and properties of these models to ones with fixed thresholds, we found that this addition had a small effect on the performance of the models in terms of their likelihood. (supp. Figure 2A). We further find that backpropagation models with tuned thresholds show lower firing rates compared to backpropagation models with fixed threshold, while reshaped RP models with optimized thresholds show higher firing rates compared to models with fixed threshold. These differences are, again, rather small, and both versions of the reshaped RP models show lower firing rates compared to both versions of the backpropagation models.

      In addition to supp. Figure 2A, we added the following to the main text:

      “The projections' threshold $\theta_i$, which is analogous to the spiking threshold of the projection neurons, strongly affects the projections' firing rates. We asked how, in addition to reshaping the coefficients of each projection, we can also change $\theta_i$ to optimize the reshaped RP and backpropagation models.

      We find that this addition has a small effect on the performance of the models in terms of their likelihood (supp. Figure 2A).

      We also find that this has a small effect on the firing rates of the projection neurons: backpropagation models with tuned thresholds show lower firing rates compared to backpropagation models with fixed threshold, whereas reshaped RP models with optimized thresholds show higher firing rates compared to models with fixed threshold. Yet, both versions of the reshaped RP models show lower firing rates compared to both versions of the backpropagation models. Given the small effect of tuning threshold on models' performance and their internal properties, we will, henceforth, focus on Reshaped RP models with fixed thresholds.”

      (3) In Figure 1, the authors claim that the reshaped RP model outperforms the RP model. This improved performance might be partly because the reshaped RP model has more parameters to be optimized than the RP model. Indeed, let the number of projections N and the in-degree of the projections K, then the RP model and the reshaped RP model have N and KN parameters, respectively. Does the reshaped model still outperform the original one when only (randomly chosen) N weights (out of a_ij) are allowed to be optimized and the rest is fixed? (or, does it still outperform the original model with the same number of optimized parameters (i.e. N/K neurons)?)

      Indeed, the number of tuned parameters in the reshaped RP model is much larger compared to the number of tuned parameters in an RP model with the same projection set size. Yet, we submit that the larger number of tuned parameters is not the reason for the improved performance of the reshaped RP model: Maoz et al [30] have already shown that by optimizing an RP model with a small projection set using the pruning and replacement of projections (P&R), one can reach high accuracy with an almost order of magnitude fewer projections. Thus, we argue that the improved performance stems from the properties of the projections in the model.

      Accordingly, we therefore added supp. Figure 2B that shows the performance of P&R sigmoid RP model compared to RP and reshaped RP models. We added the following to the main text:

      “Because reshaping may change all the existing synapses of each projection, the number of parameters is the number of projections times the projections in-degree. While this is much larger than the number of parameters that we learn for the RP model (one for each projection), we suggest that the performance of the reshaped models is not a naive result of having more parameters. In particular, we have seen that RP models that use a small set of projections can be very accurate when the projections are optimized using the pruning and replacement process [30] (see also supp. Figure 1B). Thus, it is really the nature of the projections that shapes the performance. Indeed, our results here show that a small fixed connectivity projection set with weight tuning is enough for accurate performance which is on par or better than an RP model with more projections.”

      (4) In Figure 2, the authors have demonstrated that the homeostatic synaptic normalization outperforms the bounded model when the allowed synaptic cost is small. One possible hypothesis for explaining this fact is that the optimal solution lies in the region where only a small number of |a_ij| is large and the rest is near 0. If it is possible to verify this idea by, for example, exhibiting the distribution of a_ij after optimization, it would help the readers to better understand the mechanism behind the superiority of the homeostatic input model.

      We modified supp. Figure 4 and made the following change in the relevant part in the main text to address the reviewer comment about the distribution of the $a_{ij}$ values:

      “Figure 5E shows the mean rotation angle over 100 homeostatic models as a function of synaptic cost -- reflecting that the different forms of homeostatic regulation results in different reshaped projections. We show in Supp. Figure 4C the histogram of the rotation angles of several different homeostatic models, as well as the unconstrained Reshape model.

      Analyzing the distribution of the synaptic weights $a_{ij}$ after learning leads to a similar conclusion (supp. Figure 4D): The peak of the histograms is at $a_{ij} = 0$, implying that during reshaping most synapses are effectively pruned. While the distribution is broader for models with higher synaptic budget, it is asymmetric, showing local maxima at different values of $a_{ij}$.

      The diversity of solutions that the different model classes and parameters show imply a form of redundancy in model choice or learning procedure. This reflects a multiplicity of ways to learn or optimize such networks that biology could use to shape or tune neural population codes.“

      (5) In Figures 5D and 5E, the authors present how different reshaping constraints result in different learning processes ("rotation"). We find these results quite intriguing, but it would help the readers understand them if there is more explanation or interpretation. For example,

      a. In the "Reshape - Hom. circuit 4.0" plot (Fig 5D, upper-left), the rotation angle between the two models is almost always the same. This is reasonable since the Homeostatic Circuit model is the least constrained model and could be almost irrelevant to the optimization process. Is there any similar interpretation to the other 3 plots of Figure 5D?

      We added a short discussion of this difference to the main text, but do not have a geometric or other intuitive explanation for the nature of these differences.

      b. In Figure 5E, is there any intuitive explanation for why the three models take minimum rotation angle at similar global synaptic cost (~0.3)?

      We added discussion of this issue to the main text, and the histogram of the rotation angles in Supp Figure 4c shows that they are not identical. But, we don’t have an intuitive explanation for why the mean values are so similar.

      Recommendations for the authors:

      (1) Some claims on the effect of synaptic normalization on the reshaped model sound a little overstated since the presented evidence does not clearly show the improvement of the computational performance (in comparison to the vanilla reshaped model) in terms of maximizing the likelihood of the inputs. Here are some examples of such claims: "Incorporating more biological features and utilizing synaptic normalization in the learning process, results in even more efficient and accurate models." (in Abstract), "Thus, our new scalable, efficient, and highly accurate population code models are not only biologically-plausible but are actually optimized due to their biological features." (in Abstract), or "in our Reshaped RP models, homeostatic plasticity optimizes the performance of network models" (in Discussion).

      We changed the wording according to the reviewers’ suggestions.

      (2) In equation (1) and the following sentence, \theta _j (threshold) should be \theta _i.

      Fixed

      (3) While the authors mention that "reshaping with normalization or without it drives the projection neurons to converge to similar average firing rate values (Figure 3B)", they also claim that "reshaping with normalization implies lower firing rates as well as... (Figure 3E)". These two claims look a little inconsistent to us. Besides, it is not very clear from Figure 3E that the normalization decreases the firing rate (it is clear from Figure 3B, though). How about just deleting "lower firing rates as well as"?

      We changed the wording according to the reviewers’ suggestion.

      (4) The captions of Figures 4D and 4E should be exchanged.

      Fixed

      (5) Typo in In Figure 4F: "normalized in-dgreree".

      Fixed

      (6) In Figure 5D (upper left plot) the choice of "Reshape" and "Bounded3.0" looks a bit weird. Is this the typo of "Hom. cicruit 4.0"?

      There is no typo in the figure labels. We discussed the results of figure 5D in our response to point (5) in the public comments list and addressed the upper left panel of figure 5D in the main text.

      (7) In the paper, the letter \theta represents (1) the threshold of the projection neurons (eq. 1), (2) the "ceiling" value of the bounded model, and (3) the rotation angle of projections (Figure 5). We find this notation a bit confusing and recommend using different notations for different entities.

      Thanks for the suggestion, we changed the confusing notations: (1) The threshold of each projection neuron is still $\theta$, following the notation of the original RP model formulation [30]. (2) The notation of the “ceiling” value of the bounded model is now $\omega$. (3) The rotation angle of the projections during reshape is now marked by $\alpha$.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      (1) We agreed that there was insufficient evidence for the authors' conclusion that Myc-overexpressing clones lacking Fmi become losers. We request that the authors change the text to discuss that suppression of Myc clone growth through Fmi depletion is reminiscent of a cell acquiring loser status, although at this point in the manuscript there is no clear demonstration whether this is mostly driven by growth suppression and/or an increase in apoptosis.

      We agree that at the point in the manuscript where we have only described the clone sizes, one cannot make firm conclusions about competition, so we have changed the language to reflect this. We argue that after showing our apoptosis data, those conclusions become firm. Please see the more lengthy responses to reviewers below.

      (2) We agreed that the apoptosis assay, data and interpretation need to be improved. The graphs in Fig. 4O and P should be better discussed in the text and in the legend. Additionally, the graphs are lacking the red lines that are written in the text.

      We regret that we did not adequately explain the data displayed in these two graphs. Supercompetition tends to cause apoptosis in both winners and losers, with the ratio between WT and super-competitor cells being critical in deciding the outcome of competition. We wanted to represent this visually but failed to properly explain our analysis. We have rewritten the figure legend and our discussion in the main text, hopefully making it clearer. 

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This paper is focused on the role of Cadherin Flamingo (Fmi) in cell competition in developing Drosophila tissues. A primary genetic tool is monitoring tissue overgrowths caused by making clones in the eye disc that expression activated Ras (RasV12) and that are depleted for the polarity gene scribble (scrib). The main system that they use is ey-flp, which make continuous clones in the developing eye-antennal disc beginning at the earliest stages of disc development. It should be noted that RasV12, scrib-i (or lgl-i) clones only lead to tumors/overgrowths when generated by continuous clones, which presumably creates a privileged environment that insulates them from competition. Discrete (hs-flp) RasV12, lgl-i clones are in fact out-competed (PMID: 20679206), which is something to bear in mind. They assess the role of fmi in several kinds of winners, and their data support the conclusion that fmi is required for winner status. However, they make the claim that loss of fmi from Myc winners converts them to losers, and the data supporting this conclusion is not compelling.

      Strengths:

      Fmi has been studied for its role in planar cell polarity, and its potential role in competition is interesting.

      Weaknesses:

      I have read the revised manuscript and have found issues that need to be resolved. The biggest concern is the overstatement of the results that loss of fmi from Myc-overexpressing clones turns them into losers. This is not shown in a compelling manner in the revised manuscript and the authors need to tone down their language or perform more experiments to support their claims. Additionally, the data about apoptosis is not sufficiently explained.

      We take issue with this reviewer’s framing of their criticism. First, the reviewer is selectively reporting the results published in PMID: 20679206. They correctly state that those authors show that small discreet clones of RasV12 lgl are eliminated (Fig. 3B), but they omit the fact that the authors also show that larger RasV12 lgl clones induce apoptosis in the surrounding wild type cells, and therefore behave as winners (Fig. 3C). Hence, the size of the clone appears to determine its winner/loser status. Of course, lgl is not scrib, and it is not a certainty that they would behave similarly, but they also show that large RasV12 scrib clones induce considerable apoptosis of the neighboring wild type cells. 

      The reviewer then discusses “continuous” clones induced by ey-flp, as we use in our manuscript. Here, the term “continuous” is probably misleading; because ey is expressed ubiquitously in the disc from early in development, it is most likely the case that the majority of cells have flipped relatively early, resulting in ~half the cells becoming clone and the other ~half twin spot. The clone cells then likely fuse to make larger clones. We show that ey-flp induced RasV12 scrib clones also behave as winners. It is logical to conclude that this is because they are large. The reviewer talks about “a privileged environment that insulates them from competition,” but if they were insulated from competition, how could they become winners? Because they occupy more territory than the wild type cells, and because they induce apoptosis in the wild type neighbors, they are winners. 

      Having shown that ey-flp induced RasV12 scrib clones behave as winners, we then remove Fmi from these clones, and show that they behave as losers by the same criteria: they occupy less area than the wild type cells (our Fig. 1 and Fig. 1 Supp 2), and they induce apoptosis in the wild type cells (our Fig 4A-H). 

      With respect to the comment about additional experiments are needed to support the claim that loss of Fmi from Myc winners converts them to losers, we’re not sure what additional data the reviewer would want. As for the tumor clones, we show that >>Myc clones get bigger than the twin control clones (Fig. 2), and we measure similar low levels of apoptosis in each (Fig. 4I-K, O). In contrast >>Myc fmi clones are out-grown by wild type clones, and apoptosis is higher in the >>Myc fmi clones than in the wild type clones (Fig. 4L-N, P-S). We therefore believe it is correct to say that >>Myc clones become losers when Fmi is removed.

      In additional comments, the reviewer takes issue with using winner and loser language at the point in the manuscript where we have only shown the clone sizes but not yet the apoptosis data, and about this we agree. We have changed the language accordingly. 

      Re explanation of the apoptosis data, see the response to reviewer #3.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, Bosch et al. reveal Flamingo (Fmi), a planar cell polarity (PCP) protein, is essential for maintaining 'winner' cells in cell competition, using Drosophila imaginal epithelia as a model. They argue that tumor growth induced by scrib-RNAi and RasV12 competition is slowed by Fmi depletion. This effect is unique to Fmi, not seen with other PCP proteins. Additional cell competition models are applied to further confirm Fmi's role in 'winner' cells. The authors also show that Fmi's role in cell competition is separate from its function in PCP formation.

      Strengths:

      (1) The identification of Fmi as a potential regulator of cell competition under various conditions is interesting.

      (2) The authors demonstrate that the involvement of Fmi in cell competition is distinct from its role in planar cell polarity (PCP) development.

      Weaknesses:

      (1) The authors provide a superficial description of the related phenotypes, lacking a mechanistic understanding of how Fmi regulates cell competition. While induction of apoptosis and JNK activation are commonly observed outcomes in various cell competition conditions, it is crucial to determine the specific mechanisms through which they are induced in fmi-depleted clones. Furthermore, it is recommended that the authors utilize the power of fly genetics to conduct a series of genetic epistasis analyses.

      We agree that it is desirable to have a mechanistic understanding of Fmi’s role in competition, but that is beyond the scope of this manuscript. Here, our goal is to report the phenomenon. We understand and share with the reviewer the interest in better understanding the relationship between Fmi and JNK signaling in competition. The role of JNK in competition, tumorigenesis and cell death is infamously complex. In some preliminary experiments, we explored some epistasis experiments, but these were inconclusive so we elected to not report them here. In the future, we will continue with additional analyses to gain a better understanding of the mechanism by which Fmi affects competition.

      Reviewer #3 (Public review):

      Summary:

      In this manuscript, Bosch and colleagues describe an unexpected function of Flamingo, a core component of the planar cell polarity pathway, in cell competition in Drosophila wing and eye disc. While Flamingo depletion has no impact on tumour growth (upon induction of Ras and depletion of Scribble throughout the eye disc), and no impact when depleted in WT cells, it specifically tunes down winner clone expansion in various genetic contexts, including the overexpression of Myc, the combination of Scribble depletion with activation of Ras in clones or the early clonal depletion of Scribble in eye disc. Flamingo depletion reduces proliferation rate and increases the rate of apoptosis in the winner clones, hence reducing their competitiveness up to forcing their full elimination (hence becoming now "loser"). This function of Flamingo in cell competition is specific of Flamingo as it cannot be recapitulated with other components of the PCP pathway, does not rely on interaction of Flamingo in trans, nor on the presence of its cadherin domain. Thus, this function is likely to rely on a non-canonical function of Flamingo which may rely on downstream GPCR signaling.

      This unexpected function of Flamingo is by itself very interesting. In the framework of cell competition, these results are also important as they describe, to my knowledge, one of the only genetic conditions that specifically affect the winner cells without any impact when depleted in the loser cells. Moreover, Flamingo do not just suppress the competitive advantage of winner clones, but even turn them in putative losers. This specificity, while not clearly understood at this stage, opens a lot of exciting mechanistic questions, but also a very interesting long term avenue for therapeutic purpose as targeting Flamingo should then affect very specifically the putative winner/oncogenic clones without any impact in WT cells.

      The data and the demonstration are very clean and compelling, with all the appropriate controls, proper quantifications and backed-up by observations in various tissues and genetic backgrounds. I don't see any weakness in the demonstration and all the points raised and claimed by the authors are all very well substantiated by the data. As such, I don't have any suggestions to reinforce the demonstration.

      While not necessary for the demonstration, documenting the subcellular localisation and levels of Flamingo in these different competition scenarios may have been relevant and provide some hints on a putative mechanism (specifically by comparing its localisation in winner and loser cells).

      While we did not perform a thorough analysis, our current revision of the manuscript shows Fmi staining results that do not support a change in subcellular localization of Fmi. In our images, Fmi seemed to localize similarly along the winner-loser clone boundaries, and inside and outside the clones. We cannot rule out that a subtle change in localization is taking place that could perhaps be detected with higher resolution imaging.

      Also, on a more interpretative note, the absence of impact of Flamingo depletion on JNK activation does not exclude some interesting genetic interactions. JNK output can be very contextual (for instance depending on Hippo pathway status), and it would be interesting in the future to check if Flamingo depletion could somehow alter the effect of JNK in the winner cells and promote downstream activation of apoptosis (which might normally be suppressed). It would be interesting to check if Flamingo depletion could have an impact in other contexts involving JNK activation or upon mild activation of JNK in clones.

      See our comment to Reviewer 2 regarding JNK.

      Strengths:

      A clean and compelling demonstration of the function of Flamingo in winner cells during cell competition

      One of the rare genetic conditions that affects very specifically winner cells without any impact in losers, and then can completely switch the outcome of competition (which opens an interesting therapeutic perspective on the long term) Weaknesses:

      The mechanistic understanding obviously remains quite limited at this stage especially since the signaling does not go through the PCP pathway.

      We agree that in the future, it will be desirable to gain a mechanistic understanding of Fmi’s role in competition.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      I have read the revised manuscript and have found issues that need to be resolved. The biggest concern is the overstatement of the results that loss of fmi from Myc-overexpressing clones turns them into losers. This is not shown in a compelling manner in the revised manuscript and the authors need to tone down their language or perform more experiments to support their claims.

      (1) I do not agree with the language used by the authors last paragraph of p. 4 stating loss of fmi from Myc supercompetitors (Fig. 2) makes them losers. At this point in the paper, they only use clone size as a readout. By definition, losers in imaginal discs die by apoptosis, which is not measured in this figure. As such, the authors do not prove that fmi-mutant Myc over-expressing clones are now losers at this point in the manuscript. The authors should discuss this in the results section regarding Fig. 2.

      We have modified the language in text and figure legend to acknowledge that the clone size data alone do not demonstrate competition.

      (2) Related to point #1, I do not agree with the language in the legend of Fig. 2H that the graph is measuring "supercompetition". They are only measuring clone ratios, not apoptosis. Growing to a smaller size does not make a clone have loser status without also assessing cell death.

      (a) I suggest that the authors remove the sentence "A ratio over 0 indicates supercompetition of nGFP+ clones, and below 0 indicates nGFP+ cells are losers." in the legend to Fig. 2H. Instead, they should describe the assay in times of clone ratios.

      The reviewer raises a valid point, as at this point in the manuscript we did not quantify cell death and proliferation. However, based on decades of knowledge of supercompetiton, Myc clones are classified as super-competitors in every instance they’ve been studied. (Myc clones show apoptosis when competing with WT cells, while at the same time they eliminate WT neighbors by apoptosis to become winners. Their faster proliferation rate may be what ultimately makes them winners.) We changed the language to address this distinction. 

      (3) In Fig. 4, they do attempt to monitor apoptosis, which is the fate of bona fide losers in imaginal tissue. However, I have several concerns about these data (panels 4I-K, O and P have been added to the revised manuscript.)

      (a) In Fig. 4I-K, why is there no death of WT cells which would be expected based on de la Cova Cell 2004? The authors need to comment on this.

      (b) Cell death should also be observed in the Myc over-expressing clones but none is seen in this disc (see de la Cova 2004 and PMID: 18257071 Fig. 4). The authors need to comment on this.

      We do not understand why the reviewer raises these two points. We see some cell death in >Myc eye discs both in winners and losers, as displayed in the graph. In our hands, the levels were on average very low. The example shown is representative of the analysis and shows apoptosis both in WT and >Myc cells, highlighted by the arrows in 4J. We added a mention to the arrows in the figure legend to make it clearer. In the main text, we already compared our observations to the same publication the reviewer mentions (De la Cova 2004). 

      (c) The data in panel 4O is not explained sufficiently in the legend or results section. What do the lines between the data points in the left side of the panel mean? Why is there a bunch of clustered data points in the right part of the Fig. 4O, when two different genotypes are listed below? I would have expected two clusters of points. The authors need to comment on this.

      We intended to convey as much information as possible in an informative manner in these graphs, and we regret not explaining better the analysis shown. We modified the legends for the apoptosis analysis to better explain the displayed data.

      (d) What is the sample size (n) for the genotypes listed in this figure? The authors need to comment on this and explicitly list the sample size in the legend.

      We added the n for both conditions to the figure. 

      (e) In panels 4L-N, why is the death occurring in the apparent center of the fmiE59>>Myc clone. If these clones are truly losers as the authors claim, then apoptosis should be seen at the boundaries between the fmiE59>>Myc clone and the WT clones. The results in this figure are not compelling, yet this is the critical piece of data to support their claim that fmiE59>>Myc clone are losers. The authors need to comment on this.

      The majority of cell death in this example is observed 1-3 cells away from the clone boundary. In some cases, we observe cell death farther from the boundary, but those cells were not counted in our analyses. As described in our methods, we only considered for the analysis cells at the clone boundary or in the vicinity, as those are the ones that most probably have apoptosis triggered by the neighboring clone.

      (f) There is no red line in Fig. 4O and 4P, in contrast to what is written in the legend in the revised manuscript. This should be corrected.

      We thank the reviewer for catching the error about the line. We have now simplified the graph by removing the line at Y=0 and just leave one dashed line, representing the mean difference between WT and >>Myc cells.

      (4) On p. 10, the reference Harvey and Tapon 2007 to support hpo-/- supercompetitor status is incorrect. The references are Ziosi 2010 and Neto-Silva 2010. This should be changed.

      We thank the reviewer for the correction. While the review we provided discusses the role of the Hpo pathway in proliferation and cancer, it does not discuss competition. The reference we intended to include here was Ziosi 2010. We now cite both in the revised manuscript.

      (5) The legend for Fig. 3A-H is missing from the revised manuscript. This needs to be added.

      This was likely a copy-edit glitch. The missing parts of the legend have been restored.

      (6) Material and methods is missing details on the hs-induced clones. The authors need to specifically state when the clones were generated and when they were analyzed in hours after egg laying.

      The timing of the heat-shock and analysis was described in the methods: “Heat-shock was performed on late first instar and early second instar larvae, 48 hrs after egg laying (AEL). Vials were kept at 25ºC after heat-shock until larvae were dissected”. And additionally, in the dissection methods: “Third instar wandering larvae (120 hrs AEL) were dissected…” We have included in this revision the length of the heat-shock (15 min). 

      I have read the rebuttal and some of my concerns are not sufficiently addressed.

      (8) I raised the point of continuously-generated clones becoming large enough to evade competition, and I disagree with the authors' reply. I think that competition of RasV12, scrib (or lgl) competition largely depends the size of the clone, which is de facto larger when generated by continuous expression of flp (such as eyeless or tubulin promoters used in this study). I think that at that point, we are at an impasse with respect to this issue, but I wanted to register my disagreement for the record. Related to this, one possible reason for the fragmentation of the fmimutant Myc overexpressing clones in the wing disc is because they were not continuously generated and hence did not merge with other clones.

      Please see the discussion above in the public comments. We remain unclear about what, exactly, the reviewer disagrees. As stated above, we think they are correct that the size of the clone is critical in determining winner vs loser status.

      Reviewer #2 (Recommendations for the authors):

      Although the authors have addressed some of my concerns, I still feel that a detailed mechanistic understanding is essential. I hope the authors will conduct additional experiments to solve this issue.

      We also consider the mechanism of interest and will pursue this in the future. To test our hypotheses we require a set of genetic mutants that are still in the making that will help us dissect the function and potential partners of Fmi, and we hope to have these results in a future publication.

      Reviewer #3 (Recommendations for the authors):

      - There is no clear demonstration that the relative decrease of clone size in UASMyc/Fmi mutant is mostly driven by either a context dependant suppression of growth and/or an increase of apoptosis (the latter being the more classic feature of loser phenotype).

      We believe that it is driven by both, and refrain from making assumptions about the magnitude of contribution from each. This question is something that we will be interested to explore in the future.

      The distribution of cell death in Fmi/UAS-Myc mutant is somehow surprising and may not fit with most of the competition scenarios where death is mostly restricted to clone periphery (although this may be quite variable and would require much more quantification to be clear).

      While we observe some cell death far from clone boundaries, most of the dying cells are a few cells away from a clone boundary. In other publications quantifying cell death, examples of cell death farther from the boundary are not rare (See for example Moreno and Basler 2004 Fig 6, De la Cova et al. Fig 2, Meyer et al 2014 Fig 2). We did not count cells dying far from clone boundaries in our analysis.

      I just noticed a few mistakes in the legend :

      Figure 3M legend is missing (it would be useful to know at which stage the quantification is performed)

      Another reviewer brought to our attention the problems with Fig 3 legend. We restored the missing parts.

      It would be good to give an estimate of the number of larvae observed when showing the representative cases in Figure 1 .

      This is a good point. We now include these numbers in the figure legend.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #2 (Recommendations for the authors): 

      Discussion, page 28. The argument that the authors put forward justifying the (small) size of the spontaneous EPSCs seems reasonable. Nonetheless, it would be good to have an amplitude distribution constructed with voltage-evoked EPSCs to compare with that of spontaneous EPSCs. Not the large initial EPSC, obtained upon IHC depolarization but rather EPSCs occurring later during the longer pulses (figure 4). The authors made the claim that upon IHC depolarization, EPSCs sizes increased, but this is not backed with data. 

      Following the reviewer recommendation, we have analyzed the voltage-evoked EPSCs occurring during the last 20 ms of the Masker stimulus. We compared the cumulative distribution of the amplitude of these eEPSCs to the cumulative distribution of the amplitude of the sEPSCs (Figure 1-figure supplement 1, panel G) from the same synapses. The two distributions are significantly different (p < 0.0001, Kolmogorov-Smirnov test), with evoked EPSCs having larger amplitudes (average sEPSC amplitude of -97.28 ± 2.22 pA [median 82.10 pA] vs average eEPSC amplitude of 135.8 ± 3.24 pA [median 120.0 pA]).

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The study investigates protein-protein interactions (PPIs) within the nuage, a germline-specific organelle essential for piRNA biogenesis in Drosophila melanogaster, using AlphaFold2 to predict interactions among 20 nuage-localizing proteins. The authors identify five novel interaction candidates and experimentally validate three of them, including Spindle-E and Squash, through co-immunoprecipitation assays. They confirm the functional significance of these interactions by disrupting salt bridges at the Spn-E_Squ interface. The study further expands its scope to analyze approximately 430 oogenesis-related proteins, validating three additional interaction pairs. A comprehensive screen of around 12,000 Drosophila proteins for interactions with the key piRNA pathway player, Piwi, identifies 164 potential binding partners. Overall, the research demonstrates that in silico approaches using AlphaFold2 can link bioinformatics predictions with experimental validation, streamlining the identification of novel protein interactions and reducing the reliance on extensive experimental efforts. The manuscript is commendably clear and easy to follow; however, areas for improvement should be addressed to enhance its clarity and rigor.

      Major Concerns:

      (1) While AlphaFold2 was developed and trained primarily for predicting protein structures and their interactions, applying it to predict protein-protein interactions is an extrapolation of its intended use. This introduces several important considerations and risks. First, it assumes that AlphaFold's accuracy in structure prediction extends to interactions, despite not being explicitly trained for this task. Additionally, the assumption that high-scoring models with structural complementarity imply biologically relevant interactions is not always valid. Experimental validation is essential to address these uncertainties, as over-reliance on computational predictions without such validation can lead to false positives and inaccurate conclusions. The authors should expand on the assumptions, limitations, and risks associated with using AlphaFold2 for predicting protein-protein interactions.

      We appreciate the reviewer's point. The prediction of protein-protein interactions using AlphaFold2 relies on the number of conserved homologous sequences and previous conformational data. We shall add limitations and risks to the AlphaFold2 prediction method in the revised manuscript.

      (2) The authors experimentally validated three interactions, out of five predicted interactions, using co-immunoprecipitation (co-IP). They attributed the lack of validation for the other two predictions to the limitations of the co-IP method. However, further clarification on the potential limitations of the co-immunoprecipitation behind the negative results would strengthen the conclusions. While co-IP is a widely used technique, it may not detect weak or transient interactions, which could explain the failure to validate some predictions. Suggesting alternative validation methods such as FRET or mass spectrometry could further substantiate the results. On the other hand, AlphaFold2 predictions are not infallible and may generate false positives, particularly when dealing with structurally plausible but biologically irrelevant interactions. By acknowledging both the potential limitations of co-IP and the possibility of false positives from AlphaFold2, the authors can provide a more balanced interpretation of their findings.

      We appreciate the reviewer's point of view. We have used the co-IP method to detect interactions in this study. However, as the reviewer pointed out, it is likely that weak and transient interactions may not be detected. We plan to add a note on the detection limits of the co-IP method and the possibility that AlphaFold2 method produces false positives in the revised manuscript.

      (3) In line 143, the authors state that "This approach identified 13 pairs; seven of these were already known to form complexes, confirming the effectiveness of AlphaFold2 in predicting complex formations (Table 2). The highest pcScore pair was the Zuc homodimer, possibly because AlphaFold2 had learned from Zuc homodimer's crystal structure registered in the database." While the authors mentioned the presence of the Zuc homodimer's crystal structure, they do not provide a systematic bioinformatics analysis to evaluate pairwise sequence identity or check for the presence of existing structures for all the proteins or protein pairs (or their homologs) in databases such as the Protein Data Bank (PDB) or Swiss-Model. Conducting such an analysis is critical, as it significantly impacts the novelty and reliability of AlphaFold2 predictions. For instance, high sequence identity between the query proteins could lead to high-scoring models for biologically irrelevant interactions. Including this information would strengthen the conclusions regarding the accuracy and utility of the predictions.

      We appreciate the reviewer's critical point. The AlphaFold2 method generates a high confidence score when the 3D structure of the protein of interest, or of proteins with very similar sequences, is solved. We will investigate whether the proteins used in this study are included in the 3D structure database and add the information to the revised manuscript.

      (4) While the manuscript successfully identifies novel protein interactions, the broader biological significance of these interactions remains underexplored. The manuscript could benefit from elaborating on how these findings may contribute to understanding the piRNA pathway and its implications on germline development, transposon repression, and oogenesis.

      We plan to add to the revise manuscript the potential biological significance of the novel protein-protein interactions presented in this manuscript.

      Reviewer #2 (Public review):

      Summary:

      In this paper, the authors use AlphaFold2 to identify potential binding partners of nuage localizing proteins.

      Strengths:

      The main strength of the paper is that the authors experimentally verify a subset of the predicted interactions.

      Many studies have been performed to predict protein-protein interactions in various subsets of proteins. The interesting story here is that the authors (i) focus on an organelle that contains quite some intrinsically disordered proteins and (ii) experimentally verify some (but not all) predictions.

      Weaknesses:

      Identification of pairwise interactions is only a first step towards understanding complex interactions. It is pretty clear from the predictions that some (but certainly not all) of the pairs could be used to build larger complexes. AlphaFold easily handles proteins up to 4-5000 residues, so this should be possible. I suggest that the authors do this to provide more biological insights.

      We thank the reviewer for his kind suggestions. Although dimer structure predictions were made in this manuscript, if a protein is predicted to interact with two other proteins, it is possible that three proteins could interact. We plan to add such trimer predictions to the revise manuscript.

      Another weakness is the use of a non-standard name for "ranking confidence" - the author calls it the pcScore - while the name used in AlphaFold (and many other publications) is ranking confidence.

      We take the reviewer’s point and will revise the text accordingly.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife Assessment

      This study addresses a question in sensory ethology and active sensing in particular. It links the production of a specific signal - electrosensory chirps - to various contexts and conditions to argue that the main function is to enhance conspecific localization rather than communication as previously believed. The study provides a lot of valuable data, but the methods section is incomplete making it difficult to evaluate the claims.

      We have now added to the methods a new paragraph describing in better detail the analysis done to prepare the data used in figure 7. The figure itself has been substantially changed: we now show EOD fields and electric images using voltage, instead of current and we have better illustrated the comparisons between chirps and beats using statistical analysis.

      Eventually, we are equally grateful to all Reviewers for the constructive criticism and for the time spent in evaluating our manuscript. It certainly helped to improve both the quality of the data presented as well as the readability of the text.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors investigate the role of chirping in a species of weakly electric fish. They subject the fish to various scenarios and correlate the production of chirps with many different factors. They find major correlations between the background beat signals (continuously present during any social interactions) or some aspects of social and environmental conditions with the propensity to produce different types of chirps. By analyzing more specifically different aspects of these correlations they conclude that chirping patterns are related to navigation purposes and the need to localize the source of the beat signal (i.e. the location of the conspecific).

      The study provides a wealth of interesting observations of behavior and much of this data constitutes a useful dataset to document the patterns of social interactions in these fish. Some data, in particular the high propensity to chirp in cluttered environments, raises interesting questions. Their main hypothesis is a useful addition to the debate on the function of these chirps and is worth being considered and explored further.

      After the initial reviewers' comments, the authors performed a welcome revision of the way the results are presented. Overall the study has been improved by the revision. However, one piece of new data is perplexing to me. The new figure 7 presents the results of a model analysis of the strength of the EI caused by a second fish to localize when the focal fish is chirping. From my understanding of this type of model, EOD frequency is not a parameter in the model since it evaluates the strength of the field at a given point in time. Therefore the only thing that matters is the phase relationship and strength of the EOD. Assuming that the second fish's EOD is kept constant and the phase relationship is also the same, the only difference during a chirp that could affect the result of the calculation is the potential decrease in EOD amplitude during the chirp. It is indeed logical that if the focal fish decreased its EOD amplitude the target fish's EOD becomes relatively stronger. Where things are harder to understand is why the different types of chirps (e.g. type 1 vs type 2) lead to the same increase in signal even though they are typically associated with different levels of amplitude modulations. Also, it is hard to imagine that a type 2 chirp that is barely associated with any decrease in EOD amplitude (0-10% maybe), would cause a doubling of the EI strength. There might be something I don't understand but the authors should provide a lot more details on how this result is obtained and convince us that it makes sense.

      We hope we have now resolved the Reviewer’s concerns by applying major edits to Figure 7. We now use voltage - not current - to quantify the impact of chirps on electric images. The effect of chirps is here estimated using the integral of the beat AM, as a broad measure of the potential effects chirping may have on electroreceptors. We underline in the text that this analysis does not represent proof for any type of processing occurring in the fish brain, but we only express in hypothetical terms that - based on the beat perturbations measured - additional spatial information may potentially be available in electric images, as a consequence of chirping. Whether the fish uses this information, or not, needs to be assessed through electrophysiology in future studies.

      Finally, the reviewer is concerned about this sentence in the rebuttal - "The methods section has been edited to clarify the approach (not yet)". This section is unfinished, which suggests that it is difficult to explain the modeling results from a logical point of view. Thus the reviewer's major concern from the previous review remains unresolved. To summarize, the model calculates field strengths at an instant in time and integrates over time with a 500 ms window. This window is 10 times longer than the small chirps, while the longer chirps cover a much larger proportion of the window. Yet, the small chirps have a bigger impact on discriminability than the longer chirps. The authors should attempt to explain this seemingly contradictory result. This remains a major issue because this analysis was the most direct evidence that chirping could impact localization accuracy.

      We added a new method section describing the new figure and hopefully it is explaining more clearly how the effect of chirps is calculated. Since most p-units are affected by the beat cyclic AMs, any change on the electric image caused by a chirp will result in changes in transcutaneous voltage - i.e. the voltage measurable at the receptor level. Overall, this added analysis is not a central point of the manuscript, it is part of an attempt to hint to physiological mechanisms implied which cannot be explored in the current study. We do not mean to propose that these estimates represent alternatives to electrophysiological recordings, rather theoretical evidences which could in fact support this type of investigation. 

      Reviewer #2 (Public Review):

      Studying Apteronotus leptorhynchus (the weakly electric brown ghost knifefish), the authors provide evidence that 'chirps' (brief modulations in the frequency and amplitude of the ongoing wave-like electric signal) function in active sensing (specifically homeoactive sensing) rather than communication. Chirping is a behavior that has been well studied, including numerous studies on the sensory coding of chirps and the neural mechanisms for chirp generation. Chirps are largely thought to function in communication behavior, so this alternative function is a very exciting possibility that should have a great impact on the field.

      The authors provide convincing evidence that chirps may function in homeoactive sensing. In particular, the evidence showing increased chirping in more cluttered environments and a relationship between chirping and movement are especially strong and suggestive. Their evidence arguing against a role for chirps in communication is not as strong. However, based on an extensive review of the literature, the authors conclude, I think fairly, that the evidence arguing in favor of a communication function is limited and inconclusive. Thus, the real strength of this study is not that it conclusively refutes the communication hypothesis, but that it calls this hypothesis into question while also providing compelling evidence in favor of an alternative function.

      In summary, although the evidence against a role for chirps in communication is not as strong as the evidence for a role in active sensing, this study presents very interesting data that is sure to stimulate discussion and follow-up studies. The authors acknowledge that chirps could function as both a communication and homeactive sensing signal, and the language arguing against a communication function is appropriately measured. A given electrical behavior could serve both communication and homeoactive sensing. I suspect this is quite common in electric fish (not just in gymnotiforms such as the species studied here, but also in the distantly related mormyrids), and perhaps in other actively sensing species such as echolocating animals.

      We are grateful to the Reviewer for the kind assessment.

      Reviewer #3 (Public Review):

      Summary:

      This important paper provides the best-to-date characterization of chirping in weakly electric fish using a large number of variables. These include environment (free vs divided fish, with or without clutter), breeding state, gender, intruder vs resident, social status, locomotion state and social and environmental experience, without and with playback experiments. It applies state-of-the-art methods for reducing the dimensionality of the data and finding patterns of correlation between different kinds of variables (factor analysis, K-means). The strength of the evidence, collated from a large number of trials with many controls, leads to the conclusion that the traditionally assumed communication function of chirps may be secondary to its role in environmental assessment and exploration that takes social context into account. Based on their extensive analyses, the authors suggest that chirps are mainly used as probes that help detect beats caused by other fish as well as objects.

      Strengths:

      The work is based on completely novel recordings using interaction chambers. The amount of new data and associated analyses is simply staggering, and yet, well organized in presentation. The study further evaluates the electric field strength around a fish (via modelling with the boundary element method) and how its decay parallels the chirp rate, thereby relating the above variables to electric field geometry. The BEM modelling also convincingly predicts how the electric image of a receiver conspecific on a sending fish is enhanced by a chirp.

      The main conclusions are that the lack of any significant behavioural correlates for chirping, and the lack of temporal patterning in chirp time series, cast doubt on a primary communication goal for most chirps. Rather, the key determinants of chirping are the difference in frequency between two interacting conspecifics as well as individual subjects' environmental and social experience. The paper concludes that there is a lack of evidence for stereotyped temporal patterning of chirp time series, as well as of sender-receiver chirp transitions beyond the known increase in chirp frequency during an interaction. The authors carefully submit that the new putative echolocation function of chirps is not mutually exclusive with a possible communication function.

      These conclusions by themselves will be very useful to the field. They will also allow scientists working on other "communication" systems to perhaps reconsider and expand the goals of the probes used in those senses. A lot of data are summarized in this paper, with thorough referencing to past work.

      The alternative hypotheses that arise from the work are that chirps are mainly used as environmental probes for better beat detection and processing and object localization, and in this sense are self-directed signals. This led to their prediction that environmental complexity ("clutter") should increase chirp rate, which is fact was revealed by their new experiments. The authors also argue that waveform EODs have less power across high spatial frequencies compared to pulse-type fish, with a resulting relatively impoverished power of resolution. Chirping in wave-type fish could temporarily compensate for the lower frequency resolution while still being able to resolve EOD perturbations with a good temporal definition (which pulse-type fish lack due to low pulse rates).

      The authors also advance the interesting idea that the sinusoidal frequency modulations caused by chirps are the electric fish's solution to the minute (and undetectable by neural wetware) echo-delays available to it, due to the propagation of electric fields at the speed of light in water. The paper provides a number of experimental avenues to pursue in order to validate the non-communication role of chirps.

      We are grateful to the Reviewer for the kind assessment.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The manuscript by Poltavski and colleagues describes the discovery of previously unreported enteric neural crestderived cells (ENCDC) which are marked by Pax2 and originating from the Placodes. By creating multiple conditional mouse mutants, the authors demonstrate these cells are a distinct population from the previously reported ENCDCs which originate from the Vagal neural crest cells and express Wnt1.

      These Pax2-positive ENCDCs are affected due to the loss of both Ret and Ednrb highlighting that these cells are also ultimately part of the canonical processes governing ENCDC and enteric nervous system (ENS) development. The authors also make explant cultures from the mouse GI tract to detect how Ednrb signaling is important for Ret signaling pathways in these cells and rediscovers the interactions between these 2 pathways. One important observation the authors make is that CGRP-positive neurons in the adult distal colon seem to be primarily derived from these Pax2-positive ENCDCs, which are significantly reduced in the Ednrb mutants, thus highlighting the role of Ednrb in maintaining this neuronal type.

      I appreciate the amount of work the authors have put into generating the mouse models to detect these cells, but there isn't any new insight on either the nature of ENCDC development or the role of Ret and Ednrb. Also, there are sophisticated single-cell genomics methods to detect rare cell type/states these days and the authors should either employ some of those themselves in these mouse models or look at extensively publicly available single-cell datasets of the developing wildtype and mutant mouse and human ENS to map out the global transcriptional profile of these cells. A more detailed analysis of these Pax2-positive cells would be really helpful to both the ENS community as well as researchers studying gut motility disorders.

      We would like to point out that the reviewer’s comments in both Public Review and in some cases reiterated in Recommendations for the Authors are rooted in several misunderstandings. The reviewer writes “Pax2-positive ENCDCs”, as if the Pax2 lineage (properly, the Pax2Cre-labeled lineage) of the ENS is a subset of neural crest, and states that “there isn’t any new insight” from our study on ENS development. Our conclusion is quite different, that the Pax2Cre lineage (placode-derived) is distinct from the neural crest-derived cell lineage. The reviewer may not have appreciated that our study establishes a fundamental reinterpretation of the very long-standing dogma that the ENS is derived solely from neural crest. We believe that finding and characterizing the unique contribution of an independent cell lineage to the ENS provides critical new perspectives into ENS development and the etiology of Hirschsprung disease. One feature of the Pax2Cre (placodal) lineage is as the source of CGRP-positive mechanosensory neurons in the colon (as the reviewer mentioned), but this is one feature of the larger conceptual discovery of the existence of a separate lineage contribution to the ENS, not the most important observation in and of itself.

      The reviewer continues by saying that we “rediscovered” the interaction between Ednrb and Ret in ENS development. In our study we show that the two lineages (placode-derived and neural crest-derived) employ Ednrb and Ret signaling in distinct ways. This isn’t simply rediscovery, this is new insight. To the extent that both lineages utilize both signaling axes (albeit with mechanistic differences) is a primary reason why the unique placodal lineage contribution to the ENS remained unsuspected until now. We have revised the text to make these points more clear in our revised manuscript.

      The reviewer also suggests single cell genomic methods, which is addressed below in our response to the reviewer’s first recommendation.

      Reviewer #2 (Public Review):

      This manuscript by Poltavski and colleagues explores the relative contributions of Pax2- and Wnt1- lineagederived cells in the enteric nervous system (ENS) and how they are each affected by disruptions in Ret and Endrb signaling. The current understanding of ENS development in mice is that vagal neural crest progenitors derived from a Wnt1+ lineage migrate into and colonize the developing gut. The sacral neural crest was thought to make a small contribution to the hindgut in addition but recent work has questioned that contribution and shown that the ENS is entirely populated by the vagal crest (PMID: 38452824). GDNF-Ret and Endothelin3-Ednrb signaling are both known to be essential for normal ENS development and loss of function mutations are associated with a congenital disorder called Hirschsprung's disease. The transcription factor Pax2 has been studied in CNS and cranial placode development but has not been previously implicated in ENS development. In this work, the authors begin with the unexpected observation that conditional knockout of Ednrb in Pax2-expressing cells causes a similar aganglionosis, growth retardation, and obstructed defecation as conditional knockout of Ednrb in Wnt1-expressing cells. The investigators then use the Pax2 and Wnt1 Cre transgenic lines to lineage-trace ENS derivatives and assess the effects of loss of Ret or Ednrb during embryonic development in these lineages. Finally, they use explants from the corresponding embryos to examine the effects of GDNF on progenitor outgrowth and differentiation.

      Strengths:

      -  The manuscript is overall very well illustrated with high-resolution images and figures. Extensive data are presented.

      -  The identification of Pax2 expression as a lineage marker that distinguishes a subset of cells in the ENS that may be distinct from cells derived from Wnt1+ progenitors is an interesting new observation that challenges the current understanding of ENS development.

      -  Pax2 has not been previously implicated in ENS development - this manuscript does not directly test that role but hints at the possibility.

      -  Interrogation of two distinct signaling pathways involved in ENS development and their relative effects on the two purported lineages.

      The reviewer provided a succinct and accurate summary of our analysis. We correct just the one statement that the ENS is entirely populated by vagal crest. The paper cited by the reviewer (PMID: 38452824) used Wnt1DreERT2 to lineage label the NC population, so of course only looked at neural crest (comparing vagal vs. sacral NC). The advance in our study is to newly document the independent contribution of the placodal lineage.

      Weaknesses:

      -  The major challenge with interpreting this work is the use of two transgenic lines, rather than knock-ins, Wnt1Cre and Pax2-Cre, which are not well characterized in terms of fidelity to native gene expression and recombination efficiency in the ENS. If 100% of cells that express Wnt1 do not express this transgene or if the Pax2 transgene is expressed in cells that do not normally express Pax2, then these observations would have very different interpretations and not support the conclusions made. The two lineages are never compared in the same embryo, which also makes it difficult to assess relative contributions and renders the evidence more circumstantial than definitive.

      We do not agree that the Cre lines being transgenics rather than knock-ins changes the utility of these reagents or the interpretation of the results; there are also potential problems with knock-in alleles. Wnt1Cre has been in use for 25 years as a pan-neural crest lineage cell marker with exceptional efficiency and specificity (including numerous studies of the ENS), so we disagree that it is not well characterized. Pax2Cre of course has not previously been studied in the ENS, but it has been broadly used in other contexts (e.g., craniofacial, kidney). That said, and as noted in our original manuscript, we are aware that an issue of this study is the uniqueness of the recombination domains of the two Cre lines.  As we wrote, Wnt1Cre and Pax2Cre cannot be combined into the same embryo because they are both Cre lines, and we do not have a suitable nonCre recombinase line to substitute for either. Instead, we demonstrate that the two lines recombine in distinct territories of the early embryonic ectoderm, and that the two lineages thus labeled are distinct in marker expression at the initial onset of their delamination, utilize Edn3-Ednrb and GDNF-Ret in distinct ways during their migration to the hindgut, and contribute to different terminal cell fates in the colon. We think this evidence of the distinct nature of the two lineages from start to finish is compelling rather than merely circumstantial.

      -  Visualization of the Pax2-Cre and Wnt-1Cre induced recombination in cross-sections at postnatal ages would help with data interpretation. If there is recombination induced in the mesenchyme, this would particularly alter the interpretation of Ednrb mutant experiments, since that pathway has been shown to alter gut mesenchyme and ECM, which could indirectly alter ENS colonization.

      We have several thoughts about this comment. First, we are uncertain why postnatal analysis would be informative, as ENS colonization occurs (or fails to occur in mutants) during embryogenesis. The reviewer might be thinking of a juvenile stage additional contribution to the ENS, which is addressed below (responses to Recommendations for the Authors) but as we discuss there is not relevant to our analysis. Second, we did examine recombination in the distal hindgut at E12.5 during ENS colonization (Fig. 1f and 1h) and did not see overlap between either Cre recombination domain and Edn3 mRNA expression (which is expressed by the nonENS mesenchyme). Furthermore, Ednrb is not expressed in the gut mesenchyme during ENS colonization (Fig. 7figure supplement 1), thus ectopic mesenchymal Cre expression, if any, by either line would have no impact in Cre/Ednrb mutants. Lastly, the reviewer’s idea could have been a plausible hypothesis at the onset of the project, but here we show positive evidence for a different explanation. We do not rigorously exclude the reviewer’s hypothesis, nor other theoretically possible models, but we think we have provided a strong case to support the direct involvement of Ret and Ednrb in ENS progenitors rather than in surrounding non-neural mesenchyme.

      -  No consideration of glia - are these derived from both lineages?

      To properly address this question would require new reagents and analyses that we have not yet initiated. While an interesting question from a developmental biology standpoint, we don’t think that this investigation would change any of the interpretations that we make in the manuscript.

      -  No discussion of how these observations may fit in with recent work that suggests a mesenchymal contribution of enteric neurons (PMID: 38108810).

      The recent paper cited by the reviewer is very explicit in describing this mesenchymal contribution to the ENS as occurring after postnatal day P11. Other than the terminal Hirschsprung phenotype, all of our analysis of cell lineage migration and fate and colonic aganglionosis was conducted at embryonic or early (P9) postnatal stages. We therefore do not see a relation of our work to this study. In light of this paper, however, we do agree that it would be worthwhile in a future study to explore Wnt1Cre and Pax2Cre lineage dynamics in the ENS of older mice.

      Reviewer #1 (Recommendations For The Authors):

      (1) The authors should reanalyze multiple single-cell RNA-seq datasets available now, to see if these cells are detected in those studies and then look at the global transcriptional profile of these Pax2-positive cells compared to the other vagal neural crest-derived ENCDCs. Some of these datasets can be found here - PMIDs: 33288908, 37585461, and https://www.gutcellatlas.org/.

      We disagree that the datasets from previous studies provide additional insights that are relevant to the current study. It must be appreciated that Wnt1Cre and Pax2Cre are genetic lineage tracers and that migratory ENS progenitor cells labeled with these reagents do not maintain expression of Wnt1 and Pax2 mRNA or protein. The Wnt1 and Pax2 genes are only transiently expressed within their distinct regions of the ectoderm, and their expression turns off as cells delaminate and begin migration. Thus, Pax2Cre-labeled ENS progenitor cells are not Pax2-positive thereafter. The single cell RNA-Seq studies suggested by the reviewer were collected from older embryos and postnatal mice, and do not represent the E10.5-E11.5 period that accounts for genesis of Ret-mediated and Ednrb-mediated Hirschsprung disease pathology. Even with the most recent work by Zhou et al (Dev Cell, 2024) that included E10.5 cells, this analysis only evaluated neural crest-derived Sox10Cre lineage cells, which does not include the placode-derived Pax2Cre lineage (as we show explicitly in Fig. 2-figure supplement 2).  Consequently, it would not be possible to find the “Pax2-positive cells” in these datasets. Performing a new transcriptomic analysis by isolating Pax2Cre-lineage and Wnt1Cre-lineage cells at the appropriate developmental time points could be the basis of future studies, but we think these are beyond the scope of the present paper. 

      (2) Even in their current quantification method of using immunofluorescent cells in a microscopic field, the authors count very few cells. The quantification in Figures 2v-2z is only from 4 embryos and is in the hundreds. This leads to misrepresentation of cell numbers and is best reflected in Figure 2x, where Wnt1Cre/Ret GI tracts have 0 Ret +ve cells, which we now know is not true even in ubiquitous Ret null embryos, where Ret null cells are detected as late as E14.5 (PMID 37585461)

      Because of the reviewer’s comment, we recognize that the specific detail about cell numbers wasn’t properly written. We didn’t count a few hundred cells total, it was a few hundred cells per embryo. Exact numbers are provided in the revised figure legend where “cells/embryo” is now explicitly stated. Multiplied by the number of embryos, this means that we evaluated approx. 1000 total cells per genotype and time point in cases where Ret+ and/or GFP+ (lineage+) cells were found. The total absence of such cells in Wnt1Cre/Ret mutants is a rigorous conclusion. Our results do not misrepresent nor contradict the study by Vincent et al (PMID 37585461). Our analyses were performed on gut tissue isolated at E10.5 and E11.5 stages, which is long before Schwann cell precursors (SCPs, the primary focus of the Vincent et al study) colonize the gut (E14.5; Uesaka et al, 2015. PMID: 26156989). Indeed, as the reviewer notes, SCPs migrate into the gut in a Retindependent manner. For being at a much earlier time point, our focus is on the cranial ectoderm sources of ENS progenitors. We have adjusted the text associated with Fig. 2 to make this more clear.

      (3) There are multiple sections in the manuscript that rehash already known facts, like the whole section about Wnt1 conditional Ret null mice which show failure of migration of ENCDCs. This has been shown multiple times and doesn't add anything to the author's story.

      We think this comment stems from the reviewer’s perception that the Pax2Cre lineage is a subset of neural crest. The Wnt1Cre data (including Ret-deficient and Ednrb-deficient embryos) presented in the manuscript are not intended to rehash what is already known but to establish important similarities and differences between the newly identified placode-derived and the well-established neural crest-derived ENS progenitor cells. In light of the reviewer’s suggestion #8 below, to move the Wnt1Cre lineage analysis to a supplement, this information remains in the main text to provide proper comparison to the Pax2Cre-lineage profile. We think we were fair in the text to the legacy of work on neural crest and ENS development and were explicit in using our Wnt1Cre analysis to compare to the Pax2Cre lineage. Finally, we point out that our analysis was conducted on a different genetic background (outbred ICR) compared to previous studies, and there are strain-specific differences in Hirschsprung-associated lethality between our background and previous studies, so it was not impossible that the behavior of the neural crest cell lineage in the ICR background could be different from past observations on different backgrounds. Although we did not identify any major differences, it is important that the information on NC behavior in this background be presented. 

      (4) Also, the conclusion drawn for Figure 5C "this indicates that the Wnt1Cre-derived cells do not harbor a cellautonomous response to GDNF" seems to suggest the authors are not very well versed with the ENS literature. GDNF as well as EDN3 are expressed from surrounding mesenchyme and are cell non-autonomous.

      The reviewer seems to have misread or misunderstood the specific statement as well as the more important broader conclusion of the experiment. First, of course the source of GDNF ligand in vivo is the mesenchyme. The explant assay was designed to eliminate this and then to substitute GDNF as provided experimentally. The focus of the experiment was to address the response to GDNF, not the source of GDNF. But more importantly, the experiment revealed a surprising outcome that the reviewer did not appreciate. In Pax2Cre/Ret mutants, the Wnt1Cre lineage still expresses Ret, yet does not grow out from the gut explant when provided with GDNF. This shows that the neural crest lineage requires Ret function in placode-derived cells in order to respond to GDNF. In other words, despite expressing Ret, the NC lineage does not harbor a cellautonomous response to GDNF, as we wrote. Because this might be confusing to some readers, we have revised the description of this analysis to hopefully be more clear.

      (5) The fact that Ret and Ednrb signaling pathways interact is not a novel finding and has been reported multiple times in Ret and Ednrb mutant mice and cell lines (PMID: 12355085, 12574515 , 27693352, 31818953), potentially through shared transcription factors (PMID:31313802).It would have been more relevant if the authors could show how the specific tyrosine residue (Y 1015) in Ret is phosphorylated in the presence of Ednrb.

      The observation that human mutations in RET and EDNRB both cause Hirschsprung disease is decades old, and of course numerous studies in human, mouse, and cells have addressed the relation between the two signaling pathways. We did not mean to imply that we were the first to discover that Ret and Ednrb signaling pathways interact. The reviewer cites a number of papers all from the Chakravarti lab that address this phenomenon; while these are a valuable contribution to the field, there is still more to be learned. The model elaborated in PMID: 31313802, in which Ret and Ednrb are both enmeshed in a common gene regulatory network, does not readily explain why each has a different phenotypic manifestation and doesn’t take into account the importance of the placodal lineage. The main new contributions of our paper are the existence of a new cell lineage that contributes to the ENS, and that the placodal and neural crest lineages utilize Ret and Ednrb signaling differently. The clarification of how these elements are differentially used by the two lineages explains long-segment and short-segment Hirschsprung disease (Ret and Ednrb mutants, respectively) far better than in past studies. The reviewer unfortunately dismisses these insights and seems to feel that a biochemical exploration of one specific component of the signaling interaction (Y1015 phosphorylation) would be more relevant. This should be the basis of future studies and are beyond the scope of the new findings reported in the present paper. 

      (6) What is the mechanism of the presence of Y1015 phosphorylation in 33% of Ednrb deficient Pax2Cre cells? It appears to me what the authors report as absent phosphorylation in the 67% of cells could be just weak staining or cells missing in prep.

      The reviewer, referring to Fig. 7q, presumably meant to say Wnt1Cre rather than Pax2Cre. The reviewer overlooked that we provided an explanation for this observation in our original manuscript. This sentence reads “Because Ednrb is expressed only in a subset of Wnt1Cre-derived enteric progenitor cells (Figure 7 – figure supplement 1), the residual Y1015 phosphorylation observed in Wnt1Cre/Ednrb mutant cells is likely to occur in the Ednrb-negative Wnt1Cre-derived cell population”. The sentence is retained unchanged in the revised manuscript. The explanation is not because of weak staining or problems with tissue preparation.

      (7) The references the authors cite regarding the previous discovery of Ret expression in the nucleus are incorrect. The review articles the authors cite do not mention anything about Ret expression in the nucleus. The evidence of nuclear localization of Ret previously comes from overexpression studies in HEK293 cells (PMID: 25795775). Such overexpression studies are fraught with generating noisy data for well-documented reasons. But if this observation is correct, the authors miss a great opportunity to identify what the Ret protein is doing in the nucleus. Is it in direct contact with its known transcription factors like Sox10 and Rarb? This would shed a lot of light on the possible mechanism of Ret LoF observed in Ret mutant mice

      The reviewer overlooked that the one of the review articles that we cited (Chen, Hsu, & Hung, 2020) has a dedicated paragraph for RET (section 3.14), which summarizes the work by Barheri-Yarmand et al (PMID: 25795775) which is the very paper noted by the reviewer in the comment above. The reviewer also somewhat misstated the results of the Barheri-Yarmand et al study. By immunostaining, this paper showed nuclear localization of endogenous Ret, albeit a version of Ret with a disease-associated mutation that makes it constitutively active by constitutive autophosphorylation. Nonetheless, this was endogenous Ret. The paper also used overexpression of GFP-tagged RET in HEK293 cells to show that wildtype RET can behave in a similar manner, at least under these circumstances. Our point is simply that Ret (and other receptor tyrosine kinases) can be found in the nucleus in certain biological contexts, and our observations are consistent with this precedent.

      The reviewer also suggests a biochemical follow-up analysis related to this observation, which we agree would be of interest. Such an investigation however is beyond the scope of the present study.

      (8) The manuscript could benefit from a major rewrite by reorganizing sections to make it easy for the readers to follow the narrative.

      Many sections about the role of Ret and Ednrb in Wnt1cre-derived ENCDCs can be moved to a supplement. These facts are well-documented and have been proven before.

      This was addressed in our response to comment #3 of this reviewer. The figures have been kept as main figures in the revised manuscript to allow side-by-side comparison to parallel analysis of the Pax2Cre lineage.

      - The observation that only a handful of Pax2Cre cells at E10.5 express Ret and the observation that conditional Ret null abrogates these cells at E11.5, are not presented together and makes connecting these two facts difficult.

      Ret expression at E10.5 and E11.5 are both shown in the same figure (Fig. 2). In the presentation of these results, we first describe in normal development that Ret is expressed differently in E10.5 ENS progenitors between the Pax2Cre and Wnt1Cre lineages. This is additional support for the argument that the two lineages are molecularly distinct. Then comes evaluation of postnatal fates with different markers before we return to embryonic Ret expression. We acknowledge that this can make it difficult to connect these observations. We decided to retain the original organization in order to not lose this important conclusion. However, we have revised the text to hopefully make this connection between the sections more congruent.

      Reviewer #2 (Recommendations For The Authors):

      - The labeling of some as "figure supplements" is really hard to follow in the text and confusing to interpret when a main figure or supplemental figure is being referenced, and which one.

      We understand this comment, but this is journal style and outside of our control. We have kept the journal format in the revised manuscript.

      - The data in Figures 3b-c is well established in the field and somewhat misinterpreted. NOS1 neurons in the mouse ENS and their projections have been well described (Sang and Young, 1996, and other studies). CGRP immunoreactivity would reflect both ENS CGRP-expressing neurons and visceral afferents from DRG.

      There of course is a history of analysis of NOS1, CGRP, and other markers in the ENS. The focus of the analysis in Fig. 3 is to demonstrate how the cells that express these markers are impacted by gene manipulation in the Wnt1Cre and Pax2Cre lineages. For the giant migrating contractions that are associated with defecation, ample past electrophysiological studies have established that mechanosensory CGRP+ neurons trigger NOS+ inhibitory neurons (and ACh+ excitatory neurons) of the myenteric plexus to propel colonic contents. Thus, these are the relevant markers to explain the lack of colonic peristalsis in Ednrb-deficient mice. To our awareness, our results with NOS1 do not contradict any past study, including the Sang and Young 1996 description. Regarding CGRP, indeed the reviewer is correct that this marker is expressed by both neuronal subtypes. Two arguments support the specific derivation of ENS mechanosensory neurons from the Pax2 lineage. First, the ENS and DRG neurons can be distinguished by the location of their cell bodies and their axon extensions in the gut wall; only the ENS neurons are deficient in Pax2Cre/Ednrb mutants (as documented in Fig. 3). Second, the DRG population is derived from neural crest and is not labeled by Pax2Cre. If this population of CGRP+ neurons had functional relevance to colonic peristalsis, this would not be altered in Pax2Cre/Ednrb mutants. Indeed, the CGRP+ afferent nerve endings of DRG origin in the distal colon are mechanical distension sensors but do not modulate either ENS or autonomic nervous system activity (PMID: 37541195). We believe that our interpretation is correct.

      - The evidence in Figure 3 supporting the claim that NOS1 and CGRP-expressing enteric neurons come from distinct lineages is weak. IHC for CGRP is notoriously poor at labeling soma in the ENS. IHC for tdTomato to ensure the detection of low levels of Tomato expression and quantification of observations would strengthen this claim.

      CGRP is a vesicular peptide which is stored and transported in vesicles, therefore the antibody against CGRP labels vesicular particles of soma and synaptic vesicles along the axons of those CGRP-producing neurons.

      It is not expected to label the entire cytoplasm (or the range of subcellular organelles) as NOS antibody does. We did included quantification of data in Figure 3-figure supplement 1 in the manuscript to support the claim of lineage derivation. As described in the Methods section of the manuscript, we used binary threshold selection for Tomato+ cell count using Fiji-Image J, which detects both TomatoHigh and TomatoLow cells as Tomato+; we feel this is equal to or even superior to IHC for this analysis. 

      - IHC panels in Figures 3h-o are largely uninterpretable. Most of the signal seems to be non-specific background staining in the mucosa and quantification of mucosal signal in this context does not seem meaningful.  

      We disagree with the reviewer’s comment. As described in the response above, CGRP+ mechanosensory neurons send their peripheral axon projections to innervate mucosa (sensory epithelial cells), and NOS+ inhibitory motor axons innervate the circular muscle. Thus, panels h-o of Fig. 3 focus on the axonal profile and are not intended to visualize soma, which is why sagittal views are presented instead of flatmount views. All of the controls were performed side-by-side to confirm that the signal is real and interpretable.

      Note also that the colon does not have villi so this annotation should be revised.

      We appreciate that the reviewer brought this misstatement to our attention. We corrected this error in the revised manuscript.

      - Phospho-RET staining in Figure 7 is difficult to discern and interpret with high background. Positive and negative controls would strengthen these data.

      Fig. 7 shows phospho Ret-Y1015 staining in lineage-labeled Wnt1Cre/Ednrb/R26nTnG mutants. The strength of the signal to noise in the figure is a matter of Ret expression level and the quality of the anti-pY1015 antibody. We are not aware of a meaningful positive control that has been validated in the literature that we could use for comparison. The ideal negative control would be to perform the same analysis in Wnt1Cre/Ret/R26nTnG mutants, but because this manipulation eliminates the entire NC cell lineage from the colon, there would be no NC cells in which to visualize background staining in this lineage with this antibody when Ret protein is not present. We note that anti-pY1096 did not show a difference in staining between control and mutant, which supports the interpretation of a specific impact on pY1015. We also point out here, as in the text, that we do not yet have any validation that phosphorylation of Y1015 is functionally important in NC migration to the distal colon. Clearly, more work to address this role and to demonstrate the mechanism of phosphorylation of this specific residue in response to Edn3-Ednrb signaling will be needed.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review):

      Summary:

      The authors set out to measure the diffusion of small drug molecules inside live cells. To do this, they selected a range of flourescent drugs, as well as some commonly used dyes, and used FRAP to quantify their diffusion. The authors find that drugs diffuse and localize within the cell in a way that is weakly correalted with their charge, with positively charged molecules displaying dramatically slower diffusion and a high degree of subcellular localization. <br /> The study is important because it points at an important issue related to the way drugs behave inside cells beyond the simple "IC50" metric (a decidedly mesoscopic/systemic value). The authors conclude, and I agree, that their results point to nuanced effects that are governed by drug chemistry that could be optimized to make them more effective. 

      We are grateful to the reviewer for summarizing the work and appreciate him/her pointing out that it is high time to consider the drug aggregation and high degree of subcellular localization while optimizing to make them more effective beyond the mesoscopic value like "IC50".

      Strengths: 

      The work examines an understudied aspect of drug delivery. 

      The work uses well-established methodologies to measure diffusion in cells 

      The work provides an extensive dataset, covering a range of chemistries that are common in small molecule drug design 

      The authors consider several explanations as to the origin of changes in cellular diffusion

      We are grateful to the reviewer for pointing out the strengths of the manuscript.

      Weaknesses: 

      The results are described qualitatively, despite quantitative data that can be used to infer the strength of the proposed correlations. 

      The statistical treatment of the data is not rigorous and not visualized according to best practices, making it difficult for readers to assess the significance of the findings. 

      Some important aspects of drug behavior are not discussed quantitatively, such as the cell-to-cell or subcellular variability in concentration. 

      It is unclear if the observed behavior of each drug in the cell actually relates to its efficacy - though this is clearly beyond the scope of this specific work.

      We have addressed the weaknesses found by the reviewer (see bellow in Reviewer #1 Recommendations For The Authors). Concerning the last point, It would have been indeed very valuable to find a relation between drug's observable behavior and their efficacy, but as the reviewer indicates, it is beyond the scope of this work.

      Reviewer #2 (Public Review): 

      Summary:

      Blocking a weak base compound's protonation increased intracellular diffusion and fractional recovery in the cytoplasm, which may improve the intracellular availability and distribution of weakly basic, small molecule drugs and be impactful in future drug development. 

      We are thankful to the reviewer for summarizing our work and acknowledging that the points raised above can be impactful in future drug development.

      Strengths: 

      (1) The intracellular distribution of drugs and the chemical properties that drive their distribution are much needed in the literature. Thus, the idea behind this paper is of relevance. 

      (2) The study used common compounds that were relevant to others. 

      (3) Altering a compound's pKa value and measuring cytosolic diffusion rates certainly is inciteful on how weak base drugs and their relatively high pKa values affect distribution and pharmacokinetics. This particular experiment demonstrated relevance to drug targeting and drug development. 

      (4) The manuscript was fairly well written. 

      We are thankful to the reviewer for pointing out the strengths of the manuscript like the intracellular distribution of drugs and properties that drive it, which are missing in the literature.

      Weaknesses: 

      (1) Small sample sizes. 2 acids and 1 neutral compound vs 6 weak bases (Figure 1). 

      We fully agree with the reviewer on this point. However, the major limitation we have faced here is the small number of drug/drug-like molecules that fluorescent with sufficient high quantum yields. For this study, we initially screened 1600 drugs for their fluorescence in the visible spectrum, and penetration into cells, resulting in 16 drugs. Of those, a small number was suitable for FRAP due to low quantum yield. For some of the molecules (Mitoxantrone, Priaquine), recovery was minimal, making them challenging to study. We added this information in the materials and method section under “Selection of drugs used in this study” (p.10).

      (2) A comparison between the percentage of neutral and weak base drug accumulation in lysosomes would have helped indicate weak base ion trapping. Such a comparison would have strengthened this study. 

      For weakly basic compounds, the ionic form and the non-ionic form of the molecules always remain in equilibrium. The direction of the equilibrium depends on the pH of the medium, which determines the major form of the drug molecules in the solution. Our examples of GSK3 inhibitor (neutral compound, pka~7.0, as predicted by Chemaxon), shows behaviour very similar to the other basic drugs (pka>8) inside the cells. As lysosome pH is about 5.0, the neutral drug also gets protonated inside the lysosomes, as the colocalization study reveals (Figure 4). We added Fig S16 C-D, where we show co-localization of three drugs within the lysosomes showing that all the three weak base drugs colocalize to acidic lysosomes from moderately to extensively. See also in p. 11 under “Confocal microscopy and FRAP Analysis section”.

      (3) When cytosolic diffusion rates of compounds were measured, were the lysosomes extracted from the image using Imaris to determine a realistic cytosolic value? In real-time, lysosomes move through the cytosol at different rates. Because weak base drugs get trapped, it is likely the movement of a weak base in the lysosome being measured rather than the movement of a weak base itself throughout the cytosol. This was unclear in the methods. Please explain.

      We want to thank the reviewer for pointing this out. To clarify the point, we added to the material and method section in p. 13 the following text: “When the areas of bleach were selected in the drug-treated cell cytoplasm, we avoided the lysosomes as much as possible, within the resolution limits of the confocal microscope. Lysosomes themselves were measured to move within the cytoplasm with an diffusion coefficient of 0.03-0.071 µm2 s−1  (Bandyopadhyay et al., 2014), which is much slower than the diffusion measured for even the slowest compounds using fast Line FRAP, further validating that we did not measure lysosome diffusion.” In addition, we show that in cells after Bafilomycin A1 or Na-Azide treatments the number of lysosomes was reduced drastically (Figures S8& S9, and Figure 7), while the rates of diffusion remain very slow, similar to those measured without lysosomal inhibitors.   

      (4) Because weak base drugs can be protonated in the cytoplasm, the authors need to elaborate on why they thought that inhibiting lysosome accumulation of weak bases would increase cytosolic diffusion rates. Ion trapping is different than "micrometers per second" in the cytosol. Moreover, treating cells with sodium azide de-acidifies lysosomes and acidifies the cytosol; thus, more protons in the cytosol means more protonation of weak base drugs. The diffusion rates were slowed down in the presence of lysosome inhibition (Figure 7), which is more fitting of the story about blocking protonation increases diffusion rates, but in this case, increasing cytosolic protonation via lysosome de-acidification agents decreases diffusion rates. Please elaborate.

      We thank the reviewer for the comment. We added to the results in p. 7 (top) the following “While we selected bleach spots to be small and located outside of lysosomes, this does not assure that some of the bleached area does not include smaller lysosomes. Therefore we investigated whether inhibiting lysosomal trapping will eliminate slow diffusion of cationic drugs.” In addition, we added to the results in p. 7-8 the following: “Comparative FRAP profiles and diffusion coefficients (Figure 7B-D and 7F-H) were slow, but conversely to Bafilomycin, sodium azide treatment did cause a further reduction is rates from Dconfocal 2.4±0.1 µm2s-1  to 1.8±0.1µm2s-1 for quinacrine and from 0.6 to  0.45 µm2s-1 for the GSK3 inhibitor (Figure 7C and G). Both Bafilomycin and sodium azide treatments resulted in elimination of drug confinement in the lysosome, and the small difference in diffusion rates may be a result of the de-acidification of the lysosomes by sodium azide, which may increase the protons in the cytosol upon treatment.”

      Reviewer : A discussion of the likely impact: 

      The manuscript certainly adds another dimension to the field of intracellular drug distribution, but the manuscript needs to be strengthened in its current form. Additional experiments need to be included, and there are clarifications in the manuscript that need to be addressed. Once these issues are resolved, then the manuscript, if the conclusions are further strengthened, is much needed and would be inciteful to drug development.

      Reviewer #1 (Recommendations For The Authors):

      Major issues: 

      The paper suffers from poor statistical treatment of the data. FRAP recovery curves should be shown for each repeat, overlaid by an average with SDs as errorbars or shaded regions shown. In bar plots, SEMs should be eliminated in favor of StdDevs. All datapoints should be shown for each bar in Figs. 3-8. To show differences in D_confocal appropriate statistical tests should be conducted. In addition it is unclear what an "independent repeat" is. Does this mean 30 separate imaging sessions/drug treatments/etc? Is it 30 cells on the same coverslip? Is it a combination of both? All reported errors, SD or SEM, should have a single significant digit. Guidelines and best practices for representing quantitative imaging data are all described and visualized in detail in Lord et al. JBS 2020. 

      We improved the statistics and added the individual progression curves and did the statistics on them as requested. See Figure S2 for individual FRAP curves of fluorescein, GSK3 inhibitor and and quinacrine. Statistical analysis of the individual FRAP curves is in Figure 3B, 4B, 5B, 7C and G. For details see figures legends and material and methods p. 13 in “Determination of Dconfocal from FRAP results”. Line FRAP was done from the cells taken from different plates, treated independently (see text p. 13).   

      The extensive (and commendable!) dataset the authors have collected can be put to better use than what is currently done. The main text figures in the current form of the preprint are mostly descriptive and their discussion is qualitative, to the point where the author's conclusions are supported only anecdotally. Instead, I would much rather see panels that collate the entire dataset (both protein and drugs) numerically, comparing diffusion values in buffer/cytoplasm/nucleus for all drugs (Like Fig. S6, which is in my opinion the most important in the paper but for some reason relegated to the SI). In addition I would like to see correlations within the dataset, such as D_confocal vs. pKa, vs. concentration (as measured by overall fluorescence signal, see my comment below), vs. mw, or vs. specific chemical moieties (number of charges, aromatic rings, etc). Such correlations should be discussed in terms of a correlation coefficient if conclusions were to be drawn from them, and include errors if available. 

      We want to thank the reviewer for these suggestions. We now made new Figures 9, and S16 to compare multiple parameters. Figure 9C shows a clear relation between pKa and Dconfocal, but no relation was found between logP, MW or number of aromatic rings and Dconfocal. Fig. S3 also shows the relation between drug concentration and Dconfocal values. These data are now discussed in the discussion section in p. 9 (bottom). 

      The drug sequestration hypothesis and other conclusions brought forth by the authors could be further tested by looking at the concentration dependence of the drugs inside eachcell and/or its partitioning between different subcellular compartments. The concentration dependence of these drugs is discussed in a very anecdotal fashion using two concentrations - and despite some cases showing an effect no further studies were done. Drug concentrations in this experiment can vary between cells between repeats or even within a single repeat as a result of drug chemistry and delivery methods (microinjection/passive permeability). This is especially important since it is unclear what clinically-relevant concentrations are for each drug (or at least an IC50 for the cell types tested here). I would like to see a quantitative measure of concentrations as another metric to compare diffusion behavior (see my comment above as well). 

      And maybe one thing to consider in addition would be some discussion in the paper about what sub-cellular distributions might actually mean in the context of drug efficacy (asking for myself as well!) - a paragraph describing recent works on the topic with some references could be instructive. 

      We want to thank the reviewer for the suggestion. We added now Figure S3, showing the relation between fluorescence intensity in each cell (which is directly related to the concentration of the compound) and FRAP rates and percent recovery for fluorescein, GSK inhibitor and Quinacrine. The results show now relation between drug concentration and FRAP rates, and some relation towards percent recovery. These data are now discussed in the main text (p. 4 bottor and p.6) and in the discussion (p. 9, bottom).

      Minor issues: 

      Readers could benefit from a schematic showing the line FRAP method. It is difficult to understand from the text.

      We show now in Figure 2 the line-FRAP method, and discuss it in the introduction (p. 3 top).

      Have the authors considered enrichment in the cell membrane? Summed intensity projections or co-labeling with membrane dyes could prove useful to identify if the membrane is enriched in fluorescence.

      The microscopy slides, including the super-resolution image in Figure S15 do not show enrichment of membranes.

      Cell extracts obtained by chemical lysis are problematic because they contain surfactants. This comparison might not be meaningful. 

      The reviewer is correct about surfactants; However, this is only for illustration to show the crowd density of the cell extracts compared to live cells.

      Unclear why "Bleach size" plots are shown. They are not discussed in the main text. 

      We show now a bleach size plot in Figure 2, where we explain the method. We removed them from the other figures.

      Some figure panels have a strange aspect ratio, causing text to look distorted. 

      We corrected the figure distortion in the revised manuscript.

      How are the values of D_confocal in buffer compared with past literature? Should these not all be diffusion limited? BCECF - larger than many of the drugs used here - shows ~ 100 μm^2/s in buffer (Verkman TiBS 2002).

      We discussed this in our previous work (Ref. 13, iscience 2022, Dey et al.) Dconfocal is a relative diffusion rate and should not be confused with single-molecule diffusion coefficients. FRAP cannot measure the diffusion of more than 100 μm^2/s in the buffer. However, when comparing apparent FRAP rates between different fluorophores, it is not quantitative due to the major implication of the bleach radius towards diffusion rates. The rate constant normalized by bleach radius^2 is the proper way to compare i.e., our Dconfocal. (Ref. JMB 2021, iScience 2022 by Dey et al.).

      Reviewer #2 (Recommendations For The Authors): 

      Recommendations: 

      (1) Page 3 at the bottom of the Introduction states, "...sodium azide (Hiruma et al., 2007) inhibited accumulation in lysosomes, cellular diffusion...increased only slightly." However, Figure 7C, F shows a sodium azide-induced decrease in the Dconfocal cellular diffusion. Please clarify.

      Thank you for pointing this out; we corrected it in the revised version, including adding statistics.

      (2) Page 6 states, "Quinacrine accumulation in the lysosome was observed also immediately after micro-injection, with aggregation increasing over time. Dconfocal of 4.2{plus minus}0.2 µm2 s-1 was calculated from line-FRAP immediately after micro-injection, slowing to 2.2{plus minus}0.1 µm2 s-1 following 2 hours incubations, with fractional recoveries of 0.63 and 0.57 respectively." If lysosome sequestration does not have an effect on cytosolic diffusion rates as the manuscript concludes, why do the authors think the diffusion rate decreased here within 2 hours? A solid conclusion would strengthen the conclusions of this manuscript rather than passing over it.

      Thank you for pointing this out. We added the following text to page 7: “It is notable that the Dconfocal for Quinacrine remained consistent regardless of Bafilomycin treatment, 2 hours after incubation (Fig. S9D, 2.4±0.1 µm2s-1). However, when measured immediately after injection, the diffusion coefficient was higher at 4.2 µm2s-1 (Fig. S5D). This result does not support the notion that the faster diffusion measured immediately after cellular injection relates to lysosomal aggregation, and would better support self-aggregation, or aggregation with other molecules in the cell, which increases over time. This notion is further supported by the almost complete lack in FRAP observed 24 hours after injection (Fig. S5C).”

      (3) In the Results section, the subheading states, "Inhibition of lysosomal sequestration is only slightly increasing diffusion in cells", but the conclusion for bafilomycin was...Dconfocal values were not altered by Bafilomycin A1", and the conclusion for sodium azide was diffusion coefficients (Figure 7B-C and 7E-F) were not much changed for the two drugs and stayed low... similarly to what was observed with Bafilomycin." The clear question is what is the result, "slightly increased diffusion, decreased diffusion, or had no significant effect at all"? Please clarify the wording in the manuscript to accurately describe the results. 

      Indeed, a small difference is obsevered between the two treatments. We added now statistical significance to Fig. 7D and H and to Fig. S8 and S9. In addition, we clarified this point in the text in p.7-8: “Comparative FRAP profiles and diffusion coefficients (Figure 7B-D and 7F-H) were slow, but conversely to Bafilomycin, sodium azide treatment did cause a further reduction is rates from Dconfocal 2.4±0.1 µm2s-1  to 1.8±0.1µm2s-1 for quinacrine and from 0.6 to  0.45 µm2s-1 for the GSK3 inhibitor (Figure 7C and G). Both Bafilomycin and sodium azide treatments resulted in elimination of drug confinement in the lysosome, and the small difference in diffusion rates may be a result of the de-acidification of the lysosomes by sodium azide, which may increase the protons in the cytosol upon treatment.”

      (4) In Figure 8B, why was the Dconfocal for AM-fluorescein with or without sodium azide not included here? Besides consistency, the results might demonstrate significance. Please elaborate on the occlusion of this data. 

      Fraction recovery after FRAP of AM-fluorescein was very low. Calculating Dconfocal rates with such low fraction recovery is meaningless, as in the time of measurement only a small fraction recovered. Therefore, we calculated Dconfocal only when fraction recovery was at least 0.5.

      (5) Throughout the Results section, the ideas and experiments are of relevance, but the suggestions/conclusions at the end of each paragraph of this section seem lightly thought out. For example, as stated on Page 8, "...however, this did not contribute new information to the puzzle." For a chemistry paper, a chemical suggestion strengthens the manuscript. 

      We want to thank the reviewer for these suggestions. We now made new Figures 9, and S16 to compare multiple parameters. Figure 9C shows a clear relation between pKa and Dconfocal, but no relation was found between logP, MW or number of aromatic rings and Dconfocal. Fig. S16 also shows the relation between drug concentration and Dconfocal values. We revised the discussion section to giver more weith to these quantitative assessments. These data are now discussed in p. 9.

      In conclusion, the manuscript's ideas are needed, but the conclusions drawn from the experiments need to be strengthened, more explanatory, and consistent with the main conclusion of the manuscript.

      See answer to point 5.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      Mehmet Mahsum Kaplan et al. demonstrate that Meis2 expression in neural crest-derived mesenchymal cells is crucial for whisker follicle (WF) development, as WF fails to develop in wnt1-Cre;Meis2 cKO mice. Advanced imaging techniques effectively support the idea that Meis2 is essential for proper WF development and that nerves, while affected in Meis2 cKO, are dispensable for WF development and not the primary cause of WF developmental failure. The study also reveals that although Meis2 significantly downregulates Foxd1 in the mesenchyme, this is not the main reason for WF development failure. The paper presents valuable data on the role of mesenchymal Meis2 in WF development. However, further quantification and analysis of the WF developmental phenotype would be beneficial in strengthening the claim that Meis2 controls early WF development rather than causing a delay or arrest in development. A deeper sequencing data analysis could also help link Meis2 to its downstream targets that directly impact the epithelial compartment.

      Strengths:

      (1) The authors describe a novel molecular mechanism involving Mesenchymal Meis2 expression, which plays a crucial role in early WF development.

      (2) They employ multiple advanced imaging techniques to illustrate their findings beautifully.

      (3) The study clearly shows that nerves are not essential for WF development.

      We thank the reviewer for valuable comments that will help improve our study.

      Weaknesses:

      (1) The authors claim that Meis2 acts very early during development, as evidenced by a significant reduction in EDAR expression, one of the earliest markers of placode development. While EDAR is indeed absent from the lower panel in Figure 3C of the Meis2 cKO, multiple placodes still express EDAR in the upper two panels of the Meis2 cKO. The authors also present subsequent analysis at E13.3, showing one escaped follicle positive for SHH and Sox9 in Figures 1 and 3. Does this suggest that follicles are specified but fail to develop? Alternatively, could there be a delay in follicle formation? The increase in Foxd1 expression between E12.5 and E13.5 might also indicate delayed follicle development, or as the authors suggest, follicles that have escaped the phenotype. The paper would significantly benefit from robust quantification to accompany their visual data, specifically quantifying EDAR, Sox9, and Foxd1 at different developmental stages. Additionally, analyzing later developmental stages could help distinguish between a delay or arrest in WF development and a complete failure to specify placodes.

      The earliest DC (Foxd1) and placodal (EDAR, Lef1) markers tested in this study were observed only in the escaped WFs whereas these markers were missing in expected WF sites in mutants. This was also reflected in the loss of typical placodal morphology in the mutant’s epithelium. On the other hand, escaped WFs developed normally as shown by the analysis in Supp Fig 1A-B showing their normal size. These data suggest that development of escaped WFs is not delayed because they would appear smaller in size. To strengthen this conclusion, we will analyze whiskers at E18.5 in Meis2 cKO mice by staining Edar, Foxd1, Sox9 and/or Lef1 in revision and results will be added in the revised manuscript. Two-week time for this provisional response is too short to gather all these data. As far as quantification is concerned, we have already quantified the number of whiskers in controls and mutants at E12.5 and E13.5 in all whole mount experiments we did, i.e. Shh ISH and Sox9 or EDAR whole mount IFC. We pooled all these numbers together and calculated the whisker number reduction to 5.7+/-2.0% at E12.5 and 17.1+/-5.9 at E13.5 (page 3, row 114). We will also quantify the whisker number at E15.5 and E18.5 in the revised manuscript.

      (2) The authors show that single-cell sequencing reveals a reduction in the pre-DC population, reduced proliferation, and changes in cell adhesion and ECM. However, these changes appear to affect most mesenchymal cells, not just pre-DCs. Moreover, since E12.5 already contains WFs at different stages of development, as well as pre-DCs and DCs, it becomes challenging to connect these mesenchymal changes directly to WF development. Did the authors attempt to re-cluster only Cluster 2 to determine if a specific subpopulation is missing in Meis2 cKO? Alternatively, focusing on additional secreted molecules whose expression is disrupted across different clusters in Meis2 cKO could provide insights, especially since mesenchymal-epithelial communication is often mediated through secreted molecules. Did the authors include epithelial cells in the single-cell sequencing, can they look for changes in mesenchyme-epithelial cell interactions (Cell Chat) to indicate a possible mechanism?

      We agree with the reviewer that the effect of Meis2 on cell proliferation and expression of cell adhesion and ECM markers are more general because they take place in the whole underlying mesenchyme. Our genetic tools did not allow specific targeting of DC or pre-DCs. Nonetheless, we trust that our data show that mesenchymal Meis2 is required for the initial steps of WF development including Pc formation. As far as bioinformatics data are concerned, this data set was taken from the large dataset GSE262468 covering the whole craniofacial region which led to very limited cell numbers in the cluster 2 (DC): WT_E12_2 --> 28, WT_E13_2 --> 131, MUT_E12_2 --> 19, MUT_E13_2 --> 28. Unfortunately, such small cell numbers did not allow further sub-clustering, efficient normalization, integration and conclusions from their transcriptional profiles. Although a number of interesting differentially expressed genes were identified (see supplementary datasets), none of them convincingly pointed at reasonable secreted molecule candidate.  

      We agree with the reviewer that cellchat analysis could provide robust indication of the mesenchymal-epithelial communication, however our datasets included only mesenchymal cell population (Wnt1-Cre2progeny) and epithelial cells were excluded by FACS prior to sc RNA-seq. (Hudacova et al. https://doi.org/10.1016/j.bone.2024.117297)

      (3) The authors aim to link Meis2 expression in the mesenchyme with epithelial Wnt signaling by analyzing Lef1, bat-gal, Axin1, and Wnt10b expression. However, the changes described in the figures are unclear, and the phenotype appears highly variable, making it difficult to establish a connection between Meis2 and Wnt signaling. For instance, some follicles and pre-condensates are Lef1 positive in Meis2 cKO. Including quantification or providing a clearer explanation could help clarify the relationship between mesenchymal Meis2 and Wnt signaling in both epidermal and mesenchymal cells. Did the authors include epithelial cells in the sequencing? Could they use single-cell analysis to demonstrate changes in Wnt signaling?

      We have now analyzed changes in Lef1 staining intensity in the epithelium and in the upper dermis. According to these quantifications, we observed a considerable decline in the number of Lef1+ placodes in the epithelium which corresponds to the lower number of placodes. On the other hand, Lef1 intensity in the ‘escaped’ placodes were similar between controls and mutants. Lef1 signal in the upper dermis is very strong overall and its quantification did not reveal any changes in the DC and non-DC region of the upper dermis. These data corroborate with our coclusion that Meis2 in the mesenchyme is not crucial for the dermal Wnt signaling but is required for induction of Lef1 expression in the epithelium. However, once ‘escaper’ placodes appear, they display normal wnt signaling in Pc, DC and subsequent development. These quantification data will be added to the revised manuscript.

      (4) Existing literature, including studies on Neurog KO and NGF KO, as well as the references cited by the authors, suggest that nerves are unlikely to mediate WF development. While the authors conduct a thorough analysis of WF development in Neurog KO, further supporting this notion, this point may not be central to the current work. Additionally, the claim that Meis2 influences trigeminal nerve patterning requires further analysis and quantification for validation.

      We agree with the reviewer that analysis of the Neurogenin knockout mice should not be central to this report. Nonetheless, a thorough analysis of WF development in Neurog1 KO was needed to distinguish between two possible mechanisms: whisker phenotype in Meis2 cKO results from 1. impaired nerve branching 2. Function of Meis2 in the mesenchyme. We will modify the text accordingly to make this clearer to readers. We also agree that nerve branching was not extensively analyzed in the current study but two samples from mutant mice were provided (Fig1 and Supp Videos), reflecting the consistency of the phenotype (see also Machon et al. 2015). This section was not central to this report either but led us to focus fully on the mesenchyme. We think that Meis2 function in cranial nerve development is very interesting and deserves a separate study.

      (5) Meis2 expression seems reduced but has not entirely disappeared from the mesenchyme. Can the authors provide quantification?

      In the revised manuscript, we will provide wt/mut quantification of Meis2 expression in the dermis.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, Kaplan et al. study mesenchymal Meis2 in whisker formation and the links between whisker formation and sensory innervation. To this end, they used conditional deletion of Meis2 using the Wnt1 driver. Whisker development was arrested at the placode induction stage in Meis2 conditional knockouts leading to the absence of expression of placodal genes such as Edar, Lef1, and Shh. The authors also show that branching of trigeminal nerves innervating whisker follicles was severely affected but that whiskers did form in the complete absence of trigeminal nerves.

      Strengths:

      The analysis of Meis2 conditional knockouts convincingly shows a lack of whisker formation and all epithelial whisker/hair placode markers were analyzed. Using Neurog1 knockout mice, the authors show equally convincingly that whiskers and teeth develop in the complete absence of trigeminal nerves.

      We thank the reviewer for valuable comments that will help improve our study.

      Weaknesses:

      The manuscript does not provide much mechanistic insight as to why mesenchymal Meis2 leads to the absence of whisker placodes. Using a previously generated scRNA-seq dataset they show that two early markers of dermal condensates, Foxd1 and Sox2, are downregulated in Meis2 mutants. However, given that placodes and dermal condensates do not form in the mutants, this is not surprising and their absence in the mutants does not provide any direct link between Meis2 and Foxd1 or Sox2. (The absence of a structure evidently leads to the absence of its markers.)

      We apologize for unclear explanation of our data. We meant that Meis2 is functionally upstream of Foxd1 because Foxd1 is reduced upon Meis2 deletion. This means that during WF formation, Meis2 operates before Foxd1 induction and does not mean necessarily that Meis2 directly controls expression of Foxd1. Yes, we agree with reviewer’s note that Foxd1 and Sox2, as known DC markers, decline because the number of WF declines. We wanted to convince readers that Meis2 operates very early in the GRN hierarchy during WF development. We also admit that we provide poor mechanistic insights into Meis2 function as a transcription factor. We think that this weak point does not lower the value of the report showing indispensable role of Meis2 in WFs and possibly all HFs.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review): 

      [...] Strengths: 

      The method the authors propose is a straightforward and inexpensive modification of an established split-pool single-cell RNA-seq protocol that greatly increases its utility, and should be of interest to a wide community working in the field of bacterial single-cell RNA-seq. 

      Weaknesses: 

      The manuscript is written in a very compressed style and many technical details of the evaluations conducted are unclear and processed data has not been made available for evaluation, limiting the ability of the reader to independently judge the merits of the method. 

      Thank you for your thoughtful and constructive review of our manuscript. We appreciate your recognition of the strengths of our work and the potential impact of our modified PETRI-seq protocol on the field of bacterial single-cell RNA-seq. We are grateful for the opportunity to address your concerns and improve the clarity and accessibility of our manuscript.

      We acknowledge your feedback regarding the compressed writing style and lack of technical details,which are constrained by the requirements of the Short Report format in eLife. We will addresse these issues in our revised manuscript as follows:

      (1) Expanded methodology section: We will provide a more comprehensive description of our experimental procedures, including detailed protocols for the ribosomal depletion step and data analysis pipeline. This will enable readers to better understand and potentially replicate our methods.

      (2) Clarification of technical evaluations: We will elaborate on the specifics of our evaluations, including the criteria used for assessing the efficiency of ribosomal depletion and the methods employed for identifying and characterizing subpopulations within the E. coli biofilm model.

      (3) Data availability: We apologize for the oversight in not making our processed data readily available. We have deposited all relevant datasets, including raw and source data, in appropriate public repositories (GEO number: GSE260458) and provide clear instructions for accessing this data in the revised manuscript.

      (4) Supplementary information: To maintain the concise nature of the main text while providing necessary details, we will inculde additional supplementary information. This will cover extended methodology, detailed statistical analyses, and comprehensive data tables to support our findings.

      (5) Discussion of limitations: We will include a more thorough discussion of the potential limitations of our modified protocol and areas for future improvement.

      ​We believe these changes will significantly improve the clarity and reproducibility of our work, allowing readers to better evaluate the merits of our method.

      Reviewer #2 (Public Review): 

      [...] Strengths: 

      The introduced rRNA depletion method is highly efficient, with the depletion for E.coli resulting in over 90% of reads containing mRNA. The method is ready to use with existing PETRI-seq libraries which is a large advantage, given that no other rRNA depletion methods were published for split-pool bacterial scRNA-seq methods. Therefore, the value of the method for the field is high. There is also evidence that a small number of cells at the bottom of a static biofilm express PdeI which is causing the elevated c-di-GMP levels that are associated with persister formation. Given that PdeI is a phosphodiesterase, which is supposed to promote hydrolysis of c-di-GMP, this finding is unexpected. 

      Weaknesses: 

      With the descriptions and writing of the manuscript, it is hard to place the findings about the PdeI into existing context (i.e. it is well known that c-di-GMP is involved in biofilm development and is heterogeneously distributed in several species' biofilms; it is also known that E.coli diesterases regulate this second messenger, i.e. https://journals.asm.org/doi/full/10.1128/jb.00604-15). <br /> There is also no explanation for the apparently contradictory upregulation of c-di-GMP in cells expressing higher PdeI levels. Perhaps the examination of the rest of the genes in cluster 2 of the biofilm sample could be useful to explain the observed association. 

      Thank you for your thoughtful and constructive review of our manuscript. We are pleased that the reviewer recognizes the value and efficiency of our rRNA depletion method for PETRI-seq, as well as its potential impact on the field. We would like to address the points raised by the reviewer and provide additional context and clarification regarding the function of PdeI in c-di-GMP regulation.

      We acknowledge that c-di-GMP’s role in biofilm development and its heterogeneous distribution in bacterial biofilms are well studied. We appreciate the reviewer's observation regarding the seemingly contradictory relationship between increased PdeI expression and elevated c-di-GMP levels. This is indeed an intriguing finding that warrants further explanation.

      PdeI was predicted to be a phosphodiesterase responsible for c-di-GMP degradation. This prediction is based on sequence analysis where PdeI contains an intact EAL domain known for degrading c-di-GMP. However, it is noteworthy that PdeI also contains a divergent GGDEF domain, which is typically associated with c-di-GMP synthesis. This dual-domain architecture suggests a potential for complex regulatory roles. As reported, the knockout of the major phosphodiesterase PdeH in E. coli leads to the accumulation of c-di-GMP. Further, a point mutation on PdeI's divergent GGDEF domain (G412S) in this PdeH knockout strain resulted in decreased c-di-GMP levels, implying that the wild-type GGDEF domain in PdeI has a role in maintaining or increasing c-di-GMP levels in the cell. Additionally, PdeI contains a CHASE (cyclases/histidine kinase-associated sensory) domain. Combined with our experimental results demonstrating that PdeI is a membrane-associated protein, we predict that PdeI functions as a sensor that integrates environmental signals with c-di-GMP production under complex regulatory mechanisms. The experimental evidence, along with domain analysis, suggests that PdeI could contribute to c-di-GMP synthesis, rebutting the notion that it solely functions as a phosphodiesterase. Furthermore, our single-cell experiments showed a positive correlation between PdeI expression levels and c-di-GMP levels (Fig. 2J). HPLC LC-MS/MS analysis further confirmed that PdeI overexpression (induced by arabinose) upregulated c-di-GMP levels (Fig. 2K). Importantly, in our HPLC LC-MS/MS analysis, we compared the PdeI overexpression strain with the wild-type MG1655 strain, thereby excluding the influence of other genes in cluster 2. In summary, while PdeI is predicted to be a phosphodiesterase based on its sequence and the presence of an EAL domain, the additional presence of a divergent GGDEF domain and experimental evidence suggests that PdeI has a function in upregulating c-di-GMP levels. These findings support the hypothesis that PdeI may have both synthetic and regulatory roles in c-di-GMP metabolism.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The work by Joseph et al "Impact of the clinically approved BTK inhibitors on the conformation of full-length BTK and analysis of the development of BTK resistance mutations in chronic lymphocytic leukemia" seeks to comparatively analyze the effect of a range of covalent and noncovalent clinical BTK inhibitors upon BTK conformation. The novel aspect of this manuscript is that it seeks to evaluate the differential resistance mutations that arise distinctly from each of the inhibitors.

      Strengths:

      This is an exciting study that builds upon the fundamental notion of ensemble behavior in solutions for enzymes such as BTK. The HDX-MS and NMR experiments are adequately and comprehensively presented.

      We thank the reviewer for this positive feedback.

      Weaknesses:

      While I commend the novelty of the study, the absence of important controls greatly tempers my enthusiasm for this work. As stated in the abstract, there are no broad takeaways for how resistance mutation bias operated from this study, although the mechanism of action of 2 common resistance mutations is useful. How these 2 resistance mutations connect to ensemble behavior, is not obvious. This is partly because BTK does not populate just binary "open"/"closed" conformations, but there are likely multiple intermediate conformations. Each inhibitor appears to preferentially "select" conformations by the authors' own assessment (line 236) and this carries implications for the emergence of resistance mutations. The most important control that would help is to use ADP or nonhydrolyzable and ATP as a baseline to establish the "inactive" and "active" conformations. All of the HDX-MS and NMR studies use protein that has no nucleotide present. A major question that remains is whether each of the inhibitors preferentially favors/blocks ADP or ATP binding. This then means it is not equivalent to correlate functional kinase assay conditions with either HDX-MS or NMR experiments.

      We thank the reviewer for raising this point. The BTK inhibitors studied here are active site inhibitors that completely prevent (block) nucleotide (both ATP and ADP) binding. We believe the other question being asked here is whether the different BTK inhibitors bind preferentially to the ADP or ATP bound kinase (do the conformational states favored by ADP versus ATP bound BTK affect drug binding). We agree this is an interesting question that deserves further study. Here we are focused on the ligand bound state itself rather than on the conformational state selection mechanism of each inhibitor. Thus, HDX-MS and NMR work to compare ligand bound to apo-, ADP, and ATP bound BTK is beyond the scope of this manuscript. That said, previous work (doi: 10.1038/s41598-017-17703-5) has shown that the related TEC kinase, ITK, preferentially binds ADP when the kinase is in the autoinhibited conformation. Since we have previously shown that BTK adopts the autoinhibited conformation in the nucleotide free form (https://doi.org/10.7554/eLife.89489.2), we suggest that the comparison we have carried out here between drug bound and apo-protein is valid. Future work will carefully address the conformational preferences of all three conditions, apo-, ADP- and ATP-bound.

      Reviewer #2 (Public Review):

      Summary:

      Previous NMR and HDX-MS studies on full-length (FL) BTK showed that the covalent BTKi, ibrutinib, causes long-range effects on the conformation of BTK consistent with disruption of the autoinhibited conformation, based on HDX deuterium uptake patterns and NMR chemical shift perturbations. This study extends the analyses to four new covalent BTKi, acalabrutinib, zanubrutinib, tirabrutinib/ONO4059, and a noncovalent ATP competitive BTKi, pirtobrutinib/LOXO405.

      The results show distinct conformational changes that occur upon binding each BTKi. The findings show consistent NMR and HDX changes with covalent inhibitors, which move helix aC to an 'out' position and disrupt SH3-kinase interactions, in agreement with X-ray structures of the BTKi complexed with the BTK kinase domain. In contrast, the solution measurements show that pirtobrutinib maintains and even stabilizes the helix aC-in and autoinhibited conformation, even though the BTK:pritobrutinib crystallizes with helix aC-out. This and unexpected variations in NMR and HDX behavior between inhibitors highlight the need for solution measurements to understand drug interactions with the full-length BTK. Overall the findings present good evidence for allosteric effects by each BTKi that induce distal conformational changes which are sensitive to differences in inhibitor structure.

      The study goes on to examine BTK mutants T474I and L528W, which are known to confer resistance to pirtobrutinib, zanubritinib, and tirabrutinib. T474I reduces and L528W eliminates BTK autophosphorylation at pY551, while both FL-BTK-WT and FL-BTK-L528W increase HCK autophosphorylation and PLCg phosphorylation. These show that mutants partially or completely inactivate BTK and that inactive FL-BTK can activate HCK, potentially by direct BTK-HCK interactions. But they do not explain drug resistance. However, HDX and NMR show that each mutant alters the effects of BTKi binding compared to WT. In particular, T474I alters the effects of all three inhibitors around W395 and the activation loop, while L528W alters interactions around W395 with tirabrutinib and pirtobrutinib, and does not appear to bind zanubrutinib at all. The study concludes that the mutations might block drug efficacy by reducing affinity or altering binding mode.

      Strengths:

      The work presents convincing evidence that BTK inhibitors alter the conformation of regions distal to their binding sites, including those involved in the SH3-kinase interface, the activation loop, and a substrate binding surface between helix aF and helix aG. The findings add to the growing understanding of allosteric effects of kinase inhibitors, and their potential regulation of interactions between kinase and binding proteins.

      We thank the reviewer for these positive comments.

      Weaknesses:

      The interpretation of HDX, NMR, and kinase assays is confusing in some places, due to ambiguity in quantifying how much kinase is bound to the inhibitor. It would be helpful to confirm binding occupancy, in order to clarify if mutants lower the amount of BTK complexed with BTKi as implied in certain places, or if they instead alter the binding mode. In addition, the interpretation of the mutant effects might benefit from a more detailed examination of how each inhibitor occupies the ATP pocket and how substitutions of T474 and L528 with Ile and Trp respectively might change the contacts with each inhibitor.

      We thank the reviewer for these suggestions. As requested we have now modified the manuscript to clearly state the effects of the mutations on inhibitor binding. Additionally, we have included a new figure to discuss the interaction of the inhibitors within the BTK kinase active site to provide a better explanation for the impact of the resistance mutations.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Major Comments:

      (1) What is the binding affinity of ATP/ADP to BTK? BTK is purified by the authors as an apoenzyme (by the final purification by SEC, all protein should be completely stripped of nucleotide)- but must toggle between ATP and ADP-bound states. Do the inhibitors completely sterically block nucleotide binding? Do they only block one or the other- ADP/ATP binding? Do they weaken ADP/ATP binding? The authors have an opportunity with NMR to establish a clear baseline to compare the inhibitors' effects on BTK. It is not clear if the authors' assumption is that all BTKi share a common mode of action (Line 114).

      All BTK inhibitors studied in this work (Ibrutinib, Acalabrutinib, Zanubrutinib, Tirabrutinib and Pirtobrutinib) share a common mode of action. They are active site inhibitors that completely block nucleotide (ATP and ADP) binding. The introduction to the manuscript has been updated to add this information (lines 70-71, pg. 4).

      "The covalent BTK inhibitors (Ibrutinib, Acalabrutinib, Zanubrutinib and Tirabrutinib) and the non-covalent BTK inhibitor Pirtobrutinib bind tightly to the BTK active site (Kinact/KI or KD values in the nM range; DOI: 10.1056/NEJMoa2114110). In contrast, previous studies have reported nucleotide affinity for TEC kinases that are lower (KD in the µM range), (doi: 10.1038/s41598-017-17703-5). Additionally, the same work has shown that the conformational state of TEC kinases can impact nucleotide binding. The TEC kinases have a higher affinity for ADP (KD ~ 20 µM), as compared to ATP (KD ~ 15 fold lower than ADP), when the full-length protein adopts the autoinhibited conformation. Disruption of the TEC kinase autoinhibited conformation (by mutation) decreases the affinity for ADP, allowing ATP to bind, enabling kinase activity. Nevertheless, regardless of the conformational state of BTK, all the BTK inhibitors studied here block both ADP and ATP binding to the active site."

      (2) Is there an effect of nucleotide binding bias on resistance mutation emergence? Is there a nucleotide binding bias in the resistance mutations characterized in this study? There likely is - BTK L528W is catalytically inactive. It is not clear if this mutant stays bound to ADP or to ATP and cannot transfer the phosphate to its substrate. How does BTK T474I interact with ADP/ATP? This is needed before concluding - in lines 289-291- that mutations cause only minor conformational changes. This needs a qualifier - in the nucleotide-free apo conformation.

      The BTK L528W mutation introduces a bulky sidechain into the BTK kinase active site that sterically impedes both ATP and ADP binding. In fact, previous studies (https://doi.org/10.1016/j.jbc.2022.102555) have confirmed the inability of the BTK L528W mutant to bind ATP.

      The BTK T474I mutation could alter nucleotide binding. However, The BTK T474I mutation lowers the overall activity of BTK, and is consistent with previous work that have shown the same (https://doi.org/10.1021/acschembio.6b00480). The decrease in overall kinase activity cannot account for the development of resistance (which typically requires increased kinase activity). Hence, a decrease in inhibitor binding is likely driving resistance.

      Lines 293 (pg. 14) have been modified to indicate that the conformational changes observed in the BTK mutants are in the absence of nucleotide as requested.

      (3) What is the half-life BTK? And does inhibitor binding to BTK change the half-life of the inhibitor?

      BTK has a long half-life of 48-72 h (DOI: https://doi.org/10.1124/jpet.113.203489). Unbound covalent inhibitors are rapidly cleared from the body with short half-lives on the order of < 4h. Non-covalent BTK inhibitors typically have a longer half-life on the order of 20h. Once bound to BTK, the irreversible nature of binding by covalent inhibitors make them unavailable to other molecules. CLL patients are treated typically with a once daily or twice daily dose of BTK inhibitor. Hence, inhibitor binding to BTK does not alter the half-life of free inhibitor.

      (4) Are there broad differences between covalent and single non-covalent inhibitors upon resistance mutation bias? And nucleotide binding?

      The biggest difference observed between BTK covalent and non-covalent inhibitors in the emergence of resistance mutations is the occurrence of the C481S mutation in patients treated with covalent inhibitors. This resistance mutation is absent in patients treated with non-covalent BTK inhibitors. Patients that develop mutations in BTK C481 can no longer be treated with any of the approved covalent BTK inhibitors (as they all use BTK C481 for covalent linkage). To ensure BTK inhibition, patients with mutations in C481 can be treated with non-covalent BTK active site inhibitors. All currently approved BTK inhibitors (covalent and non-covalent) are active site inhibitors that compete with nucleotide binding.

      (5) It's unclear why the authors chose to evaluate the impact of inhibitor binding on the linker kinase domain first. This seems unnecessary.

      NMR analysis is easier on the smaller BTK linker kinase domain (LKD) fragment compared to the full-length protein. Hence for practical reasons we used the BTK LKD fragment.

      (6) Line 508 - there seems to be a gap in understanding protein half-lives, inhibitor half-lives, and the emergence of resistance mutations in this manuscript itself. The manuscript falls short of a mechanistic descriptor of variable inhibitors and resistance mutation bias.

      The half-life of the inhibitors assessed in this study are provided in Table 1 of this manuscript. The emergence of resistance mutations such as C481 are likely due to a direct consequence of differences in inhibitor half-life as described in the discussion section of this manuscript (page 23).

      (7) HDX-MS reports the conformational average difference across the ensemble but does not distinguish between the number of intermediary conformations. The authors should clarify that this is a limitation of an average readout method such as HDX-MS. This is currently not addressed.

      A sentence describing this limitation has been added (lines 219-221, pg. 11) as requested.

      Minor  Points:

      (1) Some of the qualitative descriptors are unnecessary - line 284 - "Slightly towards....". Line 286 - "Slight stabilizing effect on the conformation..." How slight is slight?

      Qualitative descriptors have been removed from the manuscript as requested.

      (2) The authors should provide SPR data with Kon and Koff values for Pirtobrutinib binding to BTK ( in the presence of ARP and ADP).

      SPR analysis of Pirtobrutinib has previously been reported. Pirtobrutininb binds to BTK wild-type with a KD of 0.9 nM (DOI: 10.1056/NEJMoa2114110). As mentioned earlier in response to comment 1, Pirtobrutinib binds to the BTK kinase active site and is competitive with both nucleotides (ATP and ADP, which bind with lower affinity, KD in the µM range).

      (3) In Figure 2, the legend needs to describe the specific time point represented. Same with Figure 5.

      The HDX-MS changes that are mapped onto the structure represent the maximal changes observed at any time point. The figure legends have been modified as requested to clarify this.

      Reviewer #2 (Recommendations For The Authors):

      (1) Figure 7 is an amazing and impressive finding, but it could use two controls: First a blot of pY551 to show more rigorously that FL-BTK-WT and L528W autophosphorylation is unaffected by zanubrutinib binding, just to eliminate the possibility that elevated pY551 accounts for the enhanced HCK phosphorylation.

      Both BTK FL enzymes (WT and L528W) in this assay are catalytically inactive and do not contribute to autophosphorylation on BTK Y551 (BTK FL WT is inhibited by Zanubrutinib and BTK FL L528W is catalytically dead). Additionally, BTK FL WT and BTK FL L528W are both able to activate HCK. Hence differences in pY551 levels between these BTK proteins cannot explain how both proteins are able to activate HCK.

      Nevertheless, as requested, we probed for pY551 levels on BTK. While BTK cannot autophosphorylate itself on BTK Y551 in this assay, BTK Y551 is able to be phosphorylated by HCK. BTK Y551 phosphorylation levels were higher in BTK FL WT compared to BTK FL L528W likely due to Y551 on the activation loop being less accessible in the BTK L528W mutant (which is more stabilized in the autoinhibited conformation) compared to the WT protein. This data has been added as a new panel in Figure 7a.

      Additionally, we tested the ability of the BTK FL L528W/Y551F double mutant to activate HCK. The BTK FL L528W/Y551F double mutant is able to activate HCK similar to BTK FL L528W single mutant, demonstrating that phosphorylation on Y551 is not necessary for HCK activation by BTK FL L528W. This new data has been added as supplemental figure S2a. Taken together, pY551 levels on BTK do not contribute to enhanced HCK phosphorylation. The results section of the manuscript has been modified to include this additional data (Lines 319-335, pg. 15-16).

      Second, controls performed in the absence of Zanubrutinib are needed for the time courses with HCK alone, HCK + FL-BTK WT, and HCK + FL-BTK-L528W. This would help show that the ability of BTK to increase the phosphorylation of HCK and PLCg1 is (or isn't) dependent on drug interactions with BTK, HCK, or PLCg.

      BTK FL L528W can enhance phosphorylation on PLCg by HCK even in the absence of Zanubrutinib. We have added this data as a new supplemental figure S2b. We have not included BTK FL WT in this analysis as in the absence of Zanubrutinib, we would have two active enzymes (HCK and BTK) in the assay which would complicate the interpretation of the data. The results section of the manuscript has been modified to include this additional data (Lines 333-335, pg. 16).

      And please comment: in cells, does zanubrutinib treatment (or any other drug) increase pY phosphorylation of HCK or PLCg?

      All clinically approved BTK inhibitors (covalent and non-covalent) inhibit BTK WT activity and decrease PLCg phosphorylation in cells. There have been no reports, to our knowledge, of any clinically approved BTK inhibitor causing an increase in HCK activity.

      (2) Sections of the Results discussing Figures 8 and 9 are confusing to read because they variously propose that the mutants (i) reduce inhibitor occupancy, or (ii) alter the inhibitor binding mode. However, some of the results unambiguously show an altered binding mode instead of reduced inhibitor binding.

      a) For example, HDX clearly shows protection by tira, zanu, and pirto, therefore reduced inhibitor binding does not seem to be an option. Therefore, I recommend modifying lines 357-363. "The differences in deuterium exchange for drug binding to WT and mutant BTK suggest that the T474I mutation either causes a reduction in inhibitor binding or otherwise alters the mode of drug interaction in the active site. "

      While the HDX-MS data of BTK T474I shows protection by Tirabrutinib, Zanubrutinib and Pirtobrutinib, the magnitude of the protection is reduced in the BTK T474I mutant compared to WT BTK (Fig. 8e) suggesting a reduction in inhibitor binding. These results are consistent with previous SPR analysis of the BTK T474I mutant which also showed reduced binding to Zanubrutinib, Acalabrutinib and Pirtobrutinib (DOI: 10.1056/NEJMoa2114110). The manuscript (lines 381-383, pg. 18) has been modified to clearly state that the BTK T474I mutation causes a reduction in inhibitor binding.

      b) I recommend modifying lines 370-373.

      " In stark contrast to the BTK T474I mutant, the BTK 370 L528W mutant does not show any change in deuterium incorporation in the presence of 371 Zanubrutinib, Tirabrutinib or Pirtobrutinib, providing strong evidence that the BTK L528W 372 mutant does not bind the inhibitors (Fig.8d)."

      Lines 432-435: Although the L528W mutation alters binding to both Tirabrutinib 432 and Pirtobrutinib, the NMR data suggests that it retains partial binding unlike the HDX-MS data 433 that suggests complete disruption of binding. The higher inhibitor concentrations used in the NMR 434 experiments compared to the HDX-MS experiments likely explain this discrepancy."

      The discordance in the L528W mutant between the lack of any HDX protection by tira and pirto versus the clear chemical shift of W395 by NMR is worrisome. If the HDX experiments were really done under conditions where binding occupancy was too low, then it seems important to redo these experiments at higher drug concentrations.

      Alternatively, and perhaps more useful would be to report Kd for binding of these inhibitors to the two mutants. That would allow the authors to interpret these results more definitively.

      SPR analysis of inhibitor binding to full-length BTK WT, T474I and L528W has been previously reported (DOI: 10.1056/NEJMoa2114110). The covalent BTK inhibitors (Ibrutinib, Acalabrutinib, and Zanubrutinib) and the non-covalent BTK inhibitor Pirtobrutinib bind tightly to full-length WT BTK (Kinact/KI or KD values in the nM range). The BTK T474I mutation disrupts binding to Zanubrutinib, Acalabrutinib and Pirtobrutinib, but not Ibrutinib and Fenebrutinib. BTK L528W mutation disrupts binding to Zanubrutinib, Acalabrutinib, Ibrutinib and Pirtobrutinib, but not Fenebrutinib. These previously published results are consistent with the HDX-MS and NMR data presented here. The manuscript has been modified to clearly state that the mutations reduce drug binding instead of altered binding.

      c) Recommend adding data to confirm statements in lines 419-421:

      "Spectral overlays of the BTK L528W mutant with and without Zanubrutinib show no 419 chemical shift changes (Fig. 9a, right panel) suggesting that the mutation completely disrupts 420 inhibitor binding in complete agreement with the HDX-MS data (Fig. 8d).

      428-432: The Pirtobrutinib-bound BTK L528W spectrum (Fig. 9c) shows two resonance positions, 428 one of which overlaps with the W395 resonance in the apo protein and the other that corresponds to that of the mutant protein bound to Pirtobrutinib. This data suggests a mixture of inhibitor bound and unbound BTK kinase domain in solution, likely due to a reduction in Pirtobrutinib affinity 431 caused by the L528W mutation."

      Likewise, direct measurements of binding affinity to L528W would be helpful. It is not completely convincing that the effects of this mutant are due to the reduced binding of either inhibitor. The effects of pirtobrutinib may instead reflect a slow exchange of W395 instead of 50% occupancy. For example, what happened in the rest of the spectra? Were other chemical shifts apparent in either case, which might address binding stoichiometry? It would be useful to show the full spectra in Supplemental figures, as well as any titrations that may have been done to confirm that the inhibitors are added at saturating concentration.

      As requested the full-spectra of Pirtobrutinib bound to BTK L528W has now been added as supplemental figure S1c. In the BTK L528W bound to Pirtobrutinib spectrum, two cross peaks are visible for multiple resonances, one of which overlaps with that of the apo BTK L528W spectrum, suggesting that there is a mixture of apo and inhibitor bound forms of BTK L528W.

      The clinically approved inhibitors that we are working with here (Ibrutinib, Acalabrutinib, Zanubrutinib, Tirabrutinib and Pirtobrutinib have reported IC50 values in the nM range (0.5 nM, 3 nM, 0.3 nM, 6.8 nM and 3.68 nM respectively). All the NMR work presented here was carried out at a 1:1.33, protein:inhibitor ratio (absolute concentration of the inhibitor was 200 µM). NMR titrations of BTK WT have been carried out with Ibrutinib (https://doi.org/10.7554/eLife.60470) and Tirabrutinib. Complete binding is observed at a 1:1 molar ratio of protein:inhibitor, consistent with the previously reported binding characteristics. Mass spec analysis also shows one covalent inhibitor bound to each BTK WT protein (Fig. 4a). The BTK T474I and L528W mutants were tested at the same protein:inhibitor ratio as WT BTK for ease of comparison.

      (3) The Discussion could use a structural perspective on the likely effects of each mutation on inhibitor binding. Both residues occupy positions in beta7 and the hinge, which are commonly found to form hydrophobic and polar contacts with ATP competitive inhibitors in many kinases. This would be useful to discuss and show as a figure, in order to give the non-kinase expert a better understanding of why the mutations might affect inhibitor binding. The variations in structures of each inhibitor and how they contact these two positions might be useful to inspect, and ask why some inhibitors but not others are affected by mutation, and why some inhibitors but not others induce effects over long distances to W395 and the activation loop.

      As requested, we have added a new paragraph in the discussion and a new figure (Fig. 10), to expand on likely effects of the mutations on inhibitor binding. The allosteric effects of some of the BTK inhibitors, on the other hand are currently being investigated and is beyond the scope of the current manuscript.

      (4) The authors propose that small differences in Tm and stability of L358W account for its effect on resistance. Does this mutant show elevated expression in patient tumors over those with WT BTK?

      Preliminary data indicates that BTK L528W levels are elevated in one of two patients carrying this resistance mutation. However, due to the low number of patients tested, we have chosen to not include the data in this study but will continue to pursue this question in future work.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      The Editors have assessed your revised submission and rather than issuing a further decision letter we are writing to invite you to make a few small amendments to this version of the paper as listed below.

      We added a summary paragraph at the end of the introduction for clarity.

      (1) RMSD values in Fig 2-source data 1 (and possibly reflected in Fig 2C) appear to be improbably duplicated, specifically ACh runs 1/2, Ebx runs 1/3, and error values for Ebx vs. ACh.

      Thanks for bringing this to our attention. The values are now corrected.

      (2) Shaded area in Fig 2-supplement 5D is inaccurate for depicting loop C.

      The shaded area now reflects residues in loop C, residues 189-198.

      (3) In Fig 2-supplement 4 where an abrupt change in ligand RMSD is implied to represent a cis-trans flip, the accompanying figure showing snapshots misleadingly depicts a different simulation of CCh instead of ACh.

      The snapshot was from the correct ACh simulation. It was mislabeled as CCh in the legend, which now stands corrected.

      (4) Legend to Fig 3 seems misleading regarding colors in the porcupine plots.

      The color pattern indicated in the legend represents the FEL plot and not the porcupine plot. Description about the porcupine plot is not associated with any color.

      (5) Some shaded regions in Fig 6-supplement 2 do not correspond to intervals reported in Fig 4-source data 1.

      Thanks. This is now corrected to match the table.

      Given that some of the above points have remained unaddressed from the prior round of review, the authors should double check that they have addressed any other relevant prior comments not explicitly listed here.

      Finally, the revised first results section has removed the explanation as to why the authors opted to simulate a dimer (i.e., affinity being affected only by local perturbations). The authors should consider reincorporating this explanation for readers, as well as adding a reference to Wang et al. 1997 (PMID: 9222901) in regard to lines 116-119.

      The revised section now includes an added explanation on why dimer was used in simulations. Gupta et. al., J Gen Physiol. 2017 Jan; 149(1): 85–103 was added, as it includes residues from not just the M1 domain that Wang et al covers, but other TMD regions also.

    1. Author response:

      eLife Assessment

      Zhang et al. present important findings that reveal a new role for TET2 in controlling glucose production in the liver, showing that both fasting and a high-fat diet increase TET2 levels, while its absence reduces glucose production. TET2 works with HNF4α to activate the FBP1 gene upon glucagon stimulation, while metformin disrupts TET2-HNF4α interaction, lowering FBP1 levels and improving glucose homeostasis. While the results are solid, more details about the mechanisms and methods are needed to strengthen the study's conclusions

      Thanks for the positive evaluation and constructive comments, which will significantly improve the quality of the manuscript. We will provide more details about the mechanisms and methods in the revised version.

      Reviewer #1 (Public review):

      Summary:

      Zhang et al. describe a delicate relationship between Tet2 and FBP1 in the regulation of hepatic gluconeogenesis.

      Strengths:

      The studies are very mechanistic, indicating that this interaction occurs via demethylation of HNF4a. Phosphorylation of HNF4a at ser 313 induced by metformin also controls the interaction between Tet2 and FBP1.

      Weaknesses:

      The results are briefly described, and oftentimes, the necessary information is not provided to interpret the data. Similarly, the methods section is not well developed to inform the reader about how these experiments were performed. While the findings are interesting, the results section needs to be better developed to increase confidence in the interpretation of the results.

      We thank the reviewer for the positive evaluation and constructive comments. There is a factual error in the paragraph of “Strengths”. The comment that “The studies are very mechanistic, indicating that this interaction occurs via demethylation of HNF4a. Phosphorylation of HNF4a at ser 313 induced by metformin also controls the interaction between Tet2 and FBP1.” should be revised as follows: “The studies are very mechanistic, indicating that this interaction occurs via demethylation of FBP1. Phosphorylation of HNF4a at ser 313 induced by metformin also controls the interaction between Tet2 and HNF4a.”

      Following reviewer’s suggestions, we will provide all the necessary information in methods section to inform the reader about how these experiments were performed, and improve the description of the results in the revised revision.

      Reviewer #2 (Public review):

      Summary:

      This study reveals a novel role of TET2 in regulating gluconeogenesis. It shows that fasting and a high-fat diet increase TET2 expression in mice, and TET2 knockout reduces glucose production. The findings highlight that TET2 positively regulates FBP1, a key enzyme in gluconeogenesis, by interacting with HNF4α to demethylate the FBP1 promoter in response to glucagon. Additionally, metformin reduces FBP1 expression by preventing TET2-HNF4α interaction. This identifies an HNF4α-TET2-FBP1 axis as a potential target for T2D treatment.

      Strengths:

      The authors use several methods in vivo (PTT, GTT, and ITT in fasted and HFD mice; and KO mice) and in vitro (in HepG2 and primary hepatocytes) to support the existence of the HNF4alpha-TET-2-FBP-1 axis in the control of gluconeogenesis. These findings uncovered a previously unknown function of TET2 in gluconeogenesis.

      Weaknesses:

      Although the authors provide evidence of an HNF4α-TET2-FBP1 axis in the control of gluconeogenesis, which contributes to the therapeutic effect of metformin on T2D, its role in the pathogenesis of T2D is less clear. The mechanisms by which TET2 is up-regulated by glucagon should be more explored.

      We thank the reviewer for the supports and constructive comments, and agree with the reviewer that the current version mainly focused on the function of HNF4α-TET2-FBP1 axis in the control of gluconeogenesis. We will explore the pathogenesis of T2D and the mechanism how TET2 is up-regulated by glucagon in the revised revision.

      Both reviewers made positive comments and we will address all the reviewers’ concerns either by new experiments or clarifications. We thank editors and reviewers for the constructive comments, which will significantly improve the quality of the manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their overall positive evaluation of the manuscript and finding MChIP-C to be a valuable technological advance. To address the reviewer’s helpful comments and recommendations, we performed several additional analyses and improved the text and figures.

      Briefly, we extended and clarified the main text and methods, added analyses of interactions at consensus and method-specific CTCF/DHS sites (Figure S3), added additional comparison tracks to other methods in specific loci (Figure 4), added examples of MChIP-C E-P interactions at previously-verified loci (Figure S2a) and added extensive MChIP-C downsampling analysis (Figure S6).

      Recommendations for authors:

      Reviewer #2 (Recommendations For The Authors:

      (1) Provide .HiC and .cool files for the community to explore the data.

      We thank the reviewer for this suggestion. We have uploaded both the raw and processed data to GEO. We note that .cool and .hic formats may be less useful for this type of data, since it includes only promoter-based interactions and thus the resulting interaction matrix is extremely sparse at the relevant resolutions. In addition, we provide an online genomic browser for our data.

      (2) Provide an R or bioconda package for future data processing.

      We thank the reviewer for this suggestion. We have organized and streamlined the relevant code for processing MChIP-C data and it is available as a github repository.

      (3) The authors should avoid using "mln" for "million".

      We thank the reviewer for this suggestion. We have corrected this in the text.

      Reviewer #3 (Recommendations For The Authors):

      (1) Figure 2- A handful of sites identified by MChIP-C should be verified by 3C or 4C to validate they are true interactions using an orthogonal approach.

      We thank the reviewer for this suggestion. As we show in the current manuscript (and supported by several papers using MNase-based C-methods), C-methods based on restriction enzymes are considerably less sensitive than those based on MNase, so using these methods for anecdotal validation may not be adequate. In addition, it is difficult to extract accurate quantitative measurements from 3C and 4C due to challenges in bias normalization. As a large-scale alternative, we analyzed a set of consensus promoter-CTCF and promoter-DHS interactions identified by all 3 methods (PLAC-seq/Micro-C/MChIP-C; Figure S3). We find that MChIP-C shows clearly superior resolution and sensitivity on these consensus sites. In fact, even for sites which were only called by one of the competing methods, we still see better signal in the MChIP-C data (suggesting that our simplistic MChIP-C peak-calling approach could be improved for further gain). However, as this analysis focuses on “easily detectable” consensus sites, we also emphasize the importance of inspecting interactions which are not detected clearly by alternative methods. To this end, we now show in our manuscript interaction profiles for 11 loci (MYC, PTGER3, CITED2, BTG1, ANTXR2, SEMA7A, LMO2, GATA1, HBG2, VEGFA, MYB), each showing high-resolution MChIP-C interactions which coincide with expected genomic features (p300, CTCF, H3K27ac, known enhancers) and are not clearly observable in Micro-C and PLAC-seq. We also note that the extended overlap of detected MChIP-C interactions with functionally validated enhancers (as measured by CRISPRi) provides an additional large-scale orthogonal validation.

      (2) A supplemental table indicating read pair depth, etc, similar to S02, should be added for the datasets used for comparison (HiChIP-etc). Given the age differences between some of the reference data used, it may represent simply an improvement by increasing sequencing depth rather than a true technical advantage.

      We thank the reviewer for this suggestion. We have added the sequencing depths of the relevant datasets in the methods section. We also performed extensive downsampling analyses as explained in response to the next point.

      (3) I would recommend performing a downsampling analysis to determine at what point the MChIP-C data reaches saturation in terms of the number of reads, with a comparison to the HiChIP reference data. This would allow a more objective measure of the sensitivity of the assays with reference to read depth.

      We thank the reviewer for this suggestion. First, we note that downsampling does not affect the high sensitivity and resolution results as shown in aggregate plots (e.g. Figure 2 and Figure S3). However, downsampling can affect individual peak calling. We thus downsampled our data to 50%, approximately matching the number of total informative reads of both PLAC-seq and Micro-C (i.e. ~20M). We also further downsampled our data to 25% and 10%. With respect to prediction of K562 functionally validated enhancer-promoter interactions (Figure S6b), even at 25% downsampling MChIP-C achieves both a higher recall and higher precision than the other methods, with a slightly higher false-positive rate. At 10% sampling, recall is slightly worse than Micro-C and PLAC-seq, but both the precision and false-positive rate are better than the alternatives. With respect to saturation, we plotted the number of unique distal cis read pairs versus the total number of reads (Figure S6c), and find that our MChIP-C data does not yet show saturation. We also show that downsampling our data to 50% maintains  ~80% of the called interactions (Figure S6d).

      (4) "our results suggest that MChIP-C achieves superior sensitivity and resolution compared to C-methods based on standard restriction enzymes." The sensitivity claims are supported by Figure 2, but not the resolution claims. This is particularly challenging when using histone marks since they can be broad. To directly compare the resolution of MChIP-C to other approaches such as ChIA-PET or HiChIP CTCF or a similar DNA binding protein is required.

      We thank the reviewer for this suggestion. We first note that actually both sensitivity and resolution are relevant for the results shown in Figure 2 and for the signal-to-noise calculations. This is because the low resolution of PLAC-seq peaks can result in very broad peaks that cover the entire area of the interrogated window (5kb on each side), which could seem like low sensitivity. However, we believe that the new Figure S3 may show the higher resolution of MChIP-C more clearly, as do the 11 locus interaction profiles tracks shown in Figure 2, Figure 4 and Figure S2.

      Public reviews:

      Reviewer #1:

      The authors presented a new MNase-based proximity ligation method called MChIP-C, allowing for the measurement of protein-mediated chromatin interactions at single-nucleosome resolution on a genome-wide scale. With improved resolution and sensitivity, they explored the spatial connectivity of active promoters and identified the potential candidates for establishing/maintaining E-P interactions. Finally, with published CRISPRi screens, they found that most functionally verified enhancers do physically interact with their cognate promoters, supporting the enhancer-promoter looping model.

      The study's experimental approach and findings are interesting. However, several issues need to be addressed.

      (1) The authors described that "the lack of interaction between experimentally-validated enhancers and their cognate promoters in some studies employing C-methods has raised doubts regarding the classical promoter-enhancer looping model", so it's intriguing to see whether the MChIP-C could indeed detect the E-P interactions which were not identified by C-methods as they mentioned (Benabdallah et al., 2019; Gupta et al., 2017). I agree that they identified more E-P interactions using MChIP-C, but specifically, they should show at least 2-3 cases. It's important since this is the main conclusion the authors want to draw.

      We thank the reviewer for this suggestion. As we show in the current manuscript (and supported by several papers using MNase-based C-methods), C-methods based on restriction enzymes are considerably less sensitive than those based on MNase, so using these methods for anecdotal validation may not be useful. In addition, it is difficult to extract accurate quantitative measurements from 3C and 4C due to challenges in bias normalization. As a large-scale alternative, we analyzed a set of consensus promoter-CTCF and promoter-DHS interactions identified by all 3 methods (PLAC-seq/Micro-C/MChIP-C; new Figure S3). We find that MChIP-C shows clearly superior resolution and sensitivity on these consensus sites. However, as this analysis focuses on “easily detectable” consensus sites, we also emphasize the importance of inspecting interactions which are not detected clearly by alternative methods. To this end, we now show in our manuscript interaction profiles for 11 loci (MYC, PTGER3, CITED2, BTG1, ANTXR2, SEMA7A, LMO2, GATA1, HBG2, VEGFA, MYB), each showing high-resolution MChIP-C interactions which coincide with expected genomic features (p300, CTCF, H3K27ac, known enhancers) and are not clearly observable in Micro-C and PLAC-seq. We also note that the extended overlap of detected MChIP-C interactions with functionally validated enhancers (as measured by CRISPRi) provides an additional large-scale orthogonal validation.

      (2) The authors compared their data to those of Chen et al. (Chen et al., 2022), who used PLAC-seq with anti-H3K4me3 antibodies in K562 cells and standard Micro-C data previously reported for K562, concluding that "MChIP-C achieves superior sensitivity and resolution compared to C-methods based on standard restriction enzymes.". This is not convincing since they only compared their data to one dataset. More datasets from other cell lines should be included.

      We thank the reviewer for this suggestion. We would like to clarify that all datasets in the paper are K562 datasets, and this cell line is unique in the availability of CRISPRi screens, PLAC-Seq, Micro-C, and hundreds of ChIP-Seq tracks for it. We would expect datasets from other cell types to have changes in their regulatory interactions, so they would be less adequate for direct comparison. In addition, the general resolution and sensitivity limitations (e.g. due to restriction fragment size) are not dependent on cell type and has been shown in other MNase-based method papers.

      (3) The reasons for choosing Chen's data (Chen et al., 2022) and CRISPRi screens (Fulco et al., 2019; Gasperini et al., 2019) should be provided since there are so many out there.

      We thank the reviewer for this comment. We selected these CRISPRi screen datasets since they match the cell type (K562) which we used for MChIP-C, and we selected the PLAC-seq data as it is the only PLAC-seq/HiChIP dataset which matches both the cell type (K562) and the antibody (H3K4me3).

      (4) The authors identify EP300 histone acetyltransferase and the SWI/SNF remodeling complex as potential candidates for establishing and/or maintaining enhancer-promoter interactions, but not RNA polymerase II, mediator complex, YY1, and BRD4. More explanation is needed for this point since they're previously suggested to be associated with E-P interactions.

      We thank the reviewer for this comment. We apologize for this point being unclear: as Figure S5 shows, we actually did identify Pol2, mediator YY1 and BRD4 as predictive features, but P300 and SWI/SNF show somewhat higher predictive power. We have now clarified this in the text.

      (5) The limitations of the method should be discussed.

      We thank the reviewer for this suggestion. We have now added to the text a discussion of what we view as the current main limitation of the method, namely its low fraction of informative reads.

      Reviewer #2:

      Summary:

      Golov et al performed the capture of MChIP-C using the H3K4me3 antibody. The new method significantly increases the resolution of Micro-C and can detect clear interactions which are not well described in the previous HiChIP/PLAC-seq method. Overall, the paper represents a significant technological advance that can be valuable to the 3D genomic field in the future.

      Strengths:

      (1) The authors established a novel method to profile the promoter center genomic interactions based on the Micro-C method. Such a method could be very useful to dissect the enhancer promoter interaction which has long been an issue for the popular HiC method.

      (2) With the MChIP-C method the authors are able to find new genomic interactions with promoter regions enriched in CTCF. The author has significantly increased the detection sensitivity of such methods as PLAC-seq, Micro-C, and HiChIP.

      (3) The authors identified a new type of interaction between the CTCF-less promoter and the CTCF binding site. This particular type of interaction could explain the CTCF's function in regulating gene transcription activity as observed in many studies. I personally think the second stripe model of P-CTCF interaction is more likely as this has been proposed for the super-enhancer stripe model before. The author should also discuss this part of the story more.

      Weaknesses:

      (1) The data presentation should include the contact heat map. The current data presentation makes it hard for the readers to have a comprehensive view of pair-wise interactions between promoters and the PIR. In particular, these maps may directly give answers to the proposed model of promoter-CTCF interactions by the authors in Figure 3a.

      We thank the reviewer for this suggestion. We note that since the data mainly includes promoter-based interactions, the resulting interaction matrix is extremely sparse at the relevant resolutions. Specifically with respect to promoter-CTCF interactions, without a good sampling of the entire interaction matrix it is difficult to confidently distinguish between the two models only based on MChIP-C data, as it would require data about interaction between non-promoter regions and CTCF.

      (2) In Fig 3D, there seems a very limited increase of power predicting MChIP-C signal for DHS-promoter pairs beyond the addition of CTCF. This figure could be simplified with fewer factors.

      We thank the reviewer for this suggestion. We agree that the last factors do not add predictive power, but we do not think this overly complicates the figure and we prefer to leave these for the reader to evaluate.

      (3) The current method seems to have a big fraction of unusable reads. How the authors process the data should be included to allow for future reproduction. Ideally, the authors should generate a package on R or Bioconda for this processing.

      We thank the reviewer for this suggestion. We agree that the fraction of informative reads is small with respect to some other methods, and expect future versions of MChIP-C to address this limitation. We have organized and streamlined the relevant code for processing MChIP-C data and it is available as a github repository.

      Reviewer #3:

      Summary:

      This manuscript represents a technological development- specifically a micrococcal nuclease chromatin capture approach, termed MChIP-C to identify promoter-centered chromatin interactions at single nucleosome resolution via a specific protein, similar to HiChIP, ChIA-PET, etc.. In general, the manuscript is technically well done. Two major issues raise concerns that need to be addressed. First, it does not appear that novel chromatin interactions identified by MChIP-C which were missed by other approaches such as HiChIP, were validated. This is central to the argument of "improved" sensitivity, which is one of the key factors to assess sensitivity. Second is the question of resolution. Because the authors focus on a histone mark (H3K4me3) it is unclear whether the resolution of the assay truly exceeds other approaches, especially microC. These two issues are not completely supported by the data provided.

      Strengths:

      The method appears to hold promise to improve both the sensitivity and resolution of protein-centered chromatin capture approaches.

      Weaknesses:

      (1) Specific validation experiments to demonstrate the identification of previously missed novel interactions are missing.

      We thank the reviewer for this suggestion. Given that such interactions are missed by Micro-C and PLAC-seq, it would not make sense to use these methods for validation. We thus propose that MChIP-C interactions can be validated by their overlap with expected genomic features. To this end, we now show in our manuscript interaction profiles for 11 loci (MYC, PTGER3, CITED2, BTG1, ANTXR2, SEMA7A, LMO2, GATA1, HBG2, VEGFA, MYB), each showing high-resolution MChIP-C interactions which coincide with expected genomic features (p300, CTCF, H3K27ac, known enhancers) and are not clearly observable in Micro-C and PLAC-seq. In addition, the higher overlap of MChIP-C interactions with functionally-validated K562 enhancer-promoter interactions (provided by CRISPRi screens) provides further functional validation for novel MChIP-C interactions.

      (2) It is unclear if the resolution is really superior based on the data provided.

      We thank the reviewer for this comment. We first note that actually both sensitivity and resolution are relevant for the results shown in Figure 2 and for the signal-to-noise calculations. This is because the low resolution of PLAC-seq peaks can result in very broad peaks that cover the entire area of the interrogated window (5kb on each side), which could seem like low sensitivity. However, we believe that the new Figure S3 may show the higher resolution of MChIP-C more clearly, as do the 11 locus interaction profiles tracks shown in Figure 2, Figure 4 and Figure S2.

      (3) It is unclear how much advantage the approach has, especially compared to existing approaches such as HiChIP since sequencing depth as a variable is not adequately addressed.

      We thank the reviewer for this comment. First, we note that downsampling does not affect the high sensitivity and resolution results as shown in aggregate plots (e.g. Figure 2 and Figure S3). However, downsampling can affect individual peak calling. We thus downsampled our data to 50%, approximately matching the number of total informative reads of both PLAC-seq and Micro-C (i.e. ~20M). We also further downsampled our data to 25% and 10%. With respect to prediction of K562 functionally validated enhancer-promoter interactions (Figure S6b), even at 25% downsampling MChIP-C achieves both a higher recall and higher precision than the other methods, with a slightly higher false-positive rate. At 10% sampling, recall is slightly worse than Micro-C but both the precision and false-positive rate are better than the alternatives.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The manuscript proposes that 5mC modifications to DNA, despite being ancient and widespread throughout life, represent a vulnerability, making cells more susceptible to both chemical alkylation and, of more general importance, reactive oxygen species. Sarkies et al take the innovative approach of introducing enzymatic genome-wide cytosine methylation system (DNA methyltransferases, DNMTs) into E. coli, which normally lacks such a system. They provide compelling evidence that the introduction of DNMTs increases the sensitivity of E. coli to chemical alkylation damage. Surprisingly they also show DNMTs increase the sensitivity to reactive oxygen species and propose that the DNMT generated 5mC presents a target for the reactive oxygen species that is especially damaging to cells. Evidence is presented that DNMT activity directly or indirectly produces reactive oxygen species in vivo, which is an important discovery if correct, though the mechanism for this remains obscure.

      Strengths:

      This work is based on an interesting initial premise, it is well-motivated in the introduction and the manuscript is clearly written. The results themselves are compelling.

      We thank the reviewer for their positive response to our study.  We also really appreciate the thoughtful comments raised.  Adding the considerations raised below to the manuscript will considerably strengthen our findings.

      Weaknesses:

      I am not currently convinced by the principal interpretations and think that other explanations based on known phenomena could account for key results. Specific points below.

      (1) As noted in the manuscript, AlkB repairs alkylation damage by direct reversal (DNA strands are not cut). In the absence of AlkB, repair of alklylation damage/modification is likely through BER or other processes involving strand excision and resulting in single stranded DNA. It has previously been shown that 3mC modification from MMS exposure is highly specific to single stranded DNA (PMID:20663718) occurring at ~20,000 times the rate as double stranded DNA. Consequently, the introduction of DNMTs is expected to introduce many methylation adducts genome-wide that will generate single stranded DNA tracts when repaired in an AlkB deficient background (but not in an AlkB WT background), which are then hyper-susceptible to attack by MMS. Such ssDNA tracts are also vulnerable to generating double strand breaks, especially when they contain DNA polymerase stalling adducts such as 3mC. The generation of ssDNA during repair is similarly expected follow the H2O2 or TET based conversion of 5mC to 5hmC or 5fC neither of which can be directly repaired and depend on single strand excision for their removal. The potential importance of ssDNA generation in the experiments has not been considered.

      We thank the reviewer for this interesting and insightful suggestion.  Our interpretation of our findings is that a subset of MMS-induced DNA damage, specifically 3mC, overlaps with the damage introduced by DNMTs and this accounts for increased sensitivity to MMS when DNMTs are expressed.  However, the idea that the introduction of 3mC by DNMT actually makes the DNA more liable to damage by MMS, potentially through increasing the level of ssDNA, is also a potential explanation, which could operate in addition to the mechanism that we propose.

      (2) The authors emphasise the non-additivity of the MMS + DNMT + alkB experiment but the interpretation of the result is essentially an additive one: that both MMS and DNMT are introducing similar/same damage and AlkB acts to remove it. The non-additivity noted would seem to be more consistent with the ssDNA model proposed in #1. More generally non-additivity would also be seen if the survival to DNA methylation rate is non-linear over the range of the experiment, for example if there is a threshold effect where some repair process is overwhelmed. The linearity of MMS (and H2O2) exposure to survival could be directly tested with a dilution series of MMS (H2O2).

      We thank the reviewer for this point.  As in the response to point #1, the reviewer’s hypothesis of increased potency of MMS, potentially through increased ssDNA, downstream of 3mC induction by DNMT, is a good one.  The reviewers’ suggestion would produce a highly non-linear response to MMS treatment in the AlkB mutant in the DNMT background, so we agree that investigating non-linearity over a wider range rather than inferring from the non-additivity of a single point would be useful in evaluating the results so we will add a dose-response curve for DNMT-expressing cells to MMS to the revised version of the manuscript.

      (3) The substantial transcriptional changes induced by DNMT expression (Supplemental Figure 4) are a cause for concern and highlight that the ectopic introduction of methylation into a complex system is potentially more confounded than it may at first seem. Though the expression analysis shows bulk transcription properties, my concern is that the disruptive influence of methylation in a system not evolved with it adds not just consistent transcriptional changes but transcriptional heterogeneity between cells which could influence net survival in a stressed environment. In practice I don't think this can be controlled for, possibly quantified by single-cell RNA-seq but that is beyond the reasonable scope of this paper.

      We fully agree with the reviewer and, indeed, we are very interested in what is driving the transcriptional changes that we observed.  Work is currently underway in the lab to investigate this further but, as the reviewer suggests, is beyond the scope of this paper.  However, we will include a more extensive comment about the transcriptional changes in the discussion of the revised manuscript.

      (4) Figure 4 represents a striking result. From its current presentation it could be inferred that DNMTs are actively promoting ROS generation from H2O2 and also to a lesser extent in the absence of exogenous H2O2. That would be very surprising and a major finding with far-reaching implications. It would need to be further validated, for example by in vitro reconstitution of the reaction and monitoring ROS production. Rather, I think the authors are proposing that some currently undefined, indirect consequence of DNMT activity promotes ROS generation, especially when exogenous H2O2 is available. It would help if this were clarified.

      We thank the reviewer for picking this up.  In the current version’s discussion, we raised two possible explanations for why DNMT (even without H2O2) increases the ROS levels.  One idea is direct activity of DNMT, and one is through the product of DNMT activity acting as a platform to generate more ROS from endogenous or exogenous sources.  We argued that direct activity is less likely, exactly as the reviewer points out.  It is, however, not impossible and we agree with the reviewer that, if it were to be the case, it would be a striking result.  In the revised version of the manuscript we will include an experiment to test whether DNMTs can generate ROS in vitro, which may provide preliminary evidence to distinguish between the two hypotheses we raised, and we will also edit the text of the discussion to clarify our reasoning. 

      Reviewer #2 (Public review):

      5-methylcytosine (5mC) is a key epigenetic mark in DNA and plays a crucial role in regulating gene expression in many eukaryotes including humans. The DNA methyltransferases (DNMTs) that establish and maintain 5mC, are conserved in many species across eukaryotes, including animals, plants, and fungi, mainly in a CpG context. Interestingly, 5mC levels and distributions are quite variable across phylogenies with some species even appearing to have no such DNA methylation.

      This interesting and well-written paper discusses the continuation of some of the authors' work published several years ago. In that previous paper, the laboratory demonstrated that DNA methylation pathways coevolved with DNA repair mechanisms, specifically with the alkylation repair system. Specifically, they discovered that DNMTs can introduce alkylation damage into DNA, specifically in the form of 3-methylcytosine (3mC). (This appears to be an error in the DNMT enzymatic mechanism where the generation 3mC as opposed to its preferred product 5-methylcytosine (5mC), is caused by the flipped target cytosine binding to the active site pocket of the DNMT in an inverted orientation.) The presence of 3mC is potentially toxic and can cause replication stress, which this paper suggests may explain the loss of DNA methylation in different species. They further showed that the ALKB2 enzyme plays a crucial role in repairing this alkylation damage, further emphasizing the link between DNA methylation and DNA repair.

      The co-evolution of DNMTs with DNA repair mechanisms suggests there can be distinct advantages and disadvantages of DNA methylation to different species which might depend on their environmental niche. In environments that expose species to high levels of DNA damage, high levels of 5mC in their genome may be disadvantageous. This present paper sets out to examine the sensitivity of an organism to genotoxic stresses such as alkylation and oxidation agents as the consequence of DNMT activity. Since such a study in eukaryotes would be complicated by DNA methylation controlling gene regulation, these authors cleverly utilize Escherichia coli (E.coli) and incorporate into it the DNMTs from other bacteria that methylate the cytosines of DNA in a CpG context like that observed in eukaryotes; the active sites of these enzymes are very similar to eukaryotic DNMTs and basically utilize the same catalytic mechanism (also this strain of E.coli does not specifically degrade this methylated DNA) .

      The experiments in this paper more than adequately show that E. coli expression of these DNMTs (comparing to the same strain without the DNMTS) do indeed show increased sensitivity to alkylating agents and this sensitivity was even greater than expected when a DNA repair mechanism was inactivated. Moreover, they show that this E. coli expressing this DNMT is more sensitive to oxidizing agents such as H2O2 and has exacerbated sensitivity when a DNA repair glycosylase is inactivated. Both propensities suggest that DNMT activity itself may generate additional genotoxic stress. Intrigued that DNMT expression itself might induce sensitivity to oxidative stress, the experimenters used a fluorescent sensor to show that H2O2 induced reactive oxygen species (ROS) are markedly enhanced with DNMT expression. Importantly, they show that DNMT expression alone gave rise to increased ROS amounts and both H2O2 addition and DNMT expression has greater effect that the linear combination of the two separately. They also carefully checked that the increased sensitivity to H2O2 was not potentially caused by some effect on gene expression of detoxification genes by DNMT expression and activity. Finally, by using mass spectroscopy, they show that DNMT expression led to production of the 5mC oxidation derivatives 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) in DNA. 5fC is a substrate for base excision repair while 5hmC is not; more 5fC was observed. Introduction of non-bacterial enzymes that produce 5hmC and 5fC into the DNMT expressing bacteria again showed a greater sensitivity than expected. Remarkedly, in their assay with addition of H2O2, bacteria showed no growth with this dual expression of DNMT and these enzymes.

      Overall, the authors conduct well thought-out and simple experiments to show that a disadvantageous consequence of DNMT expression leading to 5mC in DNA is increased sensitivity to oxidative stress as well as alkylating agents.

      Again, the paper is well-written and organized. The hypotheses are well-examined by simple experiments. The results are interesting and can impact many scientific areas such as our understanding of evolutionary pressures on an organism by environment to impacting our understanding about how environment of a malignant cell in the human body may lead to cancer.

      We thank the reviewer for their response to our study, and value the time taken to produce a public review that will aid readers in understanding the key results of our study. 

      Reviewer #3 (Public review):

      Summary:

      Krwawicz et al., present evidence that expression of DNMTs in E. coli results in (1) introduction of alkylation damage that is repaired by AlkB; (2) confers hypersensitivity to alkylating agents such as MMS (and exacerbated by loss of AlkB); (3) confers hypersensitivity to oxidative stress (H2O2 exposure); (4) results in a modest increase in ROS in the absence of exogenous H2O2 exposure; and (5) results in the production of oxidation products of 5mC, namely 5hmC and 5fC, leading to cellular toxicity. The findings reported here have interesting implications for the concept that such genotoxic and potentially mutagenic consequences of DNMT expression (resulting in 5mC) could be selectively disadvantageous for certain organisms. The other aspect of this work which is important for understanding the biological endpoints of genotoxic stress is the notion that DNA damage per se somehow induces elevated levels of ROS.

      Strengths:

      The manuscript is well-written, and the experiments have been carefully executed providing data that support the authors' proposed model presented in Fig. 7 (Discussion, sources of DNA damage due to DNMT expression).

      Weaknesses:

      (1) The authors have established an informative system relying on expression of DNMTs to gauge the effects of such expression and subsequent induction of 3mC and 5mC on cell survival and sensitivity to an alkylating agent (MMS) and exogenous oxidative stress (H2O2 exposure). The authors state (p4) that Fig. 2 shows that "Cells expressing either M.SssI or M.MpeI showed increased sensitivity to MMS treatment compared to WT C2523, supporting the conclusion that the expression of DNMTs increased the levels of alkylation damage." This is a confusing statement and requires revision as Fig. 2 does ALL cells shown in Fig. 2 are expressing DNMTs and have been treated with MMS. It is the absence of AlkB and the expression of DNMTs that that causes the MMS sensitivity.

      We thank the reviewer for this and agree that this needs to be clarified with regards to the figure presented and will do so in the revised manuscript. 

      (2) It would be important to know whether the increased sensitivity (toxicity) to DNMT expression and MMS is also accompanied by substantial increases in mutagenicity. The authors should explain in the text why mutation frequencies were not also measured in these experiments.

      This is an important point because it is not immediately obvious that increased sensitivity would be associated with increased mutagenicity (if, for example, 3mC was never a cause of innacurate DNA repair even in the absence of AlkB).  We will carry out this experiment and include these data in the revised version of the manuscript.  Detailed consideration of the types and sources of mutations is beyond the scope of this manuscript, but we are also working on this and hope to produce data on this in the future. 

      (3) Materials and Methods. ROS production monitoring. The "Total Reactive Oxygen Species (ROS) Assay Kit" has not been adequately described. Who is the Vendor? What is the nature of the ROS probes employed in this assay? Which specific ROS correspond to "total ROS"?

      The ROS measurement was with a kit from ThermoFisher: https://www.thermofisher.com/order/catalog/product/88-5930-74.  The probe is DCFH-DA.  This is a general ROS sensor that is oxidised by a large number of cellular reactive oxygen species hence we cannot attribute the signal to a single species.  Use of a technique with the potential to more precisely identify the species involved is something we plan to do in future, but is beyond what we can do as part of this study.  We will include a comment to this effect in the revised version of the manuscript.

      (4) The demonstration (Fig. 4) that DNMT expression results in elevated ROS and its further synergistic increase when cells are also exposed to H2O2 is the basis for the authors' discussion of DNA damage-induced increases in cellular ROS. S. cerevisiae does not possess DNMTs/5mC, yet exposure to MMS also results in substantial increases in intracellular ROS (Rowe et al, (2008) Free Rad. Biol. Med. 45:1167-1177. PMC2643028). The authors should be aware of previous studies that have linked DNA damage to intracellular increases in ROS in other organisms and should comment on this in the text.

      We thank the reviewer for this point.  We note that the increased ROS that we observed occur in the presence of DNMTs alone and in the presence of H2O2, not in the presence of MMS; however, the point that DNA damage in general can promote increased ROS in some circumstances is well taken and we will include a comment on this in the discussion of the revised version.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      It is evident that studying leukocyte extravasation in vitro is a challenge. One needs to include physiological flow, culture cells and isolate primary immune cells. Timing is of utmost Importance and a reproducible setup essential. Extra challenges are met when extravasation kinetics in different vascular beds is required, e.g., across the blood-brain barrier. In this study, the authors describe a reliable and reproducible method to analyze leukocyte TEM under physiological flow conditions, including this analysis. That the software can also detect reverse TEM is a plus.

      Strengths:

      It is quite a challenge to get this assay reproducible and stable, in particular as there is flow included. Also for the analysis, there is currently no clear software analysis program, and many labs have their own methods. This paper gives the opportunity to unify the data and results obtained with this assay under label-free conditions. This should eventually lead to more solid and reproducible results.

      Also, the comparison between manual and software analysis is appreciated.

      We thank the Reviewer for their positive evaluation of our manuscript and highlighting the value of obtaining more reproducible and unbiases results, as well as detection of forward and reverse transmigration with UFMTrack.

      Weaknesses:

      The authors stress that it can be done in BBB models, but I would argue that it is much more broadly applicable. This is not necessarily a weakness of the study but more an opportunity to strengthen the method. So I would encourage the authors to rewrite some parts and make it more broadly applicable.

      We thank the Reviewer for this suggestion. In the revised version of our manuscript, we have now emphasized the broader applicability of UFMTrack to analyze the interaction of immune cells with 2dimensional endothelial monolayers in various contexts in the abstract, introduction, and discussion sections.

      Reviewer #2 (Public Review):

      Summary:

      This paper develops an under-flow migration tracker to evaluate all the steps of the extravasation cascade of immune cells across the BBB. The algorithm is useful and has important applications.

      Strengths:

      Algorithm is almost as accurate as manual tracking and importantly saves time for researchers.

      We thank the Reviewer for this positive evaluation of our work.

      Weaknesses:

      Applicability can be questioned because the device used is 2D and physiological biology is in 3D. Comparisons to other automated tools was not performed by the authors.

      We thank the Reviewer for pointing our attention to these weaknesses in our manuscript.

      We have clarified in the revised manuscript that using 2D endothelial monolayer models in parallel laminar flow chambers is still a state-of-the-art methodology for studying the multi-step extravasation process of immune cells across endothelial monolayers under physiological flow by in vitro live cell imaging. These models provide excellent optical quality that is not yet achieved in 3D models. We have extended the introduction to emphasize the limitations of existing tools that motivated us to establish UFMTrack. We have furthermore extended the discussion section to highlight the features unique to our UFMTrack framework.

      Reviewer #3 (Public Review):

      Summary:

      The authors aimed to establish a faster and more efficient method of tracking steps of T-cell extravasation across the blood brain barrier. The authors developed a framework to visualize, recognize and track the movement of different immune cells across primary human and mouse brain microvascular endothelial cells without the need for fluorescence-based imaging. The authors succinctly describe the basic requirements for tracking in the introduction followed by an in-depth account of the execution.

      We thank the Reviewer for their positive evaluation of our manuscript and highlighting the value of label-free analysis of the multistep immune cell extravasation cascade with UFMTrack.

      Weaknesses and Strengths:

      Materials & methods and results:

      (1) The methods section also lacks details of the microfluidic device that the authors talk about in the paper. Under physiological sheer stress, the T-cells detach from the pMBMEC monolayer, and are hence unable to be detected; however, this observation requires an explanation pertaining to the reason of occurrence and potential solutions to circumvent it to ensure physiologically relevant experimental parameters.

      We thank the Reviewer for pointing out this oversight. We have used a custom-made microfluidic device that has been published and described in detail before. This information has now been included in the Methods Section under Point 7, and the two references describing the flow chamber in depth are mentioned below and have been included in the manuscript.  

      Coisne Caroline, Ruth Lyck and Britta Engelhardt. 2013. Live cell imaging techniques to study T cell trafficking across the blood-brain barrier in vitro and in vivo. Fluids and Barriers of the CNS 10:7 doi:10.1186/20458118-10-7; 21 January 2013

      Lyck R, Hideaki Nishihara, Sidar Aydin, Sasha Soldati and Britta Engelhardt. 2022. Modeling brain vasculature immune interactions in vitro. Angogenesis, 2nd edition. Editors PatriciaD’Amore and Diane Bielenberg Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a041185

      T cell detachment is a physiologically relevant parameter besides T cell arrest, polarization, crawling, probing, and transmigration during the interaction with an endothelial monolayer. T cell detachment means that post-arrest, the T cell cannot engage adhesion molecules required for subsequent polarization and, eventually, transmigration. 

      (2) The author describes a method for debris exclusion using UFMTrack that eliminates objects of <30 pixels in size from analysis based on a mean pixel size of 400 for T lymphocytes. However, this mean pixel size appears to stem from in-vitro activated CD8 T cells, which rapidly grow and proliferate upon stimulation. In line with this, activated lymphocytes exhibit increased cytoplasmic area, making them appear less dense or “brighter” by phase microscopy compared to naïve lymphocytes, which are relatively compact and subsequently appear dimmer. Given this, it is not clear whether UFMTrack is sufficiently trained to identify naïve human lymphocytes in circulating blood, nor smaller, murine lymphocytes. Analysis of each lymphocyte subtype in terms of pixel size and intensity would be beneficial to strengthen the claim that UFMTrack can identify each of these populations. Additionally, demonstrating that UFMTrack can correctly characterize the behavior of naïve versus activated lymphocytes isolated from murine and human sources would strengthen the claim that UFMTrack can be broadly applied to study lymphocyte dynamics in diverse models without additional training

      We thank the Reviewer for the suggestion to more precisely evaluate the range of cell sizes that can be analyzed by our framework. We have included a visualization of crawling cell sizes successfully analyzed by the UFMTrack in Supplementary Figure 7. It demonstrates that the human peripheral blood mononuclear cells, that are almost twice as small as the activated mouse CD4 T cells used in these assays, can be successfully segmented, tracked, and analyzed with the UFMTrack framework. Thus, our UFMTrack framework is suitable for a broad application to differentially sized immune cells during their interaction with the endothelial cell monolayer under flow. 

      (3) Average precision was compared to the analysis of UFMTrack but it is unclear how average precision was calculated. This information should have been included in the methods section

      We thank the Reviewer for pointing our attention to the missing information. We have added a subsection, “Performance Analysis”, to the Materials and Methods section, where we describe the statistical methods and the performance metrics used to evaluate the UFMTrack framework.

      (4) CD4 and CD8 T cells exhibit distinct biology and interaction kinetics driven in part by their MHC molecule affinity and distinct receptor expression profiles. Thus, it is unclear why two distinct mechanisms of endothelial cell activation are needed to see differences between the populations.

      We thank the Reviewer for pointing out that different cytokine stimulations of endothelial cells were used in the assays used here to test our UFMTrack to analyze CD4 and CD8 T cell interactions with the endothelial monolayer. While the Reviewer is correct that CD4 and CD8 T cells use different mechanism to cross the pMBMEC monolayer as show by us (doi: 10.1002/eji.201546251.) and others and that recognition of cognate antigen on MHC class I on pMBMECs will arrest CD8 T cells and lead to CD8 T-cell mediated apoptosis ( doi: 10.1038/s41467-023-38703-2.) the focus of the present study was not on comparing CD4 and CD8 T cell interactions with the pMBMEC monolayer but rather to test suitability of UFMTrack to study the different multi-step transmigration of these T cell subsets across the endothelial monolayer. 

      (5) The BMECs are barrier tissues but were cultured on µdishes in this study. To study the transmigration of T-cells across the endothelium, the model would have been more relevant on a semi-permeable membrane instead of a closed surface.

      We understand the critique of the Reviewer, but laminar flow chambers with endothelial monolayers still provide a state-of-the-art and established methodology to study immune cell migration across endothelial monolayers by in vitro live cell imaging including endothelial cells forming the blood-brain barrier.  

      (6) Methods are provided for the isolation and expansion of human effector and memory CD4+ T cells. However, there is no mention of specific CD4+ T cell populations used for analysis with UFMTrack, nor a clear breakdown of tracking efficiency for each subpopulation. Further, there is no similar method for the isolation of CD8+ T cell compartments. A clear breakdown of the performance efficiency of UFMTrack with each cell population investigated in this study would provide greater insight into the software’s performance with regard to tracking the behavior and movement of distinct immune populations.

      We thank the Reviewer for this comment. Since a fair performance evaluation requires collecting reliable and consistent manual annotations, in this work we have performed such analysis only for the mouse CD8 T-cell population migrating on the pMBMEC monolayer. We have chosen this as a reference since it is a different cell population than the one the segmentation model was trained on. This provides an insight into how high performance is expected when other immune cell types are studied than the ones used for model development.

      (7) The results section is quite extensive and discusses details of establishment of the framework while highlighting both the pros and cons of the different aspects of the process, for example the limitation of the two models, 2D and 2D+T were highlighted well. However, the results section includes details which may be more fitting in the methods section.

      We thank the Reviewer for highlighting the extensive work carried out in the development of our UFMTrack framework. We decided to include in the results section only the description of key elements and design decisions taken when developing the framework, such as the need to include a time series of images for successful segmentation of the transmigrated cells. At the same time, the majority of implementational details can be found in the Supplementary Material.

      (8) A few statements in the results section lacked literary support, which was not provided in the discussion either, such as support for increased variance of T-cell instantaneous speed on stimulated vs non-stimulated pMBMECs. Another example is the enhancement of cytokine stimulation directed T-cell movement on the pMBMECs that the authors observed but failed to relay the physiological relevance of it. The authors don’t provide enough references for developments in the field prior to their work which form the basis and need for this technology.

      We thank the Reviewer for this comment and for asking for literature references. However, we cannot provide such references as these are original observations we made by employing the UFMTrack framework.  This shows that UFMTrack observes T-cell behaviors that have previously been overlooked. Their physiological relevance will have to be explored in separate studies. We have extended the introduction section to include the details on the existing methods developed in the field, as well as their weaknesses that motivated the development of the UFMTrack framework.

      (9) The rationale for use of OT-1 and 2D2-derived murine lymphocytes is unclear here. The OT-1 model has been generated to study antigen-specific CD8+ T cell responses, while the 2D2 model has been generated to recapitulate CD4 T cell-specific myelin oligodendrocyte glycoprotein (MOG) responses.

      To establish and test the UFMTrack framework, we have made use of the specific T-cell subsets and endothelial cell models we generally use within our research context. Especially for animal work, this is according to the 3R rules requesting to reduce animal experimentation.  

      Figures and text:

      (1) There are certain discrepancies and misarrangement of figures and text. For example, discussion of the effect of sheer flow on T cell attachment as part of the introduction in figure 1 and then mentioning it in the text again in the results section as part of figure 4 is repetitive.

      We thank the Reviewer for pointing our attention to this misarrangement. We have adjusted the label of Figure 4 to emphasize that this effect is correctly captured by the UFMTrack.

      (2) Section IV, subsection 1 of the results section, refers to ‘data acquisition section above’ in line 279, however the said section is part of materials and methods which is provided towards the end of the manuscript.

      We thank the Reviewer for pointing our attention to this misarrangement. We have adjusted the text to reflect the correct chapter order.

      (3) There are figures in the manuscript that have not been referenced in the results section, for example, figure 3A and B. Figure 1 hasn’t been addressed until subsection 7 of materials and methods

      We thank the Reviewer for pointing our attention to this misarrangement. We have adjusted the text to refer to all figure panels and the clarification of the cell multiplicity estimation in the supplementary information section. References to Figure 1 were added in the introduction section to illustrate the in vitro under flow imaging setup as well as the typical T cell behaviors in such experiments.

      (4) A lack of significance but an observed trend of increased variance of T cell instantaneous speed is reported in line 296-298; however, the graph (figure 4G) shows a significant change in instantaneous speed between non-stimulated and TNFα-stimulated systems. This is misleading to the readers.

      We thank the Reviewer for pointing our attention to this discrepancy. We have expanded the text to indicate a low statistical significance for the TNF and no significance but just a trend for the IL1-beta conditions.

      (5) The authors talk about three beginner experimentors testing the manual T cell tracking process but figure 5 only showcases data from two experimentors without stating the reason for excluding experimentor 1.

      We thank the Reviewer for pointing our attention to this ambiguity. While both the migration analysis and the manual cell tracking were performed by all three beginner experimenters, the cell tracking data for the first one was unfortunately lost due to a hardware failure.

      Discussion:

      (1) While the discussion captures the major takeaways from the paper, it lacks relevant supporting references to relate the observation to physiological conditions and applicability.

      This study is not about the physiological relevance of the microfluidic devices and immune cells used but rather about advancing methodology to analyze dynamic immune cell behavior on endothelial monolayers under physiological flow. Therefore, the discussion does not extend to comparing the physiological relevance of the specific in vitro models employed in this study.   

      (2) The discussion lacks connection to the results since the figures were not referenced while discussing an observed trend

      We thank the Reviewer for pointing our attention to this misarrangement. We have included the references to the relevant figures as well as supporting references.

      (3) The authors briefly looked into mouse and human BMECs and their individual interaction with Tcells, but don’t discuss the differences between the two, if any, that challenged their framework.

      We thank the Reviewer for pointing our attention to this weakness. We have added to the discussion section clarifications on the challenges of analyzing the T cell interactions with the HBMEC and the BMDM interactions with the pMBMEC monolayer.

      (4) Even though though the imaging tool relies on difference in appearance for detection, the authors talk about lack of feasibility in detecting transmigration of BMDMs due to their significantly different appearance. The statement lacks a problem solving approach to discuss how and why this was the case.

      We thank the Reviewer for pointing our attention to this weakness and apologize for the misleading explanation of the problem of analyzing the BMDM sample. Since the transmigrated part of the macrophages differs in appearance from a transmigrated part of a T cell, its detection by a Deep Neural Network trained on the T cell data is worse than that for the T cells. At the same time, the detection performance before the transmigration is sufficient for the BMDM migration analysis. The potential approaches to alleviate this are added to the discussion section.

      Relevance to the field:

      Utilizing the framework provided by the authors, the application can be adapted and/or utilized for visualizing a range of different cell types, provided they are different in appearance. However, this would require extensive changes to the script and won’t be adaptable in its current form.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      The authors should announce in the abstract that the software analysis Track is downloadable and free to use for all researchers. They may consider providing some sort of helpdesk, although I realize that that may run into too much time.

      As said above, they stress that it can be done in BBB models, but I would argue that it is much more broadly applicable.

      We thank the Reviewer for these suggestions. We have emphasized the broader applicability of UFMTrack in the abstract and pointed out the public availability of the code and data.

      Can they add an experiment that shows that it also works for neutrophils for example? I understand that on paper yes it should work, but the neutrophils are of course faster etc.

      This is an excellent suggestion, but we tested UFMTrack within the current framework of ongoing research, which does not include the investigation of neutrophil transmigration across endothelial monolayers.  

      Also, the combination of different leukocytes in one TEM assay would really be a step forward. If the software can detect different-sized leukocytes, then this should be possible.

      We thank the Reviewer for this suggestion. We have added Supplementary Figure 7, demonstrating the range of cell sizes that were successfully analyzed by the UFMTrack framework throughout our manuscript. We also added a statement to the discussion that according to this data, “simply by discriminating cells by size, it is possible to extend UFMTrack to study the interaction of several types of immune cells migrating on top of a cellular monolayer under flow.”

      Extra challenges: can the method also discriminate between paracellular and transcellular migration modes? In particular for T-cells this is known to happen.

      We thank the Reviewer for this suggestion. We have added this to the potential applications of UFMTrack in the discussion section. While this differentiation is not feasible relying solely on the phasecontrast imaging data, UFMTrack can simplify this analysis by providing automatically the predictions of the transmigration locations, for analysis of the fluorescent data of the junctional labels.

      Reviewer #2 (Recommendations For The Authors):

      This paper develops an under-flow migration tracker to evaluate all the steps of the extravasation cascade of immune cells across the BBB. The algorithm is useful and has important applications. There are several points that need to be addressed, particularly about the claims made by the authors.

      Please see the comments below for more details:

      • Lines 88-92: Add a citation for the characteristics of the BBB as a barrier

      We have added two references accordingly.  

      • Lines 94-95: Can the authors indicate what models were used for these studies and how those compare to their in vitro model? In addition, can the authors say whether T cells were manually tracked in this study to translate results to the clinic and whether the results were successful when translated to the clinic? This may enhance the argument that automatic trackers are needed if the translation was not 100% successful

      This introductory paragraph summarizes in vivo and in vitro observations from several laboratories. Although these studies include manual tracking of T cells, they do not necessarily distinguish all sequential steps of the multi-step T cell transmigration cascade. Thus, automated tracking may provide additional insights, allowing for increased translation of findings to the clinic.  

      • Lines 96-98: Citing the work of Roger Kamm and Noo Li Jeon would be helpful here as they pioneered these BBB microfluidic models and have protocol papers on how to build them and how to use them for cancer cell extravasation studies. Roger Kamm has also worked on several extravasation studies with neutrophils, monocytes, and PBMCs from 3D vasculatures in microfluidic devices, under flow using pressurized fluid or recirculating pumps. Mentioning those would be helpful as they are directly related to what the authors are presenting in their paper.

      We thank the Reviewer for this comment, and we consider the work of Roger Kamm and Noo Li Jeon as very valuable for the field. However, these authors have focused on developing functional 3D microfluidic devices, including, e.g., all cells of the neurovascular unit which is not the focus of this present study that solely employed parallel flow chamber devices and endothelial monolayers.  

      • Lines 110-116: Can the authors comment on the use of ImageJ or similar automatic tracking tools and how these compare to the under-flow migration tracker developed in this paper? Several groups use ImageJ to track cellular migration successfully and in an automatic manner with short intervals between each frame. One paper that comes to mind is Chen et al: DOI: 10.1073/pnas.1715932115 where neutrophil migration in 3D was assessed with ImageJ in microfluidic devices of the vasculature. If the authors can highlight differences between their tool and what is currently available and used for automatic tracking (e.g. ImageJ), this would help in understanding the advantages of the migration tracker developed in this paper.

      • Lines 118-121: Add citations for the current state of the art for T cell extravasation tracking

      We thank the Reviewer for these suggestions. We have extended the introduction to add more details on the available tools for tracking migrating immune cells and their limitations, as well as the discussion section to emphasize the features unique to the developed UFMTrack framework.

      • Figure 1: The device used by the authors is considered to be a 2D microfluidic device with a monolayer of mouse brain endothelial cells. I would recommend the authors to carefully revise the claims made in the paper to mention that this is a 2D device as opposed to a 3D device, in order to not mislead readers who may be expecting these analyses to be performed in 3D vasculatures.

      We thank the Reviewer for this suggestion. We have included in the summary the mention of the 2dimensional nature of the employed BBB model.

      • Figure 1: The T cells used in this study are not fluorescently-labeled but the authors mention that this is an issue from current state-of-the-art tools. I would recommend that the authors remove this point as being an issue because it is not addressed in their paper. The T cells are also not labeled in this study so this limitation of other systems is not addressed in this paper.

      We apologize to the Reviewer as we do not understand this question. There will be many experimental conditions not allowing to study fluorescently tagged T cells. Therefore, UFMTrack is tailored to follow and analyze T cells and other immune cells during their interaction with endothelial monolayers independent of a fluorescence tag.  

      • Figure 1: Was the shear stress controlled manually with a syringe? Or with the use of a pressure controller? I would clarify this aspect and discuss human errors that can be introduced from manually controlling the pressure applied to the monolayer.

      We thank the Reviewer for pointing our attention to this ambiguity. We have added a mention of the automated syringe pump used to control the shear stress in the text where the values of shear stress applied to the sample are first mentioned.

      • Figure 1: Does T cell attachment occur within the first 5 minutes? Can the authors comment on how they chose this timeline and the percentage of T cells that are washed off at the second step at 1.5 dynes/cm^2? Is 30 seconds enough to ensure all the non-adhered T cells are washed off with 1.5 dyns/cm^2?

      Superfusion of the T cells over the endothelial monolayer is performed under 0.5 dynes/cm2 to allow the T cells to settle on the endothelial cell monolayer under flow. After increasing to physiological, flow non adherent T cells detach within 30 seconds, as described by the Reviewer. We have included in the Methods Section Point 7 the references describing in depth the design of the flow chamber device and methods used here.  

      • Line 154: How many images were used in the training vs. testing dataset for T cell migrations?

      We thank the Reviewer for pointing our attention to this missing information. We have added the sizes of the training and validation datasets. Specifically, the 226MPix of available imaging data was split into 154Mpix training and 37 MPix validation sets. The gap in between was introduced to avoid a correlation between validation and training set that would compromise the performance evaluation.

      • Are the supplementary videos at real speed or accelerated?

      We thank the Reviewer for pointing our attention to this missing information. The videos are sped up by a factor of 96. We have added this information to the Supplementary video descriptions.  

      • Lines 208 216: Can the authors comment on how their initial adhesion timeframe of 30sec before starting the recording at 5.5min affects the number of T cells with rapid displacement? 30 seconds may not be enough to ensure T cells have adhered to the endothelium

      Please see our comment above. The methodology used in the present assays has been set up and validated in numerous publications. We have included in the Methods Section under Point 7 the references describing in depth the design of the flow chamber device and the methods used here.  

      • Lines 275-277: Was the number of testing images 18? Can the authors comment on how this compares to training dataset size and whether these numbers are enough to achieve robust results?

      We apologize for this ambiguity in our manuscript. The framework was evaluated on 18 imaging datasets, each corresponding to 32 minutes of recording, not 18 images. We have added this clarification to the “CD4+ T cell analysis” subsection. The total size of these datasets is 18 datasets * 191 timeframe/dataset * 9.9MPix/frame = 34MPix

      • Figure 4B: Can the authors add statistics here? Individual datapoints on the error bars would be helpful too. 

      We thank the Reviewer for pointing our attention to this weakness. The data corresponds to the statistical errors as evaluated based on all cells in the 18 datasets. We have added the total number of cells in each of the endothelium stimulation conditions to the text.

      • Figure 4C-J: Can the authors put individual datapoints here as well and explain whether they considered each T cell to be one datapoint or each endothelium (averaging all T cells) to be one datapoint? 

      We thank the Reviewer for this suggestion. However, adding about one thousand points corresponding to each cell would be impractical. We thus present the distributions of the evaluated from the data metrics as a histogram on the violin plot instead of the swarm plot.

      • Figure 4: Did the authors wash the monolayers before introducing T cells? Soluble unbound cytokines may still be present and there are two different questions that would be studied here: “Is the inflamed endothelium affecting T cell migration?” (if washing was performed) or “Is T cell and microenvironmental inflammation affecting T cell migration?” (if no washing was performed)

      The endothelial monolayers are “washed” by starting the flow in the flow chamber device and this is before superfusing the T cells over the endothelial monolayer. We agree that our flow chamber device combined with UFMTrack will allow to address all these questions.

      • Figure 4I: Are all the T cells decelerating? (negative AM speed)

      We thank the Reviewer for this question. The cells are moving along the flow, which, in our experiments, is from left to right. The vector of speed is thus pointing against the x-axis, and thus the AM speed is negative.

      • Lines 302 306: Please explain how this compares to ImageJ or similar trackers that can achieve similar outputs. 

      We thank the Reviewer for this question. We have added a statement in the “T-cell tracking” section emphasizing that standard trackers are incapable of correctly capturing large displacements.

      • Lines 306-309: It is not lower for TNF stimulation though. How do the authors address this? TNF is also a pro-inflammatory cytokine.

      We have previously shown that stimulation of pMBMECs with IL-1 and TNF-a induces different cell surface levels of ICAM-1 and VCAM-1, which will influence T cell behavior on the pMBMEC monolayer.  

      • Lines 313-315: Could this be because the monolayer was not washed and soluble cytokines affected T cell response directly?

      Please see our answer to lines 306-309.  

      • Lines 319: Please cite Roger Kamm and Noo Li Jeon’s papers on BBB models with human BMECs, pericytes and astrocytes in 3D microfluidic devices.

      We thank the Reviewer again for pointing out these studies. As mentioned above, as our present study does not explore 3D models of the BBB, we think it does not fit into the framework of our study to elaborate on 3D models of the BBB. In addition, this would require the inclusion of a discussion of the work of others like, e.g., Peter Searson and others.  

      • Figure 5: Several statistics are missing from parts of the figure. Please add those.

      We apologize – but we do not understand which statistical analysis the Reviewer is missing from this Figure.  

      • Can the authors comment on the number of T cells perfused over the monolayer and if this ratio of T cells to endothelial cells makes physiological sense? Too many T cells may result in endothelium inflammation and increased diapedesis.

      The number of T cells used to suprerfuse over the endothelial monolayer is tested to avoid aggregation of T cells in suspension and thus artificial interactions with the endothelial monolayer. T cell behavior on the pMBMEC monolayer remains the same over the dilution of factor 10.  

      • Lines 381 383: How does this compare to analyses that look at the cross-section of the endothelium? It is difficult to assess transmigration looking at the top view of the endothelium. Perhaps, cross-section assessments will identify differences in manual vs. automatic tracking.

      There is, to the best of our knowledge, no microscopic device that would allow for in vitro live cell imaging of a live endothelial monolayer – this is in the presence of tissue culture medium – from the side at a resolution that would allow to define transmigration. Our current study rather shows the UFMTrack can distinguish cells moving above or below the endothelial monolayer.  

      • Figure 5J: This is probably the most important argument of the paper. If the authors can show statistical differences in their graph, this would greatly help convince readers that this tool is necessary and actually computationally efficient compared to manual work by researchers.

      We thank the Reviewer for this suggestion. However, comparing a single data point for automated measurement with four manual experimenter analysts is not a statistically sound comparison. We believe that Figure 5K is clearly showing the factor 5 difference in analysis speed as compared to manual analysis. More importantly, though, the automated analysis is taking the machine time, lifting the need for the experimenter to invest even 1/5th of the original analysis time.

      • Figure 6: Did the authors use autologous immune cells and endothelial cells? This is particularly relevant with the use of human-derived T cells (line 436) on the BMEC monolayer. Can the authors comment on non-self reactivity by the T cells encountering BMEC from another human subject?

      Autologous T cell interaction with BMECs would only be possible when using hiPSC-derived EECM-BMECs and the T cells from the same individual. All other experimental frameworks will not include autologous interactions. This is the experimental framework used by most authors studying immune cell interactions with commercially available donors. We have not studied alloreactive interactions in our assays and thus cannot further comment.  

      • Figure 6M,N,O: How does this compare to ImageJ for tracking of fluorescent cells? I recommend the authors to try that, at least for this section, as this may enhance their argument for their tool vs. standard tools like ImageJ if success rates are higher for their tool.

      We thank the Reviewer for this suggestion. We included a note on the analysis of the fluorescent datasets using the  TrackMate plugin for imageJ performed previously in our lab in the “Human T cells on immobilized recombinant BBB adhesion molecules” subsection.

      • Figure 6: Please put individual datapoints on the bar or violin plots where they are missing.

      We thank the Reviewer for this suggestion. However, adding about one thousand points corresponding to each cell would be impractical. We thus present the distributions of the evaluated from the data metrics as a histogram on the violin plot instead of the swarm plot.

      • Lines 467-471: This argument is important and should be mentioned earlier in the introduction.

      Another point that can be mentioned is the application of this platform to imaging modalities in vivo (mouse or human) given that there is no fluorescent staining in these cases. This review may be relevant: https://doi.org/10.1002/jcb.10454

      We thank the Reviewer for this suggestion. We have clarified in the introduction that UFMTrack does not require fluorescent labels of the imaged migrating cells and relies solely on the phase contrast imaging data.

      • Discussion: Please address a few more potential applications to this study. One can be cancer and immune infiltration.

      We thank the Reviewer for this suggestion. We have elaborated on additional potential applications to the discussion section.

      Reviewer #3 (Recommendations For The Authors):

      (1) Line 327-328: The authors talk about ‘As we have previously shown…pMBMEC monolayers differs between CD4+ and CD8+ cells…’. Where was this shown? If it was in a previously published article, please provide a reference.

      We have added these missing references.  

      (2) Line 353: Please provide clear location on where to find the associated information instead of stating ‘see below’.

      We thank the Reviewer for pointing our attention to this ambiguity. We have corrected the phrase to “see next paragraph”

      (3) Line 439: Please correct the acronym to BMECs

      We thank the Reviewer for pointing our attention to this typo. We have corrected it.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Recommendations for the authors:

      Reviewer #2:

      No further questions, but please do add a sentence or two about the lack of these additional points in the discussion as a limitation to the study.

      We have included additional “limitations of the study” in the Discussion Section.

      Reviewer #3:

      The authors have added to the discussion some critical remarks about the limitations of the study, which will help in the assessment of the conclusions.

      In sum, the manuscript has significantly improved during the revision.

      Some minor points should be changed, though

      Page 18 marked: "What causes an age-dependent decrease in mitochondrial OXPHOS genes across tissues, however, is largely unknown." I assume, the authors do not suggest that the abundance of genes is reduced, which means elimination of DNA? Be more precise about this.

      We thank the reviewer for pointing this out. We have clarified this to mean “OXPHOS gene expression” and made a couple changes accordingly.

      Page 18 marked : a paragraph was added addressing the increase in mitochondrial respiration in the heart, this should be discussed in the light of literature as it was done for skeleton muscle the following paragraph

      We have included additional paragraphs in the Discussion Section to talk about increased mitochondrial respiration in the aging heart in the context of published literature.

      Figure 2: it was asked for error bars for the OCR measurements. Response: We have added the error bars and statistical significance to revised Figure 2; however, is it correct that there are no significant differences?

      Figure 2 ranks tissues based on the OCR values within a single group of mice (male or female, young or old) and is not a comparison between male vs female, or young vs old. For this reason, no statistics were included as they are not needed here. The goal of this figure is to highlight the OCR distribution across tissues within a single sex and age group.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment:

      This important study reveals that the malaria parasite protein PfHO, though lacking typical heme oxygenase activity, is vital for the survival of Plasmodium falciparum. Structural and localization analyses showed that PfHO is essential for apicoplast maintenance, particularly in gene expression and biogenesis, indicating a novel adaptive role for this protein in parasite biology. While the results supporting the claims of the authors are convincing, the lack of data defining a molecular understanding or mechanism of action of the protein in question limits the impact of the study. 

      We appreciate the positive assessment. We agree that further mechanistic understanding of PfHO function remains a key future challenge. Indeed, we made extensive efforts to unravel the molecular interactions and mechanisms that underpin the critical function of PfHO. We elucidated key interactions between PfHO and the apicoplast genome, reliance of these interactions on the electropositive N-terminus, association of PfHO with DNA-binding proteins, and a specific defect in apicoplast mRNA levels upon PfHO knockdown. The major limitation we faced in further defining PfHO function is the general lack of understanding of apicoplast transcription and broader gene expression in this organelle. That limitation and the challenges to overcome it go well beyond our study and will require concerted efforts across several manuscripts (likely by multiple groups) to define the mechanistic features of apicoplast gene expression. We look forward to contributing further molecular understanding of PfHO function as broader understanding of apicoplast transcription emerges.

      Public Reviews:

      Reviewer #1 (Public Review):

      Malaria parasites detoxify free heme molecules released from digested host hemoglobins by biomineralizing them into inert hemozoin. Thus, why malaria parasites retain PfHO, a dead enzyme that loses the capacity of catabolizing heme, is an outstanding question that has puzzled researchers for more than a decade. In the current manuscript, the authors addressed this question by first solving the crystal structure of PfHO and aligning it with structures of other heme oxygenase (HO) proteins. They found that the N-terminal 95 residues of PfHO, which failed to crystalize due to their disordered nature, may serve as signal and transit peptides for PfHO subcellular localization. This was confirmed by subsequent microscopic analysis with episomally expressed PfHO-GFP and a GFP reporter fused to the first 83 residues of PfHO (PfHO N-term-GFP). To investigate the functional importance of PfHO, the authors generated an anhydrotetracycline (aTC) controlled PfHO knockdown strain. Strikingly, the parasites lacking PfHO failed to grow and lost their apicoplast. Finally, by chromatin immunoprecipitation (ChIP), quantitative PCR/RT-PCR, and growth assays, the authors showed that both the cognate N-terminus and HO-like domain were required for PfHO function as an apicoplast DNA interacting protein.

      The authors systemically performed multidisciplinary approaches to address this difficult question: what is the function of this enzymatically dead PfHO? I enjoyed reading this manuscript and its thoughtful discussion. This study is not of clinical importance for antimalarial treatments but also deepens our understanding of protein function evolution. While I understand these experiments are challenging to conduct in malaria parasites, the data quality of some of the experiments could be improved. For example, most of the Western blots and Southern blots are not of high quality. 

      We thank the reviewer for the positive comments but are a bit puzzled by the final statement about western and Southern blot quality. We agree that the two anti-PfHO western blots probed with custom antibody (Fig. 3- source data 2 and 8) have substantial background signal in the higher molecular mass region >75 kDa. However, we note that the critical region <50 kDa is clear in both cases and readily enables target band visualization. All other western blots probing GFP or HA epitopes are of high quality with minimal off-target background. We present two Southern blot images. We agree that the signal is somewhat faint for the Southern blot demonstrating on-target integration of the aptamer/TetR-DOZI plasmid (Fig. 3- fig. supplement 4), although we note that the correct band pattern for integration is visible. We also note that the accompanying genomic PCR data is unambiguous. The Southern blot for GFPDHFRDD incorporation into the PfHO locus (Fig. 3- fig. supplement 1) has clear signal and strongly supports on-target integration. The minor background signal in the lower left region of the image does not extend into the critical lanes nor impact interpretation of correct clonal integration.

      As noted below, we have obtained a second western blot image to evaluate the decrease in PfHO protein expression in -aTC conditions. This revised image, which we now include in Fig. 3, shows clean detection of the PfHO signal in the critical molecular mass region below 40 kDa in +aTC conditions and substantial loss of this signal in -aTC conditions (relative to HSP60 loading control).

      Reviewer #2 (Public Review):

      Summary: 

      Blackwell et al. investigated the structure, localization, and physiological function of Plasmodium falciparum (Pf) heme oxygenase (HO). Pf and other malaria parasites scavenge and digest large amounts of hemoglobin from red cells for sustenance. To counter the potentially cytotoxic effects of heme, it is biomineralized into hemozoin and stored in the food vacuole. Another mechanism to counteract heme toxicity is through its enzymatic degradation via heme oxygenases. However, it was previously found by the authors that PfHO lacks the ability to catalyze heme degradation, raising the intriguing question of what the physiological function of PfHO is. In the current contribution, the authors determine that PfHO localizes to the apicoplast, determine its targeting sequence, establish the essentiality of PfHO for parasite viability, and determine that PfHO is required for proper maintenance of apicoplasts and apicoplast gene expression. In sum, the authors establish an essential physiological function for PfHO, thereby providing new insights into the role of PfHO in plasmodium metabolism. 

      Strengths: 

      The studies are rigorously conducted and the results of the experiments unambiguously support a role for PfHO as being an apicoplast-targeted protein required for parasite viability and maintenance of apicoplasts. 

      Weaknesses: 

      While the studies conducted are rigorous and support the primary conclusions, the lack of experiments probing the molecular function of PfHO limits the impact of the work. Nevertheless, the knowledge that PfHO is required for parasite viability and plays a role in the maintenance of apicoplasts is still an important advance.

      We appreciate the positive assessment. We agree that further mechanistic understanding of PfHO function remains a key future challenge. Indeed, we made extensive efforts to unravel the molecular interactions and mechanisms that underpin the critical function of PfHO. We elucidated key interactions between PfHO and the apicoplast genome, reliance of these interactions on the electropositive N-terminus, association of PfHO with DNA-binding proteins, and a specific defect in apicoplast mRNA levels upon PfHO knockdown. The major limitation we faced in further defining PfHO function is the general lack of understanding of apicoplast transcription and broader gene expression. That limitation and the challenges to overcome it go well beyond our study and will require concerted efforts across several manuscripts (likely by multiple groups) to define the mechanistic features of apicoplast gene expression. We look forward to contributing further molecular understanding of PfHO function as broader understanding of apicoplast transcription emerges.

      Recommendations for the authors: 

      Reviewer #1 (Recommendations For The Authors): 

      Specifically, I would like to see the expression of PfHO in the 3D7 strain and PfHOaptamer/TetR-DOZI parasites detected by PfHO antibody on the same blot. The reason is that while most of the western blots show that PfHO appears as both pro- and processed-form, Figure 3-S5B shows only the processed-form of PfHO in all life stages of 3D7. It would be interesting to find out if the processing of PfHO1 is strain/stage-specific, and whether it is regulated by heme levels. It may also be interesting to find out if the pro-form of PfHO is also functional (i.e. mutate the cleavage site). 

      We agree with the reviewer that Fig. 3- figure supplement 5B shows predominant detection of a single band for PfHO in untagged 3D7 parasites. In our experience, the detection of the unprocessed, pro form of PfHO can vary idiosyncratically with different experiments and cultures. In support of this variable detection of unprocessed PfHO in 3D7, we note in Fig. 3A that we detected both the unprocessed and processed forms of PfHO in a western blot of endogenously tagged PfHO-GFP-DHFRDD in 3D7 parasites with an intact apicoplast. We agree with the reviewer that future studies of stage-dependent processing of PfHO may give insights into conditions that favor or disfavor detection of the unprocessed protein. 

      Given prior evidence for vestigial heme binding by PfHO (Sigala et al. JBC 2012), we considered whether such heme binding might modulate PfHO expression, stability, and/or function. It is unknown if heme is present inside the apicoplast, and we currently lack evidence for heme-dependent function or expression by PfHO. Future studies can test this possible dependence.

      Regarding processing and possible function of the cleaved peptide, we note that the Nterminal 18 amino acids are expected to constitute the signal peptide that is cleaved cotranslationally with import into the ER. Our data indicate that PfHO undergoes further processing upon import into the apicoplast to remove a further 15 residues. We currently have no evidence nor expectation that these additional residues contribute to PfHO function beyond targeting to the apicoplast.

      I am also confused as to why the authors used rabbit anti-PfHO and rabbit anti-Ef1α on the same blot for Figure 3C, which makes it difficult to appreciate the expression changes of PfHO. Given the high non-specific background of PfHO antibody shown by other Western blots (Figure 3 - Source data 2), I would like to see a blot stained with only PfHO antibody to show that expression of PfHO has been efficiently reduced in the absence of aTC. 

      Bands for Ef1α (50 kDa) and untagged PfHO (~32 kDa) are readily distinguished by western blot analysis based on their distinct molecular masses and electrophoretic mobilities. We agree that staining with the anti-PfHO antibody resulted in background bands in other regions of the gel image, especially in the higher molecular mass region >75 kDa. We note that additional strong evidence for down-regulation of PfHO expression is provided in Fig. 3- figure supplement 6, which shows specific loss of PfHO mRNA transcript levels in -aTC conditions by RT-qPCR. 

      Nevertheless, we have followed the reviewer’s suggestion and provided a new WB image of PfHO expression ±aTC (probed only with rabbit anti-PfHO antibody) that shows strong down-regulation of PfHO protein levels in -aTC conditions, consistent with the strong growth phenotype observed. We have inserted this revised, cleaner western blot image into Fig. 3 (along with detection of HSP60 levels in replicate samples as loading control) and placed the prior image into Fig. 3- figure supplement 6. In both cases, densitometry analysis indicates an 80-85% reduction in PfHO levels in -aTC conditions.

      The authors proposed that PfHO interacts with apicoplast genome DNA via the electropositive N-terminus. Interestingly, these positively charged residues are not conserved between Plasmodium, Theileria, and Babesia. I will be curious to follow the authors' future work to investigate the function of this electropositive N-terminus, possibly by comparative and mutagenesis analysis. 

      We agree that further molecular studies of DNA-binding determinants by PfHO and its N-terminus will be insightful.

      The Quantitative RT-PCR analysis revealed that loss of PfHO specifically resulted in decreased apicoplast RNA. I wonder if the authors plan to conduct RNAseq analysis on the PfHO knockdown strain across multiple life stages, to get a clearer picture of PfHO function in malaria parasites. 

      Our RT-qPCR data across multiple asexual stages prior to organelle loss indicate that abundance of all apicoplast-encoded transcripts drops precipitously and uniformly upon PfHO knockdown (Fig. 5- figure supplement 7). Given the small size of the apicoplast genome and the polycistronic nature of apicoplast transcription, we assume that RNA-Seq studies would result in a similar observation. We hypothesize that PfHO knockdown and subsequent dysfunctions may interfere with RNA polymerase assembly on DNA and/or processivity. We are currently testing these hypotheses.

      I noticed that the authors did not discuss the function of PfHO in apicoplast organelle biogenesis. Since ClpM (previously termed ClpC) is the only apicoplast-encoded Clp subunit that is essential for apicoplast biogenesis, does the author think that PfHO knockdown parasites lost their apicoplast due to decreased ClpM expression? If that were the case, would episomally expression or nuclear knockin of ClpM rescue PfHO deficiency in the absence of isopentenyl pyrophosphate (IPP)? 

      We share the reviewer’s curiosity to understand how loss of apicoplast transcripts leads to organelle dysfunction and defective IPP synthesis. We agree that ClpM function may be critical to import of nuclear-encoded proteins necessary for apicoplast function. SufB encoded on the apicoplast genome is also expected to be essential for Fe-S cluster synthesis in the apicoplast and to be required for Fe-S-dependent IPP synthesis. We have expanded the first Discussion section to address these possible connections.

      Minor: 

      (1) None of the microscopy photos have scale bars. 

      We have added scale bars to all microscopy images.

      (2) Multiple microscopy pictures show strange patches around the fluorescent signals (a grey square distinguishes from the black background). This is especially evident in Figure 2 S2. Was it caused by the reduction of the original pictures? 

      We have reviewed all fluorescence microscopy images but are unable to identify the issue noted by the reviewer. We have uploaded new versions of all images to include scale bars (as requested above), and we hope that this update resolves the issue observed by the reviewer. We are happy to further troubleshoot and address if the reviewer continues to see these artifacts and can provide further information.

      (3) A description of how Southern blotting was performed is missing. 

      We thank the reviewer for bringing this omission to our attention. We have added a description of the Southern blot methods to the section on genome editing.

      (4) Figure 3B: should be "αGFP: 12nm", not "αPfHO1: 12nm". 

      We have modified this labeling to read “αGFP (PfHO): 12 nm”.

      (5) Figure 3C: which clone of PfHO knockdown was used in all the following figures? How many clones were tested in the following figures (did they show consistent phenotype)? 

      The polyclonal culture of PfHO-aptamer/TetR-DOZI knockdown parasites from transfection 11 was used for growth assay and western blot experiments, since there was no evidence by PCR or Southern blot for the wildtype PfHO locus. We have elaborated on these details in the Methods section.

      Reviewer #2 (Recommendations For The Authors): 

      In Figure 2 and Figure 3B, to address rigor and reproducibility, the authors should state the number of parasites analyzed and if there was any variation in localization. For instance, did all of the parasites analyzed have apicoplast localization of heme oxygenase or was there a distribution of apicoplast and non-apicoplast localization? 

      Localization by fluorescence microscopy of episomal and endogenous tagged PfHO is presented in Fig. 2, Fig. 2- fig. supplements 1 and 2, and Fig. 3- fig. supplement 2. Localization by immunogold EM is presented in Fig. 3B and Fig. 3- fig. supplement 3. In all cases 3-4 representative images are presented that support exclusive localization of PfHO to the apicoplast. We imaged ≥10-20 additional parasites in all cases (and across distinct transfections and biological samples) that also supported exclusive localization to the apicoplast. We have modified the figure legends and methods description to note these replicate values. Finally, we note that IPP rescue of parasite viability upon PfHO knockdown strongly supports the conclusion that the critical and essential function of PfHO impacts the apicoplast, consistent with its exclusive detection in that organelle by microscopy.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Comment 1. Mohseni and Elhaik's article offers a critical evaluation of Geometric Morphometrics (GM), a common tool in physical anthropology for studying morphological differences and making phylogenetic inferences. I read their article with great interest, although I am not a geneticist or an expert on PCA theory since the problem of morphology-based classification is at the core of paleoanthropology.

      The authors developed a Python package for processing superimposed landmark data with classifier and outlier detection methods, to evaluate the adequacy of the standard approach to shape analysis via modern GM. They call into question the accuracy, robustness, and reproducibility of GM, and demonstrate how PCA introduces statistical artefacts specific to the data, thus challenging its scientific rigor. The authors demonstrate the superiority of machine learning methods in classification and outlier detection tasks. The paper is well-written and provides strong evidence in support of the authors' argument. Thus, in my opinion, it constitutes a major contribution to the field of physical anthropology, as it provides a critical and necessary evaluation of what has become a basic tool for studying morphology, and of the assumptions allowing its application for phylogenetic inferences. Again, I am not an expert in these statistical methods, nor a geneticist, but the authors' contribution is of substantial relevance to our field (physical anthropology). The examples of NR fossils and HLD 6 are cases in point, in line with other notable examples of critical assessment of phylogenetic inferences made on the basis of PCA results of GM analysis. For example, see Lordkipanidze et al.'s (2014) GM analyses of the Dmanisi fossils, suggesting that the five crania represent a single regional variant of Homo erectus; and see Schwartz et al.'s (2014) comment on their findings, claiming that the dental, mandibular, and cranial morphology of these fossils suggest taxic diversity. Schwartz et al. (2014) ask, "Why did the GMA of 78 landmarks not capture the visually obvious differences between the Dmanisi crania and specimens commonly subsumed H. erectus? ... one wonders how phylogenetically reliable a method can be that does not reflect even easily visible gross morphological differences" (p. 360).

      As an alternative to the PCA step in GM, the authors tested eight leading supervised learning classifiers and outlier detection methods on three-dimensional datasets. The authors demonstrated inconsistency of PCA clustering with the taxonomy of the species investigated for the reconstruction of their phylogeny, by analyzing a database comprising landmarks of 6 known species that belong to the Old World monkeys tribe Papionini, using PCA for classification. The authors also demonstrated that high explained variance should not be used as an estimate of high accuracy (reliability). Then, the authors altered the dataset in several ways to simulate the characteristic nature of paleontological data.

      The authors excluded taxa from the database to study how PCA and alternative classifiers are affected by partial sampling, and the results presented in Figures 4 and 5, among others, are quite remarkable in showing the deviations from the benchmark data. These results expose the perils of applying PCA and GM for interpreting morphological data. Furthermore, they provide evidence showing that the alternative classifiers are superior to PCA, and that they are less susceptible to experimenter intervention. Similar results, i.e., inconsistencies in the PC plots, were obtained in examinations of the effect of removing specimens from the dataset and in the interesting test of removing landmarks to simulate partial morphological data, as is often the case with fossils. To test the combined effect of these data alterations, the authors combined removal of taxa, specific samples, and landmarks from the dataset. In this case, as well, the PCA results indicate deviation from the benchmark data. However, the ML classifiers could not remedy the situation. The authors discuss how these inconsistencies may lead to different interpretations of the data, and in turn, different phylogenetic conclusions. Lastly, the authors simulated the situation of a specimen of unknown taxonomy using outlier detection methods, demonstrating LOF's ability to identify a novelty in the morphospace.

      References

      Bookstein FL. 1991. Morphometric tools for landmark data: geometry and biology [Orange book]. Cambridge New York: Cambridge University Press.<br /> Cooke SB, and Terhune CE. 2015. Form, function, and geometric morphometrics. The Anatomical Records 298:5-28.<br /> Lordkipanidze D, et al. 2013. A complete skull from Dmanisi, Georgia, and the evolutionary biology of early Homo. Science 342: 326-331.<br /> Schwartz JH, Tattersall I, and Chi Z. 2014. Comment on "A complete skull from Dmanisi, Georgia, and the evolutionary biology of Early Homo". Science 344(6182): 360-a.

      The reviewer considered our work to be a “contribution is of substantial relevance to our field (physical anthropology)” We are grateful for this evaluation and for the thorough review and insightful comments on our manuscript, which helped us improve its quality further. Your remarks regarding the superiority of machine learning methods over traditional GM approaches, as well as the challenges and implications highlighted in our findings, resonate deeply with the core objectives of our research. The references to previous studies and their relevance to our work underscore the broader implications of our findings for the interpretation of morphological data in evolutionary studies. We are thankful for your remarks regarding the debate surrounding the Dmanisi fossils. We covered it in our introduction (lines 161-174):

      Finally, PCA also played a part in the much-disputed case of the Dmanisi hominins (39, 40). These early Pleistocene hominins, whose fossils were recovered at Dmanisi (Georgia), have been a subject of intense study and debate within physical anthropology. Despite their small brain size and primitive skeletal architecture, the Dmanisi fossils represent Eurasia’s earliest well-dated hominin fossils, offering insights into early hominin migrations out of Africa. The taxonomic status of the Dmanisi hominins has been initially classified as Homo erectus or potentially represented a new species, Homo georgicus or else (40, 41). Lordkipanidze et al.’s (42) geometric morphometrics analyses suggested that the variation observed among the Dmanisi skulls may represent a single regional variant of Homo erectus. However, Schwartz et al. (2014) (43) raised concerns about the phylogenetic inferences based on PCA results of the geometric morphometrics analysis, noting the failure of the method to capture visually obvious differences between the Dmanisi crania and specimens commonly subsumed under Homo erectus."

      Comment 2. I suggest moving all the interpretations from the Results section to the Discussion section. This will enhance the flow of the results and make it easier to follow.

      We tried that, but it made the manuscript less readable. Because our manuscript makes two strong statements, one about the unsuitability of PCA to the field and one about the many other problems in the field, as demonstrated through several test cases, it is better to keep them separate in the Results and Discussions, respectively.

      Comment 3. I recommend conducting an English language edit on the text to address minor inconsistencies.

      We thoroughly edited the text to enhance the language style and consistency. We thank the reviewer for the suggestion.

      Comment 4. Line 21, what do you mean by "ontogenists"?

      Individuals who are versed in or study ontogeny.

      Comment 5. When referring to the remains from Nesher Ramla (Israel), I recommend using "NR fossils". Thus, in line 34, I suggest replacing "Homo Nesher Ramla" by "Nesher Ramla fossils (NR fossils)", also in line 122.

      We replaced "Homo Nesher Ramla" with "Nesher Ramla fossils (NR fossils)" in all of the instances throughout the manuscript. We thank the reviewer for the suggestion.

      Comment 6. Line 34, I suggest replacing "human" by "hominin".

      (Line 35) We replaced "human" with "hominin".

      “…, such as the case of Homo Nesher Ramla, an archaic hominin with a questionable taxonomy.”

      We thank the reviewer for the suggestion.

      Comment 7. Line 67-68, I suggest clarifying the classification of landmarks using the definition of landmark types (Bookstein, 1991; also see summary by Cooke and Terhune (2015) - Table 1).

      We revised our summary of the classification of landmarks: (Lines 83-94). Our MS now reads:

      “Determining sufficient measurements and data points for a valid morphometric analysis is older than modern geometric morphometrics (19). In geometric morphometrics, landmarks are discrete points on biological structures used to capture shape variation. Bookstein (20) categorised landmarks into three types: Type one, representing the juxtaposition of tissues such as the intersection of two sutures; Type two, denoting maxima of curvature like the deepest point in a depression or the most projecting point on a process; and Type three, which includes extremal points defined by information from other locations on the object, such as the endpoint or centroid of a curve or feature. Originally, Type three landmarks encompassed semi-landmarks, but Weber and Bookstein (21) refined this classification, identifying Type three landmarks as those characterised by information from multiple curves and symmetry, including the intersection of two curves or the intersection of a curve and a suture, and further subdividing them into three subtypes (3a, 3b, 3c) (15). While landmarks provide crucial information about the structure’s overall shape, semi-landmarks capture fine-scale shape variation (e.g., curves or surfaces) that landmarks alone cannot adequately represent. Semi-landmarks are heavily relied upon as the source of shape information to break the continuity of regions in the specimen without clearly identifiable landmarks (22). Semi-landmarks are typically aligned based on their relative positions to landmarks, allowing for the comprehensive analysis of shape changes and deformations within complex structures (2). Unsurprisingly, the use of semi-landmarks is controversial. For instance, Bardua et al. (23) claim that high-density sliding semi-landmark approaches offer advantages compared to landmark-only studies, while Cardini (24) advises caution about potential biases and subsequent inaccuracies in high-density morphometric analyses.”

      We thank the reviewer for the suggestion.

      Comment 8. Line 84, "beneficial over" - I suggest revising.

      (Line 102) We revised the sentence and used “offer advantages” instead.

      “… claim that high-density sliding semi-landmark approaches offer advantages compared to landmark-only studies.”

      We thank the reviewer for the suggestion.

      Comment 9. Line 97, do you mean "therefore"?

      (Line 115) Yes, we replaced "thereby" with "therefore".

      Comment 10. Line 116, I suggest rephrasing as follows: "newly discovered hominin fossils with respect to...".

      (Lines 135, 136) We rephrased it as suggested:

      “is the classification of newly discovered hominin fossils within the human phylogenetic tree”

      We thank the reviewer for the suggestion.

      Comment 11. Line 119, please clarify or explain what you mean by subjective determination of clustering in PCA plots.

      We rephrased (Lines 137, 138) to read:

      "However, which specimens should be included in clusters and which ones should be considered outliers is determined subjectively…"

      We thank the reviewer for the suggestion.

      Comment 12. Lines 146-148: consider revising to clarify the sentence; "than" in line 147 should be "that".

      We modified the sentence, we replaced "than" with "that". (Lines 196, 197)

      " … that even the criticism from its pioneers was dismissed"

      We thank the reviewer for the suggestion.

      Comment 13. Line 213: I recommend adding the phylogenetic tree of the Papionini tribe. This would be particularly relevant for the interpretation of the results, e.g., in lines 324-328.

      The reviewer suggested adding a phylogenetic tree of the Papionini tribe to increase the interpretability of our results. We added two trees (Figure 3) based on the molecular phylogeny of extant papionins and the most parsimonious tree generated from the initial Collard and Wood (1).

      We thank the reviewer for the suggestion.

      Comment 14. Lines 244-248: I recommend that the parallels drawn between the results presented in this section and other cases of PCA analysis interpretation (e.g., the NR fossils) are transferred to the Discussion section.

      This would allow a more fluent read of the results.

      Thank you, we considered that but found that it does not improve the readability of the discussion, because this is a very technical issue that would be best understood alongside the specific use case that tests it.

      Comment 15. Line 301: The word "are" should be placed before the word "all".

      (Line 319) We modified accordingly and placed "are" before "all":

      “Rarely are all related taxa represented;”

      We thank the reviewer for the suggestion.

      Comment 16. Line 426: I suggest "omissions" in place of "missingness".

      (Line 435) We replaced "missingness" with "omissions".

      We thank the reviewer for the suggestion.

      Comment 17. Line 440 is part of the caption for Figure 6. Please add a description of what the red arrow indicates in every figure in which it appears.

      Yes, we added a sentence to the caption of figures 7 and 8:

      “The red arrow in subfigures A, B, and C marks a Lophocebus albigena (pink) sample whose position in PC scatterplots is of interest.”

      We thank the reviewer for the suggestion.

      Comment 18. Line 454: I recommend "partial morphological information" instead of "some form information".

      (Lines 446, 447) We made modifications and replaced "some form information" with " partial morphological information":

      “Newfound samples often comprise incomplete osteological remains or fossils (18, 22) and only present partial morphological information.”

      We thank the reviewer for the suggestion.

      Comment 19. Line 547: I suggest "portion" instead of "fracture".

      (Lines 470, 471) We replaced "fracture" with "portion":

      “Thereby, while the complete skull would cluster with its own taxon…”

      We thank the reviewer for the suggestion.

      Comment 20. Lines 664-665 should read "anatomy and physical anthropology".

      (Lines 600-602) We modified the text accordingly:

      “There are various approaches in morphometrics, but among them, geometric morphometrics has left an indelible mark on biology, especially in anatomy and physical anthropology.”

      We thank the reviewer for the suggestion.

      Comment 21. Lines 684-699: This paragraph seems to belong in the introduction section.

      (lines 175-190) We modified it and moved it to the introduction.

      “Visual interpretations of the PC scatterplots are not the only role PCA plays in geometric morphometrics. Phylogenetic Principal Component Analysis (Phy-PCA) (44) and Phylogenetically Aligned Component Analysis (PACA) (45) are both used in geometric morphometrics to analyse shape variation while considering the supposed phylogenetic relationships among species. They differ in their approach to aligning landmark configurations and the role of PCA within them. Phy-PCA incorporates phylogenetic information by utilising a phylogenetic tree to model the evolutionary history of the species. This method aims to separate shape variation resulting from shared evolutionary history from other sources of variation. PCA plays a similar role in performing dimensionality reduction on the aligned landmark configurations in Phy-PCA (44). PACA takes a different approach to alignment. It uses a Procrustes superimposition method based on a phylogenetic distance matrix, aligning the landmark configurations according to the evolutionary relationships among species. PCA is then applied to the aligned configurations to extract the principal components of shape variation (45). Both analyses provide insights into the patterns and processes that shape biological form diversity while considering phylogenetic relationships, yet they are also subjected to the limitations and biases inherent in relying on PCA as part of the process.”

      We thank the reviewer for the suggestion.

      Comment 22. Line 717: I suggest "fossils" instead of "hominins".

      (Lines 636, 637) We modified it accordingly and replaced "hominins" with "fossils":

      “…which reflect the restraints faced in morphometric analysis of ancient samples (e.g., fossils).”

      We thank the reviewer for the suggestion.

      Comment 23. Line 728: the word "the" should be deleted; Skhul V should not be italicized, and so do the words "Mount Carmel"; "Neandertals"; "modern humans"; and "Late Paleolithic" in the following lines.

      (Line 647-651) We made modifications accordingly:

      “For example, Harvati (27), who analysed the Skhul 5 (84), a 40,000-year-old human skull from Mount Carmel (Israel), proposed diverging hypotheses based on favourable PC outcomes (based on PC8 separating it from Neanderthals and modern humans and associating it with the Late Palaeolithic specimen and based on PC12 associating it with modern humans).”

      We thank the reviewer for the suggestion.

      Comment 24. Line 734: the first comma should be deleted.

      (Line 653) We deleted the first comma:

      “(Figures 5-12) show that compared to the benchmark (Figure 4), …”

      We thank the reviewer for the suggestion.

      Reviewer #2:

      Comment 1. I completely agree with the basic thrust of this study. Yes, of course, machine learning is FAR better than any variant of PCA for the paleosciences. I agree with the authors' critique early on that this point is not new per se - it is familiar to most of the founders of the field of GMM, including this reviewer. A crucial aspect is the dependence of ALL of GMM, PCA or otherwise, on the completely unexamined, unformalized praxis by which a landmark configuration is designed in the first place. I must admit that I am stunned by the authors' estimate of over 32K papers that have used PCA with GMM.

      We thank the reviewer for accepting the premise of our study.

      But beating a dead horse is not a good way of designing a motor vehicle. I think the manuscript needs to begin with a higher-level view of the pathology of its target disciplines, paleontology and paleoanthropology, along the lines that David demonstrated for numerical taxonomy some decades ago. That many thousands of bad methodologies require some sort of explanation all of their own in terms of (a) the fears of biologists about advanced mathematics, (b) the need for publications and tenure, (c) the desirability of covers of Nature and Science, and (d) the even greater glory of getting to name a new "species." This cumulative pathology of science results in paleoanthro turning into a branch of the humanities, where no single conclusion is treated as stable beyond the next dig, the next year or so of applied genomics, and the next chemical trace analysis. In short, the field is not cumulative.

      Given the wide popularity of PCA and the attempts to prevent data replication to show its limitations, we do not believe that we are beating a dead horse, but a very live beast that threatens the integrity of the entire field. We accept the second part of the analogy about developing a motor vehicle.

      We also accepted the reviewer’s suggestion and developed the suggested paragraph:

      " A major contribution to the field was made by Sokal and Sneath’s Principles of Numerical Taxonomy (9) book, which challenged traditional taxonomic theory as inherently circular and introduced quantitative methods to address questions of classification (see also review by Sneath (10)). Hull (11) claimed that evolutionary reasoning practiced in taxonomy is not inherently circular but rather unwarranted. He argued that such criticism was based on misunderstandings of the logic of hypothesising, which he attributed to an unrealistic desire for a mistake-proof science. He contended that scientific hypotheses should begin with insufficient evidence and be refined iteratively as new evidence emerges. However, some taxonomists preferred a more rigid, hierarchical approach to avoid the appearance of error. As a result of these and other criticisms, traditional taxonomy declined in favour of cladistics and molecular systematics, which provided more accurate and evolutionarily informed classifications.

      Today, palaeontology and palaeoanthropology grapple with methodological challenges that compromise the stability of their conclusions. These issues stem from various factors, including biologists’ apprehensions towards advanced mathematics, the pressure to publish for career advancement (12), the pursuit of high-profile journal covers, and the prestige associated with naming new species. As a result, these fields often resemble a branch of biology where the latest discoveries or new analytical techniques frequently overturn previous findings. This lack of cumulative knowledge necessitates a more rigorous approach to methodology and interpretation in morphometrics to ensure that conclusions are robust and enduring."

      It is not obvious that the authors' suggestion of supervised machine learning will remedy this situation, since (a) that field itself is undergoing massive changes month by month with the advent of applications AI, and even more relevant (b) the best ML algorithms, those based on deep neural nets, are (literally) unpublishable - we cannot see how their decisions have actually been computed. Instead, to stabilize, the field will need to figure out how to base its inferences on some syntheses of actual empirical theories.

      We appreciate the reviewer’s insightful comments and concerns regarding the use of supervised machine learning in our study. We acknowledge the rapid advancements in the field of machine learning and its significant impact on various domains, including geometric morphometrics. Although we are aware of the ongoing integration of machine learning techniques in geometric morphometrics, our objective was to thoroughly investigate some of the conventional and more frequently used models for comparative analysis.

      Our intention was also to develop a Python module that enables users to easily apply these models to their landmark data. We recognise that most users typically apply machine learning methods to the principal component analysis (PCA) of their landmark data (2), unless PCA fails to explain enough variance (3), as we discussed in the context of Linear Discriminant Analysis (LDA). Our study demonstrates that these machine learning methods can be directly applied after generalised Procrustes analysis (GPA), without necessitating PCA as an intermediary step. This highlights another significant point of our research: the often automatic and potentially unnecessary use of PCA in geometric morphometrics.

      Furthermore, we acknowledge that the availability of more extensive data might have allowed us to explore more complex methods, such as neural networks. However, neural networks require a substantial amount of data due to their numerous learning parameters, which we did not possess in this study. It is also evident that not every algorithm is suitable for every situation. Our findings revealed that simpler models, such as the nearest neighbours classifier, which do not even have a training phase, performed exceptionally well. Additionally, the nearest neighbours classifier offers the desired transparency and interpretability, addressing the reviewer’s concern regarding the opacity of more complex models.

      We hope this clarifies our approach and objectives, and we sincerely thank the reviewer for their valuable feedback, which has helped us refine our study and its presentation.

      It's not that this reviewer is cynical, but it is fair to suggest a revision conveying a concern for the truly striking lack of organized skepticism in the literature that is being critiqued here. A revision along those lines would serve as a flagship example of exactly the deeper argument that reference (17) was trying to seed, that the applied literature obviously needs a hundred times more of. Such a review would do the most good if it appeared in one of the same journals - AJBA, Evolution, Journal of Human Evolution, Paleobiology - where the bulk of the most highly cited misuses of PCA themselves have appeared.

      First, we do not believe that this reviewer is cynical, and we hope they will not consider us cynical if we point out that the field has thus far largely ignored previous reports of PCA misuses published in those journals, like the excellent Bookstein 2019 (4) paper, so perhaps a different approach is needed with a different journal.

      Second, our MS is not a review. We agree with the reviewer that a review of PCA critical papers is of value. We changed the title of our study to make it easier to find, and we thank the reviewer for the comment. 

      Reviewer #3:

      Comment 1. Mohseni and Elhaik challenge the widespread use of PCA as an analytical and interpretive tool in the study of geometric morphometrics. The standard approach in geometric morphometrics analysis involves Generalised Procrustes Analysis (GPA) followed by Principal Component Analysis (PCA). Recent research challenges PCA outcomes' accuracy, robustness, and reproducibility in morphometrics analysis. In this paper, the authors demonstrate that PCA is unreliable for such studies. Additionally, they test and compare several Machine-Learning methods and present MORPHIX, a Python package of their making that incorporates the tools necessary to perform morphometrics analysis using ML methods.

      Mohseni and Elhaik conducted a set of thorough investigations to test PCA's accuracy, robustness, and reproducibility following renewed recent criticism and publications where this method was abused. Using a set of 2 and 3D morphometric benchmark data, the authors performed a traditional analysis using GPA and PCA, followed by a reanalysis of the data using alternative classifiers and rigorous testing of the different outcomes.

      In the current paper, the authors evaluated eight ML methods and compared their classification accuracy to traditional PCA. Additionally, common occurrences in the attempted morphological classification of specimens, such as non-representative partial sampling, missing specimens, and missing landmarks, were simulated, and the performance of PCA vs ML methods was evaluated.

      This is a correct description of our MS.

      The main problem with this manuscript is that it is three papers rolled into one, and the link doesn't work.

      We agree that the manuscript is comprehensive and can probably be broken down into more than one manuscript. However, we do not adhere to the philosophies of the least publishable unit (LPU), the smallest publishable unit (SPU), or the minimum publishable unit (MPU). Instead, we believe in producing high-quality and encompassing studies.

      We checked the link thoroughly and ensured it is functional, thank you for your comment.

      The title promises a new Python package, but the actual text of the manuscript spends relatively little time on the Python package itself and barely gives any information about the package and what it includes or its usefulness. It is definitely not the focus of the manuscript. The main thrust of the manuscript, which takes up most of the text, is the analysis of the papionin dataset, which shows very convincingly that PCA underperforms in virtually all conditions tested.

      We agree. We revised the title to reflect the main issue of the paper. Thank you for your comment.

      In addition, the manuscript includes a rather vicious attack against two specific cases of misuse of PCA in paleoanthropological studies, which does not connect with the rest of the manuscript at all.

      We consider these case studies of the use of PCA, which resonate with our ultimate goal. First, the previous reviewer suggested that we are beating a “dead horse.” We provide very recent and high-profile test cases to support our position that PCA is a popular and widely used method. Second, we wish to show how researchers use data alternations to cherry-pick results. Third, we focus on one of the use cases (the Homo NS) to demonstrate the poor scientific practices prevalent in this field, such as refusing to share data and breaking Science’s policies to protect this act.

      If the manuscript is a criticism of PCA techniques, this should be reflected in the title. If it is a report of a new Python package, it should focus on the package. Otherwise, there should be two separate manuscripts here.

      It is a criticism of PCA, and it is now reflected in the title; thank you again.

      The criticism of PCA is valid and important. However, pointing out that it is problematic in specific cases and is sometimes misused does not justify labeling tens of thousands of papers as questionable and does not justify vilifying an entire discipline. The authors do not make a convincing enough case that their criticism of the use of PCA in analyzing primate or hominin skulls is relevant to all its myriad uses in morphometrics. The criticism is largely based on statistical power, but it is framed as though it is a criticism of geometric morphometrics in general.

      We appreciate the opportunity to address the concerns raised regarding our critique of PCA. The reviewer argues that because we analyzed only primate skulls, we cannot extrapolate that PCA will be biased in analyzing other data (other taxa or other usages). Using the same logic, we can also argue that PCA cannot be used to study NEW taxa and certainly not to detect NOVEL taxa because it was never shown to apply to these taxa. We can further argue that PCA cannot be sued to study ANY taxa since it was never shown to yield correct results (PCA results are justified through circular reasoning and are adjusted when they do not show the desired results). However, that part of our answer is not a defense of our method but rather a further criticism of the field.

      To answer the question more directly, our criticism of PCA is rooted in empirical evidence and robust research, including studies by Elhaik (5) and others (6, 7), demonstrating that PCA lacks the power to produce accurate and reliable results. If the reviewer believes that using cats instead of primates will somehow boost the accuracy of PCA, they should, at the very least, explain what morphological properties of cats justify this presumption. Concerning the case of other usages, we clearly noted that “the scope of our study was limited to PCA usage in geometric morphology.”  The reviewer did not explain why our analysis is not “convincing enough,” so we cannot address it.

      As you know, this issue extends beyond the specific case study of primate or hominin skulls in our research. Despite its widespread use, PCA is heavily relied upon in the field, often without sufficient scrutiny of its limitations. Our intention is not to vilify an entire discipline but to highlight the pervasive and sometimes unquestioning reliance on PCA across many studies in geometric morphometrics. Calling to reevaluate studies based on problematic method is not a vilification, this is by definition science.

      While we understand the concern about the generalisability of our findings, our critique is based on the inherent limitations of PCA itself, not merely on statistical power. PCA lacks measurable power, a test of significance, and a null model. Its outcomes are highly sensitive to the input data, making them susceptible to manipulation and interpretation. Moreover, the ability to evaluate various dimensions allows for cherry-picking of results, where different outcomes can be equally acceptable, thus undermining the robustness of conclusions drawn from PCA.

      We invite the reviewer to examine the mathematical basis of PCA as demonstrated in Figure 1 of Elhaik (2022) (https://www.nature.com/articles/s41598-022-14395-4/figures/1). We ask the reviewer to explain what in this straightforward calculation—calculating the mean of the dimensions, subtracting the mean from the dimensions, calculating the covariance matrix, and identifying the eigenvalues—convinces them that PCA is suitable for predicting evolutionary relationships between samples. What evidence supports the notion that evolutionary relationships can be inferred by merely subtracting the mean of a matrix? There is none, just as there is no statistical power in this method. PCA does not know what the data mean. It can be applied equally to horse race data and a dataset that records how many times Home Simpsons says his catchphrases. PCA is not an evolutionary method; it’s just a linear transformation. If we ask anyone why they trust it, eventually, we will get the answer that with enough tweaking, PCA results produce what the scientist wants to show, and, most importantly, it will be mathematically accurate (and as mathematically accurate as the result of all possible tweaks). There is nothing specific to hominins about it. If your method produces conflicting results by tweaking the number of samples, species, or landmarks, as we showed, your method is worthless. This is what we demonstrated.

      We would also like to note that if we had easier access to more data, we would have extended our analysis further and shown that the bias exists in other species. As explained in our manuscript, we reached out to several scientists who refused to share their data so that we would not show biases in their studies. As this reviewer is undoubtedly aware of the practices in the field, this criticism is extremely unfair.

      Finally, arguing that our MS dismisses the entire field of geometric morphometrics is also unfair and provocative. We made no such claim. On the contrary, we offer an unbiased method to replace PCA and improve the accuracy of studies in this field.

      We hope this clarifies our position and reinforces the validity of our critique. Thank you for your valuable feedback and for allowing us to address these important points.

      Comment 2a. The article's tone is very argumentative and provocative, and non-necessary superlatives and modifiers are used ("...colourful scatterplots", lines 101, 155, 672). While this is an excellent paper and should be studied by morphometrics experts and probably anyone using PCA, the overall tone does nothing to help. It reads somewhat like a Facebook rant rather than a scientific paper (there is still, we hope, a difference between the two). Please tone it down.

      Again, we thank the reviewer for considering our work excellent. We regret that the reviewer believes that describing colorful (#101) scatterplots as such is a provocation. We do not feel the same way. “Subsumed” (#155) has been suggested to us by an anonymous reviewer. We changed it to “classified” to satisfy the reviewer (However, Schwartz et al. (2014) raised concerns about the phylogenetic inferences based on PCA results of the geometric morphometrics analysis, noting the failure of the method to capture visually obvious differences between the Dmanisi crania and specimens commonly classified under Homo erectus.).  We do not understand the problem with #672, but we revised it to read “However, a growing body of literature criticises the accuracy of various PCA applications, raising concerns about its use in geometric morphometrics.” We hope that this satisfies the reviewer. We made no special effort to be argumentative or provocative. There is no need for that; our results speak for themselves. We did, however, make an effort to communicate the gravity of our findings by citing K. Popper. We do not consider this a provocation.

      Comment 2b. The acronym ML is normally used to denote Maximum Likelihood in the context of phylogenetic studies. The authors use it to denote Machine Learning, which many readers may find confusing (this reviewer took a while to realize that it was not referring to Maximum Likelihood). Perhaps leave "machine learning" written in full.

      We understand that in some contexts, "ML" typically denotes Maximum Likelihood, which can indeed cause confusion. Unfortunately, “ML” is also a well-established acronym for machine learning, and since our paper doesn’t deal with Maximum Likelihood but rather machine learning, we have to choose the latter. Initially, we did spell out "Machine Learning" in full to avoid this confusion. However, upon review, we found that the manuscript's readability and flow were compromised, leading us to revert to the acronym.

      We appreciate your suggestion and understand the importance of clarity. To address this, we will ensure that the first mention of "ML" is accompanied by "Machine Learning" written in full (Line 244). This should help maintain both clarity and readability. Thank you for your valuable input.

      Comment 3. In lines 142, 157 Rohlf's should be Rohlf.

      (Lines 191, 205) We modified it accordingly and replaced "Rohlf's" with "Rohlf".

      Comment 4. The short paragraph in lines 165-167 feels out of place and does not connect to the paragraphs before and after it.

      (Lines 210-223) We modified the introduction and merged that paragraph with a relevant paragraph. The new paragraph reads:

      “PCA’s prominent role in morphometrics analyses and, more generally, physical anthropology is inconsistent with the recent criticisms, raising concerns regarding its validity and, consequently, the value of the results reported in the literature. To assess PCA’s accuracy, robustness, and reproducibility in geometric morphometric analysis, particularly its potential biases and inconsistencies in clustering with species taxonomy for phylogenetic reconstruction, we utilised a benchmark database containing landmarks from six known species within the Old World monkeys tribe Papionini. We altered this dataset to simulate typical characteristics of paleontological data. We found that PCA’s outcomes lack reliability, robustness, and reproducibility. We also evaluated the argument that a high explained variance could be counted as a measure of reliability (2) and found no association between high explained variance amounts and the subjectiveness of the results. If PCA of morphometric landmark data produces biased results, then landmark-based geometric morphometric studies employing PCA, conservatively estimated to range jfrom 18,400 to 35,200 (as of July 2024) (see Methods), should be reevaluated.”

      We thank the reviewer for the suggestion.

      References

      (1) Gilbert CC, Rossie JB. Congruence of molecules and morphology using a narrow allometric approach. Proceedings of the National Academy of Sciences. 2007;104(29):11910-11914.

      (2) Courtenay LA, Yravedra J, Huguet R, Aramendi J, Maté-González MÁ, González-Aguilera D, et al. Combining machine learning algorithms and geometric morphometrics: a study of carnivore tooth marks. Palaeogeography, Palaeoclimatology, Palaeoecology. 2019;522:28-39.

      (3) Bellin N, Calzolari M, Callegari E, Bonilauri P, Grisendi A, Dottori M, et al. Geometric morphometrics and machine learning as tools for the identification of sibling mosquito species of the Maculipennis complex (Anopheles). Infection, Genetics and Evolution. 2021;95:105034.

      (4) Bookstein FL. Pathologies of between-groups principal components analysis in geometric morphometrics. Evolutionary Biology. 2019;46(4):271-302.

      (5) Elhaik E. Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated. Scientific reports. 2022;12(1):1-35.

      (6) Cardini A, Polly PD. Cross-validated between group PCA scatterplots: a solution to spurious group separation? Evolutionary Biology. 2020;47(1):85-95.

      (7) Berner D. Size correction in biology: how reliable are approaches based on (common) principal component analysis? Oecologia. 2011;166(4):961-971.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Kainov et al investigated the prevalence of mutations in 3'UTR that affect gene expression in cancer to identify noncoding cancer drivers.

      The authors used data from normal controls (1000 genome data) and compared it to cancer data (PCAWG). They found that in cancer 3'UTR mutations had a stronger effect on cleavage than the normal population. These mutations are negatively selected in the normal population and positively selected in cancers. The authors used PCAWG data set to identify such mutations and found that the mutations that lead to a reduction of gene expression are enriched in tumor suppressor genes and those that are increased in gene expression are enriched for oncogenes. 3'UTR mutations that reduce gene expression or occur in TSGs cooccur with non-synonymous mutations. The authors then validate the effect of 3'UTR mutations experimentally using a luciferase reporter assay. These data identify a novel class of noncoding driver genes with mutations in 3'UTR that impact polyadenylation and thus gene expression.

      This is an elegant study with fundamental insight into identifying cancer driver genes. The conclusions of this paper are mostly well supported by data, but some aspects of data analysis need to be extended.

      We thank the reviewer for the positive assessment of our work and constructive comments.

      (1) It would be important for the authors to show if the findings of this study hold for metastatic cancers since most deaths occur due to metastasis and tumor heterogeneity changes when cancer progresses to metastasis. The authors should use the Hartwig data and show if metastatic cancers are enriched for 3'UTR mutations.

      This is a good suggestion, but we believe that the proposed analysis would have a significantly stronger impact in the context of a separate study focused specifically on longitudinal changes in the somatic mutation landscape as cancer progresses from primary tumours to metastases. Conducting such a study would require obtaining permissions to use relevant controlled datasets and, ideally, collaborating with oncologists to generate additional genome and transcriptome sequencing data. As such, this level of analysis would go beyond the current scope of our work.

      (2) Figure 2 should show the distribution of 3'UTR mutations by cancer type especially since authors go on to use colorectal cancer only for validations. It would be helpful to bring Figures S3A and S3C to this panel since these findings make the connections to cancer biology. Are any molecular functions enriched in addition to biological processes? Are kinases, phosphatases, etc more or less affected by 3'UTR mutations?

      As suggested, we have added a pie chart showing the distribution of 3’UTR mutations by cancer type (new Fig. 2E). Notably, nearly a half of the mutations in our dataset was of colorectal adenocarcinoma origin, justifying the focus on this type of cancer in our subsequent validation analyses. 

      To strengthen the connections to cancer biology, we moved Fig. S3A and S3C to the main text. It was more logical to integrate these panels into Fig. 3 rather than Fig. 2. We also analysed molecular function enrichment in Fig. 3E. Consistent with the biological process enrichment (now shown in Fig. 3D), this revealed an enrichment of proteins interacting with the ubiquitination pathway, including tumour suppressors SMAD2, APC and AXIN1.

      (3) Figure 3 looks at the co-occurrence of 3'UTR mutations with non-synonymous mutations but what about copy number change? You would expect the loss of the other allele to be enriched. Along the same line, are these data phased? Do you know that the nonsynonymous mutations are in the other allele or in the same allele that shows 3'UTR mutation?

      As suggested, we have analysed copy number variation data. As mentioned in the revised Results, this "showed that increased copy number was 4.1-times more common in the PCAWG data compared to allele loss. However, the incidence of copy number increase was substantially lower in the DOWN-paSNV group compared to the BG-paSNV control (Fig. S6). This points to a negative selection against duplications of genes affected by DOWNpaSNVs in cancer".

      Phasing somatic mutations in cancer samples is challenging due to high genetic heterogeneity of tumour cells. This situation will likely improve in the near future with the increased use of long-read sequencing. However, with currently available data, there is no straightforward method to determine whether mutations co-occur in the same cell. We have added a note on this in the Discussion section: "As long-read genomic sequencing data become increasingly available, it will be interesting to investigate whether these additional mutations occur in the same or in a different allele compared to the DOWN-paSNVs".

      Reviewer #2 (Public Review):

      Summary:

      To evaluate whether somatic mutations in cancer genomes are enriched with mutations in polyadenylation signal regions, the authors analyzed 1000 genomes data and PCAWG data as a control and experimental set, respectively. They observed increased enrichment of somatic mutations that may affect the function of polyA signals and confirmed that these mutations may influence the expression of the gene through a minigene expression experiment.

      Strengths:

      This study provides a systematic evaluation of polyA signal, which makes it valuable. Overall, the analytic approach and results are solid and supported by experimental validation.

      Thank you.

      Weaknesses:

      (1) This study uses APARENT2 as a tool to evaluate functional alteration in polyA signal sequences. Based on the original paper and the results shown in this paper, the algorithm appears to be of high quality. However, the whole study is dependent on the output of APARENT2. Therefore, it would be nice to

      (a) run and show a positive control run, which can show that the algorithm works well, and (b) describe the rationale for selecting this algorithm in the main text.

      As suggested, we have added control analyses to Fig. S1A-B, which show that APARENT2 performs well in our hands. We have described the rationale for using APARENT in the Results as follows: "For each paSNV, we calculated the change in cleavage/polyadenylation efficiency using the APARENT2 neural network model, which has been shown to infer this statistic more accurately than earlier approaches [Ref23]".

      (2) Are there recurrent somatic mutation calls (= exactly the same mutation across different tumor samples) in the poly(A) region of certain genes?

      We indeed see several cases where the same cleavage/polyadenylation signal is affected by the same or different DOWN mutations in different cancer samples. This finding is now summarized in the Results section and Table S1 as follows: "In several cases, including LRP1B and FOXO1, which are known to act as tumour suppressors in certain cancers, the same signal/polyadenyalation signal was disrupted by the same or different mutations in more than one sample (see columns Mut_Recurrence and Signal_Recurrence in Table S1)".

      (3) The authors nicely showed that the minigene with A>G mutation altered gene expression. Maybe one can reach a similar conclusion by analyzing a cancer dataset that has mutation and gene expression data? That is, genes with or without polyA mutations show different expression levels.

      The data presented in Fig. 5A-B show that DOWN-paSNV mutations have a negative effect on the expression of endogenous tumour suppressor genes.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Figures should be numbered in order. For example, Figure S3C is referred to in the text before S3A-B, etc.

      We have proofread the text to fix this problem.

      Adding a supplementary file with lists of genes carrying 3'UTR mutations split by effect on gene expression and cancer type would be very useful for the community.

      We now show this in Table S1, with the caveat that we could not consistently investigate the effect of DOWN-paSNV on gene expression since the transcriptomics data are not available for all cancers.

      Spelling mistake in Figure 1A - genone should be genome.

      Fixed - thank you.

      Typo in Figure 1B x-axis label +50nt should be -50nt to the left of the dashed line.

      Fixed - thank you.

      All figures use E to denote x10 but it would make the figures more readable if authors used the standard notation (x10) for all numbers with exponents and base 10.

      Done.

    1. Author Response:

      Reviewer #1 (Public review):

      Summary:

      It is well known that autophagosomes/autolysosomes move along microtubules. However, because previous studies did not distinguish between autophagosomes and autolysosomes, it remains unknown whether autophagosomes begin to move after fusion with lysosomes or even before fusion. In this manuscript, the authors show, using fusion-deficient cells, that both pre-fusion autophagosomes and lysosomes can move along the MT toward the minus end. By screening motor proteins and Rabs, the authors found that autophagosomal traffic is primarily regulated by the dynein-dynactin system and can be counter-regulated by kinesins. They also show that Rab7-Epg5 and Rab39-ema interactions are important for autophagosome trafficking.

      Strengths:

      This study uses reliable Drosophila genetics and high-quality fluorescence microscopy. The data are properly quantified and statistically analyzed. It is a reasonable hypothesis that gathering pre-fusion autophagosomes and lysosomes in close proximity improves fusion efficiency.

      Thank you for your positive comments and for acknowledging the strengths of our work.

      Weaknesses:

      (1) To distinguish autophagosomes from autolysosomes, the authors used vps16 RNAi cells, which are supposed to be fusion deficient. However, the extent to which fusion is actually inhibited by knockdown of Vps16A is not shown. The co-localization rate of Atg8 and Lamp1 should be shown (as in Figure 8). Then, after identifying pre-fusion autophagosomes and lysosomes, the localization of each should be analyzed.

      Thank you for this comment. We plan to perform immunohistochemistry experiment on Vps16A KD fat body cells for mCherry and Lamp1, as in case of other panels of Figure 8. We will also analyse the distribution of each.

      It is also possible that autophagosomes and lysosomes are tethered by factors other than HOPS (even if they are not fused). If this is the case, autophagosomal trafficking would be affected by the movement of lysosomes.

      While we cannot exclude the possibility that autophagosomes are transported indirectly by being tethered to lysosomes. However, we find this unlikely be the case as we believe in fat cells lysosomes and autophagosomes will rapidly fuse with each other if they get close enough.

      (2) The authors analyze autolysosomes in Figures 6 and 7. This is based on the assumption that autophagosome-lysosome fusion takes place in cells without vps16A RANi. However, even in the presence of Vps16A, both pre-fusion autophagosomes and autolysosomes should exist. This is also true in Figure 8H, where the fusion of autophagosomes and lysosomes is partially suppressed in knockdown cells of dynein, dynactin, Rab7, and Epg5. If the effect of fusion is to be examined, it is reasonable to distinguish between autophagosomes and autolysosomes and analyze only autolysosomes.

      Thank you for your careful insights. The mCherry-Atg8a reporter we use is highly stable in autolysosomes due to the resilience of the mCherry fluorophore within these acidic, post-fusion structures, making it useful for labelling both autophagosomes and autolysosomes. Notably, the high intensity of mCherry-Atg8a within autolysosomes allows us to distinguish them from pre-fusion autophagosomes, which appear fainter and smaller, especially when accumulated in fusion-defective backgrounds (as shown in Figure 4). We therefore regard larger, brighter structures as autolysosomes.

      To improve clarity, we included additional markers—endogenous Lamp1 staining (Figure 8) and Lamp1-GFP (Figure S9)—to help differentiate between autophagic structures. Lamp1-negative, mCherry-Atg8a-positive vesicles indicate pre-fusion autophagosomes, while Lamp1/mCherry-Atg8a double-positive vesicles represent autolysosomes. Additionally, Lamp1-positive, mCherry-Atg8a-negative vesicles mark lysosomes of non-autophagic origin. We appreciate your suggestion

      (3) In this study, only vps16a RNAi cells were used to inhibit autophagosome-lysosome fusion. However, since HOPS has many roles besides autophagosome-lysosome fusion, it would be better to confirm the conclusion by knockdown of other factors (e.g., Stx17 RNAi).

      Thank you for this suggestion. We will generate additional Drosophila lines similar to those used in our current study, substituting Syntaxin17, SNAP29 or Vamp7 RNAi for Vps16A RNAi. We will test key phenotypic hits with these new backgrounds to confirm our findings.

      (4) Figure 8: Rab7 and Epg5 are also known to be directly involved in autophagosome-lysosome tethering/fusion. Even if the fusion rate is reduced in the absence of Rab7 and Epg5, it may not be the result of defective autophagosome movement, but may simply indicate that these molecules are required for fusion itself. How do the authors distinguish between the two possibilities?

      Thank you for this comment. While we agree that Rab7 and Epg5 are involved in autophagosome-lysosome tethering and subsequent fusion, we believe they also play an additional role in autophagosome movement. Our hypothesis stems from the observation that the phenotypes of vps16 RNAi and rab7 or epg5 RNAi are not identical. In contrast, RNAi targeting SNARE proteins involved exclusively in fusion (Syx17, SNAP29, and Vamp7) all result in a consistent phenotype: autophagosomes accumulate around the nucleus, closely resembling the phenotype observed with vps16 depletion. This suggests that these SNAREs are specifically involved in fusion. Since Rab7 and Epg5 depletion scatters autophagosomes throughout the cytosol rather than transporting them to the nucleus, we hypothesize that this is due to impaired movement of autophagosomes. This hypothesis is further supported by our co-IP data showing that Epg5 binds to dyneins.

      Reviewer #2 (Public review):

      Summary:

      This manuscript by Boda et al. describes the results of a targeted RNAi screen in the background of Vps16A-depleted Drosophila larval fat body cells. In this background, lysosomal fusion is inhibited, allowing the authors to analyze the motility and localization specifically of autophagosomes, prior to their fusion with lysosomes to become autolysosomes. In this Vps16A-deleted background, mCherry-Atg8a-labeled autophagosomes accumulate in the perinuclear area, through an unknown mechanism.

      The authors found that the depletion of multiple subunits of the dynein/dynactin complex caused an alternation of this mCherry-Atg8a localization, moving from the perinuclear region to the cell periphery. Interactions with kinesin overexpression suggest these motor proteins may compete for autophagosome binding and transport. The authors extended these findings by examining potential upstream regulators including Rab proteins and selected effectors, and they also examined effects on lysosomal movement and autolysosome size. Altogether, the results are consistent with a model in which specific Rab/effector complexes direct the movement of lysosomes and autophagosomes toward the MTOC, promoting their fusion and subsequent dispersal throughout the cell.

      Strengths:

      Although previous studies of the movement of autophagic vesicles have identified roles for microtubule-based transport, this study moves the field forward by distinguishing between effects on pre- and post-fusion autophagosomes, and by its characterization of the roles of specific Dynein, Dynactin, and Rab complexes in regulating movement of distinct vesicle types. Overall, the experiments are well-controlled, appropriately analyzed, and largely support the authors' conclusions.

      Thank you for your positive comments and for acknowledging the strengths of our work.

      Weaknesses:

      One limitation of the study is the genetic background that serves as the basis for the screening. In addition to preventing autophagosome-lysosome fusion, disruption of Vps16A has been shown to inhibit endosomal maturation and block the trafficking of components to the lysosome from both the endosome and Golgi apparatus. Additional effects previously reported by the authors include increased autophagosome production and reduced mTOR signaling. Thus Vps16A-depleted cells have a number of endosome, lysosome, and autophagosome-related defects, with unknown downstream consequences. Additionally, the cause and significance of the perinuclear localization of autophagosomes in this background is unclear. Thus, interpretations of the observed reversal of this phenotype are difficult, and have the caveat that they may apply only to this condition, rather than to normal autophagosomes. Additional experiments to observe autophagosome movement or positioning in a more normal environment would improve the manuscript.

      Thank you for highlighting this limitation. We plan to conduct time-lapse imaging of live fat body tissues expressing 3xmCherry-Atg8a and GFP-Lamp1 to visualize the movement and fusion events of pre-fusion autophagosomes (3xmCherry-Atg8a positive and GFP-Lamp1 negative) and lysosomes (GFP-Lamp1 positive). We expect these vesicles to exhibit movement toward the ncMTOC, providing insight into their behaviour under more typical conditions.

      Specific comments

      (1) Several genes have been described that when depleted lead to perinuclear accumulation of Atg8-labeled vesicles. There seems to be a correlation of this phenotype with genes required for autophagosome-lysosome fusion; however, some genes required for lysosomal fusion such as Rab2 and Arl8 apparently did not affect autophagosome positioning as reported here. Thus, it is unclear whether the perinuclear positioning of autophagosomes is truly a general response to disruption of autophagosome-lysosome fusion, or may reflect additional aspects of Vps16A/HOPS function. A few things here would help. One would be an analysis of Atg8a vesicle localization in response to the depletion of a larger set of fusion-related genes. Another would be to repeat some of the key findings of this study (effects of specific dynein, dynactin, rabs, effectors) on Atg8a localization when Syx17 is depleted, rather than Vps16A. This should generate a more autophagosome-specific fusion defect.

      Thank you for this suggestion. We will generate additional Drosophila lines similar to those used in our current study, substituting Syntaxin17, SNAP29, and Vamp7 RNAi for Vps16A RNAi. We will test key phenotypic hits with these new backgrounds to confirm our findings.

      Third, it would greatly strengthen the findings to monitor pre-fusion autophagosome localization without disrupting fusion. Such vesicles could be identified as Atg8a-positive Lamp-negative structures. The effects of dynein and rab depletion on the tracking of these structures in a post-induction time course would serve as an important validation of the authors' findings.

      Thank you for this helpful suggestion. We plan to conduct time-lapse experiments under various conditions (e.g., non-starved and starved at different durations) to monitor the motility of newly formed autophagosomes (3xmCherry-Atg8a positive, Lamp1 negative), allowing us to analyze their positioning dynamics without interference from fusion defects.

      (2) The authors nicely show that depletion of Shot leads to relocalization of Atg8a to ectopic foci in Vps16A-depleted cells; they should confirm that this is a mislocalized ncMTOC by co-labeling Atg8a with an MTOC component such as MSP300. The effect of Shot depletion on Atg8a localization should also be analyzed in the absence of Vps16A depletion.

      Thank you for this positive comment, to confirm the presence of ectopic MTOC foci in Shot KD cells, we plan to co-label with MTOC markers, including Khc-nod-LacZ, and additional reporters like Msps-mCherry, in both Vps16A-depleted and normal backgrounds.

      (3) The authors report that depletion of Dynein subunits, either alone (Figure 6) or co-depleted with Vps16A (Figure 2), leads to redistribution of mCherry-Atg8a punctae to the "cell periphery". However, only cell clones that contact an edge of the fat body tissue are shown in these figures. Furthermore, in these cells, mCherry-Atg8a punctae appear to localize only to contact-free regions of these cells, and not to internal regions of clones that share a border with adjacent cells. Thus, these vesicles would seem to be redistributed to the periphery of the fat body itself, not to the periphery of individual cells. Microtubules emanating from the perinuclear ncMTOC have been described as having a radial organization, and thus it is unclear that this redistribution of mCherry-Atg8a punctae to the fat body edge would reflect a kinesin-dependent process as suggested by the authors.

      Thank you for this detailed observation. Indeed, we frequently observe autophagosomes redistributing to contact-free peripheral regions upon dynein depletion, resulting in an asymmetric distribution. We believe this redistribution to be kinesin-dependent, as shown in Figure 3: kinesin overexpression scatters or shifts autophagosomes to the periphery, while kinesin/dynein double knockdown causes widespread autophagosome scattering. The simplest explanation is that, in dynein's absence, kinesins drive autophagosome movement.

      Additionally, while the radial organization of the microtubule (MT) network has been documented in two independent studies that we referenced, neither study showed MT plus-ends specifically, towards which kinesins transport. It is plausible that, while the MT network appears radial and symmetrical, subtle asymmetry might influence kinesin-dependent transport in fat cells. To explore this further, we will express MT plus-end markers, such as EB1-RFP and EB1-GFP, as well as kinesin reporters like unc-104-GFP or HA-tagged kinesins.

      (4) To validate whether the mCherry-Atg8a structures in Vps16A-depleted cells were of autophagic origin, the authors depleted Atg8a and observed a loss of mCherry- Atg8a signal from the mosaic cells (Figure S1D, J). A more rigorous experiment would be to deplete other Atg genes (not Atg8a) and examine whether these structures persist.

      Thank you for the suggestion to further validate our reporter. We will knock down additional Atg genes, including Atg14, Atg1, Atg6, and Vps34, to confirm that the mCherry-Atg8a-positive structures in the Vps16A RNAi background are indeed of autophagic origin.

      (5) The authors found that only a subset of dynein, dynactin, rab, and rab effector depletions affected mCherry- Atg8a localization, leading to their suggestion that the most important factors involved in autophagosome motility have been identified here. However, this conclusion has the caveat that depletion efficiency was not examined in this study, and thus any conclusions about negative results should be more conservative.

      Thank you for this constructive feedback. We agree and will adjust our conclusions based on the negative results in the revised manuscript to account for the potential variability in depletion efficiency.

      Reviewer #3 (Public review):

      Summary:

      In multicellular organisms, autophagosomes are formed throughout the cytosol, while late endosomes/lysosomes are relatively confined in the perinuclear region. It is known that autophagosomes gain access to the lysosome-enriched region by microtubule-based trafficking. The mechanism by which autophagosomes move along microtubules remains incompletely understood. In this manuscript, Péter Lőrincz and colleagues investigated the mechanism driving the movement of nascent autophagosomes along the microtubule towards the non-centrosomal microtubule organizing center (ncMTOC) using the fly fat body as a model system. The authors took an approach whereby they examined autophagosome positioning in cells where autophagosome-lysosome fusion was inhibited by knocking down the HOPS subunit Vps16A. Despite being generated at random positions in the cytosol, autophagosomes accumulate around the nucleus when Vps16A is depleted. They then performed an RNA interference screen to identify the factors involved in autophagosome positioning. They found that the dynein-dynactin complex is required for the trafficking of autophagosomes toward ncMTOC. Dynein loss leads to the peripheral relocation of autophagosomes. They further revealed that a pair of small GTPases and their effectors, Rab7-Epg5 and Rab39-ema, are required for bidirectional autophagosome transport. Knockdown of these factors in Vps16a RNAi cells causes the scattering of autophagosomes throughout the cytosol.

      Strengths:

      The data presented in this study help us to understand the mechanism underlying the trafficking and positioning of autophagosomes.

      Thank you for your positive comment and for acknowledging the strengths of our work.

      Major concerns:

      (1) The localization of EPG5 should be determined. The authors showed that EPG5 colocalizes with endogenous Rab7. Rab7 labels late endosomes and lysosomes. Previous studies in mammalian cells have shown that EPG5 is targeted to late endosomes/lysosomes by interacting with Rab7. EPG5 promotes the fusion of autophagosomes with late endosomes/lysosomes by directly recognizing LC3 on autophagosomes and also by facilitating the assembly of the SNARE complex for fusion. In Figure 5I, the EPG5/Rab7-colocalized vesicles are large and they are likely to be lysosomes/autolysosomes.

      Thank you for suggesting an improvement to our Epg5 localization data. We plan to perform triple-staining experiments with autophagy and lysosome markers, such as Atg8a and Lamp1, together with Epg5-9xHA to provide a clearer context for Epg5 localization.

      (2) The experiments were performed in Vps16A RNAi KD cells. Vps16A knockdown blocks fusion of vesicles derived from the endolysosomal compartments such as fusion between lysosomes. The pleiotropic effect of Vps16A RNAi may complicate the interpretation. The authors need to verify their findings in Stx17 KO cells, as it has a relatively specific effect on the fusion of autophagosomes with late endosomes/lysosomes.

      Thank you for this valuable suggestion. We will create similar Drosophila lines as used in our study but will now employ Syntaxin17, SNAP29, or Vamp7 RNAi. We will cross our most significant hits with these new lines to confirm our findings.

      (3) Quantification should be performed in many places such as in Figure S4D for the number of FYVE-GFP labeled endosomes and in Figures S4H and S4I for the number and size of lysosomes.

      Thank you for pointing this out, we will perform the suggested quantifications and statistics.

      (4) In this study, the transport of autophagosomes is investigated in fly fat cells. In fat cells, a large number of large lipid droplets accumulate and the endomembrane systems are distinct from that in other cell types. The knowledge gained from this study may not apply to other cell types. This needs to be discussed.

      Thank you for this insight. We will discuss the potential cell-type specificity of our findings in the revised manuscript. Additionally, we plan to examine the distribution of the mCherry-Atg8a reporter in the vps16A RNAi background in other cell types, such as salivary gland cells, to broaden our analysis.

      Minor concerns:

      (5) Data in some panels are of low quality. For example, the mCherry-Atg8a signal in Figure 5C is hard to see; the input bands of Dhc64c in Figure 5L are smeared.

      Thank you for noting this. We will repeat the experiment in Figure 5C to obtain clearer images. The smeared Dhc64C input bands in Figure 5L are due to the large size of this protein, which affects its migration characteristics. We will address this in the revised manuscript.

      (6) In this study, both 3xmCherry-Atg8a and mCherry-Atg8a were used. Different reporters make it difficult to compare the results presented in different figures.

      Thank you for this comment. Both reporters are well-established as autophagic markers and function similarly. However, to reduce confusion, we have used only one type per figure to ensure comparability of results.

      (7) The small autophagosomes presented in Figures such as in Figure 1D and 1E are not clear. Enlarged images should be presented.

      Thank you for your suggestion. We will repeat these experiments and provide higher-quality, enlarged images for clarity.

      (8) The authors showed that Epg5-9xHA coprecipitates with the endogenous dynein motor Dhc64C. Is Rab7 required for the interaction?

      Thank you for this question. We will investigate this by co-transfecting the cells with WT and GTP- or GDP-locked Rab7 mutants (which mimic constitutively active and dominant-negative forms, respectively) with Epg5-9xHA. This will allow us to assess whether Rab7 modulates the Epg5-Dhc interaction.

      (9) The perinuclear lysosome localization in Epg5 KD cells has no indication that Epg5 is an autophagosome-specific adaptor.

      Thank you for this comment. We will moderate our statement regarding Epg5's role as an autophagosome-specific adaptor in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews

      eLife assessment:

      In this useful study, the authors analyze droplet size distributions of multiple protein condensates and their fit to a scaling ansatz, highlighting that they exhibit features of first- and second-order phase transitions. The experimental evidence is still incomplete as the measurements were apparently done only at one time point, neglecting the possibility that droplet size distribution can evolve with time. The text would benefit from a connection to and contextualization with the well-understood expectations from the coupling of percolation and phase separation in protein condensates - a phenomenon that is increasingly gaining consensus amongst the community and that emphasizes "liquid-gas" criticality. 

      We have now carried out new experiments at multiple time points to establish that the droplet size distributions are stationary below the critical concentration. We have also addressed the comments made by the reviewers about the nature of the phase transition.

      Our analysis does not depend on a specific hypothesis on the nature of the phase transition, whether it be percolation or a gas-liquid critical transition. The scaling that we observed is an emergent property that is independent from the possible theoretical models used to describe the phase transition. In fact, our scaling analysis indicates that any theoretical model proposed for protein phase separation should predict the critical exponents that we reported. 

      Reviewer #1

      The authors analyse droplet size distributions of multiple protein condensates and fit to a scaling ansatz to highlight that they exhibit features of first-order and second-order phase transitions. While the experimental evidence is solid, the text lacks connection and contextualization to the well-understood expectations from the coupling of percolation and phase separation in protein condensates - a phenomenon that is increasingly gaining consensus amongst the community. The evidence supports the percolation and phase separation model rather than being close to a true critical point in the liquid-gas phase space. Overall, the work is useful to the community.

      We are grateful to the reviewer for these positive comments. We would like to emphasises that our contribution is not to propose a theoretical model, but rather to report a scaling behaviour in the experimentally measured droplet size distributions. The main implication of our work is that any theoretical model should predict the scaling exponents that we derived from the experimental measurements.

      Strengths: 

      The experimental analysis of distinct protein condensates is very well done and the reported exponents/scaling framework provides a clear framework to help the community deconvolve signatures of percolation in condensates. 

      Weaknesses: 

      The principal concern this reviewer has is that the reviewers adopt a framing in this paper to present a discovery of second-order features and connections to criticality - however, they ignore/miss the connections to percolation (a well-understood second-order transition that is expected to play a major role in protein condensates). I believe this needs to be addressed and the paper suitably revised to help connect with these expectations. 

      The scaling that we found is not characteristic standard percolation, since the exponents that we obtained (a=0 and f=1) are different from those of percolation (a=1.19 and f=2.21). This difference indicates that protein phase separation is not in the same universality class of standard percolation. Further studies will be required to understand whether theoretical models based on percolation could predict the observed critical exponents.

      - Protein condensates have been increasingly understood to be described as fluids whose assembly is driven by a connection of density (phase separation, first-order) and connectivity (percolation, second-order) transitions. This has been long known in the polymer community (Flory, Stockmayer, Tanaka, Rubinstein, Semenov, and others) and recently repopularized in the condensate community (by Pappu and Mittag, in particular, amongst others). The authors make no connections to any of these frameworks - which actually seem to be the essence of what they are describing. 

      As mentioned above, our purpose was neither to support an existing theoretical model, nor to propose a new one. Rather, we have reported a scaling behaviour and scaling exponents not noted before. Further studies will be required to establish whether existing theoretical models could account for this scaling behaviour.

      - Percolation theory, which has been around for more than half a century, has clear-cut scaling laws that have essentially similar forms to the ansatz adopted by the authors, and the commonalities/differences are not discussed by the authors - this is essential since this provides a physical basis for their ansatz rather than an arbitrary mathematical formulation. In particular, percolation models connect size distribution exponents to factors like dimensionality, valence, etc. and if these connections can be made with this data, that would be very powerful. 

      The scaling ansatz that we are using is commonly adopted in studies of critical phenomena, and it is not specific to percolation. The scaling exponents depends only on very few attributes like dimensionality, symmetries and if interactions are short or long range. These attributes determine the universality class. As such, scaling does not link with molecular determinants, but can distinguish different classes.

      - The connections between spinodal decomposition and second-order phase transitions are very confusing. Spindal decomposition happens when the barriers for first-order phase transitions are zero and systems can phase separate without crossing nucleation barriers. Further, the "criticality" discussed in the paper is confusing since it more likely refers to a percolation threshold and much less likely to a "critical temperature" (Tc -where spinodal and binodals become identical). I would recommend reframing this argument. 

      We cannot refer to percolation threshold as our model is not readily compatible with it. We elaborated and better explained the differences between these models.

      It's unlikely, in this reviewer's opinion, that the authors are actually discussing a "first-order" liquid-gas critical point - because saturation concentrations of these proteins can be much higher with temperature and the critical point would thus likely be at much higher concentrations (and ofc temperature). Further, the scaling exponents don't fall into that class naturally. However, if the authors disagree, I would appreciate clear quantitative reasons (including through the scaling exponents in that universality class) and be happy to be convinced to change my mind. As provided, the data does not support this model. 

      We have now clarified in the manuscript that we do not discuss the liquid-gas critical point.

      Reviewer #2

      This is a potentially interesting study addressing a possible scale-invariant log-normal characteristic of droplet size distribution in the phase separation behavior of biomolecular condensates. Some of the data presented are valuable and intriguing. However, as it stands, the validity and utility of this study are uncertain because there are serious deficiencies in the execution and presentation of the authors' results. Many of these shortcomings are fundamental, including a lack of clarity in the basic conceptual framework of the study, insufficient justification of the experimental setup, less-than-conclusive experimental evidence, and inadequate discussion of implications of the authors' findings to future experimental and theoretical studies of biomolecular condensates. Accordingly, this reviewer considers that the manuscript should undergo a major revision to address the following. In particular, the discussion should be significantly expanded by including references mentioned below as well as other references pertinent to the issues raised. 

      We thank the reviewer for the helpful comments. In the revised version of the manuscript we clarified that we aimed to use a well-established tool – the scaling analysis – to study phase transition and applied to the protein condensation process. This approach offers insight into a universal aspect of protein phase separation, and also provides a practical approach to determine the phase boundary. The observed fat-tailed distribution of protein droplet sizes is not what is normally observed in more standard phase separation systems in the subsaturated phase. Our contribution is not to propose a theoretical model, but rather to report the observation of a scaling behaviour. 

      (1) The theoretical analysis in this study is based on experimental data on condensed droplet size distributions for FUS and α-synuclein. The size data for FUS droplet is indirect as it relies on the assumption that FUS droplet diameter is proportional to fluorescence intensity of labeled FUS (page 10 of manuscript), with fluorescence data adopted from a previously published work by another group (Kar et al. & Pappu, ref.27). Because fluorescence of a droplet is expected to be dependent upon the condensed-phase concentration of FUS, this proportional relationship, even if it holds, must also be modulated by FUS concentration in the droplet. Moreover, why should fluorescence be proportional to diameter but not the cross-sectional area or volume of the FUS droplet, which would be more intuitive? These issues should be clarified. A new measure by microscopy is used to determine the size distribution of condensed α-synuclein; but no microscopy image is shown. It is of critical importance that such raw data (for example microscopy images) be presented for the completeness and reproducibility of the experiment because the entire study relies on the soundness of these experimental measurements. 

      As we mentioned in the article, for the scaling analysis, the droplet dimensions could be assessed in 1D (length), 2D (area) or 3D (volume). For the FUS experiments, we used the data as the authors provided in the original publication (PNAS 2022). For alpha-synuclein, we provided the data in the article. 

      (2) Despite the authors' claim of a universal scaling relationship, the log-log scatter plots in Figure 1 (page 15 of the manuscript) exhibit significant deviations from linearity at low protein concentrations (ρ→0). Given this fact, is universal scaling really valid? Discussion of this behavior is conspicuously absent (except the statement that these data points are excluded in the fit). In any case, the possible origins of these deviations should be thoroughly discussed so that the regime of universal scaling can be properly delineated. 

      In general, one would expect the scaling ansatz to be valid close to the phase boundary. It is the feature of the ansatz, that further away from the boundary, deviations are expected because of the decreasing relevance of critical phenomena.

      (3) Droplet size distribution most likely depends on the time duration after the preparation of the sample. For α-synuclein, "liquid droplet size characterisation images were captured 10 minutes post-liquid droplet formation" (page 9 of the manuscript). Why 10 minutes? Have the authors tried imaging at different time points and, if so, do the distributions at different time points remain essentially the same? If they are different, what is the criterion for focusing only on a particular time point? Information related to these questions should be provided. 

      We have now determined the droplet size distribution of alpha-synuclein at different time points, finding that they are not dependent on time within experimental uncertainties (Figure 6 in the revised manuscript).

      (4) At least two well-known mechanisms can lead to the time-dependent distribution of liquid droplet sizes: (i) coalescence of droplets in spatial proximity to form a larger droplet, and (ii) Ostwald ripening, i.e., formation of larger droplets concomitant with the dissolution of smaller droplets without fusion of droplets. The implications of these mechanisms on the authors' droplet size distributions should be addressed. Indeed, maintaining a size distribution against these mechanisms in vivo often requires active suppression [Bressloff, Phys Rev E 101, 042804 (2020)] with possible involvement of chemical reactions [Kirschbaum & Zwicker, J R Soc Interface 18, 20210255 (2021)]. These considerations are central to the basic rationale of this study and therefore should be carefully tackled. 

      These two mechanism of growth are relevant above the critical concentration. Below the critical concentration, which is the regime that we investigated in our work, there is no need of active suppression.

      (5) If coalescence and/or Ostwald ripening do occur, given sufficient time after sample preparation, the condensed phase may become a single large "droplet" or a single liquid layer. Does this occur in the authors' experiments? 

      As we are below the critical concentration, this is unlikely to occur, as indeed supported by the experiments mentioned at point (3). 

      (6) It is unclear whether the authors aim to address the kinetic phenomenon of liquid droplet formation and evolution or equilibrium properties. The two types of phenomena appear to be conflated in the authors' narrative. Clarification is needed. If this work aims to address timeindependent (or infinite-time) equilibrium properties, how are they expected to be related to droplet size distribution, which most likely is time-dependent? 

      Our analysis focuses on the equilibrium properties of the droplet size distribution below the critical concentration, and it should guide the proposal of a theoretical model that explains the emergence of scaling. In the introductory part of our manuscript, we proposed a possible scenario that tries to extend the Flory-Huggins’s theory to predict a scaling behaviour appropriate to a critical transition. Other scenarios are possible, and our result along with further experiments are needed to arrive at a deeper understanding of protein aggregation.

      (7) The relationship between the potentially time-dependent droplet size distribution and equilibrium properties of ρt and ρc (transition and critical concentrations, respectively) should be better spelled out. An added illustrative figure will be helpful. 

      We are addressing equilibrium properties, not kinetic ones. See also the answers to point 6.

      (8) The authors comment that their findings appear to be inconsistent with Flory-Huggins theory because Flory-Huggins "characterizes droplet formation as a consequence of nucleation ..." (page 8 of the manuscript). Here, three issues need detailed clarification: (i) In what way does Flory-Huggins mandate nucleation? (ii) Why are the findings of apparent scale invariance inconsistent with nucleation? (iii) If liquid droplet formations do not arise from nucleation, what physical mechanism(s) is (are) envisioned by the authors to be underpinning the formation of condensed liquid droplets in protein phase separation? 

      We do agree that the Flory-Huggins theory does not mandate nucleation above the spinodal line. However, we are addressing the equilibrium properties below the critical concentration, so the stable phase is the dilute phase, and there is no nucleation.

      (9) Are any of the authors' findings related to finite-system effects of phase separation [see, e.g., Nilsson & Irbäck, Phys Rev E 101, 022413 (2020)]?  

      Our experimental system is macroscopic, so we would not expect finite size effects.

      (10) Since the authors are using their observation of an apparent scale-invariant droplet size distribution to evaluate phase separation theory, it is important to clarify whether their findings provide any constraint on the shape of coexistence curves (phase diagrams). 

      We are only reporting the phenomenological observation of a scaling behaviour, so we may not speculate at this stage on the constraints of the coexistence curves. This is indeed an exciting opportunity for future studies.

      (11) More specifically, do the authors' findings suggest that the phase diagrams predicted by Flory-Huggins are invalid? Or, are they suggesting that even if the phase diagrams predicted by Flory-Huggins are empirically correct (if verified by experimental testing), they are underpinned by a free energy function different from that of Flory-Huggins? It is important to answer this question to clarify the implications of the authors' findings on equilibrium phase behaviors and the falsifiability of the implications. 

      As mentioned above, our main conclusion is that the droplet size distribution follows a scaling behaviour.  Our contribution is not to propose a theoretical model, but rather to propose a scaling behaviour that should be accounted for by existing of future theoretical models.

      (12) How about the implications of the authors' findings on other theories of protein phase separation that are based on interactions that are different from the short spatial range interactions treated by Flory-Huggins? For instance, it has been observed that whereas the Flory-Huggins-predicted phase diagrams always convex upward, phase diagrams for charged intrinsically disordered proteins with long spatial range Coulomb interactions exhibit a region that concave upward [Das et al., Phys Chem Chem Phys 20, 28558-28574 (2018)]. Can information be provided by the authors' findings regarding apparent scale-invariant droplet size distribution on the underlying interaction driving the protein molecules toward phase separation? 

      This is an interesting point for future studies about the type of interactions that give rise to the observed scaling behaviour.

      (13) Table S1 (page 4) and Table S2 (page 7) are mentioned in the text but these tables are not in the submitted files. 

      We have added the Supplementary Tables as well as the source files for the figures.

      (14) The two systems studied (FUS and α-synuclein) have a single intrinsically disordered protein (IDP) component. It is not clear if the authors expect their claimed scaling relation to be applicable to systems with multiple IDP components and if so, why.

      From the data that we have currently analysed, we feel that we may not speculate on this interesting point, leaving it to future studies.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      A limitation of the study is that it does not directly compare the e4ect of inhibiting the PERKATF4 pathway with inhibiting JUN and/or JUN-CHOP double deficient animals. It would also be useful, for the cell survival experiments shown in Figure 1, to examine a longer time point than 14 days to understand the long-term consequence of manipulating the PERK-ATF4 pathway.

      We appreciate that both suggestions are fantastic ideas for future studies but consider them to be beyond the scope of this investigation. 

      Reviewer #2 (Public Review):

      However, the main concern is the overall data quality, which appears to be suboptimal. The transfection e4iciency of AAV2-hSyn1-mTagBFP2-ires-Cre used in this study does not seem highly e4ective, as evidenced by the data presented in Supplementary Figure 1.

      We appreciate the importance of the e;ectiveness of transfection e;iciency of AAV2-hSyn1-mTagBFP2-ires-Cre to the interpretations of our results and acknowledge that the imaging and color schemes used required improvement. We have now validated widespread knockout in RGCs using AAV2-hSyn1-mTagBFP2-ires-Cre, improving the staining and imaging of LSL.tdTomato Cre reporter mice (Figure S1A-B) and using RNAScope to validate the disruption of ATF4 and CHOP, respectively, in the RGCs of ATF4 cKO and CHOP cKO mice (Figure S1C-D). Additional validation of functional knockout of these transcription factors is provided by reduction of RGC-autonomous expression of transcripts that we identified in this study to be injury-regulated in an ATF4-dependent (Chac1, Atf3, Figure 4C-E) or ATF4- and CHOP-dependent manner (Ecel1, Avil, Figure 4C-E and Figure S2D).

      The manuscript also contains several inconsistencies and a mix of methods in data collection, analysis, and interpretation, such as the labeling and quantification of RGCs and the combination of bulk and single-cell sequencing results.

      Regarding the use and comparison of bulk-seq and scRNA-seq data, it is our sense that these innovative approaches will be among the impactful aspects of this study. Numerous transcriptomic studies of the optic nerve crush model exist, though it has been unclear whether major and minor technical di;erences would preclude deriving insights across studies without the expense and time of exact reproduction. One goal of this study was to evaluate the hypothesis that, despite the obvious limitation that RGCs represent fewer than 1% of cells in whole retina bulk transcriptomics approach, the signals amongst top di;erentially expressed genes (DEGs) would be dominated by injury-induced changes within RGCs and that the most robust of these changes would be readily detected across techniques and labs, serving as a cornerstone for interpreting similarities and di;erences in findings. We believe that the results validate this approach. Important insights gained in this study from these cross-study and cross-platform analyses include:

      (1) Genes that we identify in this study as neuronal ATF4-dependent by whole retina transcriptomics include many of the most robust genes expression changes observed across multiple studies that enrich for RGCs and those that only report RGC-autonomous expression changes by scRNA-seq. This observation predicts that many of the ATF4-dependent expression changes that we report are RGC autonomous, which we further validate in this revision by RNAScope.

      (2) Similarly designed whole transcriptomics studies across labs can be remarkably robust for top DEGs, showing striking similarity that allows for meaningful insights and testable hypotheses across di;erent knockout and conditional knockout mice.

      (3) scRNA-seq of RGCs and bulk sequencing of FACS-enriched RGCs, unsurprisingly results in higher sensitivity for injury-induced expression changes, but the high degree of similarity that we demonstrate between the top DEGs from those studies and whole retina transcriptomics studies allows for confident inferences regarding the expected cell autonomy of reported expression changes in this model, using available resources such as the Single Cell Portal, without the expense and technical optimization required for extensive spatial transcriptomics across numerous mouse models.

      Other revisions

      In addition to these updates to address the public reviews, we are grateful for the reviewers’ additional recommendations and provide these further revisions:

      (1) We appreciate the request to clarify with a schematic the di;erences between our study and a previous report (Tian et al., 2022). A second Correction to that study was published in July 2024, resulting in changes to the logFC values used in our original cross-study comparison and adjustments to multiple figures and tables related to the proposed transcriptional programs of ATF4, CHOP, and the other purported core transcription factors. We have therefore updated our Figure S3A-C in accordance with that Correction to better reflect the underlying data of that study. These changes do not alter our original conclusions that: (a) both the whole retina transcriptomics approach of our study and the FACS-enriched RGC approach of that study readily detect the strong upregulation of many known ATF4 target genes after optic nerve crush (Figure S3A); and (b) there are striking di;erences in the ATF4- and CHOP-dependent transcripts suggested by our cKO data and those suggested by the reported gRNA data. Though we had hoped that the Correction would allow us in this revision to diagram those findings and model for comparison to these cKO findings, documenting those changes and their impacts on the proposed model is beyond the scope of this study.

      (2) We agree that the discordance between the gene and protein names for Ddit3/CHOP and Eif2ak3/PERK represents a challenge for clarity, even when gene names are carefully selected when referring to genes or transcripts and protein names when referring to proteins. We have therefore attempted to streamline the naming throughout, using where possible both names.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Recommendations For The Authors):

      (1) I was surprised to see that the Authors have failed to address my major concerns about the paper, which was in the Main text of the Review.

      Previously I wrote: The major weakness of the manuscript is that it is written for a very specialized reader who has a strong background in cerebellar development, making it hard to read for eLife's general audience. It's challenging to follow the logic of some of the experiments as well as to contextualize these findings in the field of cerebellar development.

      This has not been addressed. The manuscript has not been substantively changed and it is still written for a very specialized reader rather than a general reader.

      We appreciate the respected reviewer’s concern and have made substantial revisions throughout the manuscript to address the points. We have simplified the technical language throughout the manuscript and included additional background information, particularly in the introduction and discussion sections, to better orient general readers. Additionally, we have clarified the logical flow of the experiments by incorporating transitional statements and summaries that explain the purpose and outcomes of each experiment (revisions are highlighted in yellow). 

      (2) These two have been addressed, although to be honest, I don't think that the cartoon is particularly helpful for a general audience.

      Thank you for your feedback. We have replaced the cartoon with a revised version that provides more detailed information to clarify and simplify the origins of cerebellar nuclei from the caudal and rostral ends in both Atoh1+/+ and Atoh1-/- mice. We believe this will make the content more clear and informative for the general audience.

      (3) My third recommendation, that they include a section in the Discussion to speculate about what these cells may become in the adult and the existence of multiple cell types with different molecular markers and projection patterns in the nuclei, has also not been addressed.

      We apologize for the oversight in the previous revision. We have now added a detailed discussion in the manuscript that speculates on the potential fate of these newly identified cells in the adult cerebellum, suggesting that they may differentiate into excitatory neurons (highlighted on page 9). In addition, as noted in our previous resubmission, further direct evidence is needed from the early population of SNCA+ cells during E9 to E13. This is an ongoing focus of investigation in our lab, where we are currently using SNCA-GFP mice, part of a project for a PhD student in our lab.

      Reviewer #2 (Recommendations For The Authors):

      One small remaining issue: The methods text re cell counts remains confusing: n=3

      EMBRYOS???

      "To assess the number of OTX2-positive cells, we conducted immunohistochemistry (IHC) labeling on slides containing serial sections from embryonic days 12, 13, 14, and 15 (n=3 EMBRYOS??? at each timepoint)."

      Thank you for this point and we acknowledge that, and we have revised the text in the methods section for clarity. As highlighted on page 11, “The sample size was equal to 9 embryos” and on page 16, “3 embryos were used at each time point”.

    1. Author response:

      Public Reviews: 

      Reviewer #1 (Public review): 

      The paper by Chen et al describes the role of neuronal themo-TRPV3 channels in the firing of cortical neurons at a fever temperature range. The authors began by demonstrating that exposure to infrared light increasing ambient temperature causes body temperature to rise to a fever level above 38{degree sign}C. Subsequently, they showed that at the fever temperature of 39{degree sign}C, the spike threshold (ST) increased in both populations (P12-14 and P7-8) of cortical excitatory pyramidal neurons (PNs). However, the spike number only decreased in P7-8 PNs, while it remained stable in P12-14 PNs at 39 degrees centigrade. In addition, the fever temperature also reduced the late peak postsynaptic potential (PSP) in P12-14 PNs. The authors further characterized the firing properties of cortical P12-14 PNs, identifying two types: STAY PNs that retained spiking at 30{degree sign}C, 36{degree sign}C, and 39{degree sign}C, and STOP PNs that stopped spiking upon temperature change. They further extended their analysis and characterization to striatal medium spiny neurons (MSNs) and found that STAY MSNs and PNs shared the same ST temperature sensitivity. Using small molecule tools, they further identified that themo-TRPV3 currents in cortical PNs increased in response to temperature elevation, but not TRPV4 currents. The authors concluded that during fever, neuronal firing stability is largely maintained by sensory STAY PNs and MSNs that express functional TRPV3 channels. Overall, this study is well designed and executed with substantial controls, some interesting findings, and quality of data. Here are some specific comments: 

      (1) Could the authors discuss, or is there any evidence of, changes in TRPV3 expression levels in the brain during the postnatal 1-4 week age range in mice? 

      To our knowledge, no published studies have documented changes in TRPV3 expression levels in the brain during the 1st to 4th postnatal weeks in mice. Research on TRPV3 expression in the mouse brain has primarily involved RT-PCR analysis of RNA from dissociated tissue in adult mice (Jang et al., 2012; Kumar et al., 2018), largely due to the scarcity of effective antibodies for brain tissue sections at the time of publication. Furthermore, the Allen Brain Atlas lacks data on TRPV3 expression in the developing or postnatal brain. To address this gap, we plan to examine TRPV3 expression at P7-8, P12-13, and P20-23 as part of our manuscript revision.

      (2) Are there any differential differences in TRPV3 expression patterns that could explain the different firing properties in response to fever temperature between the STAY- and STOP neurons? 

      This is an excellent question and one we plan to explore in the future by developing reporter mice or viral tools to monitor the activity of cells with endogenous TRPV3 expression. To our knowledge, these tools do not currently exist. Creating them will be challenging, as it requires identifying promoters that accurately reflect endogenous TRPV3 expression. We have not yet quantified TRPV3 expression in STOP and STAY neurons; however, our analysis of evoked spiking activity at 30, 36, and 39°C suggests that TRPV3 expression may mark a population of pyramidal neurons that tend to STAY spiking as temperatures increase. To investigate this further, we are considering patch-seq for TRPV3 expression on recorded neurons. This is a complex experiment, as it requires recording activity at three different temperatures and subsequently collecting the cell contents. While success is not guaranteed, we are committed to attempting these experiments as part of our revisions.

      (3) TRPV3 and TRPV4 can co-assemble to form heterotetrameric channels with distinct functional properties. Do STOP neurons exhibit any firing behaviors that could be attributed to the variable TRPV3/4 assembly ratio? 

      There is some evidence that TRPV3 and TRPV4 proteins can physically associate in HEK293 cells and native skin tissues (Hu et al., 2022).  TRPV3 and TRPV4 are both expressed in the cortex (Kumar et al., 2018), but it remains unclear whether they are co-expressed and co-assembled to form heteromeric channels in cortical excitatory  pyramidal neurons.  Examination of the I-V curve from HEK cells co-expressing TRPV3/4 heteromeric channels shows enhanced current at negative membrane potentials (Hu et al., 2022).  

      Currently, we cannot characterize cells as STOP or STAY and measure TRPV3 or TRPV4 currents simultaneously, as this would require different experimental setups and internal solutions. Additionally, the protocol involves a sequence of recordings at 30, 36, and 39°C, followed by cooling back to 30°C and re-heating to each temperature. Cells undergoing such a protocol will likely not survive till the end.

      In our recordings of TRPV3 currents—which likely include both STOP and STAY cells—we do not observe a significant current at negative voltages, suggesting that TRPV3/4 heteromeric channels may either be absent or underrepresented, at least at a 1:1 ratio. However, the possibility that TRPV3/4 heteromeric channels could define the STOP cell population is intriguing and plausible.

      (4) In Figure 7, have the authors observed an increase of TRPV3 currents in MSNs in response to temperature elevation? 

      We have not recorded TRPV3 currents in MSNs in response to elevated temperatures.

      (5) Is there any evidence of a relationship between TRPV3 expression levels in D2+ MSNs and degeneration of dopamine-producing neurons? 

      This is an interesting question, though it falls outside our current research focus in the lab. A PubMed search yields no results connecting the terms TRPV3, MSNs, and degeneration. However, gain-of-function mutations in TRPV4 channel activity have been implicated in motor neuron degeneration (Sullivan et al., 2024) and axon degeneration (Woolums et al., 2020). Similarly, TRPV1 activation has been linked to developmental axon degeneration (Johnstone et al., 2019), while TRPV3 blockade has shown neuroprotective effects in models of cerebral ischemia/reperfusion injury in mice (Chen et al., 2022).

      The link between TRPV activation and cell degeneration, however, may not be straightforward. For instance, TRPV1 loss has been shown to accelerate stress-induced degradation of axonal transport from retinal ganglion cells to the superior colliculus and to cause degeneration of axons in the optic nerve (Ward et al., 2014). Meanwhile, TRPV1 activation by capsaicin preserves the survival and function of nigrostriatal dopamine neurons in the MPTP mouse model of Parkinson's disease (Chung et al., 2017).

      (6) Does fever range temperature alter the expressions of other neuronal Kv channels known to regulate the firing threshold? 

      This is an active line of investigation in our lab. The results of ongoing experiments will provide further insight into this question.

      Reviewer #2 (Public review): 

      Summary: 

      The authors study the excitability of layer 2/3 pyramidal neurons in response to layer four stimulation at temperatures ranging from 30 to 39 Celsius in P7-8, P12-P14, and P22-P24 animals. They also measure brain temperature and spiking in vivo in response to externally applied heat. Some pyramidal neurons continue to fire action potentials in response to stimulation at 39 C and are called stay neurons. Stay neurons have unique properties aided by TRPV3 channel expression. 

      Strengths: 

      The authors use various techniques and assemble large amounts of data. 

      Weaknesses: 

      (1) No hyperthermia-induced seizures were recorded in the study. 

      The goal of this manuscript is to uncover the age-related physiological changes that enable the brain to retain function at fever temperatures. These changes may potentially explain why most children do not experience febrile seizures or why, in the rare cases when they do occur, the most prominent window of susceptibility is between 2-5 years of age (Shinnar and O’Dell, 2004), as this may coincide with the window during which these developmental changes are normally occurring. While it is possible that impairments in these mechanisms could result in febrile seizures, another possibility is that neural activity may fall below the level required to maintain normal function.

      (2) Febrile seizures in humans are age-specific, extending from 6 months to 6 years. While translating to rodents is challenging, according to published literature (see Baram), rodents aged P11-16 experience seizures upon exposure to hyperthermia. The rationale for publishing data on P7-8 and P22-24 animals, which are outside this age window, must be clearly explained to address a potential weakness in the study. 

      This manuscript focuses on identifying the age-related physiological changes that enable the brain to retain function at fever temperatures. To this end, we examine two age periods flanking the putative window of susceptibility (P12-14), specifically an earlier timepoint (P7-8) and a later timepoint (P20-23). The inclusion of these time points also serves as a negative control, allowing us to determine whether the changes we observe in the proposed window of susceptibility are unique to this period. We believe that including these windows ensures a thorough and objective scientific approach.

      (3) Authors evoked responses from layer 4 and recorded postsynaptic potentials, which then caused action potentials in layer 2/3 neurons in the current clamp. The post-synaptic potentials are exquisitely temperature-sensitive, as the authors demonstrate in Figures 3 B and 7D. Note markedly altered decay of synaptic potentials with rising temperature in these traces. The altered decays will likely change the activation and inactivation of voltage-gated ion channels, adjusting the action potential threshold. 

      In Figure 4B, we surmised that the temperature-induced reductions in inhibition and the subsequent loss of the late PSP primarily contribute to the altered decay of the synaptic potentials.

      (4) The data weakly supports the claim that the E-I balance is unchanged at higher temperatures. Synaptic transmission is exquisitely temperature-sensitive due to the many proteins and enzymes involved. A comprehensive analysis of spontaneous synaptic current amplitude, decay, and frequency is crucial to fully understand the effects of temperature on synaptic transmission. 

      Thank you for the opportunity to provide clarification. It was not stated, nor did we intend to imply, that in general, E-I balance is unchanged at higher temperatures. Please see the excerpt from the manuscript below. The statements specifically referred to observations made for experiments conducted during the P20-26 age range for cortical pyramidal neurons. We have a parallel line of investigation exploring the differential susceptibility of E-I balance based on age and temperature. Additionally, our measurements focus on evoked activity, rather than spontaneous activity, as these events are more likely linked to the physiological changes underlying behavior in the sensory cortex.

      “As both excitatory and inhibitory PNs that stay spiking increase their firing rates (Figure 5B) and considering that some neurons within the network are inactive throughout or stop spiking, it is plausible that these events are calibrated such that despite temperature increases, the excitatory to inhibitory (E-I) balance within the circuit may remain relatively unchanged. Indeed, recordings of L4-evoked excitatory and inhibitory postsynaptic currents (respectively EPSCs and IPSCs) in wildtype L2/3 excitatory PNs in S1 cortex, where inhibition is largely mediated by the parvalbumin positive (PV) interneurons, showed that E-I balance (defined as E/E+I, the ratio of the excitatory current to the total current) remained unchanged as temperature increased from 36 to 39°C (Figure 5E).”

      (5) It is unclear how the temperature sensitivity of medium spiny neurons is relevant to febrile seizures. Furthermore, the most relevant neurons are hippocampal neurons since the best evidence from human and rodent studies is that febrile seizures involve the hippocampus. 

      Thank you for the opportunity to clarify. Our goal was not to establish a link between medium spiny neuron (MSN) function and febrile seizures. The manuscript's focus is on identifying age-related physiological changes that enable supragranular cortical cells in the brain to retain function at fever temperatures. MSNs were selected for mechanistic comparison in this study because they represent a non-pyramidal, non-excitatory neuronal subtype, allowing us to assess whether the physiological changes observed in L2/3 excitatory pyramidal neurons are unique to these cells.

      (6) TRP3V3 data would be convincing if the knockout animals did not have febrile seizures. 

      Could you kindly provide the reference indicating that TRPV3 KO mice have seizures? Unfortunately, we were unable to locate this reference. It is important to distinguish febrile seizures, which occur within the range of physiological body temperatures (~ 38 to 40°C), from seizures resulting from heat stroke, a severe form of hyperthermia occuring when body temperature exceeds 40.0 °C. Mechanistically, these may represent different phenomena, as the latter is typically associated with widespread protein denaturation and cell death, whereas febrile seizures are usually non-lethal.  Additionally, TRPV3 is located on chromosome 17p13.2, a region not currently associated with seizure susceptibility.

      Reviewer #3 (Public review): 

      Summary: 

      This important study combines in vitro and in vivo recording to determine how the firing of cortical and striatal neurons changes during a fever range temperature rise (37-40 oC). The authors found that certain neurons will start, stop, or maintain firing during these body temperature changes. The authors further suggested that the TRPV3 channel plays a role in maintaining cortical activity during fever. 

      Strengths: 

      The topic of how the firing pattern of neurons changes during fever is unique and interesting. The authors carefully used in vitro electrophysiology assays to study this interesting topic. 

      Weaknesses: 

      (1) In vivo recording is a strength of this study. However, data from in vivo recording is only shown in Figures 5A,B. This reviewer suggests the authors further expand on the analysis of the in vivo Neuropixels recording. For example, to show single spike waveforms and raster plots to provide more information on the recording. The authors can also separate the recording based on brain regions (cortex vs striatum) using the depth of the probe as a landmark to study the specific firing of cortical neurons and striatal neurons. It is also possible to use published parameters to separate the recording based on spike waveform to identify regular principal neurons vs fast-spiking interneurons. Since the authors studied E/I balance in brain slices, it would be very interesting to see whether the "E/I balance" based on the firing of excitatory neurons vs fast-spiking interneurons might be changed or not in the in vivo condition. 

      As requested, in the revised manuscript, we will include examples of single spike waveforms and raster plots for the in vivo recordings. Please note that all recordings were conducted in the cortex, not the striatum. To clarify, we used published parameters to separate the recordings based on spike waveform, which allowed us to identify regular principal neurons and fast-spiking interneurons. The paragraph below from the methods section describes this procedure.

      “ Following manual curation, based on their spike waveform duration, the selected single units (n= 633) were separated into putative inhibitory interneurons and excitatory principal cells (Barthóet al., 2004). The spike duration was calculated as the time difference between the trough and the subsequent waveform peak of the mean filtered (300 – 6000 Hz bandpassed) spike waveform. Durations of extracellularly recorded spikes showed a bimodal distribution (Hartigan’s dip test; p < 0.001) characteristic of the neocortex with shorter durations corresponding to putative interneurons (narrow spikes) and longer durations to putative principal cells (wide spikes). Next, k-means clustering was used to separate the single units into these two groups, which resulted in 140 interneurons (spike duration < 0.6 ms) and 493 principal cells (spike duration > 0.6 ms), corresponding to a typical 22% - 78% (interneuron – principal) cell ratio”.

      In vivo patching to record extracellular and inhibitory responses at 36°C and then waiting 10 minutes to record again at 39°C would be an extremely challenging experiment. Due to the high difficulty and expected very low yield, these experiments will not be pursued for the revision studies.

      (2) The author should propose a potential mechanism for how TRPV3 helps to maintain cortical activity during fever. Would calcium influx-mediated change of membrane potential be the possible reason? Making a summary figure to put all the findings into perspective and propose a possible mechanism would also be appreciated. 

      Thank you for your helpful suggestions. In response to your recommendation, we will include a summary figure detailing the hypothesis currently described in the discussion section of the manuscript. The excerpt from the discussion is included below.

      “Although, TRPV3 channels are cation-nonselective, they exhibit high permeability to Ca2+ (Ca²⁺ > Na⁺ ≈ K⁺ ≈ Cs⁺) with permeability ratios (relative to Na+) of 12.1, 0.9, 0.9, 0.9 (Xu et al., 2002). Opening of TRPV3 channels activates a nonselective cationic conductance and elevates membrane depolarization, which can increase the likelihood of generating action potentials. Indeed, our observations of a loss of the temperature-induced increases in the PSP with TRPV3 blockade are consistent with a reduction in membrane depolarization. In S1 cortical circuits at P12-14, STAY PNs appear to rely on a temperature-dependent activity mechanism, where depolarization levels (mediated by higher excitatory input and lower inhibitory input) are scaled to match the cell’s ST. Thus, an inability to increase PSPs with temperature elevations prevents PNs from reaching ST, so they cease spiking.”

      (3) The author studied P7-8, P12-14, and P20-26 mice. How do these ages correspond to the human ages? it would be nice to provide a comparison to help the reader understand the context better.

      Ideally, the mouse-human age comparison would depend on the specific process being studied. Please note that these periods are described in the introduction of the manuscript. The relevant excerpt is included below. Let us know if you need any additional modifications to this description.

      “Using wildtype mice across three postnatal developmental periods—postnatal day (P)7-8 (neonatal/early), P12-14 (infancy/mid), and P20-26 (juvenile/late)—we investigated the electrophysiological properties, ex vivo and in vivo, that enable excitatory pyramidal neurons (PNs) neurons in mouse primary somatosensory (S1) cortex to remain active during temperature increases from 30°C (standard in electrophysiology studies) to 36°C (physiological temperature), and then to 39°C (fever-range).”

    1. Author response:

      eLife Assessment

      This important study describes a computational tool termed FliSimBA (Fluorescence Lifetime Simulation for Biological Applications), which uses simulations to rigorously assess experimental limitations in fluorescence lifetime imaging microscopy (FLIM), including diverse noise factors, hardware effects, and sensor expression levels. The evidence from simulation and experimental measurements supporting the usefulness of FlimSimBA is solid. The authors may improve the application of the tool to a wide range of biological samples by providing the simulation package, currently in MATLB, in other common languages such as Python, and having better descriptions of the fitting algorithm and model assumptions. The work will interest scientists who wish to perform quantitative FLIM imaging for cells and tissues.

      We thank the editors and reviewers for the constructive feedback. We plan to provide the FLiSimBA simulation package in Python in addition to Matlab. We will also describe in more detail in the Results section our fitting method. Furthermore, we will explain more clearly in the text that our simulation package makes almost no model assumptions, and features flexibility and adaptability so that it can be used for any fluorescence lifetime measurements. We will clearly outline what are the specific examples we use for our case studies, and how users can input their own values based on the specific sensors, autofluorescence, and hardware they use.

      Public Reviews:

      Reviewer #1 (Public review):

      In this study, Ma et al. aimed to determine previously uncharacterized contributions of tissue autofluorescence, detector afterpulse, and background noise on fluorescence lifetime measurement interpretations. They introduce a computational framework they named "Fluorescence Lifetime Simulation for Biological Applications (FLiSimBA)" to model experimental limitations in Fluorescence Lifetime Imaging Microscopy (FLIM) and determine parameters for achieving multiplexed imaging of dynamic biosensors using lifetime and intensity. By quantitatively defining sensor photon effects on signal-to-noise in either fitting or averaging methods of determining lifetime, the authors contradict any claims of FLIM sensor expression insensitivity to fluorescence lifetime and highlight how these artifacts occur differently depending on the analysis method. Finally, the authors quantify how statistically meaningful experiments using multiplexed imaging could be achieved.

      A major strength of the study is the effort to present results in a clear and understandable way given that most researchers do not think about these factors on a day-to-day basis. The model code is available and written in Matlab, which should make it readily accessible, although a version in other common languages such as Python might help with dissemination in the community. One potential weakness is that the model uses parameters that are determined in a specific way by the authors, and it is not clear how vastly other biological tissue and microscope setups may differ from the values used by the authors.

      Overall, the authors achieved their aims of demonstrating how common factors (autofluorescence, background, and sensor expression) will affect lifetime measurements and they present a clear strategy for understanding how sensor expression may confound results if not properly considered. This work should bring to awareness an issue that new users of lifetime biosensors may not be aware of and that experts, while aware, have not quantitatively determined the conditions where these issues arise. This work will also point to future directions for improving experiments using fluorescence lifetime biosensors and the development of new sensors with more favorable properties.

      We appreciate the comments and helpful suggestions. We plan to present FLiSimBA simulation code in Python in addition to Matlab to make it more accessible to the community.

      One of the advantages of FLiSimBA is that the simulation package is flexible and adaptable, allowing users to input parameters based on the specific sensors, hardware, and autofluorescence measurements for their biological and optical systems. We used parameters based on one FRET-based sensor, measured autofluorescence from mouse tissue, and measured dark count/after pulse of our specific GaAsP PMT in this manuscript as examples. We will emphasize this advantage and further clarify how these parameters can be adapted to diverse tissues, imaging systems, and sensors based on individual users in our revision.

      Reviewer #2 (Public review):

      Summary:

      By using simulations of common signal artefacts introduced by acquisition hardware and the sample itself, the authors are able to demonstrate methods to estimate their influence on the estimated lifetime, and lifetime proportions, when using signal fitting for fluorescence lifetime imaging.

      Strengths:

      They consider a range of effects such as after-pulsing and background signal, and present a range of situations that are relevant to many experimental situations.

      Weaknesses:

      A weakness is that they do not present enough detail on the fitting method that they used to estimate lifetimes and proportions. The method used will influence the results significantly. They seem to only use the "empirical lifetime" which is not a state of the art algorithm. The method used to deconvolve two multiplexed exponential signals is not given.

      We appreciate the comments and constructive feedback and will more clearly describe the fitting methods in our revision.

      Two metrics are currently used to estimate lifetime in our paper, which are currently described in the Methods section ‘Experimental data collection, parameter determination, and simulation’ and ‘FLIM analysis’: (1) fitted P1: we described how lifetime histograms were fitted to Equation 2 with the Gauss-Newton nonlinear least-square fitting algorithm and the fitted P1 was used as lifetime estimation; (2) empirical lifetime, defined by Equation 5. These two metrics were used for the following reasons: (1) when the exponential decay equation of a sensor is known (for example, the FRET-based PKA activity sensor FLIM-AKAR can be described as a double exponential equation), fitted coefficients for each exponential component provide a robust way for lifetime estimate that is less sensitive to noise and background signals; (2) when the biophysical properties of sensors are unknown, or when the sensors cannot be easily described with single or double exponential equations, empirical lifetime (i.e. average lifetime values) provides an unbiased way to quantify fluorescence lifetime without assumptions of underlying models to describe sensor lifetime.

      To deconvolve two multiplexed exponential signals (Fig. 8), histograms were fitted to Equation 2 with the Gauss-Newton nonlinear least-square fitting algorithm, as described in Methods section ‘Simulation and analysis of multiplexed imaging with fluorescence intensity and lifetime data’.

      Considering the importance of these methodological details for evaluating the conclusions of this study, and the importance of appreciating the advantages and limitations of different methods of lifetime estimates (e.g. Figure 7), we will move the description of the fitting method to estimate P1 and the method of calculating empirical lifetime from Methods to Results, and will further clarify the rationale of using these different methods of lifetime estimates.

      Reviewer #3 (Public review):

      Summary:

      This study presents a useful computational tool, termed FLiSimBA. The MATLAB-based FLiSimBA simulations allow users to examine the effects of various noise factors (such as autofluorescence, afterpulse of the photomultiplier tube detector, and other background signals) and varying sensor expression levels. Under the conditions explored, the simulations unveiled how these factors affect the observed lifetime measurements, thereby providing useful guidelines for experimental designs. Further simulations with two distinct fluorophores uncovered conditions in which two different lifetime signals could be distinguished, indicating multiplexed dynamic imaging may be possible.

      Strengths:

      The simulations and their analyses were done systematically and rigorously. FliSimba can be useful for guiding and validating fluorescence lifetime imaging studies. The simulations could define useful parameters such as the minimum number of photons required to detect a specific lifetime, how sensor protein expression level may affect the lifetime data, the conditions under which the lifetime would be insensitive to the sensor expression levels, and whether certain multiplexing could be feasible.

      Weaknesses:

      The analyses have relied on a key premise that the fluorescence lifetime in the system can be described as two-component discrete exponential decay. This means that the experimenter should ensure that this is the right model for their fluorophores a priori and should keep in mind that the fluorescence lifetime of the fluorophores may not be perfectly described by a two-component discrete exponential (for which alternative algorithms have been implemented: e.g., Steinbach, P. J. Anal. Biochem. 427, 102-105, (2012)). In this regard, I also couldn't find how good the fits were for each simulation and experimental data to the given fitting equation (Equation 2, for example, for Figure 2C data).

      We thank the reviewer for the constructive feedback. We agree that the FLiSimBA users should ensure that the right decay equations are used to describe the fluorescent sensors. In this study, we used a FRET-based PKA sensor FLIM-AKAR to provide a proof-of-principle demonstration of FLiSimBA usage. The donor fluorophore of FLIM-AKAR, truncated monomeric enhanced GFP, follows a single exponential decay. FLIM-AKAR, a FRET-based sensor, follows a double exponential decay. The time constants of the two exponential components were determined previously (Chen, et al, Frontiers in pharmacology (2014)).  Thus, a double exponential decay equation with known τ1 and τ2 (Equation 1) was used for both simulation and fitting. In our revision, we will refer to our prior study characterizing the double exponential decay model of FLIM-AKAR. We will also emphasize the importance of using the right decay equations, strategies to estimate sensor decays, and how the flexibility of FLiSimBA allows users to input different forms of models to describe their specific sensor histograms. We will additionally provide data showing the goodness of fit for both simulated data and experimental data.

      Also, in Figure 2C, the 'sensor only' simulation without accounting for autofluorescence (as seen in Sensor + autoF) or afterpulse and background fluorescence (as seen in Final simulated data) seems to recapitulate the experimental data reasonably well. So, at least in this particular case where experimental data is limited by its broad spread with limited data points, being able to incorporate the additional noise factors into the simulation tool didn't seem to matter too much.

      We agree that in Figure 2C the contributions from autofluorescence, afterpulse, and background signals are small, because sensor photon count is high here. As seen in Figure 2B, when sensor photon counts are higher, the contributions from these other factors become less pronounced. The simulated data in Figure 2C were based on high photon counts because the simulated P1 value was determined by fitting experimental data. To achieve reasonable fitting with minimal interference from autofluorescence, afterpulse, and background signals, we used experimental data with high sensor expression. We will clarify these details in our revision.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      The main goal of the paper was to identify signals that activate FLP-1 release from AIY neurons in response to H2O2, previously shown by the authors to be an important oxidative stress response in the worm. 

      Strengths: 

      This study builds upon the authors' previous work (Jia and Sieburth 2021) by further elucidating the gut-derived signaling mechanisms that coordinate the organism-wide antioxidant stress response in C. elegans. 

      By detailing how environmental cues like oxidative stress are transduced into gut-derived peptidergic signals, this study represents a valuable advancement in understanding the integrated physiological responses governed by the gut-brain axis. 

      This work provides valuable mechanistic insights into the gut-specific regulation of the FLP2 peptide signal. 

      Weaknesses: 

      Although the authors identify intestinal FLP-2 as the endocrine signal important for regulating the secretion of the neuronal antioxidant neuropeptide, FLP-1, there is no effort made to identify how FLP-2 levels regulate FLP-1 secretion or identify whether this regulation is occurring directly through the AIY neuron or indirectly. This is brought up in the discussion, but identifying a target for FLP-2 in this pathway seems like a crucial missing piece of information in characterizing this pathway. 

      We agree that this is an important question. Specifically, identifying the FLP-2 receptor and its site of action is a major priority. Since there are at least four different receptors that have been functionally or physically linked to FLP-2 and there are at least three FLP-2 peptides, unraveling the components acting directly downstream of FLP-2 will require further investigation that we feel is beyond the scope of this current study. We have added a new panel (Fig 1E) addressing the requirements for flp-2 signaling on peroxide production in AIY. These results provide new mechanistic insight into how flp-2 impacts signaling in AIY and a new interpretation of these results has been added to the discussion.

      Reviewer #2 (Public Review): 

      Summary: 

      The core findings demonstrate that the neuropeptide-like protein FLP-2, released from the intestine of C. elegans, is essential for activating the intestinal oxidative stress response. This process is mediated by endogenous hydrogen peroxide (H2O2), which is produced in the mitochondrial matrix by superoxide dismutases SOD-1 and SOD-3. H2O2 facilitates FLP-2 secretion through the activation of protein kinase C family member pkc-2 and the SNAP25 family member aex-4. The study further elucidates that FLP-2 signaling potentiates the release of the antioxidant FLP-1 neuropeptide from neurons, highlighting a bidirectional signaling mechanism between the intestine and the nervous system. 

      Strengths: 

      This study presents a significant contribution to the understanding of the gut-brain axis and its role in oxidative stress response and significantly advances our understanding of the intricate mechanisms underlying the gut-brain axis's role in oxidative stress response. By elucidating the role of FLP-2 and its regulation by H2O2, the study provides insights into the molecular basis of inter-tissue communication and antioxidant defense in C. elegans. These findings could have broader implications for understanding similar pathways in more complex organisms, potentially offering new targets for therapeutic intervention in diseases related to oxidative stress and aging. 

      Weaknesses: 

      (1) The experimental techniques employed in the study were somewhat simple and could benefit from the incorporation of more advanced methodologies. 

      Thank you for your comment

      (2) The weak identification of the key receptors mediating the interaction between FLP-2 and AIY neurons, as well as the receptors in the gut that respond to FLP-1. 

      We agree that this is an important question. Specifically, identifying the FLP-2 receptor and its site of action is a major priority. Since there are at least four different receptors that have been functionally or physically linked to FLP-2 and there are at least three FLP-2 peptides, unraveling the components acting directly downstream of FLP-2 will require further investigation that we feel is beyond the scope of this current study.

      (3) The study could be improved by incorporating a sensor for the direct measurement of hydrogen peroxide levels. 

      We have added a new panel (Fig 1E) addressing the requirements for flp-2 signaling on peroxide production in AIY using the genetically encoded peroxide sensor HyPer7. These results provide new mechanistic insight into how flp-2 impacts signaling in AIY and a new interpretation of these results has been added to the discussion. In addition, we have used HyPer7 to measure peroxide levels in the intestinal mitochondrial matrix and outer membrane (Figs 3, 4, 5, 6)

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      The major missing link in the study is how FLP-2 affects FLP-1 release from AIY: is the effect direct and does it require the previously described FLP-2 receptor FRPR-18? Although this possibility is discussed extensively (L511-528) so it is odd that the effect of an frpr-18 mutation was not tested (or if it was tested, why the results were not reported). If the authors haven't done this experiment (despite doing many less critical experiments) it would be good to know why. 

      We agree that this is an important question. Specifically, identifying the FLP-2 receptor and its site of action is a major priority. Since there are at least four different receptors that have been functionally or physically linked to FLP-2 and there are at least three FLP-2 peptides, unraveling the components acting directly downstream of FLP-2 will require further investigation that we feel is beyond the scope of this current study. We have added a new panel (Fig 1E) addressing the requirements for flp-2 signaling on peroxide production in AIY. These results provide new mechanistic insight into how flp-2 impacts signaling in AIY and a new interpretation of these results has been added to the discussion.

      Results:

      “To address how flp-2 signaling regulates FLP-1 secretion from AIY, we examined H2O2 levels in AIY using a mitochondrially targeted pH-stable H2O2 sensor HyPer7 (mitoHyPer7, Pak et al. 2020). Mito-HyPer7 adopted a punctate pattern of fluorescence in AIY axons, and the average fluorescence intensity of axonal mito-HyPer7 puncta increased about two-fold following 10 minute juglone treatment (Fig 1E), in agreement with our previous studies using HyPer (Jia and Sieburth 2021), confirming that juglone rapidly increases mitochondrial AIY H2O2 levels. flp-2 mutations had no significant effects on the localization or the average intensity of mito-HyPer7 puncta in AIY axons either in the absence of juglone, or in the presence of juglone (Fig 1E), suggesting that flp-2 signaling promotes FLP-1 secretion by a mechanism that does not increase H2O2 levels in AIY. Consistent with this, intestinal overexpression of flp-_2 had no effect on FLP-1::Venus secretion in the absence of juglone, but significantly enhanced the ability of juglone to increase FLP-1 secretion (Fig. 1D). We conclude that both elevated mitochondrial H2O2 levels and intact _flp-2 signaling from the intestine are necessary to increase FLP-1 secretion from AIY.”

      More minor comments/suggestions: 

      Line 172: No justification is given as to why the authors chose to focus on flp-2 over the other potential candidates identified in their RNAi screen. 

      We are currently examining the other neuropeptide hits from the screen, but we have no additional phenotypes to report.

      Line 189: An explanation for the use of gDNA as opposed to cDNA should be given. 

      We have changed the text in the Results section as follows:

      “Expressing a flp-2 genomic DNA (gDNA), fragment (containing both the flp-2a and flp-2b isoforms that arise by alternative splicing), specifically in the nervous system failed to rescue the FLP-1::Venus defects of flp-2 mutants, whereas expressing flp-2 selectively in the intestine fully restored juglone-induced FLP1::Venus secretion to flp-2 mutants (Fig. 1D).”

      Line 249-253: nlp-40 and nlp-27 were not implicated in contributing to juglone toxicity in the RNAi screen performed previously by the authors, so it is unclear why both of these peptides are investigated beyond simply being released from the intestine. Confusingly, while Figure S2D shows no overlap between NLP-40 and FLP2, NLP-27 is omitted from the analysis. 

      We have clarified that these peptides are not implicated in stress responses, providing a clearer rational for why the serve as controls for specificity.

      “Third, nlp-40 and nlp-27 encode neuropeptide-like proteins that are released from the intestine, but are not implicated in stress responses (Liu et al. 2023; Taylor et al. 2021; Wang et al. 2013), and juglone treatment had no detectable effects on coelomocyte fluorescence in animals expressing intestinal NLP-40::Venus or NLP-27::Venus fusion proteins (Fig. S2B and C), and NLP40::mTur2 puncta did not overlap with FLP-2::Venus puncta in the intestine (Fig. S2D).”

      Line 262: A more detailed description of juglone's mechanism of action would be welcome here. Is juglone expected to act only in intestinal cells, or is its function more pervasive? 

      We have added more detail:

      “Juglone generates superoxide anion radicals (Ahmad and Suzuki 2019; Paulsen and Ljungman 2005) and juglone treatment of C. elegans increases ROS levels (de Castro, Hegi de Castro, and Johnson 2004) likely by promoting the global production of mitochondrial superoxide. Superoxide can then be rapidly converted into H2O2 by superoxide dismutase.”

      Line 414: Justification for why expulsion frequency is used here to quantify NLP-40 secretion is required, particularly because NLP-40::Venus was already used to quantify NLP-40 secretion via the coelomocyte fluorescence method in the experiments contributing to Figure S2. 

      We used expulsion frequency here because (1) it is an easier assay compared to the coelomocyte assay and (2) it is a functional assay. Defective NLP-40 exocytosis manifests as reduced exclusion frequency, therefore if NLP-40 secretion is defective in pkc-2 mutants, nlp-40 mutants should exhibit defects in expulsion frequency.

      We have clarified this point:

      “To determine whether pkc-2 can regulate the intestinal secretion of other peptides that are not associated with oxidative stress, we examined expulsion frequency, which is a measure of NLP-40 secretion (Mahoney et al. 2008; Wang et al. 2013).”

      Line 478: The discussion of neuronally-secreted kisspeptin in this context does not seem relevant as this paper has focused on intestinal peptide secretion. 

      We have removed this sentence:

      In mammals, release of the RF-amide neuropeptide kisspeptin from the anteroventral periventricular nucleus (AVPV) regulates reproduction by inducing the release of gonadotropins via its stimulatory action on GnRH neurons (Han et al. 2005).

      Line 526: DMSR-18 seems to be a typo. Possibly meant FRPR-8, as this is another FLP-2-activated GPCR identified in the screen (though notably, FRPR-8 is only activated by one of the two FLP-2 peptide products) On that note, DMSR-1 has two isoforms, and only one of them is activated by FLP-2 (and only one of the two FLP-2 peptides). This seems relevant to discuss. 

      We have corrected the text and we have added to the discussion the number of FLP-2 peptides:

      “In addition, certain FLP-2-derived peptides (of which there are at least three) can bind to the GPCRs DMSR-1, or FRPR-8 in transfected cells (Beets et al. 2023). Identifying the relevant FLP-2 peptide(s), the FLP-2 receptor and its site of action will help to define the circuit used by intestinal flp-2 to promote FLP-1 release from AIY.” 

      Line 534: An explanation or speculation into why this integration might be necessary would be welcome here. 

      We have edited this paragraph:

      “FLP-1 release from AIY is positively regulated by H2O2 generated from mitochondria (Jia and Sieburth 2021). Here we showed that H2O2-induced FLP-1 release requires intestinal flp-2 signaling. However, flp-2 does not appear to promote FLP-1 secretion by increasing H2O2 levels in AIY (Fig 1E), and flp-2 signaling is not sufficient to promote FLP-1 secretion in the absence of H2O2 (Fig. 1D). These results point to a model whereby at least two conditions must be met in order for AIY to increase FLP-1 secretion: an increase in H2O2 levels in AIY itself, and an increase in flp-2 signaling from the intestine. Thus AIY integrates stress signals from both the nervous system and the intestine to activate the intestinal antioxidant response through FLP-1 secretion. The requirement of signals from multiple tissues for FLP-1 secretion may function to limit the activation of SKN-1, since unregulated SKN-1 activation can be detrimental to organismal health (Turner, Ramos, and Curran 2024).”

      Line 569: Should specify what these candidates are. 

      There are 11 proteins with thioredoxin fold domains. We modified the sentence to list one of them.

      “There are several thioredoxin-domain containing proteins in addition to trx-3 in the C. elegans genome that could be candidates for this role (e.g. trx-5 and others).”

      Line 660: Details about whether the M9 control had an equivalent amount of DMSO as the juglone+M9 condition is required. 

      We have performed toxicity assay and neuropeptide release assays comparing M9 DMSO, and Juglone treatment and we have included this new data in Fig S1C, D and S2E. Methods: 

      “A stock solution of 50mM juglone in DMSO was freshly made on the same day of liquid toxicity assay. 120μM  working solution of juglone in M9 buffer was prepared using stock solution before treatment. Around 60-80 synchronized adult animals were transferred into a 1.5mL Eppendorf tube with fresh M9 buffer and washed three times, and a final wash was done with either the working solution of juglone with or M9  DMSO at the concentrations present in juglone-treated animals does not contribute to toxicity since DMSO treatment alone caused no significant change in survival compared to M9-treated controls (Fig. S1C).

      For coelomocyte imaging, L4 stage animals were transferred in fresh M9 buffer on a cover slide, washed six times with M9 before being exposed to 300μM juglone in M9 buffer (diluted from freshly made 50mM stock solution), 1mM H2O2 in M9 buffer, or M9 buffer. DMSO at the concentrations present in juglone-treated animals does not alter neuropeptide secretion since DMSO treatment alone caused no significant change in FLP-1::Venus or FLP-2::Venus coelomocyte fluorescence compared to M9-treated controls.  (Fig. S1D and S2E).”

      Line 1191: Should be FLP-1:Venus in AIY, not the intestine  

      Corrected.

      In general, the significance of reporting in the figures is very unclear. "a, b, c" to report statistical analysis is confusing in the figure legends, and also unnecessary when they denote non-significance. There are some cases where it is reported that a symbol (eg. ***) denotes statistical significance, but there is no indication of what level of statistical significance the symbol represents (for example, in Figures 2C and 2D) 

      Levels of significance was summarized in the end of legend for each figure unless indicated for specific symbols (for example Fig. 1C), we have edited this figure legend: 

      “E Representative images and quantification of fluorescence of matrix-targeted HyPer7 in the axon of AIY following M9 or juglone treatment for 10min. Arrowheads denote puncta marked by MLS::HyPer7 fusion proteins (Excitation: 500 and 400nm; emission: 520nm). Ratio of images taken with 500nM (GFP) and 400nM (CFP) for excitation was used to measure H2O2 levels. Unlined *** and ns denote statistical analysis compared to “wild type”. n = 25, 25, 25, 25 independent animals. Scale bar: 10μM.

      F Representative images and quantification of average fluorescence in the posterior region of transgenic animals expressing P_gst-4::gfp_ after 4h vehicle M9 or juglone exposure. Asterisks mark the intestinal region used for quantification. P_gst-4::gfp_ expression in the body wall muscles, which appears as fluorescence on the edge animals in some images, was not quantified. Unlined *** and ns denote statistical analysis compared to “wild type”; unlined ## and ### denotes statistical analysis compared to “wild type+juglone”. n = 25, 26, 25, 25, 25, 25, 25, 25 independent animals. Scale bar: 10μM.”

      Figure 2C: It is unclear which conditions have H2O2 treatment (as described in the legend). There is also no mention of what ### indicates. 

      Levels of significance for ### was summarized in the end of legend, No H2O2 treatment was performed in this assay, we have edited this figure legend: 

      “C. Representative images and quantification of average coelomocyte fluorescence of the indicated mutants expressing FLP-2::Venus fusion proteins in the intestine following M9 or juglone treatment for 10min. Unlined *** and ns denote statistical analysis compared to “wild type”. n = 29, 25, 24, 30, 23, 30, 25, 25, 25 independent animals. Scale bar: 5μM.”

      Figure 2D: It is not previously mentioned that M9 condition contains DMSO, as implied by the legend. 

      We have edited this figure legend:

      “D. Quantification of average coelomocyte fluorescence of transgenic animals expressing FLP-2::Venus fusion proteins in the intestine following treatment of fresh M9 buffer or the indicated stressors for 10min. Unlined *** denotes statistical analysis compared to “M9”. n = 23, 25, 25 independent animals.”  

      Figure 3J: The y-axis label should more clearly describe the ratio being measured. 

      We have updated the panel and this figure legend: 

      “J. Schematic, representative images and quantification of fluorescence in the posterior region of the indicated transgenic animals co-expressing mitochondrial matrix targeted HyPer7 (matrix-HyPer7) or mitochondrial outer membrane targeted HyPer7 (OMMHyPer7) with TOMM-20::mCherry following M9 juglone or H2O2 treatment. Ratio of images taken with 500nM (GFP) and 400nM (CFP) for excitation and 520nm for emission was used to measure H2O2 levels. Unlined *** and ns denote statistical analysis compared to “wild type; unlined ## denotes statistical analysis compared to “wild type+juglone”. (top) n = 20, 20, 18, 20, 19, 19, 20, 20 independent animals.

      (bottom) n = 20, 20, 19, 20, 20, 20, 20, 20 independent animals. Scale bar: 5μM.” 

      Figure S3A: *** is mislabelled. It should be a comparison to wildtype. 

      We have edited this figure legend: 

      “A. Quantification of average coelomocyte fluorescence of the indicated mutants expressing FLP-2::Venus fusion proteins in the intestine following M9 or juglone treatment for 10min. Unlined *** denotes statistical analysis compared to “wild type”; ### and ns denote statistical analysis compared to “wild type+juglone”. n = 29, 27, 29, 27, 25, 26, 24 independent animals.”  

      Reviewer #2 (Recommendations For The Authors): 

      (1) The localization experiments could benefit from the application of ultra-high-resolution fluorescence microscopy. This would allow for a more detailed analysis of the spatial distribution of SOD-1/3::GFP in relation to mitochondria-targeted TOMM-20::mCherry fusion proteins in the posterior intestinal region of transgenic animals. 

      We agree that high resolution microscopy would be a great way to more precisely localize SOD proteins relative to the mitochondria, and this would enhance understanding of the source of peroxide in this system. We do not conduct this type of microcopy in the lab, so this approach would require a collaboration with a lab that is set up for this. Thus we feel that this is beyond the scope of the current study.  

      (2) The paper may note the challenge of directly measuring mitochondrial H2O2 concentrations. However, advancements in chemical or fluorescent sensors for H2O2 detection within mitochondria could provide more direct evidence of its role in FLP-2 secretion. 

      We have considered using chemical sensors, but many are either not efficiently taken up by worms (the skin is largely impermeable to all but the most hydrophobic molecules), or they would label peroxide indiscriminately in all tissues making detection specifically in the intestine challenging. We have had good luck with genetically encoded peroxide sensors since they provide tissue specificity and good spatial resolution depending on where we target them. We have added imaging results for HyPer7 in the AIY neuron to Figure 1E. 

      Results:

      “To address how flp-2 signaling regulates FLP-1 secretion from AIY, we examined H2O2 levels in AIY using a mitochondrially targeted pH-stable H2O2 sensor HyPer7 (mitoHyPer7, Pak et al. 2020). Mito-HyPer7 adopted a punctate pattern of fluorescence in AIY axons, and the average fluorescence intensity of axonal mito-HyPer7 puncta increased about two-fold following 10 minute juglone treatment (Fig 1E), in agreement with our previous studies using HyPer (Jia and Sieburth 2021), confirming that juglone rapidly increases mitochondrial AIY H2O2 levels. flp-2 mutations had no significant effects on the localization or the average intensity of mito-HyPer7 puncta in AIY axons either in the absence of juglone, or in the presence of juglone (Fig 1E), suggesting that flp-2 signaling promotes FLP-1 secretion by a mechanism that does not increase H2O2 levels in AIY. Consistent with this, intestinal overexpression of flp-_2 had no effect on FLP-1::Venus secretion in the absence of juglone, but significantly enhanced the ability of juglone to increase FLP-1 secretion (Fig. 1D). We conclude that both elevated mitochondrial H2O2 levels and intact _flp-2 signaling from the intestine are necessary to increase FLP-1 secretion from AIY.” 

      (3) To confirm the activation of AIY neurons by FLP-2, measuring calcium activity in these neurons may be a robust approach. It would be beneficial to determine if synthetic FLP-2 can activate AIY neurons and subsequently induce an intestinal antioxidant response. 

      This is a great idea. We have begun to examine GCaMP fluorescence in AIY and we see responses to oxidative stressors. We think that this data is too preliminary at the moment to include here.  

      (4) The identification of the key receptors mediating the interaction between FLP-2 and AIY neurons, as well as the receptors in the gut that respond to FLP-1, would complete the signaling pathway and strengthen the study's conclusions. 

      We agree that this is an important question. Specifically, identifying the FLP-2 receptor and its site of action is a major priority. Since there are at least four different receptors that have been functionally or physically linked to FLP-2 and there are at least three FLP-2 peptides, unraveling the components acting directly downstream of FLP-2 will require further investigation that we feel is beyond the scope of this current study.  

      (5) Investigating whether direct manipulation of AIY neurons, through methods such as optogenetic activation or inhibition, can trigger the gut's antioxidant response would provide insight into the functional relevance of this neuronal activity. 

      Also an excellent idea. We previously published that Channelrhodopsin activation specifically in AIY indeed increases FLP-1 secretion, but we have not yet examined its effects on antioxidant responses in the intestine.  This may require a more sustained activation of AIY than Channelrhodopsin can provide.

      (6) For the analysis of intestinal Pges-1::GFP fluorescence, specifying the region of interest would enhance the precision of the data and the reproducibility of the results. 

      We analyze fluorescence intensity of a 16-pixel diameter circle in the posterior intestine (as indicated by the asterisks) and we have added this to the methods, we edited this paragraph:

      “or transcriptional reporter imaging, young adult animals with indicated genotype were transferred into a 1.5mL Eppendorf tube with M9 buffer, washed three times and incubated in M9 buffer or 60uM working solution of juglone for 1h in dark on rotating mixer before recovering on fresh NGM plates with OP50 for 3h in dark at 20°C. The posterior end of the intestine was imaged with the 60x objective and quantification for average fluorescence intensity of a 16-pixel diameter circle in the posterior intestine was calculated using Metamorph.”

      (7) Assessing the potential for pharmacological modulation of FLP-2 or H2O2 levels could provide valuable insights into therapeutic strategies aimed at enhancing the oxidative stress response. 

      Agreed.

      (8) For improved clarity, it is suggested that the schematic currently presented in Figure S1A be integrated into Figure 2C, as this would facilitate the reader's comprehension of the experimental design and findings. 

      Moved.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Choi and co-authors presents "P3 editing", which leverages dual-component guide RNAs (gRNA) to induce protein-protein proximity. They explore three strategies for leveraging prime-editing gRNA (pegRNA) as a dimerization module to create a molecular proximity sensor that drives genome editing, splitting a pegRNA into two parts (sgRNA and petRNA), inserting self-splicing ribozymes within pegRNA, and dividing pegRNA at the crRNA junction. Among these, splitting at the crRNA junction proved the most promising, achieving significant editing efficiency. They further demonstrated the ability to control genome editing via protein-protein interactions and small molecule inducers by designing RNA-based systems that form active gRNA complexes. This approach was also adaptable to other genome editing methods like base editing and ADAR-based RNA editing.

      Strengths:

      The study demonstrates significant advancements in leveraging guide RNA (gRNA) as a dimerization module for genome editing, showcasing its high specificity and versatility. By investigating three distinct strategies-splitting pegRNA into sgRNA and petRNA, inserting self-splicing ribozymes within the pegRNA, and dividing the pegRNA at the repeat junction-the researchers present a comprehensive approach to achieving molecular proximity and reconstituting function. Among these methods, splitting the pegRNA at the repeat junction emerged as the most promising, achieving editing efficiencies up to 76% of the control, highlighting its potential for further development in CRISPR-Cas9 systems. Additionally, the study extends genome editing control by linking protein-protein interactions to RNA-mediated editing, using specific protein-RNA interaction pairs to regulate editing through engineered protein proximity. This innovative approach expands the toolkit for precision genome editing, demonstrating the feasibility of controlling genome editing with enhanced specificity and efficiency.

      Weaknesses:

      The initial experiments with splitting the pegRNA into sgRNA and petRNA showed low editing efficiency, less than 2%. Similarly, inserting self-splicing ribozymes within pegRNA was inefficient, achieving under 2% editing efficiency in all constructs tested, possibly hindered by the prime editing enzyme. The editing efficiency of the crRNA and petracrRNA split at the repeat junction varied, with the most promising configurations only reaching 76% of the control efficiency. The RNA-RNA duplex formation's inefficiency might be due to the lack of additional protein binding, leading to potential degradation outside the Cas9-gRNA complex. Extending the approach to control genome editing via protein-protein interactions introduced complexity, with a significant trade-off between efficiency and specificity, necessitating further optimization. The strategy combining RADARS and P3 editing to control genome editing with specific RNA expression events exhibited high background levels of non-specific editing, indicating the need for improved specificity and reduced leaky expression. Moreover, P3 editing efficiencies are exclusively quantified after transfecting DNA into HEK cells, a strategy that has resulted in past reproducibility concerns for other technologies. Overall, the various methods and combinations require further optimization to enhance efficiency and specificity, especially when integrating multiple synthetic modules.

      Thank you for this accurate summary and assessment of the strengths and weaknesses of the P3 editing as it stands. Looking ahead, we agree that further optimizations will be important, as will characterizing the performance of P3 editing in additional cellular contexts. The revised Discussion (see below) now makes these points more clearly.

      Reviewer #2 (Public Review):

      Choi et al. describe a new approach for enabling input-specific CRISPR-based genome editing in cultured cells. While CRISPR-Cas9 is a broadly applied system across all of biology, one limitation is the difficulty in inducing genome editing based on cellular events. A prior study, from the same group, developed ENGRAM - which relies on activity-dependent transcription of a prime editing guide RNA, which records a specific cellular event as a given edit in a target DNA "tape". However, this approach is limited to the detection of induced transcription and does not enable the detection of broader molecular events including protein-protein interactions or exposure to small molecules. As an alternative, this study envisioned engineering the reconstitution of a split prime editing guide RNA (pegRNA) in a protein-protein interaction (PPI)-dependent manner. This would enable location- and content-specific genome editing in a controlled setting.

      The authors explored three different design possibilities for engineering a PPI-dependent split pegRNA. First, they tried splitting pegRNA into a functional sgRNA and corresponding prime editing transRNA, incorporating reverse-complementary dimerization sequences on each guide half. This approach, however, resulted in low editing efficiency across 7 different designs with various complementary annealing template lengths (<2% efficiency). They also tried inserting a self-splicing ribozyme within the pegRNA, which produces a functional pegRNA post-transcriptionally. The incorporation of a split-ribozyme, dependent on a PPI, could have been used to reconstitute the split pegRNA in an event-controlled manner. However again, only modest levels of editing were observed with the self-splicing ribozyme design (<2%). Finally, they tried splitting the pegRNA at the repeat:anti-repeat junction that was used to join the original dual-guide system comprised of a crRNA and tracrRNA, into a single-guide RNA. They incorporated the prime editing features into the tracrRNA half, to create petracrRNA. Dimerization was initially induced by different complementary RNA annealing sequences. Using this design, they were able to induce an editing efficiency of ~28% (compared to 37% efficiency using a positive control epegRNA guide).

      Having identified a suitable split pegRNA system, they next sought to induce the reconstitution of the two halves in a PPI-dependent manner. They replaced the complementary RNA annealing sequences with two different RNA aptamers (MS2 and BoxB). MS2 detects the MCP protein, while BoxB detects the LambdaN protein. Close proximity between MCP and LambdaN would thus bring together the two split pegRNA halves, creating a functional pegRNA that would enable prime editing at a specific target site. They demonstrated that they could induce MCP-BoxB proximity by fusing them to different dimerizing protein partners: 1) constitutive epitope-nanobody/antibody pairs such as scFv/GCN4 or NbALFA/ALFA-Tag; 2) split-GFP; or 3) chemically-induced protein pairs such as FKBP/FRB or ABI/PYL. For all of these approaches, they could achieve between ~20-60% normalized editing efficiency (relative to positive control editing levels with epegRNA). Additional mutation of the linkers between the RNA and aptamers could increase editing efficiency but also increase non-specific background editing even in the absence of an induced PPI.

      Additional applications of this overall strategy included incorporating the design with different DNA base editors, with the most promising examples shown with the base editors CBE4max and ABE8. It should be noted that these specific examples used a non-physiological LambdaN-MCP direct fusion protein as the "bait" that induced reconstitution of the two halves of the guideRNA, rather than relying on a true induced PPI. They also demonstrated that the recently reported RADARS strategy could be incorporated into their system. In this example, they used an ADAR-guide-RNA to drive the expression of a LambdaN-PCP fusion protein in the presence of a specific target RNA molecule, IL6. This induced LambdaN-PCP protein could then reconstitute the split peg-RNAs to drive prime editing. To enable this last application, they replaced the MS2 aptamer in their pegRNA with the PP7 aptamer that binds the PCP protein (this was to avoid crosstalk with RADARS, which also uses MS2/MCP interaction). Using this strategy, they observed a normalized editing efficiency of around 12% (but observed non-specific editing of around 8% in the absence of the target RNA).

      Strengths:

      The strengths of this paper include an interesting concept for engineering guide RNAs to enable activity-dependent genome editing in living cells in the future, based on discreet protein-protein interactions (either constitutively, spatially, or chemically induced). Important groundwork is laid down to engineer and improve these guide RNAs in the future (especially the work describing altering the linkers in Supplementary Figure 3 - which provides a path forward).

      Weaknesses:

      In its current state, the editing efficiency appears too low to be applied in physiological settings. Much of the latter work in the paper relies on a LambdaN-MCP direction fusion protein, rather than two interacting protein pairs. Further characterizations in the future, especially varying the transfection amounts/durations/etc of the various components of the system, would be beneficial to improve the system. It will also be important to demonstrate editing at additional sites; to characterize how long the PPI must be active to enable efficient prime editing; and how reversible the reconstitution of the split pegRNA is.

      Thank you for this assessment of the strengths and weaknesses of the P3 editing as it stands. Looking ahead, we agree that further optimizations will be important, including along the lines suggested by the reviewer, as will further characterization of the system with respect to dependencies, reversibility, etc. The revised Discussion (see below) now makes these points more clearly.

      Recommendations for the authors:

      Reviewing Editor comments:

      It would be helpful to better describe the nature of improvements (on-targeting and/or off-targeting) that would be needed to effectively use this approach in vitro and in vivo applications.

      We agree, and have accordingly revised the last paragraph of our discussion to better describe what improvements are needed for in vitro and in vivo applications:

      “In our view, there are four outstanding challenges for P3 editing to be broadly useful: evaluating additional cellular contexts, the method’s efficiency and specificity, understanding the limit of detectable protein-protein interactions, and the development of sensors compatible with multiplex P3 editing within the same cell. First, we have thus far only conducted P3 editing in HEK293T cells, and obviously needs to be tested in additional cell types. Second, both the efficiency and specificity of the P3 editing need to be improved before it can be used as a selective editing tool in model systems. We have explored how modifying the crRNA and petracrRNA pair sequences can tune the efficiency-vs-specificity tradeoff, but alternative avenues to improvement (e.g., better docking of RNA-aptamers such as MS2, BoxB, or PP7 by testing more linker sequences that place crRNA and petracrRNA for duplex formation) may be more fruitful in terms of achieving high efficiency and specificity at once (e.g., >50% editing in the setting of a specific protein-protein interaction, and <1% editing without it). Second, it is not clear whether weak and transient interactions among proteins can be used to trigger P3 editing. Assuming the genome editing complex formation is reversible, improving P3 editing efficiency may be able to capture different strengths of protein-protein interactions, although some interactions may be too transient to promote functional guide RNA formation. Finally, the current P3 editing design uses a pair of RNA aptamers and their corresponding protein binders, limiting the multiplex detection of protein-protein pairs. More orthogonal protein-RNA pairs need to be identified (e.g., using a massively parallel platform (Buenrostro et al., 2014) and/or computational prediction (Baek et al., 2023)) to allow for large numbers of P3 sensors for different protein-protein interactions to be deployed within the same cell. Overcoming these four challenges is necessary for P3 editing to be broadly useful for gating genome editing on physiological levels of specific protein-protein interactions in a multiplex fashion.”

      Reviewer #2 (Recommendations For The Authors):

      It does not appear that all plasmids necessary to reproduce the results of this paper have been deposited to addgene, but only a small subset. The authors might include that these plasmids are available upon request, if not uploaded to a public repository.

      We have added a statement that additional plasmids are available upon request. Our Data Availability Statement reads (with the added sentence underlined):

      “Raw sequencing data have been uploaded to Sequencing Read Archive (SRA) with the associated BioProject ID PRJNA1004865. The following plasmids have been deposited to Addgene: pU6-crRNA-MS2, pU6-BoxB-petracrRNA, pCMV-LambdaN-MCP, pCMV-LambdaN-NbALFA,  and pCMV-ALFA-MCP (Addgene ID 207624 - 207628). The rest of the plasmids used in this study are available upon request.”

      It could be useful to include somewhere why, specifically, editing the guide RNAs as opposed to the Cas9 itself is advantageous. Light-inducible split Cas9s have been engineered, and I imagine other PPI-inducible split Cas9s have also been engineered. A specific mention of the advantages of using engineered split pegRNAs could put the significance of this work in a better context.

      Thanks for raising this, and we agree. We have revised the first paragraph of the Results section to highlight why we think splitting the guide RNAs as opposed to Cas9 might be advantageous:

      “In the split architecture, the “dimerization module” is a key sensor component. Although strategies that split the protein component of the genome editing complex have been described (e.g., split-Cas9 (Yu et al., 2020)), we reasoned that having the guide RNA serve as the dimerization module rather than the protein, i.e. by splitting it into two parts, and making the restoration of its function dependent on a molecular proximity event, would afford even more control. For example, if multiple split gRNAs were present within the same cell, they could be independently controlled, whereas a split Cas9 would only allow a single control point.  In our initial experiments, we focused on splitting the pegRNA used in prime editing.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors test the "OHC-fluid-pump" hypothesis by assaying the rates of kainic acid dispersal both in quiet and in cochleae stimulated by sounds of different levels and spectral content. The main result is that sound (and thus, presumably, OHC contractions and expansions) results in faster transport along the duct. OHC involvement is corroborated using salicylate, which yielded results similar to silence. Especially interesting is the fact that some stimuli (e.g. tones) seem to provide better/faster pumping than others (e.g. noise), ostensibly due to the phase profile of the resulting cochlear traveling-wave response.

      Strengths:

      The experiments appear well controlled and the results are novel and interesting. Some elegant cochlear modeling that includes coupling between the organ of Corti and the surrounding fluid as well as advective flow supports the proposed mechanism.

      Weaknesses:

      It's not clear whether the effect size (e.g., the speed of sound-induced pumping relative to silence) is large enough to have important practical applications (e.g., for drug delivery). The authors should comment on the practical requirements and limitations.

      With our current data, what we can conclude is that modest sound levels (e.g., 75 dB SPL noise or an 80 dB SPL tone) facilitates cochlear drug delivery. We added a paragraph to the Discussion stating some future considerations for application to drug delivery in the human cochlea.

      Although helpful so far as it goes, the modeling could be taken much further to help understand some of the more interesting aspects of the data and to obtain testable predictions. In particular, the authors should systematically explore the level effects they find experimentally and determine whether the model can replicate the finding that different sounds produce different results (e.g. noise vs tone).

      The model should also be used to relate the model's flow rates more quantitatively to the properties of the traveling wave (e.g., its phase profile).

      The present study is focused on explaining the principle of mass transport in the cochlea. The quantification of the relationship between flow rate and traveling wave is an important open question and will be the topic of future studies. Our previous modeling study (Shokrian et al. 2020) showed a clear relation between the traveling wave characteristics (e.g., amplitude and phase velocity) and the mass transport in the Corti fluid. As the reviewer correctly pointed out, the current paper is focused on designing controlled experiments to provide proof of concept along with computational simulations to support our major claim (that outer hair cells stir cochlear fluid). 

      Finally, the model should be used to investigate differences between active and passive OHCs (e.g., simulating the salicylate experiment by disabling the model's OHCs).

      What the reviewer asks for has been demonstrated in previous theoretical studies (Lighthill, 1992; Edom, Obrist, Kleiser, 2014; Sumner, Reichenbach, 2021). In some of the previous studies, it was called the steady streaming. These studies are excellent examples because they simulated the sensitive cochlea (similar level of basilar membrane vibrations) but did not incorporate the Corti fluid peristalsis. Even without the peristaltic motion of the Corti tube, the basilar membrane-scala fluid interaction generated steady streaming (creepy fluid flow). However, the streaming velocity of cochlear models without active peristalsis along the Corti tube is about three orders of magnitude smaller than the active cochlea at a comparable level of basilar membrane vibrations. For example, the peak streaming speed was < 0.1 um/s at 80 dB SPL, and it took > 4 hours for particles to travel 1 mm. This speed is much slower than the particle transport speed due to pure diffusion (Sumner, Reichenbach, 2021).

      The manuscript would be stronger if the authors discussed ways to test their hypothesis that OHC motility serves a protective effect by pumping fluid. For example, do animals held in quiet after noise exposure (TTS) take longer to recover?

      We agree with the reviewer. The following statements were added to the Discussion section. “Our results have implications for cochlear fluid homeostasis. For example, future studies can test the hypothesis that an acoustically rich environment would be beneficial in maintaining healthy hearing as well as in recovering from transient hearing loss.”

      Reviewer #2 (Public review):

      Summary:

      Recent cochlear micromechanical measurements in living animals demonstrated outer hair celldriven broadband vibration of the reticular lamina that contradicts frequency-selective cochlear amplification. The authors hypothesized that motile outer hair cells can drive cochlear fluid circulation. This hypothesis was tested by observing the effects of acoustic stimuli and salicylate, an outer hair cell motility blocker, on kainic acid-induced changes in the cochlear nucleus activities. It was found that acoustic stimuli can reduce the latency of the kainic acid effect, and a low-frequency tone is more effective than broadband noise. Salicylate reduced the effect of acoustic stimuli on kainic acid-induced changes. The authors also developed a computational model to provide the physical basis for interpreting experimental results. It was concluded that experimental data and simulations coherently indicate that broadband outer hair cell action is for cochlear fluid circulation.

      Strengths:

      The major strengths of this study include its high significance and the combination of electrophysiological recording of the cochlear nucleus responses with computational modeling. Cochlear outer hair cells have been believed to be responsible for the exceptional sensitivity, sharp tuning, and huge dynamic range of mammalian hearing. Recent observation of the broadband reticular lamina vibration contradicts frequency-specific cochlear amplification. Moreover, there is no effective noninvasive approach to deliver the drugs or genes to the cochlea for treating sensorineural hearing loss, one of the most common auditory disorders. These important questions were addressed in this study by observing outer hair cells' roles in the cochlear transport of kainic acid. The well-established electrophysiological method for recording cochlear nucleus responses produced valuable new data, and the purposely developed computational model significantly enhanced the interpretation of the data.

      The authors successfully tested their hypothesis, and both the experimental and modeling results support the conclusion that active outer hair cells can drive cochlear fluid circulation in the living cochlea.

      Findings from this study will help auditory scientists understand how the outer hair cells contribute to cochlear amplification and normal hearing.

      We thank the reviewer for acknowledging our effort.

      Weaknesses:

      While the statement "The present study provides new insights into the nonselective outer hair cell action (in the second paragraph of Discussion)" is well supported by the results, the authors should consider providing a prediction or speculation of how this hair cell action enhances cochlear sensitivity. Such discussion would help the readers better understand the significance of the current work.

      We added a potential implication to the Discussion, that an acoustically rich environment could be beneficial in maintaining healthy hearing as well as recovering from damaged hearing.

      Reviewer #3 (Public review):

      Summary:

      This study reveals that sound exposure enhances drug delivery to the cochlea through the nonselective action of outer hair cells. The efficiency of sound-facilitated drug delivery is reduced when outer hair cell motility is inhibited. Additionally, low-frequency tones were found to be more effective than broadband noise for targeting substances to the cochlear apex. Computational model simulations support these findings.

      Strengths:

      The study provides compelling evidence that the broad action of outer hair cells is crucial for cochlear fluid circulation, offering a novel perspective on their function beyond frequency-selective amplification. Furthermore, these results could offer potential strategies for targeting and optimizing drug delivery throughout the cochlear spiral.

      Weaknesses:

      The primary weakness of this paper lies in the surgical procedure used for drug administration through the round window. Opening the cochlea can alter intracochlear pressure and disrupt the traveling wave from sound, a key factor influencing outer hair cell activity. However, the authors do not provide sufficient details on how they managed this issue during surgery. Additionally, the introduction section needs further development to better explain the background and emphasize the significance of the work.

      Although we wrote that the inner ear left intact, it might have not been sufficiently clear. Our surgical approach leaves the inner ear intact, including the round-window membrane. The round window in gerbil is concave like a bowl. We applied 4 µL of kainic acid solution in the round-window niche, without perforating the round-window membrane. 

      Recommendations For The Authors:

      Reviewer #1 (Recommendations for the authors):

      The authors' choice to frame their findings by hinting that they have discovered the "real" reason for the evolution of broadband OHC electromotility (e.g., the first and last sentences of the abstract and parts of the Discussion), although clearly intended to boost the perceived significance of the work, does them no favors and will probably lead to distracting criticisms they could easily have avoided. The manuscript would be significantly improved by removing or downplaying these rather speculative and unsupported claims; the work stands on its own without them.

      We agree that the first line of the Abstract might distract the readers. Meanwhile, in the Discussion, we believe the readers will appreciate our speculation of how this study is relevant to recent debates on hearing mechanics. Following the reviewer’s advice, we have revised the Abstract.

      Reviewer #3 (Recommendations for the authors):

      Please review the detailed comments below. I hope they contribute to enhancing the paper:

      We thank the reviewer for this detailed advice. All of these comments make good sense and were very helpful in improving this paper or in planning future studies. 

      Many of the comments were relevant to the computer model, and they have one common basis, which we have not yet achieved. I.e., simulating the level-dependence. 

      I. Introduction

      (1) Please clarify and improve this sentence. Effective and safe strategies for delivering treatments to the inner ear have been reported: 'Consequently, intervening in hearing health by delivering substances to the inner-ear fluid is challenging'.

      The preceding statement is regarding the blood-labyrinthine barrier (BLB), comparable to the bloodbrain barrier (BBB). We revised the statement: “Consequently, intervening in hearing health by delivering substances to the inner-ear fluid through systemic circulation is challenging.”

      (2) Please expand on how the secretion and absorption of ions and molecules maintain the unique ionic compositions of the two intracochlear fluids. Include details on the role of the stria vascularis and the specific functions of the three types of strial cells in this process.

      In response to this request, we added a paragraph discussing cochlear fluid homeostasis. Our study is different from existing homeostasis studies in three regards. First, the site: Existing studies are centered on the stria vascularis, while this study concerns the Corti fluid. Second, the mechanism: Existing studies are regarding metabolic transport, while our scope is the transport due to fluid flow. Third, the range: Existing studies considered local electrochemical equilibrium within a radial section, while this study concerns global (longitudinal) mass transport. To address this comment, the following was added to the Discussion.

      “Our study complements existing studies regarding cochlear fluid homeostasis and differs from previous studies in several ways. The intrastrial fluids (extracellular fluids in the stria vascularis) have been more thoroughly investigated because the three layers in the stria vascularis (marginal, intermediate, and basal cells) maintain the endocochlear potential (Wangemann 2006).

      Equilibrium in the Corti fluid has been sparsely investigated because its electrochemical gradient is modest compared to that of the intrastrial fluids (Johnstone, Patuzzi et al. 1989; Zidanic and Brownell 1990). Local electrochemical balance in the cochlear fluids has been considered within a radial section (Quraishi and Raphael 2008; Patuzzi 2011; Nin, Hibino et al. 2012). Our study is focused on the longitudinal (global) equilibrium along the cochlear coil and did not consider the equilibrium across the stria vascularis cell layers. To examine whether the longitudinal fluid flow driven by outer hair cells is strong enough to affect cochlear fluid homeostasis, future studies should measure the K+ equilibrium and recycling along the length of the Corti fluid under sound and silence conditions.“

      (3) Please provide a more detailed explanation and definition of a longitudinal electrochemical gradient, including how it functions and its relevance in physiological processes.

      The most researched electrochemical gradient of the cochlea must be the endocochlear potential that varies along the cochlear length. The endocochlear potential at any location is determined by the equilibrium between the source and the sink. In the view of the Corti fluid, the source is the potassium current out of the hair cells and the sink is the resorption of potassium by supporting cells. The effect of a longitudinal electrochemical gradient on hearing physiology is beyond the scope of this study. To do so would require incorporating detailed K+ equilibrium dynamics. This certainly is one of our future directions. 

      (4) Please include the necessary references to support these three sentences: "Diffusion is an effective mechanism for a substance to travel along submicrometer distances. For instance, it takes microseconds for neurotransmitters to diffuse across a 20-nm synaptic gap. In contrast, diffusion is inefficient for travel on the centimeter scale. It takes days for a drug applied at the round window to travel 30 mm to the apical end of the human cochlea. In practice, the substance would not reach the apex because it would be resorbed before traveling the distance".   

      A reference was added (Berg, 1993). Our description of diffusion is based on the fundamental physics of Fick’s laws.

      (5) In paragraph 3, the author only discussed a portion of the previous approaches. There are numerous methods for inner ear delivery, including external, middle ear, and direct inner ear delivery via the round window or semicircular canal. Each method has its pros and cons, which the authors should carefully address. For example, the semicircular canal approach doesn't require two perforations in the inner ear and distributes the injection evenly throughout the cochlea.  

      A recent review paper regarding inner ear drug delivery was added as a reference (Szeto, Chiang et al. 2020). Drug delivery is a means to demonstrate the OHC’s role in longitudinal mass transport. We are concerned that comparing different drug delivery modalities in detail would distract the readers from the main point of this study. We mentioned ‘one remedy’ with two perforations, for which abundant case studies are found in the literature. Discussing existing approaches exhaustively can be better done by review papers.

      (6) The following sentence is inaccurate and should be carefully rephrased. Previous reports chose higher volumes than the actual fluid volume to maximize the drug (or gene) effect, but this was not a requirement of the delivery methods: 'Such an invasive approach requires the injection of a substantial fluid volume, larger than the entire perilymph in the inner ear'.

      We revised the statement to relax the wording ‘require’: ‘Such an invasive approach is often associated with the injection of a substantial fluid volume, larger than the entire perilymph in the inner ear (Szeto, Chiang et al. 2020)'. This statement might be acceptable because we found few invasive delivery papers that used < 1 µL. Moreover, the physics basis of the injection method is to replace the fluid in a labyrinth compartment with a new fluid (a good example where this fluid physics was tested with quantitative data is the Lichtenhan et al. 2016 paper).

      (7) Please provide the necessary references. Also, clarify what is meant by 'actuator cells'. Are you referring to hair cells?: 'The tube-shaped organ of Corti (OoC) is lined with actuator cells and the cells are activated systematically with a large phase velocity (> a few m/s) toward the apex'.

      Yes, we meant OHCs as the actuator cells. This point has been clarified. A reference for the phase velocity has been added (Olson, Duifhuis, Steele, 2012).

      II. Results

      (1) Is there a specific reason you use 60 or 75 dB SPL for broadband sounds, but opt for louder sounds (80 dB SPL) for pure tones?

      It is not straightforward to compare the SPL between broadband noise and a pure tone, and we did not attempt to ‘equate’ them in any way. 

      (2) Please provide specific details about the sound generation protocol, including the duration, start time, end time, and any other relevant parameters. Here is an example of a vague sentence. Do you play the sounds continuously during these time periods, or only at specific intervals?: 'In two example cases, the effect time at low-CF locations (CFs near 2 kHz) was 15 minutes for the case of the 0.5 kHz tone (Fig. 3A)'

      It is described in the Measurement protocol part of the Methods section (see the red text below). In the exampled case and all other cases, the sounds were played continually (not continuously).

      For the “Sound” protocol, 1.1-s noise pips (60 or 75 dB SPL, 0.1-12 kHz bandwidth, 0.8-s duration including 0.15-s onset/offset ramps) were presented continually. After 48 noise pips, one 1.1-s silent pause and three CF tone pips followed (a total of 51 pips and a pause make a 57.2-s sequence). The CF tone pips were presented at the level of 35 dB SPL to monitor neural responses. The silence pause was to monitor spontaneous neural responses. The sequence was repeated until neural signals at the lowest CF site were completely abolished. The neural responses presented in this study are the ‘driven responses’ obtained by subtracting the spontaneous responses from the responses to the 35 dB CF tones. For the “Silence” or “Pure-tone” protocol, the noise pips of the Sound protocol were replaced with either silence pauses or a pure tone at 80 dB SPL.

      (3) Providing a schematic timeline of your experiments indicating sound generation, kainic acid (and salicylate) application, as well as DPOAE and AVCN recordings would greatly help in understanding and following your results.

      We have revised Figure 2.

      (4) How did you control the opening(s) for the injection? The openings could alter intracochlear pressure and affect the traveling wave from the sound, which is the major factor influencing outer hair cell activity.

      We did not open the inner ear. The round window remained intact. Opening the bulla does not affect the intracochlear pressure. We have clarified this issue, beginning with the first sentence of the Abstract. Thanks for raising this important question.

      (5) Is there any reason why the author generated only low and mid-frequencies? If so, please address what the limitations were in testing high frequency.

      There are no limitations to testing high frequencies. High frequencies would not affect drug delivery to the apex of the cochlea because the traveling waves stop right after the CF location. We are interested in delivering drugs deeper into the apex. Our presented results support this reasoning: mid-frequency stimulation was less effective for delivery to the low CF location.

      (6) I suggest combining Figures 3E and 3F to facilitate a direct comparison between the Silence and Noise conditions, as the MF and LF plots are overlapping in these panels.

      We considered this change but realized that it might introduce confusion and difficulty in parsing the results. Moreover, the two panels have their respective messages. 

      (7) In Figure 3E, why does the LF tone affect both Low and Mid CFs, while the MF tone only affects Mid CF?

      The cochlear traveling wave stops right after the CF location. Peristaltic action takes place in the broad tail region of the traveling waves (see Fig. 5C).

      III. Materials and Methods

      (1) Please provide details about your injection protocol. Did you create additional perforations? How did you target the round window? What was the injection rate? How did you seal the round window, and so on?

      The inner ear including the round window was left intact. Only the bulla was open.

      (2) Please include details about your surgical procedure for the AVCN recording, including probe insertion.

      AVCN recording is a well-established technique. Instead of reintroducing the method, we added a classical reference with friendlier description (Frisina, Chamberlain, et al., 1982). 

      IV. Minor points

      (1) Please include the full terms for the abbreviations 'CF', 'DPOAEs', 'PT', 'IP', and 'RW' for readers who are not in the hearing research field.

      We have checked that these abbreviations were defined.

      (2) Are 'GXXX's in figures animal identifiers? Please clarify what they represent.

      Yes, they are animal identifiers. We have clarified this point in Fig. 1 caption.

    1. Author response:

      In response to your comments, we will revise our manuscript to address the limitations raised, including our ability to rigorously test how observed changes in gene expression in shrews are adaptive. The phylogenetic ANOVA we use (EVE), tests for a separate RNA expression optimum specific to the shrew lineage for each gene, and is consistent with expectations for adaptive evolution of gene expression. However, as you noted, while this analysis highlights many candidate genes potentially under positive selection, further functional validation is required to confirm if and how these genes contribute to Dehnel’s phenomenon. We will emphasize that inferred adaptive expression of these genes is putative in our discussion and outline that future studies are needed to test the function of proposed adaptations. For example, cell line validations of BCL2L1 on apoptosis is a case study that tests the function of a putatively adaptive change in gene expression, and it illuminates this limitation. We will also refine our discussion to focus more on pathway-level analyses rather than on individual genes.

      We recognize that our methodological choices may not have been fully transparent, such as our selection of gene expression clusters for the pathway enrichment analysis and our focus on BCL2L1 for functional validation in cell lines. We will expand on these decisions in the methods section to provide greater clarity for our readers.

      Regarding the use of sex as a covariate, we acknowledge the concerns raised. In our evolutionary analyses, we maintained a balanced sex ratio when possible. EVE models handle the effect of sex on gene expression as intraspecific variation, reflective of plasticity. In shrews, however, we used males exclusively. Females were only found among juvenile individuals and including them would have introduced developmental variation with larger, negative impacts on these results. For the seasonal data, we will now include sex as a covariate in differential expression analyses, however, our design is imbalanced in relation to sex. We will account for this limitation and discuss it further in the revised manuscript.

    1. Author response:

      We sincerely thank you for your constructive and insightful feedback on our manuscript, including the assessment of its strengths and suggestions for improvements. This will allow us to enhance the clarity and impact of our work. In our revised manuscript, we will address your recommendations as follows:

      (1) Disambiguating whether the joystick eccentricity reflects the subject’s confidence or simply the perceived stimulus strength or coherence

      We agree that this is a pivotal issue for the interpretation of our results. We are confident that the joystick “eccentricity” (i.e., radial joystick deviation from the center) does not simply correlate with the moment-to-moment fluctuations of stimulus coherence. The observations that the radial joystick response varied considerably more than the stimulus fluctuations within each subject and each coherence level, and the analysis of metacognitive sensitivity, suggest that subjects indeed incorporated confidence judgements into their continuous reports. As proposed, we will further explore the established signatures of metacognitive confidence reports, and we will quantify the motion energy fluctuations within time intervals where the nominal stimulus parameters remained constant, to examine whether accuracy and confidence levels vary in response to these fluctuations. This approach will provide deeper insights into continuous dynamics within our paradigm.

      (2) Rationale for Social Investigation

      We will clarify the rationale and methodology of the social aspects in our experiments to better contextualize our approach and findings and their relationship to the field of collective decision-making. In particular, we will further emphasize that while our paradigm indeed did not impose integrating the information from the partner and did not involve incentives for collectively solving the task, the participants could (and did) incorporate the social information into their judgements and mostly improved their earnings. In this way, our approach complements the studies that required joint decisions.

      (3) Streamlining and Terminology

      We will streamline the text and figure legends to present our main arguments more concisely and improve the overall flow of the manuscript. Additionally, we will include a glossary to the main text to clarify terminology, enhancing accessibility and ensuring consistent understanding of key terms throughout the paper.

      To clarify two of the points upfront, we indeed used the term “eccentricity” not in a visual science sense but as the measure of radial joystick deviation from the center and the corresponding angular width of the response arc; we now realize that this is confusing in the context of visual psychophysics paper and will use another word. The term “dyadic” was meant to describe the experimental condition when two participants worked on the task, and associated measures of performance in this condition. The “dyadic score”, defined as the average score across the two participants in the dyadic condition, will be renamed as “combined score”.  

      (4) Incorporation of Additional Literature

      We acknowledge and appreciate the recommendations for additional relevant literature, which we will incorporate into our discussion. This will allow us to contextualize our findings more thoroughly within the existing body of research and highlight the broader implications of our work.

    1. Author response:

      eLife Assessment

      This valuable study uses consensus-independent component analysis to highlight transcriptional components (TC) in high-grade serous ovarian cancers (HGSOC). The study presents a convincing preliminary finding by identifying a TC linked to synaptic signaling that is associated with shorter overall survival in HGSOC patients, highlighting the potential role of neuronal interactions in the tumor microenvironment. This finding is corroborated by comparing spatially resolved transcriptomics in a small-scale study; a weakness is in being descriptive, non-mechanistic, and requiring experimental validation.

      We sincerely thank the editors for the valuable and constructive feedback. We appreciate the recognition of our findings and the significance of identifying transcriptional components in high-grade serous ovarian cancers. We acknowledge the insightful point on our study's descriptive nature and limited mechanistic depth. While further experimental validation would indeed enhance our conclusions, such work extends beyond the current scope of this manuscript. However, we would like to highlight that mechanistic studies demonstrating the impact of tumor-infiltrating nerves on disease progression are emerging (Zahalka et al., 2017; Allen et al., 2018; Balood et al., 2022; Jin et al., 2022; Globig et al., 2023; Restaino et al., 2023; Darragh et al., 2024). Importantly, members of our group have contributed to these findings. These studies, including in vitro and in vivo work in head and neck squamous cell carcinoma as well as high-grade serous ovarian carcinoma, demonstrate that substance P released from tumor-infiltrating nociceptors potentiates MAP kinase signaling in cancer cells, thereby influencing disease progression. This effect can be mitigated in vivo by blocking the substance P receptor (Restaino et al., 2023). Our present work identifies a transcriptional component that aligns with the presence of functional nerves within malignancies. These published mechanistic studies support our findings and suggest that this transcriptional component could serve as a potential screening tool to identify innervated tumors. Such information is clinically relevant, as patients with innervated tumors may benefit from more aggressive therapy.

      Reviewer #1 (Public review):

      This manuscript explores the transcriptional landscape of high-grade serous ovarian cancer (HGSOC) using consensus-independent component analysis (c-ICA) to identify transcriptional components (TCs) associated with patient outcomes. The study analyzes 678 HGSOC transcriptomes, supplemented with 447 transcriptomes from other ovarian cancer types and noncancerous tissues. By identifying 374 TCs, the authors aim to uncover subtle transcriptional patterns that could serve as novel drug targets. Notably, a transcriptional component linked to synaptic signaling was associated with shorter overall survival (OS) in patients, suggesting a potential role for neuronal interactions in the tumor microenvironment. Given notable weaknesses like lack of validation cohort or validation using another platform (other than the 11 samples with ST), the data is considered highly descriptive and preliminary.

      Strengths:

      (1) Innovative Methodology:

      The use of c-ICA to dissect bulk transcriptomes into independent components is a novel approach that allows for the identification of subtle transcriptional patterns that may be overshadowed in traditional analyses.

      We sincerely thank the reviewer for recognizing the strengths and novelty of our study. We appreciate the positive feedback on our use of consensus-independent component analysis (c-ICA) to decompose bulk transcriptomes, which we believe allowed us to detect subtle transcriptional signals often overlooked in traditional analyses.

      (2) Comprehensive Data Integration:

      The study integrates a large dataset from multiple public repositories, enhancing the robustness of the findings. The inclusion of spatially resolved transcriptomes adds a valuable dimension to the analysis.

      Thank you for recognizing the robustness of our study through comprehensive data integration. We appreciate the acknowledgment of our efforts to leverage a large, multi-source dataset, as well as the additional insights gained from spatially resolved transcriptomes. We believe this integrative approach enhances the depth of our analysis and contributes to a more nuanced understanding of the tumor microenvironment.

      (3) Clinical Relevance:

      The identification of a synaptic signaling-related TC associated with poor prognosis highlights a potential new avenue for therapeutic intervention, emphasizing the role of the tumor microenvironment in cancer progression.

      We appreciate the reviewer’s recognition of the clinical implications of our findings. The identification of a synaptic signaling-related transcriptional component associated with poor prognosis underscores the potential for novel therapeutic targets within the tumor microenvironment. We agree that this insight could open new avenues for intervention and further highlights the role of neuronal interactions in cancer progression.

      Weaknesses:

      (1) Mechanistic Insights:

      While the study identifies TCs associated with survival, it provides limited mechanistic insights into how these components influence cancer progression. Further experimental validation is necessary to elucidate the underlying biological processes.

      We appreciate the reviewer’s point regarding the limited mechanistic insights provided in our study. We agree that further experimental validation would enhance our understanding of how the biology captured by these transcriptional components influence cancer progression. However, we respectfully note that such validation is beyond the current scope of this article.   Our current analyses are done on publicly available expression array and spatial transcriptomic array datasets. For future studies, we therefore intend to combine spatial transcriptomic data with immunohistochemical analysis of the same tumors for validation purposes. We have started with setting up in vitro cocultures of neurons and ovarian cancer cells to obtain mechanistic insight in how genes with a large weight in TC121 regulate synaptic signaling and how that affects ovarian cancer cells.

      (2) Generalizability:

      The findings are primarily based on transcriptomic data from HGSOC. It remains unclear how these results apply to other subtypes of ovarian cancer or different cancer types.

      In Figure 5, we present the activity of TC121 across various cancer types, demonstrating broader applicability. However, due to limited treatment response data, we were unable to assess associations between TC activity scores and patient response. Additionally, transcriptomic and survival data specific to other ovarian cancer subtypes beyond HGSOC are currently not available, limiting our ability to generalize these findings to those groups. We intend to leverage survival data from TCGA to explore associations between TC activity scores and overall survival of patients with other cancer types. Nonetheless, we recognize limitations with TCGA survival data, as outlined in this article: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8726696/.

      (3) Innovative Methodology:

      Requires more validation using different platforms (IHC) to validate the performance of this bulk-derived data. Also, the lack of control over data quality is a concern.

      We acknowledge the reviewer’s suggestion to validate our results with alternative platforms, such as IHC; however, we regret that such validation is beyond the scope of this article. Regarding data quality control, we implemented a series of checks:

      • Bulk Transcriptional Profiles: We applied principal component analysis (PCA) on the sample Pearson product-moment correlation matrix, focusing on the first principal component (PCqc), which accounted for approximately 80-90% of the variance, primarily reflecting technical rather than biological variability  (Bhattacharya et al., 2020). Samples with a correlation below 0.8 with PCqc were removed as outliers. Additionally, we generated unique MD5 hashes for each CEL file to identify and exclude duplicate samples. Per gene, expression values were standardized to a mean of zero and a variance of one across the GEO, CCLE, GDSC, and TCGA datasets to minimize probeset- or gene-specific variability.

      • Spatial Transcriptional Profiles: We used PCA for quality control here as well, retained samples only if their loading factors for the first principal component showed consistent signs across all profiles (i.e., all profiles had either positive or negative loading factors for the first PC) from that individual spatial transcriptomic sample. Samples that did not meet this criterion were excluded from analyses.

      (4) Clinical Application:

      Although the study suggests potential drug targets, the translation of these findings into clinical practice is not addressed. Probably given the lack of some QA/QC procedures it'll be hard to translate these results. Future studies should focus on validating these targets in clinical settings.

      While this study is exploratory in nature, we agree that future studies should focus on validating these potential drug targets in clinical settings. As suggested, QA/QC procedures were integral to our analyses. We applied rigorous quality control, including PCA-based checks and duplicate removal across datasets, to ensure data integrity (detailed in our previous response).

      In terms of clinical application, which we partially discussed in the manuscript, we will discuss additional strategies to prevent synaptic signaling and neurotransmitter release in the tumor microenvironment (TME). Drugs such as ifenprodil and lamotrigine are used in treating neuronal disorders to block glutamate release responsible for subsequent synaptic signaling, whereas the vesicular monoamine transporter (VMAT) inhibitor reserpine can block the formation of synaptic vesicles (Reid et al., 2013; Williams et al., 2001). Previous in vitro studies with HGSOC cell lines showed a significant effect of ifenprodil alone on cancer cell proliferation, whereas reserpine seemed to trigger apoptosis in cancer cells (North et al., 2015; Ramamoorthy et al., 2019). Such strategies could potentially be used to inhibit synaptic neurotransmission in the TME.

      Reviewer #2 (Public review):

      Summary:

      Consensus-independent component analysis and closely related methods have previously been used to reveal components of transcriptomic data that are not captured by principal component or gene-gene coexpression analyses.

      Here, the authors asked whether applying consensus-independent component analysis (c-ICA) to published high-grade serous ovarian cancer (HGSOC) microarray-based transcriptomes would reveal subtle transcriptional patterns that are not captured by existing molecular omics classifications of HGSOC.

      Statistical associations of these (hitherto masked) transcriptional components with prognostic outcomes in HGSOC could lead to additional insights into underlying mechanisms and, coupled with corroborating evidence from spatial transcriptomics, are proposed for further investigation.

      This approach is complementary to existing transcriptomics classifications of HGSOC.

      The authors have previously applied the same approach in colorectal carcinoma (Knapen et al. (2024) Commun. Med).

      Strengths:

      (1) Overall, this study describes a solid data-driven description of c-ICA-derived transcriptional components that the authors identified in HGSOC microarray transcriptomics data, supported by detailed methods and supplementary documentation.

      We thank the reviewer for acknowledging the strength of our data-driven approach and the use of consensus-independent component analysis (c-ICA) to identify transcriptional components within HGSOC microarray data. We aimed to provide comprehensive methodological detail and supplementary documentation to support the reproducibility and robustness of our findings. We believe this approach allows for the identification of subtle transcriptional signals that might be overlooked by traditional analysis methods.

      (2) The biological interpretation of transcriptional components is convincing based on (data-driven) permutation analysis and a suite of analyses of association with copy-number, gene sets, and prognostic outcomes.

      We appreciate the reviewer’s positive feedback on the biological interpretation of our transcriptional components. We are pleased that our approach, which includes data-driven permutation testing and analyses of associations with copy-number alterations, gene sets, and prognostic outcomes, was found convincing. These analyses were integral to enhancing the robustness and biological relevance of our findings.

      (3) The resulting annotated transcriptional components have been made available in a searchable online format.

      Thank you for acknowledging the availability of our annotated transcriptional components in a searchable online format.

      (4) For the highlighted transcriptional component which has been annotated as related to synaptic signalling, the detection of the transcriptional component among 11 published spatial transcriptomics samples from ovarian cancers appears to support this preliminary finding and requires further mechanistic follow-up.

      Thank you for acknowledging the accessibility of our annotated transcriptional components. We prioritized making these data available in a searchable online format to facilitate further research and enable the community to explore and validate our findings.

      Weaknesses:

      (1) This study has not explicitly compared the c-ICA transcriptional components to the existing reported transcriptional landscape and classifications for ovarian cancers (e.g. Smith et al Nat Comms 2023; TCGA Nature 2011; Engqvist et al Sci Rep 2020) which would enable a further assessment of the additional contribution of c-ICA - whether the c-ICA approach captured entirely complementary components, or whether some components are correlated with the existing reported ovarian transcriptomic classifications.

      We appreciate the reviewer’s insightful suggestion to compare our c-ICA-derived transcriptional components with previously reported ovarian cancer classifications, such as those from Smith et al. (2023), TCGA (2011), and Engqvist et al. (2020). To address this, we will incorporate analyses comparing the activity scores of our transcriptional components with these published landscapes and classifications, particularly focusing on any associations with overall survival. Additionally, we plan to evaluate correlations between gene signatures from these studies and our identified TCs, enhancing our understanding of the unique contributions of the c-ICA approach.

      (2) Here, the authors primarily interpret the c-ICA transcriptional components as a deconvolution of bulk transcriptomics due to the presence of cells from tumour cells and the tumour microenvironment. However, c-ICA is not explicitly a deconvolution method with respect to cell types: the transcriptional components do not necessarily correspond to distinct cell types, and may reflect differential dysregulation within a cell type. This application of c-ICA for the purpose of data-driven deconvolution of cell populations is distinct from other deconvolution methods that explicitly use a prior cell signature matrix.

      Thank you for highlighting this nuanced aspect of c-ICA interpretation. We acknowledge that c-ICA, unlike traditional deconvolution methods, is not specifically designed for cell-type deconvolution and does not rely on a predefined cell signature matrix. While we explored the transcriptional components in the context of tumor and microenvironmental interactions, we agree that these components may not correspond directly to distinct cell types but rather reflect complex patterns of dysregulation, potentially within individual cell populations.

      Our goal with c-ICA was to uncover hidden transcriptional patterns possibly influenced by cellular heterogeneity. However, we recognize these patterns may also arise from regulatory processes within a single cell type. To investigate further, we plan to use single-cell transcriptional data (~60,000 cell-types annotated profiles from GSE158722) and project our transcriptional components onto these profiles to obtain activity scores, allowing us to assess each TC’s behavior across diverse cellular contexts after removing the first principal component to minimize background effects.

      References

      Allen JK, Armaiz-Pena GN, Nagaraja AS, Sadaoui NC, Ortiz T, Dood R, Ozcan M, Herder DM, Haemerrle M, Gharpure KM, Rupaimoole R, Previs R, Wu SY, Pradeep S, Xu X, Han HD, Zand B, Dalton HJ, Taylor M, Hu W, Bottsford-Miller J, Moreno-Smith M, Kang Y, Mangala LS, Rodriguez-Aguayo C, Sehgal V, Spaeth EL, Ram PT, Wong ST, Marini FC, Lopez-Berestein G, Cole SW, Lutgendorf SK, diBiasi M, Sood AK. 2018. Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction. Cancer Res 78:canres.1701.2016.

      Balood M, Ahmadi M, Eichwald T, Ahmadi A, Majdoubi A, Roversi Karine, Roversi Katiane, Lucido CT, Restaino AC, Huang S, Ji L, Huang K-C, Semerena E, Thomas SC, Trevino AE, Merrison H, Parrin A, Doyle B, Vermeer DW, Spanos WC, Williamson CS, Seehus CR, Foster SL, Dai H, Shu CJ, Rangachari M, Thibodeau J, Rincon SVD, Drapkin R, Rafei M, Ghasemlou N, Vermeer PD, Woolf CJ, Talbot S. 2022. Nociceptor neurons affect cancer immunosurveillance. Nature 611:405–412.

      Bhattacharya A, Bense RD, Urzúa-Traslaviña CG, Vries EGE de, Vugt MATM van, Fehrmann RSN. 2020. Transcriptional effects of copy number alterations in a large set of human cancers. Nat Commun 11:715.

      Darragh LB, Nguyen A, Pham TT, Idlett-Ali S, Knitz MW, Gadwa J, Bukkapatnam S, Corbo S, Olimpo NA, Nguyen D, Court BV, Neupert B, Yu J, Ross RB, Corbisiero M, Abdelazeem KNM, Maroney SP, Galindo DC, Mukdad L, Saviola A, Joshi M, White R, Alhiyari Y, Samedi V, Bokhoven AV, John MSt, Karam SD. 2024. Sensory nerve release of CGRP increases tumor growth in HNSCC by suppressing TILs. Med 5:254-270.e8.

      Globig A-M, Zhao S, Roginsky J, Maltez VI, Guiza J, Avina-Ochoa N, Heeg M, Hoffmann FA, Chaudhary O, Wang J, Senturk G, Chen D, O’Connor C, Pfaff S, Germain RN, Schalper KA, Emu B, Kaech SM. 2023. The β1-adrenergic receptor links sympathetic nerves to T cell exhaustion. Nature 622:383–392.

      Jin M, Wang Y, Zhou T, Li W, Wen Q. 2022. Norepinephrine/β2-adrenergic receptor pathway promotes the cell proliferation and nerve growth factor production in triple-negative breast cancer. J Breast Cancer 26:268–285.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In the present study, Chen et al. investigate the role of Endophilin A1 in regulating GABAergic synapse formation and function. To this end, the authors use constitutive or conditional knockout of Endophilin A1 (EEN1) to assess the consequences on GABAergic synapse composition and function, as well as the outcome for PTZ-induced seizure susceptibility. The authors show that EEN1 KO mice show a higher susceptibility to PTZ-induced seizures, accompanied by a reduction in the GABAergic synaptic scaffolding protein gephyrin as well as specific GABAAR subunits and eIPSCs. The authors then investigate the underlying mechanisms, demonstrating that Endophilin A1 binds directly to gephyrin and GABAAR subunits, and identifying the subdomains of Endophilin A1 that contribute to this effect. Overall, the authors state that their study places Endophilin A1 as a new regulator of GABAergic synapse function.

      Strengths:

      Overall, the topic of this manuscript is very timely, since there has been substantial recent interest in describing the mechanisms governing inhibitory synaptic transmission at GABAergic synapses. The study will therefore be of interest to a wide audience of neuroscientists studying synaptic transmission and its role in disease. The manuscript is well-written and contains a substantial quantity of data.

      Weaknesses:

      A number of questions remain to be answered in order to be able to fully evaluate the quality and conclusions of the study. In particular, a key concern throughout the manuscript regards the way that the number of samples for statistical analysis is defined, which may affect the validity of the data analysed. Addressing this weakness will be essential to providing conclusive results that support the authors' claims.

      We would like to thank the reviewer for appreciation of the value of our study and careful critics to help us improve the manuscript. We will correct the way that the number of samples for statistical analysis is defined throughout the manuscript as suggested and update figures, figure legends, and Materials and Methods accordingly. For example, we will average the values for all dendritic segments from one neuron, so that each data point represents one neuron in the graphs.

      Reviewer #2 (Public review):

      Summary:

      The function of neural circuits relies heavily on the balance of excitatory and inhibitory inputs. Particularly, inhibitory inputs are understudied when compared to their excitatory counterparts due to the diversity of inhibitory neurons, their synaptic molecular heterogeneity, and their elusive signature. Thus, insights into these aspects of inhibitory inputs can inform us largely on the functions of neural circuits and the brain.

      Endophilin A1, an endocytic protein heavily expressed in neurons, has been implicated in numerous pre- and postsynaptic functions, however largely at excitatory synapses. Thus, whether this crucial protein plays any role in inhibitory synapse, and whether this regulates functions at the synaptic, circuit, or brain level remains to be determined.

      New Findings:

      (1) Endophilin A1 interacts with the postsynaptic scaffolding protein gephyrin at inhibitory postsynaptic densities within excitatory neurons.

      (2) Endophilin A1 promotes the organization of the inhibitory postsynaptic density and the subsequent recruitment/stabilization of GABA A receptors via Endophilin A1's membrane binding and actin polymerization activities.

      (3) Loss of Endophilin A1 in CA1 mouse hippocampal pyramidal neurons weakens inhibitory input and leads to susceptibility to epilepsy.

      (4) Thus the authors propose that via its role as a component of the inhibitory postsynaptic density within excitatory neurons, Endophilin A1 supports the organization, stability, and efficacy of inhibitory input to maintain the excitatory/inhibitory balance critical for brain function.

      (5) The conclusion of the manuscript is well supported by the data but will be strengthened by addressing our list of concerns and experiment suggestions.

      We would like to thank the reviewer for their favorable impression of manuscript. We also appreciate the great experiment suggestions to help us improve the manuscript.

      Weaknesses:

      Technical concerns:

      (1) Figure 1F and Figure 1H, Figures 7H,J:

      Can the authors justify using a paired-pulse interval of 50 ms for eEPSCs and an interval of 200 ms for eIPSCs? Otherwise, experiments should be repeated using the same paired pulse interval.

      We apologize for the confusion. As illustrated by the schematic current traces, the decay time constants of eEPSCs and eIPSCs in hippocampal CA1 neurons are different. The eEPSCs exhibit a faster channel closing rate, corresponding to a smaller time constant Tau. Thus, a shorter inter-stimulus interval (50 ms) was chosen for paired-pulse ratio recordings. In contrast, the eIPSCs display a slower channel closing rate, with a Tau value larger than that of eEPSCs, so a longer inter-stimulus interval (200 ms) was used for PPR. This protocol has been long-established and adopted in previous studies (please see below for examples).

      Contractor, A., Swanson, G. & Heinemann, S. F. Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron 29, 209-216, doi:10.1016/s0896-6273(01)00191-x (2001).

      Babiec, W. E., Jami, S. A., Guglietta, R., Chen, P. B. & O'Dell, T. J. Differential Regulation of NMDA Receptor-Mediated Transmission by SK Channels Underlies Dorsal-Ventral Differences in Dynamics of Schaffer Collateral Synaptic Function. Journal of neuroscience 37, 1950-1964, doi:10.1523/JNEUROSCI.3196-16.2017 (2017).

      (2) Figures 3G,H,I:

      While 3D representations of proteins of interest bolster claims made by superresolution microscopy, SIM resolution is unreliable when deciphering the localization of proteins at the subsynaptic level given the small size of these structures (<1 micrometer). In order to determine the actual location of Endophilin A1, especially given the known presynaptic localization of this protein, the authors should complete SIM experiments with a presynaptic marker, perhaps an active zone protein, so that the relative localization of Endophilin A1 can be gleaned. Currently, overlapping signals could stem from the presynapse given the poor resolution of SIM in this context.

      Thanks for your suggestions. It is certainly preferable to investigate the relative localization of endophilin A1 using both presynaptic and postsynaptic markers. For SIM imaging in Figure 3G-I, to visualize neuronal morphology, we immunostained GFP as cell fill, leaving two other channels for detection of immunofluorescent signals of endophilin A1 and another protein. We will try co-immunostaining of endophilin A1, the active zone protein bassoon (presynaptic marker) and gephyrin without morphology labeling. Alternatively, we will do co-staining of endophilin A1 and bassoon in GFP-expressing neurons. We agree that overlapping signals or proximal localization of presynaptic endophilin A1 with gephyrin or GABAAR γ2 could not be ruled out. To note, if image resolution is improved with the use of a more advanced imaging system, the overlap between two proteins will become smaller or even disappear. With the ~110 nm lateral resolution of SIM microscopy, the degree of overlap between the two proteins of interest is much lower than in confocal microscopy. Given the presynaptic localization of endophilin, most likely we will observe a small overlap (presynatpic) or proximal localization (postsynaptic) of endophilin A1 with bassoon. Nevertheless, we will complete the SIM experiments as suggested to improve the manuscript.

      Manuscript consistency:

      (1) Figure 2:

      The authors looked at VGAT and noticed a reduction of signals in hippocampal regions in their P21 slices, indicating that the proposed postsynaptic organization/stabilization functions of Endophilin A1 extend to the inhibitory presynapse, perhaps via Neuroligin 2-Neurexin. Simultaneously, hippocampal regions in P21 slices showed a reduction in PSD-95 signals, indicating that excitatory synapses are also affected. It would be crucial to also look at excitatory presynapses, via VGLUT staining, to assess whether EndoA1 -/- also affects presynapses. Given the extensive roles of Endophilin A1 in presynapses, especially in excitatory presynapses, this should be investigated.

      Thanks for the thoughtful comments. Given that the both VGAT and PSD95 signals are reduced in hippocampal regions in P21 slices, it is conceivable that the proposed postsynaptic organization/stabilization functions of endophilin A1 extend to the inhibitory presynapse via Neuroligin-2-Neurexin and the excitatory presynapse as well during development. Of note, endophilin A1 knockout did not impair the distribution of Neuroligin-2 in inhibitory postsynapses (immunoisolated with anti-GABAAR α1) in mature mice (Figure 3K), and endophilin A1 did not bind to Neuroligin-2 (Figure 4D), suggesting that endophilin A1 might function via other mechanisms. Nevertheless, as functions of endophilin A family members at the presynaptic site are well-established, the reduction of presynaptic signals in developmental hippocampal regions of EndoA-/- mice might result from the depletion of presynaptic endophilin A1. The presynaptic deficits can be compensatory by other mechanisms as neurons mature. Certainly, we will do VGLUT staining of EndoA1-/- brain slices as suggested to assess the role of endophilin A1 in excitatory presynapses in vivo.

      (2) Figure 7C:

      The authors do not assess whether p140Cap overexpression rescues GABAAR receptor loss exhibited in Endophilin A1 KO, as they did for Gephryin. This would be an important data point to show, as p140Cap may somehow rescue receptor loss by another pathway. In fact, it is mentioned in the text that this experiment was done, "Consistently, neither p140Cap nor the endophilin A1 loss-of-function mutants could rescue the GABAAR clustering phenotype in EEN1 KO neurons (Figure 7C, D)" yet the data for p140Cap overexpression seem to be missing. This should be remedied.

      Thanks a lot for the thoughtful comment. We will determine whether p140Cap overexpression also rescues the GABAAR clustering phenotype in EndoA1-/- neurons by surface GABAAR γ2 staining in our revised manuscript.

      Reviewer #3 (Public review):

      Summary:

      Chen et al. identify endophilin A1 as a novel component of the inhibitory postsynaptic scaffold. Their data show impaired evoked inhibitory synaptic transmission in CA1 neurons of mice lacking endophilin A1, and an increased susceptibility to seizures. Endophilin can interact with the postsynaptic scaffold protein gephyrin and promote assembly of the inhibitory postsynaptic element. Endophilin A1 is known to play a role in presynaptic terminals and in dendritic spines, but a role for endophilin A1 at inhibitory postsynaptic densities has not yet been described.

      Strengths:

      The authors used a broad array of experimental approaches to investigate this, including tests of seizure susceptibility, electrophysiology, biochemistry, neuronal culture, and image analysis.

      Weaknesses:

      Many results are difficult to interpret, and the data quality is not always convincing, unfortunately. The basic premise of the study, that gephyrin and endophilin A1 interact, requires a more robust analysis to be convincing.

      We greatly appreciate the positive comment on our study and the very valuable feedback for us to improve the manuscript. We will conduct additional experiments to improve our data quality and strengthen our evidences according to these great constructive suggestions. To gain strong evidence for the interaction between endophilin A1 and gephyrin, we will perform in vitro pull-down assay with recombinant proteins from bacterial expression system.

    1. Author response:

      Public Reviews:

      Summary:

      We sincerely thank the reviewers for their insightful and thorough feedback. Their comments cover both technical and conceptual aspects of our project, which we have attempted to address in our provisional responses.

      First, we would like to clarify that any current lack of documentation or technical issues (such as local installation challenges) reflect the software's early stage. These aspects are receiving our full attention and are not intended to remain in their current state. As suggested, we plan to enhance the toolbox’s structure by separating it into a standalone library and a web application, alongside developing smaller satellite apps for SWC and MOD file management. We will also expand our documentation, provide a more detailed user guide, and add video tutorials for the GUI.

      Second, we have clarified the rationale behind specific implementation choices in our software, explaining why certain features of the toolbox were designed and implemented in particular ways. Our goal is to maintain a strong focus on single-cell level modeling, addressing its various aspects in great detail. We are also working on new features, such as automated parameter optimization and support for multiple output formats, to further enrich the toolbox’s functionality.

      Reviewer #1 (Public review):

      Summary:

      Dendrotweaks provides its users with a solid tool to implement, visualize, tune, validate, understand, and reduce single-neuron models that incorporate complex dendritic arbors with differential distribution of biophysical mechanisms. The visualization of dendritic segments and biophysical mechanisms therein provide users with an intuitive way to understand and appreciate dendritic physiology.

      Strengths:

      (1) The visualization tools are simplified, elegant, and intuitive.

      (2) The ability to build single-neuron models using simple and intuitive interfaces.

      (3) The ability to validate models with different measurements.

      (4) The ability to systematically and progressively reduce morphologically-realistic neuronal models.

      We thank the reviewer for their positive comments.

      Weaknesses:

      (1) Inability to account for neuron-to-neuron variability in structural, biophysical, and physiological properties in the model-building and validation processes.

      We agree with the reviewer that it is important to account for neuron-to-neuron variability. The core approach of DendroTweaks and its distinctive feature is interactive exploration of how morpho-electric parameters affect neuronal activity. In light of this, variability can be achieved through interactive updating of the model parameters with widgets. In a sense, by adjusting a widget (e.g., channel distribution or kinetics), a user ends up with a new instance of a cell in the parameter space and receives almost real-time feedback on how this change affects neuronal activity. Implementing complex algorithms to account for neuron-to-neuron variability during the validation process would detract from the interactivity aspect of the GUI. That being said, we acknowledge the importance of this issue and we will explore the options to address it more comprehensively in our revised manuscript.

      (2) Inability to account for the many-to-many mapping between ion channels and physiological outcomes. Reliance on hand-tuning provides a single biased model that does not respect pronounced neuron-to-neuron variability observed in electrophysiological measurements.

      We acknowledge the challenge of accounting for degeneracy in the relation between ion channels and physiological outcomes and the importance of capturing neuron-to-neuron variability. One possible way to address this, as we mention in the Discussion, is to integrate automated parameter optimization algorithms alongside the existing interactive hand-tuning with widgets. We are currently exploring the possibility of integrating Jaxley (Deistler et al., 2024) into DendroTweaks in addition to NEURON. This would allow for automated and fast gradient-based parameter optimization, including optimization of heterogeneous channel distributions.

      (3) Lack of a demonstration on how to connect reduced models into a network within the toolbox.

      Building a network of reduced models is a promising direction, albeit it goes beyond the scope of this manuscript. We do not plan to add support for network models to the toolbox itself. In DendroTweaks, we focus on single-cell modeling, aiming to cover its various aspects in great detail. Of course, such refined single-cell models—both detailed and reduced—are likely to be integrated into networks but this will not take place within the DendroTweaks toolbox. To support the integration of DendroTweaks-produced model neurons into networks, we will focus on better compatibility with existing formats and standards and improve exporting capabilities. It is already possible to export reduced morphologies as SWC files, standardized ion channel models as MOD files and channel distributions as JSON files. Nevertheless, as a proof of concept, we plan to generate a simple network of exported reduced models outside the toolbox and include it as a separate Jupyter notebook.

      (4) Lack of a set of tutorials, which is common across many "Tools and Resources" papers, that would be helpful in users getting acquainted with the toolbox.

      This is a valid concern that we aim to address promptly. Currently, an online user guide is available at https://dendrotweaks.dendrites.gr/guide.html. This guide introduces users to the GUI elements and covers basic use cases. We are working on video tutorials and detailed documentation, which will be available soon (as part of the revised manuscript). The toolbox will be split into two parts: a Bokeh app and a standalone library. The library will offer the core functionality, such as reducing morphology and standardizing channels, without the GUI, enabling bulk processing. It will be installable through PyPI and integrated into the app code as an external library. We will provide thorough documentation for all classes and functions in the library.

      Reviewer #2 (Public review):

      The paper by Makarov et al. describes the software tool called DendroTweaks, intended for the examination of multi-compartmental biophysically detailed neuron models. It offers extensive capabilities for working with very complex distributed biophysical neuronal models and should be a useful addition to the growing ecosystem of tools for neuronal modeling.

      Strengths

      (1) This Python-based tool allows for visualization of a neuronal model's compartments.

      (2) The tool works with morphology reconstructions in the widely used .swc and .asc formats.

      (3) It can support many neuronal models using the NMODL language, which is widely used for neuronal modeling.

      (4) It permits one to plot the properties of linear and non-linear conductances in every compartment of a neuronal model, facilitating examination of the model's details.

      (5) DendroTweaks supports manipulation of the model parameters and morphological details, which is important for the exploration of the relations of the model composition and parameters with its electrophysiological activity.

      (6) The paper is very well written - everything is clear, and the capabilities of the tool are described and illustrated with great attention to detail.

      We thank the reviewer for their positive comments.

      Weaknesses

      (1) Not a really big weakness, but it would be really helpful if the authors showed how the performance of their tool scales. This can be done for an increasing number of compartments - how long does it take to carry out typical procedures in DendroTweaks, on a given hardware, for a cell model with 100 compartments, 200, 300, and so on? This information will be quite useful to understand the applicability of the software.

      DendroTweaks functions as a layer on top of a simulation engine. As a result, currently its performance scales in proportion to the NEURON’s one. Note that the GUI displays the time taken to run a given simulation in NEURON at the bottom of the Simulation tab in the left menu. While GUI-related processing and rendering also consume time, this is not as straightforward to measure. Nonetheless, we will explore options to provide suggested benchmarking in the revised manuscript.

      (2) Let me also add here a few suggestions (not weaknesses, but something that can be useful, and if the authors can easily add some of these for publication, that would strongly increase the value of the paper).

      (3) It would be very helpful to add functionality to read major formats in the field, such as NeuroML and SONATA.

      We agree with the reviewer that support for major formats will substantially improve and ensure reproducibility and reusability of the models. As mentioned in the Discussion, we plan to add support for NeuroML. Regarding SONATA, it is indeed possible to view our models as a network with a single morphologically-detailed biophysical node receiving inputs from multiple populations of virtual nodes. In future editions of the tool we plan to expand its support for additional file formats.

      (4) Visualization is available as a static 2D projection of the cell's morphology. It would be nice to implement 3D interactive visualization.

      We offer an option to rotate a cell around the vertical axis using a slider under the plot. This is a workaround, as implementing a true 3D visualization in Bokeh would require custom Bokeh elements, along with external JavaScript libraries. Despite these implementation difficulties, we advocate for a different approach than the one used in most of the morphology viewers mentioned in the Discussion. The core idea of DendroTweaks' morphology exploration is that each section is "clickable" allowing its geometric properties to be examined in a 2D Section view. Furthermore, we believe the Graph view presents the overall cell topology more clearly than a 3D visualization.

      (5) It is nice that DendroTweaks can modify the models, such as revising the radii of the morphological segments or ionic conductances. It would be really useful then to have the functionality for writing the resulting models into files for subsequent reuse.

      This functionality is already available. Users can export JSON files with channel distributions and SWC files after morphology reduction through the GUI. In the standalone version, users can modify and export SWC files, as well as export MOD files after standardization. Please note that in the online demo version export and import functionality is currently limited, but we plan to fully enable it when submitting our revisions. We are considering separating file managers as satellite apps—one for SWC and one for MOD files. It is worth mentioning that the MOD file manager along with parsing the files and generating Python classes for visualization purposes is already capable of producing Jaxley-compatible Python channel classes.

      (6) If I didn't miss something, it seems that DendroTweaks supports the allocation of groups of synapses, where all synapses in a group receive the same type of Poisson spike train. It would be very useful to provide more flexibility. One option is to leverage the SONATA format, which has ample functionality for specifying such diverse inputs.

      Currently, each group shares the same set of parameters for both biophysical properties of synapses (e.g., reversal potential, time constants) and presynaptic "population" activity (e.g., rate, onset). The parameter that controls an incoming Poisson spike train is the rate, which is indeed shared across all synapses in a group. The suggestion to allow for variability in input properties within a group is interesting and is worth implementing. We will explore this in the revised manuscript.

      (7) "Each session can be saved as a .json file and reuploaded when needed" - do these files contain the whole history of the session or the exact snapshot of what is visualized when the file is saved? If the latter, which variables are saved, and which are not? Please clarify.

      These files capture the exact snapshot of the model's latest state. They include model parameters such as channel distributions, equilibrium potentials, and temperature. Currently, stimuli (current clamps and synapses) are not saved. However, we plan to add an option to export stimuli parameters in the same JSON file. This will also be available as part of the revised manuscript.

      References

      Michael Deistler, Kyra L. Kadhim, Matthijs Pals, Jonas Beck, Ziwei Huang, Manuel Gloeckler, Janne K. Lappalainen, Cornelius Schröder, Philipp Berens, Pedro J. Gonçalves, Jakob H. Macke Differentiable simulation enables large-scale training of detailed biophysical models of neural dynamics bioRxiv 2024.08.21.608979; doi:https://doi.org/10.1101/2024.08.21.608979

    1. Author response:

      To reviewer #1:

      We appreciate your advice on providing more conceptual motivations for comparing Bayesian and RL-like belief updating models. In short, both model families are complementary in capturing asymmetrical and symmetrical updating. They both consider that the magnitude of updating is weighed by two separate learning rates, one for positive and one for negative belief disconfirming evidence. If these two learning rates differ, updating is asymmetrical; if they are equal, updating is symmetrical.

      However, the model families’ assumptions about the underlying updating process differ. In the RL-like belief updating model family, this process is assumed to be driven by comparing base rates and initial beliefs, also known as the prediction error (PE), weighed by the learning rates. On the contrary, the Bayesian updating model assumes that updating (i.e., the posterior belief) is driven by combining the base rate (i.e., the prior evidence) and how often the initial belief is represented in the estimated base rate (i.e., the likelihood ratio of all other alternative hypotheses, beliefs). Moreover, the two components of the posterior belief can differ in their respective contribution (i.e., precision or confidence), which might be more adaptive to external actual life conditions characterized by high uncertainty about the future.

      For the revised manuscript, we will elaborate more on the conceptual and psychological meaning of these two proposed belief updating processes. So far, it is important to note that we do not have direct proof of humans reasoning in an RL-like or Bayesian way when updating their beliefs about the future. We, therefore, focus on the complementarity of both models to capture latent processes and variables in belief updating that can be leveraged to understand the sources of inter-individual differences and the impact of external contexts such as experiencing an actual adverse life event on human psychology.

      To reviewer #2:

      Thank you for recommending the exploration of potential differences between optimism biases in initial belief estimations (self versus other) during and outside the pandemic. We will also provide more details on the belief updating task and design.

      To both reviewers: 

      We agree on the limitations arising from the lack of physiological and self-reported measures of stress. We collected some self-reports on risk perception, adoption of protective measures, need for social interactions, and mood, but solely in participants tested during the pandemic-related lockdowns (reported in the SI Table 1). For the revised manuscript, we propose exploring the correlational links between belief-updating biases and self-reports in this sample. The expected outcomes of such correlational analyses may identify the variables to target with interventions in future studies of human belief updating under real-world contexts. We also will add a relevant section to the discussion to elaborate on the limitation that hinders inferring plausible psychological causes of the differences observed in belief updating during and outside the pandemic.

      Importantly, we will follow your recommendations to improve the computational modeling analyses. We will (1) add the confusion matrices from model recovery analyses to gain inferences on specificity, (2) provide evidence for the best-fitting model to reproduce the observed behavior shown in Figure 1, and (3) conduct model comparisons on the combined groups to justify the focus on the RL like updating model. In a few weeks, we plan to submit a revised manuscript alongside a point-by-point response to your concerns and recommendations.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      First, the authors confirm the up-regulation of the main genes involved in the three branches of the Unfolded Protein Response (UPR) system in diet-induced obese mice in AT, observations that have been extensively reported before. Not surprisingly, IRE1a inhibition with STF led to an amelioration of the obesity and insulin resistance of the animals. Moreover, non-alcoholic fatty liver disease was also improved by the treatment. More novel are their results in terms of thermogenesis and energy expenditure, where IRE1a seems to act via activation of brown AT. Finally, mice treated with STF exhibited significantly fewer metabolically active and M1-like macrophages in the AT compared to those under vehicle conditions. Overall, the authors conclude that targeting IRE1a has therapeutical potential for treating obesity and insulin resistance.

      The study has some strengths, such as the detailed characterization of the effect of STF in different fat depots and a thorough analysis of macrophage populations. However, the lack of novelty in the findings somewhat limits the study´s impact on the field.

      We thank the reviewer for the appreciation of our findings and the comments about the novelty. Regarding the novelty, we would emphasize several novelties presented in this manuscript. First, as the reviewer correctly pointed out, we discovered that IRE1 inhibition by STF activates brown AT and promotes thermogenesis and that IRE1 inhibition not only significantly attenuated the newly discovered CD9+ ATMs and the “M1-like” CD11c+ ATMs but also diminished the M2 ATMs for the first time. These discoveries are very important and novel. In obesity, it was originally proposed that ATM undergoes M1/M2 polarization from an anti-inflammatory M2 to a classical pro-inflammatory M1 state. It was further reported that IRE1 deletion improves thermogenesis by boosting M2 population which then synthesize and secrete catecholamines to promote thermogenesis. It is now known that M2 macrophages do not synthesize catecholamines or promote thermogenesis. In this study, we discovered that IRE1 inhibition doesn’t increase (but instead decrease) the M2 population and that IRE1 inhibition promotes thermogenesis likely by suppressing pro-inflammatory macrophage populations including the M1-like ATMs and most importantly the newly identified metabolically active macrophages, given that ATM inflammation has been reported to suppress thermogenesis. Second, this study presented the first characterization of relationship between the more classical M1-like ATMs and the newly discovered metabolically active ATMs, showing that the CD11c+ M1-like ATMs are largely overlapping with but yet non-identical to CD9+ ATMs in the eWAT under HFD. Third, although upregulation of ER stress response genes in the adipose tissues of diet-induced obese mice have been extensively reported, it doesn’t necessarily mean that targeting IRE1a or ER stress can reverse existing insulin resistance and obesity. It is not uncommon that a therapy doesn’t yield the desired effect as expected. For instance, amyloid plaques are a hallmark of Alzheimer's disease (AD), interventions that prevent or reverse beta amyloid deposition have been expected to prevent progression or even reverse cognitive impairment in AD patients. However, clinical trials on such therapies have been disappointing. In essence, experimental demonstration of effectiveness or feasibility for any potential therapeutic targets is a first step for any future clinical implementation.

      Reviewer #2 (Public review):

      The manuscript by Wu et al demonstrated that IRE1a inhibition mitigated insulin resistance and other comorbidities through increased energy expenditure in DIO mice. In this reviewer's opinion, this timely study has high significance in the field of metabolism research for the following reasons.

      (1) The authors' findings are significant and may offer a new therapeutic target to treat metabolic diseases, including diabetes, obesity, NAFLD, etc.

      (2) The authors carefully profiled the ATMs and examined the changes in gene expression after STF treatment.

      (3) The authors presented evidence collected from both systemic indirect calorimetry and individual tissue gene expression to support the notion of increased energy expenditure.

      Overall, the authors have presented sufficient background in a clear and logically organized structure, clearly stated the key question to be addressed, used the appropriate methodology, produced significant and innovative main findings, and made a justified conclusion.

      We thank the reviewer for the appreciation of our work.

      Reviewer #3 (Public review):

      Summary:

      The manuscript by Wu D. et al. explores an innovative approach to immunometabolism and obesity by investigating the potential of targeting macrophage Inositol-requiring enzyme 1α (IRE1α) in cases of overnutrition. Their findings suggest that pharmacological inhibition of IRE1α could influence key aspects such as adipose tissue inflammation, insulin resistance, and thermogenesis. Notable discoveries include the identification of High-Fat Diet (HFD)-induced CD9+ Trem2+ macrophages and the reversal of metabolically active macrophages' activity with IRE1α inhibition using STF. These insights could significantly impact future obesity treatments.

      Strengths:

      The study's key strengths lie in its identification of specific macrophage subsets and the demonstration that inhibiting IRE1α can reverse the activity of these macrophages. This provides a potential new avenue for developing obesity treatments and contributes valuable knowledge to the field.

      Weaknesses:

      The research lacks an in-depth exploration of the broader metabolic mechanisms involved in controlling diet-induced obesity (DIO). Addressing this gap would strengthen the understanding of how targeting IRE1α might fit into the larger metabolic landscape.

      Impact and Utility:

      The findings have the potential to advance the field of obesity treatment by offering a novel target for intervention. However, further research is needed to fully elucidate the metabolic pathways involved and to confirm the long-term efficacy and safety of this approach. The methods and data presented are useful, but additional context and exploration are required for broader application and understanding.

      We thank the reviewer for the appreciation of strengths in our manuscript. In particular, we appreciate the reviewer’s recommendation on the exploration of broader metabolic landscape, such as the effect of IRE1 inhibition on non-adipose tissue macrophages and metabolism. We agree that achieving these will certainly broaden the therapeutic potential of IRE1 inhibition to larger metabolic disorders and we will pursue these explorations in future studies.

    1. Author response:

      We thank the reviewers for their constructive feedback here, which will both improve the present manuscript, and help us update our approach as we continue to examine interregional interactions in the motor system. Below we address the concerns raised in the Public Reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      This study examined the interaction between two key cortical regions in the mouse brain involved in goal-directed movements, the rostral forelimb area (RFA) - considered a premotor region involved in movement planning, and the caudal forelimb area (CFA) - considered a primary motor region that more directly influences movement execution. The authors ask whether there exists a hierarchical interaction between these regions, as previously hypothesized, and focus on a

      specific definition of hierarchy - examining whether the neural activity in the premotor region exerts a larger functional influence on the activity in the primary motor area than vice versa. They examine this question using advanced experimental and analytical methods, including localized optogenetic manipulation of neural activity in either region while measuring both the neural activity in the other region and EMG signals from several muscles involved in the reaching movement, as well as simultaneous electrophysiology recordings from both regions in a separate cohort of animals.

      The findings presented show that localized optogenetic manipulation of neural activity in either RFA or CFA resulted in similarly short-latency changes in the muscle output and in firing rate changes in the other region. However, perturbation of RFA led to a larger absolute change in the neural activity of CFA neurons. The authors interpret these findings as evidence for reciprocal, but asymmetrical, influence between the regions, suggesting some degree of hierarchy in which RFA has a greater effect on the neural activity in CFA. They go on to examine whether this asymmetry can also be observed in simultaneously recorded neural activity patterns from both regions. They use multiple advanced analysis methods that either identify latent components at the population level or measure the predictability of firing rates of single neurons in one region using firing rates of single neurons in the other region. Interestingly, the main finding across these analyses seems to be that both regions share highly similar components that capture a high degree of variability of the neural activity patterns in each region. Single units' activity from either region could be predicted to a similar degree from the activity of single units in the other region, without a clear division into a leading area and a lagging area, as one might expect to find in a simple hierarchical interaction. However, the authors find some evidence showing a slight bias towards leading activity in RFA. Using a two-region neural network model that is fit to the summed neural activity recorded in the different experiments and to the summed muscle output, the authors show that a network with constrained (balanced) weights between the regions can still output the observed measured activities and the observed asymmetrical effects of the optogenetic manipulations, by having different within-region local weights. These results put into question whether previous and current findings that demonstrate asymmetry in the output of regions can be interpreted as evidence for asymmetrical (and thus hierarchical) inputs between regions, emphasizing the challenges in studying interactions between any brain regions.

      Strengths:

      The experiments and analyses performed in this study are comprehensive and provide a detailed examination and comparison of neural activity recorded simultaneously using dense electrophysiology probes from two main motor regions that have been the focus of studies examining goal-directed movements. The findings showing reciprocal effects from each region to the other, similar short-latency modulation of muscle output by both regions, and similarity of neural activity patterns without a clear lead/lag interaction, are convincing and add to the growing body of evidence that highlight the complexity of the interactions between multiple regions in the motor system and go against a simple feedforward-like network and dynamics. The neural network model complements these findings and adds an important demonstration that the observed asymmetry can, in theory, also arise from differences in local recurrent connections and not necessarily from different input projections from one region to the other. This sheds an important light on the multiple factors that should be considered when studying the interaction between any two brain regions, with a specific emphasis on the role of local recurrent connections, that should be of interest to the general neuroscience community.

      Weaknesses:

      While the similarity of the activity patterns across regions and lack of a clear leading/lagging interaction are interesting observations that are mostly supported by the findings presented (however, see comment below for lack of clarity in CCA/PLS analyses), the main question posed by the authors - whether there exists an endogenous hierarchical interaction between RFA and CFA - seems to be left largely open. 

      The authors note that there is currently no clear evidence of asymmetrical reciprocal influence between naturally occurring neural activity patterns of the two regions, as previous attempts have used non-natural electrical stimulation, lesions, or pharmacological inactivation. The use of acute optogenetic perturbations does not seem to be vastly different in that aspect, as it is a non-natural stimulation of inhibitory interneurons that abruptly perturbs the ongoing dynamics.

      We do believe that our optogenetic inactivation identifies a causal interaction between the endogenous activity patterns in the excitatory projection neurons that are largely silenced, and the endogenous activity that is affected in a downstream region. To clarify, the effect in the downstream region results directly from the silencing of activity in the excitatory projection neurons that connect RFA and CFA. 

      Here we have performed a causal intervention common in biology: a loss-of-function experiment. Such experiments generally reveal that a causal interaction of some sort is present, but often do not clarify much about the nature of the interaction, as is true in our case. By showing that the silencing of endogenous activity in one motor cortical region causes a significant change to the endogenous activity in another, we establish a causal relationship between these activity patterns.

      This is analogous to knocking out the gene for a transcription factor and observing causal effects on the expression of other genes that depends on it. 

      Moreover, our experiments are, to our knowledge, the first that localize a causal relationship to endogenous activity in motor cortical regions at a particular point during motor behavior. Stimulation experiments generate spiking in excitatory projection neurons that is not endogenous. Lesion and pharmacological or chemogenetic inactivation have long-lasting effects, and so their consequences on firing in other regions cannot be attributed to a short-latency influence of activity at a particular point during movement. Moreover, the involvement of motor cortex in motor learning and movement preparation/initiation complicates the interpretation of these consequences vis-à-vis movement execution, as disturbance to processes on which execution depends can impede execution itself. 

      That said, we would agree that the form of the causal interaction between RFA and CFA remains largely unaddressed by our results. These results do not expose how the silenced activity patterns affect activity in the downstream region, just as transcription factor gene knockouts do not expose how the effect on transcription occurs. To show evidence for specific interaction dynamics between RFA and CFA, a different sort of experiment would be necessary. See Jazayeri and Afraz, Neuron, 2017 for more on this issue.

      Furthermore, the main finding that supports a hierarchical interaction is a difference in the absolute change of firing rates as a result of the optogenetic perturbation, a finding that is based on a small number of animals (N = 3 in each experimental group), and one which may be difficult to interpret. 

      Though N = 3 in this case, we do show statistical significance. Moreover, using three replicates is not uncommon in biological experiments that require a large technical investment, including those in rodents.

      As the authors nicely demonstrate in their neural network model, the two regions may differ in the strength of local within-region inhibitory connections. Could this theoretically also lead to a difference in the effect of the artificial light stimulation of the inhibitory interneurons on the local population of excitatory projection neurons, driving an asymmetrical effect on the downstream region? 

      We (Miri et al., Neuron, 2017) and others (Guo et al., Neuron, 2014) have shown that the effect of this inactivation on excitatory neurons in CFA is a near-complete silencing (90-95% within 20 ms). Thus there is not much room for the effects on projection neurons in RFA to be much larger. As part of other work currently in review, we have verified that the effects on RFA projection neuron firing are not larger.

      Moreover, the manipulation was performed upon the beginning of the reaching movement, while the premotor region is often hypothesized to exert its main control during movement preparation, and thus possibly show greater modulation during that movement epoch. It is not clear if the observed difference in absolute change is dependent on the chosen time of optogenetic stimulation and if this effect is a general effect that will hold if the stimulation is delivered during different movement epochs, such as during movement preparation.

      We agree that the dependence of RFA-CFA interactions on movement phase would be interesting to address in subsequent experiments. While a strong interpretation of past lesion results might lead to a hypothesis that premotor influence on primary motor cortex is local to, or stronger during, movement preparation as opposed to execution, at present there is to our knowledge no empirical support from interventional experiments for this hypothesis. Moreover, existing results from analysis of activity in premotor and primary motor cortex have produced conflicting results on the strength of interaction between these regions during preparation. Compare for example Bachschmid-Romano et al., eLife, 2023 to Kaufman et al., Nature Neuroscience, 2014.

      That said, this lesion interpretation would predict the same asymmetry we have observed from perturbations at the beginning of a reach – a larger effect of RFA on CFA than vice versa.

      Another finding that is not clearly interpretable is in the analysis of the population activity using CCA and PLS. The authors show that shifting the activity of one region compared to the other, in an attempt to find the optimal leading/lagging interaction, does not affect the results of these analyses. Assuming the activities of both regions are better aligned at some unknown groundtruth lead/lag time, I would expect to see a peak somewhere in the range examined, as is nicely shown when running the same analyses on a single region's activity. If the activities are indeed aligned at zero, without a clear leading/lagging interaction, but the results remain similar when shifting the activities of one region compared to the other, the interpretation of these analyses is not clear.

      Our results in this case were definitely surprising. Many share the intuition that there should be a lag at which the correlations in activity between connected regions will be strongest. Similarity in alignment across lags might be expected if communication between regions occurs over a range of latencies as a result of dependence on a broad diversity of synaptic paths that connect neurons. In the Discussion, we offer an explanation of how to reconcile these findings with the seemingly different picture presented by DLAG.

      Reviewer #2 (Public review):

      Summary:

      While technical advances have enabled large-scale, multi-site neural recordings, characterizing inter-regional communication and its behavioral relevance remains challenging due to intrinsic properties of the brain such as shared inputs, network complexity, and external noise. This work by Saiki-Ishikawa et al. examines the functional hierarchy between premotor (PM) and primary motor (M1) cortices in mice during a directional reaching task. The authors find some evidence consistent with an asymmetric reciprocal influence between the regions, but overall, activity patterns were highly similar and equally predictive of one another. These results suggest that motor cortical hierarchy, though present, is not fully reflected in firing patterns alone.

      Strengths:

      Inferring functional hierarchies between brain regions, given the complexity of reciprocal and local connectivity, dynamic interactions, and the influence of both shared and independent external inputs, is a challenging task. It requires careful analysis of simultaneous recording data, combined with cross-validation across multiple metrics, to accurately assess the functional relationships between regions. The authors have generated a valuable dataset simultaneously recording from both regions at scale from mice performing a cortex-dependent directional reaching task.

      Using electrophysiological and silencing data, the authors found evidence supporting the traditionally assumed asymmetric influence from PM to M1. While earlier studies inferred a functional hierarchy based on partial temporal relationships in firing patterns, the authors applied a series of complementary analyses to rigorously test this hierarchy at both individual neuron and population levels, with robust statistical validation of significance.

      In addition, recording combined with brief optogenetic silencing of the other region allowed authors to infer the asymmetric functional influence in a more causal manner. This experiment is well designed to focus on the effect of inactivation manifesting through oligosynaptic connections to support the existence of a premotor to primary motor functional hierarchy.

      Subsequent analyses revealed a more complex picture. CCA, PLS, and three measures of predictivity (Granger causality, transfer entropy, and convergent cross-mapping) emphasized similarities in firing patterns and cross-region predictability. However, DLAG suggested an imbalance, with RFA capturing CFA variance at a negative time lag, indicating that RFA 'leads' CFA. Taken together these results provide useful insights for current studies of functional hierarchy about potential limitations in inferring hierarchy solely based on firing rates.

      While I would detail some questions and issues on specifics of data analyses and modeling below, I appreciate the authors' effort in training RNNs that match some behavioral and recorded neural activity patterns including the inactivation result. The authors point out two components that can determine the across-region influence - 1) the amount of inputs received and 2) the dependence on across-region input, i.e., the relative importance of local dynamics, providing useful insights in inferring functional relationships across regions.

      Weaknesses:

      (1) Trial-averaging was applied in CCA and PLS analyses. While trial-averaging can be appropriate in certain cases, it leads to the loss of trial-to-trial variance, potentially inflating the perceived similarities between the activity in the two regions (Figure 4). Do authors observe comparable degrees of similarity, e.g., variance explained by canonical variables? Also, the authors report conflicting findings regarding the temporal relationship between RFA and CFA when using CCA/PLS versus DLAG. Could this discrepancy be due to the use of trial-averaging in former analyses but not in the latter?

      We certainly agree that the similarity in firing patterns is higher in trial averages than on single trials, given the variation in single-neuron firing patterns across trials. Here, we were trying to examine the similarity of activity variance that is clearly movement dependent, as trial averages are, and to use an approach that mirrors those applied in much of the existing literature. We would also agree that there is more that can be learned about interactions from trial-by-trial analysis. 

      It is possible that the activity components identified by DLAG as being asymmetric somehow are not reflected strongly in trial averages. In our Discussion we offer another potential explanation related to the differences in what is calculated in DLAG and CCA/PLS.

      We also note here that all of the firing pattern predictivity analysis we report (Figure 6) was done on single-trial data, and in all cases the predictivity was symmetric. Thus, our results in aggregate are not consistent with symmetry purely being an artifact of trial averaging.

      (2) A key strength of the current study is the precise tracking of forelimb muscle activity during a complex motor task involving reaching for four different targets. This rich behavioral data is rarely collected in mice and offers a valuable opportunity to investigate the behavioral relevance of the PM-M1 functional interaction, yet little has been done to explore this aspect in depth. For example, single-trial time courses of inter-regional latent variables acquired from DLAG analysis can be correlated with single-trial muscle activity and/or reach trajectories to examine the behavioral relevance of inter-regional dynamics. Namely, can trial-by-trial change in inter-regional dynamics explain behavioral variability across trials and/or targets? Does the inter-areal interaction change in error trials? Furthermore, the authors could quantify the relative contribution of across-area versus within-area dynamics to behavioral variability. It would also be interesting to assess the degree to which across-area and within-area dynamics are correlated. Specifically, can acrossarea dynamics vary independently from within-area dynamics across trials, potentially operating through a distinct communication subspace?

      These are all very interesting questions. Our study does not attempt to parse activity into components predictive of muscle activity and others that may reflect other functions. Distinct components of RFA and CFA activity may be involved in distinct interactions between them.

      (3) While network modeling of RFA and CFA activity captured some aspects of behavioral and neural data, I wonder if certain findings such as the connection weight distribution (Figure 7C), across-region input (Figure 7F), and the within-region weights (Figure 7G), primarily resulted from fitting the different overall firing rates between the two regions with CFA exhibiting higher average firing rates. Did the authors account for this firing rate disparity when training the RNNs?

      The key comparison in Figure 7 is shown in 7F, where the firing rates are accounted for in calculating the across-region input strength. Equalizing the firing rates in RFA and CFA would effectively increase RFA rates. If the mean firing rates in each region were appreciably dependent on across-region inputs, we would then expect an off-setting change in the RFA→CFA weights, such that the RFA→CFA distributions in 7F would stay the same. We would also expect the CFA→RFA weights would increase, since RFA neurons would need more input. This would shift the CFA→RFA (blue) distributions up. Thus, if anything, the key difference in this panel would only get larger. 

      We also generally feel that it is a better approach to fit the actual firing rates, rather than normalizing, since normalizing the firing rates would take us further from the actual biology, not closer.

      (4) Another way to assess the functional hierarchy is by comparing the time courses of movement representation between the two regions. For example, a linear decoder could be used to compare the amount of information about muscle activity and/or target location as well as time courses thereof between the two regions. This approach is advantageous because it incorporates behavior rather than focusing solely on neural activity. Since one of the main claims of this study is the limitation of inferring functional hierarchy from firing rate data alone, the authors should use the behavior as a lens for examining inter-areal interactions.

      As we state above, we agree that examining interactions specific to movement-related activity components could be illuminating. Since it remains a challenge to rigorously identify a subset of activity patterns specifically related to driving muscle activity, any such analysis would involve an additional assumption. It remains unclear how well the motor cortical activity that decoders use for predicting muscle activity matches the motor cortical activity that actually drives muscle activity in situ. 

      Reviewer #3 (Public review):

      This study investigates how two cortical regions that are central to the study of rodent motor control (rostral forelimb area, RFA, and caudal forelimb area, CFA) interact during directional forelimb reaching in mice. The authors investigate this interaction using

      (1) optogenetic manipulations in one area while recording extracellularly from the other,

      (2) statistical analyses of simultaneous CFA/RFA extracellular recordings, and

      (3) network modeling.

      The authors provide solid evidence that asymmetry between RFA and CFA can be observed, although such asymmetry is only observed in certain experimental and analytical contexts.

      The authors find asymmetry when applying optogenetic perturbations, reporting a greater impact of RFA inactivation on CFA activity than vice-versa. The authors then investigate asymmetry in endogenous activity during forelimb movements and find asymmetry with some analytical methods but not others. Asymmetry was observed in the onset timing of movement-related deviations of local latent components with RFA leading CFA (computed with PCA) and in a relatively higher proportion and importance of cross-area latent components with RFA leading than CFA leading (computed with DLAG). However, no asymmetry was observed using several other methods that compute cross-area latent dynamics, nor with methods computed on individual neuron pairs across regions. The authors follow up this experimental work by developing a twoarea model with asymmetric dependence on cross-area input. This model is used to show that differences in local connectivity can drive asymmetry between two areas with equal amounts of across-region input.

      Overall, this work provides a useful demonstration that different cross-area analysis methods result in different conclusions regarding asymmetric interactions between brain areas and suggests careful consideration of methods when analyzing such networks is critical. A deeper examination of why different analytical methods result in observed asymmetry or no asymmetry, analyses that specifically examine neural dynamics informative about details of the movement, or a biological investigation of the hypothesis provided by the model would provide greater clarity regarding the interaction between RFA and CFA.

      Strengths:

      The authors are rigorous in their experimental and analytical methods, carefully monitoring the impact of their perturbations with simultaneous recordings, and providing valid controls for their analytical methods. They cite relevant previous literature that largely agrees with the current work, highlighting the continued ambiguity regarding the extent to which there exists an asymmetry in endogenous activity between RFA and CFA.

      A strength of the paper is the evidence for asymmetry provided by optogenetic manipulation. They show that RFA inactivation causes a greater absolute difference in muscle activity than CFA interaction (deviations begin 25-50 ms after laser onset, Figure 1) and that RFA inactivation causes a relatively larger decrease in CFA firing rate than CFA inactivation causes in RFA (deviations begin <25ms after laser onset, Figure 3). The timescales of these changes provide solid evidence for an asymmetry in the impact of inactivating RFA/CFA on the other region that could not be driven by differences in feedback from disrupted movement (which would appear with a ~50ms delay).

      The authors also utilize a range of different analytical methods, showing an interesting difference between some population-based methods (PCA, DLAG) that observe asymmetry, and single neuron pair methods (granger causality, transfer entropy, and convergent cross mapping) that do not. Moreover, the modeling work presents an interesting potential cause of "hierarchy" or "asymmetry" between brain areas: local connectivity that impacts dependence on across-region input, rather than the amount of across-region input actually present.

      Weaknesses:

      There is no attempt to examine neural dynamics that are specifically relevant/informative about the details of the ongoing forelimb movement (e.g., kinematics, reach direction). Thus, it may be preemptive to claim that firing patterns alone do not reflect functional influence between RFA/CFA. For example, given evidence that the largest component of motor cortical activity doesn't reflect details of ongoing movement (reach direction or path; Kaufman, et al. PMID: 27761519) and that the analytical tools the authors use likely isolate this component (PCA, CCA), it may not be surprising that CFA and RFA do not show asymmetry if such asymmetry is related to the control of movement details. 

      An asymmetry may still exist in the components of neural activity that encode information about movement details, and thus it may be necessary to isolate and examine the interaction of behaviorally-relevant dynamics (e.g., Sani, et al. PMID: 33169030).

      To clarify, we are not claiming that firing patterns in no way reflect the asymmetric functional influence that we demonstrate with optogenetic inactivation. Instead, we show that certain types of analysis we might expect to reflect such influence, in fact, do not. Indeed, DLAG did exhibit asymmetries that matched those seen in functional influence (at least qualitatively), though other methods we applied did not.

      As we state above, we do think that there is more that can be gleaned by looking at influence specifically in terms of activity related to movement. However, if we did find that movement-related activity exhibited an asymmetry matching that of functional influence in cases where overall activity exhibited symmetry, our results imply that the activity not related to movement would exhibit an opposite asymmetry, such that the overall balance is symmetric. This would itself be surprising. We also note that the components identified by CCA and PLS show substantial variation across reach targets, indicating that they are not only reflecting condition-invariant components. These analyses used over 90% of the total activity variance, suggesting that both condition-dependent and condition-invariant components are included.

      The idea that local circuit dynamics play a central role in determining the asymmetry between RFA and CFA is not supported by experimental data in this paper. The plausibility of this hypothesis is supported by the model but is not explored in any analyses of the experimental data collected. Given the focus on this idea in the discussion, further experimental investigation is warranted.

      While we do not provide experimental support for this hypothesis, the data we present also do not contradict this hypothesis. Here we used modeling as it is often used – to capture experimental results and generate hypotheses about potential explanations. We feel that our Discussion makes clear where the hypothesis derives from and does not misrepresent the lack of experimental support. We expect readers will take our engagement with this hypothesis with the appropriate grain of salt. The imaginable experiments to support such a hypothesis would constitute another substantial study requiring numerous controls – a whole other paper in itself.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      This study investigates how ant group demographics influence nest structures and group behaviors of Camponotus fellah ants, a ground-dwelling carpenter ant species (found locally in Israel) that build subterranean nest structures. Using a quasi-2D cell filled with artificial sand, the authors perform two complementary sets of experiments to try to link group behavior and nest structure: first, the authors place a mated queen and several pupae into their cell and observe the structures that emerge both before and after the pupae eclose (i.e., "colony maturation" experiments); second, the authors create small groups (of 5,10, or 15 ants, each including a queen) within a narrow age range (i.e., "fixed demographic" experiments) to explore the dependence of age on construction. Some of the fixed demographic instantiations included a manually induced catastrophic collapse event; the authors then compared emergency repair behavior to natural nest creation. Finally, the authors introduce a modified logistic growth model to describe the time-dependent nest area. The modification introduces parameters that allow for age-dependent behavior, and the authors use their fixed demographic experiments to set these parameters, and then apply the model to interpret the behavior of the colony maturation experiments. The main results of this paper are that for natural nest construction, nest areas, and morphologies depend on the age demographics of ants in the experiments: younger ants create larger nests and angled tunnels, while older ants tend to dig less and build predominantly vertical tunnels; in contrast, emergency response seems to elicit digging in ants of all ages to repair the nest.

      We sincerely thank Reviewer #1 for the time and effort dedicated to our manuscript's detailed review and assessment. The revision suggestions were constructive, and we will incorporate them into the next version to improve the manuscript.

      Reviewer #2 (Public review):

      I enjoyed this paper and the approach to examining an accepted wisdom of ants determining overall density by employing age polyethism that would reduce the computational complexity required to match nest size with population (although I have some questions about the requirement that growth is infinite in such a solution). Moreover, the realization that models of collective behaviour may be inappropriate in many systems in which agents (or individuals) differ in the behavioural rules they employ, according to age, location, or information state. This is especially important in a system like social insects, typically held as a classic example of individual-as-subservient to whole, and therefore most likely to employ universal rules of behaviour. The current paper demonstrates a potentially continuous age-related change in target behaviour (excavation), and suggests an elegant and minimal solution to the requirement for building according to need in ants, avoiding the invocation of potentially complex cognitive mechanisms, or information states that all individuals must have access to in order to have an adaptive excavation output.

      We sincerely thank reviewer #2 for the time and effort dedicated to our manuscript's detailed review and assessment. The insightful feedback provided by the reviewer will be incorporated into the successive revisions.

      The only real reservation I have is in the question of how this relationship could hold in properly mature colonies in which there is (presumably) a balance between the birth and death of older workers. Would the prediction be that the young ants still dig, or would there be a cessation of digging by young ants because the area is already sufficient? Another way of asking this is to ask whether the innate amount of digging that young ants do is in any way affected by the overall spatial size of the colony. If it is, then we are back to a problem of perfect information - how do the young ants know how big the overall colony is? Perhaps using density as a proxy? Alternatively, if the young ants do not modify their digging, wouldn't the colony become continuously larger? As a non-expert in social insects, I may be misunderstanding and it may be already addressed in the citations used.

      We thank the reviewer for this interesting question. We find that the nest excavation is predominantly performed by the younger ants in the nest and the nest area increase is followed by an increase in the population. However, if the young ants dig unrestricted, this could result in unnecessary nest growth as suggested by reviewer #2. Therefore, we believe that the innate digging behavior of ants could potentially be regulated by various cues such as;

      (a) Density-based: If the colony becomes less dense as its area expands, this could serve as a feedback signal for young ants to reduce or stop digging, as described in references (25, 29, 30).

      (b) Pheromone depositions: If the colony reaches a certain population density, pheromone signals could inhibit further digging by young ants, references (25, 29,) or space usage as a proxy for the nest area.

      Thus, rather than perfect information, decentralized control, and digging-based local cues probably regulate the level of age-dependent digging, without the ants needing to estimate the overall colony size or nest area.

      In any case, this is an excellent paper. The modelling approach is excellent and compelling, also allowing extrapolation to other group sizes and even other species. This to me is the main strength of the paper, as the answer to the question of whether it is younger or older ants that primarily excavate nests could have been answered by an individual tracking approach (albeit there are practical limitations to this, especially in the observation nest setup, as the authors point out). The analysis of the tunnel structure is also an important piece of the puzzle, and I really like the overall study.

      We thank the reviewer for the comments. We completely agree that individual tracking of ants within our experimental setup would have been the ideal approach, but we were limited by technical and practical limitations of the setup as pointed out by the reviewer such as;

      (a) Continuous tracking of ants in our nests would have required a camera to be positioned at all times in front of the nest, which necessitates a light background. Since Camponotus fellah ants are subterranean, we aimed to allow them to perform nest excavation in conditions as close to their natural dark environment as possible. Additionally, implementing such a system in front of each nest would have reduced the sample sizes for our treatments.

      (b) The experimental duration of our colony maturation and fixed demographics experiments extended for up to six months (unprecedented durations in these kinds of measurements). These naturally limited our ability to conduct individual tracking while maintaining the identity of each ant based on the current design.

      Reviewer #3 (Public review):

      Summary:

      In this study, Harikrishnan Rajendran, Roi Weinberger, Ehud Fonio, and Ofer Feinerman measured the digging behaviours of queens and workers for the first 6 months of colony development, as well as groups of young or old ants. They also provide a quantitative model describing the digging behaviours and allowing predictions. They found that young ants dig more slanted tunnels, while older ants dig more vertically (straight down). This finding is important, as it describes a new form of age polyethism (a division of labour based on age). Age polyethism is described as a "yes or no" mechanism, where individuals perform or not a task according to their age (usually young individuals perform in-nest tasks, and older ones foraging). Here, the way of performing the task is modified, not only the propensity to carry it or not. This data therefore adds in an interesting way to the field of collective behaviours and division of labour.

      The conclusions of the paper are well supported by the data. Measurements of the same individuals over time would have strengthened the claims.

      We sincerely thank reviewer #3 for the time and effort dedicated to our manuscript's detailed review and assessment. We completely agree with the reviewer’s comments on the measurements of the same individuals over time, however, we were limited by the technical and experimental limitations as described above and pointed out by reviewer #2.

      Strengths:

      I find that the measure of behaviour through development is of great value, as those studies are usually done at a specific time point with mature colonies. The description of a behaviour that is modified with age is a notable finding in the world of social insects. The sample sizes are adequate and all the information clearly provided either in the methods or supplementary.

      We thank the reviewer #3 for this assessment.

      Weaknesses:

      I think the paper is failing to take into consideration or at least discuss the role of inter-individual variabilities. Tasks have been known to be undertaken by only a few hyper-active individuals for example. Comments on the choice to use averages and the potential roles of variations between individuals are in my opinion lacking. Throughout the paper wording should be modified to refer to the group and not the individuals, as it was the collective digging that was measured. Another issue I had was the use of "mature colony" for colonies with very few individuals and only 6 months of age. Comments on the low number of workers used compared to natural mature colonies would be welcome.

      Regarding main comment 1

      We completely agree with the reviewer’s comment on considering inter-individual variability based on activity levels. We have discussed how individual morphological variability could influence digging behavior (references: 28, 31), and we will elaborate further on this aspect in future revisions.

      Regarding main comment 2:

      We agree with the reviewer’s comments regarding the wording. The term “mature colony” will be revised in future versions. The wording (“mature colony”‘) will be changed and addressed in the future revisions. We were practically limited by the continuation of the experiments for more than 6 months of age predominantly due to the stability of nests as they were made with a sand-soil mix. We also acknowledge that the colony sizes attained in our maturation experiments may be smaller than those of naturally matured colonies. This trend was observed generally in lab-reared colonies and could be attributed to differences in microclimatic conditions, foraging opportunities, space availability, and other factors. We will address these aspects in more detail in future revisions.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This paper describes the covalent interactions of small molecule inhibitors of carbonic anhydrase IX, utilizing a pre-cursor molecule capable of undergoing beta-elimination to form the vinyl sulfone and covalent warhead.

      Strengths:

      The use of a novel covalent pre-cursor molecule that undergoes beta-elimination to form the vinyl sulfone in situ. Sufficient structure-activity relationships across a number of leaving groups, as well as binding moieties that impact binding and dissociation constants.

      Overall, the paper is clearly written and provides sufficient data to support the hypothesis and observations. The findings and outcomes are significant for covalent drug discovery applications and could have long-term impacts on related covalent targeting approaches.

      Weaknesses:

      No major weaknesses were noted by this reviewer.

      Reviewer #2 (Public review):

      Summary:

      The authors utilized a "ligand-first" targeted covalent inhibition approach to design potent inhibitors of carbonic anhydrase IX (CAIX) based on a known non-covalent primary sulfonamide scaffold. The novelty of their approach lies in their use of a protected pre(pro?)-vinylsulfone as a precursor to the common vinylsulfone covalent warhead to target a nonstandard His residue in the active site of CAIX. In addition to a biochemical assessment of their inhibitors, they showed that their compounds compete with a known probe on the surface of HeLa cells.

      Strengths:

      The authors use a protected warhead for what would typically be considered an "especially hot" or even "undevelopable" vinylsulfone electrophile. This would be the first report of doing so making it a novel targeted covalent inhibition approach specifically with vinylsulfones.

      The authors used a number of orthogonal biochemical and biophysical methods including intact MS, 2D NMR, x-ray crystallography, and an enzymatic stopped-flow setup to confirm the covalency of their compounds and even demonstrate that this novel pre-vinylsulfone is activated in the presence of CAIX. In addition, they included a number of compelling analogs of their inhibitors as negative controls that address hypotheses specific to the mechanism of activation and inhibition.

      The authors employed an assay that allows them to assess target engagement of their compounds with the target on the surface of cells and a fluorescent probe which is generally a critical tool to be used in tandem with phenotypic cellular assays.

      Weaknesses:

      While the authors show that the pre-vinyl moiety is shown biochemically to be transformed into the vinylsulfone, they do not show what the fate of this -SO2CH2CH2OCOR group is in a cellular context. Does the pre-vinylsulfone in fact need to be in the active site of CAIX on the surface of the cell to be activated or is the vinylsulfone revealed prior to target engagement?

      I appreciate the authors acknowledging the limitations of using an assay such as thermal shift to derive an apparent binding affinity, however, it is not entirely convincing and leaves a gap in our understanding of what is happening biochemically with these inhibitors, especially given the two-step inhibitory mechanism. It is very difficult to properly understand the activity of these inhibitors without a more comprehensive evaluation of kinact and Ki parameters. This can then bring into question how selective these compounds actually are for CAIX over other carbonic anhydrases.

      The authors did not provide any cellular data beyond target engagement with a previously characterized competitive fluorescent probe. It would be critical to know the cytotoxicity profile of these compounds or even how they affect the biology of interest regarding CAIX activity if the intention is to use these compounds in the future as chemical probes to assess CAIX activity in the context of tumor metastasis.

      Reviewer #3 (Public review):

      Summary:

      Targeted covalent inhibition of therapeutically relevant proteins is an attractive approach in drug development. This manuscript now reports a series of covalent inhibitors for human carbonic anhydrase (CA) isozymes (CAI, CAII, and CAIX, CAXIII) for irreversible binding to a critical histidine amino acid in the active site pocket. To support their findings, they included co-crystal structures of CAI, CAII, and CAIX in the presence of three such inhibitors. Mass spectrometry and enzymatic recovery assays validate these findings, and the results and cellular activity data are convincing.

      Strengths:

      The authors designed a series of covalent inhibitors and carefully selected non-covalent counterparts to make their findings about the selectivity of covalent inhibitors for CA isozymes quite convincing. The supportive X-ray crystallography and MS data are significant strengths. Their approach of targeted binding of the covalent inhibitors to histidine in CA isozyme may have broad utility for developing covalent inhibitors.

      Weaknesses:

      This reviewer did not find any significant weaknesses. However, I suggest several points in the recommendation for the authors' section for authors to consider.

      Recommendations for the authors:

      Reviewing Editor Comments:

      The reviewers have made excellent suggestions. We believe a revised version addressing those points can improve the assessment and quality of your work.

      Reviewer #1 (Recommendations for the authors):

      (1) The beta-elimination process is referred to as a "rearrangement" in both the text and the Figure 2 legend. Based on the proposed mechanism the authors provided, it is a simple beta-elimination and conjugate addition mechanism, and is not a rearrangement mechanism. This change should be reflected in the text and Figure 2 legend.

      We have made the requested change from rearrangement to elimination reaction.

      (2) From a structure-based design perspective, it is not obvious why only large cyclo-alkyl groups were used to target the lipophilic pocket, with the exception of the phenyl carbamates. Perhaps this is background literature on CAIX that describes this? It seems like this is a flexible functional moiety that could be used to impact drug properties. Why were other lipophilic and especially more aromatic or heteroaromatic moieties not studied?

      The structure-affinity relationship of the lipophilic ring versus other moieties has been studied and reported previously in manuscripts: Dudutiene 2014, Zubriene 2017, Linkuviene 2018, chapter 16 by Zubriene (https://doi.org/10.1007/978-3-030-12780-0_16). The lipophilic ring served better than a flexible tail or an aromatic ring.

      (3) The color-coded "correlation map" in Figure 8 is difficult to follow. Perhaps a standard SAR table with selectivity and affinity values would be easier to read and follow.

      We are trying to promote “correlation maps” because in our opinion they are easier to follow than tables.

      (4) Although there is a statement for this in line 254 of the SI, the compound numbering in the SI, vs. the numbering used in the manuscript is confusing. The standard format for these is to consecutively number all compounds and have identical compound numbers in both the SI and manuscript. The synthetic intermediates included in the SI can be identified by IUPAC names.

      An additional numbering system had to be made because the synthesis was described in the supplementary materials. We would prefer to leave the numbering as in the current manuscript. There are quite a few intermediate compounds that we assigned intermediate numbers such as 20x in order to make it simpler to distinguish intermediate synthesis compounds from compounds that were studied for binding affinity.

      (5) Ranges of isolated yields for the synthetic steps in SI schemes SI, S2, and S3 need to be included.

      We have remade the SI schemes S1, S2, and S3 to include the yields of each compound.

      (6) Presumably, the AcOH/H2O2 reaction forms the sulfones and not sulfoxides when heat is used. In the SI, the structures of 9x and 10x are shown to be sulfoxides and not sulfones. Initially, this is thought to be a simple structural mistake, however, this is concerning, since the HRMS data (for compound 9x) reported is for the sulfoxide (HRMS for C8H7F4NO4S2 [(M+H)+]: calc. 321.9825, found 321.9824. 482) and not the sulfone? In the synthesis scheme S1, condition "C" is used for both the sulfoxide and sulfone synthesis (i.e. 3ax to 9x vs. 12x to 13x). It appears the sulfoxide is prepared using a room temperature procedure, vs. the sulfone requiring 75 degrees centigrade heat. These two similar conditions need to be designated as different synthetic steps in the schemes with the specific conditions noted since the products formed are different.

      We have made requested corrections/adjustments and added separate reaction conditions for sulfoxide synthesis in SI scheme S1.

      Reviewer #2 (Recommendations for the authors):

      I appreciate that it's difficult to determine parameters such as kinact or Ki of such potent inhibitors and ones that work by a two-step mechanism. I might suggest characterizing the steps separately to determine the detailed parameters. Maybe something like NMR for the for the activation step and SPR for the kinact and Ki of the unmasked vinylsulfone?

      We agree that such information would be helpful. However, it requires significant effort and equipment and will be performed in a separate study.

      I always advocate for at least a global proteomics analysis using a pulldown probe to get an idea of the specificity profile, especially for the so-far untried and untested pre-vinylsulfone moiety.

      We fully agree that the pull-down assay is a good idea. However, this major task will be performed in a separate study.

      This might be picky but wouldn't this be considered a pro-vinylsulfone rather than pre-vinylsulfone? Just as the term "prodrug" is used?

      We agree that both the pre-vinylsulfone and pro-vinylsulfone are suitable names. However, in pharmacology, the prodrug is common, but in organic synthesis, the precursor is commonly used. Therefore, we prefer to keep the pre-vinylsulfone.

      I would also be curious to know what species is responsible for activating the compound to the vinylsulfone. Maybe make some key point mutations of nearby basic residues?

      The His64 formed the covalent bond, thus His64 was the likely activating base. Preparing a mutation could be a good path for future studies.

      Reviewer #3 (Recommendations for the authors):

      (1) The authors presented only a close-up view of the active site with a 2Fo-Fc map mesh in three panels of Figure 4. For readers unfamiliar with the carbonic anhydrase field, adding a complete illustration of each protein-inhibitor complex (protein in cartoon mode and ligand in stick) will be helpful. Also, an image of the 180º rotation of the close-up view presented in each panel should be added. Depicting h-bonds between critical residues (Asn62, Gln 92, etc.) with dashed lines and marking the distances will be helpful for readers.

      We have prepared a requested picture for CAIX. Panels on the left show entire protein molecule view of the bound ligands to each isozyme and there are two close-up views for each structure rotated 180 degrees.

      (2) Line 198 should be revised to refer to the correct complexes. 20, 21, and 23 should be 21, 20, 23.

      We appreciate that the reviewer noticed this error. We corrected the mistake.

      (3) Omit electron density maps around each ligand in Figure 4 should be included for compounds 20, 21, and 23, perhaps as a supplementary figure.

      Detailed electron density map information is provided in the mtz files that have been submitted to the PDB. We think the omit maps are not necessary in the supplementary materials.

      (4) The cyclooctyl group is stabilized by hydrophobic active site residues, L131, A135, L141, and L198. However, only L131 is shown in Figure 4. All residues that stabilize the ligands should be shown.

      For clarity purposes of the figure, we have omitted some of the residues that make contact with the ligand molecule. We think that the structure provided to the PDB could be analyzed in detail to see all contacts between the ligand and protein molecule.

      (5) The supplementary table S1 lacks the crystallographic data on the CAIX-23 complex.

      We have added a new version of the supplementary materials that contains the crystallographic data on the CAIX-23 complex.

      (6) A minor peak (30213 Da) with a 638 Dalton shift compared to the unmodified enzyme is for Figure 5A, not Figure 5B, as mentioned in line 235. This sentence in line 235 should be corrected.

      We corrected this mistake.

      (7) As the authors stated in the text, a minor peak (30213 Da) represents a potential second binding site. Can they revisit their electron density maps and show any residual density if it is present around a second histidine residue? The MS data in Figure S17C indicates the presence of additional sites for compound 12. Thus, additional electron density around the secondary and tertiary sites is possible.

      CAII contains His3 and His4 that are at the N-end of the protein and not visible in the crystal structure. The NMR data indicate that the additional modification may occur at one of these His residues.

      (8) MS data were presented for compounds 12 and 22 in Figure 5A, B, but the co-crystal structures were generated with compounds 21, 20, and 23. Why was no MS data included for compounds 20, 21, and 23? Would these compounds show the presence of a secondary binding site? Can authors include the MS data?

      In the main body of the manuscript in Figure 5A we only present MS data on CAXIII with compound 12. It is only an example that confirms covalent interaction. In the supplementary we have MS data for compound 12 with all carbonic anhydrase isozymes and compound 20 with almost all (except CAVI) CA isozymes. There are also MS data provided with numerous compounds (3, 9, 13, and other) and CA isozymes that serve as a control or confirmation of covalent bond formation.

      (9) The coordination between the zinc ion and NH of the ligand is mentioned in the enzyme schematic in Figure 3. Can the distances and coordination with Zinc be illustrated in ligand-bound structures in Figure 4?

      We considered and decided that picture which shows the numerous distances between ligand atoms and protein residues would be difficult to follow. The structures provided to the PDB could be analyzed for every aspect of the complex structure.

      (10) A key difference between covalent (compound 12) and its non-covalent counterpart, compound 5, is the two oxygens attached to sulfur in compound 12. Do protein side chains or water interact with these oxygens? Are these oxygen atoms exposed to solvent? Can authors show the interactions or clarify if there is no interaction?

      The two oxygens in the ligand molecule serve several purposes. First, they pull out electrons and diminish the pKa of the sulfonamide, thus making interaction stronger. Second, the oxygen atoms may make contacts, hydrogen bonds with the protein molecule and may also be important for covalent bond formation. Exact energy contributions cannot be determined from the structure directly. Thus, we decided to not yet explore and delve into this area.

      (11) Fix the font size of the text in lines 355-356.

      The font has been corrected.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      This study explores the therapeutic potential of KMO inhibition in endometriosis, a condition with limited treatment options. 

      Strengths: 

      KNS898 is a novel specific KMO inhibitor and is orally bioavailable, providing a convenient and non-hormonal treatment option for endometriosis. The promising efficacy of KNS898 was demonstrated in a relevant preclinical mouse model of endometriosis with pathological and behavioural assessments performed. 

      Weaknesses: 

      (1) The expression of KMO in human normal endometrium and endometrial lesions was not quantified. Western blot or quantification of IHC images will provide valuable insight.

      Given the differential expression of KMO in luminal epithelial cells lining the endometrial glands compared to the other parts of the endometrium, a general endometrial Western Blot prep is not going to be additionally helpful or accurate in addressing this question, without e.g. laser capture microdissection or single cell quantitative proteomics. Furthermore, KMO is a flavin-dependent monooxygenase and the activity, especially generating the oxidative stressor product 3-hydroxykynurenine is far more dependent on kynurenine substrate availability than it is on actual enzyme abundance - although it is important to show (as we have done), that KMO is present in the human endometrial glands and in human distended endometrial gland-like structures (DEGLS).

      If KMO is not overexpressed in diseased tissues i.e. it may have homeostatic roles, and inhibition of KMO may have consequences on general human health and wellbeing.

      KMO certainly does have important homeostatic roles, for example as key step in the repletion of NAD+ through de novo synthesis. Although with good nutrition and sufficient NAD+ precursors in the diet e.g. niacin, that specific role may be partially redundant. KMO knockout mice exhibit normal fertility and fecundity and do not show a survival deficit compared to littermate wildtype controls (e.g. Mole et al Nature Medicine 2016). To further develop KNS898 towards clinical use, preclinical GLP safety and toxicology studies and human Phase 1 clinical trials will of course need to be completed, but that is standard for the development of any new drug

      In addition, KMO expression in control mice was not shown or quantified.

      Control mice that were not inoculated intraperitoneally with endometrial fragments did not develop DEGLS and therefore there is nothing to show or quantify.

      Images of KMO expression in endometriosis mice with treatments should be shown in Figure 4.

      We have now included a representative KMO immunohistochemistry image from each endometriosis group and included all KMO immunohistochemistry images in Supplementary Information.

      The images showing quantification analysis (Figure 4A-F) can be moved to supplementary material.

      This recommendation contradicts the emphasis placed by the same reviewer earlier regarding quantification, so we have elected to keep it where it is.

      (2) Figure 1 only showed representative images from a few patients. A description of whether KMO expression varies between patients and whether it correlates with AFS stages/disease severity will be helpful. Images from additional patients can be provided in supplementary material. 

      We have added extra information to the Figure legend to clarify the disease stage of the superficial peritoneal lesions which were illustrated (Stage I/II) and to link them to the information in supplementary Table S1. In total we examined 11 peritoneal lesions and 5 ovarian lesions (stage III/IV) – in every sample examined immunopositive staining was most intense in epithelial cells lining gland-like structures. Sections illustrated were chosen to illustrate this key finding.

      (3) For Home Cage Analysis, different measurements were performed as stated in methods including total moving distance, total moving time, moving speed, isolation/separation distance, isolated time, peripheral time, peripheral distance, in centre zones time, in centre zones distance, climbing time, and body temperature. However, only the finding for peripheral distance was reported in the manuscript. 

      This was indeed a large amount of output, which we rationalised for the benefit of a concise paper. The paper now includes a description of which parameters showed a difference with drug treatment.

      (4) The rationale for choosing the different dose levels of KNS898 - 0.01-25mg/kg was not provided. What is the IC50 of a drug? 

      KNS898 dosing has been extensively characterised by us in multiple species, and the pIC50 has already been published (e.g. Hayes et al Cell Reports 2023 and elsewhere). We now include the pIC50 in the present manuscript to save the reader from having to search through another reference.

      (5) Statistical significance: 

      (a) Were stats performed for Fig 3B-E?

      Now included, thank you.

      (b) Line 141 - 'P = 0.004 for DEGLS per group' 

      However, statistics were not shown in the figure. 

      Thanks, now displayed on figure.

      (c) Line 166 - 'the mechanical allodynia threshold in the hind paw was statistically significantly lower compared to baseline for the group' 

      However, statistics were not shown in the figure. 

      (d) Line 170 - 'Two-way ANOVA, Group effect P = 0.003, time effect P < 0.0001' The stats need to be annotated appropriately in Figure 5A as two separate symbols. 

      Arguably the far more important comparison in this figure is whether there is any effect of treatment, and to mark multiple statistical comparisons on the figure would make it difficult to understand. Instead, the figure legend and results text have been clarified on this point.

      (e) Figure 5B - multiple comparisons of two-way ANOVA are needed. G4 does not look different to G3 at D42. 

      Multiple comparison testing (Dunnett’s T3) was done and the results have been clarified in the text and figure legends.

      (f) Line 565 - 'non-significant improvement in KNS898 treated groups'. However, ** was annotated in Figure 5A. 

      Thank you. This is an error that has been checked and corrected.

      (6) Discussion is very light. No reference to previous publications was made in the discussion. Discussion on potential mechanistic pathways of KYR/KMO in the pathogenesis of endometriosis will be helpful, as the expression and function of KMO and/or other metabolites in endometrial-related conditions. 

      The discussion is deliberately concise and focussed. The paper has 21 references to previous publications. A speculative discussion is generally not favoured by us.

      The findings in this study generally support the conclusion although some key data which strengthen the conclusion eg quantification of KMO in normal and diseased tissue is lacking.

      We differ from the reviewer here and do not think that those data would materially affect the likelihood of KMO inhibition being efficacious in human endometriosis in Phase 2/3 clinical trials.

      Before KMO inhibitors can be used for endometriosis, the function of KMO in the context of endometriosis should be explored eg KMO knockout mice should be studied. 

      We take the view that before KMO inhibitors can be used for endometriosis in patients there are multiple other regulatory and clinical development steps that are required that would be a priority. While using a KMO knockout mouse might be an interesting scientific experiment, it would not impact on the critical path in a material way.

      Reviewer #2 (Public Review): 

      Summary: 

      The authors aim to address the clinical challenge of treating endometriosis, a debilitating condition with limited and often ineffective treatment options. They propose that inhibiting KMO could be a novel non-hormonal therapeutic approach. Their study focuses on: 

      • Characterising KMO expression in human and mouse endometriosis tissues. 

      • Investigating the effects of KMO inhibitor KNS898 on inflammation, lesion volume, and pain in a mouse model of endometriosis. 

      • Demonstrating the efficacy of KMO blockade in improving histological and symptomatic features of endometriosis. 

      Strengths: 

      • Novelty and Relevance: The study addresses a significant clinical need for better endometriosis treatments and explores a novel therapeutic target. 

      • Comprehensive Approach: The authors use both human biobanked tissues and a mouse model to study KMO expression and the effects of its inhibition. 

      • Clear Biochemical Outcomes: The administration of KNS898 reliably induced KMO blockade, leading to measurable biochemical changes (increased kynurenine, increased kynurenic acid, reduced 3-hydroxykynurenine). 

      Weaknesses: 

      • Limited Mechanistic Insight: The study does not thoroughly investigate the mechanistic pathways through which KNS898 affects endometriosis. Specifically, the local vs. systemic effects of KMO inhibition are not well differentiated. 

      While we agree that this is not a comprehensive mechanistic analysis, given that the ultimate therapy would be almost certainly a once daily oral dosing i.e. systemic administration, we do not consider differentiating local vs systemic effects of KMO inhibition to be critical to therapeutic development in this scenario.

      • Statistical Analysis Issues: The choice of statistical tests (e.g., two-way ANOVA instead of repeated measures ANOVA for behavioral data) may not be the most appropriate, potentially impacting the validity of the results. 

      The selection of two-way ANOVA (time and group) is sufficient and correct for this experimental analysis and its use does not invalidate the results. We agree that repeated measures ANOVA could be a valid alternative.

      • Quantification and Comparisons: There is insufficient quantitative comparison of KMO expression levels between normal endometrium and endometriosis lesions,

      Please see response above to quantification question raised by Reviewer 1.

      and the systemic effects of KNS898 are not fully explored or quantified in various tissues. 

      Please see earlier responses. KNS898 has been thoroughly explored in multiple tissues, species and experimental models, but those data do not need rehearsed here.

      • Potential Side Effects: The systemic accumulation of kynurenine pathway metabolites raises concerns about potential side effects, which are not addressed in the study. 

      As discussed above (response to Reviewer 1), KMO knockout mice exhibit normal fertility and fecundity and do not show a survival deficit compared to littermate wildtype controls (e.g. Mole et al Nature Medicine 2016). To further develop KNS898 towards clinical use, preclinical GLP safety and toxicology studies and human Phase 1 clinical trials will naturally need to be completed, but this is standard for the development of any new drug.

      Achievement of Aims: 

      • The authors successfully demonstrated that KMO is expressed in endometriosis lesions and that KNS898 can induce KMO blockade, leading to biochemical changes and improvements in endometriosis symptoms in a mouse model. 

      Support of Conclusions: 

      • While the data supports the potential of KMO inhibition as a therapeutic strategy, the conclusions are somewhat overextended given the limitations in mechanistic insights and statistical analysis. The study provides promising initial evidence but requires further exploration to firmly establish the efficacy and safety of KNS898 for endometriosis treatment. 

      We do not agree that the conclusions are overextended based on the data presented, as expanded in the reply to the eLife editorial assessment at the beginning of this response. It is clear that additional preclinical, regulatory and clinical development work, and human clinical trials will be required to firmly establish the efficacy and safety of KN898 for endometriosis treatment.

      Impact on the Field: 

      • The study introduces a novel therapeutic target for endometriosis, potentially leading to non-hormonal treatment options. If validated, KMO inhibition could significantly impact the management of endometriosis. 

      Utility of Methods and Data: 

      • The methods used provide a foundation for further research, although they require refinement. The data, while promising, need more rigorous statistical analysis and deeper mechanistic exploration to be fully convincing and useful to the community. 

      We believe that the data are a) convincing, and b) useful to the community. To be advanced effectively towards patients, KNS898 needs to follow the critical development path outlined above.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      (1) Change 'hyperalgia' to hyperalgesia throughout the manuscript including the title. 

      Done

      (2) Line 69 - write '3-HK' in full. 

      Done

      (3) Line 85 - the findings of the study include 'define the preclinical efficacy of KNS898 in reducing inflammation'. The inflammatory profile was not studied. 

      Changed to “disease”

      (4) Line 259 - write 'EPHect' in full. 

      Done

      (5) Line 260 - write 'AFS' in full. Also, abbreviate 'AFS' in the caption of Table S1. 

      Done

      (6) 20 patients were listed in Table S1 but only 19 were accounted for in the methods section. 

      Apologies there was an error and has now been corrected in the methods section as one of the endometrial samples had not been included. Table S1 has also been changed to make it clear which samples were eutopic endometrium to differentiate them from the lesions.

      (7) The location from which the endometrial lesion tissues were obtained should be provided in Table S1. 

      Table S1 has been changed to make it clear that the subtypes of lesions examined were classified as Stage I/II – superficial peritoneal subtype and Stage III/IV – endometrioma. The methods section has also been updated to reflect these subtypes (lines 272-277).

      (8) Table S2 - G5 should be given compound 'A' not 'B'. 

      Thank you. Corrected.

      (9) Figure 2E was not referenced in the text and no figure legend was provided. 

      Now referenced and the figure legend updated.

      (10) Figure 3A - font needs to be enlarged. HCA baseline recording was annotated as performed twice in the protocol. When is the baseline taken and on what day was the Week 12 measurement taken (refer to Figures 5C and D)? 

      Font has been enlarged as requested. The second HCA baseline annotation in Fig 3A is a cut-and-paste error, now rectified and the time of second measurement annotated.

      (11) Line 133 - 'In KNS898-treated group G4 (endometriosis + treatment from Day 19), DEGLS formed in 4 of 15 mice (26.7%) and in G5 (Endo + treatment start on Day 26) in 6 of 15 mice (40%) (Fig. 3f).'. The aforementioned data is not reflected in Figure 3F. 

      Thank you. This has been rectified.

      (12) Line 137 - 'Mice with endometriosis receiving KNS898 from the time of inoculation (G4) had an average of 2.0 DEGLS per animal with DEGLS (total = 8 DEGLS in 4 mice in G4) and those receiving KNS898 1 week after inoculation (G5) had an average of 1.8 DEGLS per animal (total = 11 DEGLS in 6 mice in G5) (Figs. 3g and 3h).' 

      The aforementioned data is not reflected in Figure 3G. There is no Figure 3H shown. 

      Rectified as above.

      (13) Provide a discussion of why KA levels were significantly lower in Figure 3E compared to Figure 2C. 

      (14) Figure legend for Figure 3 - G1 and G2 were noted as n=8. However, Figure S1 and Table S2 noted both groups as n=10. 

      Thank you. This is a typographical error. The legend for Fig 3 should indeed read n=10 for G1 and G2 and has been corrected.

      (15) Line 181 - 'compared to non-operated and sham-operated control groups'. Only the sham group was shown in Figures 5C and D. 

      This text has been clarified to refer only to the data shown.

      (16) Figure 1 images need scalebars. Same for Figure 4. 

      Now added

      (17) Figure 3B - y-axis is fold change? 

      Relative concentration. Legend has been clarified.

      (18) Figures 5A and B - are the last Von Frey measurements taken on Day 40 (as per Figure 3A) or 42?

      Taken on Day 42. Fig 3A (the prospective protocol figure) has been clarified to reflect what actually happened (D42) as opposed to what was planned (D40) to pre-empt any further confusion.

      (19) Symbols in Figure S1 need to be explained in the Figure legend. 

      Done

      (20) Figures 2A and 2D should not be plotted in log scale to match the description of results in Line 106 and Line 118. 

      These particular results are plotted on a log scale to allow the reader to visualise that detectable levels of drug are measurable at very low doses and that there is no significant pharmacodynamic effect at that low dose. We choose to retain the present format.

      Reviewer #2 (Recommendations For The Authors): 

      Comments and queries 

      Introduction/aims section: 

      Line 82 - 87: Clarify in the proposal aims what is being accessed and analysed in humans and/or in animal models (mice). Specifically state clearly the correlations with KMO expression. Were the correlations between KMO expression with features of inflammation performed only in mice or also in humans? 

      Thank you for this comment. The aims have been clarified in the Introduction.

      Section - KMO is expressed in human eutopic endometrium and human endometriosis tissue lesions: 

      Was any quantitative or semi-quantitative method used to quantify the KMO expression in human tissues? Although the authors claimed that "KMO was strongly immunopositive in human peritoneal endometriosis lesions" by the representative figures it is not clear if KMO expression is similar, higher or lower between normal endometrium and peritoneal endometriosis lesions. 

      We have added extra information to the legend of Figure 1 to identify the PIN number of the superficial lesions illustrated. The key finding from the immunostaining with the antibody which had been previously validated as specific for KMO was that the most intense immunopositive response was in glandular epithelial cells and the samples illustrate this result.

      Section - Oral KNS898 inhibits KMO in mice: 

      The authors clearly confirmed the target engagement of KNS898 in inhibiting KMO activity and, therefore, affecting upstream and downstream metabolites systemically in (peripheral fluid/ plasma) mice. Whether KNS898 effect is broad and targets systemic immune cells and whole body cells and tissue was not explored. It was also not explored if KNS898 is able to specifically inhibit KMO locally at the endometrium tissue by targeting epithelial and/or infiltrated immune cells, for example. 

      That is correct.

      It would be interesting to measure (or if it was measured to report in this section and also in Figure 2) the levels of KYN, KA and 3HK in naïve animals that did not receive KNS898. It would help to understand the net effect of KNS898 on the levels of kynurenine pathway metabolites and, therefore, justify the dose chosen.

      These data are already presented in Fig 3B-E, control group.

      Perhaps then the chosen dose could be lower considering the possible substantial changes in kynurenine pathway metabolites levels, which are reported to exert an effect in many cells, tissues and systems and could, therefore, precipitate side effects. Even more considering that the values for these metabolites are expressed as ng/ml, which hinders the comparison of the metabolite levels with the one reported for naïve animals in the literature. I would also suggest expressing the metabolite levels as nM/L. 

      This is not a relevant method of determining dose-limiting toxicity or safety pharmacology/toxicology, either non-GLP or GLP. There are international guidelines on the proper conduct of those studies. This is also why it is important not to make claims about the safety or otherwise of an experimental compound in an in vivo setting that has not explicitly complied with those regulatory standards. With regard to the units recommendation, accepted units are ng/mL or nM, not usually nM/L.

      Section - KMO blockade reduces endometrial gland-like lesion burden in experimental endometriosis in mice: 

      Line 130: It would be better to replace "blockade of 3HK production" with "reduction of 3HK production" to better reflect the results. 

      Changed to “inhibition of 3HK production”.

      Line 140: In G5 (treatment starting at Day 26/ 1 week after inoculation), is the experimental model of endometriosis already established with all pathological and phenotypic features? 

      This was not specifically tested in this experiment.

      Lines 146 - 148: It would be better to specify that "Overall, there was no significant difference IN BODY WEIGHT between G3 and the KNS898 treatment groups G4 and G5 (endometriosis + treatment from Day 26)". Otherwise, this last sentence might be interpreted as the overall conclusion of this result sub-section. 

      Thank you, a good point and has been corrected.

      The authors demonstrated with an experimental approach that KMO blockade reduces a pathological measure of endometriosis i.e., endometrial gland-like lesion burden, in experimental endometriosis in mice when both administrated concomitant but also after the disease development. Although mechanistic insights about how reduced KMO activity can reduce the developed distended endometrial gland-like structures were not explored. Therefore, it remains to be investigated which (and how ) kynurenine pathway metabolites are directly linked to the beneficial effects of KMO blockade in the experimental model of endometriosis.

      We agree.

      Although the beneficial effects on the pathological measures are evident, Figure 3 shows an exorbitant accumulation of KYN and KA and also a substantial reduction in 3HK after the treatment with KNS898, which then raises concerns about tolerability and side effects. Would this effective KNS898 dose be viable and translational as a therapeutic approach? 

      Please refer to comments above at multiple junctures about safety pharmacology and the clinical development critical path.

      Section - KMO is expressed in experimental endometriosis in mice: 

      By histological examination, the authors confirm that the treatment with KNS898 specifically reduced the KMO expression intensity in the DEGLS from mice. Therefore, the effect exerted by KNS898 locally on the KMO expression at the DEGLS could be, at least, partially responsible for the beneficial effects observed in Figure 3 i.e., the reduction of pathological measures. Although remains to be explored whether the effect of KNS898 in other cells or tissues could also be accountable for the beneficial effects exerted by KNS898 on the animal model of endometriosis. 

      This is correct.

      From a logical experimental point of view, I would suggest switching the order of the result subsection "KMO blockade reduces endometrial gland-like lesion burden in experimental endometriosis in mice" and "KMO is expressed in experimental endometriosis in mice" as well as the respective Figures 3 and 4. 

      We do not agree. Fig 3 (and section) is the macroscopic enumeration of DEGLS, Fig 4 (and section) is the microscopic and immunohistochemical evaluation of the lesions introduced in Fig 3. The sequence as originally presented is the more logical.

      Sections - KMO inhibition reduces mechanical allodynia in experimental endometriosis - and - KMO inhibition reduces mechanical allodynia in experimental endometriosis: 

      The authors suggested that the KMO inhibition with KNS898 exerts beneficial effects on behavioural paradigms related to the experimental model of endometriosis. Based on the statistical analysis performed for the author, KMO inhibition with KNS898 reduces mechanical allodynia, as well as rescues, impaired cage exploration behaviour and mobility in mice with endometriosis. However, I believe that the most indicated statistical tests for Von Frey (allodynia behaviour) and Home cage (illness behaviour) analyses over time would be repeated measures ANOVA and paired t-test, respectively (and not two-way ANOVA as performed). Therefore for a more trustful analysis and interpretation of this data set, I would suggest the authors modify the statistical analysis and report the corresponding interpretation of these tests. 

      The selection of two-way ANOVA (time and group) is suitable for this experimental analysis and its use does not invalidate the results. We agree that repeated measures ANOVA could be a valid alternative.

      Overall, the authors present a solid and useful case for KMO inhibition as a potential therapeutic strategy for endometriosis. However, the study would benefit from more detailed mechanistic insights, appropriate statistical analyses, and an evaluation of potential side effects. With these improvements, the research could have a significant impact on the field and pave the way for new treatment modalities for endometriosis. 

      We thank the reviewer for the positive comments and we have responded to the criticisms above.

      Specific recommendations for improvement: 

      • Mechanistic Studies: Conduct detailed studies to understand the local vs. systemic effects of KMO inhibition and its specific impacts on different cell types and tissues. If not feasible here, the authors could include in the discussion section a detailed overview of the possible mechanisms implicated. 

      While we agree that this is not a comprehensive mechanistic analysis, given that the ultimate therapy would be almost certainly a once daily oral dosing i.e. systemic administration, we do not consider differentiating local vs systemic effects of KMO inhibition to be critical to therapeutic development in this scenario. We do not think speculation about possible mechanisms that is not supported by experimental data should be included. Furthermore, that notion (of statements not supported by data) has been given as a criticism by the reviewers, and therefore consistency on this point must be preferable.

      • Quantitative Analysis: Include more robust quantitative methods to compare KMO expression levels in different tissues and assess the correlation between KNO expression and pathological and behavioural changes. 

      As discussed above, the pathophysiological importance of KMO is in its enzymatic activity, not in its abundance as a protein, and 3HK production is far more dependent on kynurenine substrate availability rather than KMO protein abundance.

      • Appropriate Statistics: Use the most suitable statistical tests for behavioural and other repeated measures data to ensure accurate interpretation. 

      As discussed above

      • Side Effect Evaluation: Investigate potential side effects of systemic KMO inhibition, particularly focusing on the long-term implications of altered kynurenine pathway metabolites. If not feasible here, the authors could include in the discussion section a detailed overview of the possible side effects associated as well as inform if KNS898 can cross the BBB and its implications. 

      For a novel small molecule therapeutic compound in preclinical/clinical development, there are strictly regulated preclinical and clinical development standards that need to be met. It would not be responsible to publish or make claims about safety and potential adverse effect profiles without conducting the proper panel of tests within a suitable regulatory framework.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Orlovskis and his colleagues revealed an interesting phenomenon that SAP54-overexpressing leaf exposure to leafhopper males is required for the attraction of followed females. By transcriptomic analysis, they demonstrated that SAP54 effectively suppresses biotic stress response pathways in leaves exposed to the males. Furthermore, they clarified how SAP54, by targeting SVP, heightens leaf vulnerability to leafhopper males, thus facilitating female attraction and subsequent plant colonization by the insects.

      Strengths:

      The phenomenon of this study is interesting and exciting.

      Weaknesses:

      The underlying mechanisms of this phenomenon are not convincing.

      We thank the reviewer for the comment of finding our study interesting and exciting. However, we respectfully disagree with the reviewer assertion that the mechanisms we uncovered are unconvincing.

      We have uncovered a significant portion of the mechanisms by which SAP54 induces the leafhopper attraction phenotype.

      First, we discovered that the SAP54-mediated attraction of leafhoppers requires the presence of male leafhoppers on the leaves. Female leafhoppers were only attracted and laid more eggs on leaves when both SAP54 and male leafhoppers were present. In the absence of either males or SAP54, female leafhoppers did not exhibit this behaviour.

      Second, we found that biotic stress responses in leaves were significantly downregulated when exposed to SAP54 and male leafhoppers, with a much lesser effect observed in the presence of females.

      Third, we identified that the presence of the MADS-box transcription factor SHORT VEGETATIVE PHASE (SVP) in leaves is crucial for the leafhopper attraction phenotype, and that SAP54 facilitates the degradation of SVP.

      Our research corroborates previous findings that SAP54-mediated degradation of MADS-box transcription factors depends on the 26S proteasome shuttle factor RAD23, which we found previously to also be necessary for the leafhopper attraction phenotype (MacLean et al., 2014. PMID: 24714165). This finding has been replicated by other research groups. Previous research has also revealed that leafhoppers are specifically attracted to leaves, not to the leaf-like flowers (Orlovskis & Hogenhout, 2016. PMID: 27446117).

      Collectively, these results suggest that SAP54 acts as a "matchmaker", helping male leafhoppers locate mates more easily by degrading SVP-containing complexes in leaves. We have updated the model in Fig. 7 to better illustrate our findings.

      Reviewer #2 (Public Review):

      Summary:

      In this study, the authors show that leaf exposure to leafhopper males is required for female attraction in the SAP54-expressing plant. They clarify how SAP54, by degrading SVP, suppresses biotic stress response pathways in leaves exposed to the males, thus facilitating female attraction and plant colonization.

      Strengths:

      This study suggests the possibility that the attraction of insect vectors to leaves is the major function of SAP54, and the induction of the leaf-like flowers may be a side-effect of the degradation of MTFs and SVP. It is a very surprising discovery that only male insect vectors can effectively suppress the plant's biotic stress response pathway. Although there has been interest in the phyllody symptoms induced by SAP54, the purpose, and advantage of secreting SAP54 were unknown. The results of this study shed light on the significance of secreted proteins in the phytoplasma life cycle and should be highly evaluated.

      Weaknesses:

      One weakness of this study is that the mechanisms by which male and female leafhoppers differentially affect plant defense responses remain unclear, although I understand that this is a future study.

      The authors show that female feeding suppresses female colonization on SAP54-expressing plants. This is also an intriguing phenomenon but this study doesn't explain its molecular mechanism (Figure 7).

      Strengths:

      We appreciate the reviewer's assessment of the strengths of our study. We do indeed discuss the possibility that the induction of leaf-like flowers could be a side effect of the SAP54 effector function. However, it is not uncommon for effectors to have multiple functions, as has been frequently demonstrated for viral proteins (e.g., PMID: 34618877). Furthermore, it is increasingly evident that developmental and immune processes in organisms often overlap and are mediated by the same proteins. A notable example is the Toll-like receptors, which are widely recognized for their role in innate immunity but were initially discovered for their involvement in various developmental processes (e.g., PMID: 29695493).

      MADS-box transcription factors are known to regulate various developmental pathways in plants, and their diversification has been a key driver of evolutionary innovations in plant development. These factors are comparable to HOX genes, which are essential for the development of bilateral animals. While the role of MADS-box transcription factors in orchestrating flowering has been well-documented, recent evidence has emerged showing that they also play a role in regulating immune processes in plants. Our findings contribute to this emerging understanding, presenting novel insights into the multifunctional roles of these transcription factors.

      Specifically, the MADS-box transcription factor SVP has vital roles in both plant immunity and flowering. The SAP54-mediated targeting of this transcription factor may therefore confer multiple advantages to phytoplasmas that, as obligate colonisers, depend on plants and transmission by insects for survival. Firstly, the inhibition of flowering could delay plant senescence and death, which is particularly relevant in annual plants, the primary hosts of AY-WB phytoplasma studied here. Secondly, the downregulation of plant defence responses, particularly against males, facilitates the attraction of females, which are more likely to reproduce and thus increase the number of vectors for phytoplasma transmission. Given that phytoplasmas are obligate organisms with highly reduced genomes, it is plausible that they rely on ‘efficient proteins’ capable of targeting multiple key pathways in their hosts.

      Weaknesses:

      As explained above, we have uncovered a substantial portion of the mechanisms through which SAP54 induces the leafhopper attraction phenotypes that includes the identification of MADS-box transcription factor SVP as an important contributor. We have updated the model in Fig. 7 to better illustrate our findings.

      It is known that SVP forms quaternary structures with other (MADS-box) transcription factors, and it is seems likely that the degradations of specific SVP complexes present in fully developed leaves play a significant role in the downregulation of immune genes in the presence of SAP54 and males. These specific complexes also do not form in svp mutants, which could explain why females are attracted to these mutant plants in the presence of males. However, transcription profiles are different in male-exposed SAP54 vs male-exposed svp plants. This may be explained by SVP having multiple functions, including those that are not targeted by SAP54.

      Identifying which SVP complexes contribute to the male-mediated downregulation of immunity in the presence of SAP54 would require the development of a broad range of tools to investigate plant immunity without the confounding effects of developmental changes. This line of inquiry extends beyond the findings presented in this study.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Orlovskis and colleagues revealed an interesting phenomenon that SAP54-overexpressing leaf exposure to leafhopper males is required for the attraction of followed females. By transcriptomic analysis, they demonstrated that SAP54 effectively suppresses biotic stress response pathways in leaves exposed to the males. Furthermore, they clarified how SAP54, by targeting SVP, heightens leaf vulnerability to leafhopper males, thus facilitating female attraction and subsequent plant colonization by the insects. The discovery of this study is interesting and exciting. However, I have a few concerns that require authors to address.

      (1) The author demonstrated that SAP54-overexpressing leaf exposure to leafhopper males is more attractive to females. However, I was confused that the author did not analyse the choice preference of males. This is important, as the author demonstrated later that "SAP54 plants exposed to males display significant downregulation of biotic stress responses". It is very possible that the female is attracted by a mating signal, but not by reduced biotic stress responses. Also, it is important to address whether the female used in this study is virgin.

      We have analysed male preference in feeding choice tests (Figure 1, treatment 3) and described our findings in the text (p7; lines 214-216). For added clarity, we have revised the text on p7 (lines 214-216) to specify that males alone do not show any feeding preference for SAP54 plants.

      Additionally, we investigated whether females could be attracted to male-exposed SAP54 plants prior to landing and feeding using choice experiments, as depicted in Supplemental Figure 3 and discussed in the text (p9; lines 265-271). These findings suggest that long-distance cues alone do not fully account for the female attraction phenotype observed in Figure 1. We acknowledge that mating calls or volatiles may complement or enhance the transcriptional changes in male-exposed SAP54 leaves. This interpretation is further supported by comparing Figure 1, treatments 4 and 5, which shows that removing males from SAP54 leaves before female choice does not increase female colonisation. To enhance clarity and precision, we have added the term "solely" to the results (p9; line 265) and discussion (p25; line 719), and included a new sentence on p26 (lines 726-730): "However, given that the removal of males from SAP54 leaves prior to female choice does not enhance female colonisation (comparison of Figure 1, treatment 4 with treatment 5), we cannot exclude the possibility that male-produced volatiles or mating calls could enhance or supplement SAP54-dependent changes in biotic stress responses to males, thereby enhancing female attraction."

      We have also updated the methods section to clarify that a mixture of virgin and pre-mated females was used in all experiments (p28; lines 798-799), consistent with our previously published work (Orlovskis & Hogenhout, 2016. PMID: 27446117; MacLean et al., 2014. PMID: 24714165).

      (2) I was confused by the rationality of the section "Female leafhopper preference for male-exposed SAP54 plants unlikely involves long-distance cues". The volatile cues or mating calls from males can be only perceived from a distance?

      As mentioned in our response to comment 1, for clarity, we have added new text to both the results (p9; line 265) and discussion sections (p25; lines 719 and 726-730). In the results section highlighted by the reviewer (p8-9), we aimed to explicitly test whether cues produced by males (such as mating calls or pheromones) or SAP54 plants (such as plant volatiles) could account for female attraction from a distance, independent of, and prior to, physical contact with the plants or male insects.

      To address the possibility that volatiles or mating calls might be perceived simultaneously with downregulated biotic stress responses, we have included an additional sentence in the discussion, which addresses comments 1 and 2 from the reviewers. Furthermore, it is important to note that Figure 1, treatment 4, mirrors the results of Figure 1, treatment 1, suggesting that direct physical contact between males and females is not necessary for the observed female attraction. This conclusion, derived from our experiments, was already emphasised in the main text (p7; lines 218-222).

      (3) Line 271-273. How the author concluded the "immediate access". A time course experiment (detect the number of insects on each plant at different time point) for host-choice experiment is necessary.

      We have corrected and rephrased the sentence as follows:

      ‘’Therefore, these results indicate that female reproductive preference for the male-exposed SAP54 versus GFP plants is dependent on immediate access of the direct females access to the leaves of SAP54 plants and presence of males on these leaves.’’ (p9; lines 267-271).

      (4) I appreciate the transcriptome analysis. However, the figures are poorly organized. i.e. the heatmap in Figure 2 was poorly understood. The author should clearly address what is upregulated or downregulated. It is meaningless to exhibit the heatmap without explaining what gene represented. Also, it is hard for readers to distinguish the difference between the 4 maps in Figure 2, similar to the two figures in Figure 3.

      We thank the reviewer for the recommendation. To make Figure 2 and 3 easier to read and understand as stand-alone, we have changed and improved the corresponding figure legends, highlighting the colouring of up- and down-regulated DEGs as well as explaining the related supplementary file content in figure legends. For brevity and clarity, we have removed the mentioning of figure supplement 4, 5 and 6 as they have already been explained and referred to in the main text but do not directly relate to Figure 2 or 3 but rather data processing prior to analysis in Figure 2.

      We hope that the improvements in figure legends will make the Figures 2 and 3 easier and quicker to understand.

      (5) For transcriptomic analysis, three out of four replicates were well clustered, and the author excluded the outliers in subsequent analysis. Is this treatment commonly used in transcriptomic analysis? If yes, please provide corresponding references.

      Removing outliers from transcriptomic data is not unusual, as it enhances the classification of treatment groups and increases the efficiency of detecting biologically relevant differentially expressed genes (DEGs) (PMID: 36833313; PMID: 32600248). For large datasets, especially in clinical studies, automated procedures and algorithms have been developed for this purpose (PMID: 32600248; doi.org/10.1101/144519). Given our relatively small sample size of 4, we opted for a PCA-based manual outlier evaluation, followed by repeated PCA without the identified outliers. This approach demonstrated improved group discrimination (Figure Supplement 4), which can enhance downstream characterization of DEGs and pathways that explain female preference for male-exposed SAP54 plants. We have detailed this procedure on pages 9-10. It is worth noting that other automated outlier removal methods, which are also based on PCA, have been shown to be as effective as manual outlier removal (PMID: 32600248).

      (6) Figure 5A. How the experiment was done? The HA-SVP and other HA-tagged genes were stably or transiently expressed in GFP and GFP-SAP54 plants? How many replicates were conducted? The band intensity from different biological replicates should be provided. In this manuscript, no information is provided even in the method section.

      We thank the reviewer for noticing this and have updated the methods section providing more details on transient protoplast expression assays (p39; line 835). We have performed two independent degradation assays for all 5 MTF proteins and indicated in the legend of Figure 5. Western blot results from both experiments are provided as a new figure supplement 10 (p53). The degradation/destabilisation efficiency was calculated as the HA intensity divided by the RuBisCo large subunit (rbcL) intensity from the same sample, normalised to the intensity of the sample with the highest ratio from the same leaf (Rel HA/rbcL) using ImageJ. Relative pixel intensities are provided above each treatment in new figure supplement 10, as requested by the reviewer.

      (7) For the interaction assay, only Y2H was conducted. Generally, at least two methods are needed to confirm protein interaction. This is also applicable to degradation assays.

      There is substantial prior evidence that SAP54 interacts with MADS-box transcription factors and facilitates their degradation in plants, a process that also involves the 26S proteasome shuttle factor RAD23 (MacLean et al., 2014; PMID: 24714165). This interaction has been independently confirmed by other research groups using various methods, including split-YFP assays (e.g., PMID: 24597566, PMID: 26179462). Given the extensive data already available on this topic, it would be redundant to replicate all of these findings in our manuscript. Instead, we have focused on a few validated assays that effectively demonstrate the specific interactions between SAP54 and MADS-box transcription factors.

      (8) Lines 528-530. No direct evidence in this study was provided for how SAP54-mediated degradation of SVP. The author should tone down the claim.

      Our findings demonstrate that SVP is degraded in plant cells in the presence of SAP54. Additionally, through yeast two-hybrid assays, we show that SAP54 does not directly bind to SVP but does directly interact with several MADS-box transcription factors known to associate with SVP. We also provide evidence that they interact with SVP herein. Furthermore, previous studies have shown that SAP54 facilitates the degradation of MADS-box transcription factor complexes of Arabidopsis and several other eudicot species (PMID: 24597566, PMID: 26179462, PMID: 28505304, PMID: 35234248; PMID: 38105442). We have described observations herein and of others (see main text pages 4-5,  pages 19-20), and believe that we have presented them accurately without overstating our conclusions.

      (9) Overall, the phenomenon of this study is interesting, but the underlying mechanisms are not solidified. Additional work is still needed in future studies.

      We respectfully disagree—we have identified a significant portion of the mechanisms by which SAP54 induces these phenotypes. As with any research, new data often leads to further questions that may be addressed by follow-up studies. Please refer to our previous responses for additional context.

      Reviewer #2 (Recommendations For The Authors):

      Major comment

      It will be interesting to see how long male feeding affects changes in gene expression in plants. No feeding choice of females was observed on the SAP54 plants when males were removed from the clip-cages prior to the choice test with females alone (Figure 1, Treatment 5; Figure Supplement 1, Treatment 5). This indicates that SAP54 plants lose their ability to attract females as soon as males are removed. On the other hand, if the suppression of the plant's stress response pathway by male feeding continues for some time even after males are removed, I think that we cannot exclude the possiblity that volatiles emitted by males may partially promote female feeding and colonization.

      As described above, our findings suggest that long-distance cues alone do not fully account for the female attraction phenotype observed in Figure 1. We acknowledge that mating calls or volatiles may complement or enhance the transcriptional changes in male-exposed SAP54 leaves. This interpretation is further supported by comparing Figure 1, treatments 4 and 5, which shows that removing males from SAP54 leaves before female choice does not increase female colonisation. To enhance clarity and precision, we have added the term "solely" to the results (p9; line 265) and discussion (p25; line 719), and included a new sentence on p26 (lines 726-730): "However, given that the removal of males from SAP54 leaves prior to female choice does not enhance female colonisation (comparison of Figure 1, treatment 4 with treatment 5), we cannot exclude the possibility that male-produced volatiles or mating calls could enhance or supplement SAP54-dependent changes in biotic stress responses to males, thereby enhancing female attraction."

      Minor comments

      The legend of Figure 1 is missing an explanation for panel C.

      Thank you for noticing this. We have added the missing information.

      Although from a different perspective from this study, a relationship between phytoplasma infection and SVP has been previously reported (Yang et al., Plant Physiology, 2015). Shouldn't this paper be cited somewhere?

      We thank the reviewer for identifying this oversight. We have added the missing reference (PMID: 26103992) and clarified that, as seen in Figure 5E (p20; lines 555-558), our findings show a similar upregulation of SVP in male-exposed SAP54 plants as reported by Yang et al. This suggests that SAP54 and its homologs, such as PHYL1, may indeed operate through similar mechanisms by targeting MTFs that are crucial for their function. While Yang et al. described the role of SVP in the development of abnormal flower phenotypes in Catharanthus, our study reveals a completely novel role for SVP in plant-insect interactions. Although SAP54 destabilises the SVP protein, its transcript is upregulated in the presence of SAP54, indicating a potential disruption of MTF autoregulation and the MTF network as a whole.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Response to reviewer 1:

      We thank the reviewer for their positive comments and note that we made many attempts to genetically alter endothelial cells to expression mutants of SEC61A1 that are resistant to the effects of mycolactone. However, these cells were not capable of supporting expression of this transgene. Instead, we used an approach where we tested other translocation inhibitors, with a different chemical structure but same mechanism of action at the Sec61 translocon and found that these phenocopied the effects.


      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors have investigated the effect of the toxin mycolactone produced by mycobacterium ulcerans on the endothelium. Mycobacterium ulcerans is involved in Buruli ulcer classified as a neglected disease by WHO. This disease has dramatic consequences on the microcirculation causing important cutaneous lesions. The authors have previously demonstrated that endothelial cells are especially sensitive to mycolactone. The present study brings more insight into the mechanism involved in mycolactone-induced endothelial cells defect and thus in microcirculatory dysfunction. The authors showed that mycolactone directly affected the synthesis of proteoglycans at the level of the golgi with a major consequence on the quality of the glycocalyx and thus on the endothelial function and structure. Importantly, the authors show that blockade of the enzyme involve in this synthesis (galactosyltransferase II) phenocopied the effects of mycolactone. The effect of mycolactone on the endothelium was confirmed in vivo. Finally, the authors showed that exogenous laminin-511 reversed the effects of mycolactone, thus opening an important therapeutic perspective for the treatment of wound healing in patients suffering Buruli ulcer and presenting lesions.  

      Reviewer #2 (Public Review):  

      The authors dissected the effects of mycolacton on endothelial cell biology and vessel integrity. The study follows up on previous work by the same group, which highlighted alterations in vascular permeability and coagulation in patients with Buruli ulcer. It provides a mechanistic explanation for these clinical observations, and suggests that blockade of Sec61 in endothelial cells contributes to tissue necrosis and slow wound healing.  

      Overall, the generated data support their conclusions and I only have two major criticisms:  

      - Replicating the effects of mycolactone on endothelial parameters with Ipomoeassin F (or its derivative ZIF-80) does not demonstrate that these effects are due to Sec61 blockade. This would require genetic proof, using for example endothelial cells expressing Sec61A mutants that confer resistance to mycolactone blockade. The authors claimed in the Discussion that they could not express such mutants in primary endothelial cells, but did they try expressing mutants in HUVEC cell lines? Without such genetic evidence all statements claiming a causative link between the observed effects on endothelial parameters and Sec61 blockade should be removed or rephrased. The same applies to speculations on the role of Sec61 in epithelial migration defects in discussion. Data corresponding to Ipomoeassin F and ZIF-80 do not add important information, and may be removed or shown as supplemental information.  

      - While statistical analysis is done and P values are provided, no information is given on the statistical tests used, neither in methods nor results. This must be corrected, to evaluate the repeatability and reproducibility of their data.  

      We respectfully but fundamentally disagree with the comments regarding the Sec61 dependence of the effects that we observed. We showed that loss of glycocalyx and basement membrane components underpinned the phenotypic changes in endothelial cells (morphological changes, loss of adhesion, increased permeability, and reduced ability to repair scratch wounds). We demonstrated that we could phenocopy permeability increases and elongation phenotype by knocking down the type II membrane protein B3Galt6, and reverse the adhesion defect by exogenous provision of the secreted laminin-511 heterotrimer.

      Our conclusion that mycolactone mediates these effects via Sec61 inhibition is not based solely on the use of alternative inhibitors but is built on several pillars of evidence:  

      First, the proteomics data conforms entirely to predictions based on the topology of affected vs. non-effected proteins, and agrees with independently published proteomic datasets from T lymphocytes, dendritic cells and sensory neurons (ref.12), as well as biochemical studies performed using in vitro translocation assays (ref.11,34). Furthermore, the pattern of membrane protein down regulation observed in our experiments fits perfectly with established models of protein translocation mechanisms, particularly with respect to the lack of effect on specific topologies of multipass membrane proteins, tail anchored- and type III membrane proteins (ref.34-36).  

      Second, since Sec61 very highly conserved amongst mammals and is found in all nucleated cells, it is hard to conceptualise a framework in which mycolactone targets Sec61 in some cells and not others, as this reviewer suggests might be the case for epithelial cells [noting that the work being referred to (ref.29) predates our 2014 work showing that mycolactone is a Sec61 inhibitor (ref.7)]. Indeed, mycolactone has been shown to target Sec61 in multiple independent approaches including forward genetic screens involving random mutagenesis and CRISPR/Cas9 (ref.10, PMID: 35939511). Genetic evidence has previously been provided for the Sec61 dependence of mycolactone effects in epithelial cells (ref.10,17). We have unpublished genetic evidence that the rounding and detachment of epithelial cells due to mycolactone is reduced when resistance mutations are over expressed, and will consider including this in the next version of the manuscript.

      Third, given this weight of evidence, one would be hard-pressed to provide an alternative explanation for the specific down-regulation of glycosaminoglycan-synthesising enzymes and adhesion/basement membrane molecules while most cytosolic and non-Sec61 dependent membrane proteins are unchanged or upregulated. However, seeking to be as rigorous as possible we have here shown that a completely independent Sec61 inhibitor produces the same phenotype at the gross and molecular level. Ipomoeassin F (Ipom-F) is a glycolipid, not a polyketide lactone, yet they both compete for binding with cotransin in Sec61α (ref.6). There is significant overlap in the cellular responses to mycolactone and Ipom-F, including the induction of the integrated stress response (ref.17, PMID: 34079010), which we observed again in the current data, providing further evidence that this approach is useful when genetic approaches are technically unattainable.  

      Therefore, we are confident the effects seen on endothelial cells are Sec61-dependent. We are happy to provide more detail on our lengthy attempts at over-expressing mycolactone resistant SEC61A1 genes in HUVECs; primary endothelial cells derived from the umbilical vein. We are highly experienced in this area, and have previously stably expressed these proteins in epithelial cell lines, reproducing the resistance profile (ref.10,17). Notably though, these cells do not have normal ‘fitness’ in the absence of challenge. Since endothelial cells (and endothelial cell lines; PMID: 12560236) are extremely hard to transfect with plasmids, with efficiency routinely 5-10% (including in our hands), we developed a lentivirus system. We were eventually (after multiple attempts using different protocols) able to transduce primary HUVECs with constructs expressing GFP (at an efficiency of about 10-20%) and select/expand these under puromycin selection. Never-the-less, we never recovered any cells that expressed the flag-tagged SEC61A1 wild type or SEC61A1 carrying the resistance mutant D60G. We also attempted to select D60G-transduced cells with mycolactone epimers, an approach that can help the cells compete against non-transduced cells in culture flasks (ref.10).  We concluded that primary endothelial cells are unable to tolerate the expression of additional Sec61α, and this was incompatible with survival.  

      It’s also important to note that most endothelial cell specialists would agree that endothelial cell lines are not good models of endothelial behaviour. We tested the HMEC-1 cell line, but found it did not express prototypical endothelial marker vWF in the expected way. Therefore we focussed our efforts on primary endothelial cells. Should we be able to overcome the dual challenge of the necessity to work in primary cells, and the difficulty of over-expressing Sec61, we will update this paper at a later date with this data, and will also expand the above arguments.  

      We apologise for the embarrassing oversight of not including information about the statistical analyses we used, which of course we will correct in full in the revised version. However, we would like to provide this information to readers of the current version of the manuscript. All data were analysed using GraphPad Prism Version 9.4.1:

      Figure 1: one-way ANOVA with Dunnett’s (panel A) or Tukey’s (panel B) correction for multiple comparisons

      Figure 2 supplement: one-way ANOVA with Tukey’s correction for multiple comparisons (analysed panel)

      Figure 3: one-way ANOVA with Tukey’s (panel B) or Dunnett’s (panel E&F) correction for multiple comparisons

      Figure 4:  one-way ANOVA with Dunnett’s correction for multiple comparisons (all analysed panels)

      Figure 5 and supplement:  one-way ANOVA with Dunnett’s correction for multiple comparisons (all analysed panels)

      Figure 6:  one-way ANOVA with Dunnett’s correction for multiple comparisons (analysed panel)

      Figure 6 supplement: one-way ANOVA with Dunnett’s correction for multiple comparisons (all analysed panels)

      Figure 7: two-way ANOVA with Tukey’s correction for multiple comparisons (all analysed panels; panels B&C also included the Geisser Greenhouse correction for sphericity)

      Figure 7 supplement: Panels A&D used a repeated measures one-way ANOVA with Dunnett’s correction for multiple comparisons (panel D also included the Geisser Greenhouse correction for sphericity). Panels B,C&E used a two-way ANOVA with Tukey’s correction for multiple comparisons (panels B&C also included the Geisser Greenhouse correction for sphericity)

      Reviewer #3 (Public Review):

      Buruli ulcer is a severe skin infection in humans that is caused by a bacterium, Mycobacterium ulcerans. The main clinical sign is a massive tissue necrosis subsequent to an edema stage. The main virulence factor called mycolactone is a polyketide with a lactone core and a long alkyl chain that is released within vesicles by the bacterium. Mycolactone was already shown to account for several disease phenotypes characteristic of Buruli ulcer, for instance tissue necrosis, host immune response modulation and local analgesia. A large number of cellular pathways in various cell types was reported to be impacted by mycolactone. Among those, the Sec61 translocon involved in the transport of certain proteins to the endoplasmic reticulum was first identified by the authors of the study and is currently the most consensual target. Mycolactone disruption of Sec61 function was then shown to directly impact on cell apoptosis in macrophages, limited immune responses by T-cells and increased autophagy in dermal endothelial cells and fibroblasts. In their manuscript, TzungHarn Hsieh and their collaborators investigated the Sec61- dependent role of mycolactone on morphology, adhesion and migration of primary human dermal microvascular endothelial cells (HDMEC). They used a combination of sugar and proteomic studies on a live imagebased phenotypic assay on HDMEC to characterize the effect of mycolactone. First, they showed that upon incubation of monolayer of HDMEC with mycolactone at low dose (10 ng/mL) for 24h, the cells become elongated before rounding and eventually detached from the culture dish at 48h. Next, mycolactone was probed on a scratch assay and migration of the cells ceased upon a 24h incubation. The same effect as mycolactone on these two assays was observed for two other Sec61 inhibitors Ipomoeassin F and ZIF-80. Then, the authors resorted to the widely established mouse footpad model of M. ulcerans infection to evidence fibrinogen accumulation outside the blood vessel within the endothelium at 28 days postinfection, correlating with severe endothelial cell morphology changes.  

      To dissect the molecular pathways involved in these phenotypes, the authors performed an HDMEC membrane protein analysis and showed a decrease in the numbers of proteins involved in glycosylation and adhesion. As protein glycosylation mainly occurs in the Golgi apparatus, a deeper analysis revealed that enzymes involved in glycosaminoglycan (GAG) synthesis were lost in mycolactone treated HDMEC. A combination of immunofluorescence and flow cytometry approaches confirmed the impact of mycolactone on the ability of endothelial cells to synthesize GAG chains. The mycolactone effect on cell elongation was phenocopied by knock-down of galactosyltransferase II (B3Galt6) involved in GAG biosynthesis. A second extensive analysis of the endothelial basement membrane component and their ligands identified multiple laminins affected by mycolactone. Using similar functional studies as for GAG, the impact of mycolactone on cell rounding and migration could be reversed by the addition of laminin α5.  

      The major strengths of the study relies on a combination of cleverly designed phenotypic assays and in-depth cleverly designed membrane proteomic studies and follow-up analysis.  

      The results really support the conclusions. Congratulations!  

      The discussion takes into account the current state of the art, which has mostly been established by the authors of the present manuscript.  

      Recommendations for the authors:

      In preparing this revised version we have made a number of general improvements:

      • We added the missing information on statistical analysis that was mentioned in the public review of reviewer #2

      • We have changed all gene names to the HUGO nomenclature

      • We have changed our abbreviation of mycolactone from “MYC” to “Myco” in all figures to avoid any potential confusion with other protein factors

      • We have moved the fibrin(ogen) staining of the mouse footpads to its own figure (now Fig 2), partly due to the inclusion of additional data in Fig 1. This has changed the numbering of subsequent figures, but has also made the supplementary figures easier to track.

      Reviewer #1 (Recommendations For The Authors):  

      (1) Figure 1I. When mice are injected M. Ulcerens a measurement of local blood flow would be very informative in addition of the data shown. Cutaneous blood flow at the level of the feet is possible using laser doppler or Laser speckle imaging. With these measurements the authors would have a functional quantification of the effect of the glycosaminoglycans- Sec61α associated damages on the microcirculatory blood flow. The same measurement could also better validate the therapeutic effect of laminin. 

      We thank the reviewer for this great suggestion, and respectfully remind the reviewer that these experiments take place in CL3 containment. This often completely precludes certain procedures due to the availability of equipment inside the containment, and our ability to sterilise it. Where we are able to perform procedures, it greatly increases their complexity since any procedures on live animals must take place inside of a cabinet. Therefore, we can only use equipment that we have at our animal facility. It is not trivial to set up the regulatory permissions to perform these experiments at other facilities where more specialist equipment is located due to the containment restrictions. 

      Never-the-less we have attempted to perform ultrasound imaging of mouse feet using the VivoF and have set up a collaboration with other researchers at Surrey who have developed a novel imaging instrument to measure microvascular circulation call optical coherence tomography (OCT; https://pubmed.ncbi.nlm.nih.gov/34882760/), and we are working with them to develop a protocol that be used in small rodents.  

      However, while we have dedicated considerable time to trying to perform the suggested experiment, we have not been successful within a reasonable time frame. Consequently, if we are able to establish this technique in the M. ulcerans infection model, and/or OCT in small rodents, this will likely be beyond the scope of the current manuscript and will be a publication in its own right. We note that we have been able to perform almost all of the other requested experiments (see below), and have also been able to undertake transmission electron microscopy of M. ulcerans infected mouse footpads, which confirms the loss of the basement membrane at high resolution (Fig 7E).

      (2) Figure 1 -D. Endothelial cells were exposed to mycolactone, Ipomoeassin F or ZIF-80. The effect on the cells is clear and impressive. Nevertheless, endothelial cells in no flow conditions are considered "diseased" cells as in the areas of low flow or no flow are prone to atherosclerosis in vivo. Would the authors expect similar effects in cells submitted to flow? In this conditions cells would be already elongated in the direction of flow. 

      We agree that flow is usually experienced by endothelial cells in vivo, and have repeated a selection of our experiments under conditions that mimic flow and produce uniaxial shear stress. All showed a similar pattern of response to mycolactone, including the phenotypic changes (Fig 1I-K), loss of perlecan (Fig S6C) and laminin α4 (Fig S7B). It is true that the elongation phenotype is not as striking in a cell monolayer that already contains many elongated cells, but qualitatively the cells become disorganised and at 48 hours, their length/width ratio had increase. These results provide reassurance that our findings are physiologically relevant.

      (3) Discuss the possible consequences of your findings on vascular reactivity and especially on flow-mediated dilation and/or flow-mediated remodeling which as both are important in tissue repair and wound healing. 

      We agree with this reviewer that there are likely to be broad consequences to endothelial and vascular function as a result of our findings here. Vascular reactivity is not something we directly considered in this manuscript, and is probably better linked to our planned future work, laid out above, regarding vascular flow in the infected animals. While a key mediator of vascular tone, endothelin 1, is a Sec61-dependent secreted peptide mediator (and is likely to also be affected by mycolactone’s actions), this was not one of the >6500 proteins we identified in our proteomic study. On the other hand, it has been shown by others that mycolactone can induce NO production by in other types of cells.

      Reviewer #2 (Recommendations For The Authors):  

      - The authors use a mouse model of M. ulcerans infection of footpads to assess the in vivo relevance of their results. It would be useful to comment on any differences between human and mouse with regard to endothelial cell biology and vessel wall architecture. Since the authors have access to patients samples, parallel stainings in human lesions would have strengthened the study. 

      This is an important issue, and is one we have already addressed in our two previous articles https://pubmed.ncbi.nlm.nih.gov/35100311/ https://pubmed.ncbi.nlm.nih.gov/26181660/ . Indeed, this latter work already included a detailed analysis of fibrin staining in these Buruli ulcer patient biopsies and underpinned the hypothesis that we have now tested in the current manuscript. 

      It is worth noting that our data supports that the critical step is at an early (pre-clinical) stage, for which patient samples are not available. The proposed human challenge model (https://pubmed.ncbi.nlm.nih.gov/37384606/ ) may well provide a suitable platform such studies in the future.

      - The authors should provide in the Discussion some explanation for the differential effects of Laminin-11, -411 and -511 in Fig. 7 

      This is an interesting point, and probably related to the expression of laminin binding proteins by mycolactone-exposed endothelial cells. We pursued several candidates based on the proteomic data but could not identify a unique gene that explained this observation. Mostly likely they are explained by partial (be it low or high) loss of a combination of integrin binding proteins. Since this was rather inconclusive and we preferred not to present this data, and already said (p34-35) “We have not been able to ascribe this to the retention of a specific adhesion molecule, and instead postulate that rescue could be via residual expression of a wide variety of laminin α5 receptors

      - The word "catastrophic" in the title is very dramatic given the limited impact on the vital prognosis of patients 

      This word has been changed to “destructive”

      Reviewer #3 (Recommendations For The Authors):  

      Several points could be further discussed:  

      -In mouse model of M. ulcerans infection, in 5% of cases, animals heal spontaneously. How could the authors results contribute to bring hypothesis to this phenomenon? 

      Others have shown that the ability of some mice to control M. ulcerans infection is related to loss of mycolactone production by an unknown mechanism. It is not something we have ever observed in the infection experiments we have performed, although this may be due to the humane endpoints of our licence. However, this seems somewhat outside the main focus of the paper and we have not discussed this further.  

      -Mycolactone was also reported to induce analgesia in the mouse model. There is still controversy about the precise mechanisms involved in this mycolactone mediated painless effect. Could the data obtained here help to resolve the controversy? 

      We agree that analgaesia in M. ulcerans infection (both in mouse models and in clinical infections) is an extremely interesting area. However, we cannot mechanistically link loss of vascular integrity with the analgaesia based on the data generated in the current manuscript. Therefore we prefer not to speculate on this.

      The quantification of the microscopy images and videos should be provided as well as the script used to quantify them. 

      The reviewer is not specific about which microscopy images are being referred to in this comment, but the reference to videos leads us to assume this is related to the ZenCell OWL images/videos presented in Figure 1 and Figure S1. We had already provided quantification of these in the graphs provided, and the algorithms use for % coverage and % detached cells were provided in the instrument software used to gather the data, the ZenCell OWL (which are proprietary). Other counts were made manually, and the length:width ratio is simple arithmetic as already described in the methodology.

      The authors performed their work using chemically synthesized mycolactone obtained from the very generous Professor Kishi (Harvard University). Would the same phenotype and proteomics analysis be obtained with biologically purified mycolactone? 

      Our lab has extensive experience of both biologically purified and synthetic mycolactone, and the phenotypes observed have always been identical when using the chemically synthesised form. Therefore we did not repeat the proteomics experiments as we do not believe it would provide any greater insight into the disease mechanism. However, we have now replicated a range of findings using mycolactone biologically purified from M. ulcerans. In particular, we confirmed that the cytotoxic activity of synthetic and biological mycolactone are inseparable (Figure S1A), and the main phenotypic changes induced by mycolactone in endothelial cells (Phenotypes; Figures S1D-F, B3GALT6/perlecan/laminin α5 loss; S5A, S6B, S7A).

      Although already very comprehensive, a kinetic study of their proteomic analysis over time could strengthen the analysis (from 2H to 48H). 

      We agree that more data is always better, but since we validated our proteomic data set over multiple timepoints between 2 and 48 hrs, we do not believe this would alter the main conclusions of our work.   

      The siRNA transfection protocol could be better described. A Table listing all the reagents would help the reader.  

      A more detailed siRNA transfection protocol has been added to the methods section, and we now include a Key Resources Table at the start of the Materials & Methods section.

    1. Author response:

      Reviewer #1:

      Summary:

      The investigators undertook detailed characterization of a previously proposed membrane targeting sequence (MTS), a short N-terminal peptide, of the bactofilin BacA in Caulobacter crescentus. Using light microscopy, single molecule tracking, liposome binding assays, and molecular dynamics simulations, they provide data to suggest that this sequence indeed does function in membrane targeting and further conclude that membrane targeting is required for polymerization. While the membrane association data are reasonably convincing, there are no direct assays to assess polymerization and some assays used lack proper controls as detailed below. Since the MTS isn't required for bactofilin polymerization in other bacterial homologues, showing that membrane binding facilitates polymerization would be a significant advance for the field

      We thanks Reviewer #1 for the constructive criticism and will address the points detailed below in a revised version of the manuscript.

      Major concerns

      (1) This work claims that the N-termina MTS domain of BacA is required for polymerization, but they do not provide sufficient evidence that the ∆2-8 mutant or any of the other MTS variants actually do not polymerize (or form higher order structures). Bactofilins are known to form filaments, bundles of filaments, and lattice sheets in vitro and bundles of filaments have been observed in cells. Whether puncta or diffuse labeling represents different polymerized states or filaments vs. monomers has not been established. Microscopy shows mis-localization away from the stalk, but resolution is limited. Further experiments using higher resolution microscopy and TEM of purified protein would prove that the MTS is required for polymerization.

      We do not propose that the MTS is directly involved in the polymerization process, and preliminary transmission electron microscopy (TEM) data show that variants lacking the MTS or carrying amino acid exchanges in the MTS still form polymers when highly overproduced in E. coli and then purified from cell lysates by affinity chromatography. This finding is consistent with the results of previous studies and in line with the finding that bactofilin polymerization is exclusively mediated by the conserved bactofilin domain (Deng et al, Nat Microbiol, 2019). However, under native expression conditions, bactofilin levels are often relatively low, with only a few hundred molecules of BacA measured per cell in C. crescentus (Kühn et al, EMBO J, 2006). Our data indicate that, under this condition, the concentration of BacA on the 2D surface of the cytoplasmic membrane and, potentially, steric contraints induced by membrane curvature, may be required to facilitate its efficient assembly into functional polymeric complexes. We will provide TEM images of purified proteins in a revised version of our manuscript and explain this model in more detail in the Discussion.

      In the case of polymer-forming proteins, defined localized signals are typically interpreted as polymeric complexes. An even distribution of the fluorescence signals, by contrast, indicates that the proteins form monomers or, at most, small oligomers that diffuse rapidly within the cell and are thus no longer detected as a stationary focus by widefield microscopy. Our single-molecule data also indicate that proteins that are no longer able to interact with the membrane (as verified by cell fractionation studies and in vitro liposome binding assays) show a high diffusion rate, similar to that measured for the non-polymerizing and non-membrane-bound F130R variant. These results indicate that a loss of membrane binding strongly reduces the ability of BacA to form polymeric assemblies. To support this hypothesis, we will perform additional single-molecule tracking analyses of a freely diffusible and membrane-bound monomeric fluorescent proteins for comparison.

      (2) Liposome binding data would be strengthened with TEM images to show BacA binding to liposomes. From this experiment, gross polymerization structures of MTS variants could also be characterized.

      We do not have the possibility to perform cryo-electron microscopy studies of liposomes bound to BacA. However, the results of the cell fractionation and liposome sedimentation assays clearly support a critical role of the MTS in membrane binding.

      (3) The use of the BacA F130R mutant throughout the study to probe the effect of polymerization on membrane binding is concerning as there is no evidence showing that this variant cannot polymerize. Looking through the papers the authors referenced, there was no evidence of an identical mutation in BacA that was shown to be depolymerized or any discussion in this study of how the F130R mutation might to analogous to polymerization-deficient variants in other bactofilins mentioned in these references.

      Residue F130 in the C-terminal polymerization interface of BacA is highly conserved among bactofilin homologs, although its absolute position in the protein sequence may vary, depending on the length of the N-terminal unstructured tail. The papers cited in our manuscript show that an exchange of this conserved phenylalanine residue abolishes polymer formation. We will make this fact clearer in the revised version of the manuscript. Moreover, we will provide gel filtration and transmission electron microscopy data showing that the BacA-F130R variant no longer forms polymers.

      (4) Microscopy shows that a BacA variant lacking the native MTS regains the ability to form puncta, albeit mis-localized, in the cell when fused to a heterologous MTS from MreB. While this swap suggests a link between puncta formation and membrane binding the relationship between puncta and polymerization has not been established (see comment 1).

      We show that a BacA variant lacking the MTS regains the ability to form membrane-associated foci when fused to the MTS of MreB. In contrast, a similar variant that additionally carries the F130R exchange (preventing its polymerization) shows a diffuse cytoplasmic localization. In addition, we show that the F130R exchange leads to a loss of membrane binding and to a considerable increase in the mobility of the variants carrying the MreB MTS. Together, these results strongly support the hypothesis that membrane binding and polymerization act synergistically to establish localized bactofilin assemblies.

      (5) The authors provide no primary data for single molecule tracking. There is no tracking mapped onto microscopy images to show membrane localization or lack of localization in MTS deletion/ variants. A known soluble protein (e.g. unfused mVenus) and a known membrane bound protein would serve as valuable controls to interpret the data presented. It also is unclear why the authors chose to report molecular dynamics as mean squared displacement rather than mean squared displacement per unit time, and the number of localizations is not indicated. Extrapolating from the graph in figure 4 D for example, it looks like WT BacA-mVenus would have a mobility of 0.5 (0.02/0.04) micrometers squared per second which is approaching diffusive behavior. Further justification/details of their analysis method is needed. It's also not clear how one should interpret the finding that several of the double point mutants show higher displacement than deleting the entire MTS. These experiments as they stand don't account for any other cause of molecular behavior change and assume that a decrease in movement is synonymous with membrane binding.

      We agree that a more in-depth analysis of the single-molecule-tracking data would be helpful to support our conclusions.  We will map the reads on the cells, although the loss of membrane localization of BacA variants with a defective MTS is already obvious in the widefield fluorescence images. Moreover, we will perform additional measurements on soluble mVenus and a membrane-associated variant of mVenus for comparison and address the other issues raised here.

      The single-molecule tracking data alone are certainly not sufficient to draw firm conclusions on the relationship between membrane binding and protein mobility. However, our other in vivo and in vitro analyses indicate a very clear correlation of between the mobility of BacA and its ability to interact with the membrane and polymerize (processes that synergistically promote each other).

      (6) The experiments that map the interaction surface between the N-terminal unstructured region of PbpC and a specific part of the BacA bactofilin domain seem distinct from the main focus of the paper and the data somewhat preliminary. While the PbpC side has been probed by orthogonal approaches (mutation with localization in cells and affinity in vitro), the BacA region side has only been suggested by the deuterium exchange experiment and needs some kind of validation

      The results of the HDX analysis per se are not preliminary and clearly indicate a change in the accessibily of surface-exposed residues in the central bactofilin domain. However, we agree that additional experiments would be required to verify the binding site suggested by these data. However, this aspect is indeed not the main focus of the paper. We included the analysis of the interaction between PbpC and BacA, because we see effects of membrane binding/polymerization on the BacA-PbpC interaction and thus on the physiological function of BacA in C. crescentus.

      Reviewer #2:

      Summary:

      The authors of this study investigated the membrane-binding properties of bactofilin A from Caulobacter crescentus, a classic model organism for bacterial cell biology. BacA was the progenitor of a family of cytoskeletal proteins that have been identified as ubiquitous structural components in bacteria, performing a range of cell biological functions. Association with the cell membrane is a common property of the bactofilins studied and is thought to be important for functionality. However, almost all bactofilins lack a transmembrane domain. While membrane association has been attributed to the unstructured N-terminus, experimental evidence had yet to be provided. As a result, the mode of membrane association and the underlying molecular mechanics remained elusive.

      Liu at al. analyze the membrane binding properties of BacA in detail and scrutinize molecular interactions using in-vivo, in-vitro and in-silico techniques. They show that few N-terminal amino acids are important for membrane association or proper localization and suggest that membrane association promotes polymerization. Bioinformatic analyses revealed conserved lineage-specific N-terminal motifs indicating a conserved role in protein localization. Using HDX analysis they also identify a potential interaction site with PbpC, a morphogenic cell wall synthase implicated in Caulobacter stalk synthesis. Complementary, they pinpoint the bactofilin-interacting region within the PbpC C-terminus, known to interact with bactofilin. They further show that BacA localization is independent of PbpC.

      Strengths

      These data significantly advance the understanding of the membrane binding determinants of bactofilins and thus their function at the molecular level. The major strength of the comprehensive study is the combination of complementary in vivo, in vitro and bioinformatic/simulation approaches, the results of which are consistent.

      We thank Reviewer #2 for the positive evaluation of our paper and for the constructive criticism sent to us in the the non-public review. We will address the points raised in a revised version of the manuscript.

      Weaknesses:

      The results are limited to protein localization and interaction, as there is no data on phenotypic effects. Therefore, the cell biological significance remains somewhat underrepresented.

      We agree that it would be interesting to investigate the phenotypic effects caused by a defect of BacA in membrane binding. We will investigate PbpC localization and stalk length in phosphate-limited medium for mutants producing MTS-deficient BacA variants and include these data in the revised version of the manuscript. However, we would like to point out that the relevance of our findings goes beyond the C. cres­centus system, because the MTS and its role for bactofilin function is likely to be conserved in many other species.

    1. Author response:

      We thank the reviewers for their valuable comments. Our revision will address their recommendations and clarify any misconceptions. The main points we plan to amend are as follows:

      Direct comparison of pRF sizes

      We may have misunderstood this comment in the eLife assessment. We believe our original analyses and the figures already provided a “direct comparison between pRF sizes in the high-adapted and low-adapted conditions”. Specifically, we included a figure showing the histograms of pRF sizes in both conditions, and also reported statistical tests to compare conditions both within each participant and across the group. However, we now realize these comparisons might not be as clear to readers as we intended, which would explain Reviewer #2’s interpretations. To clarify, in our revised version we will instead show 2D plots comparing pRF sizes between conditions as suggested by Reviewer #2, and also show the pRF size plotted against eccentricity (rather than only the difference) as suggested by Reviewer #3.

      Data sharing 

      The behavioral data, fMRI data (where ethically permissible), stimulus-generation code, statistical analyses, and fMRI stimulus video are already publicly available at the link: https://osf.io/9kfgx/. However, we unfortunately failed to include the link in the preprint. We apologize for this oversight. It will be included in the revision. The repository now also contains a script for simulated adaptation effects on pRF size used in our response to Reviewer #2. Moreover, for transparency, we will include plots of all the pRF parameter maps for all participants, including pRF size, polar angle, eccentricity, normalized R2, and raw R2.

      Sample size

      The reviewers shared concerns about the sample size of our study. We disagree that this is a weakness of our study. It is important to note that large sample sizes are not necessary to obtain conclusive results, especially when the research aims to test whether an effect exists, rather than finding out how strong the effect is on average in a population (Schwarzkopf & Huang, 2024, currently out as preprint, but in press at Psychological Methods). Our results showed robust within-subject effects, consistent across multiple visual regions in most individual participants. A larger sample size would not necessarily improve the reliability of our findings. Treating each individual as an independent replication, our results suggest a high probability that they would replicate in each additional participant we could scan. 

      Reviewer #1:

      We thank the reviewer for their careful evaluation and positive comments. We will include a more detailed discussion about the issues pointed out, and an additional plot showing the polar angle for both adapter conditions. In line with previous work on the reliability of pRF estimates (van Dijk, de Haas, Moutsiana, & Schwarzkopf, 2016; Senden, Reithler, Gijsen, & Goebel, 2014), both polar angle and eccentricity maps are very stable between the two adaptation conditions.

      Reviewer #2:

      We thank the reviewer for their comments - we will improve how we report key findings which we hope will clarify matters raised by the reviewer.

      RF positions in a voxel

      The reviewer’s comments suggest that they may have misunderstood the diagram (Figure 1A) illustrating the theoretical basis of the adaptation effect, likely due to us inadvertently putting the small RFs in the middle of the illustration. We will change this figure to avoid such confusion.

      Theoretical explanation of adaptation effect

      The reviewer’s explanation for how adaptation should affect the size of pRF averaging across individual RFs is incorrect. When selecting RFs from a fixed range of semi-uniformly distributed positions (as in an fMRI voxel), the average position of RFs (corresponding to pRF position) is naturally near the center of this range. The average size (corresponding to pRF size) reflects the visual field coverage of these individual RFs. This aggregate visual field coverage thus also reflects the individual sizes. When large RFs have been adapted out, this means the visual field coverage at the boundaries is sparser, and the aggregate pRF is therefore smaller. The opposite happens when adapting out the contribution of small RFs. We demonstrate this with a simple simulation at this OSF link: https://osf.io/ebnky/.

      Figure S2 

      It is not actually possible to compare R2 between regions by looking at Figure S2 because it shows the pRF size change, not R2. Therefore, the arguments Reviewer #2 made based on their interpretation of the figure are not valid. Just as the reviewer expected, V1 is one of the brain regions with good pRF model fits. In our revision, we will include normalized and raw R2 maps to make this more obvious to the readers and provide additional explanations.

      V1 appeared essentially empty in that plot primarily due to the sigma threshold we selected, which was unintentionally more conservative than those applied in our analyses and other figures. We apologize for this mistake and will correct it in the revised version by including a plot with the appropriate sigma threshold.

      Thresholding details 

      Thresholding information was included in our original manuscript; however, we will include more information in the figure captions to make it more obvious.

      2D plots will replace histograms

      We thank the reviewer for this suggestion. The manuscript contained histograms showing the distribution of pRF size for both adaptation conditions for each participant and visual area (Figure S1). However, we agree that 2D plots better communicate the difference in pRF parameters between conditions, so we will replace this figure. We will consider 2D kernel density plots as suggested by the reviewer; however, such plots can obscure distributional anomalies so they may not be the optimal choice and we may opt to show transparent scatter plots of individual pRFs instead.

      (proportional) pRF size-change map 

      The reviewer requests pRF size difference maps. Figure S2 in fact demonstrates the proportional difference between the pRF sizes of the two adaptation conditions. Instead of simply taking the difference, we believe showing the proportional change map is more sensible because overall pRF size varies considerably between visual regions. We will explain this more clearly in our revision. 

      pRF eccentricity plot 

      “I suspect that the difference in PRF size across voxels correlates very strongly with the difference in eccentricity across voxels.”

      Our manuscript already contains a supplementary plot (Figure S4 B) comparing the eccentricity between adapter conditions, showing no notable shift in eccentricities except in V3A - but that is a small region and the results are generally more variable. We will comment more on this finding in the main text and explain this figure in more detail. 

      To the reviewer’s point, even if there were an appreciable shift in eccentricity between conditions (as they suggest may have happened for the example participant we showed), this does not mean that the pRF size effect is “due [...] to shifts in eccentricity.” Parameters in a complex multi-dimensional model like the pRF are not independent. There is no way of knowing whether a change in one parameter is causally linked with a change in another. We can only report the parameter estimates the model produces. 

      In fact, it is conceivable that adaptation causes both: changes in pRF size and eccentricity. If more central or peripheral RFs tend to have smaller or larger RFs, respectively, then adapting out one part of the distribution will shift the average accordingly. However, as we already established, we find no compelling evidence that pRF eccentricity changes dramatically due to adaptation, while pRF size does. We will illustrate this using the 2D plots in our revision.

      Reviewer #3:

      We thank the reviewer for their comments.

      pRF model

      Top-up adapters were not modelled in our analyses because they are shared events in all TRs, critically also including the “blank” periods, providing a constant source of signal. Therefore modelling them separately cannot meaningfully change the results. However, the reviewer makes a good suggestion that it would be useful to mention this in the manuscript, so we will add a discussion of this point.

      pRF size vs eccentricity

      We will add a plot showing pRF size in the two adaptation conditions (in addition to the pRF size difference) as a function of eccentricity.

      Correlation with behavioral effect

      In the original manuscript, we pointed out why the correlation between the magnitude of the behavioral effect and the pRF size change is not an appropriate test for our data. First, the reviewer is right that a larger sample size would be needed to reliably detect such a between-subject correlation. More importantly, as per our recruitment criteria for the fMRI experiment, we did not scan participants showing weak perceptual effects. This limits the variability in the perceptual effect and makes correlation inapplicable.

      References

      van Dijk, J. A., de Haas, B., Moutsiana, C., & Schwarzkopf, D. S. (2016). Intersession reliability of population receptive field estimates. NeuroImage, 143, 293–303. https://doi.org/10.1016/J.NEUROIMAGE.2016.09.013

      Schwarzkopf, D. S., & Huang, Z. (2024). A simple statistical framework for small sample studies. BioRxiv, 2023.09.19.558509. https://doi.org/10.1101/2023.09.19.558509

      Senden, M., Reithler, J., Gijsen, S., & Goebel, R. (2014). Evaluating population receptive field estimation frameworks in terms of robustness and reproducibility. PloS One, 9(12). https://doi.org/10.1371/JOURNAL.PONE.0114054

    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer #4

      We sincerely appreciate the time and effort you have taken to review our manuscript. We followed your recommendations to polish the text and make it easier to understand.

      Regarding terms and terminology, we changed “non-breeding” everywhere in the text to “over- wintering.”

      Regarding the title, as it was suggested by reviewer #1 as his recommendation, we tried to find a compromise and make the changes you suggested but left part of the suggestion from reviewer #1. So, now it’s “Foxtrot migration and dynamic over-wintering range of an arctic raptor”

      Thank you for highlighting the importance of snow cover and changes in snow cover as a possible factor of over-wintering movements. We appreciate your feedback and have explored several approaches to address this issue. Specifically, we examined how both snow cover extent and changes in snow cover influenced movement distance. However, we found no effect of either factor on movement distance.

      Our data show that birds leave their sites in October and move southwest, even though snow cover is minimal at that time. They also leave their sites in November and in subsequent months, regardless of the snow cover levels. Thus, we observed no pattern of birds leaving sites when snow cover reaches a specific threshold (e.g., 75-80%). Similarly, we found no evidence of birds staying in areas with a certain snow cover extent (e.g., 30%), nor did they leave sites when snow cover increased by a specific amount (e.g., by 10 or 20%).

      It is possible that more experienced birds anticipate that October plots will become inaccessible later in the winter and, therefore, leave early without waiting for significant snow accumulation. Alternatively, other factors, such as brief heavy snowfalls, may trigger movement, even if these do not lead to sustained increases in snow cover. Multiple factors, possibly acting asynchronously, could also play a role. This complexity adds an interesting dimension to the study of ecological patterns. However, in this study, we chose to focus on describing the migration pattern itself and its impact on aspects like over-winter range determination and population dynamics. While we have prioritized this approach, we remain committed to further analyzing the data to uncover additional details about this behavior.

      In response to your suggestion, we have expanded the Methods sections to clarify that we tested the effects of snow cover and changes in snow cover on distance (Lines 241-246); the Results section (Lines 348-349). We have also included the relevant plots in the Supplementary Materials. In the Discussion, we noted that this approach did not reveal any significant dependence and acknowledged that this issue requires further investigation (Lines 422-459).

      ---------

      The following is the authors’ response to the previous reviews.

      Reviewer #2:

      We sincerely appreciate the time and effort you have taken to review our manuscript. 

      First of all, we apologize for publishing the preprint without incorporating certain adjustments outlined in our earlier response, particularly in the Methods section. This was due to an oversight regarding the different versions of the manuscript. We have corrected this mistake. Our response to the feedback on this section (Methods), with line numbers of the changes made, is immediately below this response. In addition, we have included the units of measurement (mean and standard deviation) in both the results and figure captions for clarity.

      To focus on the main point regarding wintering strategies, we acknowledge that in the previous versions, this aspect was inadequately addressed and caused some confusion. In the revised edition, both the Introduction and the Discussion have been thoroughly reworked.

      As you suggested, we have removed the long introductory paragraph and all references to foxtrot migrations from the Introduction. As a result, the Introduction is now short and to the point. In the second paragraph, we explain why we propose the wintering strategies outlined (L74-81).

      In the Discussion, we've added a substantial new section at the beginning that discusses different wintering strategies. We have also updated Figure 4 accordingly. Previously, we erroneously suggested that Montagu's harrier and other African-Palaearctic migrants might adopt wintering strategies similar to those we describe. Upon further investigation, however, we found that almost all African-Palaearctic migrants exhibit an itinerant wintering strategy. Conversely, the strategy we describe is primarily observed in mid-latitude wintering species.

      We have shown that, unlike itinerancy, the birds in our study don't pause for 1-2 months at multiple non-breeding sites, but instead migrate significant distances, up to 1000 km, throughout the winter. Furthermore, unlike itinerancy, the sites they reach are consistently snow-free throughout the year. Following the logic of publications on Montagu's harriers (Schlaich et al. 2023), our birds do not wait for favorable conditions at the next site, as is typical of itinerancy. Moreover, this behavior is influenced by external factors such as snow cover dynamics and occurs primarily in mid-latitudes. Researchers studying a species similar to our subject, the Common buzzard, observed a similar pattern and termed it "prolonged autumn migration" rather than itinerancy. Although their transmitters stopped working in mid-winter, precluding a full observation of the annual cycle, they captured the essence of continued migration at a slower pace, distinct from itinerancy. We've detailed all of these findings in a new section.

      In addition, we acknowledge the mischaracterization of the implications of our research as ‘Conservation implications’ and have corrected this to ‘Mapping ranges and assessing population trends’, as you suggested.

      Finally, we've rewritten the Conclusion, removing overly grandiose statements and simply summarizing the main findings.

      We appreciate your time and effort in reviewing our manuscript. With your invaluable input, it has become clearer, more concise, and easier to understand.

      Dataset: unclear what is the frequency of GPS transmissions. Furthermore, information on relative tag mass for the tracked individuals should be reported.

      We have included this information in our manuscript (L 115-122). We also refer to the study in which this dataset was first used and described in detail (L 123).

      Data pre-processing: more details are needed here. What data have been removed if the bird died? The entire track of the individual? Only the data classified in the last section of the track? The section also reports on an 'iterative procedure' for annotating tracks, which is only vaguely described. A piecewise regression is mentioned, but no details are provided, not even on what is the dependent variable (I assume it should be latitude?).

      Regarding the deaths, we only removed the data when the bird was already dead. We estimated the date of death and excluded tracking data corresponding to the period after the bird's death. We have corrected the text to make this clear (L 130-131).

      Regarding the piecewise regression. We have added a detailed description on lines 136-148.

      Data analysis: several potential issues here:

      (1) Unclear why sex was not included in all mixed models. I think it should be included.

      Our dataset contains 35 females and eight males (L116). This ratio does not allow us to include sex in all models and adequately assess the influence of this factor. At the same time, because adult females disperse farther than males in some raptor species, we conducted a separate analysis of the dependence of migration distance on sex (Table S8) and found no evidence for this in our species. We have written about that in the Methods (L177-181) and after in the Results (L277-278).

      (2) Unclear what is the rationale of describing habitat use during migration; is it only to show that it is a largely unsuitable habitat for the species? But is a formal analysis required then? Wouldn't be enough to simply describe this?

      Habitat use and snow cover determine the two main phases (quick and slow) of the pattern we describe. We believe that habitat analysis is appropriate in this case, and a simple description would be uninformative and not support our conclusions.

      (3) Analysis of snow cover: such a 'what if' analysis is fine but it seems to be a rather indirect assessment of the effect of snow cover on movement patterns. Can a more direct test be envisaged relating e.g. daily movement patterns to concomitant snow cover? This should be rather straightforward. The effectiveness of this method rests on among-year differences in snow cover and timing of snowfall. A further possibility would be to demonstrate habitat selection within the entire non-breeding home range of an individual in relation snow cover. Such an analysis would imply associating presenceabsence of snow to every location within the non-breeding range and testing whether the proportion of locations with snow is lower than the proportion of snow of random locations within the entire nonbreeding home range (95% KDE) for every individual (e.g. by setting a 1/10 ratio presence to random locations).

      The proposed analysis will provide an opportunity to assess whether the Rough-legged buzzard selects areas with the lowest snow cover, but will not provide an opportunity to follow the dynamics and will therefore give a misleading overall picture. This is especially true in the spring months. In March-April, Rough-legged buzzards move northeast and are in an area that is not the most open to snow. At this time, areas to the southwest are more open to snow (this can be seen in Figure 3b). If we perform the proposed analysis, the control points for this period would be both to the north (where there is more snow) and to the south (where there is less snow) from the real locations, and the result would be that there is no difference in snow cover. 

      A step-selection analysis could be used, as we did in our previous work (Curk et al 2020 Sci Rep) with the same Rough-legged buzzards (but during migration, not winter). But this would only give us a qualitative idea, not a quantitative one - that Rough-legged Buzzards move from snow (in the fall) and follow snowmelt progression (in the spring). 

      At the same time, our analysis gives a complete picture of snow cover dynamics in different parts of the non-breeding range. This allows us to see that if Rough-legged buzzards remained at their fall migration endpoint without moving southwest, they would encounter 14.4% more snow cover (99.5% vs. 85.1%). Although this difference may seem small (14.4%), it holds significance for rodent-hunting birds, distinguishing between complete and patchy snow cover.

      Simultaneously, if Rough-legged buzzards immediately flew to the southwest and stayed there throughout winter, they would experience 25.7% less snow cover (57.3% vs. 31.6%). Despite a greater difference than in the first case, it doesn't compel them to adopt this strategy, as it represents the difference between various degrees of landscape openness from snow cover.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      In an era of increasing antibiotic resistance, there is a pressing need for the development of novel sustainable therapies to tackle problematic pathogens. In this study, the authors hypothesize that pyoverdines - metal-chelating compounds produced by fluorescent pseudomonads - can act as antibacterials by locking away iron, thereby arresting pathogen growth. Using biochemical, growth, and virulence assays on 12 opportunistic pathogens strains, the authors demonstrate that pyoverdines induce iron starvation, but this effect was highly context-dependent. This same effect has been demonstrated for plant pathogens, but not for human opportunistic pathogens exposed to natural siderophores. Only those pathogens lacking (1) a matching receptor to take up pyoverdine-bound iron and/or (2) the ability to produce strong iron chelators themselves experienced strong growth arrest. This would suggest that pyoverdines might not be effective against all pathogens, thereby potentially limiting the utility of pyoverdines as global antibacterials.

      Strengths:

      The work addresses an important and timely question - can pyoverdines be used as an alternative strategy to deal with opportunistic pathogens? In general, the work is well conducted with rigorous biochemical, growth, and virulence assays. The work is clearly written and the findings are supported by high-quality figures.

      Weaknesses:

      I do not think there are any 'weaknesses' as such. However, it is well known that siderophore production is highly plastic, typically being upregulated in response to metal limitation (as well as toxic metal stress). Did the authors quantify whether pyoverdine supplementation altered siderophore production in the focal pathogens (either through phenotypic assays / transcriptomics)? Could such a phenotypic plastic response result in an increased capacity to scavenge iron from the environment? Importantly, increased expression of siderophores has been shown to enhance pathogen virulence (e.g. Lear et al 2023: increased pyoverdine production is linked with increased virulence in Pseudomonas aeruginosa). I really appreciate the amount of work the authors have put into this study, but I would suggest expanding the discussion a bit to include a few sentences on

      (1) unintentional consequences of pyoverdine treatment (e.g. changes in gene expression and non-siderophore-related mutations (e.g. biofilm formation)) on disease dynamics/pathogen virulence:

      (2) the efficacy of siderophore treatment under more natural conditions, i.e. when the pathogens have to compete with other species in the resident community (i.e. any other effects than resistance evolution through HGT of pyoverdine receptors as mentioned).

      Response 1: We would like to thank reviewer # 1 for the positive and constructive assessment. We agree that discussing the above points is important. We have added new paragraphs in the discussion, in which we elaborate on unintentional consequences (lines 532-551) and HGT of receptors (lines 599-607).

      Reviewer #1 (Recommendations For The Authors):

      I only have minor comments/suggestions for the authors, all listed below:

      • The authors' findings show that the antibacterial activity of pyoverdine is highly context-dependent. As such, I would suggest somewhat toning down the quite general statement in the Abstract: 'Thus, pyoverdines from environmental strain could become new sustainable antibacterials against human pathogens'

      Response 2: We agree that the pyoverdine treatment is especially potent against Acinetobacter baumannii and Staphylococcus aureus, but less so against Klebsiella pneumoniae. The treatment success is pathogen-dependent, and we have thus modified the phrase in the abstract (lines 32-34). The new sentence now reads: 'Thus, pyoverdines from environmental strains have the potential to become a new class of sustainable antibacterials against specific human pathogens.' Also in other parts of the manuscript (Results and Discussion), we emphasize that the pyoverdine treatment will likely be effective against specific pathogens (e.g., those with lower-iron affinity siderophores).

      • Bacteria often produce more than one type of siderophore. Do you know whether the 320 natural isolates used in this study produce any non-pyoverdine siderophores? Previous work has shown that pyochelin production is suppressed in PAO1 under a wider range of lab conditions. Do you know whether this is the case for the natural isolates used here (and rule out a potential role of non-pyoverdines in iron starvation as observed in Figure 1).

      Response 3: This is a valid question. Our own bioinformatic and phenotypic assays reveal that a certain fraction of strains (~ 40%) can produce secondary siderophores (unpublished data). We now mention the existence of secondary siderophores on lines 97-100 and 123. However, we do not think that their contribution to the supernatant assay results is large since the expression of pyoverdine typically suppresses the expression of the secondary siderophores (Cornelis 2010 Appl Microbiol Biotechnol; Dumas et al. 2013 Proc B) under stringent iron limitation. Furthermore, secondary siderophores have lower iron-binding affinities than pyoverdine. Finally, both the semi-pure and ultra-pure pyoverdine extracts showed strong pathogen inhibition (Fig. 3), and we are thus confident that pyoverdine is responsible for the observed growth inhibition.

      • Upon first mentioning the 'mock control' in the Results section in the main text, please state what the actual treatment is.

      Response 4: Thank you for noticing this. We now explain in more detail the actual treatment conditions used on lines 103-107 and in the caption of Figure 1. We have further removed the term 'mock' as it is confusing in this context and simple refer to the 'control treatment' in the text.

      • Please mention what the different colours mean in the legend of growth recovery in Figure 1B

      Response 5: We have clarified the colour scheme in the legend of Figure 1B.

      • Please clarify whether you used 12 or 14 strains of human pathogens (the latter number is mentioned in the results section)?

      Response 6: In the methods (lines 647-650), we now clearly specify that we used 12 strains of human pathogens in the initial supernatant screen (Figure 1). For all subsequent analyses (dose-response curves and infection experiments), we included the ESKAPE pathogens K. pneumoniae and A. baumannii.

      • Please explain whether ferribactin can be used in any other way than iron chelation (e.g. can this precursor be recycled to form pyoverdine)?

      Response 7: We apologize for not having properly explained the role of ferribactin. Under natural conditions, ferribactin is not secreted. It is kept in the periplasmic space, where it matures to pyoverdine. We most likely recovered ferribactin in the supernatant because of the vigorous shaking and centrifugation involved in the pyoverdine purification protocol. We now explain this on lines 216-218. Thus, there is no ferribactin secretion and recycling.

      • Have the authors looked at whether there is a relationship between the degree of growth arrest and phylogenetic distance? Would you expect there to be one?

      Response 8: This is an interesting question. We have now constructed a phylogenetic tree to explore this relationship (new Figure S2). We found that strains with inhibitory supernatants were scattered across the phylogenetic tree (described on lines 129-135). However, we also found two branches on the tree on which strains with inhibitory supernatant effects were overrepresented. This matches well our previous analysis that closely related species can produce similar pyoverdine types, but that the same pyoverdine can also be produced by completely different species (Gu et al. 2024 eLife).

      • In the Methods section, please mention you used pyoverdine-only controls in the infection assay.

      Response 9: We now mention the use of pyoverdine-only controls in the Methods section (lines 788-790). Overall, we have improved the infection procedure section (starting on line 770). Thank you for pointing this out.

      • Did you confirm whether the addition of pyoverdine resulted in lower bacterial loads in Galleria? In other words, were the observed changes in mortality solely related to changes in bacterial density?

      Response 10: Thank you for this valid question. No, we did not test whether pyoverdine treatment reduces the bacterial load. However, we did this in the past in two studies with a similar set of pathogens (Weigert et al. 2017 Evol Appl; Schmitz et al. 2023 Proc B) and found strong correlations between G. mellonella survival and bacterial loads. We agree that it is important to understand how pyoverdine affects pathogen load in the host and we will address this point in future studies.

      • In your infection assay, were Galleria (n=10) for each treatment housed in the same environment/container? If so, can you treat these as independent observations or should you use some sort of grouping variable in your survival analysis?

      Response 11: Thank you for pointing this out. We forgot to clarify this in the Methods section and now do so on lines 777-779. All larvae were individually housed in separate wells of a 24-well plate. There was no physical contact between larvae and no opportunity for pathogen exchange. As such, we treat each individual larvae as an independent observation.

      Reviewer #2 (Public Review):

      In this work, Vollenweider et al. examine the effectiveness of using natural products, specifically molecules that chelate iron, to treat infectious agents. Through the purification of 320 environmental isolates, 25 potential candidates were identified from natural products based on inhibition assays and were further screened. The structural information and chemical composition were determined.

      The paper is well-structured and thorough; targeting virulence factors in this manner is a great idea. My enthusiasm is dampened by the mediocre effects of the compounds. The lack of a dose-response curve in the survivability assays suggests a limited scope for these molecules. While it is encouraging that the best survivability occurred at the lowest toxicity level, it opens questions as to how effective such molecules can be. Either the reduction in mortality was offset by using higher concentrations, which was not observed in the compound-alone test, or there is no dose-response curve. The latter would suggest to me that the variation in survivability is not due to the addition of siderophores.

      Response 12: Thank you very much for the overall positive assessment. We understand your concern regarding the effectiveness of pyoverdines in the host. However, we wish to emphasize that hazard risks were reduced by more than 50% when treating A. baumannii and K. pneumoniae. Moreover, it was not so surprising to us that the treatment worked best at intermediate pyoverdine concentrations. We anticipated that pyoverdines could have negative effects for the host at relatively high concentrations because siderophore can interfere with host iron stocks (see discussion starting on line 552). Finally, dose-response curves do not necessarily need to be linear or sigmoid, they can also be hump-shaped. To better illustrate this aspect, we have now plotted the time to death for all the deceased larvae against the pyoverdine concentration gradient and fitted polynomial regression (new Fig. S6). For the above two pathogens, we found humped-shaped dose-response curves in four out of the six comparisons. We present this new analysis on lines 351-362.

      I would also like to see how these molecules compare to other iron-chelating molecules. Desferoxamine is a bacteria-derived siderophore that is FDA-approved. However, it is not used to treat infections. Would the author consider comparing their candidate molecules to well-studied molecules? This also raises questions about the novelty of this work; I think the authors could rephrase the discussion to better reflect that bioprospecting for iron-chelating molecules has previously occurred and been successful.

      Response 13: Thank you for the comment. The initial version of our manuscript already featured a brief discussion on other iron-chelation therapies. We have now changed the narrative to better reflect the differences of our approach to already existing iron-chelating molecules such as deferoxamine (lines 608-632).

      Finally, I am concerned about the few mutations reported in the resistance study. Looking at the SI, it appears that very few mutations were seen. It is unclear what filtering the authors used to arrive at such a low number of mutations. Even filtering against mutations that were selected by adaptation to the media, it seems low that only a handful of clones had distinct mutations.

      Response 14: We apologise for the unclear explanations and data analysis. When reanalysing the data we indeed detected a mistake: we originally treated all genomes as clonal origin, despite the fact that we sequenced entire populations for the control treatments. We have now completely re-done the mutational analysis using the breseq pipeline as newly described in the Methods (lines 861-866) and presented in the Results (lines 421-451). We have improved the filtering process and indeed found many more mutations, including the loss of mobile genetic elements. However, it is important to note that it is not uncommon to only find a few beneficial mutations. Especially, in cases where there are selective sweeps often only a few mutations fix.

      This paper has a lot of strengths. The workflow is logical and well-executed; the only significant weakness is the effect of the molecules and the lack of an explanation for a dose-response curve in the survivability assay, especially when compared to the data reported in Figure 3. As the authors describe in lines 214-217.

      Response 15: Thank you for this overall positive assessment. As discussed in our response 12, the effect of the molecule in the host was not weak as it decreased hazard risks by more than 50% for A. baumannii and K. pneumoniae. Moreover, we explain that the benefit of the pyoverdine treatment (in terms of treating the infection) can be offset by adverse effects on the host, especially at high pyoverdine concentrations.

      Reviewer #2 (Recommendations For The Authors):

      • Compare these compounds to well-studied iron chelating molecules.

      Response 16: We have addressed this comment in our response 13.

      • Considering adding time of death to the analysis for the survivability. While the reduction in mortality was not large perhaps the time to death increased.

      Response 17: This is an excellent suggestion. We have now analysed the time-to-death as a function of pyoverdine concentration (new Figure S6). Time-to-death was highly variable and sample size was fairly low for A. baumannii and K. pneumoniae as many larvae survived. Nonetheless, we found hump-shaped dose-response curves in four out of six comparisons and a linear dose-response curve in one case. We now report the new analyses on lines 351-362. Finally, we like to stress once more that reduction in mortality was considerable (hazard risk reduction by more than 50%).

      • I would also like to see the actual growth curves of the pathogens in the SI to accompany Fig 6.

      Response 18: This is a good point. We have now included the actual growth curves of the pathogens in the Supporting Information to accompany Figure 6 (new Figures S9 and S10).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Joint Public Review:

      Summary:

      This study presents a strategy to efficiently isolate PcrV-specific BCRs from human donors with cystic fibrosis who have/had Pseudomonas aeruginosa (PA) infection. Isolation of mAbs that provide protection against PA may be a key to developing a new strategy to treat PA infection as the PA has intrinsic and acquired resistance to most antibiotic drug classes. Hale et al. developed fluorescently labeled antigen-hook and isolated mAbs with anti-PA activity. Overall, the authors' conclusion is supported by solid data analysis presented in the paper. Four of five recombinantly expressed PcrV-specific mAbs exhibited anti-PA activity in a murine pneumonia challenge model as potent as the V2L2MD mAb (equivalent to gremubamab). However, therapeutic potency for these isolated mAbs is uncertain as the gremubamab has failed in Phase 2 trials. Clarification of this point would greatly benefit this paper.

      Strengths:

      (1) High efficiency of isolating antigen-specific BCRs using an antigenic hook.

      (2) The authors' conclusion is supported by data.

      Weaknesses:

      Although the authors state that the goal of this study was to generate novel protective mAbs for therapeutic use (P12; Para. 2), it is unclear whether PcrV-specific mAbs isolated in this study have therapeutic potential better than the gremubamab, which has failed in Phase 2 trials. Four of five PcrV-specific mAbs isolated in this study reduced bacterial burdens in mice as potent as, but not superior to, gremubamab-equivalent mAb. Clarification of this concern by revising the text or providing experimental results that show better potential than gremubamab would greatly benefit this paper.

      The authors thank the reviewer for their thoughtful positive assessment. As noted by the reviewer, the studies described here, which were performed in mice, show that our MBC-derived mAbs are as effective as V2L2MD, a mAb that is one component of the gremubamab bi-specific. However, key theoretical strengths of MBC-derived mAbs (reduced immunogenicity, full participation in effector functions) are not easily tested in mice. We have clarified and expanded our discussion of these points in our revised manuscript, particularly in the Discussion paragraph 4.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Page 8. Using improved methods that enhanced the efficiency and depth of sequencing (manuscript in preparation...). This method is not provided in detail. The authors should provide a detailed method (as a preprint on a public database or described in the method section).

      We thank the reviewers for their interest in the details of the specific methods for single cell B cell receptor sequencing. We regret that the manuscript is still in preparation. In fact, our current methods section provides much more detail about sequencing methods than is customarily supplied by authors mAb development papers. However, we understand the frustration and will remove our citation of our manuscript in preparation in our revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      With socioeconomic development, more and more people are obese which is an important reason for sub-fertility and infertility. Maternal obesity reduces oocyte quality which may be a reason for the high risk of metabolic diseases for offspring in adulthood. Yet the underlying mechanisms are not well elucidated. Here the authors examined the effects of maternal obesity on oocyte methylation. Hyper-methylation in oocytes was reported by the authors, and the altered methylation in oocytes may be partially transmitted to F2. The authors further explored the association between the metabolome of serum and the altered methylation in oocytes. The authors identified decreased melatonin. Melatonin is involved in regulating the hyper-methylation of high-fat diet (HFD) oocytes, via increasing the expression of DNMTs which is mediated by the cAMP/PKA/CREB pathway.

      Strengths:

      This study is interesting and should have significant implications for the understanding of the transgenerational inheritance of GDM in humans.

      Thank you for your positive comments to our manuscript.

      Weaknesses:

      The link between altered DNA methylation and offspring metabolic disorders is not well elucidated; how the altered DNA methylation in oocytes escapes reprogramming in transgenerational inheritance is also unclear.

      Thanks. These are very good questions. There is a long way to completely elucidate the relationship between methylation and offspring metabolic disorders, and the underlying mechanisms of obtained methylation escaping the reprogramming during development. We would like to explore these in the future.

      Reviewer #2 (Public Review):

      This manuscript offers significant insights into the impact of maternal obesity on oocyte methylation and its transgenerational effects. The study employs comprehensive methodologies, including transgenerational breeding experiments, whole genome bisulfite sequencing, and metabolomics analysis, to explore how high-fat diet (HFD)-induced obesity alters genomic methylation in oocytes and how these changes are inherited by subsequent generations. The findings suggest that maternal obesity induces hyper-methylation in oocytes, which is partly transmitted to F1 and F2 oocytes and livers, potentially contributing to metabolic disorders in offspring. Notably, the study identifies melatonin as a key regulator of this hyper-methylation process, mediated through the cAMP/PKA/CREB pathway.

      Strengths:

      The study employs comprehensive methodologies, including transgenerational breeding experiments, whole genome bisulfite sequencing, and metabolomics analysis, and provides convincing data.

      Thank you for your positive comments to our manuscript.

      Weaknesses:

      The description in the results section is somewhat verbose. This section (lines 126~227) utilized transgenerational breeding experiments and methylation analysis to demonstrate that maternal obesity-induced alterations in oocyte methylation (including hyper-DMRs and hypo-DMRs) can be partially transmitted to F1 and F2 oocytes and livers. The authors should consider condensing and revising this section for clarity and brevity.

      Thanks for your suggestions. We have re-written this parts in the revised manuscript.

      There is a contradiction with Reference 3, but the discrepancy is not discussed. In this study, the authors observed an increase in global methylation in oocytes from HFD mice, whereas Reference 3 indicates Stella insufficiency in oocytes from HFD mice. This Stella insufficiency should lead to decreased methylation (Reference 33). There should be a discussion of how this discrepancy can be reconciled with the authors' findings.

      Thanks for your suggestions. As reported by Reference 33, STELLA prevents hypermethylation in oocytes by sequestering UHRF1 from the nuclei which recruits DNMT1 into nuclei. Han et al. reported that obesity induced by high-fat diet reduces STELLA level in oocytes. These indicate that STELLA insufficiency might induce hypermethylation in oocytes, although significant hypermethylation in obese oocytes is not reported by Han et al. using immunofluorescence. This contradiction may be caused by the limited sample sizes (n=14) used by Han et al. We have added a brief discussion in the revised manuscript.

      Reviewer #3 (Public Review):

      Summary:

      Maternal obesity is a health problem for both pregnant women and their offspring. Previous works including work from this group have shown significant DNA methylation changes for offspring of obese pregnancies in mice. In this manuscript, Chao et al digested the potential mechanisms behind the DNA methylation changes. The major observations of the work include transgenerational DNA methylation changes in offspring of maternal obesity, and metabolites such as methionine and melatonin correlated with the above epigenetic changes. Exogenous melatonin treatment could reverse the effects of obesity. The authors further hypothesized that the linkage may be mediated by the cAMP/PKA/CREB pathway to regulate the expression of DNMTs.

      Strengths:

      The transgenerational change of DNA methylation following HFD is of great interest for future research to follow. The metabolic treatment that could change the DNA methylation in oocytes is also interesting and has potential relevance to future clinical practice.

      Thank you for your positive comments to our manuscript.

      Weaknesses:

      The HFD oocytes have more 5mC signal based on staining and sequencing (Fig 1A-1F). However, the authors also identified almost equal numbers of hyper- and hypo-DMRs, which raises questions regarding where these hypo-DMRs were located and how to interpret their behaviors and functions. These questions are also critical to address in the following mechanistic dissections as the metabolic treatments may also induce bi-directional changes of DNA methylation. The authors should carefully assess these conflicts to make the conclusions solid.

      Thanks for the helpful comments and suggestions. As presented in Fig. 1F, there is an increase of methylation level in promoter and exon regions and there is a decrease in intron, utr3 and repeat regions. According to the suggestions, we further analyzed the distribution of DMRs, and found that hypo-DMRs were mainly distributed at utr3, intron, repeat, and tes regions compared with hyper-DMRs (Fig. S3). These suggest that the distribution of DMRs in genome is not random.

      The transgenerational epigenetic modifications are controversial. Even for F0 offspring under maternal obesity, there were different observations compared to this work (Hou, YJ., et al. Sci Rep, 2016). The authors should discuss the inconsistencies with previous works.

      Thanks for the suggestions. There are contradictions on the whole genome DNA methylation of oocytes in obese mice. Hou YJ et al. in 2016 reported that obesity reduces the whole genome DNA methylation of NSN GV oocytes using immunofluorescence. In 2018, Han LS et al. reported that the whole genome 5mC of oocytes is not significantly influenced by obesity using immunofluorescence, but they find the Stella level is reduced in oocytes by obesity. Stella locates in the cytoplasm and nuclei of oocytes and sequesters Uhrf1 from the nuclei. Stella knockout in oocytes results in about twofold increase of global methylation in MII oocytes via recruiting more DNMT1 into nuclei. These suggest that the global methylation of oocytes in obese mice should be increased, but the similar methylation in oocytes between obese and non-obese mice is reported by Han LS et al. Thus, the contradiction may be induced by the different sample size in our manuscript and previous studies, and Hou YJ and colleagues just examined the methylation of NSN GV oocytes. As present in Stella+/- oocytes, the global methylation of oocytes is normal, which suggest that the insufficiency of Stella may be not the main reason for the increased methylation of oocytes in obese mice. We have added a brief discussion in the revised manuscript.

      In addition to the above inconsistencies, the DNA methylation analysis in this work was not carefully evaluated. Several previous works were evaluating the DNA methylation in mice oocytes, which showed global methylation levels of around 50% (Shirane K, et al. PLoS Genet, 2013; Wang L., et al, Cell, 2014). In Figure 1E, the overall methylation level is about 23% in control, which is significantly different from previous works. The authors should provide more details regarding the WGBS procedure, including but not limited to sequencing coverage, bisulfite conversion rate, etc.

      Thanks for the good questions. Smallwood et al. reported the the CG methylation of MII oocyte is about 33.1% (Smallwood et al. Nature Methods, 2014) using single-cell genome-wide bisulfite sequencing. Shirane K et al. reported that the average methylation level of GV oocytes is 37.9%. Kobayashi H et al. Reported that the CG methylation in GV oocytes is about 40% (Kobayashi H et al. Plos Genet. 2012). CG methylation in fully grown oocytes is about 38.7% (Maenohara S et al. Plos Genet. 2017). The variation of methylation in oocytes is associated with sequencing methods, sequencing depth, and mapping rates. In the present study, whole genome bisulfite sequencing (WGBS) for small sample and methylation analysis were performed by NovoGene. The reads are 31613641 to 37359643, unique mapping rate is ≥32.88%,  conversation rate is > 99.44%, and sequencing depth is 2.45 to 2.75. Relative information is presented in Table S1. The sequencing depth might be a reason for the inconsistence. But we further confirmed our sequencing results using bisulfite sequencing (BS), and the result is similar between BS and WGBS results. These findings suggest that our results are reliable.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Since the results show that melatonin may play a role in hyper-methylation, the authors need to give some basic information in the Introduction section.

      Thanks. We added more information in the section of Introduction.

      (2) There are many differential metabolites identified. Besides melatonin, other differential metabolites are involved in the altered methylation in oocytes

      These is a good question. We firstly filtered the differential metabolites which may be involved in methylation, and then further filtered these metabolites according to the relative DNA methylation pathways and published papers. After that, we confirmed the concentrations of relative metabolites in the serum using ELISA. Certainly, we can not completely exclude all the metabolites which might involved in regulating DNA methylation.

      (3) The altered methylation would be found in the F1 tissues. Did the authors examine the other parts besides the liver?

      Thank you. In the present study, we didn’t examined the DNA methylation in the other tissues besides the liver. We agree that the altered methylation should be observed in the other tissues.

      (4) Did the authors try or guess how many generations the maternal obesity-induced genomic methylation alterations can be transmitted?

      Thanks. This is a good question. Takahashi Y and colleagues reported that obtained DNA methylation at CpG island can be transmitted across multiple generations using DNA methylation-edited mouse (Takahashi Y et al. 2023, cell). Similar inheritance is also reported by other studies using different models.

      (5) The F2 is indirectly affected by maternal obesity, so the evidence is not enough to prove the transgenerational inheritance of the altered methylation.

      Thanks. We find the altered DNA methylation in F2 tissue and oocytes is similar to that in F1 oocytes. These suggest the altered DNA methylation in F2 oocytes should be at least partly transmitted to F3. Previous paper (Takahashi Y et al. 2023, cell) confirms that obtain DNA methylation in CpG island can be transmitted across several generations through paternal and maternal germ lines. Certainly, it’s better if it is examined in F3 tissues.

      Reviewer #2 (Recommendations For The Authors):

      (1) Figure Font Size: The font sizes in the figures are quite inconsistent. Please try to uniform the font size of similar types of text.

      Thanks for your suggestions. We re-edited the relative figures in the revised manuscript.

      (2) Figure Clarity: Ensure that all critical information in the figures is clearly visible, such as in Figure 3C.

      Thank you. We revised this figure.

      (3) Figure 1B, C: The position of the asterisks ("**") is not centered in the corresponding columns, and the font size is too small. Please correct this and address similar issues in other figures.

      Thank you for your suggestions. We re-edited these in the revised figures.

      (4) Line 126: The current expression is confusing. It may be revised to: "Both the oocyte quality and the uterine environment can contribute to adult diseases, which may be mediated by epigenetic modifications."

      Thanks. We revised this sentence in the revised manuscript.

      (5) Missing Panel in Figure 3: Figure 3 is missing panel 3N.

      Thank you so much. We corrected it in the revised manuscript.

      (6) Figure Panel Order: Please adjust the order of the panels in the figures to follow a logical reading sequence.

      Thank you. We changed the orders in the revised manuscript.

      (7) Line 493: Correct "inthe" to "in the".

      Thank you. We revised it.

      (8) Lines 102-106: Polish the wording and expression, an example as follows: "We analyzed the differentially methylated regions (DMRs) in oocytes from both HFD and CD groups and identified 4,340 DMRs. These DMRs were defined by the criteria: number of CG sites {greater than or equal to} 4 and absolute methylation difference {greater than or equal to} 0.2. Among these, 2,013 were hyper-DMRs (46.38%) and 2,327 were hypo-DMRs (53.62%) (Fig. 1G). These DMRs were distributed across all chromosomes (Fig. 1H). "

      Thank you! We re-wrote these parts in the revised manuscript.

      Reviewer #3 (Recommendations For The Authors):

      The sample numbers should be annotated in the figure legend for all the bar plots using Image J. The lines in Figures 2B and 2C were without error bars. How many mice were used for these plots?

      Thanks for your suggestions. We added the sample size in the revised manuscript. We made a mistake when we prepared the pictures for figure 2B and figure 2C, which resulted in missing the error bars. We have corrected these pictures. Thanks again!

      The authors should revise the panel arrangement of the figures (Figure 2, Figure 5, etc) to make them more clear and readable.

      Thank you! We have revised these in the revised manuscript.

      The writing should be improved since there were multiple typos and unclear expressions. AI tools like Grammarly or ChatGPT may help.

      Thank you! We have re-edited the language in the revised manuscript using AI tools.

      Please recheck the immunofluorescence images for clear interpretability. For example, in Figure 5F (H89 treated), the GV is all the way at the edge of the oocyte, and the oocyte in the DIC image appears like it is partially lysed. The DIC images and the DAPI images are not clear enough.

      Thanks for your suggestions. We have re-edited these pictures in the revised manuscript.

      Another concern is that the Methods describes the immunofluorescence preparation for 5mC and 5hmC staining as a simple fixation in 4% paraformaldehyde followed by permeabilization with .5% TritonX-100, but there is no antigen exposure step described, a step that is normally required for visualizing these DNA modifications (e.g., 4N HCl).

      Thanks. Sorry for that we didn’t describe the methods clearly. We have added more information about the methods in the revised manuscript.

      The metabolomic analysis revealed a highly significant increase in dibutylphthalate, genistein, and daidzein in the control mice. The presence of these exogenous metabolites suggests that the diets differed in many aspects, not just fat content, so it would be very difficult to interpret the results as related to a high-fat diet alone. Both daidzein and genistein are phytoestrogens and dibutylphthalate is a plasticizer, suggesting differences in the diet and/or in the materials used to collect the samples for analysis from the mice. The Methods define the high-fat diet adequately, as the formulation can be found online using the catalog number. However, the control diet is just listed as "normal diet", so one has no idea what is in it

      Thank you for your good questions. The daidzein and genistein may be from the diets and the dibutylthalate may be from the materials used to collect samples. If so, these should be similar between groups. Thus, we added the formulation of normal diet in the revised manuscript. The raw materials of normal diet include corn, bean pulp, fish meal, flour, yeast powder, plant oil, salt, vitamins, and mineral elements. According to the suggestions, we re-checked the data about these metabolites, and found that the abundance of these metabolites was low. And the result of these metabolites was at a low confidence level because the iron of these metabolites was only mapped to ChemSpider(HMDB,KEGG,LIPID MAPS). To further confirm these results, we examined these metabolites in serum using ELISA, and results revealed that the concentrations of genistein and dibutylthalate were similar between groups. These results suggest that these metabolites may be not involved in the altered methylation of oocytes induced by obesity.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews: 

      Reviewer #1 (Public review): 

      Summary: 

      UGGTs are involved in the prevention of premature degradation for misfolded glycoproteins, by utilizing UGGT1-KO cells and a number of different ERAD substrates. They proposed a concept by which the fate of glycoproteins can be determined by a tug-of-war between UGGTs and EDEMs. 

      Strengths: 

      The authors provided a wealth of data to indicate that UGGT1 competes with EDEMs, which promotes the glycoprotein degradation. 

      Weaknesses: 

      NA 

      We appreciate your comment.

      Reviewer #2 (Public review): 

      In this study, Ninagawa et al., sheds light on UGGT's role in ER quality control of glycoproteins. By utilizing UGGT1/UGGT2 DKO , they demonstrate that several model misfolded glycoproteins undergo early degradation. One such substrate is ATF6alpha where its premature degradation hampers the cell's ability to mount an ER stress response. 

      This study convincingly demonstrates that many unstable misfolded glycoproteins undergo accelerated degradation without UGGTs. Also, this study provides evidence of a "tug of war" model involving UGGTs (pulling glycoproteins to being refolded) and EDEMs (pulling glycoproteins to ERAD). 

      The study explores the physiological role of UGGT, particularly examining the impact of ATF6α in UGGT knockout cells' stress response. The authors further investigate the physiological consequences of accelerated ATF6α degradation, convincingly demonstrating that cells are sensitive to ER stress in the absence of UGGTs and unable to mount an adequate ER stress response. 

      These findings offer significant new insights into the ERAD field, highlighting UGGT1 as a crucial component in maintaining ER protein homeostasis. This represents a major advancement in our understanding of the field. 

      Thank you very much for your comment.

      Reviewer #3 (Public review): 

      This valuable manuscript demonstrates the long-held prediction that the glycosyltransferase UGGT slows degradation of endoplasmic reticulum (ER)-associated degradation substrates through a mechanism involving re-glucosylation of asparaginelinked glycans following release from the calnexin/calreticulin lectins. The evidence supporting this conclusion is solid using genetically-deficient cell models and well established biochemical methods to monitor the degradation of trafficking-incompetent ER-associated degradation substrates, although this could be improved by better defining of the importance of UGGT in the secretion of trafficking competent substrates. This work will be of specific interest to those interested in mechanistic aspects of ER protein quality control and protein secretion. 

      The authors have attempted to address my comments from the previous round of review, although some issues still remain. For example, the authors indicate that it is difficult to assess how UGGT1 influences degradation of secretion competent proteins, but this is not the case. This can be easily followed using metabolic labeling experiments, where you would get both the population of protein secreted and degraded under different conditions. Thus, I still feel that addressing the impact of UGGT1 depletion on the ER quality control for secretion competent protein remains an important point that could be better addressed in this work. 

      We mainly focused on the impact of UGGT1 depletion on ERAD in this paper and intend to determine the impact of UGGT1 depletion on the ER quality control for secretion competent protein in the near future.

      Further, in the previous submission, the authors showed that UGGT2 depletion demonstrates a similar reduction of ATF6 activation to that observed for UGGT1 depletion, although UGGT2 depletion does not reduce ATF6 protein levels like what is observed upon UGGT1 depletion. In the revised manuscript, they largely remove the UGGT2 data and only highlight the UGGT1 depletion data. While they are somewhat careful in their discussion, the implication is that UGGT1 regulates ATF6 activity by controlling its stability. The fact that UGGT2 has a similar effect on activity, but not stability, indicates that these enzymes may have other roles not directly linked to ATF6 stability. It is important to include the UGGT2 data and explicitly highlight this point in the discussion. Its fine to state that figuring out this other function is outside the scope of this work but removing it does not seem appropriate.

      We have added the data of UGGT2-KO and UGGT-DKO cells to Figure 4 and discussed appropriately.

      As I mentioned in my previous review, I think that this work is interesting and addresses an important gap in experimental evidence supporting a previously asserted dogma in the field. I do think that the authors would be better suited for highlighting the limitations of the study, as discussed above. Ultimately, though, this is an important addition to the literature. 

      We appreciate your comments. Thank you very much.

      Recommendations for the authors: 

      Reviewer #1 (Recommendations for the authors): 

      I have carefully gone through the revised manuscript and responses to the reviewers' comments; I believe that the authors did a great job on revisions, and I do think that now this manuscript has been much improved (far easier to read through). Now I have only minor comments as follows; 

      Page 9: Lines 8-9; Comparison between WT and EDEM-TKO cells indicates that ATF6alpha is still degraded via gpERAD requiring mannose trimming even in the presence of DNJ (Fig. 1D). (it would be better to indicate which figure to look) 

      We have fixed it.

      Page 10: Lines 9-11; as multiple higher molecular weight bands (representing a mixture of G3M9, G2M9m and GM9 etc.) in WT cells treated with CST -> I am NOT AT ALL convinced with this statement on Figure 1-figure supplement 6A). How can the subtle glycan structure difference cause the ladder of the band? And if it is indeed the case (which I frankly doubt by the way), will endo-alpha-mannosidase treatment end up with a single band for CST? And PNGase F digestion can cancel all size difference between samples (control, +DNJ and +CST)? 

      CD3d-DTM-HA is a small protein (~20 kDa) possessing three N-glycans. Clear increase in the level of GM9 in WT cells treated with DNJ (Figure 1-Figure supplement 5A) caused an upward band shift (Figure 1-Figure supplement 6A). Similarly, clear increase in the levels of GM9, G2M9, G3M9 in WT cells treated with CST (Figure 1-Figure supplement 6B) produced the ladder of the band (Figure 1-Figure supplement 6A).

      Crystal violet assay (new Fig 4G; Page 33); It said that, after treating cells with drug (Tg) for 4 hours, cells were spread on 24 well plates and cultured without Tg for 5 days. If incubated that long, I wonder that any compromised viability may have been canceled by growing cells (cells become confluent no matter what?). Am I missing something? Please clarify. 

      We employed a previously published method to determine ER stress sensitivity (Yamamoto et al., Dev. Cell, 2007). Although any compromised viability may have been canceled by growing cells, as suggested, we were able to detect the difference between WT and UGGT-KO cells.

      Figure 5D; why one of the three N-glycans is missing on the last protein?? 

      We have fixed it.

    1. Author response:

      Reviewer #1 (Public review): 

      Summary: 

      Walton et al. set out to isolate new phages targeting the opportunistic pathogen Pseudomonas aeruginosa. Using a double ∆fliF ∆pilA mutant strain, they were able to isolate 4 new phages, CLEW-1. -3, -6, and -10, which were unable to infect the parental PAO1F Wt strain. Further experiments showed that the 4 phages were only able to infect a ∆fliF strain, indicating a role of the MS-protein in the flagellum complex. Through further mutational analysis of the flagellum apparatus, the authors were able to identify the involvement of c-di-GMP in phage infection. Depletion of c-di-GMP levels by an inducible phosphodiesterase renders the bacteria resistant to phage infection, while elevation of c-di-GMP through the Wsp system made the cells sensitive to infection by CLEW-1. Using TnSeq, the authors were able to not only reaffirm the involvement of c-di-GMP in phage infection but also able to identify the exopolysaccharide PSL as a downstream target for CLEW-1. C-di-GMP is a known regulator of PSL biosynthesis. The authors show that CLEW-1 binds directly to PSL on the cell surface and that deletion of the pslC gene resulted in complete phage resistance. The authors also provide evidence that the phage-PSL interaction happens during the biofilm mode of growth and that the addition of the CLEW-1 phage specifically resulted in a significant loss of biofilm biomass. Lastly, the authors set out to test if CLEW-1 could be used to resolve a biofilm infection using a mouse keratitis model. Unfortunately, while the authors noted a reduction in bacterial load assessed by GFP fluorescence, the keratitis did not resolve under the tested parameters. 

      Strengths: 

      The experiments carried out in this manuscript are thoughtful and rational and sufficient explanation is provided for why the authors chose each specific set of experiments. The data presented strongly supports their conclusions and they give present compelling explanations for any deviation. The authors have not only developed a new technique for screening for phages targeting P. aeruginosa, but also highlight the importance of looking for phages during the biofilm mode of growth, as opposed to the more standard techniques involving planktonic cultures. 

      Weaknesses: 

      While the paper is strong, I do feel that further discussions could have gone into the decision to focus on CLEW-1 for the majority of the paper. The paper also doesn't provide any detailed information on the genetic composition of the phages. It is unclear if the phages isolated are temperate or virulent. Many temperate phages enter the lytic cycle in response to QS signalling, and while the data as it is doesn't suggest that is the case, perhaps the paper would be strengthened by further elimination of this possibility. At the very least it might be worth mentioning in the discussion section. 

      Thank you for your review. We will upload the genomes of all Clew phages and Ocp-2 before resubmission. It turns out that the Clew phage are highly related, which we wanted to express with the genomic comparison in the supplementary figure (rather unsuccessfully). It therefore made sense to focus our in-depth analysis on one of the phage. We will include a supplementary figure demonstrating that all Clew-1 phage require an intact psl locus for infection, to make that logic clearer. The phage are virulent (there is apparently a bit of a debate about this with regard to Bruynogheviruses, but we have not been able to isolate lysogens). This will be explained in the revised version of the manuscript as well.

      Reviewer #2 (Public review): 

      This manuscript by Walton et al. suggests that they have identified a new bacteriophage that uses the exopolysaccharide Psl from Pseudomonas aeruginosa (PA) as a receptor. As Psl is an important component in biofilms, the authors suggest that this phage (and others similarly isolated) may be able to specifically target biofilm-growing bacteria. While an interesting suggestion, the manner in which this paper is written makes it difficult to draw this conclusion. Also, some of the results do not directly follow from the data as presented and some relevant controls seem to be missing. 

      Thank you for your review. We would argue that the combination of demonstrating Psl-dependent binding of Clew-1 to P. aeruginosa, as well as demonstration of direct binding of Clew-1 to affinity-purified Psl, indicates that the phage binds directly to Psl and uses it as a receptor. In looking at the recommendations, it appears that the remark about controls refers to not using the ∆pslC mutant alone (as opposed to the ∆fliF2 ∆pslC double mutant) as a control for some of the binding experiments. However, since the ∆fliF2 mutant is more permissive for phage infection, analyzing the effect of deleting pslC in the context of the ∆fliF2 mutant background is the more stringent test.

    1. Author response:

      We sincerely thank all the reviewers for their enthusiasm and positive feedback, which has encouraged us to delve deeper into this research. As this is the first report of POLK in the brain using a longitudinal normative aging model, our primary aim was to establish the observational and phenomenological aspects. We agree with the reviewers that more detailed molecular, biochemical, and cellular studies are essential to elucidate underlying mechanisms. However, as noted by some reviewers, these investigations, while they will raise the impact, may fall outside the scope of the current report. Indeed, many of these lines of investigation are currently ongoing. Below, we provide our provisional responses to individual reviewer comments.

      Response to Reviewer #1:

      a) Concern over POLK antibody characterization in mice:

      We performed knocking down of POLK by siRNA in mice cortical primary neuronal culture (Fig S1C). In the revised version, we will provide a more detailed characterization of POLK antibodies in mouse cells.

      b) More mechanistic investigation is needed before POLK could be considered as a brain aging clock:

      We sincerely appreciate the valuable suggestion. In our ongoing work exploring the mechanisms of POLK in postmitotic neurons, preliminary findings using siPOLK indicate an upregulation of senescence markers along with a reduction in DNA repair synthesis (manuscript in preparation). We will reference this companion manuscript in the revised version and are pleased to share these data with the reviewers for their consideration.

      Response to Reviewer #2:<br /> a) Concern on more mechanistic understanding of the pathways regulating POLK dynamics between the nucleus and cytosol:

      We sincerely appreciate the reviewer’s enthusiasm and valuable guidance in helping us better understand the mechanism of nuclear-cytoplasmic POLK dynamics. Previously, we developed a modified aniPOND (accelerated native isolation of proteins on nascent DNA) protocol, which we termed iPoKD-MS (isolation of proteins on Pol kappa synthesized DNA  followed by mass spectrometry), to capture proteins bound to nascent DNA synthesized by POLK in human cell lines (bioRxiv https://www.biorxiv.org/content/10.1101/2022.10.27.513845v3). In this dataset, we identified potential candidates that may regulate nuclear/cytoplasmic POLK dynamics. These candidates are currently undergoing validation in human cell lines, and we are preparing a manuscript on these findings. Among these, some candidates, including previously identified proteins such as exportin and importin (Temprine et al., 2020, PMID: 32345725), are being explored further as potential POLK nuclear/cytoplasmic shuttles. We are also conducting tests on these candidates in mouse cortical primary neurons to assess their role in POLK dynamics. In the revised version of the manuscript, we will include a discussion of our current understanding and outline our planned studies.

      b) Question on “… what is POLK doing in the cytosol, and what is it interacting with …”:

      Our data so far indicate that POLK accumulates in stress granules and lysosomes. We are very grateful for the reviewer’s insightful suggestions and will make every effort to incorporate them in the revised manuscript. Currently, we are characterizing POLK accumulation in the cytoplasm using additional lysosomal markers, as recommended by the reviewer. If these experiments prove challenging in mouse brain tissues, we plan to investigate them in primary neuron cultures. We are hopeful to include these findings in the revised version. Additionally, we have optimized the POLK antibody for immunoprecipitation from nuclear and cytoplasmic fractions of mouse brain tissue. These findings, which are beyond the scope of the current study, will be reported in a separate manuscript.

      Response to Reviewer #3:

      We highly appreciate the reviewer bringing up the context of biomolecular condensates. Our iPoKD-MS data referenced above suggests candidates from various biomolecular condensates that we are currently investigating. We are currently investigating by subcellular fractionation the presence of POLK in different biomolecular condensates that will be fully reported in future publications. We appreciate the reviewer providing important literature that will be cited and potential biomolecular condensates will be discussed in the revised version.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      This manuscript from Mukherjee et al examines potential connections between telomere length and tumor immune responses. This examination is based on the premise that telomeres and tumor immunity have each been shown to play separate, but important, roles in cancer progression and prognosis as well as prior correlative findings between telomere length and immunity. In keeping with a potential connection between telomere length and tumor immunity, the authors find that long telomere length is associated with reduced expression of the cytokine receptor IL1R1. Long telomere length is also associated with reduced TRF2 occupancy at the putative IL1R1 promoter. These observations lead the authors towards a model in which reduced telomere occupancy of TRF2 - due to telomere shortening - promotes IL1R1 transcription via recruitment of the p300 histone acetyltransferase. This model is based on earlier studies from this group (i.e. Mukherjee et al., 2019) which first proposed that telomere length can influence gene expression by enabling TRF2 binding and gene transactivation at telomere-distal sites. Further mechanistic work suggests that G-quadruplexes are important for TRF2 binding to IL1R1 promoter and that TRF2 acetylation is necessary for p300 recruitment. Complementary studies in human triple-negative breast cancer cells add potential clinical relevance but do not possess a direct connection to the proposed model. Overall, the article presents several interesting observations, but disconnection across central elements of the model and the marginal degree of the data leave open significant uncertainty regarding the conclusions.

      Strengths:

      Many of the key results are examined across multiple cell models.

      The authors propose a highly innovative model to explain their results.

      Weaknesses:

      Although the authors attempt to replicate most key results across multiple models, the results are often marginal or appear to lack statistical significance. For example, the reduction in IL1R1 protein levels observed in HT1080 cells that possess long telomeres relative to HT1080 short telomere cells appears to be modest (Supplementary Figure 1I). Associated changes in IL1R1 mRNA levels are similarly modest.

      Related to the point above, a lack of strong functional studies leaves an open question as to whether observed changes in IL1R1 expression across telomere short/long cancer cells are biologically meaningful.

      Statistical significance is described sporadically throughout the paper. Most major trends hold, but the statistical significance of the results is often unclear. For example, Figure 1A uses a statistical test to show statistically significant increases in TRF2 occupancy at the IL1R1 promoter in short telomere HT1080 relative to long telomere HT1080. However, similar experiments (i.e. Figure 2B, Figure 4A - D) lack statistical tests.

      TRF2 overexpression resulted in ~ 5-fold or more change in IL1R1 expression. Compared to this, telomere length-dependent alterations in IL1R1 expression, although about 2-fold, appear modest (~ 50% reduction in cells with long telomeres across different model systems used). Notably, this was consistent and significant across cell-based model systems and xenograft tumors (see Figure 1). Unlike TRF2 induction, telomere elongation or shortening vary within the permissible physiological limits of cells. This is likely to result in the observed variation in IL1R1 levels.

      For biological relevance, we have shown this using multiple models where telomere length was either different (patient tissue, organoids) or were altered (cell lines, xenograft models) . Where IL1 signalling in TNBC tissue and tumor organoids, and cells/xenografts were shown to impact M2 macrophage infiltration in a telomere length sensitive fashion. We made use of the tumor organoids to test M2 macrophage infiltration using IL1RA and small molecule based IL1R1 inhibition.

      We have now included statistical tests in all the relevant figures and incorporated the necessary details about the tests performed in the figure legend for clarity of readers. Additionally, all data points, p values and details of statistical tests have been included in Figure wise excel sheets for both main and supplementary figures.

      Reviewer #1 (Recommendations For The Authors):

      There are typos throughout the manuscript. The word 'expression' is incorrectly spelled on y-axis labels throughout the manuscript (for example see Figure 1B). The word 'telomere' is incorrectly spelled in Supplementary Figure 1 legend panel A. Most errors, such as these, do not interfere with my comprehension of the manuscript. However, others made the manuscript difficult to follow. For example, I think that MDAMB231, MDAMD231, and MDAM231 are frequently used interchangeably to refer to the same cell line. This makes it very difficult to understand certain experiments.

      I often found it difficult to understand which statistical test was used for a specific experiment. I suggest changing the style in the legends to more clearly connect statistical tests with specific data points.

      We thank the reviewer for pointing out the typological errors. We have now made relevant corrections to both figures and text.

      As stated above, we have now provided details of statistical tests performed in the figure legend for clarity of readers. Additionally, all data points, p values and details of statistical tests have been included in Figure wise excel sheets for both main and supplementary figures.

      Reviewer #2 (Public Review):

      This study highlights the role of telomeres in modulating IL-1 signaling and tumor immunity. The authors demonstrate a strong correlation between telomere length and IL-1 signaling by analyzing TNBC patient samples and tumor-derived organoids. Mechanistic insights revealed non-telomeric TRF2 binding at the IL-1R1. The observed effects on NF-kB signaling and subsequent alterations in cytokine expression contribute significantly to our understanding of the complex interplay between telomeres and the tumor microenvironment. Furthermore, the study reports that the length of telomeres and IL-1R1 expression is associated with TAM enrichment. However, the manuscript lacks in-depth mechanistic insights into how telomere length affects IL-1R1 expression. Overall, this work broadens our understanding of telomere biology.

      The mechanism of how telomere length affects IL1R1 expression involves sequestration and reallocation of TRF2 between telomeres and gene promoters (in this case, the IL1R1 promoter). We have previously shown this across multiple genomic sites (Mukherjee et al, 2018; reviewed in J. Biol. Chem. 2020, Trends in Genetics 2023). We have described this in the manuscript along with references citing the previous works. A scheme explaining the model was provided as Additional Supplementary Figure 1, along with a description of the mechanistic model.

      Figure 1-4 in main figures describe the molecular mechanism of telomere-dependent IL1R1 activation. This includes ChIP data for TRF2 on the IL1R1 promoter in long/short telomeres, as well as TRF2-mediated histone/p300 recruitment and IL1R1 gene expression. We further show how specific acetylation on TRF2 is crucial for TRF2-mediated IL1R1 regulation (Figure 5).

      Reviewer #2 (Recommendations For The Authors):

      The study primarily provides a snapshot of cytokine expression and telomere length at a single time point. Longitudinal studies or dynamic analyses could provide a more comprehensive understanding of the temporal relationship between telomere length and cytokine expression.

      Tumor heterogeneity is a significant problem for the various therapies. The study notes significant heterogeneity in telomere length but does not investigate the implications of this heterogeneity. Understanding the role of telomere length variation in different tumor cell populations is essential for a comprehensive interpretation of the results.

      The study only mentions a correlation between IL1R1 and relative telomere length but does not provide any potential clinical correlations with patient outcomes or survival. Addressing the clinical relevance of these molecular changes would improve the translational impact.

      The importance of IL1R1 in prognostic and clinical outcomes of TNBC has been studied by multiple groups. The overall consensus is that higher IL1R1 leads to poor prognosis – aiding both cancer progression and metastasis. Using publicly available TCGA data, we found that IL1R1 high samples had significantly lower survival in breast cancer (BRCA) datasets. The results have now been included in the manuscript as Supplemnetray Figure 7G.

      Addition in text:

      “We, next, used publicly available TCGA gene expression data of breast cancer samples (BRCA) (Supplementary file 4) to assess the effect of IL1R1 expression on cancer prognosis. We categorized samples based on IL1R1 expression: IL1R1 high (N=254) and IL1R1 low samples (N= 709). It was seen that overall patient survival was significantly lower in IL1R1 high samples (Log-rank p value -0.0149) (Supplementary Figure 7G). We also checked the frequency of occurrence of various breast cancer sub-types in IL1R1 high and low samples (Supplementary Figure 7H). While invasive mixed mucinous carcinoma (the most abundant sub-type) was predominantly seen in IL1R1 low samples, metaplastic breast cancer was only found within the IL1R1 high samples. Interestingly, metaplastic breast cancer has been frequently found to be ‘triple negative’-i.e., ER-,PR- and HER2-. (Reddy et al., 2020).”

      However, we could not access a TNBC (or any breast cancer dataset) that has been characterized for telomere length. Unfortunately, the clinical TNBC samples that we had access to did not have any paired short-term/long-term survival datasets. We could, in principle, use TERT/TERC expression as a proxy for telomere length; however, in our experiments, we found that telomerase activity did not positively correlate with telomere length as expected (Supplementary Figure 7C, Supplementary Figure 8D). Therefore, transcriptional signature (of telomere-associated genes) may not be a reliable indicator of telomere length.

      The study lacks in-depth mechanistic insights into how telomere length affects IL1R1 expression and subsequently influences TAM infiltration. Further molecular studies or pathway analyses are necessary to elucidate the underlying mechanisms.

      The mechanism involves sequestration and reallocation of TRF2 between telomeres and gene promoters (in this case, IL1R1 promoter). We have previously shown this across multiple genomic sites (Mukherjee et al, 2018). We have appropriately discussed this in the manuscript.

      A schematic explaining the model has been provided as Additional Supplementary Figure 1.

      We have provided ChIP data for TRF2 on IL1R1 promoter in long/short telomeres in the manuscript as well as histone/p300 ChIP and gene expression (Figure 1-4 in main figures exclusively deal with molecular mechanism of telomere dependent IL1R1 activation).  We further go on to show how specific acetylation on TRF2 might be crucial for TRF2-mediated IL1R1 regulation (Figure 5). One of the key findings herein is the fact that TRF2 can directly regulate IL1R1 expression through promoter occupancy- tested in telomere altered cell lines (HT1080, MDAMB231) and tumor xenografts (Figure 1 A, F, I- for TRF2 promoter occupancy).

      Pathway analysis of HT1080 (short vs long telomere) transcriptome, shows that cytokine-cytokine receptor interaction is one of the key pathways in upregulated genes.

      While we have focused on TRF2 mediated IL1R1 regulation, it is quite possible that there are other telomere sensitive pathways/mechanisms by which IL1R1 is regulated. This has been duly acknowledged in the discussion.

      The manuscript title suggests modulation of immune signaling in the tumor microenvironment, yet the authors exclusively focus on CD206+ TAMs, limiting the scope. It is recommended to investigate other immune cell types for a more comprehensive understanding of changes in the immune tumor microenvironment.

      As stated above, we approached the manuscript from the purview of TRF2-mediated IL1R1 regulation. In our assessment of TCGA data for breast cancer, we found that CD206 (MRC1) had the highest enrichment in IL1R1 high samples among key TAM and TIL markers- now added as Figure 8A (Details in Supplementary file 5). It also had the highest correlation with IL1R1 among the tested markers. Therefore, we proceeded to check CD206+ve TAMs.

      Now the following section has been added to text:

      “We further found that the total proportion of immune cells (% of CD45 +ve cells) did not vary significantly between short and long telomere TNBC samples (Supplementary Figure 8C). However, TNBC-ST samples had a higher percentage of myeloid cells (CD11B +ve) within the CD 45 +ve immune cell population. We checked in three TNBC-ST and TNBC-LT samples each and found that the percentage of M1 macrophages (CD86 high CD 206 low) in the myeloid population was lower than that of the M2 macrophages (CD 206 high CD 86 low) and unlike the latter, did not vary significantly between the TNBC-ST and TNBC-LT samples (Supplementary Figure 8C).”

      Unfortunately, due to sample limitations we are unable to test this on a larger cohort of samples.

      A single cell transcriptome experiment may have been a good way to have a more comprehensive immune profiling. However, with our TNBC samples, isolated nuclei for downstream processing had low viability as per 10X genomics specifications.

      Does IL1R1 influence TAM recruitment or polarization within the tumor microenvironment? To assess the impact, the authors should use a marker indicative of M1-like macrophages, such as CD80 or CD86.

      To address the issue of TAM recruitment vs polarization meaningfully we need to characterize tissue resident macrophages as well as macrophages in circulation. We did not have access to patient blood.  A murine breast cancer in-vivo model might be a more appropriate model to test this, which would take considerable time for us to develop. It is something that we hope to address in a follow up study.

      Did the authors analyze other breast cancer subtypes for telomere length?

      Unfortunately, other breast cancer sub-types besides TNBC were not available to us for experimentation.

      Figure legends are very briefly written and need to be elaborated. Scale bars are also missing in images.

      Add a gating strategy for flow cytometry results in Figure 8A.

      Figure legend have been expanded for clarity. More prominent scale bars have been added for better visibility and reference.  A relevant gating strategy has been added as Supplementary figure 8B.

      Reviewer #3 (Public Review):

      Summary:

      In this manuscript, entitled "Telomere length sensitive regulation of Interleukin Receptor 1 type 1 (IL1R1) by the shelterin protein TRF2 modulates immune signalling in the tumour microenvironment", Dr. Mukherjee and colleagues pointed out clarifying the extra-telomeric role of TRF2 in regulating IL1R1 expression with consequent impact on TAMs tumor-infiltration.

      Strengths:

      Upon careful manuscript evaluation, I feel that the presented story is undoubtedly well conceived. At the technical level, experiments have been properly performed and the obtained results support the authors' conclusions.

      Weaknesses:

      Unfortunately, the covered topic is not particularly novel. In detail, the TRF2 capability of binding extratelomeric foci in cells with short telomeres has been well demonstrated in a previous work published by the same research group. The capability of TRF2 to regulate gene expression is well-known, the capability of TRF2 to interact with p300 has been already demonstrated and, finally, the capability of TRF2 to regulate TAMs infiltration (that is the effective novelty of the manuscript) appears as an obvious consequence of IL1R1 modulation (this is probably due to the current manuscript organization).

      Here we studied the TRF2-IL1R1 regulatory axis (not reported earlier by us or others) as a case of the telomere sequestration model that we described earlier (Mukherjee et al., 2018; reviewed in J. Biol. Chem. 2020, Trends in Genetics 2023). This manuscript demonstrates the effect of the TRF2-IL1R1 regulation on telomere-sensitive tumor macrophage recruitment. To the best of our knowledge, no previous study connects telomeres of tumor cells mechanistically to the tumor immune microenvironment. Here we focused on the IL1R1 promoter and provided mechanistic evidence for acetylated-TRF2 engaging the HAT p300 for epigenetically altering the promoter. This mechanism of TRF2 mediated activation has not been previously reported. Further, the function of a specific post translational modification (acetylation of the lysine residue 293K) of TRF2 in IL1R1 regulation is described for the first time. Additional experiments showed that TRF2-acetylation mutants, when targeted to the IL1R1 promoter, significantly alter the transcriptional state of the IL1R1 promoter. To our knowledge, the function of any TRF2 residue in transcriptional activation had not been previously described. Taken together, these demonstrate novel insights into the mechanism of TRF2-mediated gene regulation, that is telomere-sensitive, and affects the tumor-immune microenvironment.

      We considered the reviewer’s suggestion to reorganize the result section. Reorganizing the manuscript to describe the TAM-related results first would, in our opinion, limit focus of the new findings and discovery [and novelty of the mechanisms (as described in above response, and in response to other comments by reviewers)] of the non-telomeric TRF2-mediated IL1R1 regulation. We have tried to bring out the novelty, implications and importance of the TAM-related observations in the discussion.

      Reviewer #3 (Recommendations For The Authors):

      Based on the comments reported above, I would encourage the author to modify the manuscript by reorganizing the text. I would suggest starting from the capability of TRF2 to modulate macrophages infiltration. Data relative to IL1R1 expression may be used to explain the mechanism through which TRF2 exerts its immune-modulatory role. This, in my view, would dramatically strengthen the presented story.

      Concerning the text, "results" should be dramatically streamlined and background information should be just limited to the "introduction" section.

      The manuscript should be carefully revisited at grammar level. A number of incomplete sentences and some typos are present within the text.

      We thank the reviewer for the appreciation of our work for its technical strengths.

      At the onset, we agree that we have explored the TRF2-IL1R1 regulatory axis. This underscores the significance of the telomere sequestration model that we had proposed earlier (Mukherjee et al., 2018). Herein, however, we significantly extend our previous work (which was more general and intended for putting forward the idea of telomere-dependent distal gene expression) by studying TRF2-mediated regulation of IL1 signalling (which was previously unreported). In addition, mechanistic details of how telomeres are connected to IL1 signaling through non-telomeric TRF2 are entirely new, not reported before by us or others.

      We have removed some text descriptions from the result section to streamline the section.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      …several previous studies have identified co-expression of vomeronasal receptors by vomeronasal sensory neurons, and the expression of non-vomeronasal receptors, and this was not adequately addressed in the manuscript as presented.

      We’ve added context and citations to the Introduction and Results sections relating to recent studies on the co-expression of vomeronasal receptors and the expression of non-vomeronasal receptors in VSNs.

      The data resulting from the use of the Resolve Biosciences spatial transcriptomics platform are somewhat difficult to interpret, and the methods are somewhat opaque.

      The Molecular Cartography platform relies on multi-plex imaging of fluorescent probes that bind specifically to individual gene transcripts to determine their spatial location. Unfortunately, the detailed protocols remain proprietary at Resolve Biosciences and were not disclosed. We have clarified this in the revised manuscript. Our role in the acquisition and processing of data for this experiment is included in the current Methods section. Additional analysis produced from the Molecular Cartography data have been added (See response to Reviewer #2, below) to the supplemental materials to help clarify interpretation of the results.

      Reviewer #2:

      …the authors present a biased report of previously published work, largely including only those results that do not overlap with their own findings, but ignoring results that would question the novelty of the data presented here.

      We had no intention of misleading the readers. In fact, we have discussed discrepancies between our results with other studies. However, we inadvertently left out a critical publication in preparing the manuscript. We have added context and citations relating to recent studies that use single cell RNA sequencing in the vomeronasal organ, studies relating to the co-expression of vomeronasal receptors, and studies discussing V1R/V2R lineage determination. In Discussion, we also compared our model with a previous one of genetic determination of VNO neuronal fate.

      Did the authors perform any cell selectivity, or any directed dissection, to obtain mainly neuronal cells? Previous studies reported a greater proportion of non-neuronal cells. For example, while Katreddi and co-workers (ref 89) found that the most populated clusters are identified as basal cells, macrophages, pericytes, and vascular smooth muscle, Hills Jr. et al. in this work did not report such types of cells. Did the authors check for the expression of marker genes listed in Ref 89 for such cell types?

      For VNO dissections, we removed bones and blood vessels from VNO tissue and only kept the sensory epithelium. This procedure removed vascular smooth muscle cells, pericytes, and other non-neuronal cell types, which explains differences in cell proportions between our study and previous studies. We used a DAPI/Draq5 assay to sort live/nucleated cells for sequencing and no specific markers were used for cell selection. All cells in the experiment were successfully annotated using the cell-type markers shown in Fig. 1B, save for cells from the sVSN cluster, which were novel, and required further analysis to characterize.

      The authors should report the marker genes used for cell annotation.

      Marker genes used for cell annotation are shown in figure 1B. A full list of all marker genes used in the cell annotation process has been added to the Methods section.

      The authors reported no differences between juvenile and adult samples, and between male and female samples. It is not clear how they evaluate statistically significant differences, which statistical test was used, or what parameters were evaluated.

      The claims made about male/female mice and P14/P56 mice directly pertain to the distribution of clusters and cells in UMAP space as seen in Figure 1 C & D. We have performed differential gene expression analysis for male/female and P14/P56 comparisons using the FindMarkers function from the Seurat R package. Although we have found significant differential expression between male and female, and between P14 and P56 animals, the genes in this list do not appear to be influential for the neuronal lineage and cell type specification or related to cell adhesion molecules, which are the main focuses of this study. Nevertheless, we have added these results to the supplemental materials.

      ‘Based on our transcriptomic analysis, we conclude that neurogenic activity is restricted to the marginal zone.’ This conclusion is quite a strong statement, given that this study was not directed to carefully study neurogenesis distribution, and when neurogenesis in the basal zone has been proposed by other works, as stated by the authors.

      We have used fourteen slides from whole VNO sections in our Molecular Cartography analysis to quantify the number of GBCs, INPs, and iVSNs predicted in the marginal zone, the intermediate zone, and main/medial zone. We have performed a Wilcoxon signed-rank test to check for the significant presence of GBCs, INPs, and iVSNs in the marginal zone over their presence in the main/medial zone. The results are included in new Figure S3. The result from this analysis justifies our claim that neurogenesis is restricted to the MZ. This claim is also supported by the 2021 study by Katreddi & Forni.

      The authors report at least two new types of sensory neurons in the mouse VNO, a finding of huge importance that could have a substantial impact on the field of sensory physiology. However, the evidence for such new cell types is based solely on this transcriptomic dataset and, as such, is quite weak, since many crucial morphological and physiological aspects would be missing to clearly identify them as novel cell types. As stated before, many control and confirmatory experiments, and a careful evaluation of the results presented in this work must be performed to confirm such a novel and interesting discovery. The reported "novel classes of sensory neurons" in this work could represent previously undescribed types of sensory neurons, but also previously reported cells (see below) or simply possible single-cell sequencing artefacts.

      The reviewer is correct that detailed morphological and physiological studies are needed to further understand these cells. This is an opinion we share. Our paper is primarily intended as a resource paper to provide access to a large-scale single-cell RNA-sequenced dataset and discoveries based on the transcriptomic data that can support and inspire ongoing and future experiments in the field. Nonetheless, we are confident that neither of the novel cell clusters are the result of sequencing artefacts. We performed a robust quality-control protocol, including count correction for ambient RNA with the R package, SoupX, multiplet cell detection and removal with the Python module, Scrublet, and a strict 5% mitochondrial gene expression cut-off. Furthermore, the cell clusters in question show no signs of being the result of sequencing artefacts, as they are physically connected in a reasonable orientation to the rest of the neuronal lineage in modular clusters in 2D and 3D UMAP space. The OSN and sVSN  cell clusters each show distinct and self-consistent expressions of genes (new Figure S4H). Gene ontology (GO) analysis reveals significant GO term enrichment for both the sVSN (Fig. 2G) and mOSN clusters when compared to mature V1R and V2R VSNs, indicating functional differences. We have performed  pseudotime analysis of sVSNs, differential gene expression and gene ontology analysis of mOSNs. The results are shown in the new Figure S6.

      The authors report the co-expression of V2R and Gnai2 transcripts based on sequencing data. That could dramatically change classical classifications of basal and apical VSNs. However, did the authors find support for this co-expression in spatial molecular imaging experiments?

      Genes with extremely high expression levels overwhelm signals from other genes, and therefore had to be removed from the experiment. This is a limitation of the Molecular Cartography platform. Unfortunately, Gnai2 was determined to be one of these genes and was not evaluated for this purpose.

      Canonical OSNs: The authors report a cluster of cells expressing neuronal markers and ORs and call them canonical OSN. However, VSNs expressing ORs have already been reported in a detailed study showing their morphology and location inside the sensory epithelium (References 82, 83). Such cells are not canonical OSNs since they do not show ciliary processes, they express TRPC2 channels and do not express Golf. Are the "canonical OSNs" reported in this study and the OR-expressing VSNs (ref 82, 83) different? Which parameters, other than Gnal and Cnga2 expression, support the authors' bold claim that these are "canonical OSNs"? What is the morphology of these neurons? In addition, the mapping of these "canonical OSNs" shown in Figure 2D paints a picture of the negligible expression/role of these cells (see their prediction confidence).

      We observe OR expression in VSNs in our data; these cells cluster with VSNs. The putative mOSN cluster exhibits its own trajectory, distinct from VSN clusters. These cells express Gnal (Golf), which is not expressed in VSNs expressing ORs, nor in any other cell-type in the data. After performing differential gene expression on the putative mOSN cluster, comparing with V1R and V2R VSNs, independently, GO analysis returned the top significantly enriched GO cellular component, ‘cilium’. This new piece of data is presented in the updated Figure S6. Because we were limited to list of 100 genes in Molecular Cartography probe panel, we have prioritized the detection of canonical VNO cell-types, vomeronasal receptor co-expression, and the putative sVSNs, and were not able to include a robust analysis of the putative OSNs.

      Secretory VSN: The authors report another novel type of sensory neurons in the VNO and call them "secretory VSNs". Here, the authors performed an analysis of differentially expressed genes for neuronal cells (dataset 2) and found several differentially expressed genes in the sVSN cluster. However, it would be interesting to perform a gene expression analysis using the whole dataset including neuronal and non-neuronal cells. Could the authors find any marker gene that unequivocally identifies this new cell type?

      We did not find unequivocal marker genes for sVSNs. We did perform differential analysis of the sVSN cluster with whole VNO data and with the neuronal subset, as well as against specific cell-types. We could not find a single gene that was perfectly exclusive to sVSNs. We used a combinatorial marker-gene approach to predicting sVSNs in the Molecular Cartography data. This required a larger subset of our 100 gene panel to be dedicated to genes for detecting sVSNs.

      When the authors evaluated the distribution of sVSN using the Molecular Cartography technique, they found expression of sVSN in both sensory and non-sensory epithelia. How do the authors explain such unexpected expression of sensory neurons in the non-sensory epithelium?

      In our scRNA-Seq experiment, blood vessels were removed, limiting the power to distinguish between certain cell types. Because of the limited number of genes that we can probe using Molecular Cartography, the number of genes associated with sVSNs may be present in the non-sensory epithelium. This could lead to the identification of cells that may or may not be identical to the sVSNs in the non-neuronal epithelium. Indeed, further studies will need to be conducted to determine the specificity of these cells.

      The low total genes count and low total reads count, combined with an "expression of marker genes for several cell types" could indicate low-quality beads (contamination) that were not excluded with the initial parameter setting. It looks like cells in this cluster express a bit of everything V1R, V2R, OR, secretory proteins.

      We are confident that the putative sVSN cell cluster is not the result of low-quality cells. We performed a robust quality-control protocol, including count correction for ambient RNA with the R package, SoupX, multiplet cell detection and removal with the Python module, Scrublet, and a strict 5% mitochondrial gene expression cut-off. Furthermore, the cell clusters in question show no signs of being the result of sequencing artefacts, as they are connected in a reasonable orientation to the rest of the neuronal lineage in modular clusters in 2D and 3D UMAP space. The OSN and sVSN cell clusters each show distinct and self-consistent expressions of genes (Fig. S1H). Gene ontology (GO) analysis reveals significant GO term enrichment for both the sVSN (Fig. 2G) and mOSN clusters when compared to mature V1R and V2R VSNs, indicating functional differences. Moreover, while some genes were expressed at a lower level when compared to the canonical VSNs, others were expressed at higher levels, precluding the cause of discrepancy as resulting from an overall loss of gene counts.

      The authors wrote ‘...the transcriptomic landscape that specifies the lineages is not known...’. This statement is not completely true, or at least misleading. There are still many undiscovered aspects of the transcriptomics landscape and lineage determination in VSNs. However, authors cannot ignore previously reported data showing the landscape of neuronal lineages in VSNs (Ref ref 88, 89, 90, 91 and doi.org/10.7554/eLife.77259). Expression of most of the transcription factors reported by this study (Ascl1, Sox2, Neurog1, Neurod1...) were already reported, and for some of them, their role was investigated, during early developmental stages of VSNs (Ref ref 88, 89, 90, 91 and doi.org/10.7554/eLife.77259). In summary, the authors should fully include the findings from previous works (Ref ref 88, 89, 90, 91 and doi.org/10.7554/eLife.77259), clearly state what has been already reported, what is contradictory and what is new when compared with the results from this work.

      This is a difference in opinion about the terminology. Transcriptomic landscape in our paper refers to the genome-wide expression by individual cells, not just individual genes. The reviewer is correct that many of the genetic specifiers have been identified, which we cited and discussed. We consider these studies as providing a “genetic” underpinning, rather than the “transcriptomic landscape” in lineage progression. To avoid confusion, we have revised the statement to “… the transcriptional program that specifies the lineages is not known.” 

      …the co-expression of specific V2Rs with specific transcription factors does not imply a direct implication in receptor selection. Directed experiments to evaluate the VR expression dependent on a specific transcription factor must be performed.

      The reviewer is correct, and we did not claim that the co-expression of specific transcription factors indicates a direct relationship with receptor selection. We agree that further directed experiments are required to investigate this question.

      This study reports that transcription factors, such as Pou2f1, Atf5, Egr1, or c-Fos could be associated with receptor choice in VSNs. However, no further evidence is shown to support this interaction. Based on these purely correlative data, it is rather bold to propose cascade model(s) of lineage consolidation.

      The reviewer is correct. As any transcriptomic study will only be correlative, additional studies will be needed to unequivocally determine the mechanistic link between the transcription factors with receptor choice. Our model provides a basis for these studies.

      The authors use spatial molecular imaging to evaluate the co-expression of many chemosensory receptors in single VNO cells. […] However, it is difficult to evaluate and interpret the results due to the lack of cell borders in spatial molecular imaging. The inclusion of cell border delimitation in the reported images (membrane-stained or computer-based) could be tremendously beneficial for the interpretation of the results.

      The most common practice for cell segmentation of spatial transcriptomics data is to determine cell borders based on nuclear staining with expansion. We have tested multiple algorithms based on recent studies, but each has its own caveat.

      It is surprising that the authors reported a new cell type expressing OR, however, they did not report the expression of ORs in Molecular Cartography technique. Did the authors evaluate the expression of OR using the cartography technique?

      We were limited to a 100-gene probe panel and only included one OR. The expression was not high enough for us to substantiate any claims.

      Reviewer #3:

      (1) The authors claim that they have identified two new classes of sensory neurons, one being a class of canonical olfactory sensory neurons (OSNs) within the VNO. This classification as canonical OSNs is based on expression data of neurons lacking the V1R or V2R markers but instead expressing ORs and signal transduction molecules, such as Gnal and Cnga2. Since OR-expressing neurons in the VNO have been previously described in many studies, it remains unclear to me why these OR-expressing cells are considered here a "new class of OSNs." Moreover, morphological features, including the presence of cilia, and functional data demonstrating the recognition of chemosignals by these neurons, are still lacking to classify these cells as OSNs akin to those present in the MOE. While these cells do express canonical markers of OSNs, they also appear to express other VSN-typical markers, such as Gnao1 and Gnai2 (Figure 2B), which are less commonly expressed by OSNs in the MOE. Therefore, it would be more precise to characterize this population as atypical VSNs that express ORs, rather than canonical OSNs.

      We observe OR expression in VSNs in our data; these cells cluster with VSNs. The putative mOSN cluster exhibits its own trajectory, distinct from VSN clusters. These cells express Gnal (Golf), which is not expressed in VSNs expressing ORs, nor in any other cell-type in the data. We have performed differential gene expression analysis on the putative mOSN cluster to compare with V1R and V2R VSNs. GO analysis returned the top significantly enriched GO terms, including many related to “cilium”., further supporting that these are OSNs. Because we were limited to list of 100 genes in Molecular Cartography probe panels, we have prioritized the detection of canonical VNO cell-types, vomeronasal receptor co-expression, and the putative sVSNs, and were not able to include a robust analysis of the putative OSNs. With regard to Gnai2 and Go expression, we have examined our data from the OSNs dissociated from the olfactory epithelium and detected substantial expression of both. This new analysis provides additional support for our claim. We now present differentially expressed genes and GO term analysis of the mOSN class in the updated Figure S6.

      (2) The second new class of sensory neurons identified corresponds to a group of VSNs expressing prototypical VSN markers (including V1Rs, V2Rs, and ORs), but exhibiting lower ribosomal gene expression. Clustering analysis reveals that this cell group is relatively isolated from V1R- and V2R-expressing clusters, particularly those comprising immature VSNs. The question then arises: where do these cells originate? Considering their fewer overall genes and lower total counts compared to mature VSNs, I wonder if these cells might represent regular VSNs in a later developmental stage, i.e., senescent VSNs. While the secretory cell hypothesis is compelling and supported by solid data, it could also align with a late developmental stage scenario. Further data supporting or excluding these hypotheses would aid in understanding the nature of this new cell cluster, with a comparison between juvenile and adult subjects appearing particularly relevant in this context.

      We wholeheartedly agree with this assessment. Our initial thought was that these were senescent VSNs, but the trajectory analysis did not support this scenario, leading us to propose that these are putative secretive cells. Our analysis also shows that overall, 46% of the putative sVSNs were from the P14 sample and 54% from P56. These cells comprise roughly 6.4% of all P14 cells and 8.5% of P56 cells. In comparison, 28.4% of all cells are mature V1R VSNs at P14, but the percentage rise to 46.7% at P56. The significant presence of sVSNs at P14, and the disproportionate increase when compared with mature VSNs indicate that these are unlikely to be late developmental stage or senescent cells, although we cannot exclude these possibilities.

      We have included the sVSNs in a trajectory inference analysis and found that the pseudotime values of the sVSNs are within the range of those cells within the V1R and V2R lineages, indicating a similar maturity (Fig. S6).

      (3) The authors' decision not to segregate the samples according to sex is understandable, especially considering previous bulk transcriptomic and functional studies supporting this approach. However, many of the highly expressed VR genes identified have been implicated in detecting sex-specific pheromones and triggering dimorphic behavior. It would be intriguing to investigate whether this lack of sex differences in VR expression persists at the single-cell level. Regardless of the outcome, understanding the presence or absence of major dimorphic changes would hold broad interest in the chemosensory field, offering insights into the regulation of dimorphic pheromone-induced behavior. Additionally, it could provide further support for proposed mechanisms of VR receptor choice in VSNs. 

      The reviewer raised a good point. We did not observe differences between male and female, or between P14 and P56 mice in the distribution of clusters and cells in UMAP space. Indeed, our differential expression analysis has revealed significantly differentially expressed genes in both comparisons. Results from these analyses are presented in the new Figures S1 and S2.   

      (4) The expression analysis of VRs and ORs seems to have been restricted to the cell clusters associated with the neuronal lineage. Are VRs/ORs expressed in other cell types, i.e. sustentacular, HBC, or other cells?

      Sparsely expressed low counts of VR and OR genes were observed in non-neuronal cell-types. When their expression as a percentage of cell-level gene counts is considered, however, the expression is negligible when compared to the neurons. The observed expression may be explained by stochastic base-level expression, or it may be the result of remnant ambient RNA that passed filtering.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:  

      Reviewer #1 (Public Review): 

      Summary: 

      The fungal cell wall is a very important structure for the physiology of a fungus but also for the interaction of pathogenic fungi with the host. Although a lot of knowledge on the fungal cell wall has been gained, there is a lack of understanding of the meaning of ß-1,6-glucan in the cell wall. In the current manuscript, the authors studied in particular this carbohydrate in the important humanpathogenic fungus Candida albicans. The authors provide a comprehensive characterization of cell wall constituents under different environmental and physiological conditions, in particular of ß-1,6glucan. Also, β-1,6-glucan biosynthesis was found to be likely a compensatory reaction when mannan elongation was defective. The absence of β-1,6-glucan resulted in a significantly sick growth phenotype and complete cell wall reorganization. The manuscript contains a detailed analysis of the genetic and biochemical basis of ß-1,6-glucan biosynthesis which is apparently in many aspects similar to yeast. Finally, the authors provide some initial studies on the immune modulatory effects of ß-1,6-glucan. 

      Strengths: 

      The findings are very well documented, and the data are clear and obtained by sophisticated biochemical methods. It is impressive that the authors successfully optimized methods for the analyses and quantification of ß-1-6-glucan under different environmental conditions and in different mutant strains. 

      Weaknesses: 

      However, although already very interesting, at this stage there are some loose ends that need to be combined to strengthen the manuscript. For example, the immunological studies are rather preliminary and need at least some substantiation. Also, at this stage, the manuscript in some places remains a bit too descriptive and needs the elucidation of potential causalities.

      Reviewer #2 (Public Review): 

      Summary: 

      The authors provide the first (to my knowledge) detailed characterization of cell wall b-1,6 glucan in the pathogen Candida albicans. The approaches range from biochemistry to genetics to immunology. The study provides fundamental information and will be a resource of exceptional value to the field going forward. Highlights include the construction of a mutant that lacks all b-1,6 glucan and the characterization of its cell wall composition and structure. Figure 5a is a feast for the eyes, showing that b-1,6 glucan is vital for the outer fibrillar layer of the cell wall. Also much appreciated was the summary figure, Figure 7, which presents the main findings in digestible form.

      Strengths: 

      The work is highly significant for the fungal pathogen field especially, and more broadly for anyone studying fungi, antifungal drugs, or antifungal immune responses.

      The manuscript is very readable, which is important because most readers will be cell wall nonspecialists.

      The authors construct a key quadruple mutant, which is not trivial even with CRISPR methods, and validate it with a complemented strain. This aspect of the study sets the bar high. The authors develop new and transferable methods for b-1,6 glucan analysis. 

      Weaknesses: 

      The one "famous" cell type that would have been interesting to include is the opaque cell. This could be included in a future paper.

      Reviewer #3 (Public Review): 

      Summary: 

      The cell wall of human fungal pathogens, such as Candida albicans, is crucial for structural support and modulating the host immune response. Although extensively studied in yeasts and molds, the structural composition has largely focused on the structural glucan b,1,3-glucan and the surface exposed mannans, while the fibrillar component β-1,6-glucan, a significant component of the well wall, has been largely overlooked. This comprehensive biochemical and immunological study by a highly experienced cell wall group provides a strong case for the importance of β-1,6-glucan contributing critically to cell wall integrity, filamentous growth, and cell wall stability resulting from defects in mannan elongation. Additionally, β-1,6-glucan responds to environmental stimuli and stresses, playing a key role in wall remodeling and immune response modulation, making it a potential critical factor for host-pathogen interactions.

      Strengths: 

      Overall, this study is well-designed and executed. It provides the first comprehensive assessment of β-1,6-glucan as a dynamic, albeit underappreciated, molecule. The role of β-1,6-glucan genetics and biochemistry has been explored in molds like Aspergillus fumigatus, but this work shines an important light on its role in Candida albicans. This is important work that is of value to Medical Mycology, since β-1,6-glucan plays more than just a structural role in the wall. It may serve as a PAMP and a potential modulator of host-pathogen interactions. In keeping with this important role, the manuscript rigor would benefit from a more physiological evaluation ex vivo and preferably in vivo, assessment on stimulating the immune system within in the cell wall and not just as a purified component. This is a critical outcome measure for this study and gets squarely at its importance for host-pathogen interactions, especially in response to environmental stimuli and drug exposure.

      Response to reviewers (Public reviews):

      We thank all the three reviewers for their opinion on our work on Candida albicans β-1,6-glucan, which highlights the importance of this cell wall component in the biology of fungi. Here are our responses to their comments for public reviews:

      (1) Indeed, the data presented for immunological studies is preliminary. It has been acknowledged by the reviewers that our analysis providing insights into the biosynthetic pathways involved in comprehensive in dealing with organization and dynamics of the β-1,6-glucan polymer in relation with other cell wall components and environmental conditions (temperature, stress, nutrient availability, etc.). However, we anticipated that there would be immediate curiosity as to what the immunological contribution of β-1,6 glucan and we therefore felt we needed to initiative these studies and include them. We therefore performed immunological studies to assess whether β-1,6-glucans act as a pathogen-associated molecular pattern (PAMP), and if so, what its immunostimulatory potential is. Our data clearly suggest that β-1,6-glucan is a PAMP, and consequently lead to several questions: (a) what are the host immune receptors involved in the recognition of this polysaccharide, and thereby the downstream signaling pathways, (b) how is β-1,6-glucan differentially recognized by the host when C. albicans switches from a commensal to an opportunistic pathogen, and (c) how does the host environment impact the exposure of this polysaccharide on the fungal surface. We believe addressing these questions is beyond the scope of the present manuscript and aim to present new data in future manuscript. Nonetheless, in the revised manuscript, suggest approaches that we can take to identify the receptor that could be involved in the recognition of β-1,6-glucan. Moreover, we have modified the discussion presenting it based on the data rather than being descriptive.  

      (2) It will be interesting to assess the organization of β-1,6-glucan and other cell wall components in the opaque cells. It is documented that the opaque cells are induced at acidic pH and in the presence of N-acetylglucosamine and CO2. Our data shows that pH has an impact on β-1,6-glucan, which suggests that there will be differential organization of this polysaccharide in the cell wall of opaque cells. As suggested by the reviewer, we will include analysis of opaque cells (and other C. albicans cell types) in future studies. 

      With the exception of these major new avenues for this research, our revision can address each of the comments provided by the reviewers.

      Recommendations for the authors

      Reviewer #1 (Recommendations For The Authors):

      Although the study is very interesting, there are some loose ends that need to be combined to strengthen the manuscript. For example, the immunological studies are rather preliminary and need at least some substantiation. Also, at this stage, the manuscript in some places remains a bit too descriptive and needs the elucidation of potential causalities.

      Specifically: 

      (1) As you showed, defects in chitin content led to a decrease in the cross-linking of β-glucans in the inner wall that corresponded to the effect of nikkomycin-treated C. albicans phenotype; conversely, an increase in chitin content led to more cross-linking of β-glucans as observed in the FKS1 mutant or in the presence of caspofungin. What is the mechanistic reason for these observations? 

      On one hand, yeast cell wall chitin occurs in three forms: free and covalently linked to β-1,3-glucan or β-1,6-glucan; crosslinked β-glucan-chitin forms core fibrillar structure resistant to alkali. A decrease in the chitin content, therefore, affect β-glucan-chitin crosslinking thereby making β-glucan alkali-soluble. On the other hand, a decrease in the β-glucan content, as in FKS1 mutant or upon caspofungin treatment, results in increased cell wall chitin and β-glucan-chitin contents. A decrease in the β-1,3-glucan biosynthesis is associated with upregulation of CRH1 involved in the β-glucan-chitin crosslinking, which explains an increased β-glucan-chitin content in the FKS1 mutant or upon caspofungin treatment. We have included in this discussion in the revised manuscript (p14, lines 2-10).     

      (2) The β-1,6-glucan biosynthesis is stimulated via a compensatory pathway when there is a defect in O- and N-linked cell wall mannan biosynthesis. Why? causality? Hypothesis?  

      Two phenomena were observed related to β-1,6-glucan and mannan biosynthesis: 1) a defect in the elongation of N-mannan led to an increase in the β-1,6-glucan content; 2) a defect of O-mannan elongation resulted in the reduce size of β-1,6-glucan chains, however, increased their branching. These observations of our study suggest a global rescue program of the cell wall damage that could occur due to defect in one of the cell wall contents. We have discussed this in the revised manuscript (p14, last paragraph, p15 first paragraph). Moreover, β-1,3-glucan and chitin are synthesized by respective membrane bound synthases, and a defect in of their synthesis is compensated by the other. In line, although need to be validated for β-1,6-glucan, biosynthesis of mannan and β-1,6-glucan seem to initiate intracellularly. Therefore, possibility is that the defective mannan biosynthesis could be compensated by β-1,6-glucan biosynthesis, but need to be further validated experimentally. 

      (3) You showed that the removal of β-1,6-glucan by periodate oxidation (AI-OxP) led to a significant decrease in the IL-8, IL-6, IL-1β, TNF-α, C5a, and IL-10 released, suggesting that their stimulation was in part β-1,6-glucan dependent. What is the consequence of the stimulation, e.g. better phagocytosis, etc.? This needs some more experiments, otherwise the data is purely descriptive, as the conclusion. Also, what do you want to show with the activation of the complement system? Is ß1,6-glucan detected by complement receptors? I think this is really a loose end. I think it is necessary to provide more data on this observation, which I think lacks control with serum lacking complement, this should then be moved to the main manuscript. 

      In this study, our aim was to assess whether β-1,6-glucan acts as a pathogen-associated molecular pattern (PAMP) of C. albicans, and if yes, what is its immunostimulatory capacity/potential. Our data confirms that, indeed, β-1,6-glucan acts as a PAMP, and its removal significantly reduces the immunostimulatory capacity of the fibrillar core structure of the C. albicans cell wall. On the other hand, data provided in the revised manuscript (see updated Figure S14, discussion p13 lines 16-21) indicate that the human serum factors significantly enhance the immunostimulatory capacity of β1,6-glucan and that β-1,6-glucan interacts with the complement component C3b. However, addressing the role of β-1,6-glucan in phagocytosis using β-1,6-glucan deletion mutant will not be possible as the cell wall of this mutant is modified, and β-1,6-glucan is not the only cell wall component interacting with C3b. Alternate is to coat β-1,6-glucan on beads and use to study phagocytosis and identify immune receptors; however, these are beyond the scope of our present study/focus.      

      (4) Also, you suggested that β-1,6-glucan and β-1,3-glucan stimulate innate immune cells in distinct ways. Please provide more data on this interesting suggestion. You can block the dectin-1 receptor for example or use dectin-1 deficient macrophages from mice. The part on the immune stimulation needs to be optimized. 

      Stimulation of immune cells by pustulan (insoluble linear β-1,6-glucan) via a dectin-1independent pathway has been described previously (PMIDs: 18005717, 16371356) as discussed in the manuscript. Our preliminary data indicate that dectin-1 blocking on immune cells (using antidectin-1 antibodies) has no effect on the immunostimulatory potential of β-1,6-glucan, unlike AI and AI-OxP that showed significantly reduced cytokine secretion by the immune cells upon dectin-1 blocking. Deciphering the β-1,6-glucan recognition and its immunomodulatory pathways are underway, and will be the subject of our future study/manuscript.   

      (5) β-1,6-glucan and mannan productions are coupled. What is the hypothesis? Is it due to the necessity of mannan residues in ß-1,6-glucan biosynthesis enzymes from the ER? Can that be experimentally proven? 

      β-1,6-glucan and mannan synthesis should be coupled in two ways. First, as mentioned above (Response 2), defects in mannan elongation led to an alteration of β-1,6-glucan production. Second, early steps of N-glycosylation led to a strong reduction of β-1,6-glucan size and its cell wall content. However, we do not believe that the synthesis of N-glycan is required for the synthesis of an acceptor essential to β-1,6-glucan synthesis. Defect in N-mannan elongation led to a global cell wall remodeling as described above. Kre5, Rot2 and Cwh41 are part of the calnexin cycle involved in the control of N-glycoprotein folding in the ER, suggesting that some protein directly involved in the β-1,6-glucan synthesis required a folding quality control to be active. We modified our discussion, accordingly, highlighting these points (p14, last paragraph, p15 second paragraph).

      (6) As PHR1 and PHR2 genes are strongly regulated by external pH, the compensatory differences described may be explained by pH-dependent regulation of β-1,6-glucan synthesis.' Please check. Also, could the pH regulation form the basis of e.g. differences you found for ß-1,6-glucan under different environmental conditions, i.e., growth on different carbon sources leads to different external pH values, as shown for many fungi?  

      We agree that environmental pH is dependent on carbon source and pH varies during growth curve. To test the effect of pH we buffered the medium with 100 mM MOPS or MES. Clearly, Fig. 2 and S1 show that the pH has an effect on the cell wall composition and polymer exposure as previously described (PMID: 28542528). Here, we show that pH has an impact on the β-1,6-glucan size as well as its branching. However, in buffered medium, addition of organic acid (such as acetate, propionate, butyrate or lactate) had an impact on cell wall composition, showing that not only pH has an effect on cell wall composition. About _phr1_Δ/Δ and _phr2_Δ/Δ mutants, we believe that the difference in the cell wall composition observed between mutants is mainly due to the pH-dependent regulation, which we indicated in the discussion (p14, end of first paragraph).

      Minor: 

      (1) In Figure 7B: dynamism should be replaced by dynamic and in term is rather in terms.  

      Modified as suggested.

      (2) Replace molecular size with molecular mass when you give daltons. 

      Molecular size has been replaced by molecular weight, when presented as daltons.

      (3) Page 7: for explanation, please add that nikkomycin is a chitin biosynthesis inhibitor.   

      As suggested, explained that nikkomycin is a chitin biosynthesis inhibitor.

      Reviewer #2 (Recommendations For The Authors):

      (1) I wondered if the increased chitin content of hyphae might reflect growth on the precursor GlcNAc. Have you tested hyphae that are induced in other ways? (2) Related to point 1, did you look at the relative abundance of yeast vs hyphae in the preparation? I wonder if yeast contamination might have reduced the extent of the composition changes observed. 

      We used GlcNAc as hyphae inducer as: 1) in presence of GlcNAc, hyphae are produced without any yeast contamination; in this condition, we observed an increase in the chitin content, as described, in hyphae (PMID: 16423067); 2) we excluded using of serum, another condition inducing hyphal formation, as we could not control serum factors that may impact cell wall composition. We now indicate in the methods section that hyphae induced by GlcNAc were not contaminated by yeast (p17, line 3). 

      (3) I recommend rephrasing the first sentence of the Figure 2 legend: "Cells were grown in liquid SD medium at 37oC at exponential phase under different growth conditions." The conditions varied extensively - stationary is not exponential; biofilm is probably not exponential. Also, the "D" in "SD" stands for dextrose, and the carbon source varied a good deal. Perhaps you could say: "Cells were grown in liquid synthetic medium at 37oC under different growth conditions, as specified in Methods." 

      Sentences have been rephrased.  

      (4) Figure 7b has a typo: "dependant" for "dependent".

      Typo-error has been corrected.

      Reviewer #3 (Recommendations For The Authors):

      To explore the biochemical composition of the cell wall, the authors fractionated the wall component into three categories based on polymer properties and reticulations: sodium-dodecyl-sulphate-βmercaptoethanol (SDS-β-ME) extract, alkali-insoluble (AI), and alkali-soluble (AS) fractions, and they developed several independent methods to distinguish between β-1,3-glucans and β-1,6-glucans. The composition and surface exposure of fungal cell wall polymers is known to depend on environmental growth conditions. It was shown that the cell wall of C. albicans hyphae increased chitin content (10% vs. 3%) and decreased β-1,6-glucan (18% vs. 23%) and mannan (13% vs. 20%) compared to the yeast form, and the reduced β-1,6-glucan content was associated with a smaller β1,6-glucan size (43 vs. 58 kDa), suggesting that both the content and structure of β-1,6-glucan are regulated during growth and cellular morphogenesis. Similar behavior was observed when exposing cells to acid and neutral medium pH. The most significant cell wall alteration occurred in a lactatecontaining medium, which led to a sharp reduction in structural core polysaccharides: chitin (-43%), β-1,3-glucan (-48%), and β-1,6-glucan (-72%). This reduction aligns with the previously observed decreases in inner cell wall layer thickness. As expected, the authors found that modulating chitin content genetically (chs3Δ/Δ knockout mutant) led to an increase of both β-1,3-glucan and β-1,6glucan. An increase in chitin content following genetic alteration of FKS genes impacting glucan synthase or after exposure to the echinocandin caspofungin led to enhanced cross-linking of βglucans. A slight increase in the β-1,3-glucan branching was also observed in the mnt1/mnt2Δ/Δ double mutant, suggesting that β-1,6-glucan and mannan synthesis may be coupled.

      - This effect is not that pronounced, and the relationship appears somewhat overstated and may reflect an indirect interaction. The authors should address accordingly. 

      We agree that this sentence was overstated. To make it clearer and less pronounced, we divided this sentence into to two with less pronounced statements (p8, line 34).

      The genetics of β-1,6-glucan biosynthesis appear complex and a figure describing putative roles for specific genes would be beneficial. For example, KRE6 is a glucosyl hydrolase required for beta1,6-glucan biosynthesis.

      - It would be valuable to better understand the overall biosynthetic process. Please elaborate more in a figure. 

      Although proteins/enzymatic activities directly involved in the β-1,6-glucan biosynthesis have not yet been identified, as suggested by this reviewer, we included a schematic representation of this process based on our hypothesis (Figure S15, and p15 lines 17-22 in revised manuscript), indicating the possible involvement of Kre6p.  

      The deletion of KRE6 homologs, essential for β-1,6-glucan biosynthesis, resulted in the absence of β-1,6-glucan production, and significant structural alterations of the cell wall. This result nicely confirms the important role of β-1,6-glucan in regulating cell wall homeostasis. The absence of β1,6-glucan was associated with increased (mutant v. WT) chitin content (9.5% vs. 2.5%) and highly branched β- β-1,6-glucan 1,3-glucan (48% vs. 20%). TEM ultrastructure studies nicely showed the change in cell wall overall architecture. From a drug discovery perspective, since the blockade of β1,6-glucan did not block growth, it may have more value as a potential virulence target. This would be valuable but needs to be assessed in animal model challenge competition experiments.

      - The authors may want to elaborate more. 

      We agree and modified “antifungal target” as “potential virulence target”.

      It is well known that β-1,3-glucan, mannan, and chitin function serve as PAMPs, which induce immune responses. The role of β-1,6-glucan as a PAMP is not well understood, and the authors provide evidence that different cell wall extracted fractions with enriched constituents induce immune responses invoking cytokines, chemokines, and acute phase proteins, as well as the complement system. While this data clearly shows that β-1,6-glucan is immunologically active and potentially important for host-pathogen interactions, the analysis is preliminary and falls short of making this case. 

      - This is a critical point in getting at the potential host signaling of β-1,6-glucan contained in the cell wall or shed by the cell (is this known?)

      - This analysis would be bolstered significantly by examining stimulation relative to other cell wall components, and most importantly, whole cell modulation of β-1,6-glucan exposure for immune presentation, and not just unnatural concentrated extracts. This can be readily accomplished with the various mutants in hand, as well as after exposure to various antifungal agents echinocandins and nikkomycins) (see Hohl et al. 2008 JID). Additional validation would benefit from animal model studies to examine in vivo immune modulation.

      We agree with the reviewer. However, the main focus of our present work was to study the organization and dynamics of C. albicans cell wall β-1,6-glucan, and to explore its possible role as pathogen-associated molecular pattern (PAMP). Our study indicates that, indeed, β-1,6-glucan acts as a PAMP with immunostimulatory potential. As pointed by this reviewer, and similar to β-1,3glucans, the exposure of β-1,6-glucan is probably a key point in immune response. However, this investigation beyond the scope of this study, underway and will be presented in our future work.

      - The Discussion would also benefit from an analysis of how β-1,6-glucan in Aspergillus fumigatus, which was largely elucidated by the same primary authors. 

      To our knowledge, β-1,6-glucan has never been identified, either by chemical analysis (PMID: 10869365; PMID: 36836270) or solid-state NMR (PMID: 34732740), in the cell wall of A. fumigatus, although a homolog of KRE6 is present in A. fumigatus but with unknown function.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their detailed comments. Several comments revolved around potential improvements in the 3D reconstructions that are obtained in later steps of the image processing pipelines for single-particle cryoEM and cryo-electron tomography. We have not investigated how our improvements in CTFFIND5 affect these downstream results and can therefore not make specific and quantitative statements in this regard. However, CTFFIND5 provided additional information about the sample that users will find useful (thickness, tilt) for selecting the data they would like to include in later processing, and how to process them. Furthermore, when the sample tilt of a thin specimen is known, local defocus estimates (e.g., per-particle defocus estimates) will be more accurate compared to estimates that ignore tilt information. In the following, we provide point-by-point responses to the reviewers’ comments.

      Reviewer #1 (Public Review):

      This work presents CTFFIND5, a new version of the software for determination of the Contrast Transfer Function (CTF) that models the distortions introduced by the microscope in cryoEM images. CTFFIND5 can take acquisition geometry and sample thickness into consideration to improve CTF estimation.

      To estimate tilt (tilt angle and tilt axis), the input image is split into tiles and correlation coefficients are computed between their power spectra and a local CTF model that includes the defocus variation according to a tilted plane. As a final step, by applying a rescaling factor to the power spectra of the tiles, an average tilt-corrected power spectrum is obtained and used for diagnostic purposes and to estimate the goodness of fit. This global procedure and the rescaling factor resemble those used in Bsoft, Warp, etc, with determination of the tilt parameters being a feature specific of CTFFIND5 (and formerly CTFTILT). The performance of the algorithm is evaluated with tilted 2D crystals and tiltseries, demonstrating accurate tilt estimation in some cases and some limitations in others. Further analysis of CTF determination with tilt-series, particularly showing whether there is accurate or stable estimation at high tilts, might be helpful to show the robustness of CTFFIND5 in cryoET.

      CTFFIND5 represents the first CTF determination tool that considers the thickness-related modulation envelope of the CTF firstly described by McMullan et al. (2015) and experimentally confirmed by Tichelaar et al. (2020). To this end, CTFFIND5 uses a new CTF model that takes the sample thickness into account. CTFFIND5 thus provides more accurate CTF estimation and, furthermore, gives an estimation of the sample thickness, which may be a valuable resource to judge the potential for high resolution. To evaluate the accuracy of thickness estimation in CTFFIND5, the authors use the Lambert-Beer law on energy-filtered data and also tomographic data, thus demonstrating that the estimates are reasonable for images with exposure around 30 e/A2. While consideration of sample thickness in CTF determination sounds ideally suited for cryoET, practical application under the standard acquisition protocols in cryoET (exposure of 3-5 e/A2 per image) is still limited. In this regard, the authors are honest in the conclusions and clearly identify the areas where thickness-aware CTF determination will be valuable at present: e.g. in situ single particle analysis and in vitro single particle cryoEM of purified samples at low voltages.

      In conclusion, the manuscript introduces novel methods inside CTFFIND5 that improve CTF estimation, namely acquisition geometry and sample thickness. The evaluation demonstrates the performance of the new tool, with fairly accurate estimates of tilt axis, tilt angle and sample thickness and improved CTF estimation. The manuscript critically defines the current range of application of the new methods in cryoEM.

      Reviewer #2 (Public Review):

      Summary:

      This paper describes the latest version of the most popular program for CTF estimation for cryo-EM images: CTFFIND5. New features in CTFFIND5 are the estimation of tilt geometry, including for samples, like FIB-milled lamellae, that are pre-tilted along a different axis than the tilt axis of the tomographic experiment, plus the estimation of sample thickness from the expanded CTF model described by McMullan et al (2015). The results convincingly show the added value of the program for thicker and tilted images, such as are common in modern cryo-ET experiments. The program will therefore have a considerable impact on the field.

      I have only minor suggestions for improvement below:

      Abstract: "[CTF estimation] has been one of the key aspects of the resolution revolution"-> This is a bit over the top. Not much changed in the actual algorithms for CTF estimation during the resolution revolution.

      We have removed this statement in the abstract.

      L34: "These parameters" -> Cs is typically given, only defocus (and if relevant phase shift) are estimated.

      We have modified the introduction to reflect this. Page 3, L30-35

      L110-116: The text is ambiguous: are rotations defined clockwise or counter-clockwise? It would be good to explicitly state what subsequent rotations, in which directions and around which axes this transformation matrix (and the input/output angles in CTFFIND5) correspond to.

      Thank you for pointing this out. We have revised the Methods section, Page 4 L57-61,  to explicitly define the convention for the tilt axis and tilt angle. We have also modified Fig. 1b to illustrate our convention for the tilt axis.

      L129-130: As a suggestion: it would be relatively easy, and possibly beneficial to the user, to implement a high-resolution limit that varies with the accumulated dose on the sample. One example of this exists in the tomography pipeline of RELION-5.

      We appreciate the suggestion. However, since CTFFIND5 currently has no concept of a tilt-series and treats every micrograph independently, this would not be trivial to implement. As detailed below, CTFFIND5 in its current form is not targeted toward tomography processing, but its features might be useful for its use in pipelines for tomography processing, such as RELION-5. We made this more explicit in the conclusion section. Page 16 L390-399

      Substituting Eq (7) into Eq (6) yields ksi=pi, which cannot be true. If t is the sample thickness, then how can this be a function of the frequency g of the first node of the CTF function? The former is a feature of the sample, the latter is a parameter of the optical system. This needs correction.

      We have rewritten the text describing equations 7 and 6 to avoid this confusion (Page 7, L146-153). The reviewer is right that inserting Eq. 7 into Eq. 6 yields ksi=psi, as in fact Eq. 7 is derived from Eq. 6, by substituting ksi=psi, since this describes the condition for the first node. Also, in this context, nodes in the CTF function refer to the places where the term sinc(ksi) becomes zero and therefore the CTF is apparently "flat". The frequency at which this occurs is sample-thickness dependent. As explained below, the previous version of our manuscript did not point out the difference between the first zero and first node in the power spectrum. We have amended Fig. 3a to make this difference clearer.

      Reviewer #3 (Public Review):

      In this manuscript, the authors detail improvements in the core CTFFIND (CTFFIND5 as implemented in cisTEM) algorithm that better estimates CTF parameters from titled micrographs and those that exhibit signal attenuation due to ice thickness. These improvements typically yield more accurate CTF values that better represent the data. Although some of the improvements result in slower calculations per micrograph, these can be easily overcome through parallelization.

      There are some concerns outlined below that would benefit from further evaluation by the authors.

      For the examples shown in Figure 3b, given the small differences in estimated defocus1 and 2, what type of improvements would be expected in the reconstructed tomograms? Do such improvements in estimates manifest in better tilt-series reconstruction?

      As explained in our preface, we do not believe that these difference would manifest in any improvements during tilt-series reconstruction and would not create any meaningful differences, even when tomograms are reconstructed with CTF correction. They might become meaningful during subtomogram averaging, but subtomograms are usually corrected using per-particle CTF estimation, similar to single-particle processing. We have included a new paragraph in the discussion to describe potential benefits of CTFFIND5 for cryo-tomography, Page 16 L390-399.

      Similarly, the data shown in Figure 3C shows minimal improvements in the CTF resolution estimate (e.g., 4.3 versus 4.2 Å), but exhibited several hundred Å difference in defocus values. How do such differences impact downstream processing? Is such a difference overcame by per-particle (local) CTF refinements (like the authors mention in the discussion, see below)?

      The difference in the defocus estimate (~600A) is substantially smaller than the thickness of the sample (2000A). Hence both estimates may be valid, depending on which particles inside the sample are considered. Particles with larger defocus errors could certainly be corrected by per-particle CTF refinement as long as the search range is chosen to be large enough. The main benefit of using CTFFIND5 is information for the user regarding the sample thickness to set the defocus search range appropriately.

      At which point does the thickness of the specimen preclude the ice thickness modulation to be included for "accurate" estimate? 500Å? 1000Å? 2000Å? Based on the data shown in Figure 3B, as high as 969 Å thick specimens benefit moderately (4.6 versus 3.4 Å fit estimate), but perhaps not significantly, from the ice thickness estimation. Considering the increased computational time for ice thickness estimation, such an estimate of when to incorporate for single-particle workflows would be beneficial.

      As explained in our preface, the main benefit for single-particle workflows will be sample tilt estimation. This will provide more accurate per-particle defocus estimates, compared to estimates that do not take the tilt into account. For single-particle samples, the ice thickness in holes is probably more efficiently monitored using the Beer-Lambert law.

      It would seem that this statement could be evaluated herein: "the analysis of images of purified samples recorded at lower acceleration voltages, e.g., 100 keV (McMullan et al., 2023), may also benefit since thickness-dependent CTF modulations will appear at lower resolution with longer electron wavelengths". There are numerous examples of 300kV, 200kV, and 100kV EMPIAR datasets to be compared and recommendations would be welcomed.

      Publicly available datasets recorded at 100kV and 200kV were collected in very thin ice, making it difficult to demonstrate the stated benefits. We have removed this statement.

      Although logical, this statement is not supported by the data presented in this manuscript: "The improvements of CTFFIND5 will provide better starting values for this refinement, yielding better overall CTF estimation and recovery of high-resolution information during 3D reconstruction."

      We have revised this statement and now explain that the sample tilt information will provide more accurate per-particle defocus estimates, compared to estimates that do not take the tilt into account, Page 17, L400-409. We did not investigate how this will affect downstream processing results.

      Moreso, the lack of single-particle data evaluation does present a concern. Naively, these improvements would benefit all cryoEM data, regardless of modality.

      We agree with the reviewer that all cryoEM modalities should benefit from more accurate defocus value estimates and have amended our concluding statement. However, how improved defocus values will benefit downstream processing results will depend on the processing pipeline, which includes various points of user input and data-dependent choices. We have therefore limited our analysis to the outputs of CTFFIND5.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) CTFFIND5 in cryo-ET

      (1.1) CTFFIND4 is prone to unreliable CTF estimates at high tilts in cryoET, a situation that can be identified by high variability or 'unstable' estimates as a function of the tilt angle. Prof. Mastronarde recently illustrated this situation in his article JSB 216:108057, 2024 (Fig. 7). Therefore, the authors could add results to show whether the improvements to tilt estimation introduced in CTFFIND5 overcome this problem. So, in addition to the estimation of tilt angle and tilt axis in Figure 2, the estimated defocus could also be shown.

      We have worked with Prof. Mastronarde to help him use CTFFIND as a tool in his cryoET processing pipeline. Mastronarde chose CTFFIND because it contains algorithms and architecture that he could optimize for his purposes. CTFFIND5 is currently lacking the concept of a tilt series and can therefore not take advantage of the additional information that comes with tilt series. Our own applications for CTFFIND5 currently do not include tomography, and our results presented in Fig. 2 were obtained for validation of the tilt estimation feature. We did not attempt to duplicate Mastronarde’s optimization for reliable tilt series processing.

      Figure 2b of this manuscript already suggests that CTFFIND5 may exhibit some variability of defocus estimates at high tilts (in view of the variability of tilt axis angle). A strategy used in IMOD and TOMOCTF is to consider the tiles of a group of consecutive images (typically 35; especially at high tilts) to add more signal to the average spectrum, thus providing more reliable estimates (illustrated in Mastronarde's article JSB 216:108057, 2024, Fig. 8). Will the authors think that CTFFIND5 might include a strategy like this for cryoET tilt-series?

      We currently do not have plans to develop CTFFIND5 as a tool for tomography as there are already other excellent tools available, some of them based on CTFFIND’s basic algorithms (see previous comment).

      (1.2) In cryoET, the CTF is often determined on the aligned tilt-series, with the tilt axis typically running along the Y axis. Has CTFFIND5 got the option to exclude estimation of the tilt geometry (tilt angle and/or axis) and, instead, take tilt geometry directly from the alignment and/or from the microscope??. This would significantly speed up determination of the CTF (in 1-2 seconds per image, according to Table 2) while still taking advantage of all power spectra in tilted images (as described in their tilt estimation algorithm) for improved CTF estimation. This strategy would be similar to what it is done in Bsoft and IMOD.

      This is an excellent idea and we may implement this in an updated version. The current version is primarily meant for lamellae and single-particle samples where we usually have a single tilt in an unknown direction. For these cases, the suggested feature will have less benefit. 

      Thus, I suggest that the authors should also include results comparing CTF estimation in aligned tilt-series with CTFFIND4 and with CTFFIND5 (with no tilt estimation but indeed taking the tilt information from the alignment or the microscope into account). The results would show that CTFFIND5 is more robust than CTFFIND4, especially at high tilts.

      Thank you for this suggestion. We are now showing a comparison of defocus estimates from CTFFIND4 and CTFFIND5 in Fig. 2. Indeed, in one case CTFFIND5 seems to report more robust defocus values at high tilt.

      (1.3) The newer improvements in CTFFIND5 seem to be especially tailored to cryoET. The cryoET community will be highly attracted by these improvements. However, the current standard acquisition protocols (exposure of 3-5 e/A2 per image, tilts up to 60 degrees, etc) limit their full exploitation, particularly the thickness-aware CTF determination. I believe that adding a paragraph exclusively focused on cryoET and describing the potential benefits from CTFFIND5 and their limitations could enrich the Conclusion section. In this paragraph, the authors could highlight the great benefits from the tilt-aware CTF estimation. They could also discuss the current standard acquisition protocols (e.g. exposure 3-5 e/A2 per image, nominal defocus 3-5 microns, cellular thickness from 150 nm up to 200-300 nm that, at a tilt of 60 degrees, become 300 nm up to 400-600 nm) and their implications for the potential benefit from the improvements available in CTFFIND5.

      This reviewer is clearly excited about the potential application of CTFFIND5 in cryoET. We are sorry that we are currently not developing CTFFIND5 in this direction.

      (1.4) Apologies for insisting on cryoET in the previous points. I am just trying to suggest ideas to make CTFFIND5 even more helpful in cryoET. You can consider them now, or for a future version of the software, or just ignore them.

      Thanks for your suggestions. Since there is clearly demand for tools to process tomographic tilt series, we will keep these suggestions in mind for the future development of CTFFIND.

      (2) Tilt estimation

      (2.1) Page 4. Tiles for the initial steps in tilt estimation are of size 128x128.  At which point tiles of larger size (e.g. 512x512) are used?. Please, define.

      Thank you for pointing out this lack of clarity. For the tilt estimation, we used a tile size 128 x 128, which has been hard-coded in our program, as mentioned in line 68 on page4. For generating the final power spectrum, we usually use size 512 x 512. This tile size can be defined by the user when running the program. We have now clarified this on Page 4, L74-76.

      (2.2) Page 6 and/or page 11: evaluation of tilt estimation with tilt-series.

      Please indicate the acquisition details of the tilt-series used for the evaluation, especially the exposure per image. This information is neither available in this manuscript nor in Elferich et al., 2022.

      Please, add these acquisition details similarly to page 9 in this manuscript (evaluation of sample thickness estimation using tomography): pixel size, exposure per image and total exposure, number of images, tilt range and interval

      The same tilt-series were used to verify tilt-estimation and sample thickness. We have revised the Methods section to make this clear on Page5, L98-105 and Page 10, L202.

      (2.3) Page 10. Section Results. Subsection Tilt estimation.

      The authors use "defocus correction" to refer to their method for scaling the power spectra. "Defocus correction" might perhaps be a misleading term. In contrast, in page 4 the authors use the term "tilt correction". Please, revise and make it consistent throughout the manuscript.

      We agree and now use “tilt correction” throughout the manuscript.

      (2.4) Legend of Figure 2.

      Please add what the red dashed curve represents. Also, please note there might be an error in the estimated stage tilt axis angle: the legend states "171.8" where in the main text it is "178.2" (apparently, the latter is the correct one).

      Thank you for pointing this out. We have modified the legend and changed the number in the legend to 178.2°.

      (3) Thickness estimation

      (3.1) Line 141, page 7. The sentence reads: "The modulation of the CTF due to sample thickness t is described by the function E (current Equation 6), "  I believe that the modulation envelope of the CTF due to sample thickness is not really E (current Equation 6), but the function sinc(E). Please, revise.

      We have revised the manuscript as advised, Page 7, L148.

      (3.2) Line 148, page 7. The sentence reads "an estimate of the frequency g of the first node of the CTF_t function "

      The concept of 'node' was introduced by Tichelaar et al. (2020). The authors should not assume that this concept is familiar to the readership. So, it is suggested that the authors should introduce this concept in this section. For instance, just after Equation 6 they could add a sentence like this: "This sinc modulation envelope increasingly attenuates the amplitude of the Thon rings with increasing spatial frequencies in an oscillatory fashion, with locations where the amplitude is zero known as nodes (Tichelaar et al., 2020)."

      Thank you for this suggestion. We have revised the manuscript accordingly (Page 7, L151-156) and also marked the position of the first node in Fig. 3a.

      (3.3) Line 154, page 8: A citation is lacking: "(corrected for astigmatism, as described in )". Perhaps the authors refer to the EPA (EquiPhase Averaging) method introduced by Zhang, JSB 193:1-12, 2016, 10.1016/j.jsb.2015.11.003.

      Thanks for spotting this omission. We have added the appropriate reference.

      (3.4) Figure 3.

      (3.4.1) Perhaps, the EPA (EquiPhase Averaging) method is used to reduce the 2D CTF to 1D curves, as represented in Figure 3b and 3c. Please, mention this in the legend of the figure or in the main text referring to Figure 3. The same might apply to Figure 1c.

      Thanks for spotting this omission. We have clarified that this is indeed an EPA in the figure legends.

      (3.4.2) Please indicate what the colored curves represent in 3b and 3c: The fitted CTF model (dashed red) and the EPA or astimatism-corrected radial average of power spectrum (solid black) ?

      Thanks for spotting this omission. We have added descriptions of the colored lines in these plots (red = modeled CTF, blue = goodness of fit).

      (3.4.3) Please note that the power spectrum (solid black curves in Figure 3b and 3c) does not look the same in the top and bottom panels: Without thickness estimation (top panels), the power spectrum is in the range [0,1] in Y, as expected. However, with thickness estimation (bottom panels), the power spectrum seems to have undergone a frequencydependent transformation (a rescaling or something that makes the power spectrum oscillates around 0.5 in Y). This transformation of the power spectrum resembles the thickness-induced sinc modulation of the CTF and seems to be appropriate to better fit the new thickness-aware CTF_t model in CTFFIND5 to the (transformed) power spectrum. However, this transformation of the power spectrum is not mentioned in the manuscript at all. Instead, according to the main text (page 8), the fitting method is based on the crosscorrelation between the new CTF model and the power spectrum, so I was expecting to see the same power spectrum black curve in the top and bottom panels. Please, clarify.

      Indeed, CTFFIND5 displays the power spectrum differently after thickness estimation. We have revised the methods to explain this (page8, L178-181). The reviewer is also correct that the 1D lines plots of the Thon ring patterns in Fig. 3b and 3c are not identical. These 1D plots are generated from the 2D plots according to the fitted CTF, which is needed to follow the astigmatic rings and avoid blurring of the oscillations in the radial average. This means that different CTF fits will also result in somewhat different 1D plots. However, these differences only affect the 1D EPA plots shown to the user. The actual fitting is performed against the same 2D spectra.

      (3.4.4) Line 319, Page 14. "A linear fit revealed .." It would be good to add a line with the linear fit in Figure 5.

      Agreed. The revised Fig. 5 now shows a line for the linear fit.

      (3.5) New CTF Model

      It is not clear from the text if the new CTF_t model is used at all times in CTFFIND5 or only when the user requests thickness estimation. Related to this, if the user requests both tilt estimation and thickness estimation, how is the CTF estimation process carried out in CTFFIND5?: Tilt and thickness are estimated at the same time? or one after the other (i.e. first the tilt is estimated, then followed by thickness estimation)?. Please, clarify.

      The new CTF_t model is only used when the user requests thickness estimation. When both tilt-estimation and thickness estimation are requested, the tilt is estimated first and the corrected power spectrum is then fitted using the CTF_t model. We have revised the Methods section to explain this better, Page 8, L158-159.

      (4) Pages 14-15. Section "CTF estimation and correction assists "

      This section just shows that correction of a highly underfocused image for the CTF with phase flipping or a Wiener filter reduces the CTF-induced fringes. I do not really understand the inclusion of this section to the manuscript. There is no contribution related to CTFFIND5.  

      The ability to apply a CTF correction to the input image according to Tegunov & Cramer is a new feature of apply_ctf, a program included with cisTEM. We think that this section fits into the theme of CTFFIND5 because the correction adds valuable information about the samples, such as FIB-milled lamellae.

      If the authors prefer to keep this section, then please take the following points into account:

      (4.1) Figure 6b: This is the only time that the term "EPA" (EquiPhase Averaging, I guess) is used in the manuscript. Please, spell it out somewhere in the manuscript, define what it means and add a proper citation, if convenient. This point is related to point 3.3 above.

      We have added the appropriate reference and defined EPA in the methods section as indicated in the reply to point 3.3.

      (4.2) Figure 6d. The contrast of this image is poor. Please, increase the contrast (to be similar to Figure 6c) so that the details can be better discerned. The image also shows a grainy texture, likely artefacts from the Wiener filter due to excessive amplification. Maybe the 'strength parameter' S of the deconvolution Wiener filter (Tegunov & Cramer, 2019) should be tuned down or the 'fall-off parameter' F tuned up to try to attenuate these artefacts.

      Agreed. The revised figure shows panel d with increased contrast with the custom fall-off parameter set to 1.3 and the custom strength parameter set to 0.7.

      (5) CTFFIND5 runtimes

      Table 2 shows that estimation of tilt increases the runtime up to 39 s in an image of 4070x2892 and to 208 s in one of 2880x2046. There is a significant difference between these two cases (39 s vs. 208 s) and the first image is much larger than the second. Why does CTFFIND5 on the smaller image take so long compared to the larger image?

      During tilt estimation, the images are binned to a pixel size of 5 Å. This causes micrograph 1 to be substantially smaller (in pixels) than micrographs 2 and 3, resulting in the faster runtime.

      (6) Conclusions

      (6.1) In the Conclusion section, the authors could elaborate a bit the insights about the sample quality provided by CTFFIND5. This is stated in the title of the manuscript, but it was hardly mentioned in the manuscript.

      We have revised the conclusion to make this clearer (Page 16, L389-396). CTFFIND5 helps in estimating sample quality since (1) the sample thickness is an important determinant in the amount of high-resolution signal in a micrograph and (2) the estimated fit-resolution reflects more accurately the amount of signal present in a micrograph after tilt and sample thickness have been taken into account.

      (6.2) The authors nicely identify and describe the applications where thickness-aware CTF determination will be valuable: in situ single particle analysis and in vitro single particle cryoEM of purified samples at low voltages. Perhaps, CTFFIND5 will also be of great interest for single particle cryoEM of thick specimens (e.g. capsid of large viruses with diameter in the range 120-200 nm such as PBCV-1 or HSV-1).

      Agreed. We have added this case to our Conclusions. (Fig. 3d)

      (7) Typographical errors:

      line 161, page 8. "1.5 time" should be "1.5 times"

      lines 185-191. All exposures are given in 'electrons/Angstrom', not in 'electrons/square Angstrom'

      line 206, page 10. With "slides" the authors seem to mean "slices"

      line 338, page 14: "describeD by Tegunov"

      line 349, page 15. "power spectra"

      lines 366 and 368, page 15: Note that Square Angstrom is written as "A2". Put "2" with superscript.

      Thank you for pointing out these errors. They have been corrected.

      (8) References:

      Reference: Lucas et al., eLife 10 e68946. Year is lacking. Add year: 2021.

      Reference: Yan et al. 2015 cited in line 169, page 8, does not appear in Bibliography. The authors may mean: Yan et al. 2015 JSB 192:287-296, 2015  

      It would be good to cite Bsoft, as it has a procedure similar to tilt-corrected CTF estimation: Heymann, Protein Science, 2021,  

      Thank you for carefully checking the cited references. We have revised the manuscript as suggested.

      Reviewer #2 (Recommendations For The Authors):

      I have only minor suggestions for improvement below:

      L218: "these option"

      Corrected

      L243: "chevron-shape" -> V-shape would be more accessible language for non-native speakers.

      Changed

      L281: "Based on these results we conclude that CTFFIND5 will provide more accurate CTF parameters" -> Given that the maximum resolutions of the fits by the old model and the new model are nearly the same, how big would the actual advantage of the new model be for subsequent sub-tomogram averaging?

      Please see our response above, Reviewer #3 (Public Review), 

      L376: The correct reference for RELION per-particle CTF estimation is Zivanov et al, (2018) [https://elifesciences.org/articles/42166]. Also, the cryoSPARC paper referenced does not describe per-particle CTF estimation and should thus be removed from this context.

      Thanks for pointing out these mistakes, which we have now corrected. We have chosen to keep the citation for CryoSPARC to reference the general software, but have added Ziavanov et.al. 2020 as suggested by the CryoSPARC website.

      Reviewer #3 (Recommendations For The Authors):

      Minor:

      Figure 1A legend - authors mention boxes but only 1 box is shown.

      Thank you for pointing this out. For visual clarity we decided to only show one box. We have corrected the legend.

      Figure 1B - it would be nice if the boxes that contributed to the power spectra were mapped on Figure 1A

      The shown power spectra are not actual data. Instead, we show power spectra with exaggerated defocus differences for visual clarity. We have revised the figure legends to make this clear. 

      The Y-axis legends in Figure 2 are not aligned vertically

      Corrected

      Figure 3A - CTFFIND4 is missing an "I"

      Corrected

      Figure 3 - Y-axis legends are not aligned vertically

      Corrected

      Page 16, line 376, Relion should be RELION

      We have revised the manuscript as advised.

      Typo in equation 5, sinc versus sin?

      “sinc” is correct here, since this is a thickness-dependent modulation of the CTF.

      Lambert-Beer's, Lambert-Beer are used variably but curious if Beer-Lambert should be used.

      We have revised the manuscript as advised.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this study by Zhou, Wang, and colleagues, the authors utilize biventricular electromechanical simulations to illustrate how different degrees of ionic remodeling can contribute to different ECG morphologies that are observed in either acute or chronic post-myocardial infarction (MI) patients. Interestingly, the simulations show that abnormal ECG phenotypes - associated with a higher risk of sudden cardiac death - are predicted to have almost no correspondence with left ventricular ejection fraction, which is conventionally used as a risk factor for arrhythmia.

      Strengths:

      The numerical simulations are state-of-the-art, integrating detailed electrophysiology and mechanical contraction predictions, which are often modeled separately. The simulation provides mechanistic interpretation, down to the level of single-cell ionic current remodeling, for different types of ECG morphologies observed in post-MI patients. Collectively, these results demonstrate compelling and significant evidence for the need to incorporate additional risk factors for assessing post-MI patients.

      Weaknesses:

      The study is rigorous and well-performed. However, some aspects of the methodology could be clearer, and the authors could also address some aspects of the robustness of the results. Specifically, does variability in ionic currents inherent in different patients, or the location/size of the infarct and surrounding remodeled tissue impact the presentation of these ECG morphologies?

      We thank the reviewer for their considered evaluation. In response to the reviewer’s comments regarding variability in ionic currents, we have added simulations using a n=17 populations of models with variability in ionic conductances in the baseline ToR-ORd model to the paper, to show the effect of such variation on the post-MI ECG presentation in acute and chronic conditions. This is now described in the Methods [lines 140, 158-161, 242-244, 245-246, 261-263], and shown in the methods Figure 1A, 1B. The ECG results using this population of models are shown in Figure 2C and described in [lines 333-335] and the pressure volume results using the population of models are shown in Figure 5A and 5B and described in [lines 417-418, 442-444, 448-450]. The population of models showed consistent patterns in both the ECG and LVEF as the baseline model, this is discussed in [lines 563-564, 688-690].

      Regarding the effect of scar location and size on the ECG, we refer the reader and reviewer to a related paper where this is explored in depth using a formal sensitivity analysis and deep learning inference (https://pubmed.ncbi.nlm.nih.gov/38373128/). This is better able to do justice to this question rather than overloading this paper with additional investigations. We include a reference to this paper in the discussion section [lines 694-695].

      Reviewer #2 (Public Review):

      Summary:

      The authors constructed multi-scale modeling and simulation methods to investigate the electrical and mechanical properties of acute and chronic myocardial infarction (MI). They simulated three acute MI conditions and two chronic MI conditions. They showed that these conditions gave rise to distinct ECG characteristics that have been seen in clinical settings. They showed that the post-MI remodeling reduced ejection fraction up to 10% due to weaker calcium current or SR calcium uptake, but the reduction of ejection fraction is not sensitive to remodeling of the repolarization heterogeneities.

      Strengths:

      The major strength of this study is the construction of computer modeling that simulates both electrical behavior and mechanical behavior for post-MI remodeling. The links of different heterogeneities due to MI remodeling to different ECG characteristics provide some useful information for understanding complex clinical problems.

      Weaknesses:

      The rationale (e.g., physiological or medical bases) for choosing the 3 acute MI and 2 chronic MI settings is not clear. Although the authors presented a huge number of simulation data, in particular in the supplemental materials, it is not clearly stated what novel findings or mechanistic insights this study gained beyond the current understanding of the problem.

      We thank the reviewer for their careful evaluations of our work. The justification for selecting the 3 acute MI and 2 chronic MI states is based on clinical and experimental reports, as summarised in the Methods section [lines 245-247, 252-256, 264-266].  We have also highlighted the key novelty and significance of the study in the Discussion [lines 579-582].

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) This was clarified very late in the Discussion, but for most of the paper, I was unclear if heart geometry was the same for all simulations. Presumably, this includes the size and location of the infarct, BZ, and RZ. It would be helpful to clarify this in the Methods.

      This has been clarified in the first paragraph of the Methods section [lines 142-145].

      (2) On lines 224-226, the Methods refers to implementing several population members from the ToR-ORd model (in addition to the baseline) into the biventricular EM simulations. Is this in reference to the simulations shown in Figures 6 and 7, or different simulations? Please clarify.

      We now randomly select 17 of the 245 cell models in the population to be embedded in ventricular simulations, to produce a ventricular population of models. This allows us to explore the effect that physiological variability in the baseline ionic conductances has on the phenotypic representation of ionic remodellings in the ECG and LVEF. An explanation of this can be found in the Methods section [lines 241-244].

      For Figures 6 and 7, we selected two arrhythmic cell models from the n=245 population of cell models to be embedded into two ventricular simulations to demonstrate the arrhythmic potential of the cellular model at ventricular scale. This has been clarified in Methods [lines 269-271].

      Additionally, for the cases where a population member is used, are all regions of the ventricles "scaled" in the same manner, or were only the properties of the particular region drawn from the population modified relative to baseline (e.g., mid-myocardial cells in Figure 6)?

      The cells were embedded according to transmural heterogeneity in the remote zone for Figures 6 and 7. This has been clarified in the Methods [line 271-273].

      (3) Interestingly, the study finds that the ionic remodeling in different peri-infarct regions to be most critical in the ECG phenotype, which at least strongly suggests that inherent intra-patient variability in ion channel expression could also be critical.

      This is related to the comment on the use of population members. If the authors utilized one of the ventricular myocyte population members as the 'reference' (instead of the baseline ToR-ORd parameters) and applied the same types of remodeling as in Figures 3 and 4, would they expect the same ECG morphologies?

      We have now performed this test and selected 17 cell models from the population to create a ventricular population of models. On top of this ventricular population, we have applied the remodellings, and showed that the simulated ECG morphologies were mostly consistent across these 20 members (Figure 2C).

      (4) Related, do the authors expect that the location and/or size of the infarct and peri-infarct regions would impact the different ECG morphologies?

      Regarding the effect of scar location and size on the ECG, we refer the reader and reviewer to a related paper where this is explored in depth using a formal sensitivity analysis and deep learning inference (https://pubmed.ncbi.nlm.nih.gov/38373128/). We feel this is better able to do justice to this question rather than overloading this paper with additional investigations. We include a reference to this paper in the discussion section [lines 694-695].

      Reviewer #2 (Recommendations For The Authors):

      (1) Although the authors listed the parameters and cited the papers for the origins of the parameter changes in SM4 and table S4, it should be summarized in the methods section what are the major changes or differences for the 5 conditions. Furthermore, it should be stated what is the rationale for choosing these conditions. Are these choices based on clinical classifications or experimental conditions?

      The major differences between the 5 conditions have now been summarised in the Methods [lines 252-256, 264-266]. These remodellings have been collated from a range of experimental measurements in both human and animal data, which are summarised in Table S4. This has been clarified in Methods [lines 245-247].

      (2) Figure 3C and Figure 4C do not add any additional information beyond the conductance changes listed in Table 4, and I'd suggest removing them from the figures. On the other hand, it took me some time to look at Table 4 to figure out the corresponding changes. As commented above, the remodeling changes should be summarized in the main text to help reading.

      Figure 3C and 4C provide a visual explanation of the ionic remodellings in these conditions to echo the added descriptions in the text [lines 252-256, 264-266]. For this reason, we have elected to keep those figures in the manuscript.

      (3) The authors presented a large amount of data in Supplemental Materials, some may be unnecessary and some are difficult to follow. For example; 1) There is a lot of data in Table S6, there is a simple mention in the main text and Table S6 legend. A summary of the data is needed for the readers to understand the properties of the different conditions, instead of letting the readers figure them out from the table. The same should be done for other tables and figures. There are some format issues for the tables, which mess up some of the numbers and text. 2) The data shown in Figures S25-29 provide almost no new information beyond the well-known effects of ionic currents on EAD genesis, i.e., EADs are promoted by inward currents and suppressed by outward currents. The data for alternans (Figures S18-22) are a little more complex than the cases for EADs, I think that they can be simplified.

      Thanks for the suggestions. We have now extracted the key information from Table S6- S9 and summarized them in the caption. We have also fixed the layout of the tables in this revision. The supplementary sections on alternans and EADs are simplified with the key parameters related to these proarrhythmic phenomena summarized in tables instead of showing all boxplots of parameter distributions (Tables S10 and S11).

      (4) The authors showed two mechanisms of alternans: EAD-driven and Ca-driven alternans in chronic MI. There are several distinct mechanisms of alternans including EAD-induced alternans (see the recent review by Qu and Weiss, Circ Res 132, 127(2023)). Theoretically, calcium alternans can also induce EAD alternans under proper conditions, can you rule out that the EAD alternans are not due to Ca alternans? The results in Fig.7D may say the opposite. There are some chicken-or-egg issues here.

      In Figure 7D, we showed that the epicardial cell type (blue trace) had stable EADs at fast pacing with no calcium alternans, while both the endocardial (red trace) and mid-myocardial (green trace) cell types failed to fully repolarise in every other beat. To explore whether the EAD alternans are driven by calcium alternans, we tested the effects of switching off the alternans related remodelling, and the APs tuned out to be normal. On the other hand, when we turned off the EAD related remodelling, neither EADs nor alternans occurred. Therefore, the results show the two types of ionic current remodelling are both necessary for the generation of EAD alternans (lines 656-659 in the discussion and SM9).

      (5) As for the formation of ectopic beats, it can be caused by EADs but it can caused by repolarization gradient, they are not the same and differ in different AP models (Liu et al, CircAE 12, e007571 (2019), Zhang et al, Biophy J 120, 352(2021)). It is not clear here whether the primary cause is repolarization gradient or EADs. At tissue, EADs tend to be suppressed by repolarization gradient, there is a goldilocks between the EAD amplitude and repolarization gradient for an ectopic beat to form.

      When isolated cells that showed EAD were embedded in ventricular tissue, we saw ectopic wave propagation. This was because the EADs in the RZ generated conduction block, which enabled a large repolarisation gradient to form between the BZ and RZ, thereby leading to ectopy. This has been clarified in the Results [lines 507-510].

      Additionally, we have clarified the presence of the EADs in the ventricular simulations by labelling where this occurs in the green, purple, and yellow traces in Figure 7C. This was easily missed before due to the stretched proportions of the traces in the x-axis, which is necessary to show clearly the repolarisation gradients that drive ectopy.

      (6) The authors showed many population simulations. I guess that they are all in single cells. If the population simulations were done in the whole heart, it should be stated how many models were simulated. If only one of the population models was selected for the whole heart for each case, it should clarify the rationale for choosing one of the many models. If populations of cells were modeled in the whole heart, clarify how the models were distributed in the heart.

      We now randomly select 17 of the 245 cell models in the population to be embedded in ventricular simulations, to produce a ventricular population of models. This allows us to explore the effect that physiological variability in the baseline ionic conductances has on the phenotypic representation of ionic remodellings in the ECG and LVEF. An explanation of this can be found in the Methods section [lines 241-244]. Whenever the cell models are embedded in the relevant zones, they are uniformly distributed according to the transmural heterogeneity [lines 271-273].  

      (7) QRS intervals in the simulations are much wider than the real recordings from patients (Figure 2 and Table S8). At least, a QRS of 120 ms for normal control is too wide and probably not normal.

      We have manually measured QRS duration and updated the delineation method to calculate the other biomarkers. The new values now lie within normal ranges and have been updated in SM Table S7 and S8 and in Figure 2, and the new delineation method has been included in SM2.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      Madigan et al. assembled an interesting study investigating the role of the MuSK-BMP signaling pathway in maintaining adult mouse muscle stem cell (MuSC) quiescence and muscle function before and after trauma. Using a full body and MuSC-specific genetic knockout system, they demonstrate that MuSK is expressed on MuSCs and that eliminating the BMP binding domain from the MuSK gene (i.e., MuSK-IgG KO) in mice at homeostasis leads to reduced PAX7+ cells, increased myonuclear number, and increase myofiber size, which may be due to a deficit in maintaining quiescence. Additionally, after BaCl2 injury, MuSK-IgG KO mice display accelerated repair after 7 days post-injury (dpi) in males only. Finally, RNA profiling using nCounter technology showed that MuSK-IgG KO MuSCs express genes that may be associated with the activated state.

      Strengths:

      Overall, the biology regulating MuSC quiescence is still relatively unexplored, and thus, this work provides a new mechanism controlling this process. The experiments discussed in the paper are technically sound with great complementary mouse models (full body versus tissue-specific mouse KO) used to validate their hypothesis. Additionally, the paper is well written with all the necessary information in the legends, methods, and figures being reported.

      Weaknesses:

      While the data largely supports the author's conclusions, I do have a few points to consider when reading this paper.

      (1) For Figure 1, while I appreciate the author's confirming MuSK RNA and protein in MuSCs, I do think they should (a) quantify the RNA using qPCR and (b) determine the percentage of MuSCs expressing MuSK protein in their single fiber system in multiple biological replicates. This information will help us understand if MuSK is expressed in 1/10 or 10/10 PAX7-expressing MuSCs. Also, it will help place their phenotypes into the right context, especially when considering how much of the PAX7-pool is expressing MuSK from the beginning.

      The quantification is a reasonable point; however, we don’t believe that this information is necessary for supporting the interpretation of the findings.

      We agree that determining the proportion of SCs that expressing MuSK is useful information and we will address this question in the Revision.

      (2) Throughout the paper the argument is made that MuSK-IgG KO (full body and MuSC-specific KOs) are more activated and/or break quiescence more readily, but there is no attempt to test directly. Therefore, the authors should consider measuring the activation dynamics (i.e., break from quiescence) of MuSCs directly (EdU assays or live-cell imaging) in culture and/or in muscle in vivo (EdU assays) using their various genetic mouse models

      We agree that this point is of interest and we plan to address it in future studies.

      (3) For Figure 2, given that mice are considered adults by 3 months, it is really surprising how just two months later they are starting to see a phenotype (i.e., reduced PAX7-cells, increased number of myonuclei, and increased myofiber size)-which correlates with getting older. Given that aged MuSCs have activation defects (i.e., stuck somewhere in the quiescence cycle), a pending question is whether their phenotype gets stronger in aged mice, like 18-24 months. If yes, the argument that this pathway should be used in a therapeutic sense would be strengthened.

      We agree that the potential role of the MuSK-BMP pathway in aged SCs is of import and could shed new light on SC dynamics in this context. However, we note that the activation observed between 3-5 months results in improved muscle quality (increased myofiber size and grip strength), which is opposite of what is observed with aging. We agree that activating the MuSK-BMP pathway in aged animals has the potential to activate SCs, promote muscle growth and counter sarcopenia.  Pharmacological and genetic approaches to test that question are underway, but given the time frame they are beyond the scope of the current manuscript.

      (4) For Figure 4, the same question as in point (2), the increase in fiber sizes by 7dpi in MuSK-IgG KO males is minimal (going from ~23 to 27 by eye) and no difference at a later time point when compared to WT mice. However, if older mice are used (18-24 months old) - which are known to have repair deficits-will the regenerative phenotype in MuSK-IgG KO mice be more substantial and longer lasting?

      Again, an interesting point that will be addressed in future studies. 

      (5) For Figure 6, this gene set is not glaringly obvious as being markers of MuSC activation (i.e., no MyoD), so it's hard for the readers to know if this gene set is truly an activation signature. Also, the Shcherbina et al. data presented as a column with * being up or down (i.e. differentially expressed) is not helpful, since you don't know whether those mRNAs in that dataset are going up with the activation process. Addressing this point as well as my point (1) will further strengthen the author's conclusions about the MuSK-IgG KO MuSCs not being able to maintain quiescence as effectively.

      We agree that this Figure should include more information and be formatted in a way more readily convey the point. We will provide these changes in the Revision.

      Reviewer #2 (Public review):

      Summary:

      The work by Madigan et al. provides evidence that the signaling of BMPs via the Ig3 domain of MuSK plays a role during muscle postnatal development and regeneration, ultimately resulting in enhanced contractile force generation in the absence of the MuSK Ig3 domain. They demonstrate that MuSK is expressed in satellite cells initially post-isolation of muscle single fibers both in WT and whole-body deletion of the BMP binding domain of MuSK (ΔIg3-MuSK). In developing mice, ΔIg3-MuSK results in increased muscle fiber size, a reduction in Pax7+ cells, and increased muscle contractile force in 5-month-old, but not 3-month-old, mice. These data are complemented by a model in which the kinetics of regeneration appear to be accelerated at early time points. Of note, the authors demonstrate muscle tibialis anterior (TA) weights and fiber feret are increased during development in a Pax7CreERT2;MuSK-Ig3loxp/loxp model in which satellite cells specifically lack the MuSK BMP binding domain. Finally, using Nanostring transcriptional the authors identified a short list of genes that differ between the WT and ΔIg3-MuSK SCs. These data provide the field with new evidence of signaling pathways that regulate satellite cell activation/quiescence in the context of skeletal muscle development and regeneration.

      On the whole, the findings in this paper are well supported, however additional validation of key satellite cell markers and data analysis need to be conducted given the current claims.

      (1) The Pax7CreERT2;MuSK-Ig3loxp/loxp model is the appropriate model to conduct studies to assess satellite cell involvement in MuSK/BMP regulation. Validation of changes to muscle force production is currently absent using this model, as is quantification of Pax7+ tdT+ cells in 5-month muscle. Given that MuSK is also expressed on mature myofibers at NMJs, these data would further inform the conclusions proposed in the paper.

      As reported in the manuscript, we observed increased myofiber size, length and TA weight in the conditional mutants at five months of age. We did not assess grip strength in those experiments. 

      We demonstrated highly efficient MuSK Ig3-domain recombination by PCR analysis of FACS-sorted SCs from these conditional mutants (Supplemental Fig. S3). However, while we checked for Pax7+ tdT+ cells in 5-month SCs, we did not quantify this finding.

      (2) All Pax7 quantification in the paper would benefit from high magnification images including staining for laminin demonstrating the cells are under the basal lamina.

      The point is reasonable, we observed that these Pax7+ cells were under the basal lamina, but we did not acquire images at higher magnification.   

      (3) The nanostring dataset could be further analyzed and clarified. In Figure 6b, it is not initially apparent what genes are upregulated or downregulated in young and aged SCs and how this compares with your data. Pathway analysis geared toward genes involved in the TGFb superfamily would be informative.

      We agree that further analysis and information regarding the data in this Figure is warranted and we will include it in the Revision.

      (4) Characterizing MuSK expression on perfusion-fixed EDL fibers would be more conclusive to determine if MuSK is expressed in quiescent SCs. Additional characterization using MyoD, MyoG, and Fos staining of SCs on EDL fibers would help inform on their state of activation/quiescent.

      These are all valid points that we intend to address in future experiments.

      (5) Finally, the treatment of fibers in the presence or absence of recombinant BMP proteins would inform the claims of the paper.

      As reported in Jaime et al (2024) we have extensively characterized the differences in BMP response in both cultured WT and DIg3-MuSK myofibers and myoblasts at the level of signaling (pSMAD 1/5/8 nuclear localization and phosphorylation) and gene expression (qRT-PCR).

      Reviewer #3 (Public review):

      Summary:

      Understanding the molecular regulation of muscle stem cell quiescence. The authors evaluated the role of the MuSK-BMP pathway in regulating adult SC quiescence by the deletion of the BMP-binding MuSK Ig3 domain ('ΔIg3-MuSK').

      Strengths:

      A novel mouse model to interrogate muscle stem cell molecular regulators. The authors have developed a nice mouse model to interrogate the role of MuSK signaling in muscle stem cells and myofibers and have unique tools to do this.

      Weaknesses:

      Only minor technical questions remain and there is a need for additional data to support the conclusions.

      (1) The authors claim that dIg3-MuSK satellite cells break quiescence and start fusing, based on the reduction of Pax7+ and increase of nuclei/fiber (Fig 2-3), and maybe the gene expression (Fig6). However, direct evidence is needed to support these findings such as quantifying quiescent (Pax7+Ki67-) or activated (Pax7+Ki67+) satellite cells (and maybe proliferating progenitors Pax7-Ki67+) in the dIg3-MuSK muscle.

      We believe that the data presented strongly supports the conclusion that the SCs break quiescence, activate, and fuse into myofibers in uninjured muscle.  As noted above, the mechanistic studies suggested are of interest and we will address them in future work.

      (2) It is not clear if the MuSK-BMP pathway is required to maintain satellite cell quiescence, by the end of the regeneration (29dpi), how Pax7+ numbers are comparable to the WT (Fig4d). I would expect to have less Pax7+, as in uninjured muscle. Can the authors evaluate this in more detail?

      The reviewer makes an important point. Our current interpretation of the findings is that quiescence is broken in SCs in uninjured muscle, but that ‘stemness’ is preserved, allowing for efficient muscle regeneration and restoration of the SC pool. Whether such properties reflect SC heterogeneity (as suggested in the comments of the other reviewers) and/or different states along a continuum is of particular interest and will be the focus of future studies. 

      (2) Figure 4 claims that regeneration is accelerated, but to claim this at a minimum they need to look at MYH3+ fibers, in addition to fiber size.

      We did not examine MYH3+ fibers in this study. However, we did observe increased in Pax7+ cells at 5dpi (male and female) as well as larger myofiber size (Feret diameter) at 7dpi in the male animals.  In addition, the panels in Figure 4 b,c (H&E and laminin, respectively) showing accelerated differentiation were selected to be representative of the experimental group. 

      (3) The Pax7 specific dIg3-MuSK (Fig5) is very exciting. However, it will be important to quantify the Pax7+ number. Could the authors check the reduction of Pax7+ in this model since it would confirm the importance of MuSK in quiescence?

      In Figure 5c, we assessed the number of Pax7+ cells in the conditional mutant during the course of regeneration (at 3, 5, 7, 14, 22 and 29 dpi). As discussed above, these results confirmed the findings of the constitutive mutant (reduction of Pax7+ cells in uninjured 5-month-old muscle) as well as showing the increased number at 5dpi and return to WT levels at 29 dpi.

      (3) Rescue of the BMP pathway in the model would be further supportive of the authors' findings.

      This point is valid. In a parallel study examining the role of the MuSK-BMP pathway at the NMJ, we have observed that BMP+/- (hypomorphs) recapitulate key phenotypes observed in DIg3-MuSK  NMJs (Fish et al., bioRxiv, 2023). This point will be included in the Revision. 

      (4) Is the stem cell pool maintained long term in the deleted dIg3-MuSK SCs? Or would they be lost with extended treatment since they are reduced at the 5-month experiments? This is an important point and should be considered/discussed relevant to thinking about these data therapeutically.

      We agree that this is an important point for future studies. 

      (5) Without the Pax7-specific targeting, when you target dIg3-MuSK in the entire muscle, what happens to the neuromuscular nuclei?

      A manuscript describing the phenotype of the NMJ in DIg3-MuSK constitutive mice is in bioRxiv (Fish et al., 2024) and is in Revision at another journal.  We anticipate discussing the findings in the Revised version of the current manuscript. 

      (6) Why were differences seen in males and not females? Is XIST downregulation occurring in both sexes? Could the authors explain these findings in more detail?

      The male and female difference in myofiber size is of interest.  The nanostring experiments,  which showed the XIST reduction, were only performed in male mice.

    1. Author response:

      eLife Assessment

      This valuable study reveals extensive binding of eukaryotic translation initiation factor 3 (eIF3) to the 3' untranslated regions (UTRs) of efficiently translated mRNAs in human pluripotent stem cell-derived neuronal progenitor cells. The authors provide solid evidence to support their conclusions, although this study may be enhanced by addressing potential biases of techniques employed to study eIF3:mRNA binding and providing additional mechanistic detail. This work will be of significant interest to researchers exploring post-transcriptional regulation of gene expression, including cellular, molecular, and developmental biologists, as well as biochemists.

      We thank the reviewers for their positive views of the results we present, along with the constructive feedback regarding the strengths and weaknesses of our manuscript, with which we generally agree. We acknowledge our results will require a deeper exploration of the molecular mechanisms behind eIF3 interactions with 3'-UTR termini and experiments to identify the molecular partners involved. Additionally, given that NPC differentiation toward mature neurons is a process that takes around 3 weeks, we recognize the importance of examining eIF3-mRNA interactions in NPCs that have undergone differentiation over longer periods than the 2-hr time point selected in this study. Finally, considering the molecular complexity of the 13-subunit human eIF3, we agree that a direct comparison between Quick-irCLIP and PAR-CLIP will be highly beneficial and will determine whether different UV crosslinking wavelengths report on different eIF3 molecular interactions. Additional comments are given below to the identified weaknesses.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors perform irCLIP of neuronal progenitor cells to profile eIF3-RNA interactions upon short-term neuronal differentiation. The data shows that eIF3 mostly interacts with 3'-UTRs - specifically, the poly-A signal. There appears to be a general correlation between eIF3 binding to 3'-UTRs and ribosome occupancy, which might suggest that eIF3 binding promotes protein synthesis, possibly through inducing mRNA closed-loop formation.

      Strengths:

      The study provides a wealth of new data on eIF3-mRNA interactions and points to the potential new concept that eIF3-mRNA interactions are polyadenylation-dependent and correlate with ribosome occupancy.

      Weaknesses:

      (1) A main limitation is the correlative nature of the study. Whereas the evidence that eIF3 interacts with 3-UTRs is solid, the biological role of the interactions remains entirely unknown. Similarly, the claim that eIF3 interactions with 3'-UTR termini require polyadenylation but are independent of poly(A) binding proteins lacks support as it solely relies on the absence of observable eIF3 binding to poly-A (-) histone mRNAs and a seeming failure to detect PABP binding to eIF3 by co-immunoprecipitation and Western blotting. In contrast, LC-MS data in Supplementary File 1 show ready co-purification of eIF3 with PABP.

      We agree the molecular mechanisms underlying the crosslinking between eIF3 and the end of mRNA 3’-UTRs remains to be determined. We also agree that the lack of interaction seen between eIF3 and PABP in Westerns, even from HEK293T cells, is a puzzle. The low sequence coverage in the LC-MS data gave us pause about making a strong statement that these represent direct eIF3 interactions, given the similar background levels of some ribosomal proteins.

      (2) Another question concerns the relevance of the cellular model studied. irCLIP is performed on neuronal progenitor cells subjected to neuronal induction for 2 hours. This short-term induction leads to a very modest - perhaps 10% - and very transient 1-hour-long increase in translation, although this is not carefully quantified. The cellular phenotype also does not appear to change and calling the cells treated with differentiation media for 2 hours "differentiated NPCs" seems a bit misleading. Perhaps unsurprisingly, the minor "burst" of translation coincides with minor effects on eIF3-mRNA interactions most of which seem to be driven by mRNA levels. Based on the ~15-fold increase in ID2 mRNA coinciding with a ~5-fold increase in ribosome occupancy (RPF), ID2 TE actually goes down upon neuronal induction.

      We agree that it will be interesting to look at eIF3-mRNA interactions at longer time points after induction of NPC differentiation. However, the pattern of eIF3 crosslinking to the end of 3’-UTRs occurs in both time points reported here, which is likely to be the more general finding in what we present.

      (3) The overlap in eIF3-mRNA interactions identified here and in the authors' previous reports is minimal. Some of the discrepancies may be related to the not well-justified approach for filtering data prior to assessing overlap. Still, the fundamentally different binding patterns - eIF3 mostly interacting with 5'-UTRs in the authors' previous report and other studies versus the strong preference for 3'-UTRs shown here - are striking. In the Discussion, it is speculated that the different methods used - PAR-CLIP versus irCLIP - lead to these fundamental differences. Unfortunately, this is not supported by any data, even though it would be very important for the translation field to learn whether different CLIP methodologies assess very different aspects of eIF3-mRNA interactions.

      We agree the more interesting aspect of what we observe is the difference in location of eIF3 crosslinking, i.e. the end of 3’-UTRs rather than 5’-UTRs or the pan-mRNA pattern we observed in T cells. The reviewer is right that it will be important in the future to compare PAR-CLIP and Quick-irCLIP side-by-side to begin to unravel the differences we observe with the two approaches.

      Reviewer #2 (Public review):

      Summary:

      The paper documents the role of eIF3 in translational control during neural progenitor cell (NPC) differentiation. eIF3 predominantly binds to the 3' UTR termini of mRNAs during NPC differentiation, adjacent to the poly(A) tails, and is associated with efficiently translated mRNAs, indicating a role for eIF3 in promoting translation.

      Strengths:

      The manuscript is strong in addressing molecular mechanisms by using a combination of next-generation sequencing and crosslinking techniques, thus providing a comprehensive dataset that supports the authors' claims. The manuscript is methodologically sound, with clear experimental designs.

      Weaknesses:

      (1) The study could benefit from further exploration into the molecular mechanisms by which eIF3 interacts with 3' UTR termini. While the correlation between eIF3 binding and high translation levels is established, the functionality of these interactions needs validation. The authors should consider including experiments that test whether eIF3 binding sites are necessary for increased translation efficiency using reporter constructs.

      We agree with the reviewer that the molecular mechanism by which eIF3 interacts with the 3’-UTR termini remains unclear, along with its biological significance, i.e. how it contributes to translation levels. We think it could be useful to try reporters in, perhaps, HEK293T cells in the future to probe the mechanism in more detail.

      (2) The authors mention that the eIF3 3' UTR termini crosslinking pattern observed in their study was not reported in previous PAR-CLIP studies performed in HEK293T cells (Lee et al., 2015) and Jurkat cells (De Silva et al., 2021). They attribute this difference to the different UV wavelengths used in Quick-irCLIP (254 nm) and PAR-CLIP (365 nm with 4-thiouridine). While the explanation is plausible, it remains a caveat that different UV crosslinking methods may capture different eIF3 modules or binding sites, depending on the chemical propensities of the amino acid-nucleotide crosslinks at each wavelength. Without addressing this caveat in more detail, the authors cannot generalize their findings, and thus, the title of the paper, which suggests a broad role for eIF3, may be misleading. Previous studies have pointed to an enrichment of eIF3 binding at the 5' UTRs, and the divergence in results between studies needs to be more explicitly acknowledged.

      We agree with the reviewer that the two methods of crosslinking will require a more detailed head-to-head comparison in the future. However, we do think the title is justified by the fact that we see crosslinking to the termini of 3’-UTRs across thousands of transcripts in each condition. Furthermore, the 3’-UTR crosslinking is enriched on mRNAs with higher ribosome protected fragment counts (RPF) in differentiated cells, Figure 3F.

      (3) While the manuscript concludes that eIF3's interaction with 3' UTR termini is independent of poly(A)-binding proteins, transient or indirect interactions should be tested using assays such as PLA (Proximity Ligation Assay), which could provide more insights.

      This is a good idea, but would require a substantial effort better suited to a future publication. We think our observations are interesting enough to the field to stimulate future experimentation that we may or may not be most capable of doing in our lab.

      Reviewer #3 (Public review):

      Summary:

      In this manuscript by Mestre-Fos and colleagues, authors have analyzed the involvement of eIF3 binding to mRNA during differentiation of neural progenitor cells (NPC). The authors bring a lot of interesting observations leading to a novel function for eIF3 at the 3'UTR.

      During the translational burst that occurs during NPC differentiation, analysis of eIF3-associated mRNA by Quick-irCLIP reveals the unexpected binding of this initiation factor at the 3'UTR of most mRNA. Further analysis of alternative polyadenylation by APAseq highlights the close proximity of the eIF3-crosslinking position and the poly(A) tail. Furthermore, this interaction is not detected in Poly(A)-less transcripts. Using Riboseq, the authors then attempted to correlate eIF3 binding with the translation efficacy of mRNA, which would suggest a common mechanism of translational control in these cells. These observations indicate that eIF3-binding at the 3'UTR of mRNA, near the poly(A) tail, may participate to the closed-loop model of mRNA translation, bridging 5' and 3', and allowing ribosomes recycling. However, authors failed to detect interactions of eIF3, with either PABP or Paip1 or 40S subunit proteins, which is quite unexpected.

      Strength:

      The well-written manuscript presents an attractive concept regarding the mechanism of eIF3 function at the 3'UTR. Most mRNA in NPC seems to have eIF3 binding at the 3'UTR and only a few at the 5'end where it's commonly thought to bind. In a previous study from the Cate lab, eIF3 was reported to bind to a small region of the 3'UTR of the TCRA and TCRB mRNA, which was responsible for their specific translational stimulation, during T cell activation. Surprisingly in this study, the eIF3 association with mRNA occurs near polyadenylation signals in NPC, independently of cell differentiation status. This compelling evidence suggests a general mechanism of translation control by eIF3 in NPC. This observation brings back the old concept of mRNA circularization with new arguments, independent of PABP and eIF4G interaction. Finally, the discussion adequately describes the potential technical limitations of the present study compared to previous ones by the same group, due to the use of Quick-irCLIP as opposed to the PAR-CLIP/thiouridine.

      Weaknesses:

      (1) These data were obtained from an unusual cell type, limiting the generalizability of the model.

      We agree that unraveling the mechanism employed by eIF3 at the mRNA 3’-UTR termini might be better studied in a stable cell line rather than in primary cells.

      (2) This study lacks a clear explanation for the increased translation associated with NPC differentiation, as eIF3 binding is observed in both differentiated and undifferentiated NPC. For example, I find a kind of inconsistency between changes in Riboseq density (Figure 3B) and changes in protein synthesis (Figure 1D). Thus, the title overstates a modest correlation between eIF3 binding and important changes in protein synthesis.

      We thank the reviewer for this question. Riboseq data and RNASeq data are not on absolute scales when comparing across cell conditions. They are normalized internally, so increases in for example RPF in Figure 3B are relative to the bulk RPF in a given condition. By contrast, the changes in protein synthesis measured in Figure 1D is closer to an absolute measure of protein synthesis.

      (3) This is illustrated by the candidate selection that supports this demonstration. Looking at Figure 3B, ID2, and SNAT2 mRNA are not part of the High TE transcripts (in red). In contrast, the increase in mRNA abundance could explain a proportionally increased association with eIF3 as well as with ribosomes. The example of increased protein abundance of these best candidates is overall weak and uncertain.

      We agree that using TE as the criterion for defining increased eIF3 association would not be correct. By “highly translated” we only mean to convey the extent of protein synthesis, i.e. increases in ribosome protected fragments (RPF), rather than the translational efficiency.

      (4) Despite several attempts (chemical and UV cross-linking) to identify eIF3 partners in NPC such as PABP, PAIP1, or proteins from the 40S, the authors could not provide any evidence for such a mechanism consistent with the closed-loop model. Overall, this rather descriptive study lacks mechanistic insight (eIF3 binding partners).

      We agree that it will be important to identify the molecular mechanism used by eIF3 to engage the termini of mRNA 3’-UTRs. Nevertheless, the identification of eIF3 crosslinking to that location in mRNAs is new, and we think will stimulate new experiments in the field.

      (5) Finally, the authors suspect a potential impact of technical improvement provided by Quick-irCLIP, that could have been addressed rather than discussed.

      We agree a side-by-side comparison of eIF3 crosslinks captured by PAR-CLIP versus Quick-irCLIP will be an important experiment to do. However, NPCs or other primary cells may not be the best system for the comparison. We think using an established cell line might be more informative, to control for effects such as 4-thiouridine toxicity.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This work sets out to elucidate mechanistic intricacies in inflammatory responses in pneumonia in the context of the aging process (Terc deficiency - telomerase functionality).

      Strengths:

      Very interesting, conceptually speaking, approach that is by all means worth pursuing. An overall proper approach to the posited aim.

      We want to thank the reviewer for taking the time to review our manuscript and for providing positive feedback regarding our research question.  

      Weaknesses:

      The work is heavily underpowered and may have statistical deficits. This precludes it in its current state from drawing unequivocal conclusions.

      Thank you for this essential and valuable comment. We fully accept that the small sample size of the Tercko/ko mice is a major limitation of our study and transparently discuss this in our manuscript.  However, due to Animal Welfare regulations, only a reduced number of mice were approved because of the strong burden of disease. Consequently, only three non-infected and five infected mice were available to us. This reduced number of mice presents a clear limitation to our study. However, due to ethical considerations related to animal welfare and sustainability, as well as compliance with German animal welfare regulations, it is not possible to obtain additional Tercko/ko mice to increase the dataset.

      The animal studies are an important aspect of our study; however, our hypothesis was also investigated at multiple levels, including in an in vitro co-culture model (Figure 5), to ensure comprehensive analysis. Thus, we clearly demonstrated that S. aureus pneumonia in Tercko/ko mice leads to a more severe phenotype, orchestrated by the dysregulation of both innate and adaptive immune response.

      Reviewer #2 (Public Review):

      Summary:

      The authors demonstrate heightened susceptibility of Terc-KO mice to S. aureus-induced pneumonia, perform gene expression analysis from the infected lungs, find an elevated inflammatory (NLRP3) signature in some Terc-KO but not control mice, and some reduction in T cell signatures. Based on that, They conclude that disregulated inflammation and T-cell dysfunction play a major role in these phenomena.

      Strengths:

      The strengths of the work include a problem not previously addressed (the role of the Terc component of the telomerase complex) in certain aspects of resistance to bacterial infection and innate (and maybe adaptive) immune function.

      We would like to thank the reviewer for the positive feedback regarding our aim to investigate the impact of Terc deletion on the pulmonary immune response to S. aureus.  

      Weaknesses:

      The weaknesses outweigh the strengths, dominantly because conclusions are plagued by flaws in experimental design, by lack of rigorous controls, and by incomplete and inadequate approaches to testing immune function. These weaknesses are as follows

      (1) Terc-KO mice are a genomic knockout model, and therefore the authors need to carefully consider the impact of this KO on a wide range of tissues. This, however, is not the case. There are no attempts to perform cell transfers or use irradiation chimera or crosses that would be informative.

      We thank the reviewer for bringing up this important point. The aim of our study, however; was to investigate the impact of Terc deletion in the lung and on the response to bacterial pneumonia, rather than to provide a comprehensive characterization of the Tercko/ko model itself. This characterization of different tissues and cell types has already been conducted by previous studies. For instance, studies that characterize the general phenotype of the model (Herrera et al., 1999; Lee et al., 1998; Rudolph et al., 1999) but also investigations that shed light on the impact of Terc deletion on specific cell types such as microglia (Khan et al., 2015) or T cells (Matthe et al., 2022). The impact of Terc deletion on T cells is also discussed in our manuscript in lines 89 to 105. Furthermore, a section about the general phenotype of the Terc deletion model is included in the introduction in lines 126 to 138. Thus we discussed the relevant literature regarding Tercko/ko mice in our manuscript and attempted to provide a more in-depth characterization of the lung by investigating the inflammatory response to infection as well as changes in the gene expression (Figure 2-4).  

      (2) Throughout the manuscript the authors invoke the role of telomere shortening in aging, and according to them, their Terc-KO mice should be one potential model for aging. Yet the authors consistently describe major differences between young Terc-KO and naturally aging old mice, with no discussion of the implications. This further confuses the biological significance of this work as presented.

      Thank you for mentioning this relevant point. We want to apologize for the confusion regarding this matter. While Tercko/ko mice are a well-established model for premature aging, these effects become more apparent with increasing generations (G) and thus, G5 and 6 mice are the most affected by Terc deletion (Lee et al., 1998; Wong et al., 2008).

      Thus, while Tercko/ko mice are a common model for premature aging, this accelerated aging phenotype is predominantly apparent in later-generation Tercko/ko (G5 and 6) or aged Tercko/ko mice (Lee et al., 1998; Wong et al., 2008). Since the aim of this study was to analyze the impact of Terc deletion on the lung and its immune response to bacterial infections instead of the impact of telomere shortening and telomerase dysfunction, young G3 Tercko/ko mice (8 weeks) were used in this study. This is also mentioned in the lines 131-134. In this study, Tercko/ko mice were used not as a model of aging, but rather as a model specifically for Terc deletion. The old WT mice function as a control cohort to observe possible common but also deviating effects between aging and Terc deletion. In our sequencing data, we observe that uninfected young WT mice are very similar to uninfected Tercko/ko mice. Other studies have also reported this lack of major differences between uninfected WT and Tercko/ko mice in the G3 knockout mice (Kang et al., 2018). Conversely, uninfected young WT and Tercko/ko mice exhibited great differences, for instance, regarding the numbers of differentially expressed genes (Supplemental Figure 1H). Thus, differences between naturally aged mice and young G3 Tercko/ko mice are not surprising. To clarify this aspect we reconstructed the paragraph discussing the Tercko/ko mice (lines 126-134). Additionally we added a paragraph explaining the purpose of the naturally aged mice to the lines 134 to 138:

      “As control cohort age-matched young WT mice were utilized. To investigate whether Terc deletion, beyond critical telomere shortening, impacts the pulmonary immune response, we used young Tercko/ko mice. Additionally, naturally aged mice (2 years old) were infected to explore the potential link to a fully developed aging phenotype.”

      (3) Related to #2, group design for comparisons lacks a clear rationale. The authors stipulate that TercKO will mimic natural aging, but in fact, the only significant differences seen between groups in susceptibility to S. aureus are, contrary to the authors' expectation, between young Terc-KO and naturally old mice (Figures 1A and B, no difference between young Terc-KO and young wt); or there are no significant differences at all between groups (Figures 1, C, D,).

      We thank the reviewer for this essential comment. As mentioned above the Tercko/ko mice in this study are not selected to model natural aging. To model telomerase dysfunction and accelerated aging selection of later generation or aged Tercko/ko mice would have been more suitable. 

      The lack of statistical significance in some figures is likely due to the heterogeneity of disease phenotype of S. aureus infection in mice, which is a limitation of our study that we discuss in our discussion section in lines 576-582. The phenotype of S. aureus infection can vary greatly within a mouse population, highlighting the limitations of mice as a model for S. aureus infections. To account for this heterogeneity we divided the infected Tercko/ko mice cohort into different degrees of severity based on the clinical score and the presence of bacteria in organs other than the lung (mice with systemic infection). 

      Despite the heterogeneity especially within the Tercko/ko mice cohort the differences between the knockout and young as well as old WT mice were striking. Including the fatal infections, 80% of the Tercko/ko mice had a severe course of disease, while none of the WT mice displayed a severe course (Figure 1A, B and Supplemental Figure 1A, B). This hints towards a clear role of Terc in the response to S. aureus infection in mice. Thus while in some figures the differences are not significant, strong trends towards a more severe phenotype of S. aureus infection in the Tercko/ko mice regarding bacterial load, score and inflammatory response could be observed in our study. 

      Another example of inadequate group design is when the authors begin dividing their Terc-KO groups by clinical score into animals with or without "systemic infection" (the condition where a bacterium spreads uncontrollably across the many organs and via blood, which should be properly called sepsis), and then compare this sepsis group to other groups (Supplementary Figures 1G; Figure 2; lines 374-376 and 389391). This gives them significant differences in several figures, but because they did not clearly indicate where they applied this stratification in the figure legends, the data are somewhat confusing. Most importantly, methodologically it is highly inappropriate to compare one mouse with sepsis to another one without. If Terc-KO mice with sepsis are a comparator group, then their controls have to be wild-type mice with sepsis, who are dealing with the same high bacterial load across the body and are presumably forced to deploy the same set of immune defenses.

      We sincerely appreciate the significant time and effort you have invested in reviewing our manuscript. However, with all due respect, we must point out that the definition of sepsis you have referenced is considered outdated. According to the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3), sepsis is defined as "a life-threatening organ dysfunction caused by a dysregulated host response to infection" (Marvin Singer, 2016, JAMA). Given this fundamental misunderstanding of our findings, we find the comment regarding the inadequacy of our groups to be both dismissive and lacking in scientific merit. We would like to emphasize that the group size used in our study is consistent with accepted standards in infection research. We strongly reject any insinuations of inadequacy that have been repeatedly mentioned throughout the review.

      In order to provide a nuanced investigation of disease severity in Tercko/ko mice, we added the term “systemic infection” to the figures whenever the mice were divided into groups of mice with and without systemic infection. This is the case for Figure 2A and Supplemental Figure 1C-E. The division into mice with and without systemic infection is also mentioned in the figure legend of Figure 2A in lines 932 to 935 and for Supplemental Figure 1 in lines 1052-1053. We agree that Supplemental Figure 1G is somewhat confusing as the mice with systemic infection are highlighted in this graph but not included as a separate group within our sequencing analysis. We added a sentence to the figure legend clarifying this (lines 1042-1044):

      “Nevertheless, the infected Tercko/ko mice were considered one group for the expression analysis and not split into separate groups for the subsequent analysis.”

      Additionally, we revised the section regarding this grouping in different degrees of severity in our Material and Methods section to clarify that this division was only performed for specific analysis (line 191):

      “…for the indicated analysis.”

      Furthermore, the mice which were classified as systemically infected mice were not septic mice, as mentioned above. Those mice were classified by us as systemically infected based on their clinical score and the presence of bacteria in other organs than the lung as stated in the lines 188-191 and 377-381. Bacteremia is a symptom of very severe cases of hospital-acquired pneumonia with a very high mortality (De la Calle et al., 2016).

      Therefore, the systemically infected mice or rather mice with bacteremia display an especially severe pneumonia phenotype, which is distinct from sepsis. The presence of this symptom in our Tercko/ko mice further highlights the clinical relevance of our study. This aspect was added to the manuscript in the lines 568-570.

      “The detection of bacteria in extra pulmonary organs is of particular interest, as bacteremia is a symptom of severe pneumonia and is associated with high mortality (De la Calle et al., 2016).”

      (4) The authors conclude that disregulated inflammation and T-cell dysfunction play a major role in S. aureus susceptibility. This may or may not be an important observation, because many KO mice are abnormal for a variety of reasons, and until such reasons are mechanistically dissected, the physiological importance of the observation will remain unclear.

      Two points are important here. First, there is no natural counterpart to a Terc-KO, which is a complete loss of a key non-enzymatic component of the telomerase complex starting in utero. 

      Second, the authors truly did not examine the key basic features of their model, including the features of basic and induced inflammatory and immune responses. This analysis could be done either using model antigens in adjuvants, defined innate immune stimuli (e.g. TLR, RLR, or NLR agonists), or microbial challenge. The only data provided along these lines are the baseline frequencies of total T cells in the spleen of the three groups of mice examined (not statistically significant, Figure 4B). We do not know if the composition of naïve to memory T cell subsets may have been different, and more importantly, we have no data to evaluate whether recruitment of the immune response (including T cells) to the lung upon microbial challenge is similar or different. So, what are the numbers and percentages of T cells and alveolar macrophages in the lung following S. aureus challenge and are they even comparable or are there issues in mobilizing the T cell response to the site of infection? If, for example, Terc-KO mice do not mobilize enough T cells to the lung during infection, that would explain the paucity in many T-cellassociated genes in their transcriptomic set that the authors report. That in turn may not mean dysfunction of T cells but potentially a whole different set of defects in coordinating the response in Terc-KO mice.

      We thank the reviewer for highlighting these important aspects. Regarding the first point, indeed there is no naturally occurring deletion of Terc in humans. However, studies reported reduced expression of Terc and Tert in the tissues of aged mice and rats (Tarry-Adkins et al., 2021; Zhang et al., 2018). Terc itself has been found to have several important immunomodulatory functions such as the activation of the NFκB or PI3-kinase pathway (Liu et al., 2019; Wu et al., 2022). As those aforementioned pathways are relevant for the immune response to S. aureus infections, the authors were interested in exploring the impact of Terc deletion on the pulmonary immune response. The potential immunomodulatory functions of Terc are discussed in lines 106-121. To further clarify our rationale we added a sentence to the introduction in lines 121-125.

      “Interestingly, downregulation of Terc and Tert expression in tissues of aged mice and rats has been found (Tarry-Adkins, Aiken, Dearden, Fernandez-Twinn, & Ozanne, 2021; Zhang et al., 2018). Therefore, as a potential immunomodulatory factor reduced Terc expression could be connected to agerelated pathologies.”

      Regarding the second point, as we focused on the effect of Terc deletion in the lung and its role in S. aureus infection, we investigated inflammatory and immune response parameters relevant to this setting. For instance, inflammation parameters in the lungs of all three mice cohorts were measured to investigate differences in the inflammatory response in the non-infected and infected mice (Figure 2A). Those measurements showed no baseline difference in key inflammatory parameters between young WT and Tercko/ko mice, which is consistent with previous findings (Kang et al., 2018). The inflammatory response to infection with S. aureus in the Tercko/ko mice cohort differed significantly from the other cohorts (Figure 2A), hinting towards a dysregulated inflammatory response due to Terc deletion. Furthermore, we investigated general immune cell frequencies such as dendritic cells, macrophages, and B cells in the spleen of all three mice cohorts to gather a baseline understanding of the general immune cell populations. In our manuscript only total T cell frequencies were included due to its relevance for our data regarding T cells (Figure 4B). This data could show that there was no difference of total amount of T cells in the spleen of all three mice cohorts. For a more detailed insight into our analysis we added the frequencies of the other immune cell populations analyzed in the spleen as a Supplemental Figure 3B-F. Additionally, a figure legend for the graphs was added to lines 1075-1094.

      Therefore, while we did not analyze baseline frequencies of specific populations of T cells, we analyzed and characterized the inflammatory and immune response of our model in a way relevant to our research question. 

      The differences observed in T cell marker and TCR gene expression was also partly present between the uninfected and infected Tercko/ko mice such as the complete absence of CD247 expression in infected Tercko/ko, which is however expressed in uninfected mice of this cohort (Figure 4A, C and D). Thus, this effect cannot be solely attributed to an inadequate mobilization of T cells to the lung after infectious challenge. However, we agree that a more detailed insight into recruited immune cells to the lung or frequencies of different T cell populations could contribute to a better understanding of the proposed mechanism and would be an interesting experiment to conduct in further studies. We accept this as a limitation of our study and included it in our discussion section in lines 719-723:

      “As total CD4+ T cells were analyzed in this study, it would be useful to investigate specific T cell populations such as memory and effector T cells to elucidate the potential mechanism leading to T cell dysfunctionality in further detail. Additionally, analysis of differences in immune cell recruitment to the lungs between young WT and Tercko/ko mice would be relevant.”

      (5) Related to that, immunological analysis is also inadequate. First, the authors pull signatures from the total lung tissue, which is both imprecise and potentially skewed by differences, not in gene expression but in types of cells present and/or their abundance, a feature known to be affected by aging and perhaps by Terc deficiency during infection. Second, to draw any conclusions about immune responses, the authors would have to track antigen-specific T cells, which is possible for a wide range of microbial pathogens using peptide-MHC multimers. This would allow highly precise analysis of phenomena the authors are trying to conclude about. Moreover, it would allow them to confirm their gene expression data in populations of physiological interest

      We thank the reviewer for highlighting this important and relevant point. In our study, we aimed to investigate the role of Terc expression in modulating inflammation and the immune response to S. aureus infection in the lung. To address this, we examined the overall impact of age, genotype, and infection on lung inflammation and gene expression. Therefore, sequencing of total lung tissue was essential for addressing the research question posed. Our findings demonstrate that Tercko/ko mice exhibit a more severe phenotype following S. aureus infection, characterized by an increased bacterial load and heightened lung inflammation (Figures 1 and 2). Furthermore, our data suggest that Terc plays a role in regulating inflammation through activation of the NLRP3 inflammasome, along with the dysregulation of several T cell marker genes (Figures 2, 4, and 5). However, this study lacks a detailed analysis of distinct T cell populations, including antigen-specific T cells, as noted earlier. Investigating these aspects in future studies would be valuable to validate and expand upon our findings. We have incorporated these suggestions into the discussion section (lines 719-723)

      “As total CD4+ T cells were analyzed in this study, it would be useful to investigate specific T cell populations such as memory and effector T cells to elucidate the potential mechanism leading to T cell dysfunctionality in further detail. Additionally, analysis of differences in immune cell recruitment to the lungs between young WT and Tercko/ko mice would be relevant.”

      Nevertheless, our study provides first evidence of a potential connection between T cell functionality and Terc expression.  

      Third, the authors co-incubate AM and T cells with S. aureus. There is no information here about the phenotype of T cells used. Were they naïve, and how many S. aureus-specific T cells did they contain? Or were they a mix of different cell types, which we know will change with aging (fewer naïve and many more memory cells of different flavors), and maybe even with a Terc-KO? Naïve T cells do not interact with AM; only effector and memory cells would be able to do so, once they have been primed by contact with dendritic cells bringing antigen into the lymphoid tissues, so it is unclear what the authors are modeling here. Mature primed effector T cells would go to the lung and would interact with AM, but it is almost certain that the authors did not generate these cells for their experiment (or at least nothing like that was described in the methods or the text).

      Thank you for bringing up this important question. For the co-cultivation experiment of T cells and alveolar macrophages, total CD4+ T cells of both young WT and Tercko/ko were used. We did not select for a specific population of T cells. Our sequencing data indicated the complete downregulation of CD247 expression, which is an important part of the T cell receptor, in the lungs of infected Tercko/ko mice (Figure 4A, C and D). Given that this factor is downregulated under chronic inflammatory conditions, we investigated the impact of the inflammatory response in alveolar macrophages on the expression of various T cell-derived cytokines, as well as CD247 expression (Figure 5D, E) (Dexiu et al., 2022). This aspect is also highlighted in the discussion in lines 622-636. Therefore, a co-cultivation model of T cells and alveolar macrophages was established and confronted with heat-killed S. aureus to elicit an inflammatory response of the macrophages. To emphasize this purpose, we have revised our statement about the model setup in lines 516-518 of the manuscript: 

      “An overactive inflammatory response could be a potential explanation for the dysregulated TCR signaling.”

      The authors hope this will clarify the intent behind the model setup.

      (6) Overall, the authors began to address the role of Terc in bacterial susceptibility, but to what extent that specifically involves inflammation and macrophages, T cell immunity, or aging remains unclear at present.

      We thank the reviewer for the helpful and relevant comments. The authors accept the limitations of the presented study such as the reduced number of Tercko/ko mice and the limitations of murine models for S. aureus infection itself and discuss those in the discussion section in the lines 558-560; 576-582; 688-690 and 719-725. However, we hope that our responses have provided sufficient evidence to convince the reviewer that our data supports a clear role for Terc expression in regulating the immune response to bacterial infections, particularly with respect to inflammation and its potential connection to T cell functionality.  

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      The good element first:

      I read this paper with genuine interest and applaud the authors for investigating the posited question. I consider it by all means scientifically relevant in the context of physiological/pathophysiological aging and reaction to a disease (here pneumonia). The Terc deletion model looks very appropriate for the question and the methodology is very advanced/in-depth. The data flow/selection of endpoints and assays is very logical to me. Moreover, I like the breakdown of pneumonia into varying levels of severity.

      We thank the reviewer for their time and effort taken to revise our manuscript. Additionally, we are grateful to receive your positive feedback regarding our study design and research question.

      The weaknesses:

      (1) I cannot help but notice that the study is heavily underpowered. As such, it is inadmissible. The key reason is that it is the first of its kind and seminal findings must be strongly propped by the evidence. It is apparent to me that the data scatter presented in the figures tends to be abnormally distributed (e.g. obvious bimodal distribution in some groups). Therefore, the presented comparisons (even if stat. sign) can be heavily misleading in terms of: i) the true magnitude of the observed effects and ii) possible type 2 error in some cases of p value >0.05. Solution: repeat the study to ensure reasonable power/reliability. This will also make it stronger as it will immediately demonstrate its reproducibility (or lack of it).

      Thank you for bringing up this extremely relevant point. We acknowledge the issue of the small sample size of Tercko/ko mice as a major limitation of our study. This limitation is also included in our discussion section in the lines 558-560. Thus we fully agree with this limitation and transparently discuss this in our manuscript. However, due to the strict German animal welfare regulations it is not possible to obtain more Tercko/ko mice, as mentioned above. Furthermore, since fatal infections occurred in the Tercko/ko mice cohort we had a reduced number of mice available. 

      However, the differences between the Tercko/ko and WT mice were striking. Including the fatal infections 80% of the Tercko/ko mice had a severe course of disease, while none of the WT mice displayed a severe course. This hints towards a clear role of Terc in the response to S. aureus infection in mice.  

      (2) In the stat analysis section of M&Ms, the authors feature only 1 sentence. This cannot be. A detailed stats workup needs to be included there. This is very much related to the above weakness; e.g. it is impossible to test for normality (to choose an appropriate post-hoc test) with n=3. Back to square one: study underpowered.

      We thank the reviewer for highlighting this important aspect. We carefully revised the method section in lines 357-360 to include all relevant information: 

      “Data are presented as mean ± SD, or as median with interquartile range for violin and box plots, with up to four levels of statistical significance indicated. P-values were calculated using Kruskal-Wallis test. Individual replicates are represented as single data points.”

      (3) Pneumonia severity. While I noted that as a strength, I also note it as weakness here. It looks to me like the authors stopped halfway with this. I totally support testing a biological effect(s) such as the one investigated here across a spectrum of a given disease severity. The authors mention that they had various severity phenotypes produced in their model but this is not visible in the data figs. I strongly suggest including that as well; i.e., to study the posited question in the severe and mild pneumonia phenotype. This is a very smart path and previous preclinical research clearly demonstrated that this severe/mild distinction is very relevant in the context of the observed responses (their presence/absence, longevity, dynamics, etc). I realize this is challenging, thus, I would probably use this approach in the Terc k/o model as sort of a calibrator to see whether the exacerbation observed in the current setup (severe?) will be also present in a mild pneumonia phenotype. S. aureus can be effectively titrated to produce pneumonia of varying severity.

      We thank the reviewer for bringing up this relevant point. 

      In our study, we could observe heterogeneity within the infected Tercko/ko cohort. Therefore as pointed out by the reviewer we assigned different degrees of severity to those groups based on clinical scores, the fatal outcome of the disease (fatal subgroup), and the presence of bacteria in organs other than the lungs (systemic infection subgroup) as stated in our materials and methods part in the lines 188-191 (Supplemental Figure 1A and B). Moreover, we highlighted this difference in a number of our figures. For example, when categorizing the mice into groups with and without systemic infection, we noticed that the mice with systemic infection demonstrated a higher bacterial load, significant body weight loss, and increased lung weight (see Supplemental Figure 1C-E). Interestingly, the two mice with systemic infection clustered separately from the other mice, indicating that the mice with systemic infection are transcriptomically distinct from the other mice cohorts (Supplemental Figure 1G). Additionally, the inflammatory response was exclusively elevated in the lungs of mice with systemic infection (Figure 2C). Thus, we included this distinction in several figures and attempted to study the differences between those subgroups but also their similarities. For instance, we could observe that some changes in the transcriptome were present in all three infected Tercko/ko mice such as the complete absence of CD247 expression at 24 hpi (Figure 4D). This distinction therefore provided a more detailed insight into the underlying mechanisms of disease severity in Tercko/ko mice and is lacking in other studies. We agree with the reviewer, that a study investigating mild and severe pneumonia phenotypes would be clinically relevant. However, as noted above, due to ethical considerations related to animal welfare and sustainability, as well as compliance with German animal welfare regulations, it is not possible to obtain additional Tercko/ko mice to carry out the proposed experiment. 

      (4) Please read ARRIVE guidelines and note the relevant info in M&Ms as ARRIVE guidelines point out.

      Thank you for emphasizing this crucial aspect. We revised our materials and methods section according to the ARRIVE guidelines (lines 179-206).

      “Tercko/ko mice aged 8 weeks, were used for infection studies (n = 8; non-infected = 3; infected = 5). Female young WT (age 8 weeks) and old WT (age 24 months) C57Bl/6 mice (both n = 10; non-infected = 5; infected = 5) were purchased from Janvier Labs (Le Genest-Saint-Isle, France). All infected mouse cohorts were compared to their respective non-infected controls, as well as to the infected groups from other cohorts. Additionally, comparisons were made between the non-infected cohorts across all groups.

      All mice were anesthetized with 2% isoflurane before intranasal infection with S. aureus USA300 (1x108 CFU/20µl) per mouse. After 24 hours, the mice were weighed and scored as previously described (Hornung et al., 2023). Infected Tercko/ko mice were grouped into different degrees of severity based on their clinical score, fatal outcome of the disease (fatal) and the presence of bacteria in organs other than the lung (systemic infection) for the indicated analysis. Mice with fatal infections were excluded from subsequent analyses, with only their final scores being reported. The mice were sacrificed via injection of an overdose of xylazine/ketamine and bleeding of axillary artery after 24 hpi. BAL was collected by instillation and subsequent retrieval of PBS into the lungs. Serum and organs were collected. Bacterial load in the BAL, kidney and liver was determined by plating of serially diluted sample as described above. For this organs were previously homogenized in the appropriate volume of PBS. Gene expression was analyzed in the right superior lung lobe. Lobes were therefore homogenized in the appropriate amount of TriZol LS reagent (Thermo Fisher Scientific, Waltham, MA, US) prior to RNA extraction. The left lung lobe was embedded into Tissue Tek O.C.T. (science services, Munich, Germany) and stored at 80°C until further processing for histological analysis. Cytokine measurements were performed using the right inferior lung lobe. Lobes were previously homogenized in the appropriate volume of PBS. Remaining organs were stored at -80°C until further usage. Mouse studies were conducted without the use of randomization or blinding.“

      (5) There are also some other descriptive deficits but they are of a much smaller caliber so I do not list them.

      We thank the reviewer for their valuable and insightful suggestions for improving our manuscript. We hope that our responses and the corresponding revisions address these suggestions satisfactorily.

      Concluding: the investigative idea is great/interesting and the methodological flow is adequate but the low power makes this study of low reliability in its current form. I strongly urge the authors to walk the extra mile with this work to make it comprehensive and reliable. Best of luck!

      Reviewer #2 (Recommendations For The Authors):

      (1) Many legends are uninformative and do not contain critical information about the experiments. For example, Figure 2A with cytokine measurements (in lung homogenates?) is likely showing data from an ELISA or Luminex test, but there is no mention of that in the legend. It stands next to Figure 2B, which is a gene expression map, again, likely from the lung (prepared how, normalized how, etc?) lacking even the most basic information. Further, Figure 2D has no information on the meaning/effect size of gene ratios on the x-axis. Figures 3 and 4 are presumably the subsets of their transcriptome data set (whole lung, harvested on d ?? post-infection), but that is just a guess on my part. Even in the main text, the timing and the controls for the transcriptomic study are not stated (ln. 398 and onwards). The authors really need to revise the figure legends and provide all the details that an average reader would need to be able to interpret the data.

      We thank the reviewer for bringing up this important point. The figure legends of all figures including supplemental figures were revised to ensure they include all relevant data necessary for accurate interpretation of the graphs. Additionally, we clarified the sequenced samples in lines 427-429:

      “We performed mRNA sequencing of the murine lung tissue of infected and non-infected mice at 24 hpi to elucidate potential differentially expressed genes that contribute to the more severe illness of Tercko/ko mice.”

      (2) Telomere shortening affects differentially different cells and its role in aging is nuanced - different in mesenchymal cells with no telomerase induction, in non-replicating cells, and in hematopoietic cells that can readily induce telomerase. The authors should be mindful of that in setting up their introduction and discussion.

      Thank you for mentioning this essential aspect. We revised our introduction and discussion to reflect the nuanced role of telomerase shortening in different tissues (lines 83-92 and 690-695):

      “Telomerase activity is restricted to specific tissues and cell types, largely dependent on the expression of Tert. While Tert is highly expressed in stem cells, progenitor cells, and germline cells, its expression is minimal in most differentiated cells (Chakravarti, LaBella, & DePinho, 2021). Consequently, the impact of telomerase dysfunction on tissues varies according to their self-renewal rate. (Chakravarti et al., 2021). One important aspect of telomere dysfunction is the impact of telomere shortening on the immune system as well as the hematopoietic system. Tissues or organ systems that are highly replicative, such as the skin or the hematopoietic system, are affected first by telomere shortening (Chakravarti et al., 2021).”

      “It is important to note that telomere shortening has a significant impact on the immune system. Although young Tercko/ko mice were used in this study, telomere shortening is still likely to be a contributing factor. Therefore, further experiments investigating the role of T cell senescence in this model should therefore be conducted.”

      (3) Syntax and formulations need to be improved and made more scientifically precise in several spots. Specifically, in 62-63, the authors say that the aged immune system "is also discussed to be more irritable", please change to reflect the common notion that the reaction to infection is dysregulated; in many cases inflammation itself is initially blunted, misdirected, and of different type (e.g. for viruses, the key IFN-I responses are not increased but decreased). In lines 114-117, presumably, the two sentences were supposed to be connected by a comma, although some editing for clarity is probably needed regardless. Line 252, please change "unspecific" to "non-specific". Line 264, please capitalize German.

      We thank the reviewer for bringing these important points to our attention. We revised our introduction regarding the aged immune response in lines 61-69:

      “Age-related dysregulation of the immune response is also characterized by inflammaging, defined as the presence of elevated levels of pro-inflammatory cytokines in the absence of an obvious inflammatory trigger (Franceschi et al., 2000; Mogilenko, Shchukina, & Artyomov, 2022). Additionally, immune cells, such as macrophages, exhibit an activated state that alters their response to infection (Canan et al., 2014). In contrast, the immune response of macrophages to infectious challenges has been shown to be initially impaired in aged mice (Boe, Boule, & Kovacs, 2017). Thus aging is a relevant factor impacting the pulmonary immune response.”

      Sentences were edited to provide more clarity in lines 131-134:

      “Although G3 Tercko/ko mice with shortened telomeres were used in this study, they were infected at a young age (8 weeks). This approach allowed for the investigation of Terc deletion effects rather than telomere dysfunction.”

      “Unspecific was changed to “non-specific” in line 282 and “German” was capitalized in line 293 and 558.

      We appreciate and thank you for your time spent processing this manuscript and look forward to your response.

      References

      De la Calle, C., Morata, L., Cobos-Trigueros, N., Martinez, J. A., Cardozo, C., Mensa, J., & Soriano, A. (2016). Staphylococcus aureus bacteremic pneumonia. European Journal of Clinical Microbiology & Infectious Diseases, 35(3), 497-502. https://doi.org/10.1007/s10096-015-2566-8  

      Dexiu, C., Xianying, L., Yingchun, H., & Jiafu, L. (2022). Advances in CD247. Scand J Immunol, 96(1), e13170. https://doi.org/10.1111/sji.13170  

      Herrera, E., Samper, E., Martín-Caballero, J., Flores, J. M., Lee, H. W., & Blasco, M. A. (1999). Disease

      states associated with telomerase deficiency appear earlier in mice with short telomeres. Embo j, 18(11), 2950-2960. https://doi.org/10.1093/emboj/18.11.2950  

      Hornung, F., Schulz, L., Köse-Vogel, N., Häder, A., Grießhammer, J., Wittschieber, D., Autsch, A., Ehrhardt, C., Mall, G., Löffler, B., & Deinhardt-Emmer, S. (2023). Thoracic adipose tissue contributes to severe virus infection of the lung. International Journal of Obesity, 47(11), 10881099. https://doi.org/10.1038/s41366-023-01362-w  

      Kang, Y., Zhang, H., Zhao, Y., Wang, Y., Wang, W., He, Y., Zhang, W., Zhang, W., Zhu, X., Zhou, Y., Zhang, L., Ju, Z., & Shi, L. (2018). Telomere Dysfunction Disturbs Macrophage Mitochondrial Metabolism and the NLRP3 Inflammasome through the PGC-1α/TNFAIP3 Axis. Cell Reports, 22(13), 3493-3506. https://doi.org/https://doi.org/10.1016/j.celrep.2018.02.071  

      Khan, A. M., Babcock, A. A., Saeed, H., Myhre, C. L., Kassem, M., & Finsen, B. (2015). Telomere dysfunction reduces microglial numbers without fully inducing an aging phenotype. Neurobiology of Aging, 36(6), 2164-2175. https://doi.org/https://doi.org/10.1016/j.neurobiolaging.2015.03.008  

      Lee, H.-W., Blasco, M. A., Gottlieb, G. J., Horner, J. W., Greider, C. W., & DePinho, R. A. (1998). Essential role of mouse telomerase in highly proliferative organs. Nature, 392(6676), 569-574. https://doi.org/10.1038/33345  

      Liu, H., Yang, Y., Ge, Y., Liu, J., & Zhao, Y. (2019). TERC promotes cellular inflammatory response independent of telomerase. Nucleic Acids Research, 47(15), 8084-8095. https://doi.org/10.1093/nar/gkz584  

      Matthe, D. M., Thoma, O. M., Sperka, T., Neurath, M. F., & Waldner, M. J. (2022). Telomerase deficiency reflects age-associated changes in CD4+ T cells. Immun Ageing, 19(1), 16. https://doi.org/10.1186/s12979-022-00273-0  

      Rudolph, K. L., Chang, S., Lee, H. W., Blasco, M., Gottlieb, G. J., Greider, C., & DePinho, R. A. (1999). Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell, 96(5), 701-712. https://doi.org/10.1016/s0092-8674(00)80580-2  

      Tarry-Adkins, J. L., Aiken, C. E., Dearden, L., Fernandez-Twinn, D. S., & Ozanne, S. (2021). Exploring Telomere Dynamics in Aging Male Rat Tissues: Can Tissue-Specific Differences Contribute to Age-Associated Pathologies? Gerontology, 67(2), 233-242. https://doi.org/10.1159/000511608  

      Wong, L. S. M., Oeseburg, H., de Boer, R. A., van Gilst, W. H., van Veldhuisen, D. J., & van der Harst, P. (2008). Telomere biology in cardiovascular disease: the TERC−/− mouse as a model for heart failure and ageing. Cardiovascular Research, 81(2), 244-252. https://doi.org/10.1093/cvr/cvn337  

      Wu, S., Ge, Y., Lin, K., Liu, Q., Zhou, H., Hu, Q., Zhao, Y., He, W., & Ju, Z. (2022). Telomerase RNA TERC and the PI3K-AKT pathway form a positive feedback loop to regulate cell proliferation independent of telomerase activity. Nucleic Acids Res, 50(7), 3764-3776. https://doi.org/10.1093/nar/gkac179  

      Zhang, M. W., Zhao, P., Yung, W. H., Sheng, Y., Ke, Y., & Qian, Z. M. (2018). Tissue iron is negatively correlated with TERC or TERT mRNA expression: A heterochronic parabiosis study in mice. Aging (Albany NY), 10(12), 3834-3850. https://doi.org/10.18632/aging.101676

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public reviews:

      Reviewer #1:

      (1) Which allele is alr1, the one upstream of mazEF or the one in the lysine biosynthetic operon?

      Alr1 is encoded by SAUSA300_2027 and is the gene upstream to mazEF. We have now incorporated this information in the manuscript (Line# 127).

      (2) Figure 3B. Where does the C3N2 species come from in the WT and why is it absent in the mutants? It is about 25% of the total dipeptide pool.

      In Figure 3B, C3N2 species results from the combination of C3N1 (from Alr1) and C0N1 (from Dat). The reason this species is completely absent in either of the two mutants is because it requires one D-Ala from both Alr1 and Dat proteins to generate C3N2 D-Ala-D-Ala.

      (3) Figure 3D could perhaps be omitted. I understand that the authors attained statistical significance in the fitness defect, but biologically this difference is very minor. One would have to look at the isotopomer distribution in the Dat overexpressing strain to make sure that increased flux actually occurred since there are other means of affecting activity (e.g. allosteric modulators).

      Thank you for the suggestion. We agree with the reviewer that the fitness defect observed after increased dat expression is relatively minor and have moved this figure to the supplementary section as Figure 3-figure supplement 1.

      Although we attempted to amplify the fitness defect of dat expression by cloning dat on to a multicopy vector, we couldn't maintain its stable expression in S. aureus. This instability may be due to the depletion of D-Ala when dat is overexpressed. As a result, we switched to expressing dat from a single additional copy integrated into the SaPI locus, which was sufficient to cause the expected fitness defect, albeit a minor one.

      (4) In Figure 4A, why is the complete subunit UDP-NAM-AEKAA increasing in each strain upon acetate challenge if there was such a stark reduction in D-Ala-D-Ala, particularly in the ∆alr1 mutant? For that matter, why are the levels of UDP-NAM-AEKAA in the ∆alr1 mutant identical to that of WT with/out acetate?

      Thank you for raising this important point. We have addressed this in line# 299-302 and 451-455 of the revised manuscript. In short, we believe that the inhibition of Ddl by acetate significantly increases the intracellular pool of the tripeptide UDP-NAM-AEK, which then outcompetes the substrate (pentapeptide; UDP-NAM-AEKAA) of MraY. As a result, the intracellular concentration of the pentapeptide increases since it is no longer efficiently consumed by MraY. This explanation is also supported by a kinetic study conducted in Ref (1), where the competition between UDP-NAM-AEKAA and UDP-NAM-AEK as substrates for MraY is demonstrated.

      (5) Figure 4B. Is there no significant difference between ddl and murF transcripts between WT and ∆alr1 under acetate stress? This comparison was not labeled if the tests were done.

      Thank you for suggesting this comparison. The ddl and murF transcripts between WT and alr1 under acetate stress were significantly different. We have added this comparison to Figure 4B.

      (6) Although tricky, it is possible to measure intracellular acetate. It might be of interest to know where in the Ddl inhibition curve the cells actually are.

      Thank you for the suggestion. We agree this would have been an excellent addition to the manuscript. However, accurately measuring intracellular acetate would require the use of radiolabeled acetate (2), and we currently lack the expertise to do this experiment. However, since our study clearly shows that acetate-mediated growth impairment is due to Ddl inhibition, and the IC50 of acetate for Ddl is around 400 mM, we predict that the intracellular concentration must be close to or above this IC50 to observe the growth phenotypes we report.

      Reviewer #2:

      Although the authors have conclusively shown that Ddl is the target of acetic acid, it appears that the acetic acid concentration used in the experiments may not truly reflect the concentration range S. aureus would experience in its environment. Moreover, Ddl is only significantly inhibited at a very high acetate concentration (>400 mM). Thus, additional experiments showing growth phenotypes at lower organic acid concentrations may be beneficial.

      Thank you for the suggestion. In response to the reviewer, we have measured growth at various acetate concentrations and demonstrate a concentration-dependent effect (Figure 1C).

      We use 20 mM acetic acid in our study. In the gut, where S. aureus colonizes, acetate levels can reach up to 100 mM, so we believe our concentrations are physiologically relevant. When S. aureus encounters 20 mM acetate, the intracellular concentration can rise to 600 mM if the transmembrane pH gradient is 1.5 units, which is well above the ~400 mM IC50 we report for Ddl.

      Another aspect not adequately discussed is the presence of D-ala in the gut environment, which may be protective against acetate toxicity based on the model provided.

      Thank you for pointing this out. We agree that D-Ala from the gut microbiota could protect against acetate toxicity, and we’ve included this in the discussion. However, our study clearly indicates that S. aureus itself maintains high intracellular D-Ala levels through Alr1 activity which is sufficient to counter acetate anion intoxication.

      Recommendation for the authors:

      Reviewer #2:

      Major Comments:

      (1) In Line 85, authors indicate S. aureus may encounter a high concentration of ~100 mM acetic acid (extracellular?). Could the authors cite more (and recent) references indicating S. aureus encounters >100 mM acetic acid in the environment?

      To the best of our knowledge, no studies have specifically examined whether S. aureus encounters high mM concentration of acetate in the gut. Line 85 was surmised from multiple studies: recent findings that S. aureus colonizes the gut (3, 4) and that the gut environment has high acetate levels (~100 mM) (5). In response to the reviewers request, more recent references supporting high acetate concentrations in the gut (6, 7) have been added in Line# 86.

      (2) In Line 117, it is mentioned that S. aureus when grown in vitro at 20 mM acetic acid can accumulate ~600 mM acetic acid in the cytoplasm.

      a. Does the intracellular concentration go up proportionally if grown in 100 mM acetic acid? Given the IC50 of acetic acid-mediated inhibition of Ddl is ~400 mM, I wonder how physiologically relevant this finding presented here is.

      Thank you for the opportunity to explain this further. If S. aureus encounters a concentration of 100 mM acetate and its transmembrane pH gradient (pHin-pHout) is held at 1.5, the intracellular concentration of acetate could theoretically increase up to 3 M based on Ref (8). However, previous studies have shown that bacteria can lower the magnitude of transmembrane pH gradient by decreasing their intracellular pH to limit accumulation of anions within cells (9, 10).

      Although our study shows that the IC50 of Ddl inhibition by acetate is relatively high (~400 mM), we believe it’s still relevant because just 20 mM of environmental acetate at a pH of 6.0 can raise the intracellular concentration of acetate to over 600 mM, which is well above the IC50 we report for Ddl. Moreover, since S. aureus may encounter high concentrations of acetate during gut colonization, we believe our findings are physiologically relevant.

      b. Could the authors show concentration-dependent growth inhibition in alr::tn by titrating a range of acetic acid concentrations (for example 0, 0.5, 1, 5, 10, 20 mM)? Measuring intracellular acetate concentration may be beneficial as well.

      Thank you for this question. We now provide data to support that acetate-mediated inhibition of the alr1 mutant is concentration-dependent (see Figure 1C).

      c. It appears that there may be excess D-ala in the gut environment (PMIDs: 30559391; 35816159), which could counter the high acetate based on the model presented here. Could the authors clarify and/or include this information in the manuscript?

      This is an excellent point, and we have now included it in the discussion (Line# 470-475). It is indeed possible that D-Ala produced by the gut microbiome may further enhance S. aureus resistance to organic acid anions, in addition to the inherent contribution of Alr1 activity.

      (3) The following is not needed; however, it would be interesting if the authors could show that S. aureus cells grown in the presence of acetate are highly sensitive to cycloserine (which targets Alr and Ddl) compared to cells grown in the absence of acetate.

      Thank you for the suggestion. We are currently studying D-cycloserine (DCS) resistance in S. aureus. Although we provide the data below for clarification, it is not included in the current manuscript as it is part of a separate study.

      As the reviewer speculated, S. aureus is more susceptible to DCS when grown in the presence of acetate (see figure below). Normally, complete growth inhibition occurs at 32 µg/ml of DCS. However, with 20 mM acetic acid present, complete inhibition is achieved at just 8 µg/ml of DCS. Furthermore, the growth inhibition is completely rescued when externally supplemented with 5 mM D-Ala. We believe that DCS works synergistically with acetate to inhibit Ddl activity, and we are conducting additional studies to explore this further.

      Minor Comments:

      (1) Many commas are missing.

      Missing commas are now incorporated.

      (2) Line 77: disassociate --> dissociate

      Corrected.

      (3) Line 103: that --> which

      Corrected.

      (4) Lines 199-203: authors could have used gfp/luciferase reporter to test their hypotheses.

      Thank you for the suggestion. Initially, we created GFP translational fusions for all the mutants mentioned in Line# 199-203. However, the fluorescence intensity was too low to test the hypothesis, as these were single-copy fusions inserted at the SaPI site of the S. aureus genome. Because of this limitation, we took advantage of the essentiality of D-Ala-D-Ala in S. aureus to report on various mutants instead of a fluorescent reporter. In hindsight, a LacZ reporter assay might have been equally effective.

      (5) Line 339: It would be beneficial to introduce that Ddl has two independent ATP and D-ala binding sites.

      We have now added that information (Line# 338-339).

      (6) Is ddl an essential gene? If so, explicitly mention that.

      Yes, ddl is an essential gene and we have now incorporated this information in Line 103.

      (7) Line 354: shows a difference in density?

      The use of the term “difference density” is a technical crystallographic term commonly used to connote density observed for ligands in X-ray crystal structures. In this case, it simply refers to the observed density that corresponds to the two acetate ions bound within the Ddl active site.

      (8) Line 498: "Thus." Typo, change period to comma.

      We have corrected as suggested in Line 496.

      (9) Figure 1 legend says "was screen" instead of screened.

      This is now corrected.

      (10) Figure 1- Figure Supplement 1B: including data for alr2::tn dat::tn may ensure no redundancy (Lines 171-172). It is currently missing.

      Thank you for the suggestion. We now include both alr2dat double mutant and the alr1alr2dat triple mutant in Figure 1 - Figure Supplement 1B. In addition we also show that the alr1alr2dat mutant is resuced by the addition of D-Ala in Figure 1 - Figure Supplement 1C. The mutant information is also added to Table S5.

      (11) Figure 7: pentaglycine coming off of NAM is misleading. Remove untethered pentaglycine bridges.

      We thank you for pointing this out. We have modified the figure in the manuscript as suggested by the reviewer.

      (12) Are alr1/ddl cells (with limited 4-3 PG crosslink) less sensitive to vancomycin?

      On the contrary, the alr1 mutant is slightly more sensitive to vancomycin compared to the wild-type strain (see Figure below). We believe this happens because the alr1 mutant incorporates less D-Ala-D-Ala into the peptidoglycan, reducing the number of targets for vancomycin. As a result, vancomycin may be able to saturate the available D-Ala-D-Ala targets on the cell wall at a lower concentration in the alr1 mutant than in the wild type strain, leading to increased sensitivity. We haven’t included this data in the manuscript as it is part of a separate study.

      (13) Based on the structural studies, could the authors mutate the residues of Ddl involved in acetic acid binding, thereby making it resistant to acetic acid stress?

      The residues that the acetate anion interacts with are located within the ATP-binding and D-Ala-binding sites of Ddl. Since these residues are essential for Ddl function, we are unable to mutate them.

      (14) Microscopy to show the cell morphologies of wild-type and mutants exposed to acetic acid (and with D-ala supplementation) could be potentially interesting.

      Thank you for the suggestion. We did perform microscopy, expecting changes in cell shape or size, but the results were unremarkable and not included in the manuscript.

      References:

      (1) Hammes WP & Neuhaus FC (1974) On the specificity of phospho-N-acetylmuramyl-pentapeptide translocase. The peptide subunit of uridine diphosphate-N-actylmuramyl-pentapeptide. J Biol Chem 249(10):3140-3150.

      (2) Roe AJ, McLaggan D, Davidson I, O'Byrne C, & Booth IR (1998) Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J Bacteriol 180(4):767-772.

      (3) Acton DS, Plat-Sinnige MJ, van Wamel W, de Groot N, & van Belkum A (2009) Intestinal carriage of Staphylococcus aureus: how does its frequency compare with that of nasal carriage and what is its clinical impact? Eur J Clin Microbiol Infect Dis 28(2):115-127.

      (4) Piewngam P_, et al. (2023) Probiotic for pathogen-specific _Staphylococcus aureus decolonisation in Thailand: a phase 2, double-blind, randomised, placebo-controlled trial. Lancet Microbe 4(2):e75-e83.

      (5) Cummings JH, Pomare EW, Branch WJ, Naylor CP, & Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28(10):1221-1227.

      (6) Correa-Oliveira R, Fachi JL, Vieira A, Sato FT, & Vinolo MA (2016) Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunology 5(4):e73.

      (7) Hosmer J, McEwan AG, & Kappler U (2024) Bacterial acetate metabolism and its influence on human epithelia. Emerg Top Life Sci 8(1):1-13.

      (8) Carpenter CE & Broadbent JR (2009) External concentration of organic acid anions and pH: key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods. J Food Sci 74(1):R12-15.

      (9) Russell JB (1992) Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. Journal of Applied Bacteriology 73(5):363-370.

      (10) Russell JB & Diez-Gonzalez F (1998) The effects of fermentation acids on bacterial growth. Adv Microb Physiol 39:205-234.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1: 

      Limitations are that only the cytosolic fragments of the channel were studied, and the current manuscript does not do a good job of placing the results in the context of what is already known about CNBDs from other methods that yield similar information.

      In the revision, we have now added a paragraph in the discussion that addresses why the cytosolic fragment was used and a paragraph putting our results into the context of previous work on CNBD channels where possible. 

      (1) Why do the authors not apply their approach to the full-length channel? A discussion of any limitations that make this difficult would be worthwhile.” Full-length ion channel protein expression is more challenging, and it was important to start with a simpler system. This is now stated in the discussion.

      (2) …nonetheless a comparison of the conformational heterogeneity and energetics obtained from these different approaches would help to place this work in a larger context.

      We have now added a paragraph in the discussion putting our work in a larger context and addressing the challenges of comparing our results to previous studies. 

      (3) Page 5 - 3:1 unlabeled:labeled subunits in mix => 42% of molecules have 3:1 stoichiometry as desired and 21% of molecules have 2:2 stoichiometry!!! (binomial distribution p=0.25, n=4). So 1/3 of molecules with labels have two labeled subunits. This does not seem like it is at all avoiding the problem of intersubunit FRET…

      From the experimental perspective, the 3:1 molar ratio stated is certainly a low estimate of the actual subunit ratios given our FSEC data in Figure 2D and the higher expression of the WT protein compared to labeled protein. Furthermore, even without the addition of any WT protein, the calculated contribution of intersubunit FRET is negligible given that the FRET efficiency is heavily dominated by the closest donor-acceptor distances (Figure 4). 

      (4) Figure 2E - Some monomers appear to still be present in the collected fraction. The authors should discuss any effect this might have on their results.

      We now describe in the text that, at the low concentrations (~10nM) used for mass photometry, a second small peak was observed of ~30kDa, which is below the analytical range for this method. This would not affect our results since all tmFRET experiments used higher protein concentrations to ensure tetramerization.

      (5) page 4 - "Time-resolved tmFRET, therefore, resolves the structure and relative abundance of multiple conformational states in a protein sample." - structure is not resolved, only a single distance.

      We have reworded this sentence.  

      Reviewer #2:

      Regarding cyclic nucleotide-binding domain (CNBD)-containing ion channels, I disagree with the authors when they state that "the precise allosteric mechanism governing channel activation upon ligand binding, particularly the energetic changes within domains, remains poorly understood". On the contrary, I would say that the literature on this subject is rather vast and based on a significantly large variety of methodologies…

      Despite this vast literature on the energetics of CNBD channels there is no consensus about the energetics and coupling of domains that underlies the allosteric mechanism in any CNBD channel. We have added a separate paragraph in the discussion to clarify our meaning.

      In light of the above, I suggest the authors better clarify the contribution/novelty that the present work provides to the state-of-the-art methodology employed (steady-state and time-resolved tmFRET) and of CNBD-containing ion channels…

      …In light of the above, what is the contribution/novelty that the present work provides to the SthK biophysics?

      This work is the first use of the time-resolved tmFRET method to obtain intrinsic G (of an apo conformation) and G values for different ligands. It is also the first application of this approach to SthK or, indeed, to any protein other than MBP. This is mentioned in the introduction.  

      …On the basis of the above-cited work (Evans et al., PNAS, 2020) the authors should clarify why they have decided to work on the isolated Clinker/CNBD fragment and not on the full-length protein…

      We chose to start on the C-terminal fragment to provide a technically more tractable system for validating our approach using time-resolved tmFRET before moving to the more challenging full-length membrane protein. This is now addressed in a new paragraph in the discussion. 

      What is the advantage of using the Clinker/CNBD fragment of a bacterial protein and not one of HCN channels, as already successfully employed by the authors (see above citations)?

      We have chosen to perform these studies in SthK rather than a mammalian CNBD channel as SthK presents a useful model system that allows us to later express fulllength channels in bacteria. In addition, the efficiency of noncanonical amino acid incorporation is much higher in bacteria than in mammalian cells.

      Reviewer #3: 

      While the use of a truncated construct of SthK is justified, it also comes with certain limitations…

      We agree that the truncated channel comes with limitations, but we still think that there is relevant energetic information from studies of the isolated CNBD. This is now addressed in the discussion. 

      I recommend the authors carefully assess their statements on allostery. …The authors also should consider discussing the discrepancies between their truncated construct and full-length channels in more detail.

      We added a paragraph in the introduction that now puts the conformational change of the CNBD in the context of the allosteric mechanism of the full-length channel. We also added a paragraph discussing in more detail the relationship between the energetics of the C-terminal fragment and the full-length channel.  

      Regarding the in silico predictions, it is unclear to me why the authors chose the closed state of SthK Y26F and the 'open' state of the isolated C-linker CNBD construct…

      The active cAMP bound structure (4d7t) was a high resolution X-ray crystallography structure chosen as the only model with a fully resolved C-helix. The resting state structure (7rsh) was selected as a the only resting state to resolve the acceptor residue studied here (V417).     

      Previously it has been shown that SthK (and CNG) goes through multiple states during gating. This may be discussed in more detail, especially when it comes to the simplified four-state model…

      As stated above, we added paragraphs to the introduction and discussion placing the conformational change of the CNBD in the context of the full-length channel.  

      It would be interesting to see how the conformational distribution of the C-helix position integrates with available structural data on SthK. In general, putting the results more into the context of what is known for SthK and CNG channels, could increase the impact.

      We now discuss the relationship between existing structures and energetics in the introduction.  

      This may be semantics, but when working with a truncated construct that is missing the transmembrane domains using 'open' and 'closed' state is questionable. I recommend the authors consider a different nomenclature.

      We refer to the conformational states of the CNBD as ‘resting’ and ‘active’ and used ‘closed’ and ‘open’ only for the conformational states of the pore.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1) The sample size of the in-house dataset used for training the model was relatively small (34 patients), which might limit the generalizability of the findings.

      (2) The authors did not perform functional experiments to directly validate the roles of the identified key genes in radiotherapy sensitivity, relying instead on associations with immune features and signaling pathways.

      (3) The study did not discuss the potential limitations of using machine learning algorithms, such as the risk of overfitting and the need for larger, diverse datasets for more robust model development and validation.

      (1) Currently, we are actively expanding the dataset by incorporating additional patient samples to enhance the model's robustness and generalizability. Furthermore, we implement advanced statistical techniques, including cross-validation, during model development to mitigate the potential limitations associated with the small sample size on our results. This limitation has been comprehensively addressed in the discussion section of our manuscript.

      (2) Given the current resource limitations, our study predominantly employed bioinformatics analyses. We acknowledge the critical importance of experimental validation and are actively pursuing additional funding and collaborative opportunities to facilitate future experimental studies. Concurrently, we have enhanced the discussion section to comprehensively address the limitations of our approach and emphasize the necessity for future experimental validation.

      (3) We appreciate the reviewers' insightful comments regarding the potential limitations of machine learning algorithms, particularly the risk of overfitting. In response, we have incorporated a comprehensive discussion of these concerns, detailing the measures implemented to mitigate such risks, including the application of regularization techniques and the adoption of more rigorous cross-validation methodologies. We further acknowledge the necessity for larger and more diverse datasets to enhance model validity and generalizability, a concern we intend to address in our future research endeavors. The revised manuscript includes an expanded discussion on these critical points.

      Here is the limitation section in the revised Manuscript:

      “This study primarily focuses on specific subtypes of nasopharyngeal carcinoma (NPC), potentially limiting its direct generalizability to other NPC subtypes or related head and neck malignancies. Furthermore, the limited sample size of our dataset may impact the model's generalizability and extrapolation capabilities. To mitigate the potential limitations associated with the small sample size, we employed advanced statistical methodologies, including cross-validation, to enhance the robustness and reliability of our findings. Nevertheless, we acknowledge the necessity for larger datasets and are actively collaborating with other research institutions to expand our sample size, thereby enhancing the robustness and broader applicability of our findings. Additionally, while our study utilizes bioinformatics approaches to identify and analyze key genes, we recognize that the absence of direct experimental functional validation represents a significant limitation. To address this limitation, we are actively pursuing additional funding and establishing collaborations with specialized laboratories to conduct crucial functional validation experiments, which will further elucidate the specific roles of these genes in radiotherapy response. Moreover, we acknowledge the potential risk of overfitting inherent in the application of machine learning algorithms to biomedical data analysis. To mitigate this risk, we implemented regularization techniques during model development and adopted a rigorous cross-validation strategy for model validation. These methodological approaches aim to ensure that our models maintain robust predictive performance on unseen data. Notwithstanding these limitations, our study offers novel insights into the molecular mechanisms underlying radiotherapy sensitivity in NPC and indicates promising avenues for future investigation. Future research endeavors will prioritize expanding the dataset, conducting comprehensive experimental validation, and refining our predictive model to enhance its accuracy and clinical applicability.”

      Reviewer #2 (Public Review):

      (1) The study focuses on a specific type of nasopharyngeal carcinoma (NPC) and may not be generalizable to other subtypes or related head and neck cancers. The applicability of NPC-RSS to a broader range of patients and tumor types remains to be determined.

      (2) The study does not account for potential differences in radiotherapy protocols, doses, and techniques between the training and validation cohorts, which could influence the performance of the predictive model. Standardization of treatment parameters would be important for future validation studies.

      (3) The binary classification of patients into radiotherapy-sensitive and resistant groups may oversimplify the complex spectrum of treatment responses. A more granular stratification system that captures intermediate responses could provide more nuanced predictions and better guide personalized treatment decisions.

      (4) The study does not address the potential impact of other relevant factors, such as tumor stage, histological subtype, and concurrent chemotherapy, on the predictive performance of NPC-RSS. Incorporating these clinical variables into the model could enhance its accuracy and clinical utility.

      (1) We appreciate the reviewers' interest in the applicability of our study. This study specifically focuses on a particular subtype of nasopharyngeal carcinoma (NPC), which may limit its direct generalizability to other NPC subtypes or related head and neck malignancies. We have incorporated a detailed discussion of this limitation in the Discussion section and intend to investigate the applicability of NPC-RSS across a broader spectrum of tumor types and subtypes in subsequent studies.

      (2) We acknowledge the reviewers' emphasis on the significance of potential variations in radiotherapy regimens, doses, and techniques. In the current study, we did not sufficiently account for these factors, potentially impacting the model's generalizability and accuracy. We aim to improve data consistency and strengthen model validation by standardizing treatment parameters in future investigations.

      (3) We concur with the reviewers' assessment that binary categorization may oversimplify the intricate nature of treatment responses. Indeed, radiotherapy responses likely exist on a continuous spectrum. Consequently, we intend to develop more refined stratification systems to capture intermediate responses, thereby enhancing the accuracy of treatment outcome predictions and facilitating personalized treatment decisions.

      (4) We appreciate the reviewers' recommendation to incorporate clinical variables, including tumor stage, histological subtype, and concurrent chemotherapy, into the model. We acknowledge that these factors are crucial for enhancing the accuracy and clinical applicability of predictive models. We are presently compiling these additional data and intend to integrate these variables into subsequent model iterations.

      Reviewer #1 (Recommendations For The Authors):

      (1) The manuscript would benefit from a more comprehensive comparison of the NPC-RSS with existing prognostic models or biomarkers for nasopharyngeal carcinoma. This would help highlight the unique value and potential superiority of the NPC-RSS in predicting radiotherapy sensitivity.

      2) The authors should consider expanding their discussion on the potential molecular mechanisms underlying the association between the key NPC-RSS genes and radiotherapy response. They could explore whether these genes have been previously implicated in radiotherapy resistance in other cancer types and discuss the potential functional roles of these genes in the context of nasopharyngeal carcinoma.

      (1) We appreciate your thorough review and valuable suggestions concerning our study. In response to the suggestion of comparing the Nasopharyngeal Carcinoma Radiotherapy Sensitivity Score (NPC-RSS) with existing prognostic models or biomarkers, we have carefully considered this proposal and determined that such a comparison is beyond the scope of our current study. The primary focus of our research is on the development and internal validation of the NPC-RSS model's accuracy and reliability. At present, we do not have access to the necessary external data to conduct a valid comparison, and the integration of such data extends beyond the parameters of this study. We intend to incorporate this comparative analysis in future studies to further validate the efficacy and explore the clinical application potential of the NPC-RSS model. We appreciate your understanding and continued support for our research endeavors.(2) In the revised manuscript, we have incorporated a comprehensive review of the functions of these key genes in various cancer types and explored their potential mechanisms of action in nasopharyngeal carcinoma (NPC). Through the citation of pertinent studies, we have elucidated the impact of these genes on radiotherapy sensitivity and resistance. Furthermore, we have proposed future research directions to elucidate the specific roles of these genes in the radiotherapy response of NPC.

      The following are new additions to the revised draft:

      “Previous studies have demonstrated that SMARCA2 significantly influences the radiotherapy response in non-small cell lung cancer (NSCLC). Depletion of SMARCA2 has been shown to enhance radiosensitivity, suggesting its potential as a therapeutic target for radiosensitization [30478150]. Additionally, the DMC1 gene has been incorporated into the radiosensitivity index (RSI) to evaluate radiotherapy sensitivity and prognosis, particularly in endometrial cancers. This inclusion provides valuable insights into the DNA damage repair process [38628740]. Studies on CD9 in glioblastoma multiforme (GBM) have revealed that post-radiotherapy increases in CD9 and CD81 levels in extracellular vesicles (EVs) are strongly correlated with the cytotoxic response to treatment. This finding suggests the potential of CD9 as a novel biomarker for monitoring radiotherapy efficacy [36203458]. In contrast, the association of PSG4 and KNG1 with radiotherapy resistance remains unexplored in the current literature.

      Future research should focus on analyzing the expression patterns of SMARCA2 in NPC patients and its correlation with radiotherapy efficacy using clinical samples. This analysis could elucidate its potential as a target for radiosensitization therapy. Investigating the correlation between DMC1 expression levels and radiotherapy sensitivity in NPC could potentially aid in predicting treatment efficacy and optimizing therapeutic regimens. Furthermore, analysis of extracellular vesicles, particularly those containing CD9, in post-radiotherapy NPC patients could assess their feasibility as biomarkers for monitoring treatment response. These proposed studies would not only contribute to a deeper understanding of the mechanisms underlying the role of these genes in NPC radiotherapy but could also potentially lead to the development of novel strategies for enhancing radiotherapy efficacy.”

      Minor Recommendations:

      (1) It is recommended that the author share the code for the article on Github or a similar open source platform.

      (2) The manuscript would benefit from a thorough review of the punctuation and sentence structure to improve readability and clarity.

      (1) You suggest sharing the code utilized in this study on GitHub or a comparable open-source platform to enhance the transparency and reproducibility of the research. I fully recognize the significance of this suggestion. However, due to the sensitivity of the data involved and the existing intellectual property agreement with my research team, we are unable to make the code publicly available at this time. We are actively seeking a method to safeguard the intellectual property of the project while also planning to share our tools and methodologies in the future. At this stage, we are open to collaborating with other researchers under appropriate frameworks and conditions to validate and replicate our findings by providing essential code execution snippets or assisting with data analysis.

      (2) Your suggestions are vital for enhancing the quality of the manuscript. I will perform a comprehensive linguistic and structural review of the manuscript to ensure that statements flow coherently and punctuation is employed correctly. We also intend to engage a professional scientific and technical writing editor to ensure that the manuscript adheres to the high standards required for academic publishing.

      Reviewer #2 (Recommendations For The Authors):

      (1) The manuscript would benefit from a more in-depth discussion of the potential clinical implications of the NPC-RSS. The authors should elaborate on how this score could be integrated into clinical decision-making and patient management.

      (2) The authors should consider including a section discussing the limitations of their study and potential areas for future research. This could include the need for prospective validation of the NPC-RSS in larger patient cohorts and the exploration of additional biological mechanisms.

      (1) We concur that a more comprehensive discussion regarding the application of the NPC-RSS in clinical decision-making would significantly enhance the practical value of this study. In the revised draft, we will include a section that elaborates on the integration of the NPC-RSS scoring system into daily clinical practice, detailing how it can assist physicians in developing individualized treatment plans and optimize patient management by predicting treatment responses.

      The following are new additions to the revised draft:

      “The incorporation of the NPC-RSS scoring system into clinical decision-making and patient management involves several key steps: first, establishing genetic testing as a standard component of nasopharyngeal cancer diagnosis and ensuring that physicians have prompt access to scoring results to guide treatment planning. Second, physicians should utilize the scoring results to tailor individualized treatment plans and engage in multidisciplinary discussions to optimize decision-making. Concurrently, physicians should elucidate the clinical significance of the scores and effectively communicate with patients to facilitate shared decision-making. Furthermore, continuous monitoring of the relationship between scoring and treatment outcomes, optimizing the scoring model based on empirical data, and ensuring the integration of technological platforms along with regulatory compliance are essential for safeguarding the effective operation of the scoring system and the protection of patient information.

      (2) In light of the reviewers' valuable suggestions, we acknowledge the significance of prospective validation of the NPC-RSS scoring system in a broader patient population and the necessity for thorough exploration of the underlying biological mechanisms. Accordingly, we are incorporating a new section in the revised manuscript that elaborates on the limitations of the current study and outlines potential directions for future research. This encompasses plans to increase the sample size for validation and further investigations into the biological basis of the scoring system to enhance its predictive validity and clinical applicability. We believe that these additions will significantly enrich the depth and breadth of the study, thereby serving the scientific community and clinical practice more effectively.”

      Minor Recommendations:

      (1) The authors should ensure that all abbreviations are defined at their first mention in the text.

      (2) The figure legends should be more descriptive and self-explanatory, allowing readers to understand the main findings without referring back to the main text.

      (1) You pointed out the need to define all acronyms at the first mention in the text and suggested that a comprehensive list of acronyms be included in the revised draft. We fully concur and have included a comprehensive list of acronyms in the revised text. Additionally, to enhance clarity, we have included the full name and definition of each acronym alongside its first occurrence in the text. This will assist readers in comprehending the study without the need to repeatedly refer to the glossary.

      (2) You recommended enhancing the descriptive quality of the figure legends to enable readers to discern the key findings from the figures without consulting the text. We have redesigned and refined all charts and legends to ensure they provide adequate information and are more descriptive. Each legend now outlines the experimental conditions, the variables employed, and the primary conclusions, ensuring that the charts themselves sufficiently convey the key findings of the study.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In their paper, Kang et al. investigate rigidity sensing in amoeboid cells, showing that, despite their lack of proper focal adhesions, amoeboid migration of single cells is impacted by substrate rigidity. In fact, many different amoeboid cell types can durotax, meaning that they preferentially move towards the stiffer side of a rigidity gradient. 

      The authors observed that NMIIA is required for durotaxis and, buiding on this observation, they generated a model to explain how durotaxis could be achieved in the absence of strong adhesions. According to the model, substrate stiffness alters the diffusion rate of NMAII, with softer substrates allowing for faster diffusion. This allows for NMAII accumulation at the back, which, in turn, results in durotaxis. 

      The authors responded to all my comments and I have nothing to add. The evidence provided for durotaxis of non adherent (or low-adhering) cells is strong. I am particularly impressed by the fact that amoeboid cells can durotax even when not confined. I wish to congratulate the authors for the excellent work, which will fuel discussion in the field of cell adhesion and migration.

      We thank the reviewer for critically evaluating our work and giving kind suggestions. We are glad that the reviewer found our work to be of potential interest to the broad scientific community.

      Reviewer #2 (Public Review):

      Summary:

      The authors developed an imaging-based device that provides both spatialconfinement and stiffness gradient to investigate if and how amoeboid cells, including T cells, neutrophils, and Dictyostelium, can durotax. Furthermore, the authors showed that the mechanism for the directional migration of T cells and neutrophils depends on non-muscle myosin IIA (NMIIA) polarized towards the soft-matrix-side. Finally, they developed a mathematical model of an active gel that captures the behavior of the cells described in vitro.

      Strengths:

      The topic is intriguing as durotaxis is essentially thought to be a direct consequence of mechanosensing at focal adhesions. To the best of my knowledge, this is the first report on amoeboid cells that do not depend on FAs to exert durotaxis. The authors developed an imaging-based durotaxis device that provides both spatial confinement and stiffness gradient and they also utilized several techniques such as quantitative fluorescent speckle microscopy and expansion microscopy. The results of this study have well-designed control experiments and are therefore convincing.

      Weaknesses:

      Overall this study is well performed but there are still some minor issues I recommend the authors address:

      (1) When using NMIIA/NMIIB knockdown cell lines to distinguish the role of NMIIA and NMIIB in amoeboid durotaxis, it would be better if the authors took compensatory effects into account.

      We thank the reviewer for this suggestion. We have investigated the compensation of myosin in NMIIA and NMIIB KD HL-60 cells using Western blot and added this result in our updated manuscript (Fig. S4B, C). The results showed that the level of NMIIB protein in NMIIA KD cells doubled while there was no compensatory upregulation of NMIIA in NMIIB KD cells. This is consistent with our conclusion that NMIIA rather than NMIIB is responsible for amoeboid durotaxis since in NMIIA KD cells, compensatory upregulation of NMIIB did not rescue the durotaxis-deficient phenotype. 

      (2) The expansion microscopy assay is not clearly described and some details are missed such as how the assay is performed on cells under confinement.

      We thank the reviewer for this comment. We have updated details of the expansion microscopy assay in our revised manuscript in line 481-485 including how the assay is performed on cells under confinement:

      Briefly, CD4+ Naïve T cells were seeded on a gradient PA gel with another upper gel providing confinement. 4% PFA was used to fix cells for 15 min at room temperature. After fixation, the upper gradient PA gel is carefully removed and the bottom gradient PA gel with seeded cells were immersed in an anchoring solution containing 1% acrylamide and 0.7% formaldehyde (Sigma, F8775) for 5 h at 37 °C.

      (3) In this study, an active gel model was employed to capture experimental observations. Previously, some active nematic models were also considered to describe cell migration, which is controlled by filament contraction. I suggest the authors provide a short discussion on the comparison between the present theory and those prior models.

      We thank the reviewer for this suggestion. Active nematic models have been employed to recapitulate many phenomena during cell migration (Nat Commun., 2018, doi: 10.1038/s41467-018-05666-8.). The active nematic model describes the motion of cells using the orientation field, Q, and the velocity field, u. The director field n with (n = −n) is employed to represent the nematic state, which has head-tail symmetry. However, in our experiments, actin filaments are obviously polarized, which polymerize and flow towards the direction of cell migration. Therefore, we choose active gel model which describes polarized actin field during cell migration. In the discussion part, we have provided the comparison between active gel model and motor-clutch model. We have also supplemented a short discussion between the present model and active nematic model in the main text of line 345-347:

      The active nematic model employs active extensile or contractile agents to push or pull the fluid along their elongation axis to simulate cells flowing (61). 

      (4) In the present model, actin flow contributes to cell migration while myosin distribution determines cell polarity. How does this model couple actin and myosin together?

      We thank the reviewer for this question. In our model, the polarization field is employed to couple actin and myosin together. It is obvious that actin accumulate at the front while myosin diffuses in the opposite direction. Therefore, we propose that actin and myosin flow towards the opposite direction, which is captured in the convection term of actin ) and myosin () density field.

    1. Author response:

      We want to thank the reviewers for their positive and constructive comments on the manuscript. We already addressed some of their concerns and are planning the following revisions to both BEHAV3D-TP and the corresponding manuscript to address the reviewers’ comments. Below, we provide a response to the most significant comments, followed by a detailed, point-by-point response:

      (1) We acknowledge the reviewer's suggestion to incorporate open-source segmentation and tracking functionalities, increasing its accessibility to a wider user base; however, these additions fall outside the primary scope of our current work and represent a substantial undertaking in their own right. This topic has been comprehensively explored in other studies (e.g. https://doi.org/10.4049/jimmunol.2100811 ; https://doi.org/10.7554/eLife.60547 ; https://doi.org/10.1016/j.media.2022.102358 ; https://doi.org/10.1038/s41592-024-02295-6), which we will cite in our revised manuscript as indicated in our responses to the reviewers’ comments. Instead, the goal of our manuscript is to provide an analytical framework for processing data generated by existing segmentation and tracking pipelines. In our analyses, we used data processed with Imaris, a commercial software that, despite its limitations, is widely used by the intravital microscopy community due to its user-friendly platform for 3D image visualization and analysis. Nevertheless, to enhance compatibility with tracking data from various pipelines, we have modified our tool to accept data formats, such as those generated by open-source Fiji plugins like TrackMate (https://github.com/imAIgene-Dream3D/BEHAV3D_Tumor_Profiler?tab=readme-ov-file#data-input ). These updates are available in our GitHub repository, and we will describe this feature in the revised manuscript to emphasize compatibility with segmented and tracked data from diverse open-source platforms.

      (2) We appreciate the reviewer’s suggestion to incorporate additional features into our analytical pipeline. In response, we have already updated the GitHub repository to allow users to input and select which features (dynamic, morphological, or spatial) they wish to include in the analysis (https://github.com/imAIgene-Dream3D/BEHAV3D_Tumor_Profiler?tab=readme-ov-file#feature-selection ) . In the revised manuscript, we will highlight this new functionality and provide examples using alternative datasets to demonstrate the application of these features.

      (3) We appreciate the constructive feedback of reviewers #1 and #2 regarding the statistical analysis and interpretation of the data presented in Figures 3 and 4. We understand the importance of clarity and rigor in data analysis and presentation, and we are committed to addressing the concerns raised in the revised version of the manuscript.

      (4) We appreciate Reviewer #1's suggestion regarding the inclusion of demo data, as we believe it would greatly enhance the usability of our pipeline. We acknowledge that this was an oversight on our part. To address this, we have now added demo data to our GitHub repository (https://github.com/imAIgene-Dream3D/BEHAV3D_Tumor_Profiler/tree/BEHAV3D_TP-v2.0/demo_datasets). In the upcoming revised manuscript, we will also ensure to reference this addition. Additionally, we will  provide both original and processed IVM movie samples to support users in navigating the complete pipeline effectively.

      (5) Finally, we agree with the reviewers to make some small changes to the manuscript based on their feedback.

      Below we provide a point-by-point response to the reviewers’ comments, along with proposed revisions.

      Reviewer #1:

      Comment: A key limitation of the pipeline is that it does not overcome the main challenges and bottlenecks associated with processing and extracting quantitative cellular data from timelapse and longitudinal intravital images. This includes correcting breathing-induced movement artifacts, automated registration of longitudinal images taken over days/weeks, and accurate, automated segmentation and tracking of individual cells over time. Indeed, there are currently no standardised computational methods available for IVM data processing and analysis, with most laboratories relying on custom-built solutions or manual methods. This isn't made explicit in the manuscript early on (described below), and the researchers rely on expensive software packages such as IMARIS for image processing and data extraction to feed the required parameters into their pipeline. This limitation unfortunately reduces the likely impact of BEHAV3D-TP on the IVM field.

      As highlighted above, the tool does not facilitate the extraction of quantitative kinetic cellular parameters (e.g. speed, directionality, persistence, and displacement) from intravital images. Indeed, to use the tool researchers must first extract dynamic cellular parameters from their IVM datasets, requiring access to expensive software (e.g. IMARIS as used here) and/or above-average computational expertise to develop and use custom-made open-source solutions. This limitation is not made explicit or discussed in the text.

      As mentioned previously, we agree with the reviewer that image processing steps, such as segmentation, tracking, and motion correction, present significant challenges in intravital microscopy (IVM) data processing. While these aspects are being addressed by other researchers, our publication centers on the analysis of acquired data rather than on the image processing itself. Our motivation, as outlined in the manuscript, arises from our own experience: despite the substantial effort invested in image processing, researchers often rely on simplistic analytical approaches, such as averaging single parameters and comparing them across conditions. These approaches tend to overlook potential tumor heterogeneity.

      Our work aimed to develop an analytical tool that provides a comprehensive framework for extracting more insights from processed IVM data, with a focus on two key aspects: capturing the heterogeneity of tumor behavior and examining the spatial distribution of these behaviors within the tumor microenvironment. In the revised manuscript, we will clarify the scope of our study, emphasizing its limitations as an analytical tool rather than an image-processing solution. Additionally, we will provide references to relevant literature on available (open-source) software options for image processing (e.g. Diego Ulisse Pizzagalli et al J Immunol (2022); Aby Joseph et al eLife (2020) ;Molina-Moreno M et al Medical Image Analysis (2022); Hidalgo-Cenalmor, I et al, Nat Methods  (2024); Ershov. D et al Nat Methods  (2022)).

      Regarding the reviewer’s comment on our use of Imaris, we acknowledge that Imaris is a costly commercial software. However, based on our experience, it is widely used by the intravital microscopy community due to its user-friendly interface for 3D image visualization and analysis. Despite its limitations in accuracy and the fact that it is not open-source, we believe that including data processed with Imaris will be valuable to the IVM community.

      However, to improve compatibility with data from other segmentation and tracking pipelines, we have already updated our tool to support formats generated by open-source Fiji plugins like TrackMate. These updates are available in our GitHub repository, and we will describe this functionality in detail in the revised manuscript to ensure compatibility with segmented and tracked data from various open-source platforms.

      Comment: The number of cells (e.g. per behavioural cluster), and the number of independent mice, represented in each result figure, is not included in the figure legends and are difficult to ascertain from the methods.

      We appreciate the reviewer's constructive feedback regarding the clarity of the number and type of replicates used in our analyses. In the revised manuscript, we will include detailed information in the figure legends regarding the number of cells (e.g., per behavioral cluster) and the number of independent mice represented in each result figure to ensure transparency.

      Comment: The data used to test the pipeline in this manuscript is currently not available, making it difficult to assess its usability. It would be important to include this for researchers to use as a 'training dataset'.

      As stated above we acknowledge that this was an oversight on our part and thank the reviewer for pointing this out. To address this, we have now added demo data to our GitHub repository (https://github.com/imAIgene-Dream3D/BEHAV3D_Tumor_Profiler/tree/BEHAV3D_TP-v2.0/demo_datasets). In the upcoming revised manuscript, we will also make sure to reference this addition. Additionally, we intend to provide both original and processed IVM movie samples to support users in navigating the complete pipeline effectively.

      Comment: Precisely how the BEHAV3D-TP large-scale phenotyping module can map large-scale spatial phenotyping data generated using LSR-3D imaging data and Cytomap to 3D intravital imaging movies is unclear. Further details in the text and methods would be beneficial to aid understanding.

      We appreciate the reviewer’s comment and will provide additional details in the text and methods of the revised manuscript to clarify how the BEHAV3D-TP module maps LSR-3D and Cytomap data to 3D intravital imaging movies.

      Comment: The analysis provides only preliminary evidence in support of the authors' conclusions on DMG cell migratory behaviours and their relationship with components of the tumour microenvironment. Conclusions should therefore be tempered in the absence of additional experiments and controls.

      We appreciate the reviewer’s comment and acknowledge that our conclusions should be tempered due to the preliminary nature of our evidence. To be able to directly analyze the impact of the brain tumor microenvironment on cancer cell behavior, we will include a new set of analyses in the revised manuscript. Specifically, we will utilize BEHAV3D-TP to analyze existing IVM data from adult gliomas with and without macrophage depletion (Alieva et al, Scientific Reports, 2017; https://doi.org/10.1038/s41598-017-07660-4 ) to evaluate the differences in heterogeneous cell populations under these conditions. Since this analysis pertains to a different tumor type, we will revise our conclusions accordingly and emphasize the necessity for additional experiments and controls to further validate our findings on DMG cell migratory behaviors and their relationship with the tumor microenvironment.

      Reviewer #2:

      Comment: The strength of democratizing this kind of analysis is undercut by the reliance upon Imaris for segmentation, so it would be nice if this was changed to an open-source option for track generation.

      As noted in our previous response to Reviewer #1, we would like to point out that although Imaris is a commercial software, it is widely used in the intravital microscopy (IVM) community due to its user-friendly interface. One of its key advantages, which we also utilized, is semi-automated data tracking that allows for manual corrections in 3D—a process that can be more challenging in other open-source software with less effective data visualization.

      However, we recognize that enhancing our pipeline's compatibility with open-source options is important. To this end, we have already updated our tool to support data formats generated by open-source Fiji plugins like TrackMate, improving compatibility with various segmentation and tracking pipelines (https://github.com/imAIgene-Dream3D/BEHAV3D_Tumor_Profiler?tab=readme-ov-file#data-input ). We will describe these updates in the revised manuscript to clarify our study's scope and the available image processing options.

      Comment: The main issue is with the interpretation of the biological data in Figure 3 where ANOVA was used to analyse the proportional distribution of different clusters. Firstly the n is not listed so it is unclear if this represents an n of 3 where each mouse is an individual or whether each track is being treated as a test unit. If the latter this is seriously flawed as these tracks can't be treated as independent. Also, a more appropriate test would be something like a Chi-squared test or Fisher's exact test. Also, no error bars are included on the stacked bar graphs making interpretation impossible. Ultimately this is severely flawed and also appears to show very small differences which may be statistically different but may not represent biologically important findings. This would need further study.

      We appreciate the reviewer’s insightful comments regarding the interpretation of the biological data in Figure 3. To clarify, each mouse serves as an independent unit in this analysis. We believe that ANOVA is the appropriate test for comparing the proportions of different behavioral signatures across the tumor microenvironment (TME) regions identified by large-scale phenotyping. However, we acknowledge that using a stacked bar plot may have been misleading. While a Chi-squared test could show differences in the distribution of behavioral signatures, it would not indicate which specific signatures are responsible for those differences. Therefore, in the revised manuscript, we will retain the ANOVA analysis but will represent the proportions using a bar chart that clearly illustrates multiple conditions for each behavioral cluster. We also appreciate the reviewer’s concern regarding the transparency of our data. In the revised manuscript, we will include the number of replicates for all figures to enhance clarity and understanding.

      Comment:  Figure 4 has similar statistical issues in that the n is not listed and, again, it is unclear whether they are treating each cell track as independent which, again, would be inappropriate. The best practice for this type of data would be the use of super plots as outlined in Lord et al. (2020) JCI - SuperPlots: Communicating reproducibility and variability in cell biology.

      We appreciate the reviewer’s comments and suggestions regarding Figure 4. In the revised manuscript, we will clarify the number of replicates used and our approach to treating cell tracks as independent units. We will implement super-plots where appropriate, to enhance the communication of reproducibility and variability in our data.

      Comment: The main issue that this raises is that the large-scale phenotyping module and the heterogeneity module appear designed to produce these statistical analyses that are used in these figures and, if they are based on the assumption that each track is independent, then this will produce inappropriate analyses as a default.

      We appreciate the reviewer’s comment, though we find ourselves unsure about the specific concern being raised. To clarify, each mouse is treated as an independent unit in our analyses. For each large-scale phenotyping region, we measure the proportion of tumor cells displaying a specific behavioral phenotype independently for each mouse. These proportions are then used for statistical analysis. We hope this explanation provides clarity, and we will adjust the manuscript to better convey this methodology.

      Reviewer #3:

      Comment: The most challenging task of analyzing 3D time-lapse imaging data is to accurately segment and track the individual cells in 3D over a long time duration. BEHAV3D Tumor Profiler did not provide any new advancement in this regard, and instead relies on commercial software, Imaris, for this critical step. Imaris is known to have a very high error rate when used for analyzing 3D time-lapse data. In the Methods section, the authors themselves stated that "Tumor cell tracks were manually corrected to ensure accurate tracking". Based on our own experience of using Imaris, such manual correction is tedious and often required for every time step of the movie. Therefore, Imaris is not a satisfactory tool for analyzing 3D time-lapse data. Moreover, Imaris is expensive and many research labs probably can't afford to buy it. The fact that BEHAV3D Tumor Profiler critically depends on the faulty ImarisTrack module makes it unclear whether the BEHAV3D tool or the results are reliable.

      If the authors want to "democratize the analysis of heterogeneous cancer cell behaviors", they should perform image segmentation and tracking using open-source codes (e.g., Cellpose, Stardisk & 3DCellTracker) and not rely on the expensive and inaccurate ImarisTrack Module for the image analysis step of BEHAV3D.

      We appreciate the reviewer’s comments on the challenges of segmenting and tracking individual cells in 3D time-lapse imaging data. As mentioned previously, our primary focus is to develop an analytical tool for comprehensive data analysis rather than developing tools for image processing. To enhance accessibility, we have updated our tool to support data formats from open-source Fiji plugins, such as TrackMate, which will benefit users without access to commercial software (https://github.com/imAIgene-Dream3D/BEHAV3D_Tumor_Profiler?tab=readme-ov-file#data-input ).

      While we recognize the limitations of Imaris, it remains widely used in the intravital microscopy community due to its user-friendly interface for 3D visualization and semi-automated segmentation capabilities. Since no perfect tracking method currently exist, we utilized Imaris for its ability to allow manual corrections of faulty tracks, ensuring the reliability of our results. This approach was the best available option when we began our analysis, allowing us to obtain accurate results efficiently.

      In the revised manuscript, we will clarify our methodology and provide information on both Imaris and alternative processing options to strengthen the reliability of our findings.

      Comment: The authors developed a "Heterogeneity module" to extract distinctive tumor migratory phenotypes from the cell tracks quantified by Imaris. The cell tracks of the individual tumor cells are all quite short, indicating relatively low motility of the tumor cells. It's unclear whether such short migratory tracks are sufficient to warrant the PCA analysis to identify the 7 distinctive migratory phenotypes shown in Figure 2d. It's also unclear whether these 7 migratory phenotypes correspond to unique functional phenotypes.

      For the 7 distinctive motility clusters, the authors should provide a more detailed analysis of the differences between them. It's unclear whether the difference in retreating, slow retreating, erratic, static, slow, slow invading, and invading correspond to functional difference of the tumor cells.

      While some tumor cells exhibit limited motility, indicated by short tracks, others demonstrate significant migratory capabilities. This variability in tumor cell behavior is a central focus of our analysis, and our tool is specifically designed to identify and distinguish these differences. Our PCA analysis effectively captures this variability, as illustrated in Figure 2 d-f. It differentiates between cells exhibiting varying degrees of migratory behavior, including both highly migratory and less migratory phenotypes, as well as their directionality relative to the tumor core and the persistence of their movements. Thus, we believe that our approach provides valuable insights into the distinct migratory phenotypes within the tumor microenvironment. We will clarify these aspects further in the revised manuscript to enhance the reader's understanding of our findings.

      While our current manuscript does not provide explicit evidence linking each motility cluster to functional differences among the tumor cells, it is important to note that the state of the field supports the idea that cell dynamics can predict cell states and phenotypes. Research conducted by ourselves (Dekkers, Alieva et al., Nat Biotech, 2023) and others, such as Craiciuc et al. (Nature, 2022) and Freckmann et al. (Nat Comm, 2022) has shown that variations in cell motility patterns are indicative of underlying functional characteristics. For instance, cell morphodynamic features have been shown to reflect differences in cell types, T cell targeting states, tumor metastatic potential, and drug resistance states. In the revised manuscript, we will reference relevant studies to underscore the biological significance of these behaviors. By doing so, we hope to clarify the potential implications of our findings and strengthen the overall narrative of our research.

      Comment: Using only motility to classify tumor cell behaviours in the tumor microenvironment (TME) is probably not sufficient to capture the tumor cell difference. There are also other non-tumor cell types in the TME. If the authors aim to develop a computational tool that can elucidate tumor cell behaviors in the TME, they should consider other tumor cell features, e.g., morphology, proliferation state, and tumor cell interaction with other cell types, e.g., fibroblasts and distinct immune cells.

      The authors should expand the scale of tumor behavior features to classify the tumor phenotype clusters, e.g., to include tumor morphology, proliferation state, and tumor cell interaction with other TME cell types.

      We believe that using dynamic features alone is sufficient to capture differences in tumor behavior, as demonstrated by our results in Figure 2. However, we appreciate the reviewer’s suggestion to consider additional features, such as cell morphology and interactions with other cell types, to finetune our analyses. To this end, we have adapted our pipeline to be compatible with various features present in the data (https://github.com/imAIgene-Dream3D/BEHAV3D_Tumor_Profiler/tree/BEHAV3D_TP-v2.0?tab=readme-ov-file#feature-selection ). We will emphasize this in the revised manuscript. However, we would like to point out that not all features may provide informative insights and that a wide range of features can instead introduce biologically irrelevant noise, making interpretation more challenging. For instance, in 3D microscopy, the z-axis resolution is typically lower, which can lead to artifacts like elongation in that direction. Adding morphological features that capture this may skew the analysis. Therefore, we believe that incorporating additional features should be approached with caution. We will clarify these considerations in the revised manuscript to better guide users in utilizing our computational tool effectively. We will also reference the use of unbiased feature selection techniques, such as bootstrapping methods, to identify biologically relevant features based on the conditions provided (D.G. Aragones et al, Computers in Biology and Medicine (2024)).

      Comment: The authors have already published two papers on BEHAV3D [Alieva M et al. Nat Protoc. 2024 Jul;19(7): 2052-2084; Dekkers JF, et al. Nat Biotechnol. 2023 Jan;41(1):60-69]. Although the previous two papers used BEHAV3D to analyze T cells, the basic pipeline and computational steps are similar, in particular regarding cell segmentation and tracking. The addition of a "Heterogeneity module" based on PCA analysis does not make a significant advancement in terms of image analysis and quantification.

      We want to emphasize that we have no intention of duplicating our previous publications. In this manuscript, we have consistently cited our foundational papers, where BEHAV3D was first developed for T cell migratory analysis in in vitro settings. In the introduction, we clearly state that our earlier work inspired us to adopt a similar approach for analyzing cell behavior in intravital microscopy (IVM) data, addressing the specific needs and complexities of analyzing tumor cell behaviors in the tumor microenvironment.

      Importantly, our new work provides several key advancements: 1) a pipeline specifically adapted for intravital microscopy (IVM) data; 2) integration of spatial characteristics from both large-scale and small-scale phenotyping; and 3) a zero-code approach designed to empower researchers without coding skills to effectively utilize the tool. We believe that these enhancements represent meaningful progress in the analysis of cell behaviors within the tumor microenvironment which will be valuable for the IVM community. We will ensure that these points are clearly articulated in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1:

      Comment 1: IPA analysis was performed after scRNA-seq. Although it is knowledge-based software with convenient graphic utilities, it is questionable whether an unbiased genome-level analysis was performed. Therefore, it is not convincing if WNT is the only and best signal for the branching-off marker. Perhaps independent approaches, such as GO, pathway, or module analyses, should be performed to validate the finding.

      Thanks for your comment. We agree with the reviewer that IPA is a knowledge-based and a hypothesis-driven method. Our hypothesis was that WNT/BMP pathways, among others, are heavily involved in the development of mesenchymal tissues in general and differentiation of tendons specifically. Therefore, we have looked at differentially expressed genes between clusters from a broad array of pathways featured in IPA that could point us towards molecular function that could make a difference. We further corroborated this hypothesis by using WNT inhibitors in subsequent experiments. To address this point, we have supplemented the discussion section with the following remark:

      “This study is not without limitations. The IPA network analysis is a knowledge-based and hypothesis driven platform. We have specifically targeted known pathways to be involved in syndetome differentiation. However, WNT signaling stood out with very specific affinity to the off-target populations and we have verified our findings with experiments proving this hypothesis.”

      Per the reviewer’s suggestion, we also performed a non-biased GO analysis (Supp. Fig. 6). Multiple pathways were detected in the three clusters of interest (Supp. Fig. 6A-C), including integrin-related and TGFβ-related pathways. However, in these three clusters of interest, WNT signaling was also detected as a prominent pathway. Therefore, we could conclude that it plays a pivotal role in the differentiation process. This hypothesis was later corroborated with WNT inhibitor experiments.

      Comment 2: According to the method section, two iPSC lines were used for the study. However, throughout the manuscript, it is not clearly described which line was used for which experiment. Did they show similar efficiency in differentiation and in responses to WNTi? It is also worrisome if using only two lines is the norm in the stem cell field. Please provide a rationale for using only two lines, which will restrict the observation of individual-specific differential responses throughout the study.

      Thanks for your comment. This proof-of-concept study is the first investigation that compares data of an in vitro tenogenic induction protocol that has been tested in more than one human iPSC lines. We agree that line-specific phenomena are difficult to interpret and reproduce. Therefore, it is critical to provide data supporting that the findings can be reproduced in more than one line. Some early studies used one line as proof of concept, however now we realize the need to show that the protocol works in at least one additional line.

      Here we used the GMP-ready iPSC line CS0007iCTR-n5 for all optimization experiments. This newer low passage feeder-free line was generated from PBMCs and was designated as GMP-ready in the manuscript because it has been derived and cultured using cGMP xeno-free components (mTESR plus medium and rhLaminin-521 matrix substrate instead of Matrigel). We then wanted to confirm the application of the optimized protocol using the reference control line CS83iCTR-22n1 which has already been more widely used by our group1-5 and others.6 This line has been derived from fibroblasts and has been grown and expanded using MatrigelTM and mTESR1, followed by mTESR plus media. 

      The question of number of lines needed is stage-dependent. In our opinion at the proof-of-concept level, two lines, one of which has been generated in GMP-like conditions is sufficient. Confirmation with multiple lines becomes more pertinent as we move towards scale-up/manufacturing, where considerations regarding robustness and consistency are raised. However, at this stage, it is crucial to understand the developmental processes that are involved in cell differentiation to ensure a more robust protocol can be modified and adapted later. In future studies, as we move towards clinical translation, it is warranted that the approach presented in this work will be further optimized and subsequently evaluated using at least 3 different cell lines that have been generated from various sources.

      Comment 3: How similar are syndetome cells with or without WNTi? It would be interesting to check if there are major DEGs that differentiate these two groups of cells.

      Thanks for your comment. Single cell RNAseq analysis revealed that treatment with WNTi upregulated tenogenic markers. In SYNWNTi, the expression levels of stage-specific markers COL1A1, COL3A1, SCX, MKX, DCN, BGN, FN1, and TNMD were higher compared to the untreated SYN group, as shown in Figure 5C. Density plots depicted an increase in the number of cells expressing COL1A1, COL3A1, SCX and TNMD in SYNWNTi compared to the SYN group, as illustrated in Figure 5D. Trajectory analysis of the WNTi-treated group revealed the absence of bifurcations observed in the untreated group (Fig. 5E). Therefore, it can be conjured that syndetome cells with and without WNTi are different.

      Comment 4: Please discuss the improvement of the current study compared to previous ones (e.g., PMID 36203346 my study, 35083031- Tsutsumi, 35372337- Yoshimoto).

      Thanks for your comment. In Papalamprou et al (2023)3, we differentiated iPSCs to mesenchymal stromal-like cells (iMSCs), which were then cultured into a 2D dynamic bioreactor for 7 days. In that study, we examined the impact of simultaneous overexpression of the tendon transcription factor Scleraxis (SCX) using a lentiviral vector and mechanical stimulation on the process of tenogenic differentiation. Following 7 days of uniaxial cyclic loading, we observed notable modifications in the morphology and cytoskeleton organization of iPSC-derived MSCs (iMSCs) overexpressing SCX. Additionally, there was an increase in extracellular matrix (ECM) deposition and alignment, along with upregulation of early and late tendon markers. This proof-of-concept study showed that iPSC-derived MSCs could be a viable cell candidate for cell therapy applications and that mechanical stimulation is contributing to the differentiation of iMSCs towards the tenogenic lineage.

      Similarly, Tsutsumi et al7 overexpressed the tendon transcription factor Mohawk (MKX) stably in iPSC-derived MSCs using lentiviral vectors. These cells were then used to seed collagen hydrogels which were mechanically stimulated in a cyclic stretch 3D culture bioreactor for 15 days to create artificial tendon-like tissues, which the authors termed “bio-tendons”. Bio-tendons were then decellularized to remove cellular remnants from the xenogeneic human iPSC-derived cells and were subsequently transplanted in an in vivo Achilles tendon rupture mouse model. The authors reported improved histological and biomechanical properties in the Mkx-bio-tendon mice vs. the GFP-bio-tendon controls, providing another proof-of-concept study in favor of the utilization of iPSC-derived MSCs for tendon cell therapies, while also addressing the immunogenicity of cells of allogeneic/xenogeneic origin. Therefore, the above two studies used tendon transcription factor overexpression and mechanical loading either in 2D or 3D to differentiate MSCs towards the tendon/ligament lineage.

      Yoshimoto et al8 optimized a stepwise iPSC to tenocyte induction protocol using a SCX-GFP transgenic mouse iPSC line, by monitoring GFP expression over time. The group performed scRNA-seq to characterize the induction of mesodermal progenitors towards the tenogenic lineage and to shed light into their developmental trajectory. That study unveiled that Retinoic Acid (RA) signaling activation enhanced chondrogenic differentiation, which was in contrast to the study of Kaji et al (2021), which also used a SCX-GFP mouse iPSC line. Kaji et al inhibited TGF and BMP signaling during the process of mesodermal induction and reported that RA signaling eliminated SCX induction entirely and promoted a switch to neural fate. Yoshimoto et al suggested that variations in mesodermal cell identity could be due to the different methods used for mesodermal differentiation. In contrast to the Kaji et al study, Yoshimoto et al opted to stimulate WNT and block the Hedgehog pathway during mesoderm induction. Loh et al (2016) identified the branchpoint from the primitive streak to either the paraxial mesoderm (PSM) or the lateral plate mesoderm (LPM) as the result of two mutually exclusive signaling conditions. Specifically, they reported that induction of PSM was achieved through BMP suppression and WNT stimulation, while the specification of lateral mesoderm was accomplished by BMP stimulation and WNT suppression, all with concurrent TGFβ suppression/FGF stimulation. Lastly, a similar approach towards PSM induction from primitive streak (TGF off/BMP off/ WNT on/FGF on) has been used by many subsequent studies Matsuda et al (2020),9 Wu et al (2021)10 and Nakajima et al (2021).11 The diversity of the above-mentioned approaches points to the plasticity of mesodermal progenitors and the need for additional studies to better understand mesodermal specification and subsequent induction towards sclerotome and syndetome.   

      In the current study we optimized a stepwise differentiation protocol using xeno-free cGMP ready media and two different cell lines, one of which was cGMP-ready. We used scRNA-seq to characterize the differentiation, which led us to identify off-target cells that were closer to a neural phenotype. We performed pathway analyses and hypothesized that WNT signaling activity might have contributed to the emergence of the off-target cells. To test this, we used a WNT inhibitor (PORCN) to block WNT activity at the SCL stage and at the SYN stage. We found that blockade of WNT signaling at the end of the SM stage and during SCL and SYN induction resulted in a more homogeneous population, while eliminating the neural-like cell cluster. This is the first study that utilized scRNA-seq to shed light into the developmental trajectory of stepwise iPSC to tendon differentiation of human iPSCs and provided a proof-of-concept for the generation of a more homogeneous syndetome population. Further studies are needed to further fine-tune both the process and the final product, as well as elucidate the functionality of iPSC-derived syndetome cells in vitro and in vivo.

      Reviewer 2:

      General concerns: The authors demonstrated the efficiency of syndetome induction solely by scRNA-seq data analysis before and after pathway inhibition, without using e.g. FACS analysis or immunofluorescence (IF)-staining based assessment. A functional assessment and validation of the induced cells is also completely missing.

      We appreciate and agree with the reviewer’s critique regarding further analyses of differentiated iPSC-derived syndetome-like cells, including functional assessment of the differentiated cells. Immunofluorescence was used at all timepoints of induction for phenotype confirmation (Fig. 2,4). Flow cytometry for DLL1 was utilized to benchmark efficient differentiation to PSM (Loh et al,12 Nakajima et al11. Specifically, DLL1 expression was assessed with flow cytometry after 4 days of induction, and was used to optimize the parameter of initial iPSC aggregate seeding density, which has been previously found to be crucial for in vitro differentiation protocols (Loh et al12). Unfortunately, this parameter is usually not reported although it could be critical to establish protocol replication between different lines.

      The function of tendon progenitors is usually reported as response to mechanical cues and the ability to regenerate tendon injuries. In future studies we intend to assess the functionality of the generated syndetome and tendon progenitors and their response to in vitro biomechanical stimulation as previously reported to iMSCSCX+ cells3, 13 and in vivo in a critical tendon defect  similarly to what has been previously reported.2 

      Comment 1: Notably, in Figure 1D, certain PSM markers (TBXT, MSGN1, WNT3A) show higher expression on day 3. If the authors initiate SM induction on day 3 instead of day 4, could this potentially enhance the efficiency of syndetome-like cell induction?

      Thanks for your comment. In the current work, we initially optimized differentiation to PSM via expression of DLL1, whose gene expression peaked at d4. We found that this was influenced by the initial iPSC aggregate seeding density. We wanted to generate a homogeneous DLL1+ population which we assessed via gene expression, flow cytometry, IF and scRNA-seq (Fig. 1D, 2C, 3C and Suppl. Fig.1). Given the fact that different lines might display a diverse developmental timeline, we also confirmed reproducibility of the protocol with a second cell line. We appreciate the reviewer’s suggestion to investigate additional protocol iterations, such as the proposed one at the PSM stage, as we move towards a better understanding of key developmental events during in vitro induction.

      Comment 2:  In the third paragraph of the result section the authors note, "Interestingly, SCX, a prominent tenogenic transcription factor, was significantly downregulated at the SCL stage compared to iPSC, but upregulated during the differentiation from SCL to SYN." Despite this increase, the expression level of SCX in SYN remains lower than that in iPSCs in Fig.1G and Fig.3C. Can the authors provide an explanation for this? Can the authors provide IF data using iPSCs and compare it with in vitro-induced SYN cells? Can the authors provide e.g. additional scRNA-seq data which could support this statement?

      Thank you for your comment. In Fig. 1G, SCX expression in SYN was upregulated compared to SCL, however, it was shown to be similar to iPSCs. This suggests a baseline stochastic expression of SCX possibly stemming from spontaneous differentiation of iPSCs in culture (Fig. 3C). Previous research has shown that tenogenic marker gene expression tends to reduce during postnatal tendon maturation (Yin et al., 2016b14 Grinstein et al., 2019.15 Yoshimoto et al (2022) utilized a transgenic mouse iPSC-SCX-GFP line  to track SCX expression. It was shown that SCX expression peaked after 7d of tenogenic induction and was then decreased at day 14, which marked the end of tenogenic induction. The authors postulated that this pattern of gene expression could either indicate further maturation of tenocytes at subsequent time points, or that the number of non-tenogenic cells increased from T7 to T14.

      In the present work, we showed SCX gene expression upregulation in SYN compared to SCL, as well as significant upregulation of TNMD, EGR1, COL1A1 and COL3A1 (Fig.1G). Supp. Fig.8 has been added to show feature plots of SCX and TNMD expression from SCL, SYN and SYNWNTi.  The significant upregulation of later markers of tenogenic differentiation suggests that the 21 days of tenogenic induction might have matured the cells. Since gene expression analysis only conveys a snapshot of the transcriptional profile of a cell population, it is likely that we might have missed the peak of SCX upregulation (Supp. Fig. 5). Following treatment with the WNT inhibitor, the SYNWNTi group displayed increased SCX expression (% cells expressing SCX) compared to SYN, which might also be due to a more homogeneous population of syndetome-like cells following treatment with WNTi. In the SYNWNTi group, TNMD was shown to be expressed in the SYN cluster, whereas SCX was mostly found in the cluster that was labelled as fibrocartilage (FC) cluster based on the expression of COL2A1/SOX9/FN1/BGN/COL1A1 markers. Due to the fact that SCX+/SOX9+ progenitor cells are able to give rise to both tendon and cartilage (Sugimoto 2013)16, it could be postulated that this cluster contains tendon progenitors. Interestingly, the FC cluster was not observed in the second iPSC line that we tested, which resulted in a more homogeneous induction to syndetome (78.5% vs. 66.9% SYN cells, Supp. Table 1 & Supp. Fig.3). This slight discrepancy between the two lines and more specifically the presence of the FC cluster only in the 007i line, warrants further investigation. Taken together, these data indicate that the tenogenic induction duration could likely be shortened. Further work to assess the time course of SCX expression over the entire tenogenic induction could be used to further optimize the in vitro induction. For instance, a human edited iPSCSCX-GFP+ line could be generated and used to track SCX expression during the entire induction.

      Comment 3: In the fourth paragraph of the result section the authors state, "SM markers (MEOX1, PAX3) and SCL markers (PAX1, PAX9, NKX3.2, SOX9) were upregulated in a stepwise manner." However, the data for MEOX1 and NKX3.2 seems to be missing from Figure 3B-C. The authors should provide this data and/or additional support for their claim.

      Thanks for your comment. Feature plots for MEOX1 and NKX3.2 have been added to the Supplemental information (Supp. Fig. 9).

      Comment 4: In Figures 2B and 2E, the background of the red channel seems extremely high. Are there better images available, particularly for MEOX1? Given the expected high expression of MEOX1 in SM cells, the authors should observe a strong signal in the nucleus of the stained somitic mesoderm-like cells, but that is not the case in the shown figure. The authors should provide separate channel images instead of merged ones for clarity. The antibody which the authors used might not be specific. Can the authors provide images using an antibody which has been shown to work previously e.g. antibody by ATLAS (Cat#: HPA045214)?

      As requested by the reviewer, we have provided separate channels for those images in the Supplement (Supp. Fig. 7). The images show relatively high expression of these markers in SM cells.

      Comment 5: In Fig. 2C and Supplementary Fig. 1, the authors present data from immunofluorescence (IF) staining and FACS analysis using a DLL1 antibody. While FACS analysis indicates an efficiency of 96.2% for DLL1+ cells, this was not clearly observed in their IF data. How can the authors explain this discrepancy? Could the authors quantify their IF data and compare it with the corresponding FACS data?

      Thanks for your comment. We performed flow cytometric analysis of DLL1 expression to optimize cell seeding density using the 007i line. In the present study, we used IF only in a qualitative manner, that is to confirm protein expression of selected markers. It could be noted that the use of poly-lysine coated coverslips, which are needed for IF, might have slightly altered the density of the cells on the coverslip vs. the plate. Lastly, it cannot be ruled out that the different substrate could have influenced their phenotype differentially through matrix interactions and signaling. On the other hand, flow cytometry by nature is a quantitative and single cell approach, whereas IF staining is qualitative. Therefore, for the purpose of this proof-of-concept work, we tend to trust the quantitative data from the flow cytometry results more than semi-quantitative confirmation achieved through IF staining using coverslips. 

      Comment 6: In Fig. 2G, PAX9 is expected to be expressed in the nucleus, but the shown IF staining does not appear to be localized to the nucleus. Could the authors provide improved or alternative images to clarify this? The authors should use antibodies shown to work with high specificity as already reported by other groups.

      Thanks for your comment. Indeed, the staining seems to be mostly cytoplasmic. We have used antibodies that were previously reported3 and repeated the staining, however, the same results were replicated. We can speculate that this transcription factor has additional role in the iPSC-derived cells and might be traveling to the cytoplasm. Unfortunately, we have no evidence to this phenomenon.  

      Comment 7: Why did the authors choose to display day 10 data for SYN induction in Fig. 4A? Could they provide information about the endpoint of their culture at day 21?

      Thank you for your comment. In Fig. 1G we provided gene expression analyses results for several selected early and later tendon markers for the endpoint of our culture, that is day 21. Following scRNA-seq at each stage of the differentiation (iPSC at d0, PSM at d4, SM at d8, SCL at d11 and the endpoint day 32 for SYN), we performed DEG analysis using the IPA platform. We identified activation of genes associated with the WNT signaling pathway in the off-target clusters. We hypothesized that WNT pathway inhibition might block the formation of unwanted fates and induce a more homogeneous differentiation outcome. We thus tested a WNT inhibitor and compared the inhibitor-treated group with a non-treated group. We then assessed selected neural markers during the course of the inhibitor application. In Fig. 4A we presented gene expression of key selected markers at day 21 using qPCR, which was approximately in the middle of the syndetome induction. Since we observed that the inhibitor downregulated the selected neural markers, we then applied the inhibitor until the endpoint of the initial induction and proceeded to analyze the results using scRNA-seq (Fig. 5). Lastly, it should be acknowledged that this was a proof-of-concept study, and additional optimizations are needed regarding the application of the inhibitor (timing, duration, concentration, etc).

      Comment 8: In Supplementary Fig. 5, the authors depicted the expression level of SCX, a SYN marker, which peaked at day 14 and then decreased. By day 21, it reached a level comparable to that of iPSCs. Given this observation, could the authors provide a characterization of the cells at day 21 during SYN induction using IF? What was the rationale behind selecting 21 days for SYN induction? The authors also need to show 'n numbers'; how many times were the experiments repeated independently (independent experiments)?

      Thanks for your comment. During the optimization process, we initially used RT-qPCR to track gene expression of selected tenogenic markers using the 007i line. We found that after 21 days of tenogenic induction there was upregulation of the few established tendon markers, that is COL1A1, COL3A1, EGR1 and quite importantly, the more definitive later tendon marker, TNMD. Thus, we decided to proceed with this protocol prior to testing other compounds including the WNT inhibitor WNT-C59. However, as has been discussed in the manuscript, this extended tenogenic induction resulted in cell attrition without the application of the WNT inhibitor. This phenomenon was ameliorated following WNT inhibition. Thus, it could be postulated that the protocol could be further optimized by shortening tenogenic induction to less than 21 days.

      The experiments that were conducted to optimize the differentiation process were repeated independently at least n=3 times using qPCR and IF using two lines, that is the 007i and the 83i line as described in the manuscript. The scRNAseq analysis represents a population of cells from in vitro differentiation that originated from the same donor line, therefore it was performed on n=1 sample at each stage. However, the effects of inhibitor application (sample SYNWNTi) were also confirmed using a second cell line (83i), thus a total of n=2 independent samples were analyzed.  

      Comment 9: Overall the shown immunofluorescence (IF) data does not appear convincing. Could the authors please provide clearer images, including separate channel images, a bright field image, and magnified views of each staining?

      Thanks for your comment. The separate channels images were added to the supplemental data (Supp. Fig. 7). We agree with the reviewer regarding the limitations of IF staining, especially with the added confounding factor of using poly-lysine coated coverslips. We would like to point out, that in the current work IF staining is not the main finding or the primary outcome measure, and that it is only used to further support the differentiation by providing a qualitative assessment of protein presence and localization. We describe in this paper our thesis regarding the limitations of IF and the need for more high-throughput unbiased approaches to quantification when using IF staining. For instance, spatial transcriptomics combined with mass cytometry or flow cytometry could be used for a more unbiased approach. Thus, in the present manuscript we based our conclusion on the quantitative gene expression, single cell sequencing and flow cytometry.

      Comment 10: As stated by the authors in the manuscript, another research group performed FACS analysis to assess the efficiency of syndetome induction using SCX antibody, and/or quantification of immunofluorescence (IF) with SCX, MKX, COL1A1, or COL2A1 antibodies. Could the authors conduct a comparative analysis of syndetome induction efficiency both before and after protocol optimization, utilizing FACS analysis in conjunction with an SCX reporter line or antibody staining, e.g. quantifying induction efficiency via immunofluorescence (IF) staining with syndetome-specific marker genes?

      Thank you for your comment. As discussed in a previous comment, we agree with the reviewer that the generation of a human iPSC-SCX-GFP line would shed light into SCX expression over the entire course of induction. In the current work we used IF as qualitative confirmation of specific marker expression and we showed the presence of SCX, MKX, COL1 and COL3 in SYNWNTi as well as the absence of neuronal markers. As we also pointed it out in the present manuscript, IF can only be considered as a semi-quantitative assessment burdened with several technical limitations as well as operator bias and lower sensitivity and accuracy compared to flow cytometry or scRNA-seq, unless performed in a more unbiased manner. To further clarify this point, firstly, using poly-lysine coated coverslips for IF staining, results in a different substrate environment compared to the Geltrex-coated plates that were used for the induction. Additionally, we noticed that cells grew overconfluent at the edges of the coverslips. This is an important point, since as we have observed in this work, seeding density is critical for the reproducibility of the protocol. It could further be postulated that a different cell substrate stiffness might also have an effect on this process. In our opinion, in this context IF should rather be used qualitatively and a combination of flow cytometry with scRNAseq should be utilized to draw quantitative conclusions such as induction efficiencies of a certain cell type. Since we also observed inconsistencies with the SCX antibodies we tested, the generation of edited human iPSC lines (such as SCX-GFP, MKX-GFP and TNMD-GFP) would be the preferred approach to further explore the efficiency of differentiation.

      Comment 11: To enhance the paper's significance, the authors should conduct functional validation experiments and proper assessment of their induced syndetome-like cells. They could perform e.g. xeno-transplantation experiments with syndetome cells into SCID-mice or injury models. They could also assess whether the in vitro induced cells could be applied for in vitro tendon/ligament formation.

      Thanks for your comment. For the purpose of this proof-of-concept in vitro study, our primary goal was to initially evaluate a stepwise tenogenic induction protocol using GMP-ready cell lines and chemically defined media. Then, we wanted to utilize the analytical power of scRNA-seq in order to characterize and optimize the protocol, thus focusing on one developmental stage that is not well understood, that of syndetome specification from sclerotome, and hypothesized that by fine-tuning the WNT pathway we would be able to generate a more homogeneous syndetome cell population. We fully agree with the reviewer that the warranted next steps should be to conduct several functional validation experiments, such as in vitro 2D/3D tendon/ligament formation and in vivo transplantation in allogeneic or xenogeneic injury models.

      Comment 12: The authors should also compare their scRNA-seq data with actual human embryo data sets, something which could be done given the recent increase in available human embryo scRNA-seq data sets.

      This is a great idea and intriguing study. Unfortunately, not all data sets are available at the moment and specifically embryonic and MSK scRNA-seq data is very scarce, although growing. We have no access to data sets from human tendon development, and thus will have to leave this comparison for future studies.

      Reviewer 3:

      Comment 1: The data outlining the differences between the differentiation outcome of the two tested iPSCs is intriguing, but the authors fail to comment on potential differences between the two iPSC lines that could result in drastically different cell outputs from the same differentiation protocol. This is a critically important point, as the majority of the SCX+ cells generated from the 007i cells using their WNTi protocol were found in the FC subpopulation that failed to form from the 83i line under the same protocol. From the analysis of only these 2 cell lines in vitro, it is difficult to assess whether this WNTi protocol can be broadly used to generate tenogenic cells.

      Thanks for your comment. This proof-of-concept study is the first investigation that compares data of an in vitro tenogenic induction protocol that has been tested into more than one cell lines. Using unsupervised clustering we identified 11 clusters, which were classified into 6 cell subpopulations. The only observed difference between the two lines was a small subset that was labeled as fibrocartilage (FC), which displayed expression of both tenogenic and chondrogenic markers. This subpopulation was observed in 007i line but not in the 83i line at the end of the SYN induction. Importantly, DEG analysis also showed that it was enriched for SCX. It has been shown that SCX+/SOX9+ progenitors are a distinct multipotent cell group, responsible for the development of SCX−/SOX9+ chondrocytes and SCX+/SOX9− tenocytes/ligamentocytes (Sugimoto 2013)16. As noted in a previous comment (Comment 2 from Reviewer 1), we might have missed SCX upregulation during the 21-day syndetome induction. This can be further supported by Fig. 5E trajectory analysis which shows that this subpopulation (FC) precedes the SYN cell subpopulation. The fact that this subpopulation was present in one line but not the other, might indicate that 83i line resulted in a more mature tendon population. Therefore, we would rather posit that in the case of 83i line, it might not be that the FC subpopulation failed to form, but rather that it was missed in our scRNAseq endpoint analysis which showed that a more homogeneous SYN population was formed (8.7 % in 007i vs. 0.26 % in 83i, Supp. Table 1 & Supp. Fig. 3B). Future studies are warranted to characterize the SYN induction timeline as it pertains to SCX expression followed up by maturation from tenogenic progenitor to tenocytes.

      Comment 2: The authors make claims to changes in protein expression but fail to quantify either fluorescence intensity or percent cell expression from their immunofluorescence analyses to substantiate these claims. These claims are not fully supported by the data as presented as it is unclear whether there is increased expression of tendon markers at the protein level or more cells surviving the protocol. Additionally, in images where 3 channels are merged, it would be helpful to show individual channels where genes are shown in similar spectra (ie. Fig 2I SCX/MKX). Furthermore, the current layout and labelling scheme of Figure 4 makes it very difficult to compare conditions between SYN and SYNWNTi protocols.

      Thanks for your comment. Protein expression at each stage was verified with immunofluorescence cytochemistry whereby cells were cultured onto poly-lysine coated coverslips, which were then fixed, stained and imaged (Fig. 2). However, prior to WNT inhibitor application, we noticed gradual cell attrition in the cultures at the end of differentiation (Fig. 1B, 2I). The images show qualitative differences with and without the WNT inhibitor. This could be attributed to the heterogeneity of the cell population at SCL stage, which was confirmed by scRNA-seq (Fig. 3A). As it has been discussed previously (Reviewer 2 comments 5 & 9), in the current paper we didn’t provide any IF quantitative analysis because of the qualitative nature of the staining technique. In future work another high-resolution imaging modality will be considered like single cell proteomics and flow cytometry or mass cytometry in order to perform a more unbiased quantitative single cell analysis across different stages and samples. Furthermore, we have added single channel images in the supplemental information.

      Comment 3: Individual data points should also be presented for all qPCR experiments (ie. Fig 4A). Biological replicate information is missing from several experiments, particularly the immunofluorescence data, and it is unclear whether the qPCR data was generated from technical or biological replicates.

      Thanks for your comment. We have added additional information regarding replicates in each figure legend. We have also changed Fig. 4A.

      (1) Glaeser JD, Bao X, Kaneda G, et al. iPSC-neural crest derived cells embedded in 3D printable bio-ink promote cranial bone defect repair. Sci Rep. Nov 4 2022;12(1):18701. https://www.ncbi.nlm.nih.gov/pubmed/36333414

      (2) Kaneda G, Chan JL, Castaneda CM, et al. iPSC-derived tenocytes seeded on microgrooved 3D printed scaffolds for Achilles tendon regeneration. J Orthop Res. Oct 2023;41(10):2205-2220. https://www.ncbi.nlm.nih.gov/pubmed/36961351

      (3) Papalamprou A, Yu V, Chen A, et al. Directing iPSC differentiation into iTenocytes using combined scleraxis overexpression and cyclic loading. J Orthop Res. Jun 2023;41(6):1148-1161. https://www.ncbi.nlm.nih.gov/pubmed/36203346

      (4) Sheyn D, Ben-David S, Tawackoli W, et al. Human iPSCs can be differentiated into notochordal cells that reduce intervertebral disc degeneration in a porcine model. Theranostics. 2019;9(25):7506-7524. https://www.ncbi.nlm.nih.gov/pubmed/31695783

      (5) Später T, Kaneda G, Chavez M, et al. Retention of Human iPSC-Derived or Primary Cells Following Xenotransplantation into Rat Immune-Privileged Sites. Bioengineering. 2023;10(9):1049. https://www.mdpi.com/2306-5354/10/9/1049

      (6) Sareen D, O'Rourke JG, Meera P, et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med. Oct 23 2013;5(208):208ra149. https://www.ncbi.nlm.nih.gov/pubmed/24154603

      (7) Tsutsumi H, Kurimoto R, Nakamichi R, et al. Generation of a tendon-like tissue from human iPS cells. J Tissue Eng. Jan-Dec 2022;13:20417314221074018. https://www.ncbi.nlm.nih.gov/pubmed/35083031

      (8) Yoshimoto Y, Uezumi A, Ikemoto-Uezumi M, et al. Tenogenic Induction From Induced Pluripotent Stem Cells Unveils the Trajectory Towards Tenocyte Differentiation. Front Cell Dev Biol. 2022;10:780038. https://www.ncbi.nlm.nih.gov/pubmed/35372337

      (9) Matsuda M, Yamanaka Y, Uemura M, et al. Recapitulating the human segmentation clock with pluripotent stem cells. Nature. Apr 2020;580(7801):124-129. https://www.ncbi.nlm.nih.gov/pubmed/32238941

      (10) Wu CL, Dicks A, Steward N, et al. Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis. Nat Commun. Jan 13 2021;12(1):362. https://www.ncbi.nlm.nih.gov/pubmed/33441552

      (11) Nakajima T, Nakahata A, Yamada N, et al. Grafting of iPS cell-derived tenocytes promotes motor function recovery after Achilles tendon rupture. Nat Commun. Aug 18 2021;12(1):5012. https://www.ncbi.nlm.nih.gov/pubmed/34408142

      (12) Loh KM, Chen A, Koh PW, et al. Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types. Cell. Jul 14 2016;166(2):451-467. https://www.ncbi.nlm.nih.gov/pubmed/27419872

      (13) Yu V, Papalamprou A, Sheyn D. Generation of Induced Pluripotent Stem Cell-Derived iTenocytes via Combined Scleraxis Overexpression and 2D Uniaxial Tension. JoVE. 2024/03/01 2024(205):e65837. https://app.jove.com/65837

      (14) Yin Z, Hu JJ, Yang L, et al. Single-cell analysis reveals a nestin(+) tendon stem/progenitor cell population with strong tenogenic potentiality. Sci Adv. Nov 2016;2(11):e1600874. https://www.ncbi.nlm.nih.gov/pubmed/28138519

      (15) Grinstein M, Dingwall HL, O'Connor LD, Zou K, Capellini TD, Galloway JL. A distinct transition from cell growth to physiological homeostasis in the tendon. Elife. Sep 19 2019;8. https://www.ncbi.nlm.nih.gov/pubmed/31535975

      (16) Sugimoto Y, Takimoto A, Akiyama H, et al. Scx+/Sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament. Development. Jun 2013;140(11):2280-2288. https://www.ncbi.nlm.nih.gov/pubmed/23615282

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors want to elucidate which are the mechanisms that regulate the immune response in physiological conditions in cortical development. To achieve this goal, authors used a wide range of mutant mice to analyse the consequences of immune activation in the formation of cortical ectopia in mice.

      Strengths:

      The authors demonstrated that Abeta monomers are anti-inflammatory and inhibit microglial activation. This is a novel result that demonstrates the physiological role of APP in cortical development.

      Weaknesses:

      -On the other hand, cortical ectopia has been already described in mouse models in which the amyloid signalling has been disrupted (Herms et al., 2004; Guenette et al., 2006), making the current study less novel.

      We agree these previous studies have implicated amyloid precursor protein in cortical ectopia. However, since these studies use whole-body knockouts, they have not implicated the functional roles of specific cell types.  Nor have they identified the specific mechanisms underlying the formation of this unique class of cortical ectopia. In contrast, our studies show that the disruption of a novel Abeta-regulated signaling pathway in microglia is the primary cause of ectopia formation in this class of ectopia mutants. This is the first time that microglia have been specifically implicated in the development of cortical ectopia. We further show that elevated MMP activity and resulting cortical basement membrane degradation is the underlying mechanism leading to ectopia formation.  This is also the first time that MMP activity and basement membrane degradation (instead of maintenance) have been implicated in cortical ectopia development. As such, our results have provided novel insights into the diverse mechanisms underlying cortical ectopia formation in developmental brain disorders.

      One of the molecules analysed is Ric8a, a GTPase activator involved in neuronal development. Authors used the conditional mutant mice Emx1-Ric8a to delete Ric8a from early progenitors and glutamatergic neurons in the pallium. Emx1-Ric8a mutant mice present cortical ectopias and authors attributed this malformation to the increase in inflammatory response due to Ric8a deletion in microglia. Several discordances do not fit this interpretation:

      - The role of Ric8a in cortical development and function has been already described in several papers, but none of them has been cited in the current manuscript (Kask et al., 2015, 2018; Ruisu et al., 2013; Tonissoo et al., 2006).

      We have included reference to the published works on ric8a in cortical development in revision.

      - Ectopia formation in the cortex has been already described in Nestin-Ric8a cKO mice (Kask et al., 2015). In the current manuscript, authors analyzed the same mutant mice (Nestin-Ric8a), but they did not detect any ectopia. Authors should discuss this discordance.

      The expression pattern of nestin-cre is known to vary dependent on factors including transgene insertion site, genetic background, and sex. Early studies show, for example, that the nestin gene promoter drives cre expression in many non-neural tissues in another transgenic line in the FVB/N genetic background (Dubois et al Genesis. 2006 Aug;44(8):355-60. doi: 10.1002/dvg.20226).  The specific nestin-cre line used in Kask et al 2015 has also been shown to be active in brain microglia and lead to increased microglia pro-inflammatory activity upon breeding to a conditional allele of a cholesterol transporter gene (Karasinska et al., Neurobiol Dis. 2013 Jun:54:445-55; Karasinska et al.,  J Neurosci. 2009 Mar 18; 29(11): 3579–3589; Takampri et al., Brain Res. 2009 May 13:1270:10-8). These factors may in part underlie the apparent discrepancy.  We have now incorporated this discussion into the revision.

      - Authors claim that microglia express Emx1, and therefore, Ric8a is deleted in microglia cells. However, the arguments for this assumption are very weak and the evidence suggests that this is not the case. This is an important point considering that authors want to emphasise the role of Ric8a in microglia activation, and therefore, additional experiments should demonstrate that Ric8a is deleted in microglia in Emx1-Ric8a mutant mice.

      We have observed altered mRNA expression of several genes in purified microglia cultured from the emx1-cre mutants (Supplemental Fig. 8), which indicates that ric8a is deleted from microglia and suggests a role of microglial ric8a deficiency in ectopia formation.  This interpretation is further strengthened by the observation that deletion of ric8a from microglia using a microglia-specific cx3cr1-cre results in similar ectopia (Fig. 2). We also have other data supporting this interpretation, including data showing induction of the expression of a cre reporter in brain microglia by emx1-cre and loss of ric8a gene expression in microglia cells isolated from emx1-cre mutants. These data have now been incorporated into the text and in revised Supplemental Fig. 8 (new panels c-c” & d).

      Reviewer #2 (Public Review):

      Kwon et al. used several conditional KO mice for the deletion of ric8a or app in different cell types. Some of them exhibited pial basement membrane breaches leading to neuronal ectopia in the neocortex.

      They first investigated ric8a, a Guanine Nucleotide Exchange Factor for Heterotrimeric G Proteins. They observed the above-mentioned phenotype when ric8a is deleted from microglia and neural cells (ric8a-emx1-cre or dual deletion with cre combination cx3cr1 (in microglia) and nestin (in neural cells)) but not in microglia alone or neural cells alone (whether it is in CR cells (ric8a-Wnt3a-cre), post-mitotic neurons (nex-cre or dlx5/6-cre), or in progenitors and their progeny (nestin-cre or foxg1-cre). They also show that ric8a KO mutant microglia cells stimulated in vitro by LPS exhibit an increased TNFa, IL6 and IL1b secretion compared to controls (Fig 2). They therefore injected LPS in vivo and observed the neuronal ectopia phenotype in the ric8a-cx3cr1-cre (microglial deletion) cortices at P0 (Fig 2). They suggest that ric8a KO in neuronal cells mimics immune stimulation (but we have no clue how ric8a KO in neural cells would induce immune stimulation).

      We agree we do not currently know the precise mechanisms by which mutant microglia are activated in the mutant brain.  However, this does not affect the conclusion that deficiency in the Abeta monomer-regulated APP/Ric8a pathway in microglia is the primary cause of cortical ectopia in these mutants, since we have shown that genetic disruption of this pathway in microglia alone by targeting different pathway components, using cell type specific cre, in several different approaches, all results in similar cortical ectopia phenotypes.  Regarding the source of the immunogens, there are several possibilities which we plan to investigate in future studies. For example, the clearance of apoptotic cells and associated cellular debris is an important physiological process and deficits in this process have been linked to inflammatory diseases throughout life (Doran et al., Nat Rev Immunol. 2020 Apr;20(4):254-267; Boada-Romero et al., Nat Rev Mol Cell Biol. 2020 Jul;21(7):398-414.).  In the embryonic cortex, studies have shown that large numbers of cell death take place starting as early as E12 (Blaschke et al., Development. 1996 Apr;122(4):1165-74; Blaschke et al., J Comp Neurol. 1998 Jun 22;396(1):39-50).  Studies have also shown that radial glia and neuronal progenitors play critical roles in the clearance of apoptotic cells and associated cellular debris in the brain (Lu et al., Nat Cell Biol. 2011 Jul 31;13(9):1076-83; Ginisty et al., Stem Cells. 2015 Feb;33(2):515-25; Amaya et al., J Comp Neurol. 2015 Feb 1;523(2):183-96). Moreover, Ric8a-dependent heterotrimeric G proteins have been found to specifically promote the phagocytic activity of both professional and non-professional phagocytic cells (Billings et al., Sci Signal. 2016 Feb 2;9(413):ra14; Preissler et al., Glia. 2015 Feb;63(2):206-15; Pan et al. Dev Cell. 2016 Feb 22;36(4):428-39; Flak et al. J Clin Invest. 2020 Jan 2;130(1):359-373; Zhang et al., Nat Commun. 2023 Sep 14;14(1):5706).  Thus, it is probable that the failure to promptly clear up apoptotic cells and debris by mutant radial glia may play a role in triggering mutant microglial activation in ric8a-emx1-cre mutants. We have now included these possibilities in the text of the revised manuscript. However, the precise mechanisms remain to be determined in future studies, which, however, do not affect the conclusion of the current study.

      The authors then turned their attention on APP. They observed neuronal ectopia into the marginal zone when APP is deleted in microglia (app-cxcr3-cre) + intraperitoneal LPS injection (they did not show it, but we have to assume there would not be a phenotype without the injection of LPS) (Fig 3). (The phenotype is similar but not identical to ric8a-cx3cr1-cre + LPS. They suggest that the reason is because they had to inject 3 times less LPS due to enhanced immune sensitivity in this genetic background but it is only a hypothesis). After in vitro stimulation by LPS, app mutant microglia show a reduced secretion of TNFa and IL6 but not IL1b (this is the opposite to ric8a-cx3cr1-cre microglia cells) while peritoneal macrophages in culture show increased secretion of TNFa, IL1, IL6 and IL23 (fig 3 and Suppl. Fig 9).

      We have data showing that that app-cxcr3-cre mutants without LPS injection do not show ectopia, which has now been included in the revised supplemental Fig. 9 (new panels c-d).  The reason we employ LPS injection is, in the first place, that we do not see a phenotype without the injection. We agree, and have also stated in the text, that the phenotype of the app mutants is not as severe as that of the ric8a mutant.  Besides the low LPS dosage used, we also suggest that other app family members may compensate since the ectopia in the app family gene mutants reported previously were only observed in app/aplp1/2 triple knockouts, not even in any of the double knockouts (Herms et al., 2004). We have further clarified this point in the text. These possibilities are also not mutually exclusive. Nonetheless, the results clearly show that microglia specific app mutation causes cortical ectopia upon embryonic immune stimulation. They have thus implicated a specifical role of microglial APP in cortical ectopia formation.

      The different response of ric8a and app mutant microglia to LPS results from in vitro culturing of microglia. We have shown that, when acutely isolated macrophages are used, these mutants show changes in the same direction (both increased cytokine secretion) (Fig. 4).  This demonstrates without culturing app mutant microglial lineage cells indeed behave in the same way as ric8a mutant cells.

      The microglia used for analysis in in vitro assays in this study have all been cultured for two weeks before assay. They have thus been under chronic stimulation exposed to dead cells and debris in the culture dish through this period.  Previous studies have shown that dependent on the degree of perturbation to the inflammation-regulating pathways, such exposures can differentially affect microglial cytokine expression, sometimes in an opposite direction from expected.  For example, under chronic immune stimulation, while the trem2+/- microglia, which are heterozygous mutant for the anti-inflammatory Trem2, show elevated pro-inflammatory cytokine expression (as is expected), trem2-/- (null) microglia under the same conditions instead not only do not show increases but for some pro-inflammatory cytokines, actually show decreases in expression (Sayed et al.,, Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):10172-10177).  In several systems, Ric8a-dependent heterotrimeric G proteins have been shown to act downstream of APP and mediate one of the branches of the signaling activated by APP (Milosch et al., Cell Death Dis. 2014 Aug 28;5(8):e1391; Fogel et al,, Cell Rep. 2014 Jun 12;7(5):1560-1576; Ramaker et al., J Neurosci. 2013 Jun 12;33(24):10165-81; Nishimoto et al., Nature. 1993 Mar 4;362(6415):75-9).  Indeed, APP cytoplasmic domain is known to also bind to and signalig through several other proteins including FE65, Mena, and TIP60 (Cao & Sudhof, Science 2001. 293:115-120).  It is likely that in microglia Ric8a-dependent heterotrimeric G proteins may also mediate only a subset of the signaling downstream of APP.  As such, app knockout in microglia may have more severe effects on microglial anti-inflammatory regulation than ric8a knockout.  As a result, upon chronic immune activation, app knockout may lead to a microglial phenotype similar to the trem2 null mutation phenotype as discussed above, while ric8a knockout leads to a phenotype similar to trem2+/- phenotype). This may explain the subdued TNF and IL6 secretion by cultured app (but not ric8a) mutant microglia.

      Amyloid beta (Ab) being one of the molecules binding to APP, the authors showed that Ab40 monomers (they did not test Ab40 oligomers) partially inhibit cytokines (TNFa, IL6, IL1b, MCP-1, IL23a, IL10) secretion in vitro by microglia stimulated by LPS but does not affect secretion by microglia from app-cx3cr1-cre (tested for TNFa, IL6, IL1b, IL23a, IL10) (Fig 4, Suppl fig 10) (but still does it in aplp2-cx3cr1-cre) and does not affect secretion by ric8a-cx3cr1-cre microglia (tested for TNFa and IL6 but still suppress IL1b) (Therefore here is another difference between app and ric8a KO microglia).

      We have tested the effects of Abeta40 oligomers, which induce instead of suppressing microglial cytokine secretion, and have included the data (new panel j in supplemental Fig. 10).  As mentioned above, in several systems, Ric8a-dependent heterotrimeric G proteins have been shown to act downstream of APP and mediate one of the branches of the signaling activated by APP (Milosch et al., Cell Death Dis. 2014 Aug 28;5(8):e1391; Fogel et al,, Cell Rep. 2014 Jun 12;7(5):1560-1576; Ramaker et al., J Neurosci. 2013 Jun 12;33(24):10165-81; Nishimoto et al., Nature. 1993 Mar 4;362(6415):75-9).  We assume that this is likely also true in microglia and that Ric8a-dependent heterotrimeric G proteins may mediate a subset and only a subset of the signaling downstream of APP.  This may explain the difference in the effects of app and ric8a knockout mutation in abolishing the anti-inflammatory effects of Abeta monomers on IL-1b vs TNF/IL-6.  This difference also suggests that TNF/IL-6 and IL-1b secretion must be regulated by different mechanisms in microglia. Indeed, it is well established in immunology that the secretion of IL1b, but not of TNF or IL6, is regulated by inflammasome-dependent mechanisms (see, for example, Proz & Dixit. Nat Rev Immunol. 2016 Jul;16(7):407-20. doi: 10.1038/nri.2016.58).

      The authors injected inhibitors of Akt or Stat3 in the ric8a-emx1-cre cortex and found it suppressed neuronal ectopia (Fig 5, Suppl fig 11). It is not clear whether it suppresses immune stimulation from neuronal cells or immune reaction from microglia cells.

      We agree at present the pharmacological approaches we have taken are not able to distinguish these possibilities.  However, no matter which is the case, our results still implicate a role of excessive microglial activation in the formation of cortical ectopia and support the conclusion of the study.  Thus, while worthwhile of further investigation, this question does not impact the conclusion of the current study. Furthermore, as mentioned, we plan to determine the mechanisms of how ric8a mutation in neural cells induces immune activation in future studies. These results will likely enable us to more specifically address this question.

      Finally, the authors examined the activities of MMP2 and MMP9 in the developing cortex using gelatin gel zymography. The activity and protein levels of MMP9 but not MMP2 in the ric8a-emx1-cre cortex were claimed significantly increased (Fig 5, Suppl fig 12). Unfortunately, they did not show it in the app-cx3cr1-cre +LPS mouse. They make a connection between ric8a deletion and MMP9 but unfortunately do not make the connection between app deletion and MMP9, which is at the center of the pathway claimed to be important here). Then they injected BB94, a broad-spectrum inhibitor of MMPs or an inhibitor specific for MMP9 and 13. They both significantly suppress the number and the size of the ectopia in ric8a mutants (Fig5).

      For all the gelatin gel zymography analysis, we quantify protein concentrations in the cortical lysates using the Bio-Rad Bradford assay kit and load the same amounts of proteins per lane. The results across lanes are all directly comparable. From the quantification, our results clearly show that MMP9 activity levels are increased in the mutants (we have now included whole gel images and quantification in a new supplemental Figure 13).  The similar levels of MMP2 in all lanes also provide an internal control further supporting the observation of a specific change in MMP9.  For this analysis, we focus on the ric8a-emx1-cre mutants since the app-cx3cr1-cre +LPS animals show ectopia only in only subsets of mutants and in most cases only in one of the hemispheres.  Experiments examining potential changes in MMP9 are therefore unlikely to yield meaningful results.  On the other hand, we have clearly shown that the administration of different classes of MMP inhibitors significantly eliminate ectopia in ric8a-emx1-cre mutants. This has strongly implicated a functional contribution of MMPs.

      After reading the manuscript, I still do not know how ric8a in neural cells is involved in the immune inhibition. Is it through the control of Ab monomers? In addition, the authors did not show in vivo data supporting that Ab monomers are the key players here. As the authors said, this is not the only APP interactor. Finally, I still do not know how ric8a is linked to APP in microglia in the model.

      As detailed above, there are several possibilities including potential deficits in the clearance of apoptotic cells and associated debris that may trigger microglial activation in ri8ca-emx1-cre mutants. We will investigate these possibilities in future studies.  We have now incorporated these possibilities in the revised text.  As for the role of Abeta monomers, we have indicated that we currently do not have evidence that in the developing cortex Abeta monomers play a role in inhibiting microglia.  We have also indicated in the manuscript that our conclusion is that a microglial signaling pathway that is activated by Abeta monomers in vitro regulates normal brain development in vivo, not that Abeta monomers themselves regulate brain development.  Regarding the link between Ric8a and APP, the reviewer has missed several major lines of supporting evidence. For example, we have shown that Abeta monomers activate a pathway in microglia that inhibits the secretion of several proinflammatory cytokines including TNF, IL-6, IL-10, and IL-23 (Figure 4 and Supplemental Figures 8-10).  This inhibition is abolished when either app or ric8a gene is deleted from microglia.  This clearly indicates that app and ric8a act in the same genetic pathway (the pathway activated by Abeta monomers) in microglia. We also show that this Abeta monomer-activated pathway also inhibits the transcription of several cytokines in microglia.  This inhibition is also abolished when either app or ric8a gene is deleted from microglia.  This reinforces the conclusion that app and ric8a act in the same pathway in microglia.  Furthermore, cell type specific deletion of app or ric8a from microglia in vivo also results in similar phenotypes of cortical ectopia. Together, these results strongly support the conclusion that app and ric8a act in the same pathway that is activated by Abeta monomers in vitro in microglia. This conclusion is also consistent with published findings that Ric8a dependent heterotrimeric G proteins bind to APP and mediate subsets of APP signaling across different species (Milosch et al., Cell Death Dis. 2014 Aug 28;5(8):e1391; Fogel et al,, Cell Rep. 2014 Jun 12;7(5):1560-1576; Ramaker et al., J Neurosci. 2013 Jun 12;33(24):10165-81; Nishimoto et al., Nature. 1993 Mar 4;362(6415):75-9).         

      While several of the findings presented in this manuscript are of potential interest, there are a number of shortcomings. Here are some suggestions that could improve the manuscript and help substantiate the conclusions:

      (1) As the title suggests it, the focus is on Ab and APP functions in microglia. However, the analysis is more focused on ric8a. The connection between ric8a and APP in this study is not investigated, besides the fact that their deletion induces somewhat similar but not identical phenotypes. Showing a similar phenotype is not enough to conclude that they are working on the same pathway. The authors should find a way to make that connection between ric8a and app in the cells investigated here.

      As discussed above, the reviewer misses several major lines of evidence showing that APP and Ric8a acts in the same pathway in microglia.  Besides the similarity of the ectopia phenotypes, for example, we have shown that Abeta monomers activates a pathway in microglia that inhibits the secretion of several proinflammatory cytokines including TNF, IL-6, IL-10, and IL-23 (Figure 4 and Supplemental Figures 8-11).  These inhibitory effects are abolished when either app or ric8a gene is deleted from microglia.  This clearly indicates that app and ric8a act in the same genetic pathway, a pathway that is activated by Abeta monomers in vitro, in microglia. We also show that this Abeta monomer-activated pathway inhibits the transcription of several cytokine genes in microglia.  These effects are again abolished when either app or ric8_a gene is deleted from microglia.  This further reinforces the conclusion that _app and ric8a act in the same pathway in microglia.  Not only so we also show that the same results are true in macrophages.  Thus, these results strongly support the conclusion that app and ric8a act in the same genetic pathway in microglia. This conclusion is also consistent with published findings that Ric8a dependent heterotrimeric G proteins biochemically bind to APP and mediate subsets of APP signaling across different species (Milosch et al., Cell Death Dis. 2014 Aug 28;5(8):e1391; Fogel et al,, Cell Rep. 2014 Jun 12;7(5):1560-1576; Ramaker et al., J Neurosci. 2013 Jun 12;33(24):10165-81; Nishimoto et al., Nature. 1993 Mar 4;362(6415):75-9).  

      (2) This would help to show the appearance of breaches in the pial basement membrane leading to neuronal ectopia; to investigate laminin debris, cell identity, Wnt pathway for app-cxcr3-cre + LPS injection as you did for ric8a-emx1-cre.

      We have now provided further data on pial basement membrane breaches in the app-cxcr3-cre + LPS animals (new panels e-f” in supplemental Fig 9).  We have not observed any changes in cell identity or Wnt pathway activity in ric8a-emx1-cre mutants.  It is thus of limited value to examine potential changes in these areas in the app-cxcr3-cre + LPS animals.   

      (3) As a control, this would help to show that app-cxcr3-cre without the LPS injection does not display the phenotype.

      We have the data on app-cx3cr1-cre mutants without LPS injection, which show no ectopia.  We have now included the data in the revised supplemental Fig. 9 (new panels c-d).

      (4) This would help to show the activity and protein levels of MMP9 and MMP2 and perform the rescue experiments with the inhibitors in the app-cx3cr1-cre cortex +LPS.

      As discussed above, we focus analysis on the ric8a-emx1-cre mutants since app-cx3cr1-cre +LPS animals show ectopia in only a subset of mutants and in most cases only in one of the hemispheres.  Determining potential changes in MMP9 levels and effects of MMP inhibitors are therefore not likely to yield meaningful data.  On the other hand, we have shown that MMP9 levels are increased and administration of different classes of MMP inhibitors eliminate cortical ectopia in ric8a-emx1-cre mutants.  We have also shown a similar break in the basement membrane in app-cx3cr1-cre +LPS animals (new panels e-f” in supplemental Fig 9). These results together strongly implicates a role played by MMPs.

      (5) Is MMP9 secreted by microglia cells or neural cells?

      Our in situ hybridization data show MMP9 is most highly expressed in a sparse microglia-like cell population in the embryonic cortex, suggesting that microglia may be a major source of MMP9. We have incorporated these data in a new supplemental Fig. 12 (panel a). The precise identity of these cells, however, requires further validation.

      (6) The in vitro evidence indicates that one of the multiple APP interactors, ie Ab40 monomers, is less effective in suppressing the expression of some cytokines by microglia cells mutants for ric8a (TNFa and IL6 but still suppress IL1b) or APP (TNFa, IL6, IL1b, IL23a, IL10) when compared to WT. But there are other interactors for APP. In order to support the claim, it seems crucial to have in vivo data to show that Ab40 monomers are the molecules involved in preventing the breach in the pial basement membrane.

      As addressed in detail above, we have indicated that our conclusion is that a microglial signaling pathway that is activated by Abeta monomers in vitro regulates normal brain development in vivo, not that Abeta monomers themselves regulate brain development in vivo.  We currently do not have evidence that the Abeta monomers play a role in inhibiting microglia during cortical development.  There are candidate ligands for the pathway in the developing cortex, the functional study of which, however, is a major undertaking beyond the scope of the current study.

      (7) In order to claim that this is specific to Ab40 monomers and not oligomers, it is necessary to show that the Ab40 oligomers do not have the same effect in vitro and in vivo. Also, an assay should be done to show that your Ab preparations are pure monomers or oligomers.

      We have tested the effects of Abeta40 oligomers, which induce instead of suppressing microglial cytokine secretion, and have included these data in revision in a new panel j in supplemental Fig. 10. The protocols we use in preparing the monomers and oligomers are standard protocols employed in the field of Alzheimer’s disease research. They have been repeatedly optimized and validated over the past decades.  

      (8) Most of the cytokine secretion assays used microglia cells in culture. Two results draw my attention. Ric8a deletion increases TNFa and IL6 secretion after LPS stimulation in vitro on microglia cells while app deletion decreases their secretion. Then later, papers show that the decrease in IL1b induced by Ab on microglia cells is prevented by APP deletion but not ric8a deletion. Those two pieces of data suggest that ric8a and APP might not be in the same pathway. In addition, the phenotype from app-cxcr3-cre + LPS injection and ric8a-cxcr3-cre + LPS injection are not exactly the same. It could be due to the level of LPS as the author suggests or it might not be. More experiments are needed to prove they are in the same pathway.

      As discussed above, the reviewer misses several major lines of evidence, which strongly support the conclusion that APP and Ric8a act in the same pathway activated by Abeta monomers in microglia (see detailed discussion in point 1 above).  The differential response of TNFa/IL-6 of app and ric8a mutant microglia likely results from chronic immune stimulation during in vitro culturing, which is known to alter microglial cytokine response (see detailed discussion in point 9 below). We have demonstrated that this is indeed the case by showing that, without culturing, acutely isolated app and ric8a mutant macrophages both display elevated TNFa/IL-6 secretion (Figure 4). 

      Regarding the different regulation of TNF/IL-6 vs IL-1b by APP and Ric8a, as discussed above, in several systems, Ric8a-dependent heterotrimeric G proteins (which are degraded in ric8a mutant cortices, see new supplemental Fig. 9) have been shown to act downstream of APP and mediate one of the branches of the signaling activated by APP (Milosch et al., Cell Death Dis. 2014 Aug 28;5(8):e1391; Fogel et al,, Cell Rep. 2014 Jun 12;7(5):1560-1576; Ramaker et al., J Neurosci. 2013 Jun 12;33(24):10165-81; Nishimoto et al., Nature. 1993 Mar 4;362(6415):75-9).  This is likely also the case in microglia and Ric8a-dependent heterotrimeric G proteins may mediate only a subset of the anti-inflammatory signaling activated by APP.  As such, app, mutation may abolish all the inhibitory effects of Abeta monomers (both those on TNF/IL-6 and those on IL-1b), but ric8a mutation may abolish only a subset only those on TNF/IL-6 but not those on IL-1b).  This also suggests that the secretion of TNF/IL-6 and IL-1b must be regulated by different mechanisms in microglia.  Indeed, it is well established in immunology that the secretion of IL1b, but not that of TNF or IL6, is regulated by inflammasome-dependent mechanisms (see, for example, Proz & Dixit. Nat Rev Immunol. 2016 Jul;16(7):407-20. doi: 10.1038/nri.2016.58).

      (9) How do the authors reconcile the reduced TNFa and IL6 secretion upon stimulation of app mutant microglia with the model where app is attenuating immune response in vivo? Line 213 says that microglia exhibit attenuated immune response following chronic stimulation but I don't know if 3 hours of LPS in vitro is a chronic stimulation.

      The reviewer has misunderstood.  The microglia used in this study have all been cultured in vitro for approximately two weeks before assay. They have thus been under chronic stimulation exposed to dead cells and debris in the culture dish.  Dependent on the degree of perturbation to the inflammation-regulating pathways, such exposures are known to change microglial cytokine expression, sometimes in an opposite direction than expected.  For example, under chronic immune stimulation, while the trem2+/- microglia, which are heterozygous mutant for the anti-inflammatory Trem2, show elevated pro-inflammatory cytokine expression, trem2-/- (null) microglia under the same conditions instead not only do not show increases but for some pro-inflammatory cytokines, actually show decreases in expression (Sayed et al.,, Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):10172-10177).  As mentioned, in several systems, Ric8a-dependent heterotrimeric G proteins have also been shown to bind to APP and mediate one of the branches of the signaling activated by APP (Milosch et al., Cell Death Dis. 2014 Aug 28;5(8):e1391; Fogel et al,, Cell Rep. 2014 Jun 12;7(5):1560-1576; Ramaker et al., J Neurosci. 2013 Jun 12;33(24):10165-81; Nishimoto et al., Nature. 1993 Mar 4;362(6415):75-9). Thus, it is likely that in microglia, Ric8a-dependent heterotrimeric G proteins also mediate only a subset of the anti-inflammatory signaling activated by APP.  As such, app knockout in microglia may have more severe effects than ric8a knockout on microglial immune activation, resembling the relationship between trem2 null vs heterozygous mutation discussed above. As such, it is predicted that chronic immune stimulation such as in vitro culturing will result in attenuated pro-inflammatory cytokine expression in app mutant microglia but elevated cytokine expression in ric8a mutant microglia. This may explain why TNF and IL6 secretion by cultured app mutant microglia is subdued, but acutely isolated _a_pp mutant macrophages instead show increased cytokine secretion. The latter may be more representative of the response of app mutant microglia in the absence of chronic stimulation.

      (10) Line 119: In their model, the authors suggest that there is a breach in pial basement membrane but that the phenotype is different from the retraction of the radial fibers due to reduced adhesion. So, could the author discuss to what substrate the radial fibers are attached to, in their model where the pial surface is destroyed?

      Radial glial endfeet normally bind to the basement membrane via cell surface receptors including the integrin and the dystroglycan protein complexes. We observe free radial glial endfeet at the breach sites, apparently without attachment to any basement membrane.  However, we cannot exclude the possibility that there may be residual, broken-off basement membrane components bound to the endfeet that are not detected by the methodology employed. 

      (11) The authors should show that the increased cytokine secretion observed in vitro is also happening in vivo in ric8a-emx1-cre compared to WT mice and compared to ric8a-nestin-cre mice. Or when app is deleted in microglia (app-cxcr3-cre) + LPS injection compared to WT mice +LPS.

      Unfortunately, this is not technically feasible since it is not possible to extract the extracellular (secreted) fractions of cytokines from an embryonic brain without causing cell lysis and the release of the intracellular pool.  This, however, does not affect our conclusion that the Abeta monomer-regulated microglia pathway plays a key role in regulates normal brain development since its genetic disruption, by different approaches, clearly results in brain malformation.

      (12) The authors injected inhibitors of Akt or Stat3 in the ric8a-emx1-cre cortex and found that it suppressed neuronal ectopia (Fig 5, Suppl fig 11). Does it suppress immune stimulation from neuronal cells or immune reaction from microglia cells?

      As discussed above, we agree at present the pharmacological approaches we have taken are not able to distinguish these two possibilities.  However, whichever is true, it does not affect our conclusion.  Also, we plan to determine the mechanisms of how ric8a mutation in neural cells induce immune activation in future studies. These results will likely enable us to adopt specific approaches to address this question.

      (13) Fig 5 and Supplementary fig 12: Please show a tubulin loading control in Fig 5i as you did in suppl fig 12 d (gel zymography). Please provide a gel zymography showing side by side Control, mutant and mutant +DM/S3I treatment. The same request for the MMP9 staining. Please provide statistics for control vs mutant for suppl fig 12c and d..

      We have now included whole gel zymography images with four control and four mutant individual samples as well as quantification in a new supplemental Fig.13 (panels b-c). This clearly shows increases in MMP9, while the MMP2 levels appear similar between controls and mutants. For all of the experiments of gelatin gel zymography, we quantify protein concentrations in the cortical lysates using the Bio-Rad Bradford assay kit and load the same amounts of proteins per lane. The results across lanes are thus all comparable.  The MMP9 staining images for the controls and mutants have also all been taken with the same parameters on the microscope and can be directly compared.  The statistics have now been provided as suggested.

      (14) Please provide the name and the source of the MMP9/13 inhibitor used in this study.

      This inhibitor is MMP-9/MMP-13 inhibitor I (CAS 204140-01-2), from Santa Cruz Biotechnology. This information has been included in revision.

      (15) The results show that deletion of ric8a in microglia and neural cells induced pia membrane breaches but no phenotype is apparent in ric8a deletion in microglia or neural cells alone. Then, the results showed that intraperitoneal injection of LPS induced the phenotype in ric8a-cxcr3-cre mutants. It would be beneficial as a control supporting the model to show that the insult induced by LPS injection does not induce the phenotype in the ric8a-foxg1-cre mice.

      We agree it may potentially be useful to show that LPS injection does not induce ectopia in ric8a-foxg1-cre mice.  Unfortunately, since the ric8a-foxg1-cre mutation shows no phenotype, we are no longer in possession of this line.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      - The information in the abstract and the introduction is only related to app. So, it is very abrupt how authors start the manuscript studying the role of Ric8a, with no information at all about this protein and why the authors want to investigate this role in microglial activation. Later in the manuscript, the authors tried to link Ric8a with app to study the role of app in the inflammatory response and ectopia formation. This link is quite weak as well.

      In the last paragraph of the Introduction, we explain the use of the ric8a mutant and how it leads to discovery of the Abeta monomer-regulated pathway. We have now improved the writing in revision to make these points especially the link between APP and Ric8a-regulated G proteins more clear.  In the Results section, we have also improved the writing on the potential link of Ric8a to APP by highlighting, among others, the fact that ric8a and app pathway mutants are among a unique group of a few mouse mutants (ric8a, app/aplp1/2, and apbb1/2) that show cortical ectopia exclusively in the lateral cortex, while all other cortical ectopia mutants also show severe ectopia are at the cortical midline.  This suggests that similar mechanisms may underlie the ectopia formation in this small group of mutants.

      -In order to validate the mouse model, double immunofluorescence or immunofluorescence+in situ hybridization should be performed to show that microglia express ric8a and that is eliminated in the Emx1-Ric8a mutant mice.

      As mentioned above, we have additional lines of evidence showing that ric8a is deleted from microglia in emx1-cre mutants. This includes data showing induction of the expression of a cre reporter in brain microglia by emx1-cre and loss of ric8a mRNA expression in microglia cells isolated from emx1-cre mutants.  These data have now been included in revised supplemental Fig. 8.

      -In Supplemental Fig. 6, the authors claimed that cell proliferation is normal in Ric8a mutant mice without doing any quantification. They also quantified the angle of mitotic division of progenitors in the ventricular zone, but there are no images for the spindle orientation quantification, and no description of how they did it. In addition, this data is contrary to what has already been published in conditional Ric8a mutant mice (Kask et al., 2015). The Vimentin staining should be improved.

      We have provided quantification of cell proliferation (phospho-histone 3 staining at the ventricular surface) in revised supplemental Fig. 6g, which shows no significant differences in the number of positive cells. We have also provided details on the definition of the angle of cleavage plane orientation in revised supplemental Fig. 6h and in the Methods section.  We are not sure why the results are different from the other study. We were indeed anticipating deficits in mitotic spindle orientation and spent major efforts in the analysis of this potential deficit.  However, based on the data, we could not draw the conclusion.     

      -Analysis of the MMP9 expression should be done by western blot and not by immunofluorescence. In fact, the MMP9 expression shown in Figure 5g,h, does not correspond with RNA expression shown in gene expression atlas like genepaint or the allen atlas, doubting the specificity of the antibody. The expression of Mmp9 is quite low or absent in the cortex at E13.5-E14.5, making this protein very unlikely to be responsible for laminin degradation during development.

      We have performed gelatin gel zymography on MMP2/9, which shows increased MMP9 activity levels in the mutant cortex. This is similar to Western blot analysis (all lanes are loaded with the same amounts of cortical lysates).  We have now included whole gel zymography images with four control and four mutant individual samples as well as quantification in a new supplemental Fig.13 (panels b-c).  The immunofluorescence staining of MMP9, a different type of analysis, was designed as a complementary approach, the results of which also support the interpretation of increases in MMP9 protein.  Regarding MMP9 RNA expression, please also note that MMP9 is secreted, and the protein expression pattern is expected to be different from that of RNA. We have performed wholemount in situ using dissected E13.5 mouse forebrains.  Our data (in new supplemental Fig.13a) show that MMP9 mRNA is strongly expressed in a sparse population of cells many of which appear to align along blood vessels. We suspect these are microglial lineage cells populating the embryonic cortex at this stage (see, for example, Squarzoni et al., Cell Rep. 2014 Sep 11;8(5):1271-9. doi: 10.1016/j.celrep.2014.07.042.).  Our control in situ using a Tnc5 probe also shows that the MMP9 signal is not a result of nonspecific probe binding.  Since the MMP9 expressing cells are very sparse even in the wholemount specimens while most database RNA in situ expression data are obtained using thin sections, we suspect this may be why the signal may have been missed in the databases.  As for functional contributions, we agree that we cannot rule roles played by other MMPs.  However, based on the ectopia suppression data, our results clearly indicate a critical contribution by MMP9/13.

      For MMP9 activity, authors should show the whole membrane with a minimum of three control and three mutant individual samples and with the quantification.<br /> - The graphs should be improved, including individual values and titles of the Y axes.

      We have included whole membrane zymography images with four control and four mutant individual samples as well as quantification in a new supplemental Fig.13b-c.  The graphs have also been improved as suggested.

    1. Author response:

      The following is the authors’ response to the current reviews.

      We are grateful to the reviewers for their positive assessment of the revised version of the article.

      Please find below our answers to the last, minor comments of the reviewers.

      We thank the reviewer for this important comment. In our live imaging experiments, we actually tracked the dorsal and ventral borders of the omp:yfp positive clusters in control and sly mutant embryos. These measurements showed that the omp:yfp positive clusters are more elongated along the DV axis in mutants as compared with control siblings, as seen on fixed samples (data not shown), suggesting that this difference in tissue shape is not due to fixation.

      Reviewer #4 (Public review):

      Summary:

      In this elegant study XX and colleagues use a combination of fixed tissue analyses and live imaging to characterise the role of Laminin in olfactory placode development and neuronal pathfinding in the zebrafish embryo. They describe Laminin dynamics in the developing olfactory placode and adjacent brain structures and identify potential roles for Laminin in facilitating neuronal pathfinding from the olfactory placode to the brain. To test whether Laminin is required for olfactory placode neuronal pathfinding they analyse olfactory system development in a well-established laminin-gamma-1 mutant, in which the laminin-rich basement membrane is disrupted. They show that while the OP still coalesces in the absence of Laminin, Laminin is required to contain OP cells during forebrain flexure during development and maintain separation of the OP and adjacent brain region. They further demonstrate that Laminin is required for growth of OP neurons from the OP-brain interface towards the olfactory bulb. The authors also present data describing that while the Laminin mutant has partial defects in neural crest cell migration towards the developing OP, these NCC defects are unlikely to be the cause of the neuronal pathfinding defects upon loss of Laminin. Altogether the study is extremely well carried out, with careful analysis of high-quality data. Their findings are likely to be of interest to those working on olfactory system development, or with an interest in extracellular matrix in organ morphogenesis, cell migration, and axonal pathfinding.

      Strengths:

      The authors describe for the first time Laminin dynamics during the early development of the olfactory placode and olfactory axon extension. They use an appropriate model to perturb the system (lamc1 zebrafish mutant), and demonstrate novel requirements for Laminin in pathfinding of OP neurons towards the olfactory bulb.

      The study utilises careful and impressive live imaging to draw most of its conclusions, really drawing upon the strengths of the zebrafish model to investigate the role of laminin in OP pathfinding. This imaging is combined with deep learning methodology to characterise and describe phenotypes in their Laminin-perturbed models, along with detailed quantifications of cell behaviours, together providing a relatively complete picture of the impact of loss of Laminin on OP development.

      Weaknesses:

      Some of the statistical tests are performed on experiments where n=2 for each condition (for example the measurements in Figure S2) - in places the data is non-significant, but clear trends are observed, and one wonders whether some experiments are under-powered.

      We initially planned the electron microscopy experiments in order to analyse 3 embryos per genotype per stage. However, because of technical issues we could not perform the measurements in all the cases, explaining why we have n = 2 in some of the graphs. The trends were quite clear, so we chose to keep these data in the article. We believe they nicely complement the immunostaining data assessing basement membrane integrity in control and mutant embryos.


      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      The authors describe the dynamic distribution of laminin in the olfactory system and forebrain. Using immunohistochemistry and transgenic lines, they found that the olfactory system and adjacent brain tissues are enveloped by BMs from the earliest stages of olfactory system assembly. They also found that laminin deposits follow the axonal trajectory of axons. They performed a functional analysis of the sly mutant to analyse the function of laminin γ1 in the development of the zebrafish olfactory system. Their study revealed that laminin enables the shape and position of placodes to be maintained late in the face of major morphogenetic movements in the brain, and its absence promotes the local entry of sensory axons into the brain and their navigation towards the olfactory bulb. 

      Strengths: 

      - They showed that in the sly mutants, no BM staining of laminin and Nidogen could be detected around the OP and the brain. The authors then elegantly used electron microscopy to analyse the ultrastructure of the border between the OP and the brain in control and sly mutant conditions. 

      - To analyse the role of laminin γ1-dependent BMs in OP coalescence, the authors used the cluster size of Tg(neurog1:GFP)+ OP cells at 22 hpf as a marker. They found that the mediolateral dimension increased specifically in the mutants. However, proliferation did not seem to be affected, although apoptosis appeared to increase slightly at a later stage. This increase could therefore be due to a dispersal of cells in the OP. To test this hypothesis, the authors then analysed the cell trajectories and extracted 3D mean square displacements (MSD), a measure of the volume explored by a cell in a given period of time. Their conclusion indicates that although brain cell movements are increased in the absence of BM during coalescence phases, overall OP cell movements occur within normal parameters and allow OPs to condense into compact neuronal clusters in sly mutants. The authors also analysed the dimensions of the clusters composed of OMP+ neurons. Their results show an increase in cluster size along the dorso-ventral axis. These results were to be expected since, compared with BM, early neurog1+ neurons should compact along the medio-lateral axis, and those that are OMP+ essentially along the dorso-ventral axis. In addition to the DV elongation of OP tissue, the authors show the existence of isolated and ectopic (misplaced) YFP+ cells in sly mutants. 

      - To understand the origin of these phenotypes, the authors analysed the dynamic behaviour of brain cells and OPs during forebrain flexion. The authors then quantitatively measured brain versus OPs in the sly mutant and found that the OP-brain boundary was poorly defined in the sly mutant compared with the control. Once again, the methods (cell tracks, brain size, and proliferation/apoptosis, and the shape of the brain/OP boundary) are elegant but the results were expected. 

      - They then analysed the dynamic behaviour of the axon using live imaging. Thus, olfactory axon migration is drastically impaired in sly mutants, demonstrating that Laminin γ1dependent BMs are essential for the growth and navigation of axons from the OP to the olfactory bulb. 

      - The authors therefore performed a quantitative analysis of the loss of function of Laminin γ1. They propose that the BM of the OP prevents its deformation in response to mechanical forces generated by morphogenetic movements of the neighbouring brain. 

      Weaknesses: 

      - The authors did not analyse neurog1 + axonal migration at the level of the single cell and instead made a global analysis. An analysis at the cell level would strengthen their hypotheses.  

      - Rescue experiments by locally inducing Laminin expression would have strengthened the paper. 

      - The paper lacks clarity between the two neuronal populations described (early EONs and late OSNs).  

      - The authors quantitatively measured brain versus OPs in the sly mutant and found that the OP-brain boundary was poorly defined in the sly mutant compared with the control. Once again, the methods (cell tracks, brain size, proliferation/apoptosis, and the shape of the brain/OP boundary) are elegant but the results were expected. 

      - A missing point in the paper is the effect of Laminin γ1 on the migration of cranial NCCs that interact with OP cells. The authors could have analysed the dynamic distribution of neural crest cells in the sly mutant. 

      We thank the reviewer for the overall positive assessment of our work, and we carefully responded to all her/his insightful comments below. Live imaging experiments to (1) visualise exit and entry point formation with only a few axons labelled, (2) characterise the behaviour of single neurog1:GFP-positive neurons/axons during OP coalescence and to (3) analyse the migration of cranial NCC are now included in the revised manuscript to address the reviewer’s questions, and reinforce our initial conclusions.

      Reviewer #2 (Public Review): 

      Summary: 

      This manuscript addresses the role of the extracellular matrix in olfactory development. Despite the importance of these extracellular structures, the specific roles and activities of matrix molecules are still poorly understood. Here, the authors combine live imaging and genetics to examine the role of laminin gamma 1 in multiple steps of olfactory development. The work comprises a descriptive but carefully executed, quantitative assessment of the olfactory phenotypes resulting from loss of laminin gamma. Overall, this is a constructive advance in our understanding of extracellular matrix contributions to olfactory development, with a well-written Discussion with relevance to many other systems. 

      Strengths: 

      The strengths of the manuscript are in the approaches: the authors have combined live imaging, careful quantitative analyses, and molecular genetics. The work presented takes advantage of many zebrafish tools including mutants and transgenics to directly visualize the laminin extracellular matrix in living embryos during the developmental process. 

      Weaknesses: 

      The weaknesses are primarily in the presentation of some of the imaging data. In certain cases, it was not straightforward to evaluate the authors' interpretations and conclusions based on the single confocal sections included in the manuscript. For example, it was difficult to assess the authors' interpretation of when and how laminin openings arise around the olfactory placode and brain during olfactory axon guidance. 

      We thank the reviewer for the overall positive assessment of our work, and we carefully responded to all her/his insightful comments below. To address these comments, live imaging data to visualise exit and entry point formation with a sparse labelling of axons, and z-stacks showing how exit and entry points are organised in 3D, have been added to the revised manuscript.

      Reviewer #3 (Public Review): 

      This is a beautifully presented paper combining live imaging and analysis of mutant phenotypes to elucidate the role of laminin γ1-dependent basement membranes in the development of the zebrafish olfactory placode. The work is clearly illustrated and carefully quantified throughout. There are some very interesting observations based on the analysis of wild-type, laminin γ1, and foxd3 mutant embryos. The authors demonstrate the importance of a Laminin γ1-dependent basement membrane in olfactory placode morphogenesis, and in establishing and maintaining both boundaries and neuronal connections between the brain and the olfactory system. There are some very interesting observations, including the identification of different mechanisms for axons to cross basement membranes, either by taking advantage of incompletely formed membranes at early stages, or by actively perforating the membrane at later ones. 

      This is a valuable and important study but remains quite descriptive. In some cases, hypotheses for mechanisms are stated but are not tested further. For example, the authors propose that olfactory axons must actively disrupt a basement membrane to enter the brain and suggest alternative putative mechanisms for this, but these are not tested experimentally. In addition, the authors propose that the basement membrane of the olfactory placode acts to resist mechanical forces generated by the morphogenetic movement of the developing brain, and thus to prevent passive deformation of the placode, but this is not tested anywhere, for example by preventing or altering the brain movements in the laminin γ1 mutant. 

      We thank the reviewer for the overall positive assessment of our work and for suggesting interesting experiments to attempt in the future, and we carefully responded to all her/his constructive comments below.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      In general, it would be easier to draw conclusions and compare data if the authors used similar stages throughout the article. 

      Throughout the article we tried to focus on a series of stages that cover both the coalescence of the OP (up to 24 hpf) and later stages of olfactory system development spanning the brain flexure process (28, 32, 36 hpf). However, for technical reasons it was not always possible to stick to these precise stages in some of our experiments. Also, in Fig. 1E-J, we picked in the movies some images illustrating specific cell or axonal behaviours, and thus the corresponding stages could not match exactly the stage series used in Fig. 1A-D and elsewhere in the article. Nevertheless, this stage heterogeneity does not affect our main conclusions.

      It would be useful to schematise the olfactory placode and the brain in an insert to clearly visualise the system in each figure. 

      We hope that the schematic which was initially presented in Fig. 1K already helps the reader to understand how the system is organised. Although we have not added more schematic views to represent the system in each figure (we think this would make the figures overcrowded), we have added additional legends to point to the OP and the brain in the pictures in order to clarify the localisation of each tissue.

      In the Summary, the authors refer to the integrity of the basement membrane. I don't think there is any attempt to affect basement membrane integrity in the article. It would be important to do so to look at the effect on CNS-PNS separation and axonal elongation. 

      In the Summary, we use the term « integrity of the basement membrane » to mention that we have analysed this integrity in the sly mutant. Given the results of our immunostainings against three main components of the basement membrane (Laminin, Collagen IV and Nidogen), as well as our EM observations, we see the sly mutant as a condition in which the integrity of the basement membrane is strongly affected.

      Rescue experiments by locally inducing Laminin expression would have strengthened the paper. 

      We have attempted to rescue the sly mutant phenotypes by introducing the mutation in the transgenic TgBAC(lamC1:lamC1-sfGFP) background, in which Laminin γ1 tagged with sfGFP is expressed under the control of its own regulatory sequences (Yamaguchi et al., 2022). To do so, we crossed sly+/-;Tg(omp:yfp) fish with sly+/-; Tg(lamC1:LamC1-sfGFP) fish. Surprisingly, while a rescue of the global embryo morphology was observed, no clear rescue of the olfactory system defects could be detected at 36 hpf. This could be due to the fact that the expression level of LamC1-sfGFP obtained with one copy of the transgene is not sufficient to rescue the olfactory system phenotypes, or that the sfGFP tag specifically affects the function of the Laminin 𝛾1 chain during the development of the olfactory system, making it unable to rescue the defects. Given the results of our first attemps, we decided not to continue in this direction.

      (1) Developing OP & brain are surrounded by laminin-containing BM (already described by Torrez-Pas & Whitlock in 2014). 

      "we first noticed the appearance of a continuous Laminin-rich BM surrounding the brain from 14-18 hpf, while around the OP, only discrete Laminin spots were detected at this stage (Fig. 1A, A'). " 

      Around 8ss for Torrez-Pas & Whitlock (before 14 hpf). Can you modify the text, or show an 8ss stage embryo? As far as I know, the authors do not show images at 14hpf. Please correct this sentence or show a 14 hpf picture. 

      The reviewer is right, we do not show any 14 hpf stage in the images and thus have removed this stage in the text and replaced it by 17 hpf.

      In Figure 1A, the labelling of laminin 111 does not appear to be homogeneous along the brain.

      Is this true? 

      At this stage the brain’s BM revealed by the Laminin immunostaining appears fairly continuous (while the OP’s one is clearly dotty and less defined), but indeed very tiny/local interruptions of the signal can been seen along the structure as detected by the reviewer. We thus modified the text to mention these tiny interruptions.

      How is the Laminin antibody used by the authors specific to laminin 111?  

      We thank the reviewer for raising this important point. The immunogen used to produce this rabbit polyclonal antibody is the Laminin protein isolated from the basement membrane of a mouse Engelbreth Holm-Swarm sarcoma (EHS). It is thus likely to recognise several Laminin isoforms and not only Laminin 111. We thus replaced Laminin 111 by Laminin when mentioning this antibody in the text and Figures.

      Please schematise in Figure 1K the stages you have tested and shown here in the article i.e. stages 18 - 22 - 28 -36 hpf using immunohistochemistry and 17-26-27-29-33 and 38 hpf using transgenics for laminin 111 and LamC1 respectively.  

      As suggested by the reviewer, we changed the stages in the schematics for stages we have presented in Figure 1 (analysed either with immunostaining or in live imaging experiments). We chose to represent 17 - 22 - 26 - 33 hpf (and thus adapted some of the schematics for them to match these stages).  

      Please specify in the Figure 1 legend for panels A to D whether this is a 3D projection or a zsection.

      We indicated in the Figure 1 legend that all these images are single z-sections (as well as for panels E-J).

      Furthermore, the schematisation in Fig. 1K does not reflect what the authors show: at 22 hpf laminin 111 labelling appears to be present only near the brain, and no labelling lateral to the olfactory placode and anteriorly and posteriorly. Thus, the schematisation in Figure 1K needs to be modified to reflect what the authors show.

      We agree with the reviewer that the Laminin staining at this stage is observed around the medial region of the OP, but not more laterally. We modified the schematic view accordingly in Figure 1K. Anterior and posterior sides of the OP are not represented in this schematic because we chose to represent a frontal view rather than a dorsal view.

      The authors suggest that" the laminin-rich BM of OP assembles between 18 and 22 hpf, during the late phase of OP coalescence". However, their data indicate that this BM assembles around 28hpf (Figure 1C). Can they clarify this point?

      What we meant with this sentence is that we cleary see two distinct BMs from 22 hpf. However, as noticed by the reviewer, the OP’s BM is only present around the medial/basal regions of the OP and does not surround the whole OP tissue at this stage. We modified the text to clarify this point (in particular by mentioning that the OP’s BM starts to assemble between 18 and 22 hpf), and replaced the image shown in Figure 1B, B’ with a more representative picture (the previous z-section was taken in very dorsal regions of the OP).

      It would be useful to disrupt these cells that have a cytoplasmic expression of Laminin-sfGFP, to analyse their contribution to BM and OP coalescence.

      Indeed it will be interesting in the future to test specifically the role of the cells expressing cytoplasmic Laminin-sfGFP around and within the OP, as proposed by the reviewer. Laser ablation of these cells could be attempted, but due to their very superficial localisation, close to the skin, we believe these ablations (with the protocol/set-up we currently use in the lab) would impair the skin integrity, preventing us to conclude. We consider that the optimisation of this experiment is out of the scope of the present work.

      Tg(-2.0ompb:gapYFP)rw032 marks ciliated olfactory sensory neurons (OSNs) (Sato et al., 2005). The authors should mention this. 

      Please see our detailed response to the next point below.

      Points to be clarified: 

      -Tg(-2.0ompb:gapYFP)rw032 marks ciliated olfactory sensory neurons (OSNs) (Sato et al., 2005). The authors should mention this here. Moreover, the authors refer to "OP neurons" throughout the article. In the development of the olfactory organ, two types of neurons have been described in the literature: early EONs (12hpf-26hpf) and later OSNs. Each could have a specific role in the establishment and maintenance of the BM described by the authors. The authors need to clarify this point as, in Figure 1 for example, they use a marker for Tg(neurog1:GFP) EONs and a marker for ciliated OSNs without distinction. The distinction between EONs and OSNs comes a little late in the text and should be placed higher up. 

      As mentioned by the reviewer, according to the initial view of neurogenesis in the OP, OP neurons are born in two waves. A transient population of unipolar, dendrite-less pioneer neurons would differentiate first, in the ventro-medial region of the OP and elongate their axons dorsally out of the placode, along the brain wall. These pioneer axons would then be used as a scaffold by later born OSNs located in the dorso-lateral rosette to outgrow their axons towards the olfactory bulb (Whitlock and Westerfield, 1998). 

      Another study further characterised OP neurogenesis and showed that the first neurons to differentiate in the OP (the early olfactory neurons or EONs) express the Tg(neurog1:GFP) transgene (Madelaine et al., 2011). As mentioned by the authors in the discussion of this article, neurog1:GFP+ neurons appear much more numerous than the previously described pioneer neurons, and may thus include pioneers but also other neuronal subtypes.

      We would like here to share additional, unpublished observations from our lab that further suggest that the situation is more complex than the pioneer/OSN and EON/OSN nomenclatures. First, in many of our live imaging experiments, we can clearly visualise some neurog1:GFP+ unipolar neurons, initially located in a medial position in the OP, which intercalate and contribute to the dorsolateral rosette (where OSNs are proposed to be located) at the end of OP coalescence, from 22-24 hpf. Second, in fixed tissues, we observed that most neurog1:GFP+ neurons located in the rosette at 32 hpf co-express the Tg(omp:meRFP) transgene (Sato et al., 2005). These observations suggest that at least a subpopulation of neurog1:GFP+ neurons could incorporate in the dorsolateral rosette and become ciliated OSNs during development. We can share these results with the reviewer upon request. Further studies are thus needed to clarify and describe the neuronal subpopulations and lineage relationships in the OP, but this detailed investigation is out of the scope and focus of the present study. 

      An additional complication comes from the fact that, as shown and acknowledged by the authors in Miyasaka et al., 2005, the Tg(omp:meYFP) line (6kb promoter) labels ciliated OSNs in the rosette but also some unipolar, ventral neurons (around 10 neurons at 1 dpf, Miyasaka et al. 2005, Figure 3A, white arrowheads). This was also observed using the 2 kb promoter Tg(omp:meYFP) line (see for instance Miyasaka et al., 2007) and in our study, we can indeed detect these ventro-medial neurons labelled in the Tg(omp:meYFP) line (2 kb promoter), see for instance Figure 1C’, D’ or Movie 6. It is unclear whether these unipolar omp:meYFPpositive cells are pioneer neurons or EONs expressing the omp:meYFP transgene, or OSN progenitors that would be located basally/ventrally in the OP at these stages.

      For all these reasons, we decided to present in the text the current view of neurogenesis in the OP but instead of attributing a definitive identity to the neurons we visualise with the transgenic lines, we prefer to mention them in the manuscript (and in the rest of the response to the reviewers) as neurons expressing neurog1:GFP or omp:meYFP transgenes (or cells/axons/neurons expressing RFP in the Tg(cldnb:Gal4; UAS:RFP) background).

      What we also changed in the text to be more clear on this point:

      - we moved higher up in the text, as suggested by reviewer 1, the description of the current model of neurogenesis in the OP,

      - we mentioned that neurog1:GFP+ neurons are more numerous than the initially described pioneer neurons, as discussed in Madelaine et al., 2011,

      - we wrote more clearly that the Tg(omp:meYFP) line labels ciliated OSNs but also a subset of unipolar, ventral neurons (Miyasaka et al., 2005), and pointed to these ventral neurons in Figure 1C’, D’,

      - in the initial presentation of the current view of OP neurogenesis we renamed neurog1:GFP+ into EONs to be coherent with Madelaine et al., 2011.

      - To visualise pioneer axons, the authors should use an EONS marker such as neurog1 because, to my knowledge, OMP only marks OSN axons and not pioneer axons.  

      To visualise neurog1:GFP+ axons during OP coalescence, we performed live imaging upon injection of the neurog1:GFP plasmid (Blader et al., 2003) in the Tg(cldnb:Gal4; UAS:RFP) background (n = 4 mutants and n = 4 controls from 2 independent experiments). We observed some GFP+ placodal neurons exhibiting retrograde axon extension in both controls and sly mutants. In such experiments it is very difficult to quantify and compare the number of neurons/axons showing specific behaviours between different experimental conditions/genetic background. Indeed, due to the cytoplasmic localisation of GFP, the axons can only be seen in neurons expressing high levels of GFP, and due to the injection the number of such neurons varies a lot in between embryos, even in a given condition. Nevertheless, our qualitative observations reinforce the idea that the basement membrane is not absolutely required for mediolateral movements and retrograde axon extension of neurog1:GFP+ neurons in the OP. We added examples of images extracted from these new live imaging experiments in the revised Fig. S5A, B.

      - The authors should analyse the presence of laminin in the OP and forebrain in conjunction with neural crest cell dynamics (using a Sox10 transgenic line for example) to refine their entry and exit point hypotheses. 

      As described in the answer to the next point, we performed new experiments in which we visualised NCC migration in the Tg(neurog1:GFP) background, which allowed us to analyse the localisation of NCC at the forebrain/OP boundary, in ventral and dorsal positions, both in sly mutant embryos and control siblings.

      - A dynamic analysis of the distribution of neural crest cells in the sly mutant over time and during OP coalescence would be important. 

      The dynamics of zebrafish cranial NCC migration in the vicinity of the OP has been previously analysed using sox10 reporter lines (Harden et al., 2012, Torres-Paz and Whitlock, 2014, Bryan et al., 2020). To address the point raised by the reviewer, we performed live imaging from 16 to 32 hpf on sly mutants and control siblings carrying the Tg(neurog1:GFP) and Tg(UAS:RFP) transgenes and injected with a sox10(7.2):KalTA4 plasmid (Almeida et al., 2015). This allows the mosaic labelling of cells that express or have expressed sox10 during their development which, in the head region at these stages, represents mostly NCC and their derivatives. 3 independent experiments were carried out (n = 4 mutant embryos in which 8 placodes could be analysed; n = 6 control siblings in which 10 placodes could be analysed). A new movie (Movie 9) has been added to the revised article to show representative examples of control and mutant embryos.

      From these new data, we could make the following observations:

      - As expected from previous studies (Harden et al., 2012, Torres-Paz and Whitlock, 2014, Bryan et al., 2020), in control embryos a lot of NCC had already migrated to reach the vicinity of the OP when the movies begin at 16 hpf, and were then seen invading mainly the interface between the eye and the OP (10/10 placodes). Surprisingly, in sly mutants, a lot of motile NCC had also reached the OP region at 16 hpf in all the analysed placodes (8/8), and populated the eye/OP interface in 7/8 placodes (10/10 in controls). Counting NCC or tracking individual NCC during the whole duration of the movies was unfortunately too difficult to achieve in these movies, because of the low level of mosaicism (a high number of cells were labelled) and of the high speed of NCC movements (as compared with the 10 min delta t we chose for the movies). 

      - in some of the control placodes we could detect a few NCC that populated the forebrain/OP interface, either ventrally, close to the exit point of the axons (4/10 placodes), or more dorsally (8/10 placodes). By contrast, in sly mutants, NCC were observed in the dorsal region of the brain/OP boundary in only 2/8 placodes, and in the ventral brain/OP frontier in only 2/8 placodes as well. Interestingly, in these 2 last samples, NCC that had initially populated the ventral region of the brain/OP interface were then expelled from the boundary at later stages.

      We reported these observations in a new Table that is presented in revised Fig. S6B. In addition, instances of NCC migrating at the eye/OP or forebain/OP interfaces are indicated with arrowheads on Movie 9. Previous Figure S6 was splitted into two parts presenting NCC defects in sly mutants (revised Figure S6) and in foxd3 mutants (revised Figure S7).

      Altogether, these new data suggest that the first postero-anterior phase of NCC migration towards the OP, as well as their migration in between the eye and OP tissues, is not fully perturbed in sly mutants. The subset of NCC that populate the OP/forebrain seem to be more specifically affected, as these NCC show defects in their migration to the interface or the maintenance of their position at the interface. Since the crestin marker labels mostly NCC at the OP/forebrain interface at 32 hpf (revised Fig. S6A), this could explain why the crestin ISH signal is almost lost in sly mutants at this stage.

      (2) Laminin distribution suggests a role in olfactory axon development 

      "Laminin 111 immunostaining revealed local disruptions in the membrane enveloping the OP and brain, precisely where YFP+ axons exit the OP (exit point) and enter the brain (entry point) (Fig. 1C-D')." Can the authors quantify this situation? It would be important to analyse this behaviour on the scale of a neuron and thus axonal migration to strengthen the hypotheses. 

      As suggested by the reviewer, to better visualise individual axons at the exit and entry point, we used mosaic red labelling of OP axons. To achieve this sparse labelling, we took advantage of the mosaic expression of a red fluorescent membrane protein observed in the Tg(cldnb:Gal4; UAS:lyn-TagRFP) background. The unpublished Tg(UAS:lyn-TagRFP) line was kindly provided by Marion Rosello and Shahad Albadri from the lab of Filippo Del Bene. We crossed the Tg(cldnb:Gal4; UAS:lyn-TagRFP) line with the TgBAC(lamC1:lamC1-sfGFP) reporter and performed live imaging on 2 embryos/4 placodes, in a frontal view. A new movie (Movie 3 in the revised article) shows examples of exit and entry point formation in this context.This allowed us to visualise the formation of the exit and entry points in more samples (6 embryos and 12 placodes in total when we pool the two strategies for labelling OP axons) and through the visualisation of a small number of axons, and reinforce our initial conclusions. 

      (3) The integrity of BMs around the brain and the OP is affected in the sly mutant 

      Why do the authors analyse the distribution of collagen IV and Nidogen and not proteoglycans and heparan sulphate? 

      We attempted to label more ECM components such as proteoglycans and heparan sulfate, but whole-mount immunostainings did not work in our hands.

      A dynamic analysis of the distribution of neural crest cells in the sly mutant over time and during OP coalescence would be important. 

      See our detailed response to this point above.  

      (4) Role of Laminin γ1-dependent BMs in OP coalescence 

      The authors use the size of the Tg(neurog1:GFP)+ OP cell cluster at 22 hpf as a marker.  The authors should count the number of cells in the OP at the indicated time using a nuclear dye to check that in the sly mutant the number of cells is the same over time. Two time points as analysed in Figure S2 may not be sufficient to quantify proliferation which at these stages should be almost zero according to Whitlock & Westerfield and Madelaine et al.

      Counting the neurog1:GFP+ cell numbers in our existing data was unfortunately impossible, due to the poor quality of the DAPI staining. We are nevertheless confident that the number of cells within neurog1:GFP+ clusters is fairly similar between controls and sly mutants at 22 hpf, since the OP dimensions are the same for AP and DV dimensions, and only slightly different for the ML dimension. In addition, we analysed proliferation and apoptosis within the neurog1:GFP+ cluster at 16 and 21 hpf and observed no difference between controls and mutants.

      (5) Role of Laminin γ1-dependent BMs during the forebrain flexure 

      In Figure 4F at 32hpf, the presence of 77% ectopic OMP+ cells medially should result in an increase in dimensions along the M-L? This is not the case in the article. The authors should clarify this point. 

      As we explained in the Material and Methods, ectopic fluorescent cells (cells that are physically separated from the main cluster) were not taken into account for the measurement of the OP dimensions. This is now also also mentioned in the legends of the Figures (4 and S3) showing the quantifications of OP dimensions.

      Cell distribution also seems to be affected within the OMP+ cluster at 36hpf, with fewer cells laterally and more medially. The authors should analyse the distribution of OMP+ cells in the clusters. in sly mutants and controls to understand whether the modification corresponds to the absence of BM function. 

      On the pictures shown in Figure 4F,G, we agree that omp:meYFP+ cells appear to be more medially distributed in the mutant, however this is not the case in other sections or samples, and is rather specific to the z-section chosen for the Figure. We found that the ML dimension is unchanged in mutants as compared with controls, except for the 28 hpf stage where it is smaller, but this appears to be a transient phenomenon, since no change is detected at earlier or later stages (Figure 4A-D and Figure S3A-L). The difference we observe at 28 hpf is now mentioned in the revised manuscript.

      The conclusions of Figures 4 and S3 would rather be that laminin allows OMP+ cells to be oriented along the medio-lateral axis whereas it would control their position along the dorsoventral axis. The authors should modify the text. It would be useful to map the distribution of OMP+ cells along the dorsoventral and mediolateral axes. The same applies to Neurog1+ cells. An analysis of skin cell movements, for example, would be useful to determine whether the effects are specific.  

      We are confident that the measurements of OP dimensions in AP, DV and ML are sufficient to describe the OP shape defects observed in the sly mutants. Analysing cell distribution along the 3 axes as well as skin cell movements will be interesting to perform in the future but we consider these quantifications as being out of the scope of the present work.

      (6) Laminin γ1-dependent BMs are required to define a robust boundary between the OP and the brain 

      The authors must weigh this conclusion "Laminin γ1-dependent BMs serve to establish a straight boundary between the brain and OP, preventing local mixing and late convergence of the two OPs towards each other during flexion movement." Indeed, they don't really show any local mixing between the brain and OP cells. They would need to quantify in their images (Figure 5A-A' and Figure S4 A-A') the percentage of cells co-labelled by HuC and Tg(cldnb:GFP). 

      We agree with the reviewer and thus replaced « reveal » by « suggest » in the conclusion of this section. 

      (7) Role of Laminin γ1-dependent BMs in olfactory axon development 

      An analysis of the retrograde extension movement in the axons of OMP+ ectopic neurons in the sly1 mutant condition would be useful to validate that the loss of laminin function does not play a role in this event. 

      Indeed, even though we can visualise instances of retrograde extension occurring normally in sly mutants, we can not rule out that this process is affected in a subset of OP neurons, for instance in ectopic cells, which often show no axon or a misoriented axon. We added a sentence to mention this in the revised manuscript.

      Minor comments and typos: 

      Please check and mention the D-V/L-M or A-P/L-M orientation of the images in all figures. 

      This has been checked.

      Legend Figure 1: "distalmost" is missing a space "distal most". 

      We checked and this word can be written without a space.

      Figure 1 panel C: check the orientation (I am not sure that Dorsal is up). 

      We double-checked and confirm that dorsal is up in this panel.

      Movie 1 Legend: "aroung "the OP should be around the OP. 

      Thanks to the reviewer for noticing the typo, we corrected it.

      Reviewer #2 (Recommendations For The Authors):

      The comments below are relatively minor and mostly raise questions regarding images and their presentation in the manuscript. 

      • Figure 1, visualization of exit and entry points: It is a bit difficult to visualize the axon exit and entry points in these images, and in particular, to understand how the exit and entry points in C and D correspond to what is seen in F, F', H, and H'. There appears to be one resolvable break in the staining in C and D, whereas there are two distinct breaks in F-H'. Are these single optical sections? Is it possible to visualize these via 3-dimensional rendering? 

      All the images presented in Figure 1 are single z-sections, which is now indicated in the Figure legend. As noticed by the reviewer, Laminin immunostainings on fixed embryos at 28 and 36 hpf suggested that the exit and entry points are facing each other, as shown in Figure 1C-D’. However, in our live imaging experiments we always observed that the exit point is slightly more ventral than the entry point (of about 10 to 20 µm). This discrepancy could be due to the fixation that precedes the immunostaining procedure, which could modify slightly the size and shape of cells/tissues. We added a sentence on this point in the text. In addition, we added new movies of the LamC1-sfGFP reporter with sparse red axonal labelling (Movie 3, see response to reviewer 1), as well as z-stacks presenting the organisation of exit and entry points in 3D (Movie 4), which should help to better illustrate the mechanisms of exit and entry point formation.

      • Movie 2, p. 6, "small interruptions of the BM were already present near the axon tips, along the ventro-medial wall of the OP." This is a bit difficult to assess since the movie seems to show at least one other small interruption in the BM in addition to the exit point, in particular, one slightly dorsal to the exit point. Was this seen in other samples, or in different optical sections? 

      Indeed the exit and entry points often appear as regions with several, small BM interruptions, rather than single holes in the BM. We now show in revised Movie 4 the two z-stacks (the merge and the single channel for green fluorescence) corresponding to the last time points of the movies showing exit and entry point formation in Movie 2, where several BM interruptions can be seen for both the exit and entry points. We had already mentioned this observation in the legend of Movie 2, and we added a sentence on this point in the main text of the revised manuscript. This is also represented for both exit and entry points in the new schematics in revised Fig. 1K and its legend. 

      • Movie 2, p. 6, "The opening of the entry point through the brain BM was concomitant with the arrival of the RFP+ axons, suggesting that the axons degrade or displace BM components to enter the brain." Similar to the questions regarding the exit point, it was a bit difficult to evaluate this statement. There appears to be a broader region of BM discontinuity more dorsal to the arrowhead in Movie 2. A single-channel movie of just the laminin fluorescence might help to convey the extent of the discontinuity. As with above, was this seen in other samples, or in different optical sections?  

      See our response to the previous comment.

      • Figure 1H, I, "the distal tip of the RFP+ axons migrated in close proximity with the brain's BM." This is again a bit difficult to see, and quite different than what is seen in Figure 4A, in which the axons do not seem close to the BM in this section. Is it possible to visualize this via 3-dimensional rendering? 

      In fixed embryos or in live imaging experiments, we observed that, once entered in the brain, the distal tips (the growth cones) of the axons are located close to the BM of the brain. However, this is not the case of the axon shafts which, as development proceeds, are located further away from the BM. This can clearly be seen at 36 hpf in Figure 1D’ and Figure 4A, as spotted by the reviewer. We modified the text to clarify this point.

      • Figure 2J, J', p. 7, the gap between the OP and brain cells of sly mutants "was most often devoid of electron-dense material." It is difficult to see this loss of electron-dense material in 2J'. The thickness of the space is quantified well and is clearly smaller, but the change in electron-dense material is more difficult to see.  

      We looked at Figure 2 again and it seems clear to us that there is electron-dense material between the plasma membranes in controls, which is practically not seen (rare spots) in the mutants. We added a sentence mentioning that we rarely see electron-dense spots in sly mutants.

      • Figure 5E-F': There are concerns about evaluating the shape of a tissue based on nuclear position. Is there a way to co-stain for cell boundaries (maybe actin?), and then quantify distortion of the dlx+ cell population using the cell boundaries, rather than nuclear staining? 

      We agree with the reviewer that it is not ideal to evaluate the shape of the OP/brain boundary based on a nuclear staining. As explained in the text, we could not use the Tg(eltC:GFP) or Tg(cldnb:Gal4; UAS:RFP) reporter lines for this analysis, due to ectopic or mosaic expression. However we are confident that the segmentation of the Dlx3b immunostaining reflects the organisation of the cells at the OP/brain tissue boundary: in other data sets in which we performed Dlx3b staining with membrane labelling independently of the present study and in the wild type context, we clearly see that cell membranes are juxtaposed to the Dlx3b nuclear staining (in other words, the cytoplasm volume of OP cells is very small). 

      • Figure S5E: It would be helpful to see representative images for each of the categories (Proper axon bundle; Ventral projections; Medial projections) or a schematic to understand how the phenotypes were assessed. 

      To address this point we added a schematic view to illustrate the phenotypes assessed in each column of the table in revised Figure S5G.

      • Figure 6, p. 12, "Laminin gamma 1-dependent BMs are essential for growth and navigation of the axons...": What fraction of the tracked axons managed to exit the OP? Given the quantitative analyses in Figure 6, one might interpret this to mean that laminin gamma 1 is not essential for axon growth (speed and persistence are largely unchanged), but rather, primarily for navigation. 

      As noticed by the reviewer, the speed and persistence of axonal growth cones are largely unchanged in the sly mutants (except for the reduced persistence in the 200-400 min window, and an increased speed in the 800-1000 min window), showing that the growth cones are still motile. However, as shown by the tracks, they tend to wander around within the OP, close to the cell bodies, which results in the end in a perturbed growth of the axons. The navigation issues are rather revealed by the analysis of fixed Tg(omp:meYFP) embryos presented in the table of Figure S5G. We modified the text to separate more clearly the conclusions of the two types of experiments (fixed, transgenic embryos versus live, mosaically labelled embryos).

      Reviewer #3 (Recommendations For The Authors):

      Testing the hypotheses mentioned in the public review will be interesting experiments for a follow-up study, but are not essential revisions for this manuscript. 

      I have only a few minor suggestions for revisions: 

      P8 subheading 'Role of Laminin γ1-dependent BMs in OP coalescence' - since no major role was demonstrated here, this heading should be reworded.  

      We agree with the reviewer and replaced the previous title by « OP coalescence still occurs in the sly mutant ».

      P11, line 3 - the authors conclude that the forebrain is smaller 'due to' the inward convergence of the OPs. I do not think it is possible to assign causation to this when the mutant disrupts Laminin γ1 systemically - it is equally possible that the OPs move inward due to a failure of the brain to form in the normal shape. Thus, the wording should be changed here. (In the Discussion on p15, the authors mention the 'apparent distortion' of the brain, and say that it is 'possibly due' to the inward migration of the placodes', but again this could be toned down.) 

      We agree with the reviewer’s comment and changed the wording of our conclusions in the Results section.

      P11 and Fig. S5 - The table and text seem to be saying opposite things here. The text on p11 (3rd paragraph) indicates that the normal exit point is ventral and that this is disrupted in the mutant, with axons exiting dorsally. However, in the table, at each time point there is a higher % of axons exiting ventrally in the mutant. Please clarify. The table does not provide a % value for axons exiting dorsally - it might help to add a column to show this value. 

      We are grateful to the reviewer for pointing this out, and we apologize for the lack of clarity in the first version of the manuscript. We have modified the text and Figure S5 in order to clarify the different points raised by the reviewer in this comment. The Table in Fig. S5G does not represent the % of axons showing defects, but the % of embryos showing the phenotypes. In addition, an embryo is counted in the ventral or medial projection category if it shows at least one ventral or medial projection (even if its shows a proper bundle). This is now clearly indicated in the title of the columns in the table itself and in the legend. The embryos in which the axons exit dorsally in sly mutants are actually those counted in the left column of the Table (they exit dorsally and form a bundle), as shown by the new schematics added below the table. We also added this information in the title of the left column, and mention in the legend the pictures in which this dorsal exit can be observed in the article (Figures 4B and S3E’). Having more sly mutant embryos with axons exiting dorsally is thus compatible with more embryos showing at least one ventral projection.

      Fig. S6, shows the lack of neural crest cells between the olfactory placode and the brain in both laminin γ1 mutants (without a basement membrane) and foxd3 mutants (which retain the membrane). Comparison of the two mutants here is a neat experiment and the result is striking, demonstrating that it is the basement membrane, and not the neural crest, that is required for correct morphology of the olfactory placode. I think this figure should be presented as a main figure, rather than supplementary.  

      Our new live imaging characterisation of NCC migration in sly mutants and control siblings (Movie 9) revealed that at 32 hpf, in the vicinity of the OP, NCC (or their derivatives) are much more numerous than the subset of NCC showing crestin expression by in situ hybridisation (compare the end of our control movie – 32 hfp, with crestin ISH shown in Figure S6A for instance). 

      Thus, the extent of the NCC migration defects should be analysed in more detail in the foxd3 mutant in the future (using live imaging or other NCC markers), and for this reason we chose to keep this dataset in the supplementary Figures.

      One of the first topics covered in the Discussion section is the potential role of Collagen. I was surprised to see the description on P15 'the dramatic disorganization of the Collagen IV pattern observed by immunofluorescence in the sly mutant', as I hadn't picked this up from the Results section of the paper. I went back to the relevant figure (Fig. 2) and description on p7, which does not give the same impression: 'in sly mutants, Collagen IV immunoreactivity was not totally abolished'. This suggested to me that there was only minor (not dramatic) disorganisation of the Collagen IV. This needs clarification.  

      The linear, BM-like Collagen IV staining was lost in sly mutants, but not the fibrous staining which remained in the form of discrete patches surrounding the OP. We modified the text in the Results section as well as in the Figure 2 legend to clarify our observations made on embryos immunostained for Collagen IV.

      Typos etc 

      P5 - '(ii) above of the neuronal rosette' - delete the word 'of'. 

      P5 two lines below this - ensheathed. 

      P10 - '3 distinct AP levels' (delete s from distincts). 

      P10 - distortion (not distorsion) . 

      P12 - 'From 14 hpf, they' should read 'From 14 hpf, neural crest cells'. 

      P15, line 1 - 'is a consequence of' rather than 'is consecutive of'? 

      P22 'When the data were not normal,' should read 'When the data were not normally distributed,'. 

      We thank the reviewer for noticing these typos and have corrected them.

      General 

      Please number lines in future manuscripts for ease of reference. 

      This has been done.

    1. Author response:

      Thank you for the positive and constructive feedback on our manuscript. We appreciate you highlighting the importance of our work advancing our understanding of the molecular etiology of acquired immunodeficiency syndrome (AIDS). To extend and further substantiate the observation that the CARD8 inflammasome is activated in response to viral protease during HIV-1 cell-to-cell transmission, we are in the process of completing additional experiments that are responsive to reviewer feedback, including:

      • Primary CD4+ T cell to monocyte-derived macrophage (MDM) transmission:  We have now repeated the cell-to-cell experiments with HIV-1 transfer from primary CD4+ T cells to primary monocyte-derived macrophages, and our findings are consistent with CARD8-dependent IL-1β release from HIV-1-infected macrophages in this more physiologic context. We are in the process of repeating these experiments with additional donors and will add these results to the revised manuscript.

      • Heterogeneity amongst blood donors: We have now repeated the cell-to-cell transfer and CARD8 knockout in MDMs with additional donors. While we continue to observe heterogeneity amongst donors, the key observation that CARD8 is require for inflammasome responses to HIV-1 infection is consistent. We note that some donors, including the one individual reported in the first submission, have markedly diminished CARD8 activity (to both HIV-1 and VbP).

      • Time course experiments: We did conduct a time course experiment when initially establishing these assays. We have now repeated these experiments with additional timepoints and in the presence or absence of the RT inhibitor nevirapine. The results of these experiments will be included in the revised manuscript.

      • The role of Gasdermin D: We are mostly interested in the release of IL-1β from the infected macrophages due to its potential contribution to myeloid-driven inflammation in PLWH. To date, there is no evidence that any other pore-forming protein other than GSDMD can initiate IL-1β release (and pyroptosis) downstream of CARD8. Nonetheless, we will attempt this experiment with the Gasdermin D inhibitor, disulfiram. 

      We believe these and other experiments will further support the importance of the CARD8 inflammasome in myeloid-driven inflammation in PLWH and look forward to submitting the revision.

    1. Author response:

      Public Reviews: 

      Reviewer #1 (Public review): 

      Summary: 

      The authors test whether the archerfish can modulate the fast response to a falling target.

      We have not tested whether archerfish can 'modulate the fast response'. We quantitatively test specific hypotheses on the rules used by the fish. For this the accuracy of the decisions is analyzed with respect to specific points that can be calculated precisely in each experiment. The ill-defined term 'modulate' does in no way capture what is done here. This assessment might explain the question, raised by the reviewer, of 'what is the difference of this study and Reinel, 2016' (i.e. Reinel and Schuster, 2016). In that study, all objects were strictly falling ballistically, and latency and accuracy of the turn decisions were determined when the initial motion was not only horizontal but had an additional vertical component of speed. The question of that study was if the need to account to an additional variable (vertical speed) in the decision would affect its latency or accuracy. The study showed that also then archerfish rapidly turn to the later impact point. It also showed that accuracy and latency (defined in this study exactly as in the present study) were not changed by the added degree of freedom. This is a completely different question and by its very nature does not leave the realm of ballistics.

      By manipulating the trajectory of the target, they claim

      that the fish can modulate the fast response.

      While it is clear from the result that the fish can modulate the fast response, the experimental support for the argument that the fish can do it for a reflex-like behavior is inadequate. 

      This is disturbing: The manuscript is full of data that directly report response latency (a parameter that's critical in all experiments) and there are even graphical displays of the distribution of latency (Figs. 2, 5). How fast the responses are, can also already be seen in the first video. Most importantly, the nature of the 40 ms limit has been discovered and has been reported by our group in 2008 (Schlegel and Schuster, 2008, Fig. 4). For easy reference, we attach Schlegel and Schuster, 2008 with the relevant passages marked in yellow. But later studies also using high speed video (ie. typically 500 fps) and simultaneously evaluating accuracy and kinematics (in the same ways as used here!) to address various questions repeatedly report and even graphically represent minimum latencies of 40 ms, e.g. Krupczynski and Schuster, 2013 (e.g. Fig. 2); Reinel and Schuster, 2014; Reinel and Schuster, 2016;  Reinel and Schuster, 2018a, b (e.g. see Fig. 7 in the first part) and report how latency is increased as urgency is decreased (if the fish are too close or time of falling is increased), as temperature is decreased or as viewing conditions and their homogeneity across the tank change. Moreover, even a field study is available (Rischawy, Blum and Schuster, 2015) that shows why the speed is needed. This is because of massive competition with at least some of the competitor fish also be able to turn to the later impact point. So, speed is an absolute necessity if competitors are around. Interestingly, when the fish are isolated, latency goes up and eventually the fish will no longer respond with C-starts (Schlegel and Schuster, 2008).

      Another aspect: considering the introduction it would not even have mattered if not 40 ms but instead 150 ms were the time needed for an accurate start (which is not the case). That would still be faster than an Olympic sprinter responds to a gun shot. Moreoever, please also note that we carefully talk of reflex-speed not of a reflex-behavior (which is as easy to verify as any other if the false statements made).

      Strengths: 

      Overall, the question that the authors raised in the manuscript is interesting. 

      Given the statement of no difference between the present study and Reinel and Schuster, 2016, it is not clear what this assessment refers to.

      Weaknesses: 

      (1) The argument that the fish can modulate reflex-like behavior relies on the claim that the archerfish makes the decision in 40 ms. There is little support for the 40 ms reaction time.

      The 'little support' is a paper in Science in which this important aspect is directly analyzed (Fig. 4 of that paper) and that has been praised by folks like Yadin Dudai (e.g . in Faculty 1000). The support is also data on latency as presented in the present paper. Furthermore, additional publications are available on the reaction time (see above).

      The reaction time for the same behavior in Schlegel 2008, is 60-70 ms, and in Tsvilling 2012 about 75 ms, if we take the half height of the maximum as the estimated reaction time in both cases. If we take the peak (or average) of the distribution as an estimation of reaction time, the reaction time is even longer. This number is critical for the analysis the authors perform since if the reaction time is longer, maybe this is not a reflex as claimed.

      See above.

      In addition, mentioning the 40 ms in the abstract is overselling the result.

      See above.

      Just for completeness: Considering a very interesting point raised by reviewer 2 we add an additional panel to further emphasize the exciting point that accuracy and latency are unrelated in the start decisions. That point was already made in Fig.4 of the paper in Science but can be directly addressed.  

      The title is also not supported by the results. 

      No: the title is clearly supported by the results that are reported in the paper.

      (2) A critical technical issue of the stimulus delivery is not clear.

      The stimulus delivery is described in detail. Most importantly we emphasize (even mentioning frame rate) that all VR setups require experimental confirmation that they work for the species and for the behavior at hand. Ideally, they should elicit the same behavior (in all aspects) as a real stimulus does that the VR approach intends to mimic. Whether VR works in a given animal and for the behavior at hand in that animal cannot be known or postulated a priori. It must be shown in direct critical experiments. Such experiments and the need to perform them are described in detail in Figure 2 and in the text that is associated with that figure.

      The frame rate is 120 FPS and the target horizontal speed can be up to 1.775 m/s. This produces a target jumping on the screen 15 mm in each frame. This is not a continuous motion. Thus, the similarity between the natural system where the target experiences ballistic trajectory and the experiment here is not clear. Ideally, another type of stimulus delivery system is needed for a project of this kind that requires fast-moving targets (e.g. Reiser, J. Neurosci.Meth. 2008).

      See above. It is quite funny that one of the authors of the present study had been involved in developing a setup with a complete panorama of 6000 LEDs (Strauss, Schuster and Götz, 1997; and appropriately cited in Reiser) that has been the basis for Reiser. This panorama was also used to successfully implement VR in freely walking Drosophila (Schuster et al., Curr. Biol., 2002). However, an LED based approach was abandoned because of insufficient spatial resolution (that, in archerfish, is very different from that of Drosophila).

      But the crucial point really is this: Just looking at Figure 2 shows that our approach could not have worked better in any way - it provided the input needed to cause turn decisions that are in all aspects just as those with real objects. Achieving this was not at all trivial and required enormous effort and many failed attempts. But it allows addressing our questions for the first time after 20 years of studying these interesting decisions.

      In addition, the screen is rectangular and not circular, so in some directions, the target vanishes earlier than others. It must produce a bias in the fish response but there is no analysis of this type. 

      Why 'must' it produce a bias? Is it not conceivable that you can only use a circular part of the screen? Briefly, and as could have been checked by quickly looking into the methods section, this is what we did. But still, why would it have mattered in our strictly randomized design? It could have mattered only in a completely silly way of running the experiments in which exclusively long trajectories are shown in one condition and exclusively short ones in another.

      (3) The results here rely on the ability to measure the error of response in the case of a virtual experiment. It is not clear how this is done since the virtual target does not fall.

      Well, of course it does not fall!!! That is the whole point that enables the study, and this is explained in connection with the glass plate experiment of Fig. 1 and quite some text is devoted to say that this is the starting point for the present analysis. The ballistic impact point is calculated (just as explained in our very first paper on the start decisions, Rossel, Corlija and Schuster, 2002) from the initial speed and height of the target, using simple high-school physics and the justification for that is also in that paper. This has been done already more than 20 years ago. How else could that paper have arrived at the conclusion that the fish turned to the virtual impact point even though nothing is falling? We also describe this for the readers of the present study, illustrate how accuracy is determined in Figures, in all videos and in an additional Supplementary Figure. Consulting the paper reveals that orientation of the fish is determined immediately at the end of stage 2 of its C-start and the error directly reports how close continuing in that direction would lead the fish to the (real or virtual) impact point. This measure has also been used since the first paper in 2002 in our lab and it is very useful because it provides an invariant measure that allows pooling all the different conditions (orientation and position of responding fish as well as direction, speed and height of target).

      How do the authors validate that the fish indeed perceives the virtual target as the falling target?

      See above. The fish produce C-starts (whose kinematics are analyzed and reported in Figures), whose latency is measured (from onset of target motion to onset of C-start) and whose accuracy in aligning them to the calculated virtual impact point is measured (see above). Additionally, the errors are also analyzed to other points of interest, for instance landmarks, the ballistic landing point in the re-trained fish or points calculated on the basis of specific hypotheses in the generalization experiments.

      Since the deflection is at a later stage of the virtual trajectory, it is not clear what is the actual physics that governs the world of the experiment.

      As explained in the text what we need is substituting the ballistic connection with another fixed relation between initial target motion and the landing point. This other relation needs to produce a large error in the aims when they remain based on the ballistic virtual landing point. It is directly shown in the key experiments that the fish need not see the deflection but can respond appropriately to the initial motion after training (Figs. 3, 5 and corresponding paragraphs in the text as well as additional movies). Please also note that after training the decision is based on the initial movement. This is shown in the interspersed experiments in which nothing than the initial (pre-deflection) movement was shown.

      Overall, the experimental setup is not well designed. 

      It is obviously designed well enough to mimic the natural situation in every aspect needed (see Fig. 2) and well enough to answer the questions we have asked.

      Reviewer #2 (Public review): 

      Summary: 

      This manuscript studies prey capture by archer fish, which observe the initial values of motion of aerial prey they made fall by spitting on them, and then rapidly turn to reach the ballistic landing point on the water surface. The question raised by the article is whether this incredibly fast decision-making process is hardwired and thus unmodifiable or can be adjusted by experience to follow a new rule, namely that the landing point is deflected from a certain amount of the expected ballistic landing point. The results show that the fish learn the new rule and use it afterward in a variety of novel situations that include height, side, and speed of the prey, and which preserve the speed of the fish's decision. Moreover, a remarkable finding presented in this work is the fact that fish that have learned to use the new rule can relearn to use the ballistic landing point for an object based on its shape (a triangle) while keeping simultaneously the 'deflected rule' for an object differing in shape (a disc); in other words, fish can master simultaneously two decision-making rules based on the different shape of objects. 

      Strengths: 

      The manuscript relies on a sophisticated and clever experimental design that allows changing the apparent landing point of a virtual prey using a virtual reality system. Several robust controls are provided to demonstrate the reliability and usefulness of the experimental setup. 

      Overall, I very much like the idea conveyed by the authors that even stimuli triggering apparently hardwired responses can be relearned in order to be associated with a different response, thus showing the impressive flexibility of circuits that are sometimes considered mediating pure reflexive responses.

      Thank you so much for this precise assessment of what we have shown!

      This is the case - as an additional example - of the main component of the Nasanov pheromone of bees (geraniol), which triggers immediate reflexive attraction and appetitive responses, and which can, nevertheless, be learned by bees in association with an electric shock so that bees end up exhibiting avoidance and the aversive response of sting extension to this odorant (1), which is a fully unnatural situation, and which shows that associative aversive learning is strong enough to override preprogrammed responding, thus reflecting an impressive behavioral flexibility. 

      That's very interesting, thanks.

      Weaknesses: 

      As a general remark, there is some information that I missed and that is mandatory in the analysis of behavioral changes. 

      Firstly, the variability in the performances displayed. The authors mentioned that the results reported come from 6 fish (which is a low sample size). How were the individual performances in terms of consistency? Were all fish equally good in adjusting/learning the new rule? How did errors vary according to individual identity? It seems to me that this kind of information should be available as the authors reported that individual fish could be recognized and tracked (see lines 620-635) and is essential for appreciating the flexibility of the system under study. 

      Secondly, the speed of the learning process is not properly explained. Admittedly, fish learn in an impressive way the new rule and even two rules simultaneously; yet, how long did they need to achieve this? In the article, Figure 2 mentions that at least 6 training stages (each defined as a block of 60 evaluated turn decisions, which actually shows that the standard term 'Training Block' would be more appropriate) were required for the fish to learn the 'deflected rule'. While this means 360 trials (turning starts), I was left with the question of how long this process lasted. How many hours, days, and weeks were needed for the fish to learn? And as mentioned above, were all fish equally fast in learning? I would appreciate explaining this very important point because learning dynamics is relevant to understanding the flexibility of the system. 

      First, it is very important to keep the question in mind that we wanted to clarify: Does the system have the potential to re-tune the decisions to other non-ballistic relations between the input variables and the output? This would have been established if one fish was found capable of doing that. However, we do have sufficient evidence to say that all six fish learned the new law and that at least one (actually four) individual was capable of simultaneously handling the two laws. We will explain this much better (hopefully) in our revised version. We also have to stress that not all archerfish might actually be able to do this and that not all archerfish might learn in the same way, at the same speed, or using the same strategies. These questions are extremely interesting and we therefore definitely will include all evidence that we have. If some individuals are better than others in quickly adjusting, then even observational learning could become a part of the story. However, we needed to make and document the first steps. Understanding these is essential and apparently is difficult enough.

      Reference: 

      (1) Roussel, E., Padie, S. & Giurfa, M. Aversive learning overcomes appetitive innate responding in honeybees. Anim Cogn 15, 135-141, doi:10.1007/s10071-011-0426-1 (2012). 

      Thanks for this reference!

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      This is an interesting manuscript tackling the issue of whether subcircuits of the cerebellum are differentially involved in processes of motor performance, learning, or learning consolidation. The authors focus on cerebellar outputs to the ventrolateral thalamus (VL) and to the centrolateral thalamus (CL), since these thalamic nuclei project to the motor cortex and striatum respectively, and thus might be expected to participate in diverse components of motor control and learning. In mice challenged with an accelerating rotarod, the investigators reduce cerebellar output either broadly, or in projection-specific populations, with CNO targeting DREADD-expressing neurons. They first establish that there are not major control deficits with the treatment regime, finding no differences in basic locomotor behavior, grid test, and fixed-speed rotarod. This is interpreted to allow them to differentiate control from learning, and their inter-relationships. These manipulations are coupled with chronic electrophysiological recordings targeted to the cerebellar nuclei (CN) to control for the efficacy of the CNO manipulation. I found the manuscript intriguing, offering much food for thought, and am confident that it will influence further work on motor learning consolidation. The issue of motor consolidation supported by the cerebellum is timely and interesting, and the claims are novel. There are some limitations to the data presentation and claims, highlighted below, which, if amended, would improve the manuscript.

      We thank the reviewer for the positive comments and insightful critics.

      (1.1) Statistical analyses: There is too little information provided about how the Deming regressions, mean points, slopes, and intercepts were compared across conditions. This is important since in the heart of the study when the effects of inactivating CL- vs VL- projecting neurons are being compared to control performance, these statistical methods become paramount. Details of these comparisons and their assumptions should be added to the Methods section. As it stands I barely see information about these tests, and only in the figure legends. I would also like the authors to describe whether there is a criterion for significance in a given correlation to be then compared to another. If I have a weak correlation for a regression model that is non-significant, I would not want to 'compare' that regression to another one since it is already a weak model. The authors should comment on the inclusion criteria for using statistics on regression models.

      Currently the Methods indeed explain that groups are compared by testing differences of distributions of residuals of treatment and control groups around the Deming regression of the control groups: “To test if treatments altered the relationship between initial performance vs learning or daily vs overnight learning, we compared the distribution of signed distance to the control Deming regression line between groups.” But this shall indeed be explained in more details.

      The performance on a given day depends on a cumulative process, so that the average measure of performance is not fully informative on what is learned or what is changed by a treatment (this is further explained in the text p9-10).The challenge is to deal with the multivariate relationships where initial performance, daily learning, and consolidated learning are interdependent. While in control groups these quantities show linear relationships, this is far less the case in treatment groups; this may indeed be due to the variability of the effect of the treatment (efficacy of viral injections) which adds up to the intrinsic variability in the absence of treatment.

      Our choice to see if there is a shift in these relationships following treatments, is to see to which extent treatment points in bivariate comparisons (initial perf x daily learning, daily learning x consolidated learning) are evenly distributed around the control group regression line. We take the presence of a significant difference in the distribution of residuals between the control and treatment group as an indication that the process represented in group is disrupted by the treatment: e.g. if the residuals of the treatment group are lower than those of the control group in the initial performance * daily learning comparison, it indicates that learning is slower (or larger). If the residuals of the treatment group are lower than those of the control group in the daily learning * consolidated learning comparison, it indicates that consolidation is lower. This shall be clarified in a revised version.

      (1.2a) The introduction makes the claim that the cerebellar feedback to the forebrain and cortex are functionally segregated. I interpreted this to mean that the cerebellar output neurons are known to project to either VL or CL exclusively (i.e. they do not collateralize). I was unaware of this knowledge and could find no support for the claim in the references provided (Proville 2014; Hintzer 2018; Bosan 2013). Either I am confused as to the authors' meaning or the claim is inaccurate. This point is broader however than some confusion about citation.

      The references are not cited in the context of collaterals: “They [basal ganglia and cerebellum] send projections back to the cortex via anatomically and functionally segregated channels, which are relayed by predominantly non-overlapping thalamic regions (Bostan, Dum et al. 2013, Proville, Spolidoro et al. 2014, Hintzen, Pelzer et al. 2018). ” Indeed, the thalamic compartments targeted by the basal ganglia and cerebellum are distinct, and in the Proville 2014, we showed some functional segregation of the cerebello-cortical projections (whisker vs orofacial ascending projections). We do not claim that there is a full segregation of the two pathways, there is indeed some known degree of collateralization (see below).

      (1.2b) The study assumes that the CN-CL population and CN-VL population are distinct cells, but to my knowledge, this has not been established. It is difficult to make sense of the data if they are entirely the same populations, unless projection topography differs, but in any event, it is critical to clarify this point: are these different cell types from the nuclei?; how has that been rigorously established?; is there overlap? No overlap? Etc. Results should be interpreted in light of the level of this knowledge of the anatomy in the mouse or rat.

      Actually, the study does not assume that CL-projecting and VAL-projecting neurons are entirely separate populations (actually it is known that there is an overlap), but states that inhibition of neurons following retrograde infections from the CL and VAL do not produce identical results.

      There is indeed a paragraph devoted to the discussion of this point (middle paragraph p20). “Interestingly, both Dentate and Interposed nuclei contain some neurons with collaterals in both VAL and CL thalamic structures (Aumann and Horne 1996, Sakayori, Kato et al. 2019), suggesting that the effect on learning could be mediated by a combined action on the learning process in the striatum (via the CL thalamus) and in the cortex (via the VAL thalamus). However, consistent with (Sakayori, Kato et al. 2019), we found that the manipulations of cerebellar neurons retrogradely targeted either from the CL or from the VAL produced different effects in the task. This indicates that either the distinct functional roles of VAL-projecting of CL-projecting neurons reported in our study is carried by a subset of pathway-specific neurons without collaterals, or that our retrograde infections in VAL and CL preferentially targeted different cerebello-thalamic populations even if these populations had axon terminals in both thalamic regions.”. In other words, we actually know from the literature that there is a degree of collateralization (CN neurons projecting to both VAL and CL, see refs cited above), but as the reviewer says, it does not seem logically possible that the exact same population would have different effects, which are very distinct during the first learning days. The only possible explanation is the CN-CL and CN-VAL retrograde infections recruit somewhat different populations of neurons. This could be due to differences in density of collaterals in CL and VAL of neurons with collaterals in both regions, or presence of CL-projecting neurons without collaterals in VAL, and VAL-projecting neurons without collaterals in CL in addition to the (established) population of neurons with collaterals in both regions. The lesional approach of CN-thalamus neurons in Sakayori et al. 2019 also observed separate effects for CL and VL injections consistent with the differential recruitment of CN populations by retrograde infections.

      This should be improved in a revised version of the manuscript.

      (1.3) It is commendable that the authors perform electrophysiology to validate DREADD/CNO. So many investigators don't bother and I really appreciate these data. Would the authors please show the 'wash' in Figure 1a, so that we can see the recovery of the spiking hash after CNO is cleared from the system? This would provide confidence that the signal is not disappearing for reasons of electrode instability or tissue damage/ other.

      We do not have the wash data on the same day, but there is no significant change in the baseline firing rate across recording days.

      (1.4) I don't think that the "Learning" and "Maintenance" terminology is very helpful and in fact may sow confusion. I would recommend that the authors use a day range " Days 1-3 vs 4-7" or similar, to refer to these epochs. The terminology chosen begs for careful validation, definitions, etc, and seems like it is unlikely uniform across all animals, thus it seems more appropriate to just report it straight, defining the epochs by day. Such original terminology could still be used in the Discussion, with appropriate caveats.

      This shall be indeed corrected in a revised version.

      (1.5) Minor, but, on the top of page 14 in the Results, the text states, "Suggesting the presence of a 'critical period' in the consolidation of the task". I think this is a non-standard use of 'critical period' and should be removed. If kept, the authors must define what they mean specifically and provide sufficient additional analyses to support the idea. As it stands, the point will sow confusion.

      This shall be indeed corrected in a revised version

      Reviewer #2 (Public review):

      Summary:

      This study examines the contribution of cerebello-thalamic pathways to motor skill learning and consolidation in an accelerating rotarod task. The authors use chemogenetic silencing to manipulate the activity of cerebellar nuclei neurons projecting to two thalamic subregions that target the motor cortex and striatum. By silencing these pathways during different phases of task acquisition (during the task vs after the task), the authors report valuable findings of the involvement of these cerebellar pathways in learning and consolidation.

      Strengths:

      The experiments are well-executed. The authors perform multiple controls and careful analysis to solidly rule out any gross motor deficits caused by their cerebellar nuclei manipulation. The finding that cerebellar projections to the thalamus are required for learning and execution of the accelerating rotarod task adds to a growing body of literature on the interactions between the cerebellum, motor cortex, and basal ganglia during motor learning. The finding that silencing the cerebellar nuclei after a task impairs the consolidation of the learned skill is interesting.

      We thank the reviewer for the positive comments and insightful critics below.

      Weaknesses:

      (2.1) While the controls for a lack of gross motor deficit are solid, the data seem to show some motor execution deficit when cerebellar nuclei are silenced during task performance. This deficit could potentially impact learning when cerebellar nuclei are silenced during task acquisition.

      One of our key controls are the tests of the treatment on fixed speed rotarod, which provides the closest conditions to the ones found in the accelerating rotarod (the main difference between the protocols being the slow steady acceleration of rod rotation [+0.12 rpm per s]- in the accelerating version).

      In the CN experiments, we found clear deficits in learning and consolidation while there was no effect on the fixed speed rotarod (performance of the DREAD-CNO are even slightly better than some control groups), consistent with a separation of the effect on learning/consolidation from those on locomotion on a rotarod. However, small but measurable deficits are found at the highest speed in the fixed speed rotarod in the CN-VAL group; there was no significant effect in the CN-CL group, while the CN-CL actually shows lower performances from the second day of learning; we believe this supports our claim that the CN-CL inhibition impacted more the learning process than the motor coordination. In contrast the CN-VAL group only showed significantly lower performance on day 4 of the accelerating rotarod consistent with intact learning abilities. Of note, under CNO, CN-VAL mice could stay for more than a minute and half at 20rpm, while on average they fell from the accelerating rotarod as soon as the rotarod reached the speed of ~19rpm (130s).

      The text currently states “The inhibition of CN-VAL neurons during the task also yielded lower levels of performance in the Maintenance stage,[[NB: day 5-7]] suggesting that these neurons contribute also to learning and retrieval of motor skills, although the mild defect in fixed speed rotarod could indicate the presence of a locomotor deficit, only visible at high speed.” Following the reviewers’ comment, we shall however revise the sentence above in the revised version of the MS to say that we cannot fully disambiguate the execution / learning-retrieval effect at high speed for these mice.

      (2.2a) Separately, I find the support for two separate cerebello-thalamic pathways incomplete. The data presented do not clearly show the two pathways are anatomically parallel.

      As explained above (point 1.2a), it is already known that these pathways overlap to some degree (discussion p 20), but yet their targeting differentially affects the behavior, consistent with separate contributions. A similar finding was observed for a lesional (irreversible) approach in Sakayori et al. 2019.

      (2.2b) The difference in behavioral deficits caused by manipulating these pathways also appears subtle.

      While we agree that after 3-4 days of learning the difference of performance between the groups becomes elusive, we respectfully disagree with the reviewer that in the early stages these differences are negligible and the impact of inhibition on "learning rate" (ie. amount of learning for a given daily initial performance) and consolidation (i.e. overnight retention of daily gain of performance) exhibit different profiles for the two groups (fig 3h vs 3k).

      Reviewer #3 (Public review)

      Summary:

      Varani et al present important findings regarding the role of distinct cerebellothalamic connections in motor learning and performance. Their key findings are that:

      (1) cerebellothalamic connections are important for learning motor skills

      (2) cerebellar efferents specifically to the central lateral (CL) thalamus are important for short-term learning

      (3) cerebellar efferents specifically to the ventral anterior lateral (VAL) complex are important for offline consolidation of learned skills, and

      (4) that once a skill is acquired, cerebellothalamic connections become important for online task performance.

      The authors went to great lengths to separate effects on motor performance from learning, for the most part successfully. While one could argue about some of the specifics, there is little doubt that the CN-CL and CN-VAL pathways play distinct roles in motor learning and performance. An important next step will be to dissect the downstream mechanisms by which these cerebellothalamic pathways mediate motor learning and adaptation.

      Strengths:

      (1) The dissociation between online learning through CN-CL and offline consolidation through CN-VAL is convincing.

      (2) The ability to tease learning apart from performance using their titrated chemogenetic approach is impressive. In particular, their use of multiple motor assays to demonstrate preserved motor function and balance is an important control.

      (3) The evidence supporting the main claims is convincing, with multiple replications of the findings and appropriate controls.

      We thank the reviewer for the positive comments and insightful critics below.

      Weaknesses:

      (3.1) Despite the care the authors took to demonstrate that their chemogenetic approach does not impair online performance, there is a trend towards impaired rotarod performance at higher speeds in Supplementary Figure 4f, suggesting that there could be subtle changes in motor performance below the level of detection of their assays.

      This is also discussed in point 2.1 above. In our view, the fixed speed rotarod is a control very close to the accelerating rotarod condition, with very similar requirements between the two tasks (yet unfortunately rarely tested in accelerating rotarod studies). We do not exclude the presence of motor deficits, but the main argument is that these do not suffice to explain the differences observed in the accelerating rotarod. No detectable deficit was found in the CN group while very clear deficits in learning/consolidation were observed. A mild deficit is only significant in the CN-VAL group, while the deficit is not significant in the fixed-speed rotarod for the CN-CL group which shows the strongest deficit in accelerating rotarod during the first days: e.g. on day 2, the CN-CL group is already below the control group with latencies to fall ~100s (corresponding to immediate fall at ~15rpm) while the fixed speed rotarod performances at 15s of the control and CNO-treated groups show an ability to stay more than 1 min at this speed. The text shall be improved to clarify this point.

      (3.2) There is likely some overlap between CN neurons projecting to VAL and CL, somewhat limiting the specificity of their conclusions.

      There is indeed published evidence for some degree of anatomical overlap, but also for some differential contribution of CN-VAL and CN-CL to the task. The answer to this point is developed in the points 1.2a 2.2a above. Although this point was exposed in the discussion (p20), the text shall be improved in a revised version of the MS to clarify our statement.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      The authors successfully detected distinct mechanisms signalling prediction violations in the auditory cortex of mice. For this purpose, an auditory pure-tone local-global paradigm was presented to awake and anaesthetised mice. In awake rodents, the authors also evaluated interneuron cell types involved in responses to the interruption of the regularity imposed by local-global sequences. By performing two-photon calcium imaging and single-unit electrophysiology, the authors disentangled three phenomena underlying responses to violations of the distinct local-global regularity levels: Stimulus-specific adaptation, surprise and surprise adaptation. Both stimulus-specific adaptation and surprise-or deviant-evoked responses are observable under anaesthesia. Altogether, this work advances our understanding of distinct predictive processes computing prediction violations upon the complexity of the regularity imposed by the auditory sequence.

      Strengths:

      it is an elegant study beautifully executed.

      Weaknesses:

      No weaknesses were identified by this reviewer.

      Reviewer #2 (Public review):

      Summary:

      Oddball responses are increases in sensory responses when a stimulus is encountered in an unexpected location in a sequence of predictable stimuli. There are two computational interpretations for these responses: stimulus-specific adaptation and prediction errors. In recent years, evidence has accumulated that a significant part of these sequence violation responses cannot be explained simply by stimulus-specific adaptation. The current work elegantly adds to this evidence by using a sequence paradigm based on two levels of sequence violations: "Local" sequence violations of repetitions of identical stimuli, and "global" sequence violations of stimulus sequence patterns. The authors demonstrate that both local and global sequence violation responses are found in L2/3 neurons of the mouse auditory cortex. Using sequences with different inter-stimulus intervals, they further demonstrate that these sequence violation responses cannot be explained by stimulus-specific adaption.

      Strengths:

      The work is based on a very clever use of a sequence violation paradigm (local-global paradigm) and provides convincing evidence for the interpretation that there are at least two types of sequence violation responses and that these cannot be explained by stimulus-specific adaption. Most of the conclusions are based on a large dataset, and are compelling.

      Weaknesses:

      The final part of the paper focuses on the responses of VIP and PV-positive interneurons. The responses of VIP interneurons appear somewhat variable and difficult to interpret (e.g. VIP neurons exhibit omission responses in the A block, but not the B block). The conclusions based on these data appear less solid.

      We agree with the referee that the response modulations observed in  VIP and PV-Positive interneurons are weak and variable. This is indicated in the manuscript. Probably, larger scale recordings are necessary to ascertain fully the presence and distribution of omission responses.

      Reviewer #3 (Public review):

      Summary:

      In their manuscript entitled "Parallel mechanisms signal a hierarchy of sequence structure violations in the auditory cortex", Jamali et al. provide evidence for cellular-level mechanisms in the auditory cortex of mice for the encoding of predictive information on different temporal and contextual scales. The study design separates more clearly than previous studies between the effects of local and global deviants and separates their respective effects on the neuronal responses clearly through the use of various contextual conditions and short and long time scales. Further, it identifies a contribution from a small set of VIP interneurons to the detection of omitted sounds, and shows the influence of isofluorane anesthesia on the neural responses.

      Strengths:

      (1) The study provides a rather encompassing set of experimental techniques to study the cellular level responses, using two complementary recording techniques in the same animal and similar cortical location.

      (2) Comparison between awake and anesthetized states are conducted in the same animals, which allows for rather a direct comparison of populations under different conditions, thus reducing sampling variability.

      (3) The set of paradigms is well developed and specifically chosen to provide appropriate and meaningful controls/comparisons, which were missing from previous studies.

      (4) The addition of cell-type specific recordings is valuable and in particular in combination with the contrast of awake and anesthetized animals provides novel insights into the cellular level representation of deviant signals, such as surprise, prediction error, and general adaptation.

      (5) The analysis and presentation of the data are clear and quite complete, yet remain succinct and perform insightful contrasts.

      (6) The study will have an impact on multiple levels, as it introduces important variations in the paradigm and analytical contrasts that both human and animal researchers can pick up and improve their studies. The cell-type-specific results are particularly intriguing, although these would likely require replication before being completely reliable. Further, the study provides a substantial and diverse dataset that others can explore.

      Weaknesses:

      (1) The responses from cells recorded via Neuropixel and 2p differ qualitatively, as noted by the authors, with NP-recorded cells showing much more inhibited/reduced responses between acoustic stimulations. The authors briefly qualify these differences as potentially indicating a sampling issue, however, this matter deserves more detailed consideration in my opinion. Specifically, the authors could try to compare the different depths at which these neurons were sampled or relate the locations in the cortex to each other (as the Neuropixel recordings were collected in the same animals, a subset of the 2p recordings could be compared to the Neuropixel recordings.).

      We agree with the referee that the sampling issue, which we propose as a possible explanation for the large difference between our Neuropixel and 2P imaging recordings, must be investigated more thoroughly. This is, however, largely outside of the scope of this study. We have reported the depth and location of Neuropixel recordings in Figure S2. The depth is similar for both techniques covering mostly layers 2, 3 and 4. The location spans mostly the primary auditory cortex for two photon imaging and Neuropixel recordings. One Neuropixel recording is located in the ventral secondary auditory cortex. We could not find any evidence that the response to global violations in Neuropixel data stems specifically from this particular recording. 

      (2) The current study did not monitor the attentional state of the mouse in relation to the stimulus by either including a behavioral component or pupil monitoring, which could influence the neural responses to deviant stimuli and omissions.

      As reported by Bekinschtein et al. 2009, the attentional state influences responses to global violation in human subjects. It is extremely difficult to precisely compare attentional states in mice and human subjects. We have performed recordings in mice that had to attend to sound to detect a white noise sound in between the sequence to obtain a reward. This did not lead to increased global violation response. However, as the sequence themselves did not predict reward in this context they may divert attention. Therefore, this result is inconclusive and not worth including in our manuscript. If the sequence predicts rewards, there is a potential confound between violation responses and reward expectations or motor preparation signals. Pupil monitoring could be an alternative which we did not investigate.

      (3) Given the complexity and variety of the paradigms, conditions, and analyzed cell-types, the manuscript could profit from a more visual summary figure that provides an easy-to-access overview of what was found.

      This is an excellent suggestion, although given the complexity and diversity of our observations it may be hard to fit everything in one understandable figure.

    1. Author response:

      We appreciate the insightful comments and suggestions, which will significantly improve our work. We will revise the manuscript to address the reviewer’s concerns. Here, we list some of the key aspects of those concerns and our preliminary plans to address them.

      Both reviewers pointed out that we did not sufficiently justify the chosen optogenetic stimulation frequencies. We acknowledge and concur with their assessment, and will discuss it more extensively from a biological perspective (e.g., the neural firing rates in the olfactory bulb, OB, anterior olfactory nucleus, AON, and piriform cortex, Pir, under natural odor stimulation and respiration rhythm). Reviewer #1 suggested using beta values (b) rather than the area under the BOLD signal profile (AUC) to quantify the fMRI activations as they are more conventional for general linear model (GLM) analysis. We are aware of b and have used them for quantification of the amplitude of fMRI activations in our previous rodent fMRI studies1-3. However, in this study, we chose to utilize AUC as it offers a more comprehensive measure of BOLD signal change over time, including shape, duration, and magnitude, thereby capturing the bulk of neural activities and their dynamics throughout the stimulation period. b primarily represents the peak amplitude of BOLD responses (i.e., the % BOLD signal change)4 and can be constrained by the assumptions and limitations of the GLM analysis, such as the shape of the hemodynamic response function (HRF). AUC provides greater flexibility in capturing different aspects of neural responses across various brain regions, such as transient peaks and sustained responses.

      As mentioned by reviewer #1, correlating the adaptation of BOLD and electrophysiology signals at the brain region level would better signify our findings. We will pursue additional analysis to address this in our forthcoming responses. Reviewer #2 would like us to clarify the image and signal quality of our echo planar imaging (EPI)-based fMRI data, especially in the regions close to the air-tissue interface such as OB, Pir, entorhinal cortex and amygdala, and the methodology for some of the experimental protocols implemented in our study. We will show the raw EPI fMRI images from a representative animal and revise the results, discussion, and methods sections of the manuscript to address reviewer #2's concerns.

      In our forthcoming detailed responses to the reviewers' comments and recommendations, we will revise the text, figures, and captions accordingly to address and clarify the questions brought up by both reviewers.

      References

      (1) Gao, P.P., Zhang, J.W., Chan, R.W., Leong, A.T.L. & Wu, E.X. BOLD fMRI study of ultrahigh frequency encoding in the inferior colliculus. Neuroimage 114, 427-437 (2015).

      (2) Leong, A.T.L., Wong, E.C., Wang, X. & Wu, E.X. Hippocampus Modulates Vocalizations Responses at Early Auditory Centers. Neuroimage 270, 119943 (2023).

      (3) Gao, P.P., Zhang, J.W., Fan, S.J., Sanes, D.H. & Wu, E.X. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study. Neuroimage 123, 22-32 (2015).

      (4) Goddard, E. & Mullen, K.T. fMRI representational similarity analysis reveals graded preferences for chromatic and achromatic stimulus contrast across human visual cortex. Neuroimage 215, 116780 (2020).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The emergence of Drosophila EM connectomes has revealed numerous neurons within the associative learning circuit. However, these neurons are inaccessible for functional assessment or genetic manipulation in the absence of cell-type-specific drivers. Addressing this knowledge gap, Shuai et al. have screened over 4000 split-GAL4 drivers and correlated them with identified neuron types from the "Hemibrain" EM connectome by matching light microscopy images to neuronal shapes defined by EM. They successfully generated over 800 split-GAL4 drivers and 22 split-LexA drivers covering a substantial number of neuron types across layers of the mushroom body associative learning circuit. They provide new labeling tools for olfactory and non-olfactory sensory inputs to the mushroom body; interneurons connected with dopaminergic neurons and/or mushroom body output neurons; potential reinforcement sensory neurons; and expanded coverage of intrinsic mushroom body neurons. Furthermore, the authors have optimized the GR64f-GAL4 driver into a sugar sensory neuron-specific split-GAL4 driver and functionally validated it as providing a robust optogenetic substitute for sugar reward. Additionally, a driver for putative nociceptive ascending neurons, potentially serving as optogenetic negative reinforcement, is characterized by optogenetic avoidance behavior. The authors also use their very large dataset of neuronal anatomies, covering many example neurons from many brains, to identify neuron instances with atypical morphology. They find many examples of mushroom body neurons with altered neuronal numbers or mistargeting of dendrites or axons and estimate that 1-3% of neurons in each brain may have anatomic peculiarities or malformations. Significantly, the study systematically assesses the individualized existence of MBON08 for the first time. This neuron is a variant shape that sometimes occurs instead of one of two copies of MBON09, and this variation is more common than that in other neuronal classes: 75% of hemispheres have two MBON09's, and 25% have one MBON09 and one MBON08. These newly developed drivers not only expand the repertoire for genetic manipulation of mushroom body-related neurons but also empower researchers to investigate the functions of circuit motifs identified from the connectomes. The authors generously make these flies available to the public. In the foreseeable future, the tools generated in this study will allow important advances in the understanding of learning and memory in Drosophila.

      Strengths:

      (1) After decades of dedicated research on the mushroom body, a consensus has been established that the release of dopamine from DANs modulates the weights of connections between KCs and MBONs. This process updates the association between sensory information and behavioral responses. However, understanding how the unconditioned stimulus is conveyed from sensory neurons to DANs, and the interactions of MBON outputs with innate responses to sensory context remains less clear due to the developmental and anatomic diversity of MBONs and DANs. Additionally, the recurrent connections between MBONs and DANs are reported to be critical for learning. The characterization of split-GAL4 drivers for 30 major interneurons connected with DANs and/or MBONs in this study will significantly contribute to our understanding of recurrent connections in mushroom body function.

      (2) Optogenetic substitutes for real unconditioned stimuli (such as sugar taste or electric shock) are sometimes easier to implement in behavioral assays due to the spatial and temporal specificity with which optogenetic activation can be induced. GR64f-GAL4 has been widely used in the field to activate sugar sensory neurons and mimic sugar reward. However, the authors demonstrate that GR64f-GAL4 drives expression in other neurons not necessary for sugar reward, and the potential activation of these neurons could introduce confounds into training, impairing training efficiency. To address this issue, the authors have elaborated on a series of intersectional drivers with GR64f-GAL4 to dissect subsets of labeled neurons. This approach successfully identified a more specific sugar sensory neuron driver, SS87269, which consistently exhibited optimal training performance and triggered ethologically relevant local searching behaviors. This newly characterized line could serve as an optimized optogenetic tool for sugar reward in future studies.

      (3) MBON08 was first reported by Aso et al. 2014, exhibiting dendritic arborization into both ipsilateral and contralateral γ3 compartments. However, this neuron could not be identified in the previously published Drosophila brain connectomes. In the present study, the existence of MBON08 is confirmed, occurring in one hemisphere of 35% of imaged flies. In brains where MBON08 is present, its dendrite arborization disjointly shares contralateral γ3 compartments with MBON09. This remarkable phenotype potentially serves as a valuable resource for understanding the stochasticity of neurodevelopment and the molecular mechanisms underlying mushroom body lobe compartment formation.

      Weaknesses:

      There are some minor weaknesses in the paper that can be clarified:

      (1) In Figure 8, the authors trained flies with a 20s, weak optogenetic conditioning first, followed by a 60s, strong optogenetic conditioning. The rationale for using this training paradigm is not explicitly provided.

      These experiments were designed to test if flies could maintain consistent performance with repetitive and intense LED activation, which is essential for experiments involving long training protocols or coactivation of other neurons inside a brain.

      In Figure 8E, if data for training with GR64f-GAL4 using the same paradigm is available, it would be beneficial for readers to compare the learning performance using newly generated split-GAL4 lines with the original GR64f-GAL4, which has been used in many previous research studies. It is noteworthy that in previously published work, repeating training test sessions typically leads to an increase in learning performance in discrimination assays. However, this augmentation is not observed in any of the split-GAL4 lines presented in Figure 8E. The authors may need to discuss possible reasons for this.

      As the reviewer pointed out, many previous studies including ours used the original Gr64f-GAL4 in olfactory conditioning. Figure 1H of Yamada et al., 2023 (https://doi.org/10.7554/eLife.79042) showed such a result, where the first and second-order olfactory conditioning were assayed. Indeed, the first-order conditioning scores were gradually augmented over repeated training. In this experiment, we used low red LED intensity for the optogenetic activation. In the Figure 8E of the present paper, the first memory test was after 3x pairing of 20s odor with five 1s red LED without intermediate tests. Therefore, flies were already sufficiently trained to show a plateau memory level in “Test1”. In the revision of another recent report (Figure 1C-F of Aso et al., 2023; https://doi.org/10.7554/eLife.85756), we included the learning curve data of our best Gr64f-split-GAL4, SS87269. Under a less saturated training conditioning, SS87269 did show learning augmentation over repeated training.

      (2) In line 327, the authors state that in all samples, the β'1 compartment is arborized by MBON09. However, in Figure 11J, the probability of having at least one β'1 compartment not arborized is inferred to be 2%. The authors should address and clarify this conflict in the text to avoid misunderstanding.

      The chance of visualizing MBON08 in MCFO images was 21/209 in total (Figure 11I). If we assume that each of four cells adopt MBON08 development fate at this chance, we can calculate the probability for each case of MBON08/09 cell type composition. From this calculation, we inferred approximately 2% of flies would lack innervations to β'1 compartment in at least one hemisphere. However, we didn't observe a lack of β'1 arborizations in 169 sample flies. If these MBONs independently develop into MBON08 at 21/209 odds, the chance of never observing two MBON08s in either hemisphere of all 169 samples is 3.29%. Therefore, some developmental mechanisms may prevent the emergence of two MBON08 in the same hemisphere.

      In the revised manuscript, we displayed these estimated probability for each case separately, and annotated actual observation on the right side.

      (3) In general, are the samples presented male or female? This sample metadata will be shown when the images are deposited in FlyLight, but it would be useful in the context of this manuscript to describe in the methods whether animals are all one sex or mixed sex, and in some example images (e.g. mAL3A) to note whether the sample is male or female.

      The samples presented in this study are mixed sex, except for Figure 11I, where genders are specified. We provided metadata information of the presented images in Supplemental File 7, and we added a paragraph in the in the method section:

      “Most samples were collected from females, though typically at least one male fly was examined for each driver line. While we noticed certain lines such as SS48900, exhibited distinct expression patterns in females and males, we did not particularly focus on sexual dimorphism, which is analyzed elsewhere (Meissner et al. 2024). Therefore, unless stated otherwise, the presented samples are of mixed gender.

      Detailed metadata, including gender information and the reporter used, can be found in Supplementary File 7.”

      Reviewer #2 (Public Review):

      Summary:

      The article by Shuai et al. describes a comprehensive collection of over 800 split-GAL4 and split-LexA drivers, covering approximately 300 cell types in Drosophila, aimed at advancing the understanding of associative learning. The mushroom body (MB) in the insect brain is central to associative learning, with Kenyon cells (KCs) as primary intrinsic neurons and dopaminergic neurons (DANs) and MB output neurons (MBONs) forming compartmental zones for memory storage and behavior modulation. This study focuses on characterizing sensory input as well as direct upstream connections to the MB both anatomically and, to some extent, behaviorally. Genetic access to specific, sparsely expressed cell types is crucial for investigating the impact of single cells on computational and functional aspects within the circuitry. As such, this new and extensive collection significantly extends the range of targeted cell types related to the MB and will be an outstanding resource to elucidate MB-related processes in the future.

      Strengths:

      The work by Shuai et al. provides novel and essential resources to study MB-related processes and beyond. The resulting tools are publicly available and, together with the linked information, will be foundational for many future studies. The importance and impact of this tool development approach, along with previous ones, for the field cannot be overstated. One of many interesting aspects arises from the anatomical analysis of cell types that are less stereotypical across flies. These discoveries might open new avenues for future investigations into how such asymmetry and individuality arise from development and other factors, and how it impacts the computations performed by the circuitry that contains these elements.

      Weaknesses:

      Providing such an array of tools leaves little to complain about. However, despite the comprehensive genetic access to diverse sensory pathways and MB-connected cell types, the manuscript could be improved by discussing its limitations. For example, the projection neurons from the visual system seem to be underrepresented in the tools produced (or almost absent). A discussion of these omissions could help prevent misunderstandings.

      We internally distributed efforts to produce split-GAL4 lines at Janelia Research Campus. The recent preprint (Nern et al., 2024; doi: https://doi.org/10.1101/2024.04.16.589741) described the full collection of split-GAL4 driver lines in the optic lobe including the visual projection neurons to the mushroom body. We cited this preprint in the revised manuscript by adding a short paragraph of discussion.

      “Although less abundant than the olfactory input, the MB also receives visual information from the visual projection neurons (VPNs) that originate in the medulla and lobula and are targeted to the accessory calyx (Vogt et al. 2016; Li et al. 2020). A recent preprint described the full collection of split-GAL4 driver lines in the optic lobe, which includes the VPNs to the MB (Nern et al. 2024).”

      Additionally, more details on the screening process, particularly the selection of candidate split halves and stable split-GAL4 lines, would provide valuable insights into the methodology and the collection's completeness.

      The details of our split-GAL4 design and screening procedures were described in previous studies (Aso et al., 2014; Dolan et al., 2019). Available data and tools to design split-GAL4 changed over time, and we took different approaches accordingly. Many of split-GAL4 lines presented in this study were designed and screened in parallel to the lines for MBONs and DANs in 2010-2014 when MCFO images of GAL4 drivers and EM connectome were not yet available. With knowledge of where MBONs and DANs project, I (Y.A.) manually examined and annotated thousands of confocal stacks (Jenett et al., 2012; https://doi.org/10.1016/j.celrep.2012.09.011) to find candidate cell types that may concat with them.

      Later I used more advanced computational tools (Otsuna et al., 2018; doi: https://doi.org/10.1101/318006) and MCFO images aligned to the standard brain volume (Meissner et al., 2023; DOI: 10.7554/eLife.80660.). Now, if one needs to further generate split-GAL4 lines for cell type identified in EM connectome data, neuron bridge website (https://neuronbridge.janelia.org/) can be very helpful to provide a list of GAL4 drivers that may label the neuron of interest.

      Reviewer #3 (Public Review):

      Summary:

      Previous research on the Drosophila mushroom body (MB) has made this structure the best-understood example of an associative memory center in the animal kingdom. This is in no small part due to the generation of cell-type specific driver lines that have allowed consistent and reproducible genetic access to many of the MB's component neurons. The manuscript by Shuai et al. now vastly extends the number of driver lines available to researchers interested in studying learning and memory circuits in the fly. It is an 800-plus collection of new cell-type specific drivers target neurons that either provide input (direct or indirect) to MB neurons or that receive output from them. Many of the new drivers target neurons in sensory pathways that convey conditioned and unconditioned stimuli to the MB. Most drivers are exquisitely selective, and researchers will benefit from the fact that whenever possible, the authors have identified the targeted cell types within the Drosophila connectome. Driver expression patterns are beautifully documented and are publicly available through the Janelia Research Campus's Flylight database where full imaging results can be accessed. Overall, the manuscript significantly augments the number of cell type-specific driver lines available to the Drosophila research community for investigating the cellular mechanisms underlying learning and memory in the fly. Many of the lines will also be useful in dissecting the function of the neural circuits that mediate sensorimotor circuits.

      Strengths:

      The manuscript represents a huge amount of careful work and leverages numerous important developments from the last several years. These include the thousands of recently generated split-Gal4 lines at Janelia and the computational tools for pairing them to make exquisitely specific targeting reagents. In addition, the manuscript takes full advantage of the recently released Drosophila connectomes. Driver expression patterns are beautifully illustrated side-by-side with corresponding skeletonized neurons reconstructed by EM. A comprehensive table of the new lines, their split-Gal4 components, their neuronal targets, and other valuable information will make this collection eminently useful to end-users. In addition to the anatomical characterization, the manuscript also illustrates the functional utility of the new lines in optogenetic experiments. In one example, the authors identify a specific subset of sugar reward neurons that robustly promotes associative learning.

      Weaknesses:

      While the manuscript succeeds in making a mass of descriptive detail quite accessible to the reader, the way the collection is initially described - and the new lines categorized - in the text is sometimes confusing. Most of the details can be found elsewhere, but it would be useful to know how many of the lines are being presented for the first time and have not been previously introduced in other publications/contexts.

      We revised the text as below.

      “Among the 828 lines, a subset of 355 lines, collectively labeling at least 319 different cell types, exhibit highly specific and non-redundant expression patterns are likely to be particularly valuable for behavioral experiments. Detailed information, including genotype, expression specificity, matched EM cell type(s), and recommended driver for each cell type, can be found in Supplementary File 1. A small subset of 40 lines from this collection have been previously used in studies (Aso et al., 2023; Dolan et al., 2019; Gao et al., 2019; Scaplen et al., 2021; Schretter et al., 2020; Takagi et al., 2017; Xie et al., 2021; Yamada et al., 2023). All transgenic lines newly generated in this study are listed in Supplementary File 2 (Aso et al., 2023; Dolan et al., 2019; Gao et al., 2019; Scaplen et al., 2021; Schretter et al., 2020; Takagi et al., 2017; Xie et al., 2021; Yamada et al., 2023).”

      And where can the lines be found at Flylight? Are they listed as one collection or as many?

      They are listed as one collection - “Aso 2021” release. It is named “2021” because we released the images and started sharing lines in December of 2021 without a descriptive paper. We added a sentence in the Methods section.

      “All splitGAL4 lines can be found at flylight database under “Aso 2021” release, and fly strains can be requested from Janelia or the Bloomington stock center.”

      Also, the authors say that some of the lines were included in the collection despite not necessarily targeting the intended type of neuron (presumably one that is involved in learning and memory). What percentage of the collection falls into this category?

      We do not have a good record of split-GAL4 screening to calculate the chance to intersect unintended cell types, but it was rather rare. Those unintended cell types can still be a part of circuits for associative learning (e.g. olfactory projection neurons) or totally unrelated cell types. For instance, among a new collection of split-LexA lines using Gr43a-LexADBD hemidriver (Figure 7-figure supplement 2), one line specifically intersected T1 neurons in the optic lobe despite that the AD line was selected to intersect sugar sensory neurons. We suspect that this is due to ectopic expression of Gr43a-LexADBD. Nonetheless, we included it in the paper because cell-type-specific Split-LexA driver for T1 will be useful irrespective of whether the expression of Gr43a gene is expressed in T1 or not.

      And what about the lines that the authors say they included in the collection despite a lack of specificity? How many lines does this represent?

      For a short answer, there are about 100 lines in the collection that lack the specificity for behavioral experiments.

      We ranked specificity of split-GAL4 drivers in the Supplementary File 1. Rank 2 are the ideal lines, Rank 1 are less ideal but acceptable, and Rank 0 is not suitable for activation screening in behavioral experiments. Out of the 828 split-GAL4 lines reported here, there are 413, 305 and 103 lines in rank2, rank1 and rank0 categories respectively. 7 lines are not ranked for specificity because only flipout expression data are available.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      As mentioned elsewhere and in addition to the minor points below, it is advisable for the authors to elaborate on the details of the screening process. Furthermore, a discussion about the circuits not targeted by their research, such as the visual projection neurons, would be beneficial.

      See the response above to Reviewer #2’s public review.

      Line 32-33: The citations are very fly-centric. the authors might want to consider reviews on the MB of other insect species regarding learning and memory.

      We additionally cited Rybak and Menzel 2017’s book chapter on honey bee mushroom body.

      Line 43-44: Citations should be added, e.g. Séjourné et al. (2011), Pai et al. (2013), Plaçais et al. (2013).

      Citation added

      Line 50-52: Citation Hulse et al. (2021) should be added.

      Citation added

      Line 162: In this part, it might be valuable for the reader to understand which of these PNs are actually connecting with KCs.

      A full list of cell types within the MB were provided in Supplementary File 4 of the revised manuscript. See also response to Reviewer 3, Lines 150-1.

      Line 179: Citation Burke et al. (2012) should be mentioned.

      Citation added

      Line 181: Thermogenic might be thermogenetic.

      Corrected

      Line 189: Citations add Otto et al. (2020) and Felsenberg et al. (2018).

      Citations added

      Line 208ff: The authors should consider discussing why they did not use other GR and IR promoters. For example, Gr5a is prominent in sugar-sensing, while Ir76b could be a reinforcement signal related to yeast food (Steck et al., 2018; Ganguly et al., 2017; see also Corfas et al., 2019 for local search).

      We focused on the Gr64f promoter because of its relatively broad expression and successful use of Gr64f-GAL4 for fictive reward experiment. We added the Split-LexA lines with Gr43a and Gr66a promoters (Figure 7-figure supplement 2). Other gustatory sensory neurons also have the potential to be reinforcement signals, but we just did not have the bandwidth to cover them all.

      Line 319: Consider citing Linneweber et al. (2020) for a neurodevelopmental account of such individuality.

      We added a sentence and cited this reference.

      “On the other hand, the neurodevelopmental origin of neuronal morphology appeared to have functional significance on behavioral individuality (Linneweber et al. 2020).”

      Line 352: Citation add Hulse et al. (2021).

      Citations added

      Line 356ff: The utility and value of Split-LexA may not be apparent to non-expert readers. Moreover, how were LexADBDs chosen for creating these lines?

      We have added an introductory sentence at the beginning of the paragraph and explained that these split-LexA lines were a conversion of split-GAL4 lines that were published in 2014 and frequently used in studying the mushroom body circuit.

      “Split-GAL4 lines enable cell-type-specific manipulation, but some experiments require independent manipulation of two cell types. Split-GAL4 lines can be converted into split-LexA lines by replacing the GAL4 DNA binding domain with that of LexA (Ting et al., 2011). To broaden the utility of the split-GAL4 lines that have been frequently used since the publication in 2014 (Aso et al., 2014a), we have generated over 20 LexADBD lines to test the conversions of split-GAL4 to split-LexA. The majority (22 out of 34) of the resulting split-LexA lines exhibited very similar expression patterns to their corresponding original split-GAL4 lines (Figure 12).”

      Line 374: Italicize Drosophila melanogaster.

      Revised as suggested.

      Reviewer #3 (Recommendations For The Authors):

      Major Comments:

      As mentioned in the Public Review, the drivers are nicely classified in the various subsections of the manuscript, but the statements in the text summarizing how many lines there are in specific categories are often confusing. For example, line 129 refers to "drivers encompassing 111 cell types that connect with the DANs and MBONs", but Figure 1E indicates that 46 new cell types downstream of MBONs and upstream of DANs have been generated. This seems like a discrepancy.

      The 46 cell types in Figure 1E consider only the CRE/SMP/SIP/SLP area, where MBON downstreams and DAN upstreams are highly enriched, while the 111 cell types include all. To avoid confusion, we removed the “MBON downstream and DAN upstream” counting in Figure 1E in the revised manuscript.

      Also, at line 75 the MBON lines previously generated by Rubin and Aso (2023) are referred to as though they are separate from the 828 described "In this report." Supplementary file 1 suggests, however, that they are included as part of this report.

      Twenty five lines generated in Rubin and Aso (2023) were initially included in Supplementary file 1 for the convenience of users, but they were not counted towards the 828 new lines described in this report. To avoid confusion, we removed these 25 lines in the revised manuscript. Now all lines listed in Supplementary file 1 were generated in this study (“Aso 2021” release), and if a line has been used in earlier studies, or introduced in other contexts, for example the accompanying omnibus preprint (Meissener 2024, doi: 10.1101/2024.01.09.574419), the citations are listed in the reference column.

      More generally, in lines 94-102 "828 useful lines based on their specificity, intensity and non-redundancy" are referred to, but they are subsequently subdivided into categories of lines with lower specificity (i.e. with off-target expression) and lines that did not target intended cell types (presumably ones unlikely to be involved in learning and memory). It would be useful to know how many lines (at least roughly) fall into these subcategories.

      See the response above to Reviewer #3’s public review.

      Finally, Figures 3B & C indicate cell types connected to DANs and MBONs and the number for which Split-Gal4 lines are available. The text (lines 136-7) states that the new collection covers 30 of these major cell types (Figure 3C)," but Figure 3C clearly has more than 30 dots showing the drivers available. Presumably existing and new driver lines are being pooled, but this should either be explained or the two should be distinguished.

      “(Figure 3C)” was replaced with “(Supplementaryl File 3)” in the revised manuscript to correct the reference. Figure 3B & C are plots of all MB interneurons, not just the major cell types.

      Minor Comments:

      Although the paper is generally well written there are minor grammatical errors throughout (e.g. dropped articles, odd constructions, etc.) that somewhat detract from an otherwise smooth and enjoyable reading experience. A quick editing pass by a native speaker (i.e. any of several of the authors) could clean up these and numerous other small mistakes. A few examples: line 138 "presented" should be present; line 204: "contain off-targeted expressions" should be "have off-target expression;" line 219: "usage to substitute reward" is awkward at best and could be something like "use in generating fictive rewards"; line 326 "arborize[s]"; l. 331 "Based on the likelihood" should be something like "based on these observations"'; line 349 "[is] likely to appear"; l. 352 "extensive connection[s]"; line 353 "has [a] strong influence;" l. 963 "Projections" should be singular; etc.

      All the mentioned examples have been corrected, and we have asked a native speaker to edit through the revised manuscript.

      Lines 81-3: Is the lookup table referred to Suppl. File 1? A reference is desirable.

      Yes, the lookup table referred to “Supplementary File 1” and a reference was added.

      Lines 111-2: what is a "non-redundant set of...cell types?" Cell types that are represented by a single cell (or bilateral pair)? Or does this sentence mean that of the 828 lines, 355 are specific to a single cell type, and in total 319 cell types are targeted? The statement is confusing.

      We revised the text as below.

      “Figure 1E provides an overview of the categories of covered cell types. Among the 828 lines, a subset of 355 lines, collectively labeling at least 319 different cell types, exhibit highly specific and non-redundant expression patterns are likely to be particularly valuable for behavioral experiments. Detailed information, including genotype, expression specificity, matched EM cell type(s), and recommended driver for each cell type, can be found in Supplementary File 1. A small subset of 40 lines from this collection have been previously used in studies (Aso et al.,

      2023; Dolan et al., 2019; Gao et al., 2019; Scaplen et al., 2021; Schretter et al., 2020; Takagi et al., 2017; Xie et al., 2021; Yamada et al., 2023). All transgenic lines newly generated in this study are listed in Supplementary File 2 (Aso et al., 2023; Dolan et al., 2019; Gao et al., 2019; Scaplen et al., 2021; Schretter et al., 2020; Takagi et al., 2017; Xie et al., 2021; Yamada et al., 2023).”

      Line 148: "MB major interneurons" is a confusing descriptor for postsynaptic partners of MBONs.

      We added a sentence to clarify the definition of the “MB major interneurons”.

      “In the hemibrain EM connectome, there are about 400 interneuron cell types that have over 100 total synaptic inputs from MBONs and/or synaptic outputs to DANs. Our newly developed collection of split-GAL4 drivers covers 30 types of these ‘major interneurons’ of the MB (Supplementary File 3).”

      Lines 150-1: Not sure what is meant by "have innervations within the MB." Sounds like cells are presynaptic to KCs, DANS, and MBONs, but Figure 3 Figure Supplement 1 indicates they include neurons that both provide and receive innervation to/from MB neurons. Please clarify.

      For clarification, in the revised manuscript we have included a full list of cell types within the MB in Supplementary File 4. Included are all neurons with >= 50 pre-synaptic connections or with >=250 post-synaptic connections in the MB roi in the hemibrain (excluding the accessory calyx). The cell types include KCs, MBONs, DANs, PNs, and a few other cell types. The coverage ratio was updated based on this list.

      Also, in line 152, what does it mean that they "may have been overlooked previously?" this seems unnecessarily ambiguous. Were they overlooked or weren't they?

      Changed the text to “These lines offer valuable tools to study cell types that previously are not genetically accessible. Notably, SS85572 enables the functional study of LHMB1, which forms a rare direct pathway from the calyx and the lateral horn (LH) to the MB lobes (Bates et al., 2020). ”

      Line 158 refers to PN cells within the MB, which are not mentioned in any place else as MB components.

      What are these PNs and how do they differ from MBONs?

      See responses to Lines 150-1 for clarification of cell types within the MB.

      Line 188: not clear what is meant by "more continual learning tasks".

      We rephrase it as “more complex learning tasks” to avoid jargon.

      Line 235: Not clear why "extended training with high LED intensity" wouldn't promote the formation of robust memories. Is this for some reason unexpected based on previous experiments? Please explain.

      See responses to weakness #1 of the same reviewer

      Lines 317-9: It would be useful to state here that MB0N08 and MB0N09 are the two neurons labeled by MB083C.

      Revised as suggested.

      Line 368: Presumably the "lookup table" referred to is Supplementary File 1, but a reference here would be useful.

      Yes, Supplementary File 1 and a reference was added.

      Comments on Figures:

      Figure 1C The "Dopamine Neurons" label position doesn't align with the Punishment and Reward labels, which is a bit confusing.

      They are intentionally not aligned, because dopamine neurons are not reward/punishment per se. We intend to use the schematic to show that the punishment and reward are conveyed to the MB through the dopamine neuron layer, just as the output from the MB output neuron layer is used to guide further integration and actions. To keep the labels of “Dopamine neurons” and “MB Output Neurons” in a symmetrical position, we decide to keep the original figure unchanged. But we thank the reviewer for the kind suggestion.

      Figure 1F and Figure 1 - Figure Supplement 1: the light gray labels presumably indicate the (EM-identified) neuron labeled by each line, but this should be explicitly stated in the figure legends. It would also be useful in the legends to direct the reader to the key (Supplementary File 1) for decoding neuronal identities.

      Revised as suggested.

      Figure 2: For clarity, I'd recommend titling this figure "LM-EM Match of the CRE011-specific driver SS45245". This reduces the confusion of mixing and matching the driver and cell-type names. Also, it would be helpful to indicate (e.g. with labels above the figure parts) that A & B represent the MCFO characterization step and C & D represent the LM-EM matching step of the pipeline. Revised as suggested.

      Figure 6: For clarity, it would be useful to separately label the PN and sensory neuron groups. Also, for the sensory neurons at the bottom, what is the distinction between the cell names in gray and black font?

      Figure 6 was updated to separate the non-olfactory PN and sensory neuron groups. The gray was intended for olfactory receptor neuron cell types that are additionally labeled in the driver lines. To avoid confusion, the gray cell types were removed in the revised figure, and a clarification sentence was added to the legend.

      “Other than thermo-/hygro-sensory receptor neurons (TRNs and HRNs), SS00560 and MB408B also label olfactory receptor neurons (ORNs): ORN_VL2p and ORN_VC5 for SS00560, ORN_VL1 and ORN_VC5 for MB408B.”

      Figure 7A: It's unclear why the creation of 6 Gr64f-LexADBD lines is reported. Aren't all these lines the same? If not, an explanation would be useful.

      These six Gr64f-LexADBD lines are with different insertion sites, and with the presence or absence of the p10 translational enhancer. Explanation was added to legend. Enhanced expression level with p10 can be helpful to compensate for the general tendency that split-LexA is weaker than split-GAL4. Different insertions will be useful to avoid transvections with split-GAL4s, which are mostly in attP40 and attP2.

      Figure 8F: It would help to include in the legend a brief description of each parameter being measured-essentially defining the y-axis label on the graphs as in Figure Supplement 2. Also, how is the probability of return calculated and what behavioral parameter does the change of curvature refer to?

      We added a brief description to the behavioral parameters in the legend of Figure 8F.

      “Return behavior was assessed within a 15-second time window. The probability of return (P return) is the percentage of flies that made an excursion (>10 mm) and then returned to within 3 mm of their initial position. Curvature is the ratio of angular velocity to walking speed.”

      Figure 9E: What are the parenthetical labels for lines SS49267, SS49300, and SS35008?

      They are EM bodyIDs. Figure legend was revised.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This study compiles a wide range of results on the connectivity, stimulus selectivity, and potential role of the claustrum in sensory behavior. While most of the connectivity results confirm earlier studies, this valuable work provides incomplete evidence that the claustrum responds to multimodal stimuli and that local connectivity is reduced across cells that have similar long-range connectivity. The conclusions drawn from the behavioral results are weakened by the animals' poor performance on the designed task.This study has the potential to be of interest to neuroscientists.

      We thank the editor and the reviewers for their feedback on our work, which we have incorporated to help improve interpretation of our findings as outlined in the response below. While we agree with the editor that further work is necessary to provide a comprehensive understanding of claustrum circuitry and activity, this is true of most scientific endeavors and therefore we feel that describing this work as “incomplete” unfairly mischaracterizes the intent of the experiments performed which provide fundamental insights into this poorly understood brain region. Additionally, as identified in the main text, methods section, and our responses to the comments below, we disagree that the behavioral results are “weakened” by the performance of the animals. Our goal was to assess what information animals learned and used in an ambiguous sensory/reward environment, not to shape them toward a particular behavior and interpret the results solely based on their accuracy in performing the task.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The paper by Shelton et al investigates some of the anatomical and physiological properties of the mouse claustrum. First, they characterize the intrinsic properties of claustrum excitatory and inhibitory neurons and determine how these different claustrum neurons receive input from different cortical regions. Next, they perform in vitro patch clamp recordings to determine the extent of intraclaustrum connectivity between excitatory neurons. Following these experiments, in vivo axon imaging was performed to determine how claustrum-retrosplenial cortex neurons are modulated by different combinations of auditory, visual, and somatosensory input. Finally, the authors perform claustrum lesions to determine if claustrum neurons are required for performance on a multisensory discrimination task

      Strengths:

      An important potential contribution the authors provide is the demonstration of intra-claustrum excitation. In addition, this paper provides the first experimental data where two cortical inputs are independently stimulated in the same experiment (using 2 different opsins). Overall, the in vitro patch clamp experiments and anatomical data provide confirmation that claustrum neurons receive convergent inputs from areas of the frontal cortex. These experiments were conducted with rigor and are of high quality.

      We thank the reviewer for their positive appraisal of our work.

      Weaknesses:

      The title of the paper states that claustrum neurons integrate information from different cortical sources. However, the authors did not actually test or measure integration in the manuscript. They do show physiological convergence of inputs on claustrum neurons in the slice work. Testing integration through simultaneous activation of inputs was not performed. The convergence of cortical input has been recently shown by several other papers (Chia et al), and the current paper largely supports these previous conclusions. The in vivo work did test for integration because simultaneous sensory stimulations were performed. However, integration was not measured at the single cell (axon) level because it was unclear how activity in a single claustrum ROI changes in response to (for example) visual, tactile, and visual-tactile stimulations. Reading the discussion, I also see the authors speculate that the sensory responses in the claustrum could arise from attentional or salience-related inputs from an upstream source such as the PFC. In this case, claustrum cells would not integrate anything (but instead respond to PFC inputs).

      We thank the reviewer for raising this point. In response, we have provided a definition of “integration” in the manuscript text (lines 112-114, 353-354):

      “...single-cell responsiveness to more than one input pathway, e.g. being capable of combining and therefore integrating these inputs.”

      The reviewer’s point about testing simultaneous input to the claustrum is well made but not possible with the dual-color optogenetic stimulation paradigm used in our study as noted in the Results and Discussion sections (see also Klapoetke et al., 2014, Hooks et al., 2015). The novelty of our paper comes from testing these connections in single CLA neurons, something not shown in other studies to-date (Chia et al., 2020; Qadir et al., 2022), which average connectivity over many neurons.

      Finally, we disagree with the reviewer regarding whether integration was tested at the single-axon level and provide data and supplementary figures to this effect (Fig. 6, Supp. Fig. S14, lines 468-511) . Although the possibility remains that sensory-related information may arise in the prefrontal cortex, as we note, there is still a large collection of studies (including this one) that document and describe direct sensory inputs to the claustrum (Olson & Greybeil, 1980; Sherk & LeVay, 1981; Smith & Alloway, 2010; Goll et al., 2015; Atlan et al., 2017; etc.). We have updated the wording of these sections to note that both direct and indirect sensory input integration is possible.

      The different experiments in different figures often do not inform each other. For example, the authors show in Figure 3 that claustrum-RSP cells (CTB cells) do not receive input from the auditory cortex. But then, in Figure 6 auditory stimuli are used. Not surprisingly, claustrum ROIs respond very little to auditory stimuli (the weakest of all sensory modalities). Then, in Figure 7 the authors use auditory stimuli in the multisensory task. It seems that these experiments were done independently and were not used to inform each other.

      The intention behind the current manuscript was to provide a deep characterisation of claustrum to inform future research into this enigmatic structure. In this case, we sought to test pathways in vivo that were identified as being weak or absent in vitro to confirm and specifically rule out their influence on computations performed by claustrum. We agree with the reviewer’s assessment that it is not surprising that claustrum ROIs respond weakly to auditory stimuli. Not testing these connections in vivo because of their apparent sparsity in vitro would have represented a critical gap in our knowledge of claustrum responses during passive sensory stimulation.

      One novel aspect of the manuscript is the focus on intraclaustrum connectivity between excitatory cells (Figure 2). The authors used wide-field optogenetics to investigate connectivity. However, the use of paired patch-clamp recordings remains the ground truth technique for determining the rate of connectivity between cell types, and paired recordings were not performed here. It is difficult to understand and gain appreciation for intraclaustrum connectivity when only wide-field optogenetics is used.

      We thank the reviewer for acknowledging the novelty of these experiments. We further acknowledge that paired patch-clamp recordings are the gold standard for assessing synaptic connectivity. Typically such experiments are performed in vitro, a necessity given the ventral location of claustrum precluding in vivo patching. In vitro slice preparations by their very nature sever connections and lead to an underestimate of connectivity as noted in our Discussion. Kim et al. (2016) have done this experiment in coronal slices with the understanding that excitatory-excitatory connectivity would be local (<200 μm) and therefore preserved. We used a variety of approaches that enabled us to explore connectivity along the longitudinal axis of the brain (the rostro-caudal, e.g. “long” axis of the claustrum), providing fresh insight into the circuitry embedded within this structure that would be challenging to examine using dual recordings. Further, our optogenetic method (CRACM, Petreanu et al., 2007), has been used successfully across a variety of brain structures to examine excitatory connectivity while circumventing artifacts arising from the slice axis.

      In Figure 2, CLA-rsp cells express Chrimson, and the authors removed cells from the analysis with short latency responses (which reflect opsin expression). But wouldn't this also remove cells that express opsin and receive monosynaptic inputs from other opsin-expressing cells, therefore underestimating the connectivity between these CLA-rsp neurons? I think this needs to be addressed.

      The total number of opsin-expressing CLA neurons in our dataset is 4/46 tested neurons. Assuming all of these neurons project to RSP, they would have accounted for 4/32 CLARSP neurons. Given the rate of monosynaptic connectivity observed in this study, these neurons would only contribute 2-3 additional connected neurons. Therefore, the exclusion of these neurons does not significantly impact the overall statistical accuracy of our connectivity findings.

      In Figure 5J the lack of difference in the EPSC-IPSC timing in the RSP is likely due to 1 outlier EPSC at 30 ms which is most likely reflecting polysynaptic communication. Therefore, I do not feel the argument being made here with differences in physiology is particularly striking.

      We thank the reviewer for their attention to detail about this analysis. We have performed additional statistics and found that leaving this neuron out does not affect the significance of the results (new p-value = 0.158, original p-value = 0.314, Mann-Whitney U test). We have removed this datapoint from the figure and our analysis.

      In the text describing Figure 5, the authors state "These experiments point to a complex interaction ....likely influenced by cell type of CLA projection and intraclaustral modules in which they participate". How does this slice experiment stimulating axons from one input relate to different CLA cell types or intra-claustrum circuits? I don't follow this argument.

      We have removed this speculation from the Results section.

      In Figure 6G and H, the blank condition yields a result similar to many of the sensory stimulus conditions. This blank condition (when no stimulus was presented) serves as a nice reference to compare the rest of the conditions. However, the remainder of the stimulation conditions were not adjusted relative to what would be expected by chance. For example, the response of each cell could be compared to a distribution of shuffled data, where time-series data are shuffled in time by randomly assigned intervals and a surrogate distribution of responses generated. This procedure is repeated 200-1000x to generate a distribution of shuffled responses. Then the original stimulus-triggered response (1s post) could be compared to shuffled data. Currently, the authors just compare pre/post-mean data using a Mann-Whitney test from the mean overall response, which could be biased by a small number of trials. Therefore, I think a more conservative and statistically rigorous approach is warranted here, before making the claim of a 20% response probability or 50% overall response rate.

      We appreciate the reviewer's thorough analysis and suggestion for a more conservative statistical approach. We acknowledge that responses on blank trials occur about 10% of the time, indicating that response probabilities around this level may not represent "real" responses. To address this, we will include the responses to the blank condition in the manuscript (lines 505-509). This will allow readers to make informed decisions based on the presented data.

      Regarding Figure 6, a more conventional way to show sensory responses is to display a heatmap of the z-scored responses across all ROIs, sorted by their post-stimulus response. This enables the reader to better visualize and understand the claims being made here, rather than relying on the overall mean which could be influenced by a few highly responsive ROIs.

      We apologize to the reviewer that our data in this figure was challenging to interpret. We have included an additional supplemental figure (Supp. Fig. S15) that displays the requested information.

      For Figure 6, it would also help to display some raw data showing responses at the single ROI level and the population level. If these sensory stimulations are modulating claustrum neurons, then this will be observable on the mean population vector (averaged df/f across all ROIs as a function of time) within a given experiment and would add support to the conclusions being made.

      We appreciate the reviewer’s desire to see more raw data – we would have included this in the figure given more space. However, the average df/f across all ROIs is shown as a time series with 95% confidence intervals in Fig. 6D.

      As noted by the authors, there is substantial evidence in the literature showing that motor activity arises in mice during these types of sensory stimulation experiments. It is foreseeable that at least some of the responses measured here arise from motor activity. It would be important to identify to what extent this is the case.

      While we acknowledge that some responses may arise from motor-related activity, addressing this comprehensively is beyond the scope of this paper. Given the extensive number of trials and recorded axonal segments, we believe that motor-related activity is unlikely to significantly impact the average response across all trials. Future studies focusing specifically on motor activity during sensory stimulation experiments would be needed to elucidate this aspect in detail.

      All claims in the results for Figure 6 such as "the proportion of responsive axons tended to be highest when stimuli were combined" should be supported by statistics.

      We have provided additional statistics in this section (lines 490-511) to address the reviewer’s comment.

      In Figure 7, the authors state that mice learned the structure of the task. How is this the case, when the number of misses is 5-6x greater than the number of hits on audiovisual trials (S Figure 19). I don't get the impression that mice perform this task correctly. As shown in Figure 7I, the hit rate is exceptionally low on the audiovisual port in controls. I just can't see how control and lesion mice can have the same hit rate and false alarm rate yet have different d'. Indeed, I might be missing something in the analysis. However, given that both groups of mice are not performing the task as designed, I fail to see how the authors' claim regarding multisensory integration by the claustrum is supported. Even if there is some difference in the d' measure, what does that matter when the hits are the least likely trial outcome here for both groups.

      We thank the reviewer for their comments and hope the following addresses their confusion about the performance of animals during our multimodal conditioning task.

      Firstly, as pointed out by the reviewer, the hit-rate (HR) is lower than false-alarm-rate (FR) but crucially only when assessed explicitly within-condition (e.g. just auditory or just visual stimulation). Given the multimodal nature of the assay, HR and FR could also be evaluated across different trials, unimodal and multimodal, for both auditory and visual stimuli. Doing so resulted in a net positive d', as observed by the reviewer. From this perspective, and as documented in the Methods (Multimodal Conditioning and Reversal Learning) and Supplemental Figures, mice do indeed learn the conditioning task and perform at above-chance levels.

      Secondly, as raised in the Discussion, an important caveat of this assay was that it was unnecessary for mice to learn the task structure explicitly but, rather, that they respond to environmental cues in a reward-seeking manner that indicated perception of a stimulus. "Performance" as it is quantified here demonstrates a perceptual difference between conditions that is observed through behavioral choice and timing, not necessarily the degree to which the mice have an understanding of the task per se.

      In the discussion, it is stated that "While axons responded inconsistently to individual stimulus presentations, their responsivity remained consistent between stimuli and through time on average...". I do not understand this part of the sentence. Does this mean axons are consistently inconsistent?

      The reviewer’s interpretation is correct – although recorded axons tended to have a preferred stimulus or combination of stimuli, they displayed variability in their responses (response probability), though little or no variability in their likelihood to respond over time (on average).

      In the discussion, the authors state their axon imaging results contrast with recent studies in mice. Why not actually do the same analysis that Ollerenshaw did, so this statement is supported by fact? As pointed out above, the criteria used to classify an axon as responsive to stimuli were very liberal in this current manuscript.

      While we appreciate this comment from the reviewer, we feel that it was not necessary to perform similar analyses to those of Ollerenshaw et al in order to appreciate that methodological differences between these studies would have confounded any comparisons made, as we note in the Discussion.

      I find the discussion wildly speculative and broad. For example, "the integrative properties of the CLA could act as a substrate for transforming the information content of its inputs (e.g. reducing trial-to-trial variability of responses to conjunctive stimuli...)". How would a claustrum neuron responding with a 10% reliability to a stimuli (or set of stimuli) provide any role in reducing trial-to-trial variability of sensory activity in the cortex?

      We thank the reviewer for their feedback. We acknowledge the reviewer's concern regarding the speculative nature of our discussion. To address the specific point raised, while a neuron with a 10% reliability might appear limited in reducing trial-to-trial variability in sensory activity, it's possible that such neurons are responsive to a combination of stimuli or conditions not fully controlled or recorded in our current setup. For instance, variables like the animal’s attentional or motivational states could influence the responsiveness of claustrum neurons, thus integrating these inputs could theoretically modulate cortical processing. We have refined this section to clarify these points (now lines 810-813).

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Shelton et al. explore the organization of the Claustrum. To do so, they focus on a specific claustrum population, the one projecting to the retrosplenial cortex (CLA-RSP neurons). Using an elegant technical approach, they first described electrophysiological properties of claustrum neurons, including the CLA-RSP ones. Further, they showed that CLA-RSP neurons (1) directly excite other CLA neurons, in a 'projection-specific' pattern, i.e. CLA-RSP neurons mainly excite claustrum neurons not projecting to the RSP and (2) receive excitatory inputs from multiple cortical territories (mainly frontal ones). To confirm the 'integrative' property of claustrum networks, they then imaged claustrum axons in the cortex during singleor multi-sensory stimulations. Finally, they investigated the effect of CLA-RSP lesion on performance in a sensory detection task.

      Strengths:

      Overall, this is a really good study, using state-of-the-art technical approaches to probe the local/global organization of the Claustrum. The in-vitro part is impressive, and the results are compelling.

      We thank the reviewer for their positive appraisal of our work.

      Weaknesses:

      One noteworthy concern arises from the terminology used throughout the study. The authors claimed that the claustrum is an integrative structure. Yet, integration has a specific meaning, i.e. the production of a specific response by a single neuron (or network) in response to a specific combination of several input signals. In this study, the authors showed compelling results in favor of convergence rather than integration. On a lighter note, the in-vivo data are less convincing, and do not entirely support the claim of "integration" made by the authors.

      We thank the reviewer for their clarity on this issue. We absolutely agree that without clear definition in the study, interpretation of our data could be misconstrued for one of several possible meanings. We have updated our Introduction, Results, and Discussion text to reflect the definition of ‘integration’ we used in the interpretation of our work and hope this clarifies our intent to the reader.

      Reviewer #3 (Public Review):

      The claustrum is one of the most enigmatic regions of the cerebral cortex, with a potential role in consciousness and integrating multisensory information. Despite extensive connections with almost all cortical areas, its functions and mechanisms are not well understood. In an attempt to unravel these complexities, Shelton et al. employed advanced circuit mapping technologies to examine specific neurons within the claustrum. They focused on how these neurons integrate incoming information and manage the output. Their findings suggest that claustrum neurons selectively communicate based on cortical projection targets and that their responsiveness to cortical inputs varies by cell type.

      Imaging studies demonstrated that claustrum axons respond to both single and multiple sensory stimuli. Extended inhibition of the claustrum significantly reduced animals' responsiveness to multisensory stimuli, highlighting its critical role as an integrative hub in the cortex.

      However, the study's conclusions at times rely on assumptions that may undermine their validity. For instance, the comparison between RSC-projecting and non-RSC-projecting neurons is problematic due to potential false negatives in the cell labeling process, which might not capture the entire neuron population projecting to a brain area. This issue casts doubt on the findings related to neuron interconnectivity and projections, suggesting that the results should be interpreted with caution. The study's approach to defining neuron types based on projection could benefit from a more critical evaluation or a broader methodological perspective.

      We thank the reviewer for their attention to the methods used in our study. We acknowledge that there is an inherent bias introduced by false-negatives as a result of incomplete labeling but contend that this is true of most modern tracing experiments in neuroscience, irrespective of the method used. Moreover, if false-negative biases are affecting our results, then they likely do so in the direction of supporting our findings – perfect knowledge of claustrum connectivity would likely enhance the effects seen by increasing the pool of neurons for which we find an effect. For example, our cortico-claustal connectivity findings in Figure 3 likely would have shown even larger effects should false-negative CLARSP neurons have been positively identified.

      Where appropriate we have provided estimates of variability and certainty in our experimental findings and do not claim any definitive knowledge of the true rate and scope of claustrum connectivity.

      Nevertheless, the study sets the stage for many promising future research directions. Future work could particularly focus on exploring the functional and molecular differences between E1 and E2 neurons and further assess the implications of the distinct responses of excitatory and inhibitory claustrum neurons for internal computations. Additionally, adopting a different behavioral paradigm that more directly tests the integration of sensory information for purposeful behavior could also prove valuable.

      We thank the reviewer for their outlook on the future directions of our work. These avenues for study, we believe, would be very fruitful in uncovering the cell-type-specific computations performed by claustrum neurons.

      Recommendations for the authors:

      Reviewing Editor (Recommendations for the Authors):

      The editor recommends addressing the issues raised by the reviewers about the statistical significance of sensory response with respect to blank stimuli, and solving the issue generated by the exclusion of monosynaptically connected neurons in the connectivity study, to raise the assessment strength of evidence from incomplete to solid. Moreover, as the reported result stands, the behavioral task does not seem to be learned by the animals as the animals are above chance for visual and auditory but largely below chance level for multisensory. It seems that the animals do not perform a multisensory task. The authors should clarify this.

      Reviewer #1 (Recommendations For The Authors):

      Several references were missing from the manuscript, where mouse CLA-retrosplenial or CLA-frontal neurons were investigated and would be highly relevant to both the discussion of claustrum function and the context of the methodologies used here. (Wang et al., 2023 Nat Comm; Nair et al., 2023 PNAS, Marriott et al. 2024 Cell Reports ; Faig et al., 2024 Current

      Biology).

      Reviewer #2 (Recommendations For The Authors):

      Let me be clear, this is an excellent study, using state-of-the-art technical approaches to probe the local/global organization of the Claustrum. However, the study is somehow disconnected, with a fantastic in-vitro part, and, in my opinion, a less convincing in-vivo one.

      As stated in the public review, I'm concerned about the use of the term "integration", as, in my opinion, the data presented in this study (which I repeat are of excellent level) do not support that claim.

      Below are my main points regarding the article:

      (1) My main comment relates to the use of the term 'integration'. It might be a semantic debate, but I think that this is an important one. In my opinion, neural integration is the "summing of several neural input signals by a single neuron to produce an output signal that is some function of those inputs". As the authors state in the discussion, they were not able to "assess the EPSP response magnitude to the conjunction of stimuli due to photosensitivity of ChrimsonR opsins to blue light". Therefore, the authors did not specifically prove integration, but rather input convergence. This does not mean that the results presented are not important or of excellent quality, but I encourage the authors to either tone down the part on integration or to give a clear definition of what they call integration.

      (2) The in vivo imaging data are somehow confusing. First, the authors image two claustral populations simultaneously (the CLA-RSP and the CLA-ACA axons). I may be missing the information, but there is no evidence that these cells overlap in the CLA (no data in the supplement and existing literature only support partial overlap). Second, in the results part, the authors claim that 96% of the sensory-responsive axons displayed multisensory response. This, combined with the 47% of axons responsive to at least one stimulus should lead to a global response of around 45% of the axons in multisensory trials. Yet, in Figures 6F-G, one can see that the response probability is actually low (closer to 20%). To be honest, I cannot really understand how to make sense of these results. At first, I thought that most of the multisensory responsive axons show no response during multisensory stimulus (but one in the unimodal stimulus). This hypothesis is however unlikely, as response AUC is biased toward positivity in Figure 6H. Overall, I'm not totally convinced by the imaging data, and I think that the authors should be more cautious about interpreting their results (as they are in the discussion part, but less in the results part).

      (3) The TetTox approach used in the study ablates all neurons expressing the CRE in the CLA. If the hypothesis proposed by the authors is true, then ablating one subpopulation should not impact that much the functioning of the whole CLA, as other neurons will likely "integrate" information coming from multiple cortices (Figures 3 and 4), the local divergence (Figure 1) will then allow the broadcasting of this information back to multiples cortices. Do the authors think that such an approach deeply modified intra-claustral network connectivity? If this is not the case, shouldn't we expect less effect after lesioning a specific sub-population of CLA neurons?

      (4) The behavioral protocol is also confusing. If I understand correctly, the aim of the task was to probe the D-Prime factor, as all trials, whatever the response of the animal are rewarded. From the Figure 7I, one can see that the mice cannot properly answer to the audiovisual cues, clearly indicating that both groups show impaired response to this type of trial. The whole conclusion of the authors is therefore drawn from the D-Prime calculation. However, even if D-Prime should represent a measure of sensitivity (i.e. is unaffected by response bias), two assumptions need to be met: (1) the signal and noise distributions should be both normal, and (2) the signal and noise distributions should have the same standard deviation. However, these assumptions cannot be tested in the task used by the authors (one would need rating tasks). The authors might want to use nonparametric measures of sensitivity such as A' (see Pollack and Norman 1964).

      Reviewer #3 (Recommendations For The Authors):

      While the study is comprehensive, some of its conclusions are based on assumptions that potentially weaken their validity. A significant issue arises in the comparison between neurons that project to the retrosplenial cortex (RSC) and those that do not. This differentiation is based on retrograde labeling from a single part of the RSC. However, CTB labeling, the technique used, does not capture 100% of the neurons projecting to a brain area. The study itself demonstrates this by showing that injecting the dye into three sections of the RSC results in three overlapping populations of neurons in the claustrum. Therefore, limiting the injection to just one of these areas inevitably leads to many false negatives-neurons that project to the RSC but are not marked by the CTB. This issue recurs in the analysis of neurons projecting to both the RSC and the prelimbic cortex (PL), where assumptions about interconnectivity are made without a thorough examination of overlap between these populations. The incomplete labeling complicates the interpretation of the data and draws firm conclusions from it.

      Minor.

      There is a reference to Figure 1D where claustrum->cortical connections are described. This should be 5D.

      This is a correct reference pointing back to our single-cell characterizations of CLA morphoelectric types.

      End of Page 22. Implies should be imply.

      This has been resolved in the manuscript text.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This is an interesting and valuable study that uses multiple approaches to understand the role of bursting involving voltage-gated calcium channels within the mediodorsal thalamus in the sedative-hypnotic effects of alcohol. Given its unique functional roles and connectivity pattern, the idea that the mediodorsal thalamus may have a fundamental role in regulating alcohol-induced transitions in consciousness state would be both important for researchers investigating thalamocortical dynamics and more broadly interesting for understanding brain function. In addition, the author's examination of the role of the voltage-gated calcium channel Cav3.1 provides some evidence that burst-firing mediated by this channel in the thalamus is functionally important for behavioral-state transitions. While many previous studies have suggested an analogous role for sleep-state regulation, the evidence for an analogous role of this type of bursting in sedative-induced transitions is more limited. Despite the importance of these results, however, there is some concern that the manipulations and recording approaches employed by the authors may affect other thalamic nuclei adjacent to the MD, such as the central lateral nucleus, which has also been implicated in controlling state transitions. The evidence for a specific role of the mediodorsal thalamus is therefore somewhat incomplete, and so additional validation is needed.

      Strengths:

      This study employs multiple, complementary research approaches including behavioral assays, sh-RNAbased localized knockdown, single-unit recordings, and patterned optogenetic interventions to examine the role of activity in the mediodorsal thalamus in the sedative-hypnotic effects of alcohol. Experiments and analyses included in the manuscript generally appear well conceived and are also generally well executed. Sample sizes are sufficiently large and statistical analysis appears generally appropriate though in some cases additional quantification would be helpful. The findings presented are novel and provide some interesting insight into the role of the thalamus as well as voltage-gated calcium channels within this region in controlling behavioral state transitions induced by alcohol. In particular, the observed effects of selective knockout along with recordings in total knockout of the voltage-gated calcium channel, Cav3.1, which has previously been implicated in bursting dynamics as well as state transitions, particularly in sleep, together suggest that the transition of thalamic neurons to a bursting pattern of firing from a more constant firing is important for transition to the sedated state produced by ethanol intoxication. While previous studies have similarly implicated Cav3.1 bursting in behavioral state transitions, the direct optogenetic interventions and single-unit recordings provide valuable new insight. These findings may also have interesting implications for the relationship between sleep process disruption associated with ethanol dependence, although the authors do not appear to examine this directly or extensively discuss these implications of their findings.

      Weaknesses:

      A key claim of the study is that the mediodorsal thalamus is specifically important for the sedative-hypnotic effect of ethanol and that a transition to a bursting pattern of firing in this circuit facilitates these effects due to a loss of a more constant tonic firing pattern. Despite the generally clear observed effects across the included experiments, however, the evidence presented does not fully support that the mediodorsal thalamus, in particular, is involved. This distinction is important because some previous studies have suggested that another thalamic nucleus which is very close to the mediodorsal thalamus, the central-lateral thalamus, has previously been suggested to play a role in preventing sedative-induced transitions. Despite its proximity to the mediodorsal thalamus, the central-lateral thalamus has a substantially different pattern of connectivity so distinguishing which region is impacted is important for understanding the findings in the manuscript. While sh- RNA knockdown appears to be largely centered in the mediodorsal thalamus in the example shown, (Figure 2) this is rather minimal evidence and it is also not well explained (indeed, the relevant panels do not even appear to be referenced in the text of the manuscript) and the consistency of the knockdown targeting is not quantified. Additional evidence should be provided to validate this approach. Similarly, while an example is shown for the expression of ChR2 (Fig. 5) there seems to be some spread of expression outside of the mediodorsal thalamus even in his example raising a concern about how regionally specific this effect.

      The recordings targeting the mediodorsal thalamus could provide evidence of a direct association between changes in activity specifically in this part of the thalamus with the behavioral measures but there are currently some issues with making this link. One difficulty is that, although lesions are shown in Figure S5 to validate recording locations, this figure is relatively unclear and the examples appear to be taken from a different anterior/posterior location compared to the reference diagram. A larger image and improved visualization of the overall set of lesion locations that includes multiple anterior/posterior coronal sections would be helpful. Moreover, even for these example images, it is difficult to evaluate whether these are in the mediodorsal thalamus, particularly given the small size of the image shown. Ideally, an example image that is more obviously in the mediodorsal thalamus would also be included. Finally, an assessment of the relationship between the approximate locations of recorded neurons across the tetrode arrays and the behavioral measures would be very helpful in supporting the unique role of the mediodorsal thalamus. The lack of these direct links, in combination with the histological issues, reduces the insight that can be gained from this study.

      In addition to the key experimental issues mentioned above, there are often problems in the text of the manuscript with reasoning or at least explanation as well as numerous minor issues with editing. The most substantial such issue is the lack of clarity in discussing the mediodorsal thalamus and other adjacent thalamic nuclei, such as the central-lateral nucleus, in the author's discussion of previous findings. Given that at last one of the manuscripts cited by the authors (Saalman, Front. Sys. Neuro. 2014) has directly claimed that central-lateral, rather than the mediodorsal, thalamus is important for arousal regulation related to a conscious state, this distinction should be addressed clearly in the discussion rather than papered over by grouping multiple thalamic nuclei as being medial. As part of this discussion, it would be important to consider additional relevant literature including Bastos et al., eLife, 2021 and Redinbaugh et al., Neuron, 2020 which are quite critical but currently do not appear to be cited. Considering additional literature relevant to the function of the mediodorsal thalamus would also be beneficial. While the methods employed generally seem sound, the description in the methods section is lacking in detail and is often difficult to follow. Analysis methods such as the burst index appear to only be given a brief explanation in the text and appear not to be mentioned in the methods section. Similarly, the staining method used in Figure 2 does not appear to be described in the methods section. The most substantial case is for the UMAP approach used in Figure 4-E which does not appear to be described in the methods or even described in the main text. The lack of detailed descriptions makes it difficult to evaluate the applicability and quality of the experimental and analytical approaches. Citations justifying the use of methods such as the approach to separate regular spiking and narrow spiking neuron subtypes are also needed.

      Beyond the problems with content and reasoning discussed above, there are also some relatively minor issues with the clarity of writing throughout the paper (for example, in the abstract the authors refer to "the ethanol resistance behavior in WT mice" but it is difficult to parse what they mean by this statement. Similarly, the next sentence "These results support that the maintenance..." while clearer, is not well phrased. Though individually minor, issues like this re-occur throughout the manuscript and sometimes make it difficult to follow so the text should be revised to correct them. There are also some problems with labels such as the labels of A1/A2 in Figure 4, which appear to be incorrect. Also, S7 has no label] on the B panels. Finally, some references are not included (only a label of [ref]).

      Reviewer #2 (Public Review):

      In the current study, Latchoumane and collaborators focus on the Cav3.1 calcium channels in the mediodorsal thalamic nucleus as critical players in the regulation of brain-states and ethanol resistance in mice. By combining behavioural, electrophysiological, and genetic techniques, they report three main findings. First, KO Cav3.1 mice exhibit resistance to ethanol-induced sedation and sustained tonic firing in thalamocortical units. Second, knocked-down Cav3.1 mice reproduce the same behaviour when the mediodorsal, but not the ventrobasal, thalamic nucleus is targeted. Third, either optogenetic or electric stimulation of the mediodorsal thalamus reduces ethanol-induced sedation in control animals.

      Overall, the study is well designed and performed, correctly controlled for confounds, and properly analysed. Nonetheless, it is important to address some aspects of the report. The results support the conclusions of the study. These results are likely to be relevant in the field of systems neuroscience, as they increase the molecular evidence showing how the thalamus regulates brain states.

      Reviewer #1 (Recommendations For The Authors):

      Aside from the additional quantification and clarification of the analysis discussed in the weakness section, in general, the experiments included in the manuscript seem reasonable. However, I would suggest one additional experiment as well as one control, both of which are relatively straightforward optogenetic experiments, that I feel would be helpful to further improve the study. First, as the authors note, the optogenetic interventions used do not directly address the relevance of the changes in bursting patterns observed in the knockout (KO), which are by far the most robust effect, with the changes in alcohol sensitivity. One approach that could help address this would be to use patterned suppression via inhibitory opsins (e.g. halorhodopsin) to "rescue" the periods of inhibition associated with bursting in the KO. Localizing this inhibition to the mediodorsal thalamus would also lend further credence to their claim that this nuclei is the relevant circuit for their observed effects. For the control, tonic activation of the ventrobasal nucleus, as the authors did for the mediodorsal nucleus, would be beneficial to rule out the possibility that the observed effect would occur with any thalamic nucleus. In addition to these experiments, I did not note the strategy for sharing data obtained through this study so this should be added.

      R1 – 1: A key claim of the study is that the mediodorsal thalamus is specifically important for the sedative-hypnotic effect of ethanol and that a transition to a bursting pattern of firing in this circuit facilitates these effects due to a loss of a more constant tonic firing pattern. Despite the generally clear observed effects across the included experiments, however, the evidence presented does not fully support that the mediodorsal thalamus, in particular, is involved. This distinction is important because some previous studies have suggested that another thalamic nucleus which is very close to the mediodorsal thalamus, the central-lateral thalamus, has previously been suggested to play a role in preventing sedative-induced transitions. Despite its proximity to the mediodorsal thalamus, the central-lateral thalamus has a substantially different pattern of connectivity so distinguishing which region is impacted is important for understanding the findings in the manuscript.

      R1-A1: The reviewer is right that CL has been pointed as another candidate structure with causal influence on arousal and consciousness. We have focused our efforts in including only recording single units that were from tetrode located in the MD specifically using the lesion code we explain in the method section and in response to R1 question#3. We also produced a quantification of Cav3.1 knock-down that clearly demonstrates that the KD experiment was itself specific to MD, bilaterally, and that CL to CM were minimally impacted by the knock-down process (Fig. 2C and D). Moreover, the optogenetic  (fiber incidence was 30 degrees guaranteeing a central coverage rather than lateral; Fiber optic NA = 0.22) and electric stimulation (bipolar twisted electrodes, 50uA) experiments were also very selective and specific to the MD (Fig.S5). It remains clear that MD might not be the sole structure involved in the brain state control towards sedation and “anesthetic states”, and CL might be a significant contributor as well, however, we show that CL manipulations were rather irrelevant in our experiments  (Fig. 2, S5, S9 and S11).

      R1-2: While sh-RNA knockdown appears to be largely centered in the mediodorsal thalamus in the example shown, (Figure 2) this is rather minimal evidence and it is also not well explained (indeed, the relevant panels do not even appear to be referenced in the text of the manuscript) and the consistency of the knockdown targeting is not quantified. Additional evidence should be provided to validate this approach.

      R1-A2: In order to address this important question, we have created an additional panel quantification to fig2D. We have then quantified the intensity per area of Cav3.1 expression in sub zones of 4 regions of interest: MD (left, right; 2 subzones each), Centro Medial (CM; 1 subzones in total), Centrolateral/Paraventricular nucleus (CL/PCN; left, right; 2 subzones each) and the submedial nucleus (SMT; left, right; used as a control for the intensity normalization; 1 subzones in total). This panel clearly illustrates that MD was knocked-down bilaterally (p<0.001). Moreover, CM (p<0.05) and CL (p<0.01) were also partially and unilaterally knocked down, as well. This analysis confirms that our KD had a high specificity to MD.

      We added the relevant figure caption and text:

      [Result section, Cav3.1 silencing in the MD, but not VB, increased ethanol resistance in mice, paragraph 3]

      “We then characterized the change in Cav3.1 expression following the shControl and shCav3.1 knockdown injections in three test regions MD (left and right), CM (centromedial nucleus) and CL (centrolateral nuclei, left and right side) and a negative control region SMT (submedial thalamic nuclei, left and right side). The average intensity was obtained from two coronal brain slices for each mice used in the experiment (see Methods sections, Cav3.1 Intensity quantification). Our results show that the targeting of the knockdown was very specific to the bilateral MD (p<0.001; Fig. 2D). We noted that the CM (p<0.05) and a marginal unilateral knock-down of the CL were also observed (p<0.01). Notably, we tested the correlation between the level of knock-down in MD and the total time in LOM and observed a significant association (Fig. 2D inset; R = 0.599, p = 0.018). This result highlights that the Cav3.1 knock-down was specific to MD and with an intensity associated with ethanol-induced loss of motion.”

      R1-3: One difficulty is that, although lesions are shown in Figure S5 to validate recording locations, this figure is relatively unclear and the examples appear to be taken from a different anterior/posterior location compared to the reference diagram. A larger image and improved visualization of the overall set of lesion locations that includes multiple anterior/posterior coronal sections would be helpful. Moreover, even for these example images, it is difficult to evaluate whether these are in the mediodorsal thalamus, particularly given the small size of the image shown. Ideally, an example image that is more obviously in the mediodorsal thalamus would also be included. Finally, an assessment of the relationship between the approximate locations of recorded neurons across the tetrode arrays and the behavioral measures would be very helpful in supporting the unique role of the mediodorsal thalamus.

      R1-A3: Related to fig.S5, we re-distributed the position of the recordings from the tetrode electrode burned positions over 3 representative coronal planes that best represent the implant positions. We also provided additional snapshots of tetrode location. To identify the positions of four tetrodes in each animal, we encoded the positions with different electrical lesion strategies as follows: 1 lesion(tetrode 1), 2 lesions while we redrew the tetrode with 100 um interval (tetrode 2), 3 lesions with 200um interval (tetrode 3), 4 lesions with 50um intervals (tetrode4). Tetrodes that were found outside of the MD delimited region were discarded post analysis. A straight relationship between the closeness of the electrode is unfortunately not possible for tetrode recording, a straight silicone probe which maintains the spatial spacing in recording would have been a better approach in that case, but unfortunately, it was not performed in our study.

      R1-4: In addition to the key experimental issues mentioned above, there are often problems in the text of the manuscript with reasoning or at least explanation as well as numerous minor issues with editing. The most substantial such issue is the lack of clarity in discussing the mediodorsal thalamus and other adjacent thalamic nuclei, such as the central-lateral nucleus, in the author's discussion of previous findings. Given that at last one of the manuscripts cited by the authors (Saalman, Front. Sys. Neuro. 2014) has directly claimed that central-lateral, rather than the mediodorsal, thalamus is important for arousal regulation related to a conscious state, this distinction should be addressed clearly in the discussion rather than papered over by grouping multiple thalamic nuclei as being medial. As part of this discussion, it would be important to consider additional relevant literature including Bastos et al., eLife, 2021 and Redinbaugh et al., Neuron, 2020 which are quite critical but currently do not appear to be cited. Considering additional literature relevant to the function of the mediodorsal thalamus would also be beneficial.

      R1-A4: We thank the reviewer for his comments and suggestions. We agree that the added references mentioned by the reviewers are highly relevant and should be integrated in the manuscript. We have integrated the above-mentioned references and further developed on the discussion on the role of MD relative to other thalamic nuclei (ILN and CL in particular). We believe that this better-referenced and clarified text does improve the manuscript greatly.

      [introduction section, paragraph 3]

      “The centrolateral (CL) thalamic nucleus has been implicated in the modulation of arousal, behavior arrest 31, and improvement of level of consciousness during seizures 32. Notably, the direct electrical stimulation of the intralaminar nuclei (ILN) and, in particular CL, promoted hallmarks of arousal and awakening in primate under propofol and ketamine propofol anesthesia.”

      [Discussion section, paragraph 1]

      “In this work, we identified that the neural activity in MD plays a causal role in the maintenance of consciousness. Whole body Cav3.1 KO and MD-specific Cav3.1 KD mice showed resistance to loss of consciousness induced by hypnotic dose of ethanol. In WT mice, MD neurons demonstrated a reduced firing rate in natural (sleep) and ethanol-induced unconscious states compared to awake states. This neural activity reduction was impaired in KO mice. In particular, transition to an unconscious state was accompanied with a switch of firing mode from tonic firing to burst firing in WT mice whereas this modeshift disappeared in KO mice. Finally, optogenetic or electric stimulations of the MD after ethanol injection were sufficient to induce a resistance to loss of motion, supporting that the level of neural firing in the MD is critical to maintain conscious state and delay unconscious state. We showed that the expression of Cav3.1 t-type calcium channels in MD is a cellular modulator associated with this effect.”

      [Discussion section, MD is a modulator of consciousness, paragraph 2 and 3]

      “The MD is known to innervate limbic region, basal ganglia and medial prefrontal cortex 50 and increased activity in MD might modulate the stability of cortical UP states (e.g. awaken, aroused and attentive states) and synchronization 9,26. Thus, MD might be a major hub involved in cortical state control and brain state stabilization.

      Supporting the brain state stabilization theory and the ethanol resistance of Cav3.1 mutants, Choi et al.34 demonstrated that the loss of Cav3.1 T-type calcium channel reduced the bilateral coherence between PFC and MD under ketamine anesthesia and ethanol hypnosis, especially in the delta frequency bands. More importantly, under propofol anesthesia, Bastos et al.35 showed that intralaminar nucleus and MD stimulation lead to increased wake-up subscore and arousal, together with an increased in cortico-cortico and thalamo-cortical slow (delta) frequency power.

      In the present study, we observed that MD KD (Fig. 2A), but not VB KD (Fig. S3) of Cav3.1 increased and is associated (Fig. 2D) with ethanol resistance in mice. We found that MD neurons in Cav3.1 mutant mice exhibited tonic firing within range of wakefulness (Fig. 3 and 4), indicative of resistance to ethanol and wake-like brain state. In addition, we found a strong association between the normalized tonic firing in MD and the arousal through brain states (i.e. walk to wake to sleep states), supporting that MD tonic firing could be interpreted both as a thalamic readout and a modulator of the brain state 11 (Fig. 3). Finally, direct optogenetic and electric MD stimulation increased resistance to loss of consciousness in WT mice (Fig.5 and Fig. S10). To our knowledge, this is the first report demonstrating the causal involvement of mediodorsal thalamic nucleus in the modulation of wakefulness and the resistance to ethanol-induced loss of consciousness in mice.”

      R1-5: While the methods employed generally seem sound, the description in the methods section is lacking in detail and is often difficult to follow. Analysis methods such as the burst index appear to only be given a brief explanation in the text and appear not to be mentioned in the methods section.

      R1-A5: We have added a clear definition in the supplementary method following the original work used:

      [Supplementary Method section, Single Unit recording, sorting and analysis, last paragraph]

      “The bursting index was derived as described in (Royer et al. 2012). Namely, the burst index was estimated from the spike auto-correlogram (1-ms bin size) by subtracting the mean value between 40 and 50 ms (baseline) from the peak measured between 0 and 10 ms. Positive burst amplitudes were normalized to the peak and negative amplitudes were normalized to the baseline to obtain indexes ranging from −1 to 1.” We also edited its mention in the text for clarity:

      [Result section, Lack of Ca3.1 in MD neurons removes thalamic burst in NREM sleep, paragraph 2]

      “[…] and a clear reduction in total bursting represented as bursting index (Fig. 3-B; ratio of spikes count <10 ms and >50 ms based on auto-cross-correlogram).”

      R1-6: Similarly, the staining method used in Figure 2 does not appear to be described in the methods section.

      R1-A6: The staining method can be found in the supplementary method of the paper. [supplementary method, Immunohistochemistry]

      R1-7: The most substantial case is for the UMAP approach used in Figure 4-E which does not appear to be described in the methods or even described in the main text.

      R1-A7: Regarding the method, the UMAP approach is described in the supplementary method document [Uniform Manifold Approximation and Projection (UMAP)]. We believe that only a succinct description was needed here considering the extent of the analysis. Regarding the inserts in the main text, we agree that the main text was lacking the description of these results and we have amended the main text to reflect a clear description of this result and what it entails. The following paragraph was added:

      [Result section, Under ethanol, MD neurons lacking Cav3.1 show no burst and a wake state-like neural activity, second to last paragraph]

      “Finally, we asked whether the firing modes and properties (tonic firing rate, burst firing rate; see supplementary methods) of single MD neurons would form distinct qualitative representation of “brain stages” using a lowered dimensional UMAP representation (Uniform Manifold Approximation and Projection42 ). We observed that for awake and active (i.e. walk), the brain state representation formed two adjacent clusters that confounded both wild and mutant neurons (Fig. 4E, left panel). The REM and NREM states, the wild type neurons formed 2 additional interconnected clusters, whereas the mutant neurons tend to overlap with the clusters attributed to the “awake” brain state (Fig. 4E, second to left panel). Ethanol induced fLOM, similarly to REM and NREM clusters, was distinct from awake clusters in wild type mice and overlapped with the NREM clusters (Fig. 4E, third to left panel). Here also, mutant MD neurons showed overlap with the awake clusters rather than the “low consciousness” brain states. These results indicate that the firing mode and properties could define a brain state representation that shows distinctions in levels of consciousness. Moreover, the mutant showed a representation of “low consciousness” states overlapping with wild type “awake” states consistent with the hypothesis of resistance to loss of consciousness.”

      R1-8: Citations justifying the use of methods such as the approach to separate regular spiking and narrow spiking neuron subtypes are also needed.

      R1-A8: We have added two references related to the observation of the two subpopulations of spiking neurons [Schiff and Reyes, 2012; Destexhe, 2008].

      R1-9: Beyond the problems with content and reasoning discussed above, there are also some relatively minor issues with the clarity of writing throughout the paper (for example, in the abstract the authors refer to "the ethanol resistance behavior in WT mice" but it is difficult to parse what they mean by this statement.

      R1-A9: We addressed this issue by editing and revising the manuscript for clarity and flow.

      R1-10: Similarly, the next sentence "These results support the maintenance..." while clearer, is not well phrased. Though individually minor, issues like this re-occur throughout the manuscript and sometimes make it difficult to follow so the text should be revised to correct them.

      R1-A10: We thank the reviewer for highlighting this point. We have edited the overall text to improve clarity and flow.

      [abstract] 

      These results suggest that maintaining MD neural firing at a wakeful level is sufficient to induce resistance to ethanol-induced hypnosis in WT mice.

      R1-11: There are also some problems with labels such as the labels of A1/A2 in Figure 4, which appear to be incorrect.

      R1-A11: We noted this issue and have rectified the figure for clarity.

      R1-12: Also, S7 has no label on the B panels.

      R1-A12: We thank the reviewer for pointing out this lack. We have added the y-label on the panel for clarity.

      R1-13: Finally, some references are not included (only a label of [ref]).

      R1-A13: We have completed the missing reference and thank the reviewer for pointing that out.

      Additional comments

      R1-14: Aside from the additional quantification and clarification of the analysis discussed in the weakness section, in general, the experiments included in the manuscript seem reasonable. However, I would suggest one additional experiment as well as one control, both of which are relatively straightforward optogenetic experiments, that I feel would be helpful to further improve the study. First, as the authors note, the optogenetic interventions used do not directly address the relevance of the changes in bursting patterns observed in the knockout (KO), which are by far the most robust effect, with the changes in alcohol sensitivity. One approach that could help address this would be to use patterned suppression via inhibitory opsins (e.g. halorhodopsin) to "rescue" the periods of inhibition associated with bursting in the KO.

      R1-A14: Here the reviewer proposes an interesting experiment which we have attempted to perform, however, poses several technical challenges. First, the KO do not have burst firing as they are depleted from Cav3.1 low-threshold calcium channel. Therefore, under ethanol, even if there might exist a rhythmic inhibition that activates Cav3.1 channels and causes a rebound burst, the KO are unable to have it. Therefore, an optogenetic inhibition would only accentuate the total inhibition and could potentially induce an overall decrease in MD firing, resulting in an increase in LOM features. Alternatively, we showed that in a WT with low ethanol dose (where LOM induction is harder), the increased rhythmic inhibition does indeed increase significantly LOM duration and marginally decreases latency to LOM (Fig. S12), indicating that increased inhibition could indeed explain the hypothesis: “ the stronger the decrease in MD firing, the faster and longer the LOM.” The only caveat of using WT here is that optogenetic inhibition might also include rebound burst post-inhibition. Injecting bursts only did not alter the response to ethanol (Fig. S10). These results point to the role of loss of firing in MD as a main factor for LOM, and potentially the contribution of burst necessitating a concurrent inhibition/loss of firing.

      We agree that inhibition in KO would further validate this hypothesis, controlling for the role of burst. We regret that we are not in the capacity to perform additional experiments involving the KO mice.

      R1-15: For the control, tonic activation of the ventrobasal nucleus, as the authors did for the mediodorsal nucleus, would be beneficial to rule out the possibility that the observed effect would occur with any thalamic nucleus.

      R1-A15: We agree with the reviewer that we could have added an additional region control to the gain/loss of function experiments. We would even go further as to suggest that a better control nucleus would be a high order nucleus such as PO or an unrelated sensory relay nucleus such as LGN. VB being a motor relay nucleus, could also mediate movement initiation, which could be hard to interpret. Since the complete control study for all thalamic nuclei Cav3.1 KD is outside the scope of this study, we opted not to redo these experiments and keep the focus of the manuscript on the manipulation of MD activity rather than the various available thalamic nuclei. We also do not claim that MD is the sole center able to initiate a switch in the loss of consciousness, and a more in-depth study on that matter would be clearly needed.

      R1-16: In addition to these experiments, I did not note the strategy for sharing data obtained through this study so this should be added.

      R1-A16: We have uploaded data and code for most figures at the following repository and provided a clearer statement regarding data sharing. We thank the reviewer for pointing out this missing element.

      The link for the repository is the following:

      It contains:

      - Excel spreadsheet file of all behavior values, including the newly quantified Cv3.1 expression in MD/CL/SMT

      - Excel spreadsheet follow-up of all MD cells (single unit; tetrode) analyzed

      - Folders for all groups studied with representative figures showing EEG power over time and normalized activity (WT vs KO for 2, 3 and 4 g/kg; MDshKD vs shCTR, VBshKD vs shCTR; CHR2 NOSTIM vs STIM; ESTIM Groups and ARCH NOSTIM vs STIM)

      - A1G LORRvsLOM and OPEN FIELD Matlab data

      - Matlab and ImageJ Codes: single unit analysis, characterization, brain state characterization, sleep stages, LOM, open field analysis and statistical analysis.

      We have added the data sharing subsection in the acknowledgements:

      “Part of the analyzed data and codes are available on the open access platform, mendeley:

      Latchoumane, Charles-francois (2024), “Mediodorsal thalamic nucleus mediates resistance to ethanol through Cav3.1 T-type Ca2+ regulation of neural activity”, Mendeley Data, V1, doi: 10.17632/7fr427426m.1

      Additional data (large size recording and images) can be provided upon reasonable requests.”

      Reviewer #2 (Recommendations For The Authors):

      R2-1. Consciousness is a contentious subject. Even in humans, there is still intense research on the topic, not to mention animals, about which we still know very little. Moreover, consciousness is not quantified in this study, as there is no standard metric to do so. Accordingly, talking about 'modulation', 'transition', ́level ', or 'reduction' of consciousness can be misleading. Hence, it is probably safer to strictly refer to brain-states and/or stages of the sleep-wake cycle in this study and reframe it entirely around these concepts.

      R2-A1. The reviewer points to an important point and we appreciate this highlight. Agreeing that the definition of consciousness is rather loose and arguably difficult to pinpoint. Here, we settle on a definition that relies on the loss of motion and loss of righting reflex. This definition is widely accepted as the “verified” state in which the absence of responsiveness (to continuous stimuli, inducing reflex or discomfort) is observed and uninterrupted by jerks and spurious movements. Additional metrics needed would be the recording of EMG to quantify atonia and EEG to the settling of a dominantly slow-wave frequency (~4 Hz; ethanol-induced sedation at theta rhythm), as shown in Fig S1A. The driver of this 4Hz frequency and its correlation has been investigated previously (e.g. Choi et al, PNAS, 2012), leading to the accepted link between LOM/LORR and loss of consciousness. Our data present the advantage of showing single neuron recordings and that LOM is a state where the lowest firing activity is present (Fig S7AB) and comparable to deep sleep state activity (Fig3D). The first LOM is the most important as it highlights the deepest loss of consciousness before the ethanol starts to be metabolized and cleared, which would be consistent between animals.

      As a result, we have edited the manuscript to clarify all mentions related to brain states and states of unconsciousness.

      R2-2. It is not clear why the authors focus on the mediodorsal nucleus. This should be better explained in the introduction and developed in the discussion.

      R2-A2. This comment converges with the Reviewer 1 comments and we are addressing this lack in the discussion as suggested. We have addressed it with this previous comment and believe it is now clearer.

      R2-3. The discussion mentions that 'increased activity in MD might modulate the stability of cortical UP state and synchronization' (pg 21). This point should be either further developed and put into context, or removed. In its current state, it does not seem to contribute much to the discussion of results.

      R2-A3. We understand that the working “UP state” might not be clear enough. We have modified this sentences as follows to clarify that UP state could be either a state of where the animal is awake, aroused or attentive:

      [Discussion section, MD is a modulator of consciousness, first paragraph]

      “The MD is known to innervate limbic region, basal ganglia and medial prefrontal cortex 50 and increased activity in MD might modulate the stability of cortical UP states (e.g. awaken, aroused and attentive states) and synchronization 9,26. Thus, MD might be a major hub involved in cortical state control and brain state stabilization.“

      R2-4. The discussion states that 'mutant mice did not exhibit a decreased arousal level (i.e. increased locomotor activity)' (pg 23). This is confusing as decreased arousal should be reflected in decreased locomotor activity.

      R2-A4. We understand that the formulation of this sentence may be confusing and we have edited this portion of the text to improve quality in the revised version of the manuscript. To clarify, mutant mice do not exhibit reduced or increased arousal (not quantified, just observational), they do have a phenotypic hyperlocomotion. This comes in contrast with a lower basal firing rate in the MD, which in our interpretation, is not synonymous with lower arousal. We believe that the relative change in MD determines the change in arousal, and that the absolute firing is not indicative of arousal in itself, only in comparison.

      [Discussion section, The lower variability in MD Firing reflects Ethanol Resistance in Cav3.1 mutant mice, paragraph 2]

      “Mutant RS neurons in MD showed an overall lower excitability and variability of firing in various natural conscious and unconscious states compared to wild type mice. Remarkably, Cav3.1 mutant mice exhibited a clear increased locomotor activity and an increased resistance to ethanol. The general lower firing rate and the high “arousal” observed in mutant mice suggests that the relative change from state to state in tonic firing in MD, and not the absolute value of firing, might be a better correlate of change in brain state in the mice.”

      R2-5. The methods (pg 27) state that two genetic backgrounds (129/svjae and C57BL/6J ) were used in the study. Authors should show whether there were significant differences between those backgrounds in the key parameters assessed in the study (particularly resistance to ethanol sedation).

      R2-A5. As mentioned in the method section, we only used the F1-background mice, which are the firstgeneration offspring produced by crossing 129/svjae and C57BL/6J strains. To produce F1 KO mice, we kept the heterozygote mice in two strains. We unfortunately did not study the particular difference of the respective KO of these two backgrounds; however, the pure C57BL/6J KO has been used in other studies by our group (Kim et al 2001; Na et al, 2008; Park et al., 2010). The F1 background allows us to work with mice that are less aggressive and can be handled with less inherent stress.

      R2-6. It would be convenient to produce a supplementary figure associated with Figure 1C to show the same data with averages per mouse. That is, 9 points for control and 9 points for KO mice. This also applies to all cases where data is not presented per mouse but pooled between animals.

      R2-A6. We have added a panel C in Figure S1, to show the scatter values for all the mice corresponding to the figure 1C. We have also generalized this presentation for all behavior graphics showing all the animals in the scatter plot next to the boxplot. We believe that this presentation increases further the transparency of the manuscript. We have then added the scatter plot for all mice in figure Fig1, Fig2, Fig5, Fig.S2, Fig.S3, Fig.S10 and Fig.S12.

      R2-7. It would be informative to make a supplementary figure associated with Figure 1D to compare baseline raw activity levels (i.e., baseline walking recording) between control and KO mice. That is, do KO and control mice cover comparable distances and at similar speeds during baseline conditions? Figure 1D and Figure 4A suggest that the variability of locomotor activity is larger in KO mice. Hence, this parameter should be quantified and reported.

      R2-A7. We thank the reviewer for this comment. We strived to answer to this question in the manuscript in two ways:

      - We first measure the overall hyperlocomotion of the mice using the open field total distance parkoured in our mice cohorts (FigS4C). We did observe that the KO mutant showed hyperlocomotion, but not MD or VB knock-down mice. Which indicates that the hyperlocomotion component is not specific to the two thalamic nuclei studied.

      - Using the forced walking task, we impose on the animal to keep a steady pace of roughly 6cm/s. This assay allows to normalize the general walking behavior to a relatively fixed pace making it comparable for all animals.

      The reviewer suggested reporting the mean and variance in walking of WT and KO during baseline (prior to the ethanol I.P. injection). We believe that the two points mentioned above are sufficient to describe in a more quantitative way the WT vs KO locomotion differences. Moreover, by construction the normalized locomotion on the forced walking task will return similar means for the baseline, the standard deviation would, however, potentially show differences but would remain inconclusive.

      R2-8. The legend in Figure 1 states that 'the loss of consciousness is evaluated using normalized moving index using either video analysis (differential pixel motion), on- head accelerometer-based motion, or neck electromyograms'. Authors should clarify whether these methods are equivalent and support it with data.

      R2-A8. We understand the reviewer point and we have made a few modifications to the method description aligning better with what was done. For most mice, video analysis was used to obtain the moving index. When video recording was not available (2 mice), we had an accelerometer attached to the animal’s head stage which helped us derive a moving index that was similar to the video moving index. The neck electromyogram was rather used for animals implanted with the tetrodes to identify sleep stages based on local field potential frequency and muscle tone.  We have then clarified the method for this matter and Figure 1 to avoid this confusion. Since no concurrent recording of both video and accelerometer was performed, we do not have the data to compute the correlation between the two measures, however, no noticeable deviation from loss of motion was observed between the two methods. We realize that this may be a weak argument, however, our observations showed that video and accelerometers returned very similar timings for loss of motion (only a few comparative instances insufficient to present a statistical comparison).

      R2-9. How were spike bursts defined? The authors should try different criteria and verify the consistency of results.

      R2-A9 For in vivo single unit recording, we opted for a definition that is validated from our works and others as a silencing of at least 100 ms followed by a minimum of 3 spikes with:

      - First spike pairs interspike interval less than 4 ms

      - Remaining spike pairs interspike interval less than 20 ms

      We have performed this analysis using a minimum of 2 spikes, and varied silencing periods between 50 and 100ms, without observing significant deviation of the results. As shown in Figure S6B, with this approach we observed that the burst distribution had a majority with <10 spikes per burst. Figure S6C indicated that with a clear distribution of ISI for first spike within 2-4ms as observed in previous works (Desai and Varela, 2021; Alitto et al, 2019), importantly, not clearly capped at 4 ms, showing that the range for the first ISI might indeed be lower than 4ms for thalamic burst. Within burst spike waveforms can become very variable and the choice of 3 over 2 spikes minimum per burst stems from the aim to reduce false positive detection of ultra-short bursts, which in single unit recording remains controversial (Gray et al. 1995).

      Minor:

      R2-10: Figure 4A2 'Cav3.1(+/+)' should presumably be Cav3.1(-/-).

      R2-A10: this is correct and we have corrected the figure label [This sentence is ambiguous. What is ‘this’ that is correct?]

      R2-11: Figure S2C legend states 'Post-hoc group comparison was performed using.' The sentence seems to be incomplete.

      R2-A11: We have completed the sentence for clarity.

      R2-12: In the methods (pg 29) virus concentration is reported as '107 TU/ul', which probably refers to 10e7.

      R2-A12: We have corrected it by superscripting the power 7.

      R2-13: Verify Fig 1C1 and correct Y-axis overlap between title and units.

      R2-A13: We edited the figure for clarity, thank you.

      R2-14: On page 24 there is a '[ref]' that probably stands for (a missing) reference.

      R2-A14: the missing reference has been added.

    1. Author response:

      We are glad that the reviewers found our work to be interesting and appreciate its contribution to enhancing ecological validity of attention research. We also agree that much more work is needed to solidify this approach, and that some of the results should be considered “exploratory” at this point, but appreciate the recognition of the novelty and scientific potential of the approach introduced here.

      We will address the reviewers’ specific comments in a revised version of the paper, and highlight the main points here:

      · We agree that the use of multiple different neurophysiological measures is both an advantage and a disadvantage, and that the abundance of results can make it difficult to tell a “simple” story. In our revision, we will make an effort to clarify what (in our opinion) are the most important results and provide readers with a more cohesive narrative.

      · Important additional discussion points raised by the reviewers, which will be discussed in a revised version are a) the similarities and differences between virtual and real classrooms; b) the utility of the methods and data to the community and c) the implication of these results for educational neuroscience and ADHD research.

      · In the revision, we will also clarify several methodological aspects of the data analysis, as per the reviewers’ requests.

      · After final publication, the data will be made available for other researchers to use.

    1. Author response:

      Reviewer #1 (Public review):

      Weaknesses:

      (1) The heatmaps (for example, Figure 3A, B) are challenging to read and interpret due to their size. Is there a way to alter the visualization to improve interpretability? Perhaps coloring the heatmap by general anatomical region could help? We feel that these heatmaps are critical to the utility of the registration strategy, and hence, clear visualization is necessary.

      We thank the reviewers for this point on aesthetic improvement, and we agree that clearer visualization of our correlation heatmaps is important. To address this point, we have incorporated the capability of grouping “child” subregions in anatomical order by their more general “parent” region into the package function, plot_correlation_heatmaps(). Parent regions will be visually represented as smaller sub-facets in the heatmaps, and we will be submitting our full revised manuscript with these visual changes.

      (2) Additional context in the Introduction on the use of immediate early genes to label ensembles of neurons that are specifically activated during the various behavioral manipulations would enable the manuscript and methodology to be better appreciated by a broad audience.

      We thank the reviewers for this suggestion and will be revising parts of our Introduction to reflect the broader use and appeal of immediate early genes (IEGs) for studying neural changes underlying behavior.

      (3) The authors mention that their segmentation strategies are optimized for the particular staining pattern exhibited by each reporter and demonstrate that the manually annotated cell counts match the automated analysis. They mention that alternative strategies are compatible, but don't show this data.

      We thank the reviewers for this comment. We also appreciate that integration with alternative strategies is a major point of interest to readers, given that others may be interested in compatibility with our analysis and software package, rather than completely revising their own pre-existing workflows.

      This specific point on segmentation refers to the import_segmentation_custom()function in the package. As there is currently not a standard cell segmentation export format adopted by the field, this function still requires some data wrangling into an import format saved as a .txt file. However, we chose not to visually demonstrate this capability in the paper for a few reasons.

      i. A figure showing the broad testing of many different segmentation algorithms, (e.g., Cellpose, Vaa3d, Trainable Weka Segmentation) would better demonstrate the efficacy of segmentation of these alternative approaches, which have already been well-documented. However, demonstrating importation compatibility is more of a demonstration of API interface, which is better shown in website documentation and tutorial notebooks.

      ii. Additionally, showing importation with one well-established segmentation approach is still a demonstration of a single use case. There would be a major burden-of-proof in establishing importation compatibility with all potential alternative platforms, their specific export formats, which may be slightly different depending on post-processing choices, and the needs of the experimenters (e.g., exporting one vs many channels, having different naming conventions, having different export formats). For example, output from Cellpose can take the form of a NumPy file (_seg.npy file), a .png, or Native ImageJ ROI archive output, and users can have chosen up to four channels. Until the field adopts a standardized file format, one flexible enough to account for all the variables of experimental interest, we currently believe it is more efficient to advise external groups on how to transform their specific data to be compatible with our generic import function.

      Internally, in collaborative efforts, we have validated the ability to import datasets generated from completely different workflows for segmentation and registration. We intend on releasing this documentation in coming updates on our package website, which we believe will be more demonstrative on how to take advantage of our analysis package, without adopting our entire workflow.

      (4) The authors provided highly detailed information for their segmentation strategy, but the same level of detail was not provided for the registration algorithms. Additional details would help users achieve optimal alignment.

      We apologize for this lack of detail. The registration strategy depends upon the WholeBrain package for registration to the Allen Mouse Common Coordinate Framework. While this strategy has been published and documented elsewhere, we will be revising our methods to better incorporate details of this approach.

      Reviewer #2 (Public review):

      Weaknesses:

      (1) While I was able to install the SMARTR package, after trying for the better part of one hour, I could not install the "mjin1812/wholebrain" R package as instructed in OSF. I also could not find a function to load an example dataset to easily test SMARTR. So, unfortunately, I was unable to test out any of the packages for myself. Along with the currently broken "tractatus/wholebrain" package, this is a good example of why I would strongly encourage the authors to publish SMARTR on either Bioconductor or CRAN in the future. The high standards set by Bioc/CRAN will ensure that SMARTR is able to be easily installed and used across major operating systems for the long term.

      We thank reviewers for pointing out this weakness; long-term maintenance of this package is certainly a mutual goal. Loading an .RDATA file is accomplished by either double-clicking directly on the file in a directory window, or by using the load() function, (e.g., load("directory/example.RData")). We will explicitly outline these directions in the online documentation and in our full revision.

      Moreover, we will submit our package to CRAN. Currently, SMARTR is not dependent on the WholeBrain package, which remains optional for the registration portion of our workflow. Ultimately, this independence will allow us to maintain the analysis and visualization portion of the package independently, and allow for submission to a more centralized software repository such as CRAN.

      (2) The package is quite large (several thousand lines include comments and space). While impressive, this does inherently make the package more difficult to maintain - and the authors currently have not included any unit tests. The authors should add unit tests to cover a large percentage of the package to ensure code stability.

      We appreciate this feedback and will add unit testing to improve the reliability of our package in the full revision.

      (3) Why do the authors choose to perform image segmentation outside of the SMARTR package using ImageJ macros? Leading segmentation algorithms such as CellPose and StarMap have well-documented APIs that would be easy to wrap in R. They would likely be faster as well. As noted in the discussion, making SMARTR a one-stop shop for multi-ensemble analyses would be more appealing to a user.

      We appreciate this feedback. We believe parts of our response to Reviewer 1, comment 3, are relevant to this point. Interfaces for CellPose and ClusterMap (which processes in situ transcriptomic approaches like STARmap) are both in python, and currently there are ways to call python from within R (https://rstudio.github.io/reticulate/index.html). We will certainly explore incorporating these APIs from R. However, we would anticipate this capability is more similar to “translation” between programming languages, but would not currently preclude users from the issue of still needing some familiarity with the capabilities of these python packages, and thus with python syntax.

      (4) Given the small number of observations for correlation analyses (n=6 per group), Pearson correlations would be highly susceptible to outliers. The authors chose to deal with potential outliers by dropping any subject per region that was> 2 SDs from the group mean. Another way to get at this would be using Spearman correlation. How do these analyses change if you use Spearman correlation instead of Pearson? It would be a valuable addition for the author to include Spearman correlations as an option in SMARTR.

      We thank reviewers for this suggestion and will provide a supplementary analysis of our results using Spearman correlations.

      (5) I see the authors have incorporated the ability to adjust p-values in many of the analysis functions (and recommend the BH procedure) but did not use adjusted p-values for any of the analyses in the manuscript. Why is this? This is particularly relevant for the differential correlation analyses between groups (Figures 3P and 4P). Based on the un-adjusted p-values, I assume few if any data points will still be significant after adjusting. While it's logical to highlight the regional correlations that strongly change between groups, the authors should caution which correlations are "significant" without adjusting for multiple comparisons. As this package now makes this analysis easily usable for all researchers, the authors should also provide better explanations for when and why to use adjusted p-values in the online documentation for new users.

      We appreciate the feedback and will more explicitly outline that in our paper, our dataset is presented as a more demonstrative and exploratory resource for readers and, as such, we accept a high tolerance for false positives, while decreasing risk of missing possible interesting findings. As noted by Reviewer #2, it is still “logical to highlight the regional correlations that strongly change between groups.” We will further clarify in our methods that we chose to present uncorrected p-values when speaking of significance. We will also include more statistical detail on our online documentation regarding FDR correction. Ultimately, the decision to correct for multiple comparisons and FDR choice of threshold, should still be informed by standard statistical theory and user-defined tolerance for inclusion of false-positives and missing of false-negatives. This will be influenced by factors, such as the nature and purpose of the study, and quality of the dataset.  

      (6) The package was developed in R3.6.3. This is several years and one major version behind the current R version (4.4.3). Have the authors tested if this package runs on modern R versions? If not, this could be a significant hurdle for potential users.

      We thank reviewers for pointing out concerns regarding versioning. Analysis and visualization capabilities are currently supported using R version 4.1+. The recommendation for R 3.6.3 is primarily for users interested in using the full workflow, which requires installation of the WholeBrain package. We anticipate supporting of visualization and network analysis capabilities with updated packages and R versions, and maintaining a legacy version for the full workflow presented in this paper.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors present a new application of the high-content image-based morphological profiling Cell Painting (CP) to single cell type classification in mixed heterogeneous induced pluripotent stem cellderived mixed neural cultures. Machine learning models were trained to classify single cell types according to either "engineered" features derived from the image or from the raw CP multiplexed image. The authors systematically evaluated experimental (e.g., cell density, cell types, fluorescent channels) and computational (e.g., different models, different cell regions) parameters and convincingly demonstrated that focusing on the nucleus and its surroundings contains sufficient information for robust and accurate cell type classification. Models that were trained on mono-cultures (i.e., containing a single cell type) could generalize for cell type prediction in mixed co-cultures, and describe intermediate states of the maturation process of iPSC-derived neural progenitors to differentiation neurons.

      Strengths:

      Automatically identifying single-cell types in heterogeneous mixed-cell populations holds great promise to characterize mixed-cell populations and to discover new rules of spatial organization and cell-cell communication. Although the current manuscript focuses on the application of quality control of iPSC cultures, the same approach can be extended to a wealth of other applications including an in-depth study of the spatial context. The simple and high-content assay democratizes use and enables adoption by other labs.

      The manuscript is supported by comprehensive experimental and computational validations that raise the bar beyond the current state of the art in the field of high-content phenotyping and make this manuscript especially compelling. These include (i) Explicitly assessing replication biases (batch effects); (ii) Direct comparison of feature-based (a la cell profiling) versus deep-learning-based classification (which is not trivial/obvious for the application of cell profiling); (iii) Systematic assessment of the contribution of each fluorescent channel; (iv) Evaluation of cell-density dependency; (v) Explicit examination of mistakes in classification; (vi) Evaluating the performance of different spatial contexts around the cell/nucleus; (vii) Generalization of models trained on cultures containing a single cell type (mono-cultures) to mixed co-cultures; (viii) Application to multiple classification tasks.

      I especially liked the generalization of classification from mono- to co-cultures (Figure 4C), and quantitatively following the gradual transition from NPC to Neurons (Figure 5H).

      The manuscript is well-written and easy tofollow.

      Thank you for the positive appreciation of our work and constructive comments. 

      Weaknesses:

      I am not certain how useful/important the specific application demonstrated in this study is (quality control of iPSC cultures), this could be better explained in the manuscript. 

      To clarify the importance we have added an additional explanation to the introduction (page 3) and also come back to it in the discussion (page 17).

      Text from the introduction:

      “However, genetic drift, clonal and patient heterogeneity cause variability in reprogramming and differentiation efficiency10,11. The differentiation outcome is further strongly influenced by variations in protocol12. This can significantly impact experimental outcomes, leading to inconsistent and potentially misleading results and consequently, it hinders the use of iPSC-derived cell systems in systematic drug screening or cell therapy pipelines. This is particularly true for iPSC-derived neural cultures, as their composition, purity and maturity directly affect gene expression and functional activity, which is essential for modelling neurological conditions13,14. Thus, from a preclinical perspective, there is the need for a fast and cost-effective QC approach to increase experimental reproducibility and cell type specificity15. From a clinical perspective in turn, robust QC is required for safety and regulatory compliance (e.g., for cell therapeutic solutions). This need for improved standardization and QC is underscored by large-scale collaborative efforts such as the International Stem Cell Banking Initiative16, which focusses on clinical quality attributes and provides recommendations for iPSC validation testing for use as cellular therapeutics, or the CorEuStem network, aiming to harmonize iPSC practices across core facilities in Europe.”

      Text from the discussion: 

      “Many groups highlight the difficulty of reproducible neural differentiation and attribute this to culture conditions, cultivation time and variation in developmental signalling pathways in the source iPSC material43,44. Spontaneous neural differentiation has previously been shown to require approximately 80 days before mature neurons arise that can fire action potentials and show neural circuit formation. Although these differentiation processes display a stereotypical temporal sequence34, the exact timing and duration might vary. This variation negatively affects the statistical power when testing drug interventions and thus prohibits the application of iPSC-culture derivatives in routine drug screening. Current solutions (e.g., immunocytochemistry, flow cytometry, …) are often cost-ineffective, tedious, and incompatible with longitudinal/multimodal interrogation. CP is a much more cost-effective solution and ideally suited for this purpose. Routine CP-based could add confidence to and save costs for the drug discovery pipeline. We have shown that CP can be leveraged to capture the morphological changes associated with neural differentiation.”

      Another issue that I feel should be discussed more explicitly is how far can this application go - how sensitively can the combination of cell painting and machine learning discriminate between cell types that are more subtly morphologically different from one another?

      Thank you for this interesting question. The fact that an approach based on a subregion not encompassing the whole cell (the “nucleocentric” approach) can predict cell types equally well, suggests that the cell shape as such is not the defining factor for accurate cell type profiling. And, while clearly neural progenitors, neurons or glia have vastly different cell shapes. We have shown that cells with closer phenotypes such as 1321N1 vs. SH-SY5Y or astrocytes vs. microglia can be distinguished with equal performance. However, triggered by the reviewers’ question, we have now tested additional conditions with more subtle phenotypes, including the classification of 1321N1 vs. two related retinal pigment epithelial cells with much more similar morphology (ARPE and RPE1 cells). We found that the CNN could discriminate these cells equally well and have added the results on page 8 and in Fig. 3D. To address this question from a different angle, we have also performed an experiment in which we changed cell states to assess whether discriminatory power remains high. Concretely, we exposed co-cultures of neurons and microglia to LPS to trigger microglial activation (more subtly visible as cytoskeletal changes and vacuole formation). This revealed that our approach still discriminates both cell types (neurons vs. microglia) with high accuracy, regardless of the microglial state. Furthermore, using a two-step approach, we could also distinguish LPS-treated (assumed to be activated) from unchallenged microglia (assumed to be more homeostatic), albeit with a lower accuracy. This experiment has been added as an extra results section (Cell type identification can be applied to mixed iPSC-derived neuronal cultures regardless of activation state, p12) and Fig. 7c. Finally, we have also added our take on what the possibilities could be for future applications in even more complex contexts such as tissue slice, 3D and live cell applications (page 17-18). 

      Regarding evaluations, the use of accuracy, which is a measure that can be biased by class imbalance, is not the most appropriate measurement in my opinion. The confusion matrices are a great help, but I would recommend using a measurement that is less sensitive for class imbalance for cell-type classification performance evaluations.  

      Across all CNNs trained in this manuscript, the sample size of the input classes has always been equalized, ruling out any effects of class imbalance. Nevertheless, to follow the reviewers’ recommendation, we have now used the F-score to document performance as it is insensitive to such imbalance. For clarity, we have now also mentioned the input number (ROIs/class) in every figure.

      Another issue is that the performance evaluation is calculated on a subset of the full cell population - after exclusion/filtering. Could there be a bias toward specific cell types in the exclusion criteria? How would it affect our ability to measure the cell type composition of the population?

      As explained in the M&M section, filtering was performed based on three criteria:

      (1) Nuclear size: values below a threshold of 160, objects are considered to represent debris;

      (2) DAPI intensity: values below a threshold of 500 represent segmentation errors;

      (3) IF staining intensity: gates were set onto the intensity of the fluorescent markers used with posthoc IF to only retain cells that are unequivocally positive for either marker and to avoid inclusion of double positive (or negative) cells in the ground truth training. 

      One could argue that the last criterion introduces a certain bias in that it does not consider part of the cell population. However, this is also not the purpose of our pioneering study that aims at identifying unique cell types for which ground truth is as pure and reliable as possible. Not filtering out these cells with a ‘dubious’ IF profile (e.g., cells that might be transitioning or are of a different type) would negatively affect the model by introducing noise. It is correct that the predictions are based only on these inputs and so cells of a subsequent test set will only be classified according to these labels. For example, in the neuronal differentiation experiment (Fig. 6G-H), cells are either characterized as NPC or as neurons, which leaves the transitioning (or undefined) cells in either category. Despite this simplification, the model adequately predicted the increase in neuron/NPC ratio with culture age. In future iterations, one could envision defining more refined cell (sub-)types in a population based on richer post-hoc information (e.g., through cyclic immunofluorescence or spatial single cell transcriptomics) or longitudinal follow-up of cell-state transitions using live imaging. This notion has been added to page 17 of the manuscript.

      I am not entirely convinced by the arguments regarding the superiority of the nucleocentric vs. the nuclear representations. Could it be that this improvement is due to not being sensitive/ influenced by nucleus segmentation errors?

      The reviewer has a valid point that segmentation errors may occur. However, the algorithm we have used (Stardist classifier), is very robust to nuclear segmentation errors. To verify the performance, we have now quantified segmentation errors in 20 images for 3 different densities and found a consistently low error rate (0.6 -1.6%) without correlation to the culture density. Moreover, these errors include partial imperfections (e.g., a missed protrusion or bleb) as well as over- (one nucleus detected as more) or under- (more nuclei detected as one) segmentations. The latter two will affect both the nuclear and nucleocentric predictions and should thus not affect the prediction performance. In the case of imperfect segmentations, there may be a specific impact on the nucleus-based predictions (which rely on blanking the non-nuclear part), but this alone cannot explain the significantly higher gain in accuracy for nucleocentric predictions (>5%). Therefore, we conclude that segmentation errors may contribute in part, but not exclusively, to the overall improved performance of nucleocentric input models. We have added this notion in the discussion (pages 14-15 and Suppl. Fig. 1E).

      GRADCAM shows cherry-picked examples and is not very convincing.

      To help convince the reviewer and illustrate the representativeness of selected images, we have now randomly selected for each condition and density 10 images (using random seeds to avoid cherrypicking) and added these in a Suppl. Fig. 3.

      There are many missing details in the figure panels, figure legend, and text that would help the reader to better appreciate some of the technical details, see details in the section on recommendations for the authors.

      Please see further for our specific adaptations.

      Reviewer #2 (Public Review):

      This study uses an AI-based image analysis approach to classify different cell types in cultures of different densities. The authors could demonstrate the superiority of the CNN strategy used with nucleocentric cell profiling approach for a variety of cell types classification. The paper is very clear and well-written. I just have a couple of minor suggestions and clarifications needed for the reader.

      The entire prediction model is based on image analysis. Could the authors discuss the minimal spatial resolution of images required to allow a good prediction? Along the same line, it would be interesting to the reader to know which metrics related to image quality (e.g. signal to noise ratio) allow a good accuracy of the prediction.

      Thank you for the positive and relevant feedback.

      The reviewer has a good point that it is important to portray the imaging conditions that are required for accurate predictions. To investigate this further we have performed additional experiments that give a better view on the operating window in terms of resolution and SNR (manuscript page 7-8 and new figure panels Fig. 3B-C). The initial image resolution was 0.325 µm/pixel. To understand the dependency on resolution we performed training and classifications for image data sets that were progressively binned. We found that a two-fold reduction in resolution did not significantly affect the F-score, but further degradation decreased the performance. At a resolution of 6,0 µm/pixel (20-fold binning), the F-score dropped to 0.79±0.02, comparable to the performance when only the DAPI (nuclear) channel was used as input. The effect of reduced image quality was assessed in a similar manner, by iteratively adding more Gaussian noise to the image. We found that above an SNR of 10 the prediction performance remains consistent but below it starts to degrade. While this exercise provides a first impression of the current confines of our method, we do believe it is plausible that its performance can be extended to even lower-quality images for example by using image restoration algorithms. We have added this notion in the discussion (page 14).

      The authors show that nucleocentric-based cell feature extraction is superior to feeding the CNN-based model for cell type prediction. Could they discuss what is the optimal size and shape of this ROI to ensure a good prediction? What if, for example, you increase or decrease the size of the ROI by a certain number of pixels?

      To identify the optimal input, we varied the size of the square region around the nuclear centroid from 0.6 to 150 µm for the whole dataset. Within the nuclear-to-cell window (12µm- 30µm) the average Fscore is limited, but an important observation is the increasing error and differences in precision and recall with increasing nucleocentric patch sizes, which will become detrimental in cases of class imbalance. The F-score is maximal for a box of 12-18µm surrounding the nuclear centroid. In this “sweet spot”, the precision and recall are also in balance. Therefore, we have selected this region for the actual density comparison experiment. We have added our results to the manuscript (page 9 and 15).

      It would be interesting for the reader to know the number of ROI used to feed each model and know the minimal amount of data necessary to reach a high level of accuracy in the predictions.

      The figures have now been adjusted so that the number of ROIs used as input to feed the model are listed. The minimal number of ROIs required to obtain high level accuracy is tested in Figure 2C. By systematically increasing the number of input ROIs for both RF and CNN, we found that a plateau is reached at 5000 input ROIs (per class) for optimal prediction performance. This is also documented in the results section page 6.

      From Figure 1 to Figure 4 the author shows that CNN based approach is efficient in distinguishing 1321N1 vs SH-SY5Y cell lines. The last two figures are dedicated to showing 2 different applications of the techniques: identification of different stages of neuronal differentiation (Figure 5) and different cell types (neurons, microglia, and astrocytes) in Figure 6. It would be interesting, for these 2 two cases as well, to assess the superiority of the CNN-based approach compared to the more classical Random Forest classification. This would reinforce the universal value of the method proposed.

      To meet the reviewer’s request, we have now also compared CNN to RF for the classification of cells in iPSC-derived models (Figures 6 and 7). As expected, the CNN performed better in both cases. We have now added these results in Fig. 6 D and 7 C and pages 12 and 13 of the manuscript.

      Reviewer #3 (Public Review):

      Induced pluripotent stem cells, or iPSCs, are cells that scientists can push to become new, more mature cell types like neurons. iPSCs have a high potential to transform how scientists study disease by combining precision medicine gene editing with processes known as high-content imaging and drug screening. However, there are many challenges that must be overcome to realize this overall goal. The authors of this paper solve one of these challenges: predicting cell types that might result from potentially inefficient and unpredictable differentiation protocols. These predictions can then help optimize protocols.

      The authors train advanced computational algorithms to predict single-cell types directly from microscopy images. The authors also test their approach in a variety of scenarios that one may encounter in the lab, including when cells divide quickly and crowd each other in a plate. Importantly, the authors suggest that providing their algorithms with just the right amount of information beyond the cells' nuclei is the best approach to overcome issues with cell crowding.

      The work provides many well-controlled experiments to support the authors' conclusions. However, there are two primary concerns: (1) The model may be relying too heavily on the background and thus technical artifacts (instead of the cells) for making CNN-based predictions, and (2) the conclusion that their nucleocentric approach (including a small area beyond the nucleus) is not well supported, and may just be better by random chance. If the authors were to address these two concerns (through additional experimentation), then the work may influence how the field performs cell profiling in the future.

      Thank you very much for confirming the potential value of our work and raising these relevant items. To better support our claims we have now performed additional validations, which we detail below. 

      (1) The model may be relying too heavily on the background and thus technical artifacts (instead of the cells) for making CNN-based predictions 

      To address the first point, we have adapted the GradCAM images to show an overlay of the input crop and GradCAM heatmap to give a better view of the structures that are highlighted by the CNN. We further investigated the influence of the background on the prediction performance. Our finding that a CNN trained on a monoculture retains a relatively high performance on cocultures implies that the CNN uses the salient characteristics of a cell to recognize it in more complex heterogeneous environments. Assuming that the background can vary between experiments, the prediction of a pretrained CNN on a new dataset indicates that cellular characteristics are used for robust prediction.  When inspecting GradCAM images obtained from the nucleocentric CNN approaches (now added in Suppl. Fig. 3), we noticed that the nuclear periphery typically contributed the most (but not exclusively) to the prediction performance. When using only the nuclear region as input, GradCAMs were more strongly (but again not exclusively) directed to the background surrounding the nuclei. To train the latter CNN, we had cropped nuclei and set the background to a value of zero. To rule out that this could have introduced a bias, we have now performed the exact same training and classification, but setting the background to random noise instead (Suppl. Fig. 2). While this effectively diverted the attention of the GradCAM output to the nucleus instead of the background, the prediction performance was unaltered. We therefore assume that irrespective of the background, when using nuclear crops as input, the CNN is dominated by features that describe nuclear size. We observe that nuclear size is significantly different in both cell types (although intranuclear features also still contribute) which is also reflected in the feature map gradient in the first UMAP dimension (Suppl. Fig. 2). This notion has been added to the manuscript (page 9) and Suppl. Fig. 2. 

      (2) The conclusion that their nucleocentric approach (including a small area beyond the nucleus) is not well supported, and may just be better by random chance. 

      To address this second concern, which was also raised by reviewer 2, we have performed a more extensive analysis in which the patch size was varied from 0.6 to 120µm around the nuclear centroid (Fig. 4E and page 9 of the manuscript). We observed that there is little effect of in- or decreasing patch size on the average F-score within the nuclear to cell window, but that the imbalance between the precision and recall increases towards the larger box sizes (>18µm). Under our experimental conditions, the input numbers per class were equal, but this will not be the case in situations where the ground truth is unknown (and needs to be predicted by the CNN). Therefore, a well-balanced CNN is of high importance. This notion has been added to page 15 of the manuscript.

      The main advantage of nucleocentric profiling over whole-cell profiling in dense cultures is that it relies on a more robust nuclear segmentation method and is less sensitive to differences in cell density (Suppl. Fig. 1D). In other words, in dense cultures, the segmentation mask will contain similar regional input as the nuclear mask and the nucleocentric crop will contain more perinuclear information which contributes to the prediction accuracy. Therefore, at high densities, the performance of the CNN on whole-cell crops decreases owing to poorer segmentation performance. A CNN that uses nucleocentric crops, will be less sensitive to these errors. This notion has been added to pages 14-15 of the manuscript. 

      Additionally, the impact of this work will be limited, given the authors do not provide a specific link to the public source code that they used to process and analyze their data.

      The source code is now available on the Github page of the DeVos lab, under the following URL: https://github.com/DeVosLab/Nucleocentric-Profiling

      Recommendations for the authors:  

      Reviewing Editor (Recommendations For The Authors):

      Evaluation summary

      The authors present a new application of the high-content image-based morphological profiling Cell Painting (CP) to single cell type classification in mixed heterogeneous induced pluripotent stem cellderived mixed neural cultures. Machine learning models were trained to classify single cell types according to either "engineered" features derived from the image or from the raw CP multiplexed image. The authors systematically evaluated experimental (e.g., cell density, cell types, fluorescent channels, replication biases) and computational (e.g., different models, different cell regions) parameters and argue that focusing on the nucleus and its surroundings contains sufficient information for robust and accurate cell type classification. Models that were trained on mono-cultures (i.e., containing a single cell type) could generalize for cell type prediction in mixed co-cultures, and describe intermediate states of the maturation process of iPSC-derived neural progenitors to differentiation neurons.

      Strengths:

      Automatically identifying single-cell types in heterogeneous mixed-cell populations is an important application and holds great promise. The simple and high-content assay democratizes use and enables adoption by other labs. The manuscript is supported by comprehensive experimental and computational validations. The manuscript is well-written and easy to follow.

      Weaknesses:

      The conclusion is that the nucleocentric approach (including a small area beyond the nucleus) is not well supported, and may just be better by random chance. If better supported by additional experiments, this may influence how the field performs cell profiling in the future. Model interpretability (GradCAM) analysis is not convincing. The lack of a public source code repository is also limiting the impact of this study. There are missing details in the figure panels, figure legend, and text that would help the reader to better appreciate some of the technical details.

      Essential revisions:

      To reach a "compelling" strength of evidence the authors are requested to either perform a comprehensive analysis of the effect of ROI size on performance, or tune down statements regarding the superior performance of their "nucleocentric" approach. Further addition of a public and reproducible source code GitHub repository will lead to an "exceptional" strength of evidence.

      To answer the main comment, we have performed an experiment in which we varied the size of the nucleocentric patch and quantified CNN performance. We have also evaluated the operational window of our method by varying the resolution and SNR and we have experimented with different background blanking methods. We have expanded our examples of GradCAM images and now also made our source code and an example data set available via GitHub.

      Reviewer #1 (Recommendations For The Authors):

      I think that an evaluation of how the excluded cells affect our ability to measure the cell type composition of the population would be helpful to better understand the limitations and practical measurement noise introduced by this approach. A similar evaluation of the excluded cells can also help to better understand the benefit of nucleocentric vs. cell representations by more convincingly demonstrating the case for the nucleocentric approach. In any case, I recommend discussing in more depth the arguments for using the nucleocentric representation and why it is superior to the nuclear representation.

      The benefits of nucleocentric representation over nuclear and whole-cell representation are discussed more in depth at pages 14-15 of the manuscript. 

      “The nucleocentric approach, which is based on more robust nuclear segmentation, minimizes such mistakes whilst still retaining input information from the structures directly surrounding the nucleus. At higher cell density, the whole-cell body segmentation becomes more error-prone, while also loosing morphological information (Suppl. Fig. 1D). The nucleocentric approach is more consistent as it relies on a more robust segmentation and does not blank the surrounding region. This way it also buffers for occasional nuclear segmentation errors (e.g., where blebs or parts of the nucleus are left undetected).”

      It is not entirely clear to me why Figure 5 moves back to "engineered" features after previous figures showed the superiority of the deep learning approach. Especially, where Figure 6 goes again to DL. Dimensionality reduction can be also applied to DL-based classifications (e.g., using the last layer).

      Following up on the reviewers’ interesting comment, we extracted the embeddings from the trained CNN and performed UMAP dimensionality reduction. The results are shown in Fig. 3D, 6F and supplementary figure 1B and added to the manuscript on pages 6, 8 and 12. 

      We concluded that unsupervised dimensionality reduction using the feature embeddings could separate cell type clusters, where the distance between the clusters reflected the morphological similarity between the cell lines. 

      I would recommend including more comprehensive GRADCAM panels in the SI to reduce the concern of cherry-picking examples. What is the interpretation of the nucleocentric area?

      A more extensive set of GradCAM images have now been included in supplementary material (Supplementary figure 3) using the same random seeds for all conditions, thus avoiding any cherry picking. We interpret the GradCAM maps on the nucleocentric crops as highlighting the structures surrounding the nucleus (reflecting ER, mitochondria, Golgi) indicating their importance in correct cell classification. This was added to the manuscript on pages 9 and 15.

      Missing/lacking details and suggestions in the figure panels and figure legend:

      - Scale bars missing in some of the images shown (e.g., Figure 2F, Figure 3D, Figure 4, Supplementary Figure 4), what are the "composite" channels (e.g., Figure 2F), missing x-label in Figure 3B. 

      These have now been added.

      - Terms that are not clear in the figure and not explained in the legend, such as FITC and cy3 energy (Figure 1C). 

      The figure has been adapted to better show the region, channel and feature. We have now added a Table (Table 5), detailing the definition of each morphological feature that is extracted. On page 27, information on feature extraction is noted.

      - Details that are missing or not sufficiently explained in the figure legends such as what each data point represents and what is Gini importance (Figure 1D) 

      We have added these explanations to the figure legends. The Gini importance or mean decrease in impurity reflects how often this feature is used in decision tree splits across all random forest trees.

      Is it the std shown in Figure 2C?

      Yes, this has now been added to the legend.  

      It is not fully clear what is single/mixed (Figure 2D)

      Clarification is added to the legend and in the manuscript on page 6.

      explain what is DIV 13-90 in the legend (Figure 5).

      DIV stands for days in vitro, here it refers to the days in culture since the start of the neural induction process. This has been added in the legend.

      and state what are img1-5 (Supplementary Figures 1B-C) Clarification has been added to the legend.

      - Supplementary Figure 1. What is the y-axis in panel C and how do the results align with the cell mask in panel B?

      The y-axis represents the intersection over union (IoU). The IoU quantifies the overlap between ground truth (manually segmented ROI) and the ROI detected by the segmentation algorithm. It is defined as the area of the overlapping region over the total area. This clarification has been added to the legend.

      - Supplementary Figure 1 and Methods. Please explain when CellPose and when StarDist were applied.

      Added to supplementary figure and methods at page 24. In the case of nuclear segmentation (nucleus and nucleocentric crops), Stardist was used. For whole-cell crops, cell segmentation using Cellpose was used.

      - Supplementary Figure 4C - the color code is different between nuclear and nucleocentric - this is confusing.

      We have changed to color code to correspond in both conditions in Fig. 1A.

      - Figure 3B - better to have a normalized measure in the x-axis (number of cells per area in um^2)

      We agree and have changed this.

      Suggestions and missing/lacking details in the text:

      • Line #38: "we then applied this" because it is the first time that this term is presented.

      This has been rephrased.

      • Line #88: a few words on what were the features extracted would be helpful.

      Short description added to page 26-27 and detailed definition of all features added in table 5.

      -  Line #91: PCA analysis - the authors can highlight what (known) features were important to PC1 using the linear transformation that defined it.

      The 5 most important features of PC1 were (in order of decreasing importance): channel 1 dissimilarity, channel 1 homogeneity, nuclear perimeter, channel 4 dissimilarity and nuclear area.  

      - Line #92: Order of referencing Supplementary Figure 4 before referencing Supplementary Figure 13.

      The order of the Supplementary images was changed to follow the chronology. 

      • Line #96: Can the authors show the data supporting this claim?

      The unsupervised UMAP shown in fig. 1B is either color coded by cell type (left) or replicate (right). Based on this feature map, we observe clustering along the UMAP1 axis to be associated with the cell type. Variations in cellular morphology associated with the biological replicate are more visible along the UMAP2 axis. When looking at fig. 1C, the feature map reflecting the cellular area shows a gradient along the UMAP1 direction, supporting the assumption that cell area contributes to the cell type separation. On the other hand, the average intensity (Channel 2 intensity) has a gradient within the feature map along the UMAP2 direction. This corresponds to the pattern associated with the inter-replicate variability in panel B.

      - Line #108: what is "nuclear Cy3 energy"?

      This represents the local change of pixel intensities within the ROI in the nucleus in the 3rd channel dimension. This parameter reflects the texture within the nuclear region for the phalloidin and WGA staining. The definitions of all handcrafted features are added in table 5 of the manuscript.

      - Line #110-112: Can the authors show the data supporting this claim?

      The figure has been changed to include the results from a filtered and unfiltered dataframe (exclusion and inclusion of redundant features). Features could be filtered out if the correlation was above a threshold of 0.95. This has been added to page 6 of the manuscript and fig. 1D.  

      - Line #115-116: please state the size of the mask.

      Added to the text (page 6). We used isotropic image crops of 60µm centred on individual cell centroids.

      - Lines 120-122: more details will make this more clear (single vs. mixed).

      This has been changed on page 6 of the manuscript.

      • Line #142: "(mimics)" - is it a typo?

      Tissue mimics refers to organoids/models that are meant to replicate the physiological behaviour.

      • Line #159: the bounding box for nucleocentric analysis is 15x15um (and not 60), as stated in the Methods.

      Thank you for pointing out this mistake. We have adapted this.

      - Line #165: what is the interpretation of what was important for the nucleocentric classification?

      The colour code in GradCAM images is indicative of the attention of the CNN (the more to the red, the more attention). In fig. 4D and Suppl. Fig. 3 the structures directly surrounding the nucleus receive high attention from the CNN trained on nucleocentric crops. This has been added to the manuscript page 9 and 15.

      • Section starting in line #172: not explicitly stated what model was used (nucleocentric?).

      Added in the legend of fig. 5. For these experiments, the full cell segmentation was still used. 

      - Section starting in line #199: why use a feature-based model rather than nucleocentric? A short sentence would be helpful.

      For CNN training, nucleocentric profiling was used. In response to a legitimate question of one of the reviewers, the feature-based UMAP analysis was replaced with the feature embeddings from the CNN. 

      - Line #213: Fig. 5B does not show transitioning cells.

      Thank you for pointing this out, this was a mistake and has been changed.

      Lines #218-220: not fully clear to some readers (culture condition as a weak label), more details can be helpful.

      We changed this at page 11 of the manuscript for clarity. 

      “This gating strategy resulted in a fractional abundance of neurons vs. total (neurons + NPC) of 36,4 % in the primed condition and 80,0% in the differentiated condition (Fig. 6C). We therefore refer to the culture condition as a weak label as it does not take into account the heterogeneity within each condition (well).”

      -  Line #230: "increasing dendritic outgrowth" - what does it mean? Can you explicitly highlight this phenotype in Figure 5G?

      When the cells become more mature during differentiation, the cell body becomes smaller and the neurons form long, thin ramifications. This explanation has been added to page 12 of the manuscript.

      • Line #243: is it the nucleocentric CNN?

      Yes.

      • Lines #304-313, the authors might want to discuss other papers dealing with continuous (non-neural) differentiation state transitions (eg PMID: 38238594).  

      A discussion of the use of morphological profiling for longitudinal follow-up of continuous differentiation states has been added to the manuscript at page 18. 

      - Line #444: cellpose or stardist? How did the authors use both?

      Clarification has been added to supplementary figure 1 and methods at page 24. Stardist was used for nuclear segmentation, whereas Cellpose was used for whole-cell segmentation. 

      • Line #470-474: I would appreciate seeing the performance on the full dataset without exclusions.

      Cells have been excluded based on 3 arguments: the absence of DAPI intensity, too small nuclear size and absence of ground truth staining. The first two arguments are based on the assumption that ROIs that contain no DAPI signal or are too small are errors in cell segmentation and therefore should not be taken along in the analysis. The third filtering step was based on the ground-truth IF signal. Not filtering out these cells with a ‘dubious’ IF profile (e.g., cells that might be transitioning or are of a different type) would negatively affect the model by introducing noise. It is correct that the predictions are based only on these inputs and so cells of a subsequent test set will only be classified according to these labels which might introduce bias. However, the model could predict increase in neuron/NPC ratio with culture age in absence of ground-truth staining (and thus IF-based filtering).

      Reviewer #2 (Recommendations For The Authors):

      Figure 1A: it would be interesting to the reader to see the SH-SY5Y data as well.

      This has been added in fig. 1A.

      Figure 3A: 95-100% image: showing images with the same magnification as the others would help to appreciate the cell density.

      Now fig. 4A. The figure has been changed to make sure all images have the same magnification. 

      Figure Supp 4 (line 132) is referred to before Figure Supp1 (line 152).

      The image order and numbering has been changed to solve this issue.

      Figure Supp 2 & 3 are not referred to in the text.

      This has been adjusted.

      Line 225: a statistical test would help to convince of the accuracy of these results (Figure 5C vs Figure 5F)?

      These figures represent the total ROI counts and thus represent a single number.

      Line 227: Could you explain to the reader, in a few words, what a dual SMAD inhibition is?

      This has been added to the manuscript at page 20. 

      “This dual blockade of SMAD signalling in iPSCs is induces neural differentiation by synergistically causing the loss of pluripotency and push towards neuroectodermal lineage.”

      Reviewer #3 (Recommendations For The Authors):

      I have a few concerns and several comments that, if addressed, may strengthen conclusions, and increase clarity of an already technically sound paper.

      Concerns

      • The results presented in Figure 3 panel D, may indicate a critical error in data processing and interpretation that the authors must address. The GradCAM method highlights the background as having the highest importance. While it can be argued in the nucleocentric profiling method that GradCAM focuses on the nuclear membrane, the background is highly important even for the nuclear profiling method, which should provide little information. What procedure did the authors use for mask subtraction prior to CNN training? Could the segmentation algorithm be performing differently between cell lines? The authors interpret the GradCAM results to indicate a proxy for nuclear size, but then why did the CNN perform so much better than random forest using hand-crafted features that include this variable? The authors should also present size distributions between cell lines (and across seeding densities, in case one of the cell lines has different compaction properties with increasing density).

      Perhaps clarifying this sentence (lines 166-168) would help as well: "As nuclear area dropped with culture density, the dynamic range decreased, which could explain the increased error rate of the CNN for high densities unrelated to segmentation errors (Suppl. Fig. 4B)." What do the authors mean by "dynamic range" and it is not clear how Supplementary Figure 4B provides evidence for this? 

      The dynamic range refers to the difference between the minimum and maximum nuclear area. We expect the difference to decrease at highe rdensity owing to the crowding that forces all nuclei to take on a more similar (smaller) size.

      More clarification on this has been added to page 9 of the manuscript.

      I certainly understand that extrapolating the GradCAM concern to the remaining single-cell images using only four (out of tens of thousands of options) is also dangerous, but so is "cherry-picking" these cells to visualize. Finally, I also recommend that the authors quantitatively diagnose the extent of the background influence according to GradCAM by systematically measuring background influence in all cells and displaying the results per cell line per density.

      To avoid cherry picking of GradCAM images, we have now randomly selected for each condition and density 10 images (using random seeds to avoid cherry-picking) and added these in a Suppl. Fig. 3.

      In answer to this concern, we refer to the response above: 

      “To address the first point, we have adapted the GradCAM images to show an overlay of the input crop and GradCAM heatmap to give a better view of the structures that are highlighted by the CNN. We further investigated the influence of the background on the prediction performance. Our finding that a CNN trained on a monoculture retains a relatively high performance on cocultures implies that the CNN uses the salient characteristics of a cell to recognize it in more complex heterogeneous environments. Assuming that the background can vary between experiments, the prediction of a pretrained CNN on a new dataset indicates that cellular characteristics are used for robust prediction.  When inspecting GradCAM images obtained from the nucleocentric CNN approaches (now added in Suppl. Fig. 3), we noticed that the nuclear periphery typically contributed the most (but not exclusively) to the prediction performance. When using only the nuclear region as input, GradCAMs were more strongly (but again not exclusively) directed to the background surrounding the nuclei. To train the latter CNN, we had cropped nuclei and set the background to a value of zero. To rule out that this could have introduced a bias, we have now performed the exact same training and classification, but setting the background to random noise instead (Suppl. Fig. 2). While this effectively diverted the attention of the GradCAM output to the nucleus instead of the background, the prediction performance was unaltered. We therefore assume that irrespective of the background, when using nuclear crops as input, the CNN is dominated by features that describe nuclear size. We observe that nuclear size is significantly different in both cell types (although intranuclear features also still contribute) which is also reflected in the feature map gradient in the first UMAP dimension (Suppl. Fig. 2). This notion has been added to the manuscript (page 9) and Suppl. Fig. 2.”

      • The data supporting the conclusion about nucleocentric profiling outperforming nuclear and full-cell profiling is minimal. I am picking on this conclusion in particular, because I think it is a super cool and elegant result that may change how folks approach issues stemming from cell density disproportionately impacting profiling. Figures 3B and 3C show nucleocentric slightly outperforming full cell, and the result is not significant. The authors state in lines 168-170: "Thus, we conclude that using the nucleocentric region as input for the CNN is a valuable strategy for accurate cell phenotype identification in dense cultures." This is somewhat of a weak conclusion, that, with additional analysis, could be strengthened and add high value to the community. Additionally, the authors describe the nucleocentric approach insufficiently. In the methods, the authors state (lines 501-503): "Cell crops (60μm whole cell - 15μm nucleocentric/nuclear area) were defined based on the segmentation mask for each ROI." This is not sufficient to reproduce the method. What software did the authors use?

      Presumably, 60μm refers to a box size around cytoplasm? Much more detail is needed. Additionally, I suggest an analysis to confirm the impact of nucleocentric profiling, which would strengthen the authors' conclusions. I recommend systematically varying the subtraction (-30μm, -20μm, -10μm, 5μm, 0, +5μm, +10μm, etc.) and reporting the density-based analysis in Figure 3B per subtraction. I would expect to see some nucleocentric "sweet spot" where performance spikes, especially in high culture density. If we don't see this difference, then the non-significant result presented in Figures 3B and C is likely due to random chance. The authors mention "iterative data erosion" in the abstract, which might refer to what I am recommending, but do not describe this later.

      More detail was added to the methods describing the image crops given as input to the CNN (page 28 of the manuscript). 

      “Crops were defined based on the segmentation mask for each ROI. The bounding box was cropped out of the original image with a fixed patch size (60µm for whole cells, 18µm for nucleus and nucleocentric crops) surrounding the centroid of the segmentation mask. For the whole cell and nuclear crops, all pixels outside of the segmentation mask were set to zero. This was not the case for the nucleocentric crops. Each ROI was cropped out of the original morphological image and associated with metadata corresponding to its ground truth label.”

      To address this concern, we also refer to the answer above. 

      “We have performed a more extensive analysis in which the patch size was varied from 0.6 to 120µm around the nuclear centroid (Fig. 4E and page 9 of the manuscript). We observed that there is little effect of in- or decreasing patch size on the average F-score within the nuclear to cell window, but that the imbalance between the precision and recall increases towards the larger box sizes (>18µm). Under our experimental conditions, the input numbers per class were equal, but this will not be the case in situations where the ground truth is unknown (and needs to be predicted by the CNN). Therefore, a well-balanced CNN is of high importance. This notion has been added to page 12 of the manuscript.

      The main advantage of nucleocentric profiling over whole-cell profiling in dense cultures is that it relies on a more robust nuclear segmentation method and is less sensitive to differences in cell density (Suppl. Fig. 1D). In other words, in dense cultures, the segmentation mask will contain similar regional input as the nuclear mask and the nucleocentric crop will contain more perinuclear information which contributes to the prediction accuracy. Therefore, at high densities, the performance of the CNN on whole-cell crops decreases owing to poorer segmentation performance. A CNN that uses nucleocentric crops, will be less sensitive to these errors. This notion has been added to pages 14-15 of the manuscript.“

      Comments

      • There is a disconnect between the abstract and the introduction. The abstract highlights the nucleocentric model, but then it is not discussed in the introduction, which focuses on quality control. The introduction would benefit from some additional description of the single-cell or whole-image approach to profiling.

      We highlight the importance of QC of complex iPSC-derived neural cultures as an application of morphological profiling. We used single-cell profiling to facilitate cell identification in these mixed cultures where the whole-image approach would be unable to deal with the heterogeneity withing the field of view. In the introduction, we added a description of the whole-image vs. single-cell approach to profiling (page 4). In the discussion (page 18), we further highlight the application of this single-cell profiling approach for QC purposes. 

      - Comments on Figure 1. It is unclear how panel B shows "without replicate bias". 

      In response to this comment, we refer to the answer above: “The unsupervised UMAP shown in fig. 1B is either color coded by cell type (left) or replicate (right). Based on this feature map, we observe clustering along the UMAP1 axis to be associated with the cell type. Variations in cellular morphology associated with the biological replicate are more visible along the UMAP2 axis. When looking at fig. 1C, the feature map reflecting the cellular area shows a gradient along the UMAP1 direction, supporting the assumption that cell area contributes to the cell type separation. On the other hand, the average intensity (Channel 2 intensity) has a gradient within the feature map along the UMAP2 direction. This corresponds to the pattern associated with the inter-replicate variability in panel B.” We added this notion to page 5 of the manuscript.

      The paper would benefit from a description of how features were extracted sooner.

      Information on the feature extraction was added to the manuscript at page 27. An additional table (table 5) has been added with the definition of each feature.  

      - Comments on Supplementary Figure 4. The clustering with PCA is only showing 2 dimensions, so it is not surprising UMAP shows more distinct clustering.

      We used two components for UMAP dimensionality reduction, so the data was also visualized in two dimensions. However, we agree that UMAP can show more distinct clustering as this method is non-linear.

      Why is Figure S4 the first referenced Supplementary Figure?

      This has been changed. 

      • Comments on Figure 2. Need discussion of the validation set - how was it determined? Panel E might have the answer I am looking for, but it is difficult to decipher exactly what is being done. The terminology needs to be defined somewhere, or maybe it is inconsistent. It is tough to tell. For example, what exactly are the two categories of model validation (cross-validation and independent testing)?

      Additional clarification has been added to the manuscript at pages 6-7 and figure 2.

      The metric being reported is accuracy for the independent replicate if the other two are used to train?

      Yes. 

      Panel C is a very cool analysis. Panel F needs a description of how those images were selected, randomly?

      Added in the methods section (page 29). GradCAM analysis was used to visualize the regions used by the CNN for classification. This map is specific to each cell. Images are selected randomly out the full dataset for visualization.  

      They also need scale bars.

      Added to the figures. 

      Panel G would benefit from explicit channel labels (at least a legend would be good!).

      Explanation has been added to the legend. All color code and channel numbering are consistent with fig. 1A. 

      What do the dots and boxplots represent? The legend says, "independent replicates", but independent replicates of, I assume, different model initializations?

      Clarification has been added to the figure legends. For plots showing the performance of a CNN or RF classifier, each dot represents a different model initialization. Each classifier has been initialized at least 3 times. When indicated, the model training was performed with different random seeds for data splitting.

      • Comments on Figure 3. Panel A needs scale bar. See comment on Panel D in concern #1 described above. 

      This has been added.

      • Comments on Supplementary Figure 1. A reader will need a more detailed description in panel C. I assume that the grey bar is the average of the points, and the points represent different single cells?

      How many cells? How were these cells selected? 

      This information on the figure (now Suppl. Fig. 1D), has been added to the legend.

      “Left: Representative images of 1321N1 cells with increasing density alongside their cell and nuclear mask produced using resp. Cellpose and Stardist. Images are numbered from 1-5 with increasing density. Upper right: The number of ROIs detected in comparison to the ground truth (manual segmentation). A ROI was considered undetected when the intersection over union (IoU) was below 0,15. Each bar refers to the image number on the left. The IoU quantifies the overlap between ground truth (manually segmented ROI) and the ROI detected by the segmentation algorithm. It is defined as the area of the overlapping region over the total area. IoU for increasing cell density for cell and nuclear masks is given in the bottom right. Each point represents an individual ROI. Each bar refers to the image number on the left.”

      • Comments on Figure 4. More details on quenching are needed for a general audience. The markers chosen (EdU and BrdU) are generally not specific to cell type but to biological processes (proliferation), so it is confusing how they are being used as cell-type markers. 

      The base analogues were incorporated into each cell line prior to mixing them, i.e.  when they were still growing in monoculture so they could be labelled and identified after co-seeding and morphological profiling. Additional clarification has been added to the manuscript (page 26) 

      It is also unclear why reducing CV is an important side-effect of finetuning. CV of what? The legend says, "model iterations", but what does this mean? 

      The dots in the violinplot are different CNN initializations. A lower variability between model initializations is an indicator of certainty of the results. Prior to finetuning, the results of the CNN were highly variable leading to a high CoV between the different CNNs. This means the outcome after finetuning is more robust.

      • Comments on Figure 5. This is a very convincing and well-described result, kudos! This provides another opportunity to again compare other approaches (not just nucleocentric). Additionally, since the UMAP space uses hand-crafted features. The authors could consider interpreting the specific morphology features impacted by the striking gradual shift to neuron population by fitting a series of linear models per individual feature. This might confirm (or discover) how exactly the cells are shifting morphology.

      The supervised UMAP on the handcrafted features did not highlight any features contributing to the separation. Using the supervised UMAP, the clustering is dominated by the known cell type. Unsupervised UMAP on the handcrafted features does not show any clustering. In response to a previous comment, we adapted the figure to show UMAP dimensionality reduction using the feature embeddings from the cell-based CNN. This unsupervised UMAP does show good cell type separation, but it does not use any directly interpretable shape descriptors.

      • General comments on Methods. The section on "ground truth alignment" needs more details. Why was this performed? 

      Following sequential staining and imaging rounds, multiple images were captured representing the same cell with different markers. Lifting the plate of the microscope stage and imaging in sequential rounds after several days results in small linear translations in the exact location of each image. These linear translations need to be corrected to align (or register) morphological with ground truth image data within the same ROI. This notion has been added to the manuscript at page 26. 

      Handcrafted features extracted using what software? 

      The complete analysis was performed in python. All packages used are listed in table 4. Handcrafted features were extracted using the scikit-image package (regionprops and GLCM functions). This has been added to the manuscript at page 27.

      Software should be cited more often throughout the manuscript. 

      Lastly, the GitHub URL points to the DeVosLab organization, but should point to a specific repository. Therefore, I was unable to review the provided code. A well-documented and reproducible analysis pipeline should be included.

      A test dataset and source code are available on GitHub:  https://github.com/DeVosLab/Nucleocentric-Profiling

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1:

      Comment 1. In Figure 1, the MafB antibody (Sigma) was used to identify Renshaw cells at P5. However, according to the supplementary Figure 3D, the specificity of the MafB antibody (Sigma) is relatively low. The image of MafB-GFP, V1-INs, and MafB-IR at P5 should be added to the supplementary figure. The specificity of MaFB-IR-Sigma in V1 neurons at P5 should be shown. This image also might support the description of the genetically labeled MafB-V1 distribution at P5 (page 8, lines 28-32). 

      We followed the reviewer’s suggestion and moved analyses of the MafB-GFP mouse to a supplemental figure (Fig S3). The characterization of MafB immunoreactivities is now in supplemental Figure S2 and the related text in results was also moved to supplemental to reduce technicalities in the main text. We added confocal images of MafB-GFP V1 interneurons at P5 showing immunoreactivities for both MafB antibodies, as suggested by the reviewer (Fig S2A,B). We agree with the reviewer that this strengthens our comparisons on the sensitivity and specificity of the two MafB antibodies used in this study. 

      As explained in the preliminary response we cannot show lack of immunoreactivity for MafB antibodies in MafB GFP/GFP knockout mice at P5 because MafB global KOs die at birth. This is why we used tissues from late embryos to check MafB immunoreactivities (Figure S2C and S2D). We made this point clearer in the text and supplemental figure legends.

      Comment 2. The proportion of genetically labeled FoxP2-V1 in all V1 is more than 60%, although immunolabeled FoxP2-V1 is approximately 30% at P5. Genetically labeled Otp-V1 included other nonFoxP2 V1 clades (Fig. 8L-M). I wonder whether genetically labeled FoxP2-V1 might include the other three clades. The authors should show whether genetically labeled FoxP2-V1 expresses other clade markers, such as pou6f2, sp8, and calbindin, at P5. 

      We included the requested data in Figure 3E-G. Lineage-labeled Foxp2-V1 neurons in our genetic intersection do not include cells from other V1-clades.

      Reviewer 2:

      Comment 1. The current version of the paper is VERY hard to read. It is often extremely difficult to "see the forest for the trees" and the reader is often drowned in methodological details that provide only minor additions to the scientific message. Non-specialists in developmental biology, but still interested in the spinal cord organization, especially students, might find this article challenging to digest and there is a high risk that they will be inclined to abandon reading it. The diversity of developmental stages studied (with possible mistakes between text and figures) adds a substantial complexity in the reading. It is also not clear at all why authors choose to focus on the Foxp2 V1 from page 9. Naively, the Pou6f2 might have been equally interesting. Finally, numerous discrepancies in the referencing of figures must also be fixed. I strongly recommend an in-depth streamlining and proofreading, and possibly moving some material to supplement (e.g. page 8, and elsewhere).

      The whole text was re-written and streamlined with most methodological discussion (including the section referred to by the reviewer) transferred to supplemental data. Nevertheless, enough details on samples, stats and methods were retained to maintain the rigor of the manuscript. 

      The reasons justifying a focus on Foxp2-V1 interneurons were fully explained in our preliminary response. Briefly, we are trying to elucidate V1 heterogeneity, and prior data showed that this is the most heterogeneous V1 clade (Bikoff et al., 2016), so it makes sense it was studied further. We agree that the Pou6f2 clade is equally interesting and is in fact the subject of several ongoing studies.

      Comment 2. … although the different V1 populations have been investigated in detail regarding their development and positioning, their functional ambition is not directly investigated through gain or loss of function experiments. For the Foxp2-V1, the developmental and anatomical mapping is complemented by a connectivity mapping (Fig 6s, 8), but the latter is fairly superficial compared to the former. Synapses (Fig 6) are counted on a relatively small number of motoneurons per animal, that may, or may not, be representative of the population. Likewise, putative synaptic inputs are only counted on neuronal somata. Motoneurons that lack of axo-somatic contacts may still be contacted distally. Hence, while this data is still suggestive of differences between V1 pools, it is only little predictive of function.

      We fully answered the question on functional studies in the preliminary response. Briefly, we are currently conducting these studies using various mouse models that include chronic synaptic silencing using tetanus toxin, acute partial silencing using DREADDs, and acute cell deletion using diphtheria toxin. Each intervention reveals different features of Foxp2-V1 interneuron functions, and each model requires independent validation. Moreover, these studies are being carried out at three developmental stages: embryos, early postnatal period of locomotor maturation and mature animals. Obviously, this is all beyond the goals and scope of the present study. The present study is however the basis for better informed interpretations of results obtained in functional studies.

      Regarding the question on synapse counts, we explained in the preliminary results fully why we believe our experimental designs for synapse counting at the confocal level are among the most thorough that can be found in the literature. We counted a very large number of motoneurons per animal when adding all motor column and segments analyzed in each animal. Statistical power was also enough to detect fundamental variation in synaptic density among motor columns.

      We focus our analyses on motoneuron cells bodies because analysis of full dendritic arbors on all motor columns present throughout all lumbosacral segments is not feasible. Please see Rotterman et al., 2014 (J. of Neuroscience; doi: 10.1523/JNEUROSCI.4768-13.2014) for evaluation of what this entails for a single motoneuron. We agree with the reviewer that analyses of V1 synapses over full dendrite arbors in specific motoneurons will be very relevant in further studies. These should be carried out now that we know which motor columns are of high interest. Nevertheless, inhibitory synapses exert the most efficient modulation of neuronal firing when they are on cell bodies, and our analyses clearly suggest a difference in in cell body inhibitory synapses targeting between different V1 interneuron types that we find very relevant.

      Comment 3. I suggest taking with caution the rabies labelling (Figure 8). It is known that this type of Rabies vectors, when delivered from the periphery, might also label sensory afferents and their postsynaptic targets in the cord through anterograde transport and transneuronal spread (e.g., Pimpinella et al., 2022). Yet I am not sure authors have made all controls to exclude that labelled neurons, presumed here to be premotoneurons, could rather be anterogradely labelled from sensory afferents. 

      Over the years, we performed many extensive controls and validation of rabies virus transsynaptic tracing methods. These were presented at two SfN meetings (Gomez-Perez et al., 2015 and 2016; Program Nos. 242.08 and 366.06). Our validation of this technique was fully explained in our preliminary response. We also pointed out that the methods used by Pimpinella et al. have a very different design and therefore their results are not comparable to ours. In this study we injected the virus at P15 into leg muscles, and not directly into the spinal cord. In our hands, and as cited in Pimpinella et al., the rabies virus loses tropism for primary afferents with age when injected in muscle. The lack of primary afferent labeling in key lumbosacral segments (L4 and L5) is now illustrated in a new supplemental figure (Figure S6). This figure also shows some starter motoneurons. As explained in the text and in our previous response, these are few in number because of the reduced infection rate when using this method in mature animals (after P10).  

      Comment 4. The ambition to differentiate neuronal birthdate at a half-day resolution (e.g., E10 vs E10.5) is interesting but must be considered with caution. As the author explains in their methods, animals are caged at 7pm, and the plug is checked the next morning at 7 am. There is hence a potential error of 12h. 

      We agree with the reviewer, and we previously explicitly discussed these temporal resolution caveats. We have now further expanded on this in new text (see middle paragraph in page 5). Nevertheless, the method did reveal the temporal sequence of neurogenesis of V1 clades with close to 12-hour resolution.

      As explained in text and preliminary response this is because we analyzed a sufficient number of animals from enough litters and utilized very stringent criteria to count EdU positives. 

      Moreover, our results fit very well with current literature. The data agree with previous conclusions from Andreas Sagner group (Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg), on spinal interneurons (including V1s) birthdates based on a different methodology (Delile J et al.

      Development. 2019 146(12):dev173807. doi: 10.1242/dev.173807. PMID: 30846445; PMCID: PMC6602353). In the discussion we compared in detail both the data and methods between Delile article and our results. We also cite Sagner 2024 review as requested later in the reviewer’s detailed comments. Our results also confirmed our previous report on the birthdates of V1-derived Renshaw cells and Ia inhibitory interneurons (Benito-Gonzalez A, Alvarez FJ J Neurosci. 2012 32(4):1156-70. doi: 10.1523/JNEUROSCI.3630-12.2012. PMID: 22279202; PMCID: PMC3276112). Finally, we recently received a communication notifying us that our neurogenesis sequence of V1s has been replicated in a different vertebrate species by Lora Sweeney’s group (Institute of Science and Technology Austria; direct email from this lab) and we shared our data with them for comparison. This manuscript is currently close to submission. Therefore, we are confident that despite the limitations of EdU birthdating we discussed, the conclusions we offered are strong and are being validated by other groups using different methods and species. We also want to acknowledge the positive comments of reviewer 3 regarding our birthdating study, indicating it is one the most rigorous he or she has ever seen.

      Reviewer 3:

      Comment 1. My only criticism is that some of the main messages of the paper are buried in technical details. Better separation of the main conclusions of the paper, which should be kept in the main figures and text, and technical details/experimental nuances, which are essential but should be moved to the supplement, is critical. This will also correct the other issue with the text at present, which is that it is too long.

      Similar to our response to comment 1 from Reviewer 2 we followed the reviewers’ recommendations and greatly summarized, simplified and removed technical details from the main text, trying not to decrease rigor.  

      Reviewer #1 (Recommendations For The Authors):

      In Figure 1, the definition of the area to analyze MafB ventral and MafB dorsal is unclear. It should be described.

      This has been clarified in both text and supplemental figure S3.

      “We focused the analyses on the brighter dorsal and ventral MafB-V1 populations defined by boxes of 100 µm dorsoventral width at the level of the central canal (dorsal) or the ventral edge of the gray matter (ventral) (Supplemental Figure S3B).”

      Problems with figure citation.

      We apologize for the mistakes. All have been corrected. 

      Reviewer #2 (Recommendations For The Authors):

      As indicated in the public review, I'd recommend to substantially revise the writing, for clarity. As such, the paper is extremely hard to read. I would also recommend justifying the focus on Foxp2 neurons.

      Also, the scope of the present paper is not clearly stated in the introduction (page 4).

      Done. We also modified the introduction such that the exact goals are more clearly stated.

      I would also recommend toning down the interpretation that V1 clades constitute "unique functional subsets" (discussion and elsewhere). Functional investigation is not performed, and connectomic data is partial and only very suggestive.

      We include the following sentence at the end of the 1st paragraph in the discussion:

      “This result strengthens the conclusion that these V1 clades defined by their genetic make-up might represent distinct functional subtypes, although further validation is necessary in more functionally focused studies.”

      Different post-natal stages are used for different sections of the manuscript. This is often confusing, please justify each stage. From the beginning even, why is the initial birthdating (Figure 1) done here at p5, while the previous characterization of clades was done at p0? I am not sure to understand the justification that this was chosen "to preserve expression of V1 defining TFs". Isn't the sooner the better?

      The birthdating study was carried out at P5. P5 is a good time point because there is little variation in TF expression compared to P0, as demonstrated in the results. Furthermore, later tissue harvesting allows higher replicability since it is difficult to consistently harvest tissue the day a litter is born (P0). Also technically, it is easier to handle P5 tissue compared to P0. The analysis of VGUT1 synapses was also done at P5 rather than later ages. This has two advantages: TFs immunoreactivities are preserved at this age, and also corticospinal projections have not yet reached the lumbar cord reducing interpretation caveats on the origins of VGUT1 synapses in the ventral horn (although VGLUT1 synapses are still maturing at this age, see below).

      Other parts of the study focus on different ages selected to be most adequate for each purpose. To best study synaptic connectivity, it is best to study mature spinal cords after synaptic plasticity of the first week. For the tracing study we thoroughly explain in the text the reasons for the experimental design (see also below in detailed comments). For counting Foxp2-V1 interneurons and comparing them to motor columns we analyze mature animals. For testing our lineage labeling we use animals of all ages to confirm the consistency of the genetic targeting strategy throughout postnatal development and into adulthood.

      Figure 5: wouldn't it be worth quantifying and illustrating cellular densities, in addition to the average number of Foxp2 neurons, across lumbar segments (panel D & E)? Indeed, the size of - and hence total number of cells within - each lumbar segment might not be the same, with a significant "enlargement" from L2 to L4 (this is actually visible on the transverse sections). Hence, if the total number of cells is in the higher in these enlarged segments, but the total number of Foxp2-V1 is not, it may mean that this class is proportionally less abundant.

      We believe the critical parameter is the ratio of Foxp2-V1s to motoneurons. This informs how Foxp2-V1 interneurons vary according to the size of the motor columns and the number of motoneurons overall.

      The question asked by the reviewer would best be answered by estimating the proportion of Foxp2-V1 neurons to all NeuN labeled interneurons. This is because interneuron density in the spinal cord varies in different segments. We are not sure what this additional analysis will contribute to the paper.

      Why, in the Rabies tracing scheme (Fig 8), the Rabies injection is performed at p15? As the authors explain in the text, rabies uptake at the neuromuscular junction is weak after p10. It is not clear to me why such experiments weren't done all at early postnatal stages, with a "classical" co-injection of TVA and Rabies.

      First, we do not need TVA in this experiment because we are using B19-G coated virus and injecting it into muscles, not into the spinal cord directly.

      Second, enhanced tracing occurs when the AAV is injected a few days before rabies virus. This is because AAV transgene expression is delayed with respect to rabies virus infection and replication. We have performed full time courses and presented these data in one abstract to SfN: Gomez-Perez et al., 2015 Program Nos. 242. We believe full description of these technical details is beyond the scope of this manuscript that has already been considered too technical.

      Third, the justification of P15 timing of injections for anterograde primary afferent labeling and retrograde monosynaptic labeling of interneurons is fully explained in the text. 

      “To obtain transcomplementation of RVDG-mCherry with glycoprotein in LG motoneurons, we first injected the LG muscle with an AAV1 expressing B19-G at P4. We then performed RVDG and CTB injections at P15 to optimize muscle targeting and avoid cross-contamination of nearby muscles. Muscle specificity was confirmed post-hoc by dissection of all muscles below the knee. Analyses were done at P22, a timepoint after developmental critical windows through which Ia (VGLUT1+) synaptic numbers increase and mature on V1-IaINs (Siembab et al., 2010)” 

      Furthermore, CTB starts to decrease in intensity 7 days after injection because intracellular degradation and rabies virus labeling disappears because cell death. Both limit the time of postinjection for analyses.

      Likewise, I am surprised not to see a single motoneuron in the rabies tracing (Fig 8, neither on histology nor on graphs (Fig 8). How can authors be certain that there was indeed rabies uptake from the muscle at this age, and that all labelled cells, presumed to be preMN, are not actually sensory neurons? It is known that Rabies vectors, when delivered from the periphery, might also label sensory afferents and their post-synaptic targets through anterograde transport and transneuronal spread (e.g., Pimpinella et al., 2022). This potential bias must be considered.

      This is fully explained in our previous response to the second reviewer’s general comments. We have also added a confocal image showing starter motoneurons as requested (Figure S6A).

      Please carefully inspect the references to figures and figure panels, which I suspect are not always correct.

      Thank you. We carefully revised the manuscript to correct these deficiencies and we apologize for them.

      Reviewer #3 (Recommendations For The Authors):

      Figure 1: Data here is absolutely beautiful and provides one of the most thorough studies, in terms of timepoints, number of animals analyzed, and precision of analysis, of edU-based birth timing that has been published for neuron subtypes in the spinal cord so far. My only suggestion is to color code the early and late born populations (in for example, different shades of green for early; and blue for late, to better emphasize the differences between them). It is very difficult to differentiate between the purple, red and black colors in G-I, which this would also fix. The antibody staining for Pou6f2 (F) is also difficult to see; gain could be increased on these images or insets added for clarity.

      The choice of colors is adapted for optimal visualization by people with different degrees of color blindness. Shades of individual colors are always more difficult to discriminate. This is personally verified by the senior corresponding author of this paper who has some color discrimination deficits. Moreover, each line has a different symbol for the same purpose of easing differentiation.

      Figure 2: This is also a picture-perfect figure showing further diversity by birth time even within a clade. One small aesthetic comment is that the arrows are quite unclear and block the data. Perhaps the contours themselves could be subdivided by region and color coded by birth time-such that for example the dorsal contours that emerge in the MafB clade at E11 are highlighted in their own color. Some quantification of the shift in distribution as well as the relative number of neurons within each spatially localized group would also be useful. For MafB, for example, it looks as though the ventral cells (likely Renshaw) are generated at all times in the contour plots; in the dot plots however, it looks like the most ventral cells are present at e10.5. This is likely because the contours are measuring fractional representations, not absolute number. An independent measure of absolute number of ventral and dorsal, by for example, subdividing the spinal cord into dorsoventral bins, would be very useful to address this ambiguity.

      We believe density plots already convey the message of the shift in positions with birthdate. We are not sure how we can quantify this more accurately than showing the differences in cellular density plots. We used dorsoventral and mediolateral binning in our first paper decades ago (Avarez et al., 2005). This has now been replaced by more rigorous density profiles that describe better cell distributions. Unfortunately, to obtain the most accurate density profiles we need to pool all cells from all animals precluding statistical comparisons. This is because for some groups there have very few cells per animal (for example early born Sp8 or Foxp2 cells).

      Figure 3 and Figure 4: These, and all figures that compare the lineage trace and antibody staining, should be moved to the supplement in my opinion-as they are not for generalist readers but rather specialists that are interested in these exact tools. In addition, the majority of the text that relates to these figures should be transferred to the supplement as well. Figure 5: Another great figure that sets the stage for the analysis of FoxP2V1-to-MN synaptic connectivity, and provides basic information about the rostrocaudal distribution of this clade, by analyzing settling position by level. I have only minor comments. The grid in B obscures the view of the cells and should be removed. The motor neuron cell bodies in C would be better visible if they were red.

      We moved some of the images to supplemental (see new supplemental Fig S4). However, we also added new data to the figure as requested by reviewers (Fig 3E-G). We preserved our analyses of Foxp2 and non-Foxp2 V1s across ages and spinal segments because we think this information is critical to the paper. Finally, we want to prevent misleading readers into believing that Foxp2 is a marker that is unique to V1s. Therefore, we also preserved Figures 3H to 3J showing the non-V1 Foxp2 population in the ventral horn. 

      Figure 6: Very careful and quantitative analysis of V1 synaptic input to motor neurons is presented here.  For the reader, a summary figure (similar to B but with V1s too) that schematizes V1 FoxP2 versus Renshaw cell connectivity with LMC, MMC, and PGC motor neurons are one level would be useful.

      Thanks for the suggestion. A summary figure has now been included (Figure 5G). 

      Figure 7: The goal of this figure is to highlight intra-clade diversity at the level of transcription factor expression (or maintenance of expression), birth timing and cell body position culminating in the clear and concise diagram presented in G. In panels A-F however, it takes extra effort to link the data shown to these I-IV subtypes. The figure should be restructured to better highlight these links. One option might be to separate the figure into four parts (one for each type): with the individual spatial, birth timing and TF data for each population extracted and presented in each individual part.

      We agree with the reviewer that this is a very busy figure. We tried to re-structure the figure following the suggestions of the reviewer and also several alternative options. All resulted in designs that were more difficult to follow than the original figure. We apologize for its complexity, but we believe this is the best organization to describe all the data in the simplest form.

      Figure 8: in A-D, the main point of the figure - that V1FoxP2Otp preferentially receive proprioceptive synapses is buried in a bunch of technical details. To make it easier for the reader, please:

      (1) add a summary as in B of the %FoxP2-V1 Otp+ cells (82%) with Vglut1 synapses to make the point stronger that the majority of these cells have synapses.

      We added this graph by extending the previous graph to include lineage labeled Foxp2-V1s with OTP or Foxp2 immunoreactivity. It is now Figure 7B.

      (2) Additionally, add a representative example that shows large numbers of proximal synapses on an FoxP2-V1 Otp+.

      The image we presented before as Figure 8A was already immunostained for OTP, so we just added the OTP channel to the images. Now all this information is in panels that are subparts of Figure 7A.

      (3) Move the comparison between FoxP2-V1 and FoxP2AB+V1s to the supplement.

      We preserved the quantitative data on Foxp2-V1 lineage cells with Foxp2-immunoreactivity but made this a standalone figure, so it is not as busy.

      (4) Move J-M description of antibody versus lineage trace of Otp to supplement as ending with this confuses the main message of the paper (see comment above).

      All results for the Otp-V1 mouse model have now been placed in a supplemental figure (Figure 5S).

      Discussion: A more nuanced and detailed discussion of how the temporal pattern of subtype generation presented here aligns with the established temporal transcription factor code (nicely summarized in Sagner 2024) would be helpful to place their work in the broader context of the field.

      This aspect of the discussion was expanded on pages 20 and 21. We replaced the earlier cited review (Sagner and Briscoe, 2019, Development) with the updated Sagner 2024 review and further discussed the data in the context of the field and neurogenesis waves throughout the neural tube, not only the spinal cord. We previously carefully compared our data with the spinal cord data from Sagner’s group (Delile et, 2019, Development). We have now further expanded this comparison in the discussion.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The study characterized the cellular and molecular mechanisms of spike timing-dependent long-term depression (t-LTD) at the synapses between excitatory afferents from lateral (LPP) and medial (MPP) perforant pathways to granule cells (GC) of the dentate gyrus (DG) in mice.

      Strengths:

      The electrophysiological experiments are thorough. The experiments are systematically reported and support the conclusions drawn.

      This study extends current knowledge by elucidating additional plasticity mechanisms at PP-GC synapses, complementing existing literature.

      We thank the reviewer for the positive assessment of our work and the constructive suggestions to improve the manuscript.

      Weaknesses:

      To more conclusively define the pivotal role of astrocytes in modulating t-LTD at MPP and LPP GC synapses through SNARE protein-dependent glutamate release, as posited in this study, the authors could adopt additional methods, such as alternative mouse models designed to regulate SNARE-dependent exocytosis, as well as optogenetic or chemogenetic strategies for precise astrocyte manipulation during t-LTD induction. This would provide more direct evidence of the influence of astrocytic activity on synaptic plasticity.

      We thank the reviewer for the suggestion. As stated in the manuscript and in figure 4, we already used two different approaches (aBAPTA to interfere with astrocyte calcium signalling and dnSNARE mice (that have vesicular release impaired) to determine the involvement of astrocytes in the discovered forms of LTD, and both approaches clearly indicated the requirement of astrocytes for t-LTD. In BAPTA-treated astrocytes and in dnSNARE mice, t-LTD was prevented. Notwithstanding this, and as suggested by the reviewer, we used two additional approaches to confirm astrocyte participation. We loaded astrocytes with the light chain of the tetanus toxin (TeTxLC), which is known to block exocytosis by cleaving the vesicle-associated membrane protein, an important part of the SNARE complex (Schiavo et al., 1992, Nature 359, 832-835). In this experimental condition, we observed a clear lack of t-LTD at both (lateral and medial) pathways, thus confirming the requirement of astrocytes and the SNARE complex and vesicular release for both types of t-LTD. In addition, to gain more insight into the fact that glutamate is released by astrocytes, we blocked glutamate release from astrocytes by loading the astrocytes with Evans blue, known to interfere with glutamate uptake into vesicles as it inhibits the vesicular glutamate transporter (VGLUT). In this experimental condition, again t-LTD was prevented, indicating that t-LTD requires Ca2+dependent exocytosis of glutamate from astrocytes.

      Reviewer #2 (Public Review):

      Summary:

      This work reports the existence of spike timing-dependent long-term depression (t-LTD) of excitatory synaptic strength at two synapses of the dentate gyrus granule cell, which are differently connected to the entorhinal cortex via either the lateral or medial perforant pathways (LPP or MPP, respectively). Using patch-clamp electrophysiological recording of tLTD in combination with either pharmacology or a genetically modified mouse model, they provide information on the differences in the molecular mechanism underlying this t-LTD at the two synapses.

      Strengths:

      The two synapses analyzed in this study have been understudied. This new data thus provides interesting new information on a plasticity process at these synapses, and the authors demonstrate subtle differences in the underlying molecular mechanisms at play. Experiments are in general well controlled and provide robust data that are properly interpreted.

      We thank the reviewer for the positive assessment of our work and the constructive suggestions to improve the manuscript.

      Weaknesses:

      • Caution should be taken in the interpretation of the results to extrapolate to adult brain as the data were obtained in P13-21 days old mice, a period during which synapses are still maturing and highly plastic.

      We thank the reviewer for noticing this. In fact, our experiments were intentionally performed in young animals (P13-21), just knowing that this is a critical period of plasticity. We indicate that in the methods, results, and discussion (where we discuss that in some detail) sections.

      • In experiments where the drug FK506 or thapsigargin are loaded intracellularly, the concentrations used are as high as for extracellular application. Could there be an error of interpretation when stating that the targeted actors are necessarily in the post-synaptic neuron? Is it not possible for the drug to diffuse out of the cell as it is evident that it can enter the cell when applied extracellularly?

      We thank the reviewer for rising this point. While it would be possible that these compounds cross the cell membranes, to do it and to pass to other cells, this would, in principle, require a relatively long time to occur. Additionally, to have any effect, the same concentration or a relatively high concentration of that we put into the pipette has to reach other cells. Furthermore, even if a compound is able to cross a cell membrane during the duration of an experiment, after this, it may be exposed to the extracellular fluid where will be diluted and most probably washed out. For all these reasons, we do not see this very plausible. Notwithstanding this, and as suggested, we have repeated the experiments using lower concentrations of thapsigargin (1 uM) and FK506 (1 uM), and have obtained the same results. These data are now included in the figure 3 and in the text.

      • The experiments implicating glutamate release from astrocytes in t-LTD would require additional controls to better support the conclusions made by the authors. As the data stand, it is not clear, how the authors identified astrocytes to load BAPTA and if dnSNARE expression in astrocytes does not indirectly perturb glutamate release in neurons.

      We thank the reviewer for rising this point. We now indicate how astrocytes have been identified to load BAPTA. We reply to this in detail in the “Recommendations for the authors” from reviewer 2.

      Significance:

      While this is the first report of t-LTD at these synapses, this plasticity process has been mechanistically well investigated at other synapses in the hippocampus and in the cortex. Nevertheless, this new data suggests that mechanistic differences in the induction of t-LTD at these two DG synapses could contribute to the differences in the physiological influence of the LPP and MPP pathways.

      Reviewer #3 (Public Review):

      Coatl et al. investigated the mechanisms of synaptic plasticity of two important hippocampal synapses, the excitatory afferents from lateral and medial perforant pathways (LPP and MPP, respectively) of the entorhinal cortex (EC) connecting to granule cells of the hippocampal dentate gyrus (DG). They find that these two different EC-DG synaptic connections in mice show a presynaptically expressed form of long-term depression (LTD) requiring postsynaptic calcium, eCB synthesis, CB1R activation, astrocyte activity, and metabotropic glutamate receptor activation. Interestingly, LTD at MPP-GC synapses requires ionotropic NMDAR activation whereas LTD at LPP-GC synapse is NMDAR independent. Thus, they discovered two novel forms of t-LTD that require astrocytes at EC-GC synapses. Although plasticity of EC-DG granule cell (GC) synapses has been studied using classical protocols, These are the first analysis of the synaptic plasticity induced by spike timing dependent protocols at these synapses. Interestingly, the data also indicate that t-LTD at each type of synapse require different group I mGluRs, with LPP-GC synapses dependent on mGluR5 and MPP-GC t-LTD requiring mGluR1.

      The authors performed a detailed analysis of the coefficient of variation of the EPSP slopes, miniature responses and different approaches (failure rate, PPRs, CV, and mEPSP frequency and amplitude analysis) they demonstrate a decrease in the probability of neurotransmitter release and a presynaptic locus for these two forms of LTD at both types of synapses. By using elegant electrophysiological experiments and taking advantage of the conditional dominant-negative (dn) SNARE mice in which doxycycline administration blocks exocytosis and impairs vesicle release by astrocytes, they demonstrate that both LTD forms require the release of gliotransmitters from astrocytes. These data add in an interesting way to the ongoing discussion on whether LTD induced by STDP participates in refining synapses potentially weakening excitatory synapses under the control of different astrocytic networks. The conclusions of this paper are mostly well supported by data, but some aspects the results must be clarified and extended.

      We thank the reviewer for the positive assessment of our work and the constructive suggestions to improve the manuscript.

      (1) It should be clarified whether present results are obtained with or without the functional inhibitory synapse activation. It is not clear if GABAergic synapses are blocked or not. If GABAergic synapses are not blocked authors must discuss whether the LTD of the EPSPs is due to a decrease in glutamatergic receptor activation or an increase in GABAergic receptor activation. Moreover, it should be recommended to analyze not only the EPSPs but also the EPSCs to address whether the decrease in synaptic transmission is caused by a decrease in the input resistance or by a decrease in the space constant (lambda).

      We thank the reviewer for rising these points. GABAergic inhibition was not blocked in our experiments. The observed forms of t-LTD seem to be due to a decrease in glutamate release probability as indicated in the manuscript, mediated by the mechanism we uncover and describe here. To determine and clarify whether GABA receptors have any role in these forms of t-LTD, we repeated the experiments in the presence of the GABAA and GABAB receptors antagonists bicuculline and SCH50911, respectively. Blocking GABA receptors do not prevent or affect t-LTD at LPP- or MPP-GC synapses, that is still present and with a similar magnitude that controls. These results indicating that these receptors are not involved in these forms of t-LTD. These results are now included in the text in the results section (page 8) and as a new figure S1. In our experiments, no changes in input resistance or space constant were observed, and importantly, no changes were observed in the amplitude/slopes of EPSP in the control pathway that does not undergo plasticity protocol that we routinely use in our experiments.

      (2) Authors show that Thapsigargin loaded in the postsynaptic neuron prevents the induction of LTD at both synapses. Analyzing the effects of blocking postsynaptic IP3Rs (Heparin in the patch pipette) and Ryanodine receptors (Ruthenium red in the patch pipette) is recommended for a deeper analysis of the mechanism implicated in the induction of this novel forms of LTD in the hippocampus.

      We thank the reviewer for this suggestion. We repeated the experiments loading the postsynaptic cell with heparin and ruthenium red using the path pipette. In these experimental conditions, we observed that t-LTD was not affected by the heparin treatment (discharging a role of IP3Rs), but that it was prevented by the ruthenium red treatment (indicating the requirement of ryanodine receptors). We include now this data in the text (page 12) and in the Figure 3a, b, e, f.

      (3) Authors nicely demonstrate that CB1R activation is required in these forms of LTD by blocking CB1Rs with AM251, however an interesting unanswered question is whether CB1R activation is sufficient to induce this synaptic plasticity. This reviewer suggests studying whether applying puffs of the CB1R agonist, WIN 55,212-2, could induce these forms of LTD.

      We thank the reviewer for this suggestion. We repeated the experiments adding WIN55, 212-2 as suggested.  The activation of CB1R by puffs of the agonist WIN 55, 212-2 to the astrocyte, directly induced LTD at both LPP- and MPP-GC synapses. We include now this data in the text (page 14) and in the Figure 3c, d, g, h.

      (4) Finally, adding a last figure with a cartoon summarizing the proposed model of action in these novel forms of LTD would add a positive value and would help the reading of the manuscript, especially in those aspects related with the discussion of the results.

      We thank the reviewer for the suggestion. We include now a figure showing the proposed mechanisms (Figure 5).

      The extension of these results would improve the manuscript, which provides interesting results showing two novel forms of presynaptic t-LTD in the brain synapses with different action mechanisms probably implicated in the different aspects of information processing.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      There are just a few aspects that could be clarified to bolster the authors' conclusions.

      The author centered the conclusion of their study on the role of astrocytic activity in regulating these two forms of plasticity (see title). To strengthen the evidence that astrocytes are key regulators of t-LTD at MPP and LPP GC synapses by regulating SNARE protein-dependent glutamate release, additional complementary approaches should be considered, such as other mouse models enabling the control of SNARE-dependent exocytosis and/or optogenetic/chemogenetic tools to selectively manipulate astrocytes during the induction of t-LTD, thereby directly assessing the impact of astrocytic activity on synaptic plasticity. Implementing calcium imaging or glutamate sensors to visualize the dynamics of astrocytic calcium signaling and glutamate release during t-LTD could be also considered.

      We thank the reviewer for the suggestion. As stated in the manuscript and in figure 4, we already used two different approaches (aBAPTA to interfere with astrocyte calcium signalling and dnSNARE mice (that have vesicular release impaired) to determine the involvement of astrocytes in the discovered forms of LTD, and both approaches clearly indicated the requirement of astrocytes for t-LTD. In BAPTA-treated astrocytes and in dnSNARE, t-LTD was prevented. Notwithstanding this, and as suggested by the reviewer, we used two additional approaches to confirm astrocytes participation. We loaded astrocytes with the light chain of the tetanus toxin (TeTxLC), which is known to block exocytosis by cleaving the vesicle-associated membrane protein, an important part of the SNARE complex (Schiavo et al., 1992, Nature 359, 832-835). In this experimental condition, we observed a clear lack of t-LTD at both (lateral and medial) pathways, thus confirming the requirement of astrocytes and the SNARE complex and vesicular release for both types of t-LTD. In addition, to gain more insight into the fact that glutamate is released by astrocytes, we blocked glutamate release from astrocytes by loading the astrocytes with Evans blue, known to interfere with glutamate uptake into vesicles as it inhibits the vesicular glutamate transporter (VGLUT). In this experimental condition, again t-LTD was prevented, indicating that t-LTD requires Ca2+-dependent exocytosis of glutamate from astrocytes. This information is now included in the text, pages 14 and 15 and in figure 4.

      • How were astrocytes identified to be loaded with BAPTA? The author should clarify this methodological aspect and provide confocal images of patched astrocytes situated 50-100 um from the recorded neuron.

      We thank the reviewer for the comment. We include now this information in the Methods section (page 6) and in figure S3. Astrocytes were identified by their rounded morphology under differential interference contrast microscopy, and were characterized by low membrane potential, low membrane resistance and passive responses (they do not show action potentials) to both negative and positive current injection.

      • Please provide confocal images of EGFP expression in the DG astrocytes of dnSNARE mice both on and off Dox, to verify transgene expression in astrocytes

      We thank the reviewer for this suggestion. We now include an image of GFP expression in the DG astrocytes of off Dox dnSNARE mice. We did not provide the animals with doxycycline since birth and thus the gene was constantly expressed. We now show this image in Fig. S3. All the pups and mice are not DOX fed, meaning that the transgenes are continuously being expressed and therefore the exocytosis should be blocked in astrocytes.

      Minor points:

      Lines 250-253: It is mentioned that TTX is added at baseline, washed out for the t-LTD experiment, and then reapplied post t-LTD. I suggest clarifying the timing and rationale for this application for a broad audience.

      We thank the reviewer for the suggestion. We now include some information related to the timing and rationale of the experiment phases (page 9).

      The discussion is quite detailed and provides a comprehensive overview of the study's findings. To enhance clarity and impact, the authors might consider to,

      • add subheadings and bullet points for key findings. This will improve readability.

      • this section could benefit from streamlining to avoid redundancy.

      • some sentences could be made more concise without losing meaning.

      We thank the reviewer for these suggestions. We now include subheadings in the discussion section to improve readability and have made some sentences more concise and simple without losing meaning.

      In figure legends, consistency with capitalization should be maintained, for example in the statistical significance notation, ***P < 0.001" or ***p < 0.001")

      We now include p<0.001 in the figure legend 4 for consistency.

      Reviewer #2 (Recommendations For The Authors):

      Major:

      • All results were obtained in young still quite immature synapses. To strengthen the significance of the findings, the authors could repeat some of the main experiments in adult mice (8 weeks and beyond). If not, they should state clearly that these mechanisms were only evidenced in early post-natal conditions.

      We thank the reviewer for noticing this. In fact, our experiments were intentionally performed in young animals (P13-21), just knowing that this is a critical period of plasticity. As the reviewer suggests, we indicate that in the methods (page 5), results (page 8), and discussion (page 19) (where we discuss that in some detail) sections.

      • Lines 246-249 and fig 1f,p: Authors need to perform a statistical test on these two graphs to support their claim that 'A plot of CV-2 versus the change in the mean evoked EPSP 246 slope (M) before and after t-LTD mainly yielded points below the diagonal line at LPP-GC and MPP-GC synapses'.

      That could not be clear in the previous version. We observed an error in the points (with some points missing) of one of the graphs that we have corrected. In addition, and as suggested by the reviewer we performed a regression analysis that confirms the conclusions stated. This is now included in the text (page 9). Thus, we have added information about mean values ± SEM in the text and the linear regression of the data for LPP-GC (Mean = 0.607 ± 0.054 vs 1/CV2 = 0.439 ± 0.096, R2 = 0.337; n = 14) and MPP-GC synapses (Mean = 0.596 ± 0.056 vs 1/CV2 = 0.461 ± 0.090, R2 = 0.168; n = 13), respectively. Data yielded on the dotted horizontal line, 1/CV2 = 1, indicates no change in the probability of release, in contrast, data yielded below the dotted diagonal line is suggestive of a change in the probability of release parameters (for review, see Brock et al., 2020, Front Synaptic Neurosci 12, 11).

      • We are not sure that the experiment with the MK801 provided in the patch pipet can be interpreted correctly (Figure 2 a,b and e,f). How sure are the authors that, when applying MK801 in the patch pipet, it can reach its binding site within the pore? The concentration of MK801 is also very high (500 microM) and used at the same concentration extracellularly and intracellularly. Why did the authors not use lower concentration when applied intracellularly?

      We thank the reviewer for rising this point. MK801 in the pipette is reaching the pore when loaded postsynaptically as when we record NMDA currents from postsynaptic neurons loaded with MK801, these currents are blocked. We include now a control experiment showing the effect of postsynaptic MK801 on NMDA current in the text (page 10). NMDA currents has been recorded at +40 mV, blocking AMPAR and GABAR with NBQX and bicuculline. Related to the concentration, it has been described that the affinity from the internal site is much lower (several orders of magnitude) than from the extracellular side(Sun et al., 2018 Neuropharmacology, 143, 122-129) and the concentrations used have been extensively used in previous studies. It is clear that the concentrations used in the present work blocked NMDAR currents but did not prevent LTD.

      • Linked to the point above, for the intracellular application of FK506 and thapsigargin, the concentrations used extracellularly and intracellularly are identical. The authors could have used lower concentrations for the intracellular application. Also, how can they be sure of the correct interpretation of these data as the drug essentially reaching a post-synaptic target when applied intracellularly? If the drug can enter the neuron, why could it not diffuse out of the neuron especially when loaded at a high concentration? Maybe using a lower concentration when applied intracellularly could at least partially address this issue.

      It is evident that it can enter the cell when applied extracellularly?

      We thank the reviewer for rising this point. While it would be possible that these compound cross the cell membranes, to do it and to pass to other cells, this would, in principle, require a relatively long time to occur. Additionally, to have any effect, the same concentration or a relatively high concentration of that we put into the pipette has to reach other cells. Furthermore, even if a compound is able to cross a cell membrane during the duration of an experiment, after this, it may be exposed to the extracellular fluid where it will be diluted and most probably washed out. For all these reasons, we do not see this very plausible. Notwithstanding this, we have repeated the experiments using lower concentrations of thapsigargin (1 uM) and FK506 (1 uM) and have obtained the same results. These data are now included in the figure 3 and the numbers in the text have been updated (pages 12-13).

      • The data supporting the possibility of glutamate release by astrocytes as a main source of glutamate to promote t-LTD needs to be strengthened. In experiment Figure a-h, it is not clear how the authors recognize astrocytes to patch. No details are provided in the methods or in the main text. If we understand correctly, it is only by performing a current steps protocol to ensure that the patched cell did not produce action potentials. If this was the case, the authors need to be more specific and provide details of this protocol. More importantly, the one trace that was provided in Figures 4a and 4f suggests, albeit by a rough estimation that we made with a ruler, that the highest current step only depolarized the cell to about -40 mV. This is not sufficient to ensure that the recorded cell is not a neuron. The authors should increase their steps to high depolarizing currents to ensure that the patched cell is not a neuron. Better yet, they should load the cell with an dye to process the slice after the electrophysiological recording for immunohistochemistry to ensure that it was indeed an astrocyte. Alternatively, they can try to aspirate the cell content at the end of the recording to perform a qPCR for astrocyte markers eg. GFAP.

      We thank the reviewer for the comment. We include now information regarding how astrocytes were identified (also raised by reviewer 1) in the Methods section (page 6) and in figure S3. Astrocytes were identified by their rounded morphology under differential interference contrast microscopy, eGFP fluorescence (astrocytes from dnSNARE mice), and were characterized by low membrane potential, low membrane resistance and passive responses (they do not show action potentials) to both negative and positive current injection.

      We agree with the reviewer that in figure 4a and 4f, the step protocol might not be completely clear. For this, we revised that and now include in a clearer way that we applied pulses that depolarized astrocytes beyond -20 mV, with no action potentials found at any point. We also include now this in figure S3.

      • Related to the point above, the use of the model expressing dnSNARE in astrocytes is elegant. Yet, to really interpret the data obtained in these slices as a lack of vesicle release (and most importantly glutamate) we think that the authors should ensure that glutamate release from nearby neurons is not impacted. They could patch nearby neurons in dnSNARE slices and test PPR or synaptic fatigue when stimulating either the LPP or MPP. The authors should avoid overinterpretation of these results. As it stands, it is not evident that dnSNARE expression does not perturb other mechanisms within the astrocyte that in turn perturb pre-synaptic glutamate release. Adding back glutamate as puffs does not help to disentangle this issue.

      To gain more insight into the fact that glutamate is released by astrocytes we blocked glutamate release from astrocytes by loading the astrocytes with Evans blue, known to interfere with glutamate uptake into vesicles as it inhibits the vesicular glutamate transporter (VGLUT). In this experimental condition, as indicated above, t-LTD was prevented, indicating that t-LTD requires Ca2+-dependent exocytosis of glutamate from astrocytes. This is included in the text (page 15) and in figure 4d,e, i, j.

      In addition, we loaded astrocytes with the light chain of the tetanus toxin (TeTxLC) which is known to block exocytosis by cleaving the vesicle-associated membrane protein, an important part of the SNARE complex (Schiavo et al., 1992, Nature 359, 832-835). In this experimental condition, we observed a clear lack of t-LTD at both (lateral and medial) pathways, thus confirming the requirement of astrocytes and the SNARE complex and vesicular release for both types of t-LTD. These data indicate that t-LTD requires Ca2+-dependent exocytosis of glutamate from astrocytes. This information is now included in the text, page 14 and in figure 4.

      Minor points:

      • line 107, did the authors mean t-LTP and t-LTD? we don't understand STDP mentioned here.

      We meant to say t-LTP. This is now corrected.

      • line 108: should STDP be replaced by t-LTD as the authors only focused on this plasticity mechanism.

      We agree, we indicate now t-LTD.

      • line 131-132 : it is not clear when the animals were fed with doxycycline. If it was from birth, then the 'not' should be removed. Otherwise the authors should clearly state when the doxycyline was provided.

      DOX was not provided and that means that the transgene was continuously expressed and therefore the exocytosis should be blocked in astrocytes. We express that clearer in page 5, methods section.

      • line 223 : which hippocampal synapses? needs to be stated

      As suggested this is now included in the text as for cortical synapses. Synapses are Schaffer collaterals SC-CA1 for hippocampus and layer L4-L2/3 for cortical synapses (page 8).

      • line 273: what do the authors mean when writing 'from'? We don't understand the data provided on this line.

      We thank the reviewer for noticing this. That refers to the amplitude of NMDAR-mediated currents average before and after D-AP5 or MK801. We express this now in a clearer way (page 10, from 57±8 pA to 6±5 pA).

      • line 286 : why do the authors point out work on GluN2B and GluN3A only here when they first investigate GluN2A contribution to t-LTD? what about previous data on GluN2A?

      We have now expressed this in a different way to make it clear. We wanted to indicate that the available data for presynaptic NMDAR at MPP-GC synapses has been indicated to contain GluN2B and GluN3A subunits and to our knowledge, no data indicate that they contain GluN2A subunits.

      • line 428 : what do the authors mean by 'not least' ?

      This is a typo and we have removed that from the text.

      Reviewer #3 (Recommendations For The Authors):

      My only suggestion for improving data presentation in the manuscript would be to split some figures of the paper. In my opinion, the figures are too dense and therefore difficult to follow for the broad audience of eLife readers. In addition, a real image of the recorded dentate granule cells in the slice showing also the location of the real stimulation electrodes would significantly improve the presentation of Figure 1.

      We thank the reviewer for the suggestion, but we would prefer to let the figures as they are organized, as while we agree in some cases they are a bit big, in this way it is easier to compare lateral and medial pathways. For this, it could be better to let information regarding the two pathways in the same figure. Nevertheless, we try now to make figures clearer to use a columnar organization of the figures for each pathway what we think, would make easier to compare pathways. As the reviewer suggests we include now a real image of the recorded dentate granule cells in the slice showing also the location of the real stimulation electrodes in Figure 1, that we agree will improve the presentation of this figure and thank the reviewer for the suggestion.

    1. Author response:

      The following is the authors’ response to the current reviews.

      We thank the Reviewer for all their effort and suggestions over multiple drafts. Their comments have encouraged us to read and think more deeply about the issue under discussion (BLA spiking in response to CS/US inputs), and to find the papers whose contents we think provide a potential solution. We agree that there is more to understand about the mechanisms underlying associative learning in the BLA. We offer our paper as providing a new way of understanding the role of circuit dynamics (rhythms) in guiding associative learning via STDP. As we pointed out in our response to the previous review, the issue highlighted by the Reviewer is an issue for the entire field of associative learning in BLA: our discussion of the issue suggests why the experimentally observed BLA spiking in response to CS inputs, performed in the absence of US inputs (as done in the papers cited by the Reviewer), may not be what occurs in the presence of the US. Since our explanation involves the role of neuromodulators, such as ACh and dopamine, the suggestion is open to further testing.


      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Public Review’s only objection: “Deficient in this study is the construction of the afferent drive to the network, which does elicit activities that are consistent with those observed to similar stimuli. It still remains to be demonstrated that their mechanism promotes plasticity for training protocols that emulate the kinds of activities observed in the BLA during fear conditioning.”

      Recommendations for the Authors: “The authors have successfully addressed most of my concerns. I commend them for their thorough response. The one nagging issue is the unrealistic activation used to drive CS and US activation in their network. While I agree that their stimulus parameters are consistent with a contextual fear task, or one that uses an olfactory CS, this was not the focus of their study as originally conceived. Moreover, the types of activation observed in response to auditory cues, which is the focus of their study, do not follow what is reported experimentally. Thus, I stand by the critique that the proposed mechanism has not been demonstrated to work for the conditioning task which the authors sought to emulate (Krabbe et al. 2019). Frustratingly, addressing this is simple: run the model with ECS neurons driven so that they fire bursts of action potentials every ~1 sec for 30 sec, and with the US activation noncontiguous with that. If the model does not produce plasticity in this case, then it suggests that the mechanisms embedded in the model are not sufficient, and more work is needed to identify them. While 'memory' effects are possible that could extend the temporal contiguity of the CS and US, the authors need to provide experimental evidence for this occurring in the BLA under similar conditions if they want to invoke it in their model. 

      (1) Fair response. I accept the authors arguments and changes. 

      (2) The authors rightly point out that the simulated afferents need not perfectly match the time courses of the peripheral inputs, since what the amygdala receives them indirectly via the thalamus, cortex, etc. However, it is known how amygdala neurons respond to such stimuli, so it behooves the authors to incorporate that fact into their model. 

      Quirk et al. 1997 show that the response to the tone plummets after the first 100 ms in Figs 5A and 6B. The Herry et al. 2007 paper emphasizes the transient response to tone pips, with spiking falling back to a poisson low firing rate baseline outside of the time when the pip is delivered. 

      Regarding potential metabotropic glutamate activation, the stimulus in Whittington et al. 1995 was electrical stimulation at 100 Hz that would synchronously activate a large volume of tissue, which is far outside the physiological norm. I appreciate that metabotropic glutamate receptors may play a role here, but ultimately the model depends upon spiking activity for the plastic process to occur, and to the best of my knowledge the spiking activity in BLA in response to a sustained, unconditioned tone, is brief (see also Quirk, Repa, and Ledoux 1995). Perhaps a better justification for the authors would be Bordi and Ledoux 1992, which found that 18% of auditory responsive neurons showed a 'sustained' response, but the sustained response neurons appear to show much weaker responses than those with transient ones (Fig 2).  I am willing to say that their paper IS relevant to contextual fear, but that is not what the authors set out to do. 

      (3) Fair response. 

      (4) Very good response! 

      Minor points: All points were addressed.”

      We thank Reviewer 1 (R1) for the positive feedback and also for pointing out that, in R1’s opinion, there is still a nagging issue related to the activation in response to CS we modeled. In (Krabbe et al., 2019), CS is a pulsed input and US is delivered right after the CS offset. The current objection of R1 is that instead, we are modeling CS and US as continuous and overlapping. R1 suggested that we add the actual input and see if they will produce the desired outputs. The answer is simple: it will not work because we need the effects of CS and US on pyramidal cells to overlap. We note that the fear learning community appears to agree with us that such contingency is necessary for synaptic plasticity (Sun et al., 2020; Palchaudhuri et al., 2024). To the best of our understanding, the source of that overlap is not understood in the community, and the gap has been much noticed (Sun et al., 2020). We do note, however, that STDP may not be the only kind of plasticity in fear learning (Li et al., 2009; Kim et al., 2013, 2016).

      It is important to emphasize that it is not the aim of our paper to model the origin of the overlap. Rather, our intent is to demonstrate the roles of brain rhythms in producing the appropriate timing for STDP, assuming that ECS and F cells can continue to be active after the offset of CS and US, respectively. This assumption is very close to how the field now treats the plasticity, even for auditory fear conditioning (Sun et al., 2020). Thus, our methodology does not contradict known results. However, the question raised by R1 is indeed very interesting, if not the point of our paper. Hence, below we give details about why our hypothesis is reasonable.

      Several papers (Quirk, Repa and LeDoux, 1995; Herry et al, 2007; Bordi and Ledoux 1992) show that the pips in auditory fear conditioning increase the activity of some BLA neurons: after an initial transient, the overall spike rate is still higher than baseline activity. As R1 points out, we did not model the transient increase in BLA spiking activity that occurs in response to each pip in the auditory fear conditioning paradigm. However, we did model the low-level sustained activity that occurs in between pips of the CS in the absence of US (Quirk, Repa and LeDoux, 1995, Fig. 2) and after CS offset (see Fig. 2B, left hand part of our manuscript). We read the data of Quirk et al., 1995 as suggesting that the low-level activity can be sustained for some indefinite time after a pip (cut off of recording was at 500 ms with no noticeable decrease in activity). As such, even if the pips and the US do not overlap in time, as in (Krabbe et al., 2019), the spiking of the ECS can be sustained after CS offset and thus overlap with US, a condition necessary in our model for plasticity through STDP. In Herry et al., 2007 Fig. 3 shows that BLA neurons respond to a pip at the population level with a transient increase in spiking and return to a baseline Poisson firing rate. However, a subset of cells continues to fire at an increased-over-baseline rate after the transient effect wears off (Fig. 3C, top few neurons) and this increased rate extends to the end of the recording time (here ~ 300 ms). These are the cells we consider to be ECS in our model. In Quirk et al., 1997, Fig. 5A also shows sustained low level activity of neurons in BLA in response to a pip. The low-level activity is shown to increase after fear learning, as is also the case in our model since ECS now entrains F so that there are more pyramidal cells spiking in response to CS. The question remains as to whether the spiking is sustained long enough and at a high enough rate for STDP to take place when US is presented sometime after the stop of the CS. 

      Experimental recordings cannot speak to the rate of spiking of BLA neurons during US due to recording interference from the shock. However, evidence seems to suggest that ECS activity should increase during the US due to the release of acetylcholine (ACh) from neurons in the basal forebrain (BF) (Rajebhosale et al., 2024). Pyramidal cells of the BLA robustly express M1 muscarinic ACh receptors (Muller et al., 2013; McDonald and Mott, 2021). Thus, ACh from BF should elicit a depolarization in pyramidal cells. Indeed, the pairing of ACh with even low levels of spiking of BLA neurons results in a membrane depolarization that can last 7 – 10 s (Unal et al., 2015). This should induce higher spiking rates and more sustained activity in the ECS and F neurons during and after the presentation of US, thus ensuring a concomitant activation of ECS and fear (F) neurons necessary for STDP to take place. Other modulators, including dopamine, may also play a role in producing the sustained activity. Activation of US leads to increased dopamine release in the BLA (Harmer and Phillips, 1999; Suzuki et al., 2002). D1 receptors are known to increase the membrane excitability of BLA projection neurons by lowering their spiking threshold (Kröner et al., 2005). Thus, the activation of the US can lead to continued and higher firing rates of ECS and F. The effect of dopamine can last up to 20 minutes (Kröner et al., 2005). For CS-positive neurons, the ACh modulation coming from the firing of US may lead to a temporary extension of firing that is then amplified and continued by dopaminergic effects.

      Hence, we suggest that a solution to the problem raised by R1 may be solved by considering the roles of ACh and dopamine in the BLA. The involvement of neuromodulators is consistent with the suggestion of (Sun et al., 2020). The model we have may be considered a “minimal” model that puts in by hand the overlap in activity due to the neuromodulation without explicitly modeling it. As R1 says, it is important for us to give the motivation of our hypotheses. We have used the simplest way to model overlap without assumptions about timing specificity in the overlap.

      To account for these points in the manuscript, we first specified that we consider the effects of the US and CS inputs on the neuronal network as overlapping, while the actual inputs may not overlap. To do that, we added the following text:

      (1) In the introduction: 

      “In this paper, we aim to show 1) How a variety of BLA interneurons (PV, SOM and VIP) lead to the creation of these rhythms and 2) How the interaction of the interneurons and the rhythms leads to the appropriate timing of the cells responding to the US and those responding to the CS to promote fear association through spike-timing-dependent plasticity (STDP). Since STDP requires overlap of the effects of the CS and US, and some conditioning paradigms do not have overlapping US and CS, we include as a hypothesis that the effects of the CS and US overlap even if the CS and US stimuli do not. In the Discussion, we suggest how neuromodulation by ACh and/or dopamine can provide such overlap. We create a biophysically detailed model of the BLA circuit involving all three types of interneurons and show how each may participate in producing the experimentally observed rhythms and interacting to produce the necessary timing for the fear learning.”

      (2) In the Result section “With the depression-dominated plasticity rule, all interneuron types are needed to provide potentiation during fear learning”:

      “The 40-second interval we consider has both ECS and F, as well as VIP and PV interneurons, active during the entire period: an initial bout of US is known to produce a long-lasting fear response beyond the offset of the US (Hole and Lorens, 1975) and to induce the release of neuromodulators. The latter, in particular acetylcholine and dopamine that are known to be released upon US presentation (Harmer and Phillips, 1999; Suzuki et al., 2002; Rajebhosale et al., 2024), may induce more sustained activity in the ECS, F, VIP, and PV neurons during and after the presentation of US, thus ensuring a concomitant activation of those neurons necessary for STDP to take place (see “Assumptions and predictions of the model” in the Discussion).”

      (3) In the Discussion section “Synaptic plasticity in our model”:

      “Synaptic plasticity is the mechanism underlying the association between neurons that respond to the neutral stimulus CS (ECS) and those that respond to fear (F), which instantiates the acquisition and expression of fear behavior. One form of experimentally observed long-term synaptic plasticity is spike-timing-dependent plasticity (STDP), which defines the amount of potentiation and depression for each pair of pre- and postsynaptic neuron spikes as a function of their relative timing (Bi and Poo, 2001; Caporale and Dan, 2008). All forms of STDP require that there be an overlap in the firing of the pre- and postsynaptic cells. In some fear learning paradigms, the US and the CS do not overlap. We address this below under “Assumptions and predictions of the model”, showing how the effects of US and CS on the spiking of the relevant neurons can overlap even in the absence of overlap of US and CS.”

      To fully present our reasoning about the origin of the overlap of the effects of US and CS, we modified and added to the last paragraph of the Discussion section “Assumptions and predictions of the model”, which now reads as follows:

      “Finally, our model requires the effect of the CS and US inputs on the BLA neuron activity to overlap in time in order to instantiate fear learning through STDP. Such a hypothesis, that learning uses spike-timing-dependent plasticity, is common in the modeling literature (Bi and Poo, 2001; Caporale and Dan, 2008; Markram et al., 2011). Current paradigms of fear conditioning include examples in which the CS and US stimuli do not overlap (Krabbe et al., 2019). Such a condition might seem to rule out the mechanisms in our paper. Nevertheless, the argument below suggests that the effects of the CS and US can cause an overlap in neuronal spiking of ECS, F, VIP, and SOM, even when CS and US inputs do not overlap.

      Experimental recordings cannot speak to the rate of spiking of BLA neurons during US due to recording interference from the shock. However, evidence suggests that ECS activity should increase during the US due to the release of acetylcholine (ACh) from neurons in the basal forebrain (BF) (Rajebhosale et al., 2024). Pyramidal cells of the BLA robustly express M1 muscarinic ACh receptors (McDonald and Mott, 2021). Thus, ACh from BF should elicit a depolarization in pyramidal cells. Indeed, the pairing of ACh with even low levels of spiking of BLA neurons results in a membrane depolarization that can last 7 – 10 s (Unal et al., 2015).   Other modulators, including dopamine, may also play a role in producing the sustained activity. Activation of US leads to increased dopamine release in the BLA (Harmer and Phillips, 1999; Suzuki et al., 2002). D1 receptors are known to increase the membrane excitability of BLA projection neurons by lowering their spiking threshold (Kröner et al., 2005). Thus, neuromodulator release should induce higher spiking rates and more sustained activity in the ECS and F neurons during and after the presentation of US, thus ensuring a concomitant activation of ECS and fear (F) neurons necessary for STDP to take place. Thus, the activation of the US can lead to continued and higher firing rates of ECS and F. The effect of dopamine can last up to 20 minutes (Kröner et al., 2005). For CS-positive neurons, the ACh modulation coming from the firing of US may lead to a temporary extension of firing that is then amplified and continued by dopaminergic effects.

      Hence, we suggest that a solution to the problem apparently posed by the non-overlap US and CS in some paradigms of auditory fear conditioning (Krabbe et al., 2019) may be solved by considering the roles of ACh and dopamine in the BLA. The model we have may be considered a “minimal” model that puts in by hand the overlap in activity due to the neuromodulation without explicitly modeling it. We have used the simplest way to model overlap without assumptions about timing specificity in the overlap. We note that, even though ECS and F neurons have the ability to fire continuously when ACh and dopamine are involved, the participation of the interneurons enforces periodic silence needed for the depression-dominated STDP.”

      In the Discussion (in section “Involvement of other brain structures”), we also acknowledged that the overlap between the effects of US and CS in the BLA may be provided by other brain structures by writing the following:

      “In our model, the excitatory projection neurons and VIP and PV interneurons show sustained activity during and after the US presentation, thus allowing potentiation through STDP to take place. The medial prefrontal cortex and/or the hippocampus may provide the substrates for the continued firing of the BLA neurons after the 2-second US stimulation. We also discuss below that this network sustained activity may originate from neuromodulator release induced by US (see section “Assumptions and predictions of the model” in the Discussion).”

      We also improved our discussion about the (Grewe et al., 2017) paper, which questions Hebbian plasticity in the context of fear conditioning based on several critiques. We included a new section in the Discussion entitled “Is STDP needed in fear conditioning?” to discuss those critiques and how our model may address them, which reads as follows:

      “Is STDP needed in fear conditioning? The study in (Grewe et al., 2017) questions the validity of the Hebbian model in establishing associative learning during fear conditioning. There are several critiques we discuss here. The first critique is that Hebbian plasticity does not explain the experimental finding showing that both upregulation and downregulation of stimulus-evoked responses are present between coactive neurons. The upregulation is provided by our model, so the issue is the downregulation, which is not addressed by our model. However, our model highlights that coactivity alone does not create potentiation; the fine timing of the pre- and postsynaptic spikes determines whether there is potentiation or depression. Here, we find that PING networks are instrumental in setting up the fine timing for potentiation. We suggest that networks not connected to produce the PING may undergo depression when coactive.

      The second critique raised by (Grewe et al., 2017) is that Hebbian plasticity alone does not explain why most of the cells exhibiting enhanced responses to the CS did not react to the US before fear conditioning. They suggest that neuromodulators may provide a third condition (besides the activity of the pre- and postsynaptic neurons) that changes the plasticity rule. Our model also does not explicitly address this experimental finding since it requires F to be initially activated by US in order for the fear association to be established. We agree that the fear cells described in (Grewe et al. 2017) may be depolarized by the US without reaching the spiking threshold; however, with neuromodulation provided during the fear training, the same input can lead to spiking, enabling the conditions for Hebbian plasticity. Our discussions above about how neuromodulators affect excitability are relevant to this point. We do not exclude that other forms of plasticity may play a role during fear conditioning in cells not initially activated by the US, but this is not the topic of our modeling study.

      The third critique raised by (Grewe et al., 2017) is that Hebbian plasticity cannot explain why the majority of cells that were US- and CS-responsive before training have a reduced CS-evoked response afterward. The reduced response happens over multiple exposures of CS without US; this can involve processes similar to those present in fear extinction, which require plasticity in further networks, especially involving the infralimbic cortex (Milad and Quirk, 2002; Burgos-Robles et al., 2007). An extension of our model could investigate such mechanisms. In the fourth critique, (Grewe et al., 2017) suggests that the Hebbian plasticity rule cannot easily account for the reduction of the responses of many CS+-responsive cells, but not of the CS−-responsive cells. We suggest that the circuits involving paradigms similar to fear extinction do not involve the CS- cells.

      Overall, we agree with (Grewe et al., 2017) that neuromodulators play a crucial role in fear conditioning, especially in prolonging the US- and CS-encoding activity as discussed in (see section “Assumptions and predictions of the model” in the Discussion), or even participating in changing the details of the plasticity rule. A possible follow-up of our work involves investigating how fear ensembles form and modify through fear conditioning and later stages. This follow-up work may involve using a tri-conditional rule, as suggested in (Grewe et al., 2017), in which the potential role of neuromodulators is taken into account in the plasticity rule in addition to the pre- and postsynaptic neuron activity. Another direction is to investigate a possible relationship between neuromodulation and a depression-dominated Hebbian rule.”

      Finally, we made additional minor changes to the manuscript:

      (1) In the Result section “Interneurons interact to modulate fear neuron output”, we specified the following:

      “The US input on the pyramidal cell and VIP interneuron is modeled as a Poisson spike train at ~ 50 Hz and an applied current, respectively. In the rest of the paper, we will use the words “US” as shorthand for “the effects of US”.” 

      (2) In the Result section “Interneuron rhythms provide the fine timing needed for depression dominated STDP to make the association between CS and fear”, we also reported the following:

      “Similarly to the US, in the rest of the paper, we will use the words “CS” as shorthand for “the effects of CS”. In our simulations, CS is modeled as a Poisson spike train at ~ 50 Hz, independent of the US input. Thus, we hypothesize that the time structure of the inputs sometimes used for the training (e.g., a series of auditory pips) is not central to the formation of the plasticity in the network.”  

      Reviewer #2 (Public Reviews):

      The authors of this study have investigated how oscillations may promote fear learning using a network model. They distinguished three types of rhythmic activities and implemented an STDP rule to the network aiming to understand the mechanisms underlying fear learning in the BLA. 

      After the revision, the fundamental question, namely, whether the BLA networks can or cannot intrinsically generate any theta rhythms, is still unanswered. The author added this sentence to the revised version: "A recent experimental paper, (Antonoudiou et al., 2022), suggests that the BLA can intrinsically generate theta oscillations (3-12 Hz) detectable by LFP recordings under certain conditions, such as reduced inhibitory tone." In the cited paper, the authors studied gamma oscillations, and when they applied 10 uM Gabazine to the BLA slices observed rhythmic oscillations at theta frequencies. 10 uM Gabazine does not reduce the GABA-A receptor-mediated inhibition but eliminates it, resulting in rhythmic populations burst driven solely by excitatory cells. Thus, the results by Antonoudiou et al., 2022 contrast with, and do not support, the present study, which claims that rhythmic oscillations in the BLA depend on the function of interneurons. Thus, there is still no convincing evidence that BLA circuits can intrinsically generate theta oscillations in intact brain or acute slices. If one extrapolates from the hippocampal studies, then this is not surprising, as the hippocampal theta depends on extrahippocampal inputs, including, but not limited to the entorhinal afferents and medial septal projections (see Buzsaki, 2002). Similarly, respiratory related 4 Hz oscillations are also driven by extrinsic inputs. Therefore, at present, it is unclear which kind of physiologically relevant theta rhythm in the BLA networks has been modelled. 

      In our public reply to the Reviewer’s point, we reported the following:

      (1) We kindly disagree that (Antonoudiou et al., 2022) contrasts with our study. (Antonoudiou et al., 2022) is a slice study showing that the BLA theta power (3-12 Hz) increases with gabazine compared to baseline. With all GABAergic currents omitted due to gabazine, the LFP is composed of excitatory currents and intrinsic currents. In our model, the high theta (6-12 Hz) comes from the spiking activity of the SOM cells, which increase their activity if the inhibition from VIP cells is removed. Thus, the model produces high theta in the presence of gabazine (see Fig. 1 in our replies to the Reviewers’ public comments). The model also shows that a PING rhythm is produced without gabazine, and that this rhythm goes away with gabazine because PING requires feedback inhibition from PV to fear cells. Thus, the high theta increase and gamma reduction with gabazine in the (Antonoudiou et al., 2022) paper can be reproduced in our model.

      (2) We agree that (Antonoudiou et al., 2022) alone is not sufficient evidence that the BLA can produce low theta (3-6 Hz); we discussed a new paper (Bratsch-Prince et al., 2024) that provides further evidence of BLA ability to produce low theta and under what circumstances. The authors reported that intrinsic BLA theta is produced in slices with ACh stimulation (without needing external glutamate input) which, in vivo, would be provided by the basal forebrain (Rajebhosale et al., eLife, 2024) in response to salient stimuli. The low theta depends on muscarinic activation of CCK interneurons, a group of interneurons that overlaps with the VIP neurons in our model (Krabbe 2017; Mascagni and McDonald, 2003). We suspect that the low theta produced in (Bratsch-Prince et al., 2024) is the same as the low theta in our model. In future work, we will aim to show that ACh activates the BLA VIP cells, which are essential to the low theta generation in the network.

      In the manuscript, we added to and modified the Discussion section “Where the rhythms originate, and by what mechanisms”. This text aims to better discuss (Antonoudiou et al. 2022) and introduce (Bratsch-Prince et al., 2024) with its connection to our hypothesis that the theta oscillations can be produced within the BLA. The new version is:

      “Where the rhythms originate, and by what mechanisms. A recent experimental paper (Antonoudiou et al., 2022) suggests that the BLA can intrinsically generate theta oscillations (312 Hz) detectable by LFP recordings when inhibition is totally removed due to gabazine application. They draw this conclusion in mice by removing the hippocampus, which can volume conduct to BLA, and noticing that other nearby brain structures did not display any oscillatory activity. In our model, we note that when inhibition is removed, both AMPA and intrinsic currents contribute to the network dynamics and the LFP. Thus, interneurons with their specific intrinsic currents (i.e., D-current in the VIP interneurons, and NaP- and H- currents in SOM interneurons) can indeed affect the model LFP and support the generation of theta and gamma rhythms (Fig. 6G). 

      Another slice study, (Bratsch-Prince et al., 2024), shows that BLA is intrinsically capable of producing a low theta rhythm with ACh stimulation and without needing external glutamate input. ACh is produced in vivo by the basal forebrain in response to US (Rajebhosale et al., 2024). Although we did not explicitly include the BF and ACh modulation of BLA in our model, we implicitly include the effect of ACh in BLA by increasing the activity of the VIP cells, which then produce the low theta rhythm. Indeed, low theta in the BLA is known to depend on the muscarinic activation of CCK interneurons, a group of interneurons that overlaps with the class of VIP neurons in our model (Mascagni and McDonald, 2003; Krabbe et al., 2018). 

      Although the BLA can produce these rhythms, this does not rule out that other brain structures also produce the same rhythms through different mechanisms, and these can be transmitted to the BLA. Specifically, it is known that the olfactory bulb produces and transmits the respiratoryrelated low theta (4 Hz) oscillations to the dorsomedial prefrontal cortex, where it organizes neural activity (Bagur et al., 2021). Thus, the respiratory-related low theta may be captured by BLA LFP because of volume conduction or through BLA extensive communications with the prefrontal cortex. Furthermore, high theta oscillations are known to be produced by the hippocampus during various brain functions and behavioral states, including during spatial exploration (Vanderwolf, 1969) and memory formation/retrieval (Raghavachari et al., 2001), which are both involved in fear conditioning. Similarly to the low theta rhythm, the hippocampal high theta can manifest in the BLA. It remains to understand how these other rhythms may interact with the ones described in our paper. However, we emphasize that there is also evidence (as discussed above) that these rhythms arise within the BLA.”

      Reviewer #2 (Recommendations for the Authors):

      (1) Three different types of VIP interneurons with distinct firing patterns have been revealed in the BLA (Rhomberg et al., 2018). Does the generation of rhythmic activities depend on the firing features of VIP interneurons? Does it matter whether VIP interneurons fire burst of action potentials or they discharge more regularly?  

      (2) The authors used data for modeling SST interneurons obtained e.g., in the hippocampus. However, there are studies in the BLA where the intrinsic characteristics of SST interneurons have been reported (Unal et al., 2020; Guthman et al., 2020; Vereczki et al., 2021). Have the authors considered using results of studies that were conducted in the BLA? 

      We thank the Reviewer for their questions, which have helped us further improve our manuscript in response to similar queries from Reviewer 3 in the previous review round. More in detail:

      (1) Although other electrophysiological types exist (Sosulina et al., 2010), we hypothesized that the electrophysiological type of VIP neurons that display intrinsic stuttering is the type that would be involved in mediating low theta oscillations during fear conditioning. This is because VIP intrinsic stuttering in cortical neurons is thought to involve the D-current, which helps create low theta bursting oscillations in the neuronal spiking patterns (Chartove et al., 2020). We think that the other subtypes of VIP interneurons are not essential for the low theta oscillatory dynamics observed during fear conditioning and, thus, did not provide an essential constraint for the phenomena we are trying to capture. VIP interneurons in our network must fire bursts at low theta to be effective in creating the pauses in ECS and F spiking needed for potentiation; single spikes at theta are not sufficient to create these pauses.

      (2) In our model, we used the results conducted in a BLA study (Sosulina et al., 2010). SOM cells in the BLA display several physiologic types. We chose to include in our model the type showing early adaptation in response to a depolarizing current and inward (outward) rectification upon the initiation (release) of a hyperpolarizing current. We hypothesize that this type can produce high theta oscillations, a prominently observed rhythm in the BLA. Unal et al., 2020 (Unal et al., 2020) found two populations of SOM cells in the BLA, which have been previously recorded in (Sosulina et al., 2010), including the one type we chose to model. This SOM cell type shows a low threshold spiking profile characterized by spike frequency adaptation and voltage sag indicative of an H-current used in our model. Guthman et al., 2020, (Guthman et al., 2020), also found a population of SOM cells with hyperpolarization induced sag.

      Our model also uses a NaP-current for which there is no data in the BLA. However, it is known to exist in hippocampal SOM cells and that NaP- and H- currents can produce such a high theta in hippocampal cells. It is a standard practice in modeling to use the best possible replacement for unknown currents. Of course, it is unfortunate to have to do this. We also note that models can be considered proof of principle, that can be proved or disproved by further experimental work. Both (Guthman et al., 2020) and (Vereczki et al., 2021) also uncover further heterogeneity among BLA SOM interneurons involving more than electrophysiology. We hypothesize that such a level of heterogeneity revealed by these three studies is not key to the question we are asking (where crucial ingredients are the rhythms) and, therefore, was not included in our minimal model.

      We modified the Discussion section titled “Assumptions and predictions of the model” as follows:

      “Our model, which is a first effort towards a biophysically detailed description of the BLA rhythms and their functions, does not include the neuron morphology, many other cell types, conductances, and connections that are known to exist in the BLA; models such as ours are often called “minimal models” and constitute most biologically detailed models. For example, although there is considerable variability in the activity patterns of both VIP cells and SOM cells (Sosulina et al., 2010; Guthman et al., 2020; Ünal et al., 2020; Vereczki et al., 2021), our focus was specifically on those subtypes that generate critical rhythms within the BLA. Such minimal models are used to maximize the insight that can be gained by omitting details whose influence on the answers to the questions addressed in the model are believed not to be qualitatively important. We note that the absence of these omitted features constitutes hypotheses of the model: we hypothesize that the absence of these features does not materially affect the conclusions of the model about the questions we are investigating. Of course, such hypotheses can be refuted by further work showing the importance of some omitted features for these questions and may be critical for other questions. Our results hold when there is some degree of heterogeneity of cells of the same type, showing that homogeneity is not a necessary condition.”

      (3) The authors may double-check the reference list, as e.g., Cuhna-Reis et al., 2020 is not listed. 

      We thank the Reviewer for spotting this. We checked the reference list and all the references are now listed.

      Finally, we wanted to acknowledge that we made other changes to the manuscript unrelated to the reviewers’ questions with the purpose of gaining clarity. More specifically:

      (1) We included a section titled “Significance” after the abstract and keywords, which reads as follows:

      “Our paper accounts for the experimental evidence showing that amygdalar rhythms exist, suggests network origins for these rhythms, and points to their central role in the mechanisms of plasticity involved in associative learning. It is one of the few papers to address high-order cognition with biophysically detailed models, which are sometimes thought to be too detailed to be adequately constrained. Our paper provides a template for how to use information about brain rhythms to constrain biophysical models. It shows in detail, for the first time, how multiple interneurons help to provide time scales necessary for some kinds of spike-timing-dependent plasticity (STDP). It spells out the conditions under which such interactions between interneurons are needed for STDP and why. Finally, our work helps to provide a framework by which some of the discrepancies in the fear learning literature might be reevaluated. In particular, we discuss issues about Hebbian plasticity in fear learning; we show in the context of our model how neuromodulation might resolve some of those issues. The model addresses issues more general than that of fear learning since it is based on interactions of interneurons that are prominent in the cortex, as well as the amygdala.”

      (2) The Result section “Physiology of the interneuron types is critical to their role in depression-dominated plasticity”, which is now titled “Mechanisms by which interneurons contribute to potentiation in depression-dominated plasticity”, now reads as follows:

      “Mechanisms by which interneurons contribute to potentiation during depressiondominated plasticity. The PV cell is necessary to induce the correct pre-post timing between ECS and F needed for long-term potentiation of the ECS to F conductance. In our model, PV has reciprocal connections with F and provides lateral inhibition to ECS. Since the lateral inhibition is weaker than the feedback inhibition, PV tends to bias ECS to fire before F. This creates the fine timing needed for the depression-dominated rule to instantiate plasticity. If we used the classical Hebbian plasticity rule (Bi and Poo, 2001) with gamma frequency inputs, this fine timing would not be needed and ECS to F would potentiate over most of the gamma cycle, and thus we would expect random timing between ECS and F to lead to potentiation (Fig. S4). In this case, no interneurons are needed (See Discussion “Synaptic plasticity in our model” for the potential necessity of the depression-dominated rule). 

      In this network configuration, the pre-post timing for ECS and F is repeated robustly over time due to coordinated gamma oscillations (PING, as shown in Fig. 4A, Fig. 1C) arising through the reciprocal interactions between F and PV (Feng et al., 2019). PING can arise only when PV is in a sufficiently low excitation regime such that F can control PV activity (Börgers et al., 2005), as in Fig. 4A. However, although such a low excitation regime establishes the correct fine timing for potentiation, it is not sufficient to lead to potentiation (Fig. 4A, Fig. S2C): the depression-dominated rule leads to depression rather than potentiation unless the PING is periodically interrupted. During the pauses, made possible only in the full network by the presence of VIP and SOM, the history-dependent build-up of depression decays back to baseline, allowing potentiation to occur on the next ECS/F active phase. (The detailed mechanism of how this happens is in the Supplementary Information, including Fig. S2). Thus, a network without the other interneuron types cannot lead to potentiation. Though a low excitation level for a PV cell is necessary to produce a PING, a higher excitation level is necessary to produce a pause in the ECS and F. This higher excitation level is consistent with the experimental literature showing a strong activation of PV after the onset of CS (Wolff et al., 2014). The higher excitation happens when the VIP cell is silent, whereas a low excitation level is achieved when the VIP cell fires and partially inhibits the PV cell (Fig. 4B, Fig. S2D). The interruption in the ECS and F activity requires the participation of another interneuron, the SOM cell (Figs. 2B, S2): the pauses in inhibition from the VIP periodically interrupt ECS and F firing by releasing PV and SOM from inhibition and thus indirectly silencing ECS and F. Without these pauses, depression dominates (see SI section “ECS and F activity patterns determine overall potentiation or depression”).”

      We also removed a supplementary figure (Fig. S2).

      (3) We wanted to be clear and motivate our choice to extend the low theta range to 2-6 Hz and the high theta range to 6-14 Hz, compared to the 3-6 Hz and 6-12 Hz, respectively in the BLA experimental literature. Our main reason for extending the ranges was because the peaks of low and high theta power in the VIP and SOM cells, respectively, (the cells that generate these oscillations) occurred at the borders of the experimental ranges. Thus, in order to include the peaks of the model LFP, we lowered the low theta range by 1 Hz and increased the high theta range by 2 Hz.

      We present a new supplementary figure (Fig. S1) containing the power spectra of VIP, which is the source of low theta in our model, and SOM interneuron, which is the source of high theta:

      We mention Fig. S1 in the Result section “Rhythms in the BLA can be produced by interneurons”, where we added the following text: o “In the baseline condition, the condition without any external input from the fear conditioning paradigm (Fig. 1B, top), our VIP neurons exhibit short bursts of gamma activity (~38 Hz) at low theta frequencies (~2-6 Hz) (peaking at ~3.5 Hz) (see Fig. S1A).” o “In our baseline model, SOM cells have a natural frequency of ~12 Hz (Fig. 1B, middle; Fig. S1B), which is at the upper limit of the experimental high theta range; this motivates our choice to extend the high theta range up to 14 Hz in order to include the peak.” 

      Knowing the natural frequencies of VIP and SOM interneurons from the Result section “Rhythms in the BLA can be produced by interneurons”, we specified more clearly that we quantify the change of power in the low and high theta range around the power peaks in those ranges. Specifically, we changed some sentences in the first paragraph of the Result section “Increased low-theta frequency is a biomarker of fear learning” as follows:

      “We find that fear conditioning leads to an increase in low theta frequency power of the network spiking activity compared to the pre-conditioned level (Fig. 6 A,B); there is no change in the high theta power. We also find that the LFP, modeled as the linear sum of all the AMPA, GABA, NaP-, D-, and H- currents in the network, similarly reveals a low theta power increase when considering the peak of the low theta power, and no significant variation in the high theta power again when considering the peak of the high theta power (Fig. 6 C,D,E).”

      Finally, we made a few other small changes:

      In the Introduction, we mention the following: “We also note that there is not uniformity on the exact frequencies associated with low and high theta, e.g., ((Lorétan et al., 2004) used 2-6 Hz for low theta). Here, we use 2-6 Hz for the theta range and 6-14 Hz for the high theta range.”

      In Fig. 6DE (reported below point 3)), we reran the statistics using a smaller interval for high theta (11.5-13 Hz) to focus around the peak. Our initial result showing significant change in low theta between pre and post fear conditioning and no change in high theta still holds.

      In Fig. 6 of the Result section “Increase low-theta frequency is a biomarker of fear learning”, we switched the order of panels F and G. This change allows us to first focus on the AMPA currents, which are the major contributors of the low theta power increase, and to specify what AMPA current drives that increase. After that, we present the power spectrum of the GABA currents, as well.

      The corresponding text in the Result section, now reads as follows:

      “We find that fear conditioning leads to an increase in low theta frequency power of the network spiking activity compared to the pre-conditioned level (Fig. 6 A,B); there is no change in the high theta power. We also find that the LFP, modeled as the linear sum of all the AMPA, GABA, NaP-, D-, and H- currents in the network, similarly reveals a low theta power increase when considering the peak of the low theta power, and no significant variation in the high theta power again when considering the peak of the high theta power (Fig. 6 C,D,E). These results are consistent with the experimental findings in (Davis et al., 2017). Specifically, the newly potentiated AMPA synapse from ECS to F ensures F is active after fear conditioning, thus generating strong currents in the PV cells to which it has strong connections (Fig. 6F). It is the AMPA currents to the PV interneurons that are directly responsible for the low theta increase; it is the newly potentiated ECS to F synapse that paces the AMPA currents in the PV interneurons to go at low theta. Thus, the low theta increase is due to added excitation provided by the new learned pathway.”

      (4) In the Discussion section “Assumptions and predictions of the model”, we specified the following:

      “Our model predicts that blockade of D-current in VIP interneurons (or silencing VIP interneurons) will both diminish low theta and prevent fear learning. Finally, the model assumes the absence of significantly strong connections from the excitatory projection cells ECS to PV interneurons, unlike the ones from F to PV. Including those synapses would alter the PING rhythm created by the interactions between F and PV, which is crucial for fine timing between ECS and F needed for LTP.”

      (5) Finally, to broaden the potential interest of our study, we added the following sentences:

      At the conclusion of the abstract:

      “The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.” - At the conclusion of the introduction:

      “Finally, we note that the ideas in the model may apply very generally to associative learning in the cortex, which contains similar subcircuits of pyramidal cells and interneurons: PV, SOM and VIP cells.” 

      Also, changes in the emphasis of the paper led us to remove the following from the abstract: “Finally, we discuss how the peptide released by the VIP cell may alter the dynamics of plasticity to support the necessary fine timing.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      The manuscript could be improved by addressing the following issues.

      (1) Fig. 3: The analgesic effects after astrocyte ablation appear to recover after one week. Is this due to repopulation of astrocytes?

      Although we did not detect the proliferation of astrocytes, we hypothesized that it was likely related to the microglia phagocytosis of astrocyte debris after astrocyte ablation. Microglia are known to have the function of phagocytosis of cell debris. Diphtheria toxin-mediated cell ablation caused AAV2/5-GfaABC1D-Cre labeled astrocytes death and cell fragmentation. We hypothesized that the microglia could phagocyte the astrocyte fragments and were stimulated to activate type I interferon signal. When microglia phagocyte debris ended, the activation of type I interferon signal was also declined. Reduced activation of type I interferon signal may also be accompanied by recurrence of pain.

      (2) Fig. 3: Please justify the large sample size of n=30-36. Is this sample size based on previous studies or statistical estimation?

      The number of mice was based on our previous report [1], and the increased number of mice may also ensure that the pain data would also be reliable. Not only did we explore the differences between the sexes, and we also needed to obtain samples at different times for different experiments.

      (3) Please try to plot individual data points for some critical time points to demonstrate data distribution. It is also helpful to plot male and female data points separately for some time points.

      Individual data have been plotted as your request and added in the supplementary material.

      (4) It is unclear if the same number of males and females were used in this study, as females were typically used for SCI studies. I wonder if you can use repeated measures Two-Way ANOVA for statistical analysis.

      According to our observations, the number of males and females was not the same, while both of them were sufficient for statistical analysis. In addition, in the process of breeding transgenic mice, we would obtain both male and female mice, and rational use of mice may be better for us. Indeed, previous studies have shown that female mice are more commonly used in pain studies. Although we did not observe a gender difference in this study, it has been reported in the previous studies that gender is one of the factors for pain differences. According to your suggestion, we adopted the Two-Way ANOVA for statistical analysis and updated it in the part of statistical methods, but the statistical results were consistent with the previous results, so we did not modify the statistical results of the pictures.

      (5) Fig. 3C, D: The effects of astrocyte ablation on mechanical pain are mild, compared to thermal pain. Electronic von Frey apparatus may be difficult for mice. It works very well for rats and large animals.

      Since the animals involved in this study were all mice, we did not know how electronic von Frey was used in rats and large animals. But after the using of electronic von Frey, it seems to us that electronic von Frey is very suitable for mouse experiments. Best of all, our electronic von Frey can achieve accuracy as low as 0.01g. This allows us to detect very sensitive pain data, which may be more accurate and intuitive than before.

      (6) Fig. 2B: In the figure legend it states n = 3 biological repeats. There are many more dots in each column. Are these individual animals or spinal cord sections?

      As we describe in our method, n = 3 biological repeats represented three biological repeats per group, i.e., three mice/group with three IF per mouse. We take three or more values in each ascending tract (depending on the partition size of the different ascending tracts of lumbar enlargements). So, we would get more data as shown in Figure 2, which could be also more reliable.

      (7) Fig. 4C: It appears that GFAP is increased by toxin treatment. Please explain this result.

      This figure was calculated for astrocyte activation in the lesion area (T9-10), but not for the lumbar enlargement.

      Reviewer #2 (Recommendations For The Authors):

      Specific Comments:

      RNA-Sequencing Analysis: The strength of the RNA-sequencing data in elucidating the impact of astrocyte elimination is compelling. While the focus on IFN signaling is well-supported, the manuscript overlooks other differentially expressed genes. A deeper analysis or at least a discussion of these genes could enrich the study's conclusions, offering a more holistic view of the underlying mechanisms.

      Although we did not focus more on other relevant differential genes, we focused on the most significant differential genes, for these differential genes have a more significant effect on pain.

      Q2: Figure Presentation: Consolidating Figures 1-3 could increase the clarity of the result presentation, reducing distractions from the main narrative. Certain aspects, such as the comparison of different tracts in Figure 2B and the body weight data in Figure 3C, seem tangential and might be better suited for supplementary materials.

      The comparison of astrocyte activation in different ascending tracts of lumbar enlargements explained the relationships between astrocyte activation and pain, and laid the foundation for the subsequent astrocyte elimination. The weight data is also important, reflecting not only the changes in the overall recovery process after spinal cord injury, but also the effect of astrocyte elimination on the overall effect of mice. Thus, the weight data together with the pain test results will be more intuitive for the reader to understand the change of overall conditions of mice after astrocyte elimination.

      Q3: Schematic Clarity: The schematic in Figure 1A is confusing, particularly in distinguishing between transgenic mice and viral constructs. The inconsistent naming of Cre recombinase (alternatively referred to as Cre, CRE, and sometimes DRE) further complicates understanding. Standardizing these elements would greatly enhance clarity for the readers.

      As we described in the part of method, Gt(ROSA)26Sorem1(CAG-LSL-RSR-tdTomato-2A-DTR)Smoc mice contain both Loxp-stop-Loxp sequence and Rox-stop-Rox sequence. In the process of reproduction, Gt(ROSA)26Sorem1(CAG-LSL-RSR-tdTomato-2A-DTR)Smoc mice crossed with C57BL/6JSmoc-Tg(CAG-Dre)Smoc mice could remove the Rox-stop-Rox sequence, which could further crossed with mice containing Cre recombinase, or with AAV2/5-GfaABC1D-Cre intervention to remove the Loxp-stop-Loxp sequence and induce the expression of tdTomato and DTR.

      Q4: Pathway Analysis: The discussion of the signal pathway analysis in Figure 8 leans heavily on speculation without direct evidence from the study. Distinguishing clearly between findings and literature-derived hypotheses is crucial. A more detailed discussion that properly cites sources for each pathway element would strengthen the manuscript.

      According to your question, we have added this figure to the supplementary picture.

      Q5: Statistical Analysis: The use of one-way ANOVA, despite presenting data in groups, is misaligned with the data's structure. Employing two-way ANOVA followed by post-hoc comparisons is appropriate for statistical analysis.

      According to your suggestions, we adopted the Two-Way ANOVA for statistical analysis and updated it in the part of statistical methods, but the statistical results are consistent with the previous ones. Therefore, we did not modify the statistical results of the pictures.

  2. Oct 2024
    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      […] Strengths:

      The study has several important strengths: (i) the work on GDA stability and competition of GDA with point mutations is a very promising area of research and the authors contribute new aspects to it, (ii) rigorous experimentation, (iii) very clearly written introduction and discussion sections. To me, the best part of the data is that deletion of lon stimulates GDA, which has not been shown with such clarity until now.

      Weaknesses:

      The minor weaknesses of the manuscript are a lack of clarity in parts of the results section (Point 1) and the methods (Point 2).

      We thank the reviewer for their comments and suggestions on our manuscript. We also appreciate the succinct summary of key findings that the Reviewer has taken cognisance of in their assessment, in particular the association of the Lon protease with the propensity for GDAs as well as its impact on their eventual fate. Going ahead, we plan to revise the manuscript for greater clarity as suggested by Reviewer #1.

      Reviewer #2 (Public review):

      […] The study does what any bold and ambitious study should: it contains large claims and uses multiple sorts of evidence to test those claims.

      Weaknesses:

      While the general argument and conclusion are clear, this paper is written for a bacterial genetics audience that is familiar with the manner of bacterial experimental evolution. From the language to the visuals, the paper is written in a boutique fashion. The figures are even difficult for me - someone very familiar with proteostasis - to understand. I don't know if this is the fault of the authors or the modern culture of publishing (where figures are increasingly packed with information and hard to decipher), but I found the figures hard to follow with the captions. But let me also consider that the problem might be mine, and so I do not want to unfairly criticize the authors.

      For a generalist journal, more could be done to make this study clear, and in particular, to connect to the greater community of proteostasis researchers. I think this study needs a schematic diagram that outlines exactly what was accomplished here, at the beginning. Diagrams like this are especially important for studies like this one that offer a clear and direct set of findings, but conduct many different sorts of tests to get there. I recommend developing a visual abstract that would orient the readers to the work that has been done.

      Next, I will make some more specific suggestions. In general, this study is well done and rigorous, but doesn't adequately address a growing literature that examines how proteostasis machinery influences molecular evolution in bacteria.

      While this paper might properly test the authors' claims about protein quality control and evolution, the paper does not engage a growing literature in this arena and is generally not very strong on the use of evolutionary theory. I recognize that this is not the aim of the paper, however, and I do not question the authors' authority on the topic. My thoughts here are less about the invocation of theory in evolution (which can be verbose and not relevant), and more about engagement with a growing literature in this very area.

      The authors mention Rodrigues 2016, but there are many other studies that should be engaged when discussing the interaction between protein quality control and evolution.

      A 2015 study demonstrated how proteostasis machinery can act as a barrier to the usage of novel genes: Bershtein, S., Serohijos, A. W., Bhattacharyya, S., Manhart, M., Choi, J. M., Mu, W., ... & Shakhnovich, E. I. (2015). Protein homeostasis imposes a barrier to functional integration of horizontally transferred genes in bacteria. PLoS genetics, 11(10), e1005612

      A 2019 study examined how Lon deletion influenced resistance mutations in DHFR specifically: Guerrero RF, Scarpino SV, Rodrigues JV, Hartl DL, Ogbunugafor CB. The proteostasis environment shapes higher-order epistasis operating on antibiotic resistance. Genetics. 2019 Jun 1;212(2):565-75.

      A 2020 study did something similar: Thompson, Samuel, et al. "Altered expression of a quality control protease in E. coli reshapes the in vivo mutational landscape of a model enzyme." Elife 9 (2020): e53476.

      And there's a new review (preprint) on this very topic that speaks directly to the various ways proteostasis shapes molecular evolution:

      Arenas, Carolina Diaz, Maristella Alvarez, Robert H. Wilson, Eugene I. Shakhnovich, C. Brandon Ogbunugafor, and C. Brandon Ogbunugafor. "Proteostasis is a master modulator of molecular evolution in bacteria."

      I am not simply attempting to list studies that should be cited, but rather, this study needs to be better situated in the contemporary discussion on how protein quality control is shaping evolution. This study adds to this list and is a unique and important contribution. However, the findings can be better summarized within the context of the current state of the field. This should be relatively easy to implement.

      We thank the reviewer for their encouraging assessment of our manuscript. We appreciate that the manuscript may not be accessible for a general readership in its present form. We plan to revise the manuscript, in part by modifying figures and adding schematics, to afford greater clarity. We also appreciate the concern regarding situating this study in the context of other published work that relates proteostasis and molecular evolution. Indeed, this was a particularly difficult aspect for us given the different kinds of literature that were needed to make sense of our study. We plan on revising the manuscript by incorporating the references that the Reviewer has pointed out.

      Reviewer #3 (Public review):

      […] Strengths:

      The major strength of this paper is identifying an example of antibiotic resistance evolution that illustrates the interplay between the proteolytic stability and copy number of an antibiotic target in the setting of antibiotic selection. If the weaknesses are addressed, then this paper will be of interest to microbiologists who study the evolution of antibiotic resistance.

      Weaknesses:

      Although the proposed mechanism is highly plausible and consistent with the data presented, the analysis of the experiments supporting the claim is incomplete and requires more rigor and reproducibility. The impact of this finding is somewhat limited given that it is a single example that occurred in a lon strain and compensatory mutations for evolved antibiotic resistance mechanisms are described. In this case, it is not clear that there is a functional difference between the evolution of copy number versus any other mechanism that meets a requirement for increased "expression demand" (e.g. promoter mutations that increase expression and protein stabilizing mutations).

      We thank the reviewer for their in-depth assessment of our work and appreciate their concerns regarding reproducibility and rigor in analysis of our data. We will incorporate this feedback and provide the necessary clarifications in the revised version of our manuscript.

    1. Author Response:

      We would like thank reviewers for your comprehensive and insightful reviews of our manuscript. We highly value your constructive comments and suggestions and are preparing revisions that will enhance both the clarity and robustness of our study. Below is an outline of the changes we will implement in response to the points you raised.

      All three reviewers expressed concerns regarding the robustness of our conclusions about the relationship between task-related theta activity and aperiodic changes. We will revise the manuscript to present these conclusions more cautiously, stating that the findings indicate a potential contribution of aperiodic activity to what is traditionally interpreted as theta activity. While our results emphasize the importance of distinguishing between periodic and aperiodic components, further research is necessary to fully understand this relationship. We will conduct additional control analyses, including a comparison of the scalp topographies of theta and aperiodic components, to better understand the relationship between aperiodic and periodic (theta) activity.

      In response to Reviewer #1's request for greater transparency in our reporting of methodological details, we will provide key clarifications. We will add a clear statement noting that the primary results are based on data from middle-aged to older adults, some of whom had subjective cognitive complaints (SCC). However, it is important to note that no differences were observed between the SCC group and the control group regarding periodic or aperiodic changes in power. Additionally, the main findings were replicated in a sample of middle-aged adults.

      To address potential confounding factors, we will include an analysis contrasting response-related ERPs with the identified aperiodic components. However, we do not entirely agree with the assertion that this will necessarily clarify the results. ERPs are not inherently distinct from aperiodic (or periodic) activity; they may reflect changes in aperiodic (or periodic) power. In our view, examining aperiodic and periodic power, ERPs, or time-frequency decomposition with baseline correction provides different perspectives on the same data. Nonetheless, the combined analyses and their results are intended to guide future researchers toward the most suitable approach for interpreting this data.

      Reviewer #3 raised concerns regarding the task's effectiveness in evoking theta power and the ability of spectral parameterization method (specparam) to adequately quantify background activity around theta bursts. To address these concerns, we will include additional visualizations demonstrating that the task reliably elicited theta (and delta) activity. Regarding the reviewer's concerns about specparam and theta bursts, it is important to clarify that specparam, in the form we used, does not incorporate time information; rather, it can be applied to any power spectral density (PSD), independent of how the PSD is derived. Specparam’s performance depends on the methods used to estimate frequency content. For time-frequency decomposition, we employed superlets (https://doi.org/10.1038/s41467-020-20539-9), which have been shown to resolve short bursts of activity more effectively than other methods. To our knowledge, superlets provide the highest resolution in terms of both time and frequency. Moreover, to improve stability, we performed spectral parameterization on trial-averaged power (in contrast to the approach in https://doi.org/10.7554/eLife.77348). Nonetheless, we will conduct a simulation to test whether specparam can reliably resolve low-frequency peaks over the 1/f activity.

      Reviewer #2 suggested that the manuscript would benefit from a more detailed account of the effects. In response, we will include more detailed quantifications of the analyzed effects, such as model error and R² values.

      We believe that the planned revisions will strengthen the manuscript and address the primary concerns raised by the reviewers. We sincerely appreciate your thoughtful feedback and look forward to submitting an improved version of the manuscript soon.

      Once again, thank you for your time and expertise in reviewing our work.

      Sincerely,

      Andraž Matkovič & Tisa Frelih

    1. Author response:

      The following is the authors’ response to the original reviews.

      We greatly appreciate reviewer 2 comments with both insightful and clearly evaluated assessments of this study that include, much appreciated reframing and evaluation of the study’s advances in the sleep field. It is a constructive review and provides considerable added value to this study in better defining the biological significance of the findings, including both advances and limitations.  

      Reviewer 2 nicely summarized the work as “…highlight(ing) the accumulation and resolution of sleep need centered on the strength of excitatory synapses onto excitatory neurons.”. The reviewer succinctly placed one of the main electrophysiological findings in context of one of the sleep field’s most prevalent views, “that LTP associated with wake, leads to the accumulation of sleep need by increasing neuronal excitability, and by the "saturation" of LTP capacity.” It has been speculated that “This saturation subsequently impairs the capacity for further ongoing learning. This new data provides a satisfying mechanism of this saturation phenomenon (and its restoration by recovery sleep) by introducing the concept of silent synapses.” We want to emphasize that sleep need and its resolution involves more than just homeostasis of excitatory synaptic strength but may also be extended to include homeostasis of excitatory synaptic potential to undergo LTP (a homeostasis of meta-plasticity), with implications for learning and memory.   

      Reviewer 2 also identified another advance made by this study, summarized as, “The new snRNAseq dataset indicates the sleep need is primarily seen (at the transcriptional level) in excitatory neurons, consistent with a number of other studies.” References for these studies are nicely provided by the reviewer. Our analysis of this data extends the evidence for transcriptional sleep-need-driven changes, observed by us and others in excitatory neurons to more particularly involve the excitatory neurons in layers 2-5, targeting  intra-telencephalic neurons.  

      Reviewer 2, importantly noted, “New snRNAseq analysis indicates that SD drives the expression of synaptic shaping components (SSCs) consistent with the excitatory synapse as a major target for the restorative basis of sleep function”, and that “SD-induced gene expression is also enriched for autism spectrum disorder (ASD) risk genes”. These comments are well appreciated as they emphasize that beyond identification of the major target cell type of sleep function, the major sleep-target, gene-ontological characteristics are starting to be addressed.

      Reviewer 2 commented on the molecular sleep model, making a key observation that “SDinduced gene expression in excitatory neurons overlaps with genes regulated by the transcription factor MEF2C and HDAC4/5 (Figure 4),” and accurately discusses the significance with respect to the proposed model.

      We are in complete agreement with the observation that the molecular sleep model presented is not “definitively supported by the new data and in this regard should be viewed as a perspective…”. One of the more glaring gaps in supporting evidence is the absence of understanding of the role of HDAC4/5 (part of the SIK3-HDAC4/5 pathway) in sleep need modulation of excitatory synapses. Resolution of this issue might be approached by assessment of the synaptic effects of constitutively nuclear HDAC4/5. The current study provides a first step in the assessment by showing a correlation between HDAC4/5 and MEF2c target genes and a subset of differentially expressed synaptic shaping component (SSC) genes that modulate excitatory synapse strength and phenotype. However, the functional studies have yet to be completed. Complimentary studies on SD-induced SSC-DEGs (identified in this study) are also needed for follow-up characterization of their sleep need induced functional impact (both strength and meta-plasticity modulation) on the most relevant excitatory synapses (as identified in the current study).

      We agree with both reviewers 1 and 2 that, “Additional work is also needed to understand the mechanistic links between SIK3-HDAC4/5 signaling and MEF2C activity”. Reviewer 2 clarifies the key unresolved issue as, “cnHDAC4/5 suppresses NREM amount and NREM SWA but had no effect on the NREM-SWA increase following SD (Zhou et al., Nature 2022). Loss of MEF2C in CaMKII neurons had no effect on NREM amount and suppressed the increase in NREM-SWA following SD (Bjorness et al., 2020)”. One may conclude with reviewer 2, “These instances indicate that cnHDAC4/5 and loss of MEF2C do not exactly match suggesting additional factors are relevant in these phenotypes.”

      An understanding of the mechanism(s) responsible for the relationship between sleep need and SWA are critical to the evaluation of sleep need’s correlation with sleep DEGs and synaptic transmission, including “additional factors” as suggested by reviewer 2. SWA might result from a decrease of cortical glutamatergic neurotransmission below some threshold, which might occur in response to prolonged waking (possibly in response to waking activity-induced local increases of adenosine?), rather than being a cause of, or, being intimately involved in resolving sleep need.  

      An increase of SWA in association with SD can result directly from an acute SD-induced increase in local adenosine concentration. This will elicit an ADORA1-mediated down-regulation of glutamate excitatory neurotransmission in the cortex (Bjorness et al., 2016) and in cholinergic arousal centers (Rainnie et al., 1994; Porkka-Heiskanen et al., 1997; Portas et al., 1997; Li et al., 2023). When MEF2c is derepressed by chronic loss of HDAC4 function, SWA is facilitated (Kim et al., 2022). It is plausible that loss of HDAC4 function contributes to the increased SWA by downscaling glutamate excitatory transmission (independent of sleep need). This is expected to result from derepressed, MEF2c mediated sleep-gene expression.  

      Similarly, over-expression of constitutively active HDAC4 (cnHD4) can contribute to chronic upscaling of cortical glutamate synaptic strength to depress SWA (again, independent of sleep need). Thus, facilitation or depression of SWA correlates with up or down scaling effects on cortical glutamate neurotransmission, respectively, even in the absence of  a direct effects on sleep need (Figure 4D). Many reagents that reduce the excitability of glutamate pyramidal cells by various mechanisms, including anesthetics like isoflurane, barbiturates or benzodiazepines in addition to those activating ADORA1, increase SWA. Finally, it is important to acknowledge that direct evidence for this proposed link of SWA to cortical glutamate transmission remains in need of further investigation. Thus, SWA may reflect generalized cortical glutamate synaptic activity whether modulated by sleep function or by other agents.

      Still, other factors that can have a role mediating some of the mis-match between cnHD4/5 DEGs and Mef2c-cKO DEGs, include the broader over-expression of AAV-cnHD4 compared to CamKII- driven Cre KO of Mef2c. The cnHD4 overexpression can increase arousal center activity in the hypothalamus and other arousal areas to interfere with SWA, but not to the exclusion of SD-DEG repression resulting from a repression of MEF2c-mediated sleep gene expression.

      The critique by reviewer 1 raises a number of important technical issues with this study. A key, potentially critical issue raised by reviewer 1, is that of our method of experimental sleep deprivation (ESD). The reviewer suggests that “…neuronal activity/induction of plasticity”, peculiar to the ESD methodology employed in this study, “…rather than sleep/wake states are responsible for the observed results…”.  

      In this study, a slow-moving treadmill (SMTM; 0.1km/hour, as stated in the methods), requiring locomotion to avoid bumping into the backwall of a false bottomed plexiglass cage was used to induce ESD. A mouse, in its home cage, typically moves much faster than 0.1km/hour and the mouse is able to eat and drink freely while in the cage (see file: video 1). Furthermore, our observations using a beam-break cage, indicate that mice spontaneously travel for comparable to longer distances over 6 hours than the treadmill moves (during the ESD of 6 hours). Finally, our EEG recordings of mice on the active treadmill show 100% waking while it is on (Bjorness et al., 2009), whereas prevention of NREM sleep (including transition time) using the “gentle handling”  (GH) technique occurs depending on the diligence of the experimenter.  

      The accommodation (one week prior to ESD) included exposure to the treadmill-on for 30minutes ~ZT=2 & ZT= 14 hours (now spelled out in the “Materials & Methods” section). Thus, the likelihood of motor learning seems vanishingly small.  

      As with all ESD methods, there must be some associated increase in sensory and motor neuronal activity to drive arousal and prevent transition to sleep. For example, the more widely employed GH method of ESD involves sensory stimulation (tactile and or auditory) of sufficient intensity to induce postural change from that associated with sleep to that associated with wake (often involving some locomotion). Like the SMTM, both sensory and motor systems are likely to be engaged. Unlike the SMTM method, the stimulation used in GH is variably-intermittent from mouse to mouse and from experimenter to experimenter as it is applied only when the experimenter judges the mouse to be falling asleep. . It can even be argued that the varied and unpredictable ways in which these interactions happen cause plastic changes with a higher likelihood than the constant slow motion of a treadmill – the mice know how to walk, after all. In other protocols, novel objects are introduced to the animals – those will certainly trigger plastic processes –something that is avoided using a slow-running treadmill to which the mouse has been accommodated, for sleep deprivation.  

      The changes induced by SMTM technique are reproducible and induce arousal by somatic stimulation of sufficient intensity to induce natural motor activity as with GH. All ESD methods induce motor activity and it is reasonable to speculate that induced, motor activity is essential for effective ESD for the prolonged durations (>4 hours in mice) that elicit high sleep need. Electrophysiological assessment of SD-evoked increases in mEPSC amplitude and frequency using GH-ESD (Liu et al., 2010) are similar in all respects to our observations of the response to SMTMESD (Bjorness et al., 2020). Further studies might directly address a comparison of SMTM-ESD to GH-ESD as suggested by reviewer 1 but are regrettably outside the scope and resources of our study.

      The model presented in Figure 4C is consistent with the experimental findings with respect to the observed electrophysiological changes (including loss of silent synapses and increased AMPA/NMDA ratio after ESD of 6 hours) and altered gene expression that includes enrichment of SSC genes, many of which (7 candidates are listed) can affect both AMPA/NMDA ratio and silent synapses. No claim of mechanism linking the changed expression to altered AMPAR or NMDAR activity can be made at this point, even as to polarity of gene expression, related to electrophysiological outcome. Furthermore, some transcripts may involve receptor trafficking while others more directly affect activated receptor function. To help illustrate the complexity of interpreting gene up-regulation, consider the following hypothetical scenario. If a gene like upregulated Grin3a acts rapidly, it may facilitate reduction of NMDAR function (decreasing plasticity) during ESD, whereas upregulation of a gene like Kif17, if acting in a more delayed manner, might enhance NMDAR surface expression and activity (increasing silent synapses) in response to ESD, during recovery sleep. Relevant references, consistent with these various outcomes are supplied in the manuscript but further investigation is clearly needed, or as reviewer 2 so aptly commented, this work “…provides a framework to stimulate further research and advances on the molecular basis of sleep function”.  

      Several issues are raised by reviewer 1 concerning the electrophysiological methodology and statistical assessment. In regard to the former, we closely followed established protocols employed in the frontal neocortex (Myme et al., 2003). We did not include the details for series resistance monitoring. Series resistance values ranged between 8 and 15 MOhm and experiments with changes larger than 25% not used for further analyses. Thank you for bringing this  oversight on our part, to our attention. This essential information, that is unfailingly gathered for all our whole cell recordings, is now added to the version of record.

      The -90 mV holding potential was chosen according to precedent (Myme et al., 2003). It increases driving force and permits lower stimulus strength for the same response size – reducing the likelihood for polysynaptic responses. Experiments with multiple response peaks at -90 mV were not included in the analysis. The -90 mV holding potential also increases NMDA receptor Mg++ block resulting in a minimally contaminated AMPA response. This information is now added to our submitted version of record.

      The statistical assessments shown in Table 1 refer to two sets of data measured from 3X2=6 different cohorts for each sleep condition (CS, SD, RS): 1) AMPA & NMDA EPSCs and 2) AMPA/NMDA FR ratios (FRR; now bolded in row 1, second tab, Table S1). As stated in the results section, “A two-way ANOVA analysis showed a significant interaction between AMPA matched to NMDA EPSC response for each neuron, and sleep condition (F (2, 21) = 7.268, p<0.004; Figure 1 A, C, E). When considered independently, neither the effect of sleep condition nor of EPSC subtype reached significance at p<0.05 (Figure 1 C)”.  

      As noted by reviewer 1, we inadvertently dropped one of the data points from the RS FR and FR ratio (FRR) statistical analysis (raw data in the third tab of Table S1, statistical data in fourth and fifth tab and illustrated in figure 1 F). Thanks to this appreciated, rigorous review, we can correct the oversight (using raw data unchanged in Table S1, third tab). The Table S1 and figure 1 F are now corrected for the version of record. For better clarity, we now use two tabs, the fourth and fifth tabs, respectively of Table S1, for separate stat analyses of FR and FRR data.

      The significance of the AMPA/NMDA FRR across sleep conditions was assessed with the KruskalWallis test, a non-parametric method. The two-stage linear step-up procedure of Benjamini, Krieger, and Yekutieli (BKY) was used to control for the FDR across multiple sleep conditions, in the non-parametric Kruskal-Wallis test but it is usually less powerful than tests presuming normal distributions like the one-way ANOVA and Holm-Sidak’s test. We have now added re-analyzed  FRR across CS, SD and RS conditions using a normal one-way ANOVA (Table S1, tab5). The results now read, “The difference between  sleep conditions and FRR is significant (F (2, 19) = 11.3, Table S1, tab5). Multiple comparisons (Holm-Sidak, Table S1, tab5) indicate the near absence of silent synapses was reversed by either CS or RS (SD/CS; p<0.0011 and SD/RS: p<0.0006; Table S1, tab 5; Figure 1 F).”. These analyses compare well to the non-parametric assessment using the  KruskalWallis test (significant at p= 0.0006) with BYK correction for multiple comparison analysis to give for CS-SD, p<= 0.0262 and for RS-SD, p<= 0.0006 (statistics also shown in Table S1, tab5). [Also shown in tab5 is the “standard approach of correcting for family wise error rate”, namely, Dunn’s test. It is more conservative but less powerful than the BYK correction- in general the tradeoff of greater power/ less conservative is better tolerated when many comparisons are made, however, it can be argued that in the present analysis type 2 errors are also potentially misleading and thus not well tolerated.]  The modifications of our statistical analyses, inspired by reviewer 1,  did not affect the interpretation of the data nor the conclusions.  

      Bjorness TE, Kelly CL, Gao T, Poffenberger V, Greene RW (2009) Control and function of the homeostatic sleep response by adenosine A1 receptors. The Journal of neuroscience : the official journal of the Society for Neuroscience 29:1267-1276.

      Bjorness TE, Dale N, Mettlach G, Sonneborn A, Sahin B, Fienberg AA, Yanagisawa M, Bibb JA, Greene RW (2016) An Adenosine-Mediated Glial-Neuronal Circuit for

      Homeostatic Sleep. The Journal of neuroscience : the official journal of the Society for Neuroscience 36:3709-3721.

      Bjorness TE, Kulkarni A, Rybalchenko V, Suzuki A, Bridges C, Harrington AJ, Cowan CW, Takahashi JS, Konopka G, Greene RW (2020) An essential role for MEF2C in the cortical response to loss of sleep in mice. Elife 9.

      Kim SJ et al. (2022) Kinase signalling in excitatory neurons regulates sleep quantity and depth. Nature 612:512-518.

      Li B, Ma C, Huang YA, Ding X, Silverman D, Chen C, Darmohray D, Lu L, Liu S, Montaldo G, Urban A, Dan Y (2023) Circuit mechanism for suppression of frontal cortical ignition during NREM sleep. Cell 186:5739-5750 e5717.

      Liu ZW, Faraguna U, Cirelli C, Tononi G, Gao XB (2010) Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience 30:8671-8675.

      Myme CI, Sugino K, Turrigiano GG, Nelson SB (2003) The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices. Journal of neurophysiology 90:771-779.

      Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265-1268.

      Portas CM, Thakkar M, Rainnie DG, Greene RW, McCarley RW (1997) Role of adenosine in behavioral state modulation: a microdialysis study in the freely moving cat. Neuroscience 79:225-235.

      Rainnie DG, Grunze HC, McCarley RW, Greene RW (1994) Adenosine inhibition of mesopontine cholinergic neurons: implications for EEG arousal. Science 263:689692.

    1. Author response

      We appreciate the positive comments and constructive suggestions from the editors and reviewers, which will help us improve our manuscript. We will implement the changes as requested by the reviewers, focusing primarily on revising and clarifying the following aspects:

      First, we will clarify the use of biological and technical replicates in each experiment and provide more details about the statistical analyses conducted. Additionally, we plan to include a schematic representation of the experimental design.

      Second, we will explain the experiment conducted to rule out hormonal effects or differences in the oocyte maturation method used. We will also indicate the concentration of OVGP1 in the oviduct and explain why we selected OVGP1 as the probable cause of species specificity.

      Third, by addressing all of the reviewers' suggestions, we aim to resolve any concerns, inconsistencies, or minor errors identified by the reviewers.

      We are committed to addressing all the issues raised by the reviewers and believe that the manuscript will greatly benefit from the insightful suggestions and invaluable contributions of the editors and reviewers.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The paper begins with phenotyping the DGRP for post-diapause fecundity, which is used to map genes and variants associated with fecundity. There are overlaps with genes mapped in other studies and also functional enrichment of pathways including most surprisingly neuronal pathways. This somewhat explains the strong overlap with traits such as olfactory behaviors and circadian rhythm. The authors then go on to test genes by knocking them down effectively at 10 degrees. Two genes, Dip-gamma and sbb, are identified as significantly associated with post-diapause fecundity, and they also find the effects to be specific to neurons. They further show that the neurons in the antenna but not the arista are required for the effects of Dip-gamma and sbb. They show that removing the antenna has a diapause-specific lifespan-extending effect, which is quite interesting. Finally, ionotropic receptor neurons are shown to be required for the diapause-associated effects.

      Strengths and Weaknesses:

      Overall I find the experiments rigorously done and interpretations sound. I have no further suggestions except an ANOVA to estimate the heritability of the post-diapause fecundity trait, which is routinely done in the DGRP and offers a global parameter regarding how reliable phenotyping is. A minor point is I cannot find how many DGRP lines are used.

      Thank you for the suggestions. We screened 193 lines and we will add that information to the methods. Additionally, we will add the heritability estimate of the post-diapause fecundity trait.

      Reviewer #2 (Public Review):

      Summary

      In this study, Easwaran and Montell investigated the molecular, cellular, and genetic basis of adult reproductive diapause in Drosophila using the Drosophila Genetic Reference Panel (DGRP). Their GWAS revealed genes associated with variation in post-diapause fecundity across the DGRP and performed RNAi screens on these candidate genes. They also analyzed the functional implications of these genes, highlighting the role of genes involved in neural and germline development. In addition, in conjunction with other GWAS results, they noted the importance of the olfactory system within the nervous system, which was supported by genetic experiments. Overall, their solid research uncovered new aspects of adult diapause regulation and provided a useful reference for future studies in this field.

      Strengths:

      The authors used whole-genome sequenced DGRP to identify genes and regulatory mechanisms involved in adult diapause. The first Drosophila GWAS of diapause successfully uncovered many QTL underlying post-diapause fecundity variations across DGRP lines. Gene network analysis and comparative GWAS led them to reveal a key role for the olfactory system in diapause lifespan extension and post-diapause fecundity.

      Weaknesses:

      (1) I suspect that there may be variation in survivorship after long-term exposure to cold conditions (10ºC, 35 days), which could also be quantified and mapped using genome-wide association studies (GWAS). Since blocking Ir21a neuronal transmission prevented flies from exiting diapause, it is possible that natural genetic variation could have a similar effect, influencing the success rate of exiting diapause and post-diapause mortality. If there is variation in this trait, could it affect post-diapause fecundity? I am concerned that this could be a confounding factor in the analysis of post-diapause fecundity. However, I also believe that understanding phenotypic variation in this trait itself could be significant in regulating adult diapause.

      We agree that it is possible that the ability to endure cool temperatures per se may influence post-diapause fecundity. However, cool temperature is the essential diapause-inducing condition in Drosophila, so it is not obvious how to separate those effects experimentally, and we agree that phenotypic variation in the cool-sensitivity trait itself could be significant in regulating diapause.

      (2) On p.10, the authors conclude that "Dip-𝛾 and sbb are required in neurons for successful diapause, consistent with the enrichment of this gene class in the diapause GWAS." While I acknowledge that the results support their neuronal functions, I remain unconvinced that these genes are required for "successful diapause". According to the RNAi scheme (Figure 4I), Dip-γ and sbb are downregulated only during the post-diapause period, but still show a significant effect, comparable to that seen in the nSyb Gal4 RNAi lines (Figure 4K).

      Our definition of successful diapause is the ability to produce viable adult progeny post-diapause, which requires that the flies enter, maintain, and exit diapause, alive and fertile. We will restate our conclusion to say that Dip-γ and sbb are required for post-diapause fecundity.

      In addition, two other RNAi lines (SH330386, 80461) that did not show lethality did not affect post-diapause fecundity.

      We interpret those results to mean that those RNAi lines were not effective since Dip-γ and sbb are known to be essential.

      Notably, RNAi (27049, KK104056) substantially reduced non-diapause fecundity, suggesting impairment of these genes affects fecundity in general regardless of diapause experience. Therefore, the reduced post-diapause fecundity observed may be a result of this broader effect on fecundity, particularly in a more "sensitized" state during the post-diapause period, rather than a direct regulation of adult diapause by these genes.

      Ubiquitous expression of RNAi lines #27049 or #KK104056 was lethal, so we included the tubGAL80ts repressor to prevent RNAi from taking effect during development. Flies had to be shifted to 30 °C to inactivate the repressor and thereby activate the RNAi. At 30 °C, fecundity of the controls (GFP RNAi lines #9331, KK60102) were also lower (average non-diapause fecundity = 12 and 19 respectively) and similar to #27049 or #KK104056. We also assessed the knockdown using Repo GAL4 and nSyb GAL4 and did not find a significant difference/decline in the non diapause fecundity for #27049 and #KK104056 as compared to a nonspecific RNAi control (#54037).

      (3) The authors characterized 546 genetic variants and 291 genes associated with phenotypic variation across DGRP lines but did not prioritize them by significance. They did prioritize candidate genes with multiple associated variants (p.9 "Genes with multiple SNPs are good candidates for influencing diapause traits."), but this is not a valid argument, likely due to a misunderstanding of LD among variants in the same gene. A gene with one highly significantly associated variant may be more likely to be the causal gene in a QTL than a gene with many weakly associated variants in LD. I recommend taking significance into account in the analysis.

      We agree with the reviewer, and in Supplemental Table S3 we list top-associated SNPs in order from the lowest (most significant) p-value. Most of the top-associated genes from this analysis were uncharacterized CG numbers for which there were insufficient tools available for validation purposes. Nevertheless, there is overlap amongst the highly significant genes by p-value and those with multiple SNPs. Amongst the top 15 genes with multiple associated SNPs- CG18636 & CR15280 ranked 3rd by p-value, CG7759 ranked 4th, CG42732 ranked 10th, and Drip ranked 30th (all above the conservative Bonferroni threshold of 4.8e-8) while three Sbb-associated SNPs also appear in Table 3 above the standard e-5 threshold.

      Reviewer #3 (Public Review):

      Summary:

      Drosophila melanogaster of North America overwinters in a state of reproductive diapause. The authors aimed to measure 'successful' D. melanogaster reproductive diapause and reveal loci that impact this quantitative trait. In practice, the authors quantified the number of eggs produced by a female after she exited 35 days of diapause. The authors claim that genes involved with olfaction in part contribute to some of the variation in this trait.

      Strengths:

      The work used the power platform of the fly DRGP/GWAS. The work tried to verify some of the candidate loci with targeted gene manipulations.

      Weaknesses:

      Some context is needed. Previous work from 2001 established that D. melanogaster reproductive diapause in the laboratory suspends adult aging but reduces post-diapause fecundity. The work from 2001 showed the extent fecundity is reduced is proportional to diapause duration. As well, the 2001 data showed short diapause periods used in the current submission reduce fecundity only in the first days following diapause termination; after this time fecundity is greater in the post-diapause females than in the non-diapause controls.

      The 2001 paper by Tatar et al. reports the number of eggs laid after 3, 6, or 9 weeks in diapause conditions. Thus the diapause conditions used in this study (35 days or 5 weeks) are neither short nor long, rather intermediate. Does the reviewer have a specific concern?

      In this context, the submission fails to offer a meaningful concept for what constitutes 'successful diapause'. There is no biological rationale or relationship to the known patterns of post-diapause fecundity. The phenotype is biologically ambiguous.

      We have unambiguously defined successful diapause as the ability to produce viable adult progeny post-diapause. Other groups have measured % of flies that arrest ovarian development or % of post-diapause flies with mature eggs in the ovary, or # eggs laid post-diapause; however we suggest that # of viable adult progeny produced post-diapause is more meaningful than the other measurements from the point of view of perpetuating the species.

      I have a serious concern about the antenna-removal design. These flies were placed on cool/short days two weeks after surgery. Adults at this time will not enter diapause, which must be induced soon after eclosion. Two-week-old adults will respond to cool temperatures by 'slowing down', but they will continue to age on a time scale of day-degrees. This is why the control group shows age-dependent mortality, which would not be seen in truly diapaused adults. Loss of antennae increases the age-dependent mortality of these cold adults, but this result does not reflect an impact on diapause.

      We carried out the lifespan study under two different conditions. We either removed the antenna and moved the flies directly to 10 °C or we removed the antenna and allowed a “wound healing” period prior to moving the flies to 10 °C (out of concern that the flies might die quickly because wound healing may be impaired at 10 °C). In both cases, antenna removal shortened lifespan. Furthermore the lifespan extension at 10 °C was similar regardless of whether flies had experienced two weeks at 25 °C or not.

      • Appraisal of whether the authors achieved their aims, and whether the results support their conclusions.

      The work falls well short of its aim because the concept of 'successful diapause' is not biologically established. The paper studies post-diapause fecundity, and we don't know what that means. The loci identified in this analysis segregate for a minimally constructed phenotype. The results and conclusions are orthogonal.

      It is unclear to us why the reviewer has such a negative opinion of measuring post-diapause fecundity, specifically the ability to produce viable progeny post-diapause. The value of this measurement seems obvious from the point of view of perpetuating the species.

      • The likely impact of the work on the field, and the utility of the methods and data to the community.

      The work will have little likely impact. Its phenotype and operational methods are weakly developed. It lacks insight based on the primary literature on post-diapause. The community of insect diapause investigators are not likely to use the data or conclusions to understand beneficial or pest insects, or the impact of a changing climate on how they over-winter.

      The reviewer has not explained why his/her opinion is so negative.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Perform an ANOVA to estimate heritability.

      We will do this.

      (2) List the number of DGRP lines tested.

      193

      Reviewer #2 (Recommendations For The Authors):

      [Minor suggestions]

      (1) Check Drosophila italics

      We will do this.

      (2) It would be informative to include the number of DGRP lines used in this study in the Results and Methods section.

      We will include the information that we assessed 193 DGRP lines.

      (3) Figure 1C - several dots are missing at the top of the line.

      We will correct.

      (4) Figures 1E, F - Why use a discontinuous histogram for continuous distribution? Consider using a continuous histogram (e.g. Lafuente et al. (2018) Figure 1C).

      We will do this.

      (5) Figure 1F - Why have fewer bins than panel E?

      Figure 1F is normalized post-diapause fecundity. Individual post-diapause fecundity was normalized to the mean non-diapause fecundity. Then the normalized individual post-diapause fecundity was averaged to get the mean normalized post-diapause fecundity for the DGRP line. So the bins are different in panel E. Please refer to Supplemental Table S1.

      (6) Figure 2D - It would be informative to have fold enrichment stats.

      The following will be added in the methods section: The Gene Ontology (GO) categories and Q-values from the false discovery rate (FDR)-corrected hypergeometric test for enrichment are reported. Additionally, coverage ratios for the number of annotated genes in the displayed network versus the number of genes with that annotation in the genome are provided. GeneMANIA estimates Q-values using the Benjamini-Hochberg procedure.

      (7) Supplementary table (Table S5) or supplemental table (other supplementary tables)? Need consistency (to Supplementary?)

      We will change ‘Supplementary Table S5’ to ‘Supplemental Table S5’.

      (8) Figure 5D,E - unused ticks on the x-axis.

      The unused ticks on the x-axis will be removed from Figures 5D and E.

      Reviewer #3 (Recommendations For The Authors):

      • Suggestions for improved or additional experiments, data or analyses.

      The authors cannot redo the GWAS with an alternative trait that might better reflect 'successful diapause', and I am not even sure what such a trait would involve or mean. Given this limitation, the authors should consider how they can conduct additional experiments to better define, justify, and elaborate how post-diapause reproduction relates to the mechanisms, processes, depth, and 'success' of diapause.

      We agree that it is entirely unclear what trait would be a better measure of successful diapause. Other investigators might have chosen to measure something different but there is no reason why a different choice would be a better choice. We do not believe that this is a “limitation.” We believe that we have unambiguously defined and justified  post-diapause reproduction as a measurement of successful diapause with respect to perpetuating the species through a stressful period.

      • Recommendations for improving the writing and presentation.

      The mechanics of the writing are fine, aside from some typos/grammar issues. But, the paper is conceptually superficial and tautological. It claims to provide a 'stringent criterion' for 'successful diapause', then measures an unjustified trait, then claims this demonstrates variation for 'successful diapause'.

      We respectfully disagree with this opinion.

      This story is conducted without reference to prior, primary literature or on the mechanisms of reproductive diapause. The presentation may be improved by considering the literature and precedence for what and how reproductive diapause is induced, maintained, and terminated ... in many insects as well as Drosophila

      We will revisit our citations of the literature and apologize for any inadvertent omissions.

    1. Author response:

      The following is the authors’ response to the original reviews.

      In our initial submission, reviewers highlighted that the major limitations of our study were related to both the number of minibinders tested as well as the number of optimizations we evaluated for improving minibinder function. In this revision, we have focused on expanding the minibinders tested. To do so, we selected two previously published minibinders against the epidermal growth factor receptor (EGFR). Selection of EGFR as a target enabled us to evaluate two minibinders that bind at different sites, unlike the previously evaluated binders LCB1 and LCB3 which both bind the same interface on SARS-CoV-2 Spike. Further, using EGFR as a target enabled us to qualitatively compare the efficacy of minibinder-coupled chimeric antigen receptors against an existing anti-EGFR CAR. We believe the results here demonstrate broader generalizability of our approach across binding sites, targets, and minibinders. We hope this addition is sufficient to convince future would-be users of these tools to attempt synthetic receptor engineering using minibinders against their protein of choice.

      Reviewers made comments about the presentation of flow data and the use of statistics throughout the manuscript. We did not modify how flow data are presented as the density plots we used are common throughout the field. We have opted to not include statistics – we believe that in the case of most of the experiments we show, our findings are obvious. In cases where statistics would be helpful for discerning whether subtle effects are real – for example, comparing the linker-based optimizations or comparing the anti-EGFR CARs – we believe that other experimental factors like construct expression are sufficient confounds that even in the presence of statistically significant effects we would be leading readers astray to make such claims about our data. As such, we have sought to limit the claims we make and hope that reviewers and audience agree we do not over interpret our data without statistical support.

      On more minor points, both reviewers addressed the differences in Figure 5A and 5C, which we addressed in our figure legend and in the previous response to reviews is the result of these data originating from different time points of the same assay. Reviewer #2 believed we should be more staid in our comments about linker optimality, which we have addressed by changing the referenced line in the discussion. Otherwise, we have made no modifications to figures or text beyond the addition of new data.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      We addressed the issue of “tolerability” in our answers to Reviewer 2 and in the revised manuscript where we had added data concerning tolerability, see the paragraph in the Results Section, page 11:

      "Finally, tolerability studies were performed with the administration of up to 20 and 40 mg/kg eq. NT (i.e. 25.8 and 51.6 mg/kg of VH-N412) with n=3 for these doses. The rectal temperature of the animals did not fall below 32.5 to 33.2°C, similar to the temperature induced with the 4 mg/kg eq. NT dose. We observed no mortality or notable clinical signs other than those associated with the rapid HT effect such as a decrease in locomotor activity. We thus report a very interesting therapeutic index since the maximal tolerated dose (MTD) was > 40 mg/kg eq. NT, while the maximum effect is observed at a 10x lower dose of 4 mg/kg eq. NT and an ED50 established at 0.69 mg/kg as shown in Figure 1G.”

      We have slightly modified the paragraph above to emphasize that the tolerability studies were performed in “naïve mice”. 

      "Finally, tolerability studies were performed in naïve mice with the administration of up to 20 and 40 mg/kg eq. NT (i.e. 25.8 and 51.6 mg/kg of VH-N412) with n=3 for these doses. The rectal temperature of the animals did not fall below 32.5 to 33.2°C, similar to the temperature induced with the 4 mg/kg eq. NT dose. We observed no mortality or notable clinical signs other than those associated with the rapid HT effect such as a decrease in locomotor activity. We thus report a very interesting therapeutic index since the maximal tolerated dose (MTD) was > 40 mg/kg eq. NT, while the maximum effect is observed at a 10x lower dose of 4 mg/kg eq. NT and an ED50 established at 0.69 mg/kg as shown in Figure 1G.”

      We propose to add a sentence in the Results section, page 11, relative to the fact that we can also induce severe hypothermia in rats using conjugates similar to VH-N412.

      We also added in the Discussion section (page 38) that we could induce hypothermia with different conjugates in mice, rats and pigs.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1) Some of the figures are of rather poor quality. For example, the H&E and Sirius Red stainings in Figures 3 and 4 are quite poor so it is difficult to see what is going on in the muscles. The authors should take note of another publication on dy3K/dy3K mice of similar age (PMID: 31586140) where such images are of much higher quality. Similarly, the Western blot for laminin-alpha2 (Figure 4B) of the wild-type mouse needs improvement. If the single laminin-alpha2 protein is not detected, there is an issue with the denaturation buffer used to load the protein.

      Thank you for the valuable suggestions. We have read the study on dy3K/dy3K mice of similar age (PMID: 31586140) which showed dystrophic changes in dy3K/dy3K muscle throughout the disease course with the whole muscle and representative muscle area. We have generated new figures with higher quality including the whole muscle and representative muscle area for the H&E and Sirius Red stainings.  However, due to the large images, we have added them in the new Figure supplement 2 and Figure supplement 3. Also, we have changed the denaturation buffer used to load the protein, and performed Western blot of laminin α2, the result of the laminin α2 protein of the wild-type mice (n =3) and dyH/dyH mice (n =3) detected by Western blot has been showed in Figure 4B.

      (2) My biggest concern is, however, the many overstatements in the manuscript and the over-interpretation of the data. This already starts with the first sentence in the abstract where the authors write: "Understanding the underlying pathogenesis of LAMA2- related muscular dystrophy (LAMA2-MD) have been hampered by lack of genuine mouse model." This is not correct as the dy3K/dy3K, generated in 1997 (PMID: 9326364), are also Lama2 knockout mice; there are also other strains (dyW/dyW mice) that are severely affected and there are the dy2J/dy2J mice that represent a milder form of LAMA2-MD. Similarly, the last two sentences of the abstract "This is the first reported genuine model simulating human LAMA2-MD. We can use it to study the molecular pathogenesis and develop effective therapies." are a clear overstatement. The mechanisms of the disease are well studied and the above-listed mouse models have been amply used to develop possible treatment options. The overinterpretation concerns the results from transcriptomics. The fact that Lama2 is expressed in particular cell types of the brain does not at all imply that Lama2 knockout mice have a defect in the blood-brain barrier as the authors state. If there are no functional data, this cannot be stated. Indications for a blood-brain barrier defect come from work in dy3K/dy3K mice (PMID: 25392494) and this needs to be written like this.

      Thank you for your comment and sorry for the overstatements in the manuscript. We have carefully considered our previous statements and corrected them accordingly. We have changed the first sentence in the abstract into "Our understanding of the molecular pathogenesis of LAMA2-related muscular dystrophy (LAMA2-MD) requires improving". Also, we have changed the last two sentences in the abstract with "In summary, this study provided useful information for understanding the molecular pathogenesis of LAMA2-MD".

      We also agree that "Lama2 is expressed in particular cell types of the brain does not at all imply that Lama2 knockout mice have a defect in the blood-brain barrier", and the indications for a blood-brain barrier defect come from work in dy3K/dy3K mice (PMID: 25392494). Therefore, we have corrected the overstatement according to the suggestion with "It was reported that the deficiency of laminin α2 in astrocytes and pericytes was associated with a defective blood-brain barrier (BBB) in the dy3K/dy3K mice (Menezes et al., 2014). The defective BBB presented with altered integrity and composition of the endothelial basal lamina, reduced pericyte coverage, and hypertrophic astrocytic endfeet lacking appropriately polarized aquaporin4 channels."

      (3) Finally, the bulk RNA-seq data also needs to be presented in a disease context. The authors, again, mix up changes in expression with functional impairment. All gene expression changes are interpreted as direct evidence of an involvement of the cytoskeleton. In fact, changes in the cytoskeleton are more likely a consequence of the severe muscle phenotype and the delay in muscle development. This is particularly possible as muscle samples from 14-day-old mice are compared; a stage at which muscle still develops and grows tremendously. Thus, all the data need to be interpreted with caution.

      Thank you for your comment. We have changed the over-interpretation of the bulk RNA-seq data, and have corrected the last sentence in the Result with "These observations important data for the impaired muscle cytoskeleton and abnormal muscle development which were associated with the muscle pathology consequence of severe dystrophic changes in the dyH/dyH mice.".

      (4) In summary, the authors need to improve data presentation and, most importantly, they need to tone down the interpretation and they must be fully aware that their work is not as novel as they present it.

      Thank you for your comments and valuable suggestions, and we have changed the previous overstatements and interpretation of the results. We are sorry that we failed to clearly present our rational of making this mouse model. Indeed, there were many existing mouse models, which were all important to the research in the field. One of the reasons why we wished to create dyH/dyH is to make a mouse model without any trace of engineering (e.g., inserted bacterial elements for knockout). By doing so, we were hoping to provide a novel model suited for gene-editing-based gene therapy development. To this end, dyH/dyH was created to reflect the hot mutation region in the Chinese population. Hopefully, you will agree with our points and see that we were not trying to belittle previous models but were simply trying to provide a different option. The overstatements were largely rooted from language barriers, and we have tried to make our statements more cautious and acceptable to the readers.

      Reviewer #2 (Public Review):

      (1) The major weakness is the manuscript reads like this was the first-ever knockout mouse model generated for LAMA2-CMD. There are in fact many Lama2 knockout mice (dy, dy2J, dy3k, dyW, and more) which have all been extensively studied with publications. It is important for the authors to comment on these other published studies that have generated these well-studied mouse lines. Therefore, there is a lack of background information on these other Lama2 null mice.

      Thank you for your comment. We have added background information on these other Lama2 null mice with the sentences "The most common mouse models for LAMA2-MD are the dy/dy, dy3k/dy3k, dyw/dyw and dy2J/dy2J mice (Xu et al., 1994; Michelson et al., 1995; Miyagoe et al., 1997; Kuang et al., 1998; Sunada et al., 1995). Among them, the dy/dy, dy3k/dy3k, dyw/dyw mice present severe muscular dystrophy, and dy2J/dy2J mice show mild muscular dystrophy and peripheral neuropathy (Gawlik and Durbeej, 2020). The mutation of the dy/dy mice has been still unclear (Xu et al., 1994; Michelson et al., 1995). The dy3k/dy3k mice were generated by inserting a reverse Neo element in the 3' end of exon 4 of Lama2 gene in 1997 (Miyagoe et al., 1997), and the dyw/dyw mice were created with an insertion of lacZ-neo in the exon 1 of Lama2 gene in 1998 (Kuang et al., 1998). The dy2J/dy2J mice were generated in 1970 by a spontaneous splice donor site mutation which resulted in a predominant transcript with a 171 base in-frame deletion, leading to the expression of a truncated laminin α2 with a 57 amino acid deletion (residues 34-90) and a substitution of Gln91Glu (Sunada et al., 1995). They were established in the pre-gene therapy era, leaving trace of engineering, such as bacterial elements in the Lama2 gene locus, thus unsuitable for testing various gene therapy strategies. Moreover, insufficient transcriptomic data of the muscle and brain of LAMA2-CMD mouse models limits the understanding of disease hallmarks. Therefore, there is a need to create new appropriate mouse models for LAMA2-CMD based on human high frequently mutated region using the latest gene editing technology such as clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9."

      (2) The phenotypes of dyH/dyH are similar to, if not identical to dy/dy, dy2J/dy2J, dy3k/dy3k, dyW/dyW including muscle wasting, muscle weakness, compromised blood-brain barrier, and reduced life expectancy. This should be addressed, and a comparison made with Lama2 deficient mice in published literature.

      Thank you for your comment. We have added Table supplement 3 to make a comparison between dyH/dyH with other Lama2 deficient mice. We aslo have added the statement in Discussin with "Compared with other Lama2 deficient mice including dy/dy, dy2J/dy2J, dy3k/dy3k and dyW/dyW, the phenotype of the dyH/dyH mice presented with a very severe muscular dystrophy, which was similar to that of the dy3k/dy3k mice (Table supplement 3)."

      (3) Recent published studies (Chen et al., Development (2023), PMID 36960827) show loss of Itga7 causes disruption of the brain-vascular basal lamina leading to defects in the blood-brain barrier. This should be referenced in the manuscript since this integrin is a major Laminin-211/221 receptor in the brain and the mouse model appears to phenocopy the dyH/dyH mouse model.

      Thank you for your great suggestion. We have cited the published studies (Chen et al., Development (2023), PMID 36960827) and added statements in Discussion with "As reported, the aberrant BBB function was also associated with the adhesion defect of alpha7 integrin subunit in astrocytes to laminins in the Itga_7-/- mice (_Chen et al., 2023). In this study, loss of communications involving the laminins’ pathway between laminin α2 and integrins were predicted between vascular and leptomeningeal fibroblasts and astrocytes in the dyH/dyH brain, providing more evidence for the impaired BBB due to laminin α2 deficiency."

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Improve the data presentation (as mentioned above). Make a new picture of the histology; repeat the Western blots. Discuss the RNA-seq data with more caution and present it in a more attractive way. Tone down the wording.

      Thank you for your recommendations. We have revised the overstatements and improved the RNA-seq data interpretation as suggested. Also,we have made a new picture of the histology, and repeated the Western blots.

      Reviewer #2 (Recommendations For The Authors)

      (1) There are many grammatical errors within the manuscript. The manuscript should be carefully proofread.

      Thank you for your recommendations. We have carefully corrected the grammatical errors within the manuscript.

      (2) Figure 2: The animal numbers used in this analysis were not indicated. Please include this number in the figure legend.

      Thank you for your recommendations. We have added animal numbers in the figure legends wherever applicable.

      (3) Figure 2: The forelimb grip strength is informative but has limitations. Ex vivo or in vivo muscle contractility is the gold standard for measuring muscle strength.

      Thank you for your recommendations. We do agree that the ex vivo or in vivo muscle contractility is the gold standard for measuring muscle strength, and we really want to finish this experiment. However, we feel sorry that this test has not been finished due to the following reasons: (1) The forelimb grip strength for measuring muscle strength is a classic method and remains a commonly used method for measuring mouse muscle strength in the studies of different muscular dystrophies, such as LAMA2-MD (Amelioration of muscle and nerve pathology of Lama2-related dystrophy by AAV9-laminin-αLN linker protein. JCI Insight. 2022;7(13):e158397. PMID: 35639486), Duchenne muscular dystrophy (Investigating the role of dystrophin isoform deficiency in motor function in Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle. 2022;13(2):1360-1372. PMID: 35083887), facioscapulohumeral muscular dystrophy (Systemic delivery of a DUX4-targeting antisense oligonucleotide to treat facioscapulohumeral muscular dystrophy. Mol Ther Nucleic Acids. 2021;26:813-827. PMID: 34729250), and etc. (2) The forelimb grip strength for measuring muscle strength is also used in the human studies (PMID: 32366821; PMID: 29313844; PMID: 34499663, and etc). In view of reasons above, for measuring muscle strength, we used the forelimb grip strength, and have not finished the supplementary experiment of ex vivo or in vivo muscle contractility.

      (4) Figure 3: Muscle fibrosis should be measured with a hydroxyproline assay.

      Thank you for your recommendations. We do agree that the hydroxyproline assay is one of the most classic method to evaluate collagen content for measuring muscle fibrosis. However, we performed Sirius Red staining for measuring muscle fibrosis due to the following reasons: (1) Muscle fibrosis measured by Sirius Red staining can be observed more directly, and the other pathological features also can be observed, and compared through muscle pathology. (2) Sirius Red staining is also a classic method and remains a commonly used method for measuring muscle fibrosis, which has been previously reported in the mouse studies of muscle disorders, such as PMID: 22522482 (Losartan, a therapeutic candidate in congenital muscular dystrophy: studies in the dy(2J) /dy(2J) mouse. Ann Neurol. 2012;71(5):699-708.), PMID: 34337906 (Aging-related hyperphosphatemia impairs myogenic differentiation and enhances fibrosis in skeletal muscle. J Cachexia Sarcopenia Muscle. 2021;12(5):1266-1279.), PMID: 28798156 (Phosphodiesterase 4 inhibitor and phosphodiesterase 5 inhibitor combination therapy has antifibrotic and anti-inflammatory effects in mdx mice with Duchenne muscular dystrophy. FASEB J. 2017;31(12):5307-5320.), and etc. Therefore, we used Sirius Red staining to measure muscle fibrosis in this study.

      (5) Figure 8: The N=3 is very low which could result in type I or II statistical errors. A larger sample size will reduce the chance of statistical errors.

      Thank you for your recommendations. We have increased the number of animals to reduce the chance of statistical errors. We have performed the supplementary experiment, the number of animals for each group has been increased to 6 (3 male and female each).  The results were consistent with previous data in Figure 8.

      (6) Power analysis to estimate experimental animal numbers should be reported in the manuscript.

      Thank you for your recommendations. Refer to previous study (Power and sample size. Nature Methods. 2013;10:1139–1140), “The distributions show effect sizes d = 1, 1.5 and 2 for n = 3 and α = 0.05. Right, power as function of d at four different a values for n = 3”, and “If we average seven measurements (n = 7), we are able to detect a 10% increase in expression levels (μ_A = 11, _d = 1) 84% of the time with α = 0.05.”, the experimental animal numbers estimated were 3 to 7. Moreover, if the increased number of experimental animals could be available, we would retain data.

      (7) It is unclear if the studies were performed with adequate rigor. Were those scoring outcome measures blinded to the treatment groups?

      Thank you for your recommendations. We performed the studies with those scoring outcome measures not blinded to the treatment groups, the groups were based on their genotype. Actually, it was easy to discriminate the dyH/dyH groups from the WT/Het mice due to their small body shape.

      (8) Authors should appropriately cite previous studies that have generated Lama2 null mice.

      Thank you for your recommendations. We have cited previous studies that have generated Lama2 null mice with the sentence “The most common mouse models for LAMA2-MD are the dy/dy, dy3k/dy3k, dyw/dyw and dy2J/dy2J mice (Xu et al., 1994; Michelson et al., 1995; Miyagoe et al., 1997; Kuang et al., 1998; Sunada et al., 1995)”.

      (9) The number of animals should be increased to reduce the chance of statistical error.

      Thank you for your recommendations. We have performed the supplementary experiment, the number of animals for each group has been increased to reduce the chance of statistical error.

      (10) A power analysis should be performed to determine the number of experimental animals.

      Thank you for your recommendations. We have performed a power analysis to determine the number of experimental animals as mentioned above.

      (11) There are many grammatical errors within the manuscript. The manuscript should be carefully proofread.

      Thank you for your recommendations. We have carefully corrected the grammatical errors within the manuscript.

    1. Author Response:

      Reviewer #1 (Public review):

      Summary:

      Fallah and colleagues characterize the connectivity between two basal ganglia output nuclei, the SNr and GPe, and the pedunculopontine nucleus, a brainstem nucleus that is part of the mesencephalic locomotor region. Through a series of systematic electrophysiological studies, they find that these regions target and inhibit different populations of neurons, with anatomical organization. Overall, SNr projects to PPN and inhibits all major cell types, while the GPe inhibits glutamatergic and GABAergic PPN neurons, and preferentially in the caudal part of the nucleus. Optogenetic manipulation of these inputs had opposing effects on behavior - SNr terminals in the PPN drove place aversion, while GPe terminals drove place preference.

      Strengths:

      This work is a thorough and systematic characterization of a set of relatively understudied circuits. They build on the classic notions of basal ganglia connectivity and suggest a number of interesting future directions to dissect motor control and valence processing in brainstem systems.

      We thank the reviewers for these positive comments.

      Weaknesses:

      Characterization of the behavioral effects of manipulations of these PPN input circuits could be further parsed, for a better understanding of the functional consequences of the connections demonstrated in the ephys analyses.

      We will further analyze our behavioral data to reveal more nuanced functional effects.

      All the cell type recording studies showing subtle differences in the degree of inhibition and anatomical organization of that inhibition suggest a complex effect of general optogenetic manipulation of SNr or GPe terminals in the PPN. It will be important to determine if SNr or GPe inputs onto a particular cell type in PPN are more or less critical for how the locomotion and valence effects are demonstrated here.

      This is a really interesting future direction and we will expand on these points in the discussion.

      Reviewer #2 (Public review):

      Summary:

      Fallah et al carefully dissect projections from SNr and GPe - two key basal ganglia nuclei - to the PPN, an important brainstem nucleus for motor control. They consider inputs from these two areas onto 3 types of downstream PPN neurons: GABAergic, glutamatergic, and cholinergic neurons. They also carefully map connectivity along the rostrocaudal axis of the PPN.

      Strengths:

      The slice electrophysiology work is technically well done and provides useful information for further studies of PPN. The optogenetics and behavioral studies are thought-provoking, showing that SNr and GPe projections to PPN play distinct roles in behavior.

      We appreciate the reviewer’s positive evaluation.

      Weaknesses:

      Although the optogenetics and behavioral studies are intriguing, they are somewhat difficult to fit together into a specific model of circuit function. Perhaps the authors can work to solidify the connection between these two arms of the work.

      We will expand on these topics in the discussion.

      (1) Male and female mice are used, but the authors do not discuss any analysis of sex differences. If there are no sex differences, it is still useful to report data disaggregated by sex in addition to pooled data.

      While we do not have sufficient n for a well-powered analysis of sex differences in behavior, we find that both male and female mice increase movement in response to SNr axon stimulation and decrease movement in response to GPe axon stimulation. We will expand on this further in the revised manuscript.

      (2) There is some lack of clarity in the current manuscript on the ages used - 2-5 months vs "at least 7 weeks." Is 7 weeks the time of virus injection surgery, then recordings 3 weeks later (at least 10 weeks)? Please clarify if these ages apply equally to electrophysiological and behavioral studies. If the age range used for the test is large, it may be useful to analyze and report if there are age-related effects.

      7 weeks is the youngest age at which mice used for electrophysiology were injected, and all were used for electrophysiology between 2-5 months. For behavior, the youngest mice used were 11 weeks old at time of behavior (8 weeks old at injection). Mice in the GPe-stimulated condition were 110 ± 7.4 SEM days old and mice in the SNr-stimulated condition 132 ± 23.4 SEM days old. We will add these details to the revised manuscript.

      In addition, we have correlated distance traveled at baseline and during stimulation with age for both SNr and GPe stimulated conditions. Baseline distance traveled did not correlate with age, but there was a trend toward more movement during stimulation with older mice in the SNr axon stimulation group. We will discuss this in the revised manuscript.

      (3) Were any exclusion criteria applied, e.g. to account for missed injections?

      All injection sites and implant sites were within our range of acceptability, so we did not exclude any mice for missed injections.

      (4) 28-34degC is a fairly wide range of temperatures for electrophysiological recording, which could affect kinetics.

      This is an important consideration. We have checked our main measurement of current amplitude in the condition where we found significant differences between rostral and caudal PPN (SNr to Vglut2 PPN neurons) against temperature and found no correlation (Pearson’s r value = -0.0076). Similarly, we found no correlation between baseline (pre-opto) firing frequency and temperature (r = -0.068).

      (5) It would be good to report the number of mice used for each condition in addition to n=cells. Statistically, it would be preferable not to assume that each cell from the same mouse is an independent measurement and to use a nested ANOVA.

      For electrophysiology, the number of mice used in each experiment was 6 (3 male, 3 female). In the manuscript ‘N’ represents number of mice and ‘n’ represents number of cells. Because of the unpredictability of how many healthy cells can be recorded from one mouse, our data were planned to be collected with n=cells, and are underpowered for a nested ANOVA. However, rostral and caudal data were collected from the same mice. While we do not have sufficient paired data for each parameter, analyzing one of our main and most important findings with a paired comparison (with biological replicates being mice) shows a statistically significant difference in the inhibitory effect of SNr axon stimulation on firing rate between rostral and caudal glutamatergic neurons (p=0.031, Wilcoxon signed rank test).

      Reviewer #3 (Public review):

      Summary:

      The study by Fallah et al provides a thorough characterization of the effects of two basal ganglia output pathways on cholinergic, glutamatergic, and GABAergic neurons of the PPN. The authors first found that SNr projections spread over the entire PPN, whereas GPe projections are mostly concentrated in the caudal portion of the nucleus. Then the authors characterized the postsynaptic effects of optogenetically activating these basal ganglia inputs and identified the PPN's cell subtypes using genetically encoded fluorescent reporters. Activation of inputs from the SNr inhibited virtually all PPN neurons. Activation of inputs from the GPe predominantly inhibited glutamatergic neurons in the caudal PPN, and to a lesser extent GABAergic neurons. Finally, the authors tested the effects of activating these inputs on locomotor activity and place preference. SNr activation was found to increase locomotor activity and elicit avoidance of the optogenetic stimulation zone in a real-time place preference task. In contrast, GPe activation reduced locomotion and increased the time in the RTPP stimulation zone.

      Strengths:

      The evidence of functional connectivity of SNr and GPe neurons with cholinergic, glutamatergic, and GABAergic PPN neurons is solid and reveals a prominent influence of the SNr over the entire PPN output. In addition, the evidence of a GPe projection that preferentially innervates the caudal glutamatergic PPN is unexpected and highly relevant for basal ganglia function.

      Opposing effects of two basal ganglia outputs on locomotion and valence through their connectivity with the PPN.

      Overall, these results provide an unprecedented cell-type-specific characterization of the effects of basal ganglia inputs in the PPN and support the well-established notion of a close relationship between the PPN and the basal ganglia.

      We thank the reviewer for their positive comments.

      Weaknesses:

      The behavioral experiments require further analysis as some motor effects could have been averaged out by analyzing long segments.

      We will further analyze our motor effects in the revised manuscript.

      Additional controls are needed to rule out a motor effect in the real-time place preference task.

      This is an important point. Our use of unilateral stimulation in the RTPP task reduces potential motor effects, and our supplemental videos show that the mice can easily escape and enter the stimulated zone. However, we can't completely rule out a motor component. To delve into this further, we analyzed mouse speed in the RTPP task. We find that in both SNr and GPe stimulation conditions, the maximum speed of the mouse is not different in the stimulated vs unstimulated zone. We will further analyze mouse speed at the transition into and out of the stimulated zone to identify any acute motor effects in this experiment.

      Importantly, the location of the stimulation is not reported even though this is critical to interpret the behavioral effects.

      The implant locations were generally over the middle-to-rostral PPN and we will clarify this in the revised manuscript. These locations are shown in figure 7B.

      There are some concerns about the possible recruitment of dopamine neurons in the SNr experiments.

      We are very interested in this possibility and plan to discuss this with more clarity in a revised manuscript.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Recommendations For The Authors): 

      This is not a recommendation. While reading old literature, I found some interesting facts. The shape of the neurocranium in monotremes, birds, and mammals, at least in early stages, resembles the phenotype of 'dact'1/2, wnt11f2, or syu mutants. For more details, see DeBeer's: 'The Development of the Vertebrate Skull, !937' Plate 137. 

      Thank you for pointing this out. It is indeed interesting.

      Minor Comments: 

      • Lines 64, 66, and 69: same citation without interruption: Heisenberg, Brand et al. 1996

      Revised line 76. 

      • Lines 101 and 102: same citation without interruption: Li, Florez et al. 2013 

      Revised line 118.

      • Lines 144, 515, 527, and 1147: should be wnt11f2 instead of wntllf2 - if not, then explain 

      Revised lines 185, 625, 640,1300.

      • Lines 169 and 171: incorrect figure citation: Fig 1D - correct to Fig 1F 

      Revised lines 217, 219.

      • Line 173: delete (Fig. S1) 

      Revised line 221.

      • Line 207: indicate that both dact1 and dact2 mRNA levels increased, noting a 40% higher level of dact2 mRNA after deletion of 7 bp in the dact2 gene 

      Revised line 265.

      • Line 215: Fig 1F instead of Fig 1D 

      Revised line 217.

      • Line 248: unify naming of compound mutants to either dact1/2 or dact1/dact2 compound mutants 

      Revised to dact1/2 throughout.

      • Line 259: incorrect figure citation: Fig S1 - correct to Fig S2D/E 

      Revised line 324.

      • Line 302: correct abbreviation position: neural crest (NCC) cell - change to neural crest cell (NCC) population 

      Revised line 380.

      • Line 349: repeating kny mut definition from line 70 may be unnecessary 

      Revised line 434.

      • Line 351: clarify distinction between Fig S1 and Fig S2 in the supplementary section 

      Revised line 324.

      • Line 436: refer to the correct figure for pathways associated with proteolysis (Fig 7B) 

      Revised line 530.

      • Line 446-447: complete the sentence and clarify the relevance of smad1 expression, and correct the use of "also" in relation to capn8 

      Revised line 567.

      • Line 462: clarify that this phenotype was never observed in wildtype larvae, and correct figure reference to exclude dact1+/- dact2+/- 

      Revised line 563, 568.

      • Line 463: explain the injection procedure into embryos from dact1/2+/- interbreeding 

      Revised line 565.

      • Lines 488 and 491: same citation without interruption: Waxman, Hocking et al. 2004 

      Revised line 591.

      • Line 502: maintain consistency in referring to TGF-beta signaling throughout the article 

      Revised throughout.

      • Line 523: define CNCC; previously used only NCC 

      Revised to cranial NCC throughout.

      • Line 1105: reconsider citing another work in the figure legend 

      Revised line 1249.

      • Line 1143: consider using "mutant" instead of "mu" 

      Revised line 1295.

      • Fig 2A/B: indicate the number of animals used ("n") 

      N is noted on line 1274.

      • Fig 2C, D, E: ensure uniform terminology for control groups ("wt" vs. "wildtype") 

      Revised in figure.

      • Fig 7C: clarify analysis of dact1/2-/- mutant in lateral plate mesoderm vs. ectoderm 

      Revised line 1356.

      • Fig 8A: label the figure to indicate it shows capn8, not just in the legend 

      Revised.

      • Fig 8D: explain the black/white portions and simplify to highlight important data 

      Revised.

      • Fig S2: add the title "Figure S2" 

      Revised.

      • Consider omitting the sentence: "As with most studies, this work has contributed some new knowledge but generated more questions than answers." 

      Revised line 720.

      Reviewer #2 (Recommendations For The Authors): 

      Major comments: 

      (1) The authors have addressed many of the questions I had, including making the biological sample numbers more transparent. It might be more informative to use n = n/n, e.g. n = 3/3, rather than just n = 3. Alternatively, that information can be given in the figure legend or in the form of penetrance %. 

      The compound heterozygote breeding and phenotyping analyses were not carried out in such a way that we can comment on the precise % penetrance of the ANC phenotype, as we did not dissect every ANC and genotype every individual that resulted from the triple heterozygote in crossings. We collected phenotype/genotype data until we obtained at least three replicates.

      We did genotype every individual resulting from dact1/2 dHet crosses to correlate genotype to the phenotype of the embryonic convergent extension phenotype and narrowed ethmoid plate (Fig. 2A, Fig. 3) which demonstrated full penetrance.

      (2) The description of the expression of dact1/2 and wnt11f2 is not consistent with what the images are showing. In the revised figure 1 legend, the author says "dact2 and wnt11f2 transcripts are detected in the anterior neural plate" (line 1099)", but it's hard to see wnt11f2 expression in the anterior neural plate in 1B. The authors then again said " wnt11f2 is also expressed in these cells", referring to the anterior neural plate and polster (P), notochord (N), paraxial and presomitic mesoderm (PM) and tailbud (TB). However, other than the notochord expression, other expression is actually quite dissimilar between dact2 and wnt11f2 in 1C. The authors should describe their expression more accurately and take that into account when considering their function in the same pathway. 

      We have revised these sections to more carefully describe the expression patterns. We have added references to previous descriptions of wnt11 expression domains.

      (3) Similar to (2), while the Daniocell was useful in demonstrating that expression of dact1 and dact2 are more similar to expression of gpc4 and wnt11f2, the text description of the data is quite confusing. The authors stated "dact2 was more highly expressed in anterior structures including cephalic mesoderm and neural ectoderm while dact1 was more highly expressed in mesenchyme and muscle" (lines 174-176). However, the Daniocell seems to show more dact1 expression in the neural tissues than dact2, which would contradict the in situ data as well. I think the problem is in part due to the dataset contains cells from many different stages and it might be helpful to include a plot of the cells at different stages, as well as the cell types, both of which are available from the Daniocell website. 

      We have revised the text to focus the Daniocell analysis on the overall and general expression patterns. Line 220.

      (4) The authors used the term "morphological movements" (line 337) to describe the cause of dact1/2 phenotypes. Please clarify what this means. Is it cell movement? Or is it the shape of the tissues? What does "morphological movements" really mean and how does that affect the formation of the EP by the second stream of NCCs? 

      We have revised this sentence to improve clarity. Line 416.

      (5) In the first submission, only 1 out of 142 calpain-overexpressing animals phenocopied dact1/2 mutants and that was a major concern regarding the functional significance of calpain 8 in this context. In the revised manuscript, the authors demonstrated that more embryos developed the phenotype when they are heterozygous for both dact1/2. While this is encouraging, it is interesting that the same phenomenon was not observed in the dact1-/-; dact2+/- embryos (Fig. 6D). The authors did not discuss this and should provide some explanation. The authors should also discuss sufficiency vs requirement tested in this experiment. However, given that this is the most novel aspect of the paper, performing experiments to demonstrate requirements would be important. 

      We have added a statement regarding the non-effect in dact1-/-;dact2+/- embryos. Line 568-570. We have also added discussion of sufficiency vs necessity/requirement testing. Line 676-679.

      (6) Related to (5), the authors cited figure 8c when mentioning 0/192 gfp-injected embryos developed EP phenotypes. However, figure 8c is dact1/2 +/- embryos. The numbers also doesn't match the numbers in Figure 8d either. Please add relevant/correct figures. 

      The text has been revised to distinguish between our overexpression experiment in wildtype embryos (data not shown) versus overexpression in dact1/2 double het in cross embryos (Fig 8).

      Minor comments: 

      (1) Fig 1 legend line 1106 "the midbrain (MP)" should be MB 

      Revised line 1250.

      (2) Wntllf2, instead of wnt11f2, (i.e. the letter "l" rather than the number "1") was used in 4 instances, line 144, 515, 527, 1147 

      Revised lines 185, 625, 640,1300.

      (3) The authors replaced ANC with EP in many instances, but ANC is left unchanged in some places and it's not defined in the text. It's first mentioned in line 170.

      Revised line 218.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript gives a broad overview of how to write NeuroML, and a brief description of how to use it with different simulators and for different purposes - cells to networks, simulation, optimization, and analysis. From this perspective, it can be an extremely useful document to introduce new users to NeuroML.

      We are glad the reviewer found our manuscript useful.

      However, the manuscript itself seems to lose sight of this goal in many places, and instead, the description at times seems to target software developers. For example, there is a long paragraph on the board and user community. The discussion on simulator tools seems more for developers, not users. All the information presented at the level of a developer is likely to be distracting to eLife readership.

      To make the paper less developer focussed and more accessible to the end user we have shortened the long paragraphs on the board and user community (and moved some of this text to the Methods section; lines: 524-572 in the document with highlighted changes). We have also made the discussion on simulator tools more focussed on the user (lines 334-406). However, we believe some information on the development and oversight of NeuroML and its community base are relevant to the end user, so we have not removed these completely from the main text.

      Strengths:

      The modularity of NeuroML is indeed a great advantage. For example, the ability to specify the channel file allows different channels to be used with different morphologies without redundancy. The hierarchical nature of NeuroML also is commendable, and well illustrated in Figures 2a through c.

      The number of tools available to work with NeuroML is impressive.

      The abstract, beginning, and end of the manuscript present and discuss incorporating NeuroML into research workflows to support FAIR principles.

      Having a Python API and providing examples using this API is fantastic. Exporting to NeuroML from Python is also a great feature.

      We are glad the reviewer appreciated the design of NeuroML and its support for FAIR principles.

      Weaknesses:

      Though modularity is a strength, it is unclear to me why the cell morphology isn't also treated similarly, i.e., specify the morphology of a multi-compartmental model in a separate file, and then allow the cell file to specify not only the files containing channels, but also the file containing the multi-compartmental morphology, and then specify the conductance for different segment groups. Also, after pynml_write_neuroml2_file, you would not have a super long neuroML file for each variation of conductances, since there would be no need to rewrite the multi-compartmental morphology for each conductance variation.

      We thank the reviewer for highlighting this shortcoming in NeuroML2. We have now added the ability to reference externally defined (e.g. in another file) <morphology> and <biophysicalProperties> elements from <cells>. This has enabled the morphologies and/or specification of ionic conductances to be separated out and enables more streamlined analysis of cells with different properties, as requested. Simulators NEURON, NetPyNE and EDEN already support this new form. Information on this feature has been added to https://docs.neuroml.org/Userdocs/ImportingMorphologyFiles.html#neuroml2 and also mentioned in the text (lines 188-190).

      This would be especially important for optimizations, if each trial optimization wrote out the neuroML file, then including the full morphology of a realistic cell would take up excessive disk space, as opposed to just writing out the conductance densities. As long as cell morphology must be included in every cell file, then NeuroML is not sufficiently modular, and the authors should moderate their claim of modularity (line 419) and building blocks (551).

      We believe the new functionality outlined above addresses this issue, as a single file containing the <morphology> element could be referenced, while a much smaller file, containing the channel distributions in a <biophysicalProperties> element would be generated and saved on each iteration of the optimisation.

      In addition, this is very important for downloading NeuroML-compliant reconstructions from NeuroMorpho.org. If the cell morphology cannot be imported, then the user has to edit the file downloaded from NeuroMorpho.org, and provenance can be lost.

      While the NeuroMorpho.Org website does support converting reconstructed morphologies in SWC format to NeuroML, this export feature is no longer supported on most modern browsers due to it being based on Java Applet technologies. However, a desktop version of this application, CVApp, is actively maintained

      (https://github.com/NeuroML/Cvapp-NeuroMorpho.org), and we have updated it to support export of the SWC to the standalone <morphology> element form of NeuroML discussed above. Additionally, a new Python application for conversion of SWC to NeuroML is in development and will be incorporated into PyNeuroML (Google Summer of Code 2024). Our documentation has been updated with the recommended use of SWC in NeuroML based modelling here: https://docs.neuroml.org/Userdocs/Software/Tools/SWC.html

      We have also included URLs to the tool and the documentation in the paper (lines: 473-474).

      SWC files, however, cannot be used “as is” for modelling since they only include information (often incomplete—for example a single point may represent a soma in SWC files) on the points that make the cell, but not on the sections/segments/cables that these form. Therefore, NeuroML and other simulation tools, including NEURON, must convert these into formats suitable for simulation. The suggested pipeline for use of NeuroMorpho SWC files would therefore be to convert them to NeuroML, check that they represent the intended compartmentalisation of the neuron and then use them in models.

      To ensure that provenance is maintained in all NeuroML models (including conversions from other formats), NeuroML supports the addition of RDF annotations using the COMBINE annotation specifications in model files:

      https://docs.neuroml.org/Userdocs/Provenance.html. We have added this information to the paper (lines: 464-465).

      Also, Figure 2d loses the hierarchical nature by showing ion channels, synapses, and networks as separate main branches of NeuroML.

      While an instance of an ion channel is on a segment, in a cell, in a population (and hence there is a hierarchy between them), in terms of layout in a NeuroML file the ion channel is defined at the “top level” so that it can be referenced and used by multiple cells, the cell definitions are also defined top level, and used in multiple populations, etc. There are multiple ways to depict these relationships between entities, and we believe Fig 2d complements Fig 2a-c (which is more hierarchical), by emphasising the different categories of entities present in NeuroML files. We have modified the caption of Figure 2d to clarify that it shows the main categories of elements included in the NeuroML standard in their respective hierarchies.

      In Figure 5, the difference between the core and native simulator is unclear.

      We have modified the figure and text (lines: 341) to clarify this. We now say “reference” simulators instead of “core”. This emphasises that jNeuroML and pyLEMS are intended as reference implementations in each of their languages of how to interpret NeuroML models, as opposed to high performance simulators for research use. We have also updated the categorization of the backends in the text accordingly.

      What is involved in helper scripts?

      Simulators such as NetPyNE can import NeuroML into their own internal format, but require some boilerplate code to do this (e.g. the NetPyNE scripts calls the importNeuroML2SimulateAnalyze() method with appropriate parameters). The NeuroML tools generate short scripts that use this boilerplate code. We have renamed “helper scripts” to “import scripts'' for clarity (Figure 5 and its caption).

      I thought neurons could read NeuroML? If so, why do you need the export simulator-specific scripts?

      The NEURON simulator does have some NeuroML functionality (it can export cells, though not the full network, to NeuroML 2 through its ModelView menu), but does not natively support reading/importing of NeuroML in its current version. But this is not a problem as jNeuroML/PyNeuroML translates the NeuroML model description into NEURON’s formats: Python scripts/HOC/Nmodl which NEURON then executes.

      As NEURON is the simulator which allows simulation of the widest range of NeuroML elements, we have (in agreement with the NEURON developers) concentrated on incorporating the best support for NeuroML import/export in the latest (easy to install/update) releases of PyNeuroML, rather than adding this to the Neuron source code. NEURON’s core features have been very stable for years and many versions of the simulator are used by modellers - installing the latest PyNeuroML gives them the latest NEURON support without having to reinstall the latter.

      In addition, it seems strange to call something the "core" simulation engine, when it cannot support multi-compartmental models. It is unclear why "other simulators" that natively support NeuroML cannot be called the core.

      We agree that this terminology was confusing. As mentioned above, we have changed “core simulator” to “reference simulator”, to emphasise the roles of these simulation engine options.

      It might be more helpful to replace this sort of classification with a user-targeted description. The authors already state which simulators support NeuroML and which ones need code to be exported. In contrast, lines 369-370 mention that not all NeuroML models are supported by each simulator. I recommend expanding this to explain which features are supported in each simulator. Then, the unhelpful separation between core and native could be eliminated.

      As suggested, we have grouped the simulators in terms of function and removed the core/ non-core distinction. We have also added a table (Table 3) in the appendices that lists what features each simulation engine supports and updated the text to be more user focussed (lines: 348-394).

      The body of the manuscript has so much other detail that I lose sight of how NeuroML supports FAIR. It is also unclear who is the intended audience. When I get to lines 336-344, it seems that this description is too much detail for the eLife audience. The paragraph beginning on line 691 is a great example of being unclear about who is the audience. Does someone wanting to develop NeuroML models need to understand XSD schema? If so, the explanation is not clear. XSD schema is not defined and instead explains NeuroML-specific aspects of XSD. Lines 734-735 are another example of explaining to code developers (not model developers).

      We have modified these sentences to be more suitable for the general eLife audience: we have moved the explanation of how the different simulator backends are supported to the more technically detailed Methods section (lines 882-942).

      While the results sections focus on documenting what users can do with NeuroML, the Methods sections include information on “how” the NeuroML and software ecosystem function. While the information in the methods sections may not be required by users who want to use the standard NeuroML model elements, those users looking to extend NeuroML with their own model entities and/or contribute these for inclusion in the NeuroML standard will require some understanding of how the schema and component types work.

      We have tried to limit this information to the bare minimum, pointing to online documentation where appropriate. XSD schemas are, for example, briefly introduced at the beginning of the section “The NeuroML XML Schema”. We have also included a link to the W3C documentation on XSD schemas as a footnote (line 724).

      Reviewer #2 (Public Review):

      Summary:

      Developing neuronal models that are shareable, reproducible, and interoperable allows the neuroscience community to make better use of published models and to collaborate more effectively. In this manuscript, the authors present a consolidated overview of the NeuroML model description system along with its associated tools and workflows. They describe where different components of this ecosystem lay along the model development pathway and highlight resources, including documentation and tutorials, to help users employ this system.

      Strengths:

      The manuscript is well-organized and clearly written. It effectively uses the delineated model development life cycle steps, presented in Figure 1, to organize its descriptions of the different components and tools relating to NeuroML. It uses this framework to cover the breadth of the software ecosystem and categorize its various elements. The NeuroML format is clearly described, and the authors outline the different benefits of its particular construction. As primarily a means of describing models, NeuroML also depends on many other software components to be of high utility to computational neuroscientists; these include simulators (ones that both pre-date NeuroML and those developed afterwards), visualization tools, and model databases.

      Overall, the rationale for the approach NeuroML has taken is convincing and well-described. The pointers to existing documentation, guides, and the example usages presented within the manuscript are useful starting points for potential new users. This manuscript can also serve to inform potential users of features or aspects of the ecosystem that they may have been unaware of, which could lower obstacles to adoption. While much of what is presented is not new to this manuscript, it still serves as a useful resource for the community looking for information about an established, but perhaps daunting, set of computational tools.

      We are glad the reviewer appreciated the utility of the manuscript.

      Weaknesses:

      The manuscript in large part catalogs the different tools and functionalities that have been produced through the long development cycle of NeuroML. As discussed above, this is quite useful, but it can still be somewhat overwhelming for a potential new user of these tools. There are new user guides (e.g., Table 1) and example code (e.g. Box 1), but it is not clear if those resources employ elements of the ecosystem chosen primarily for their didactic advantages, rather than general-purpose utility. I feel like the manuscript would be strengthened by the addition of clearer recommendations for users (or a range of recommendations for users in different scenarios).

      To make Table 1 more accessible to users and provide recommendations we have added the following new categories: Introductory guides aimed at teaching the fundamental

      NeuroML concepts; Advanced guides illustrating specific modelling workflows; and Walkthrough guides discussing the steps required for converting models to NeuroML. Box 1 has also been improved to clearly mark API and command line examples.

      For example, is the intention that most users should primarily use the core NeuroML tools and expand into the wider ecosystem only under particular circumstances? What are the criteria to keep in mind when making that decision to use alternative tools (scale/complexity of model, prior familiarity with other tools, etc.)? The place where it seems most ambiguous is in the choice of simulator (in part because there seem to be the most options there) - are there particular scenarios where the authors may recommend using simulators other than the core jNeuroML software?

      The interoperability of NeuroML is a major strength, but it does increase the complexity of choices facing users entering into the ecosystem. Some clearer guidance in this manuscript could enable computational neuroscientists with particular goals in mind to make better strategic decisions about which tools to employ at the outset of their work.

      As mentioned in the response to Reviewer 1, the term “core simulator” for jNeuroML was confusing, as it suggested that this is a recommended simulation tool. We have changed the description of jNeuroML to a “reference simulator” to clarify this (Figure 5 and lines 341, 353).

      In terms of giving specific guidance on which simulator to use, we have focussed on their functionality and limitations rather than recommending a specific tool (as simulator independent standards developers we are not in a position to favour particular simulators). While NEURON is the most widely used simulator currently, other simulation opinions (e.g. EDEN) have emerged recently which provide quite comprehensive NeuroML support and similar performance. Our approach is to document and promote all supported tools, while encouraging innovation and new developments. The new Table 3 in the Appendix gives a guide to assist users in choosing which simulator may best suit their needs and we have updated the text to include a brief description (lines 348-394).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I do not understand what the $comments mean in Box 1. It isn't until I get further in the text that I realize that those are command line equivalents to the Python commands.

      We thank the reviewer for highlighting this confusion. We’ve now explicitly marked the API usage and command line usage example columns to make this clearer. We have also used “>” instead of “$” now to indicate the command line,

      In Figure 9 Caption "Examples of analysis functions ..", the word analysis seems a misnomer, as these graphs all illustrate the simulation output and graphing of existing variables. I think analysis typically refers to the transformation of variables, such as spike counts and widths.

      To clarify this we have changed the caption to “Examples of visualizing biophysical properties of a NeuroML model neuron”.

      Figure 10: Why is the pulse generator part of a model? Isn't that the input to a model?

      Whether the input to the model is described separately from the NeuroML biophysical description or combined with it is a choice for the researcher. This is possible because in NeuroML any entity which has time varying states can be a NeuroML element, including the current pulse generator. In this simple example the input is contained within the same file (and therefore <neuroml> element) as the cell. However, this does not need to be the case. The cell could be fully specified in its own NeuroML file and then this can be included in other files which add different inputs to facilitate different simulation scenarios. The Python scripting interface facilitates these types of workflows.

      In the interest of modularity, can stim information be stored in a separate file and "included"?

      Yes, as mentioned above, the stimulus could be stored in a separate file.

      I find it strange to use a cell with mostly dimensionless numbers as an example. I think it would be more helpful to use a model that was more physiological.

      In choosing an example model type to use to illustrate the use of LEMS (Fig 12), NeuroML (Fig 10), XML Schema (Fig 11), the Python API (Fig 13) and online documentation (Fig 15), we needed an example which showed a sufficiently broad range of concepts (dimensional parameters, state variables, time derivatives), but which is sufficiently compact to allow a concise depiction of the key elements in figures, that fit in a single page (e.g. Fig 12). We felt that the Hindmarsh Rose model, while not very physiological, was well suited for this purpose (explaining the underlying technologies behind the NeuroML specification). The simplicity of the Hindmarsh Rose model is counterbalanced in the manuscript by the detailed models of neurons and circuits in Figures 7 & 9. The latter shows a morphologically and biophysically detailed cortical L5b pyramidal cell model.

      In lines 710-714, it is unclear what is being validated. That all parameters are defined? Using the units (or lack thereof) defined in the schema?

      Validation against the schema is “level 1” validation where the model structure, parameters, parameter values and their units, cardinality, and element positioning in the model hierarchy are checked. We have updated the paragraph to include this information and to also point to Figure 6 where different levels of validation are explained.

      Lines 740 to 746 are confusing. If 1-1 between XSD and LEMS (1st sentence) then how can component types be defined in LEMS and NOT added to the standard? Which is it? 1-1 or not 1-1?

      For the curated model elements included in the NeuroML standard, there will be a 1-1 correspondence between their component type definitions in LEMS and type definitions in the XSD schema. New user defined component types (e.g. a new abstract cell model) can be specified in LEMS as required, and these do not need to be included in the XSD schema to be loaded/simulated. However, since they are not present in the schema definition of the core/curated elements, they cannot be validated against it (level 1 validation). We have modified the text to make this clearer (line: 778).

      Nonetheless, if the new type is useful for the wider community, it can be accepted by the Editorial Board, and at that stage it will be incorporated into the core types, and added to the Schema, to be part of “valid NeuroML”.

      Figure 12. select="synapses[*]/i" is not explained. Does /i mean that iSyn is divided by i, which is current (according to the sentence 3 lines after 766) or perhaps synapse number?

      We thank the reviewer for highlighting this confusion. We have now explained the construct in the text (lines 810-812). It denotes “select the i (current) values from all Attachments which have the id ‘synapses’”. These multiple values should be reduced down to a single value through addition, as specified by the attribute: reduce=”add”.

      The line after 766 says that "DerivedVariables, variables whose values depend on other variables". You should add "and that are not derivatives, which are handled separately" because by your definition derivatives are derived variables.

      Thank you. We have updated the text with your suggestion

      Reviewer #2 (Recommendations For The Authors):

      - Figure 9: I found it somewhat confusing to have the header from the screenshot at the top ("Layer 5 Burst Accommodating Double Bouquet Cell (5)") not match the morphology shown at the bottom. It's not visually clear that the different panels in Figure 9 may refer to unrelated cells/models.

      Thank you for pointing this out. We have replaced the NeuroML-DB screenshot with one of the same Layer 5b pyramidal cells shown in the panels below it.

      Additional change:

      Figure 7c (showing the NetPyNE-UI interface) has been replaced. Previously, this displayed a 3D model which had been created in NetPyNE itself, but now shows a model which has been created in NeuroML and imported for display/simulation in NetPyNE-UI, and therefore better illustrates NeuroML functionality.

    1. Author response:

      To Reviewer #1:

      Thank you for your kind words regarding the novelty, study design, and evidence presented. We will clarify our language when describing fuzzy local-linear regression discontinuity analysis. We thank you for this feedback as our goals are to introduce these methods to a neuroscientific audience. Lastly, we will respond and clarify the methodological points, including post-selection inference, bandwidths, and Bayesian analysis in version 2.

      To Reviewers #2 and #3:

      We thank you both for your constructive feedback, specifically in highlighting 1) the scope of the intervention and 2) the UKB-neuro healthy volunteer bias. In the next manuscript version, we will expand our discussion of plausible reasons for not finding an effect – weighing up the strengths and limitations of our study in 3 aspects; statistical (RD power), design-based (lack of representativeness vs. large sample), and mechanistic (the impact/or lack thereof of one-year of education on neural plasticity decades later). As we believe the approach of natural experiments with RD designs has considerable promise for the field of population cognitive neuroscience beyond this particular study, we will address each of these points within a broader section focused on considerations on how to optimize the insight, power, and inferences gained in future work within and beyond Biobank. Moreover, we will situate our discussion on the magnitude of the educational intervention among a broader discussion of cognitive training versus education, and short - versus long-term effects. We believe revising the manuscript will improve interpretation for the reader and thank you for your in-depth feedback. Lastly, we will provide a point-by-point response in the next version.

    1. Author response:

      Public Reviews: 

      Reviewer #1 (Public review): 

      The conserved AAA-ATPase PCH-2 has been shown in several organisms including C. elegans to remodel classes of HORMAD proteins that act in meiotic pairing and recombination. In some organisms the impact of PCH-2 mutations is subtle but becomes more apparent when other aspects of recombination are perturbed. Patel et al. performed a set of elegant experiments in C. elegans aimed at identifying conserved functions of PCH-2. Their work provides such an opportunity because in C. elegans meiotically expressed HORMADs localize to meiotic chromosomes independently of PCH-2. Work in C. elegans also allows the authors to focus on nuclear PCH-2 functions as opposed to cytoplasmic functions also seen for PCH-2 in other organisms. 

      The authors performed the following experiments: 

      (1) They constructed C. elegans animals with SNPs that enabled them to measure crossing over in intervals that cover most of four of the six chromosomes. They then showed that doublecrossovers, which were common on most of the four chromosomes in wild-type, were absent in pch-2. They also noted shifts in crossover distribution in the four chromosomes. 

      (2) Based on the crossover analysis and previous studies they hypothesized that PCH-2 plays a role at an early stage in meiotic prophase to regulate how SPO-11 induced double-strand breaks are utilized to form crossovers. They tested their hypothesis by performing ionizing irradiation and depleting SPO-11 at different stages in meiotic prophase in wild-type and pch-2 mutant animals. The authors observed that irradiation of meiotic nuclei in zygotene resulted in pch-2 nuclei having a larger number of nuclei with 6 or greater crossovers (as measured by COSA-1 foci) compared to wildtype. Consistent with this observation, SPO11 depletion, starting roughly in zygotene, also resulted in pch-2 nuclei having an increase in 6 or more COSA-1 foci compared to wild type. The increased number at this time point appeared beneficial because a significant decrease in univalents was observed. 

      (3) They then asked if the above phenotypes correlated with the localization of MSH-5, a factor that stabilizes crossover-specific DNA recombination intermediates. They observed that pch-2

      mutants displayed an increase in MSH-5 foci at early times in meiotic prophase and an unexpectedly higher number at later times. They conclude based on the differences in early MSH-5 localization and the SPO-11 and irradiation studies that PCH-2 prevents early DSBs from becoming crossovers and early loading of MSH-5. By analyzing different HORMAD proteins that are defective in forming the closed conformation acted upon by PCH-2, they present evidence that MSH-5 loading was regulated by the HIM-3 HORMAD. 

      (4) They performed a crossover homeostasis experiment in which DSB levels were reduced. The goal of this experiment was to test if PCH-2 acts in crossover assurance. Interestingly, in this background PCH-2 negative nuclei displayed higher levels of COSA-1 foci compared to PCH-2 positive nuclei. This observation and a further test of the model suggested that "PCH-2's presence on the SC prevents crossover designation." 

      (5) Based on their observations indicating that early DSBS are prevented from becoming crossovers by PCH-2, the authors hypothesized that the DNA damage kinase CHK-2 and PCH2 act to control how DSBs enter the crossover pathway. This hypothesis was developed based on their finding that PCH-2 prevents early DSBs from becoming crossovers and previous work showing that CHK-2 activity is modulated during meiotic recombination progression. They tested their hypothesis using a mutant synaptonemal complex component that maintains high CHK-2 activity that cannot be turned off to enable crossover designation. Their finding that the pch-2 mutation suppressed the crossover defect (as measured by COSA-1 foci) supports their hypothesis. 

      Based on these studies the authors provide convincing evidence that PCH-2 prevents early DSBs from becoming crossovers and controls the number and distribution of crossovers to promote a regulated mechanism that ensures the formation of obligate crossovers and crossover homeostasis. As the authors note, such a mechanism is consistent with earlier studies suggesting that early DSBs could serve as "scouts" to facilitate homolog pairing or to coordinate the DNA damage response with repair events that lead to crossing over. The detailed mechanistic insights provided in this work will certainly be used to better understand functions for PCH-2 in meiosis in other organisms. My comments below are aimed at improving the clarity of the manuscript. 

      We thank the reviewer for their concise summary of our manuscript and their assessment of our work as “convincing” and providing “detailed mechanistic insight.”

      Comments 

      (1) It appears from reading the Materials and Methods that the SNPs used to measure crossing over were obtained by mating Hawaiian and Bristol strains. It is not clear to this reviewer how the SNPs were introduced into the animals. Was crossing over measured in a single animal line? Were the wild-type and pch-2 mutations made in backgrounds that were isogenic with respect to each other? This is a concern because it is not clear, at least to this reviewer, how much of an impact crossing different ecotypes will have on the frequency and distribution of recombination events (and possibly the recombination intermediates that were studied). 

      We will clarify these issues in the Materials and Methods of an updated preprint. The control and pch-2 mutants were isogenic in either the Bristol or Hawaiian backgrounds. Control lines were the original Bristol and Hawaiian lines and pch-2 mutants were originally made in the Bristol line and backcrossed at least 3 times before analysis. Hawaiian pch-2 mutants were made by backcrossing pch-2 mutants at least 7 times to the Hawaiian background and verifying the presence of Hawaiian SNPs on all chromosomes tested in the recombination assay. To perform the recombination assays, these isogenic lines were crossed to generate the relevant F1s.

      (2) The authors state that in pch-2 mutants there was a striking shift of crossovers (line 135) to the PC end for all of the four chromosomes that were tested. I looked at Figure 1 for some time and felt that the results were more ambiguous. Map distances seemed similar at the PC end for wildtype and pch-2 on Chrom. I. While the decrease in crossing over in pch-2 appeared significant for Chrom. I and III, the results for Chrom. IV, and Chrom. X. seemed less clear. Were map distances compared statistically? At least for this reviewer the effects on specific intervals appear less clear and without a bit more detail on how the animals were constructed it's hard for me to follow these conclusions. 

      We hope that the added details above makes the results of these assays more clear. Map distances were compared and did not satisfy statistical significance, except where indicated. While we agree that the comparisons between control animals and pch-2 mutants may seem less clear with individual chromosomes, we argue that more general patterns become clear when analyzing multiple chromosomes. Indeed, this is why we expanded our recombination analysis beyond Chromosome III and the X Chromosomes, as reported in Deshong, 2014. 

      (3) Figure 2. I'm curious why non-irradiated controls were not tested side-by-side for COSA-1 staining. It just seems like a nice control that would strengthen the authors' arguments. 

      We will add these controls in the updated preprint.

      (4) Figure 3. It took me a while to follow the connection between the COSA-1 staining and DAPI staining panels (12 hrs later). Perhaps an arrow that connects each set of time points between the panels or just a single title on the X-axis that links the two would make things clearer. 

      We will make changes in the updated preprint to make this figure more clear.

      Reviewer #2 (Public review): 

      Summary: 

      This paper has some intriguing data regarding the different potential roles of Pch-2 in ensuring crossing over. In particular, the alterations in crossover distribution and Msh-5 foci are compelling. My main issue is that some of the models are confusingly presented and would benefit from some reframing. The role of Pch-2 across organisms has been difficult to determine, the ability to separate pairing and synapsis roles in worms provides a great advantage for this paper. 

      Strengths: 

      Beautiful genetic data, clearly made figures. Great system for studying the role of Pch-2 in crossing over. 

      We thank the reviewers for their constructive and useful summary of our manuscript and the analysis of its strengths. 

      Weaknesses: 

      (1) For a general audience, definitions of crossover assurance, crossover eligible intermediates, and crossover designation would be helpful. This applies to both the proposed molecular model and the cytological manifestation that is being scored specifically in C. elegans. 

      We will make these changes in an updated preprint.

      (2) Line 62: Is there evidence that DSBs are introduced gradually throughout the early prophase? Please provide references. 

      We will reference Woglar and Villeneuve 2018 and Joshi et. al. 2015 to support this statement in the updated preprint.

      (3) Do double crossovers show strong interference in worms? Given that the PC is at the ends of chromosomes don't you expect double crossovers to be near the chromosome ends and thus the PC? 

      Despite their rarity, double crossovers do show interference in worms. However, the PC is limited to one end of the chromosome. Therefore, even if interference ensures the spacing of these double crossovers, the preponderance of one of these crossovers toward one end (and not both ends) suggest something functionally unique about the PC end.

      (4) Line 155 - if the previous data in Deshong et al is helpful it would be useful to briefly describe it and how the experimental caveats led to misinterpretation (or state that further investigation suggests a different model etc.). Many readers are unlikely to look up the paper to find out what this means. 

      We will add this to the updated preprint.

      (5) Line 248: I am confused by the meaning of crossover assurance here - you see no difference in the average number of COSA-1 foci in Pch-2 vs. wt at any time point. Is it the increase in cells with >6 COSA-1 foci that shows a loss of crossover assurance? That is the only thing that shows a significant difference (at the one time point) in COSA-1 foci. The number of dapi bodies shows the loss of Pch-2 increases crossover assurance (fewer cells with unattached homologs). So this part is confusing to me. How does reliably detecting foci vs. DAPI bodies explain this? 

      We apologize for the confusion and will make this more clear in an updated perprint. The reviewer is correct that we do not see a difference in the average number of GFP::COSA1 foci at all time points in this experiment, even though we do see a difference in the number of DAPI stained bodies (an increase in crossover assurance in pch-2 mutants). What we meant to convey is that because of PCH-2’s dual role in regulating crossover formation (inhibiting it in early prophase, guaranteeing assurance later), the average number of GFP::COSA-1 foci at all time points also reflects this later role, resulting in this average being lower than if PCH-2 only inhibited crossovers early in meiotic prophase. We have shown that this later role does not significantly affect the average number of DAPI stained bodies, allowing us to see the role of PCH-2 in early meiotic prophase on crossover formation more clearly.

      (6) Line 384: I am confused. I understand that in the dsb-2/pch2 mutant there are fewer COSA-1 foci. So fewer crossovers are designated when DSBs are reduced in the absence of PCH-2.

      How then does this suggest that PCH-2's presence on the SC prevents crossover designation? Its absence is preventing crossover designation at least in the dsb-2 mutant. 

      We will also make this more clear in an updated preprint, as well as provide additional evidence to support this claim. In this experiment, we had identified three possible explanations for why PCH-2 persists on some nuclei that do not have GFP::COSA-1 foci: 1) PCH-2 removal is coincident with crossover designation; 2) PCH-2 removal depends on crossover designation; and 3) PCH-2 removal facilitates crossover designation. The decrease in the number of GFP::COSA-1 foci in dsb-2::AID;pch-2 mutants argues against the first two possibilities, suggesting that the third might be correct. We have additional evidence that we will include in an updated preprint that should provide stronger support and make this more clear.

      (7) Discussion Line 535: How do you know that the crossovers that form near the PCs are Class II and not the other way around? Perhaps early forming Class I crossovers give time for a second Class II crossover to form. In budding yeast, it is thought that synapsis initiation sites are likely sites of crossover designation and class I crossing over. Also, the precursors that form class I and II crossovers may be the same or highly similar to each other, such that Pch-2's actions could equally affect both pathways. 

      We do not know that the crossovers that form near the PC are Class II but hypothesize that they are based on the close, functional relationship that exists between Class I crossovers and synapsis and the apparent antagonistic relationship that exists between Class II crossovers and synapsis. We agree that Class I and Class II crossover precursors are likely to be the same or highly similar, exhibit extensive crosstalk that may complicate straightforward analysis and PCH-2 is likely to affect both, as strongly suggested by our GFP::MSH-5 analysis. We present this hypothesis based on the apparent relationship between PCH-2 and synapsis in several systems but agree that it needs to be formally tested. We will make this argument more clear in an updated preprint.

      Reviewer #3 (Public review): 

      Summary: 

      This manuscript describes an in-depth analysis of the effect of the AAA+ ATPase PCH-2 on meiotic crossover formation in C. elegant. The authors reach several conclusions, and attempt to synthesize a 'universal' framework for the role of this factor in eukaryotic meiosis. 

      Strengths: 

      The manuscript makes use of the advantages of the 'conveyor' belt system within the c.elegans reproductive tract, to enable a series of elegant genetic experiments. 

      We thank this reviewer for the useful assessment of our manuscript and the articulation of its strengths.

      Weaknesses: 

      A weakness of this manuscript is that it heavily relies on certain genetic/cell biological assays that can report on distinct crossover outcomes, without clear and directed control over other aspects and variables that might also impact the final repair outcome. Such assays are currently out of reach in this model system. 

      In general, this manuscript could be more generally accessible to non-C.elegans readers. Currently, the manuscript is hard to digest for non-experts (even if meiosis researchers). In addition, the authors should be careful to consider alternative explanations for certain results. At several steps in the manuscript, results could ostensibly be caused by underlying defects that are currently unknown (for example, can we know for sure that pch-2 mutants do not suffer from altered DSB patterning, and how can we know what the exact functional and genetic interactions between pch-2 and HORMAD mutants tell us?). Alternative explanations are possible and it would serve the reader well to explicitly name and explain these options throughout the manuscript. 

      We will make the manuscript more accessible to non-C. elegans readers and discuss alternate explanations for specific results in an updated preprint.

    1. Author response:

      The following is the authors’ response to the original reviews.

      A summary of changes

      (1) Line 93: “positive effect” to “positive contribution”, as suggested by reviewer 2.

      (2) Line 147-148: the null hypothesis to test “equal interspecific and intraspecific interactions”, as indicated by reviewers 2 and 4.

      (3) Lines 155-162: removed to reduce duplication with the additive partitioning, as suggested by reviewer 2.

      (4) Lines 186-188: added “the estimated competitive growth response would also include the effects of density-dependent pests, pathogens, or microclimates”, as suggested by reviewer 3.  

      (5) Lines 219-222: added “The community positive effect can be further partitioned by mechanisms of positive interactions (resource partitioning and facilitation), and facilitative effect can be classified as mutualism (+/+), commensalism (+/0), or parasitic (+/–) based on species specific assessments”.  

      (6) Lines 377-386: added options for determining maximum competitive growth response in some extreme scenarios of species mixtures.

      (7) Figure 1: modified to show the variations of competitive growth response with relative competitive ability from minimum (null expectation) to maximum (competitive exclusion).    

      A summary of four reviewers’ questions and authors’ response

      (1) A summary of authors’ responses. Reviewers did not seem to understand our work. They indicated that our model is inadequate for hypothesis testing. The fact is, as we note below, that our model allows for more hypothesis testing than the additive partitioning model. They suggested that one of our model components, the competitive growth response, needs to be further partitioned. However, this term represents only the competition effect and can not be split any further. Reviewers criticized us for misunderstanding the additive components while they suggested the same logic to test some intuitive ideas. They did not seem to know that the effects of competitive interactions vary with assessment methods, which differ between competition and biodiversity research. Our work seeks to harmonise definitions between these two fields and bridge the gap. The reviewers acknowledged that the additive components (i.e., the selection effect and complementarity effect) do not have clear biological meanings; however, they did not acknowledge that the additive components are used extensively for determining mechanisms of species interactions in biodiversity research. There is hardly any research that uses the additive partitioning model without linking the additive components to specific mechanisms of species interactions (i.e., positive SE to competition and positive CE to positive interactions).

      (2) Additive partitioning and underlying mechanisms. Some reviewers acknowledged that additive partitioning is not meant for determining mechanisms of species interactions and therefore argued that the additive partitioning should not be criticized for lack of biological meanings with the additive components. However, they insisted that additive partitioning is useful in quantifying net biodiversity effects against the null hypothesis that there is no difference between intraspecific and interspecific interactions or testing the idea that “niche complementarity mitigates competition” or “competitively superior species dominate mixtures”. Are these views contradictory each other? How can the additive partitioning that is not designed for determining mechanisms of species interactions provide meaningful explanations for outputs of species interactions, e.g., “niche complementarity mitigates competition” or “competitively superior species dominate mixtures”?

      Reviewers did not seem to realize that these ideas are equivalent to the suggestions that CE represents for the effects of positive interactions and SE for the effects of competitive interactions, that the quantification of net biodiversity effects does not require the two additive components, and that the null hypothesis exists long before the additive partitioning (see de Wit, 1960, de Wit et al., 1966). It is generally agreed that CE and SE result from mathematical calculations and do not have clear biological meanings in terms of linkages to specific mechanisms of species interactions responsible for observed net biodiversity effects or changes in ecosystem function (Loreau and Hector, 2012; Bourrat et al., 2023). Calling some mixed effects of species interactions as mechanisms (e.g., CE and SE) is misleading.        

      Model structure: incomplete or inadequate for hypothesis testing. Other than positive, negative, and competition interactions, two reviewers wanted to have more specific interactions such as microclimate amelioration and negative feedback from species-specific pests and pathogens. The determination of these specific mechanisms requires more investigations and cannot be simply made through partitioning growth and yield data. However, the effects of these interactions will be captured in our definition of species interactions.  Reviewers did not seem to know that the additive partitioning would also not allow identifying these specific positive species interactions.

      Inspired by the mathematical form of additive partitioning, two reviewers suggested that our model (presumably equation 4) is incomplete and the second term, i.e., competitive growth response needs to be further explored or partitioned. The second term represents deviations from the null expectation, due to species differences in growth and competitive ability or competition effect. We do not know why and how this term can be further partitioned and what any subcomponents would mean.   

      Our competitive partitioning model is based on two hypotheses: first, the null hypothesis to test the equivalence of interspecific and intraspecific interactions. This hypothesis is the same as the additive partitioning model. Second, the competitive hypothesis, which tests the dominance of positive or negative species interactions in a community. Thus, our model allows for more hypothesis testing than the current additive partitioning model.     

      (3) Types of species interactions. We follow the definition of species interactions generally used in biodiversity research (see Loreau and Hector, 2001), i.e., positive interactions (or complementarity) include resource partitioning and facilitation, negative interactions include interference competition, and competitive interactions include resource competition. One reviewer suggested that resource partitioning is byproduct of competition and should not be part of positive species interactions, which may be true for long-term evolution of species co-existence but not for biodiversity experiments of decade duration at most. Two reviewers suggested that positive interactions should also include microclimate amelioration or negative feedback from species-specific pests and pathogens. We agree and these are included in our definition. 

      (4) Significance of partial density monocultures. We used partial and full density monocultures and species competitive ability to determine what species can possibly achieve in mixture under the competitive hypothesis that constituent species share an identical niche but differ in growth and competitive ability. We did not use partial monocultures to test the effects of density on biodiversity effects. As with the additive partitioning, the competitive partitioning model is not designed for comparing yields across different densities. We added at lines 186-188 to indicate that the estimated competitive growth response would also include the effects of density-dependent pests, pathogens, or microclimates.  

      Similarly, we do not use the partial density monoculture to  supplant the replacement series design. Partial density monocultures only supplement the “replacement series” design that does not provides estimates of facilitative effects and competitive growth responses that would occur in mixtures. It is crucial to know that one experimental approach is simply not enough for determining underlying mechanisms of species interactions responsible for changes in ecosystem function.  

      (5) Competition effect in competition and biodiversity research. Due to different methods used, competition effect in competition research has different ecological meanings from that in biodiversity research. In competition research, species performance in mixture are compared with their partial density monocultures and therefore competition effect is generally negative, as suggested by reviewer 4. In biodiversity research, comparison is between mixture and full density monocultures. The resulting competition effect can be positive or negative for both individual species and community productivity defined by species composition and full density monoculture yields.     

      Therefore, we cannot use the results of competition research based on additive series design to describe effects of competitive interactions on ecosystem productivity based replacement series design.

      Reviewer #1 (Public Review):

      [Editors' note: this is an overall synthesis from the Reviewing Editor in consultation with the reviewers.]

      The three reviews expand our critique of this manuscript in some depth and complementary directions. These can be synthesized in the following main points (we point out that there is quite a bit more that could be written about the flaws with this study; however, time constraints prevented us from further elaborating on the issues we see):

      (1) It is unclear what the authors want to do.

      As indicate by the title, our objective is to “partition changes in ecosystem productivity by effects of species interactions”, i.e., partitioning net biodiversity effects estimated from the null expectation into components associated with positive, negative, or competition interspecific interactions.

      It seems their main point is that the large BEF literature and especially biodiversity experiments overstate the occurrence of positive biodiversity effects because some of these can result from competition.

      We demonstrated through ecological theories and simulation/experiment data that competition is a major source of the net biodiversity effects estimated with additive partitioning model. We know that competition effect varies with mixture attributes. Future research will determine average effect of competitive interactions on biodiversity effects in large BEF literature.   

      Because reduced interspecific relative to intraspecific competition in mixture is sufficient to produce positive effects in mixtures (if interspecific competition = 0 then RYT = S, where S is species richness in mixture -- this according to the reciprocal yield law = law of constant final yield), they have a problem accepting NE > 0 as true biodiversity effect (see additive partitioning method of Loreau & Hector 2001 cited in manuscript).

      We have no problem to accept NE>0 as true positive biodiversity effect. However, NE>0 can also result from competitive interactions based on the null expectation and needs to be partitioned by effects of species interactions.

      (2) The authors' next claim, without justification, that additive partitioning of NE is flawed and theoretically and biologically meaningless.

      The additive partitioning model is based on Covariance equation (or Price equation) that has nothing to do with biodiversity partitioning (Bourrat et al., 2023). Biological meaning was arbitrarily assigned to CE and SE. We made clear that the additive partitioning model is mathematically sound but does not have biological meanings that it has been used for.   

      They misinterpret the CE component as biological niche partitioning and the SE component as biological dominance.

      We did not. Loreau and Hector (2001) clearly indicated positive CE for positive interactions and positive SE for competitive interactions, which is generally what has been used for in the last twenty years.

      They do not seem to accept that the additive partitioning is a logically and mathematically sound derivation from basic principles that cannot be contested.

      We do not have problem with mathematical form of additive partitioning but only oppose ecological meanings assigned to CE and SE, simply because CE and SE both result from all species interactions (see Loreau and Hector, 2001; Bourrat et al., 2023). The reviewer seemed to have a contradictory thinking that the additive components are biologically meaningless but derived from biological basic principles.       

      (3) The authors go on to introduce a method to calculate species-level overyielding (RY > 1/S in replacement series experiments) as a competitive growth response and multiply this with the species monoculture biomass relative to the maximum to obtain competitive expectation. This method is based on resource competition and the idea that resource uptake is fully converted into biomass (instead of e.g. investing it in allelopathic chemical production).

      Correct, but we did not assume “resource uptake is fully converted into biomass”.

      (4) It is unclear which experiments should be done, i.e. are partial-density monocultures planted or simply calculated from full-density monocultures? At what time are monocultures evaluated? The framework suggests that monocultures must have the full potential to develop, but in experiments, they are often performing very poorly, at least after some time. I assume in such cases the monocultures could not be used.

      Both partial and full density monocultures are needed, along with mixtures to separate NE by species interactions. Calculating competitive growth responses from density-size relationships can be an alternative, given the lack of partial density monocultures in current biodiversity experiments, but is not preferred.

      Similar to additive partitioning, our model can (and should) be applied to all developmental stages of an experiment to examine how interactions evolve through time.   

      (5) There are many reasons why the ideal case of only resource competition playing a role is unrealistic. This excludes enemies but also differential conversion factors of resources into biomass and antagonistic or facilitative effects. Because there are so many potential reasons for deviations from the null model of only resource competition, a deviation from the null model does not allow conclusions about underlying mechanisms.

      The competitive expectation is only a hypothesis, just as the null expectation. The difference between competitive and null expectations represents a competitive effect resulting from species differences in growth and competitive ability, while the deviation of observed yields from the competitive expectation indicates positive or negative effect (see lines 201-219).

      Furthermore, this is not a systematically developed partitioning, but some rather empirical ad hoc formulation of a first term that is thought to approximate competitive effects as understood by the authors (but again, there already are problems here). The second residual term is not investigated. For a proper partitioning approach, one would have to decompose overyielding into two (or more) terms and demonstrate (algebraically) that under some reasonable definitions of competitive and non-competitive interactions, these end up driving the respective terms.

      The first term represents the null expectation assuming equal interspecific and intraspecific interactions, i.e., absence of positive, negative, and competition effects. The second residual term represents competition effect, due to species differences in growth and competitive ability. The meaning of second residual term is clear and does not need to be further partitioned or investigated.

      In fact, our competitive partitioning also has several components including null expectation, competitive growth response, and observed yield, plus partial density monocultures for species assessment, or null expectations, competitive expectations, and observed yields for community level assessment, although different from the additive partitioning.

      (6) Using a simplistic simulation to test the method is insufficient. For example, I do not see how the simulation includes a mechanism that could create CE in additive partitioning if all species would have the same monoculture yield. Similarly, they do not include mechanisms of enemies or antagonistic interactions (e.g. allelopathy).

      The simulation model we used is developed from real world data and can only do what are available in the model in terms of species and their growth under different conditions. We can not go beyond data limitation. The model is empirical and has been shown to accurately estimate yield in the aspen-spruce forest condition. We would also note that we do also use experimental data (Table 2).  

      (7) The authors do not cite relevant literature regarding density x biodiversity experiments, competition experiments, replacement-series experiments, density-yield experiments, additive partitioning, facilitation, and so on.

      We cited literature relevant to biodiversity partitioning since we are not aiming to cover everything. The reviewer may not be aware that most of the research areas listed are actually included in our work, such as additive and replacement-series experiment designs, additive partitioning, facilitation, competition studies, and density-yield relationships. Our competitive model partitioning is based on biological principles, while the additive partitioning model is based only on a mathematical equation.   

      Overall, this manuscript does not lead further from what we have already elaborated in the broad field of BEF and competition studies and rather blurs our understanding of the topic.

      The results of competition studies based on additive series design are not really used in the broad field of BEF based on replacement series design. The effects of competitive interactions on BEF are never clearly defined using the results of competition studies. Our work is filling that gap.  

      Reviewer #2 (Public Review):

      This manuscript is motivated by the question of what mechanisms cause overyielding in mixed-species communities relative to the corresponding monocultures. This is an important and timely question, given that the ultimate biological reasons for such biodiversity effects are not fully understood.

      As a starting point, the authors discuss the so-called "additive partitioning" (AP) method proposed by Loreau & Hector in 2001. The AP is the result of a mathematical rearrangement of the definition of overyielding, written in terms of relative yields (RY) of species in mixtures relative to monocultures. One term, the so-called complementarity effect (CE), is proportional to the average RY deviations from the null expectations that plants of both species "do the same" in monocultures and mixtures. The other term, the selection effect (SE), captures how these RY deviations are related to monoculture productivity. Overall, CE measures whether relative biomass gains differ from zero when averaged across all community members, and SE, whether the "relative advantage" species have in the mixture, is related to their productivity. In extreme cases, when all species benefit, CE becomes positive. When large species have large relative productivity increases, SE becomes positive. This is intuitively compatible with the idea that niche complementarity mitigates competition (CE>0), or that competitively superior species dominate mixtures and thereby driver overyielding (SE>0).

      The reviewer needs to know that these ideas are based on the same logic that positive CE represents the effects of positive interactions and positive SE represents the effects of competitive interactions. CE>0 or SE>0 can result from many different scenarios of species interactions, not necessarily “niche complementarity mitigates competition” or “competitively superior species dominate mixtures”. CE>0 and SE>0 can occur alone or together. We simply can not tell underlying mechanisms of overyielding from mathematical calculations (CE and SE), as suggested by this reviewer later.

      The reviewer criticizes us while using the same logic themselves.

      However, it is very important to understand that CE and SE capture the "statistical structure" of RY that underlies overyielding. Specifically, CE and SE are not the ultimate biological mechanisms that drive overyielding, and never were meant to be. CE also does not describe niche complementarity. Interpreting CE and SE as directly quantifying niche complementarity or resource competition, is simply wrong, although it sometimes is done. The criticism of the AP method thus in large part seems unwarranted. The alternative methods the authors discuss (lines 108-123) are based on very similar principles.

      The reviewer actually supports our point. However, CE and SE have been largely used as biological mechanisms, positive CE as the results of complementary interactions and positive SE as the results of competitive interactions (see Loreau and Hector, 2001).  

      We do not have problem with the "statistical structure" of AP; it is simply a covariance equation. It is important to know that CE and SE do not provide additional information on overyielding than NE in terms of underlying mechanisms of species interactions. Any attempt to investigate mechanism of overyielding with CE or SE can easily go wrong.

      Our competitive partitioning model incorporates effects of competitive interactions into the conventional null expectation and allows for separating different effects of species interactions. In comparison, the additive partitioning model does not have this capacity, not even designed for this purpose, as suggested by this and other reviewers.         

      The authors now set out to develop a method that aims at linking response patterns to "more true" biological mechanisms.

      Assuming that "competitive dominance" is key to understanding mixture productivity, because "competitive interactions are the predominant type of interspecific relationships in plants", the authors introduce "partial density" monocultures, i.e. monocultures that have the same planting density for a species as in a mixture. The idea is that using these partial density monocultures as a reference would allow for isolating the effect of competition by the surrounding "species matrix".

      Correct.

      The authors argue that "To separate effects of competitive interactions from those of other species interactions, we would need the hypothesis that constituent species share an identical niche but differ in growth and competitive ability (i.e., absence of positive/negative interactions)." - I think the term interaction is not correctly used here, because clearly competition is an interaction, but the point made here is that this would be a zero-sum game.

      We did not say that competition is not an interaction; we only want to separate the effect of competition from those of other species interactions.

      The authors use the ratio of productivity of partial density and full-density monocultures, divided by planting density, as a measure of "competitive growth response" (abbreviated as MG). This is the extra growth a plant individual produces when intraspecific competition is reduced.

      Correct.

      We added at lines 377-386 to discuss options to determine MG in some uncommon scenarios of species mixtures.

      Here, I see two issues: first, this rests on the assumption that there is only "one mode" of competition if two species use the same resources, which may not be true, because intraspecific and interspecific competition may differ. Of course, one can argue that then somehow "niches" are different, but such a niche definition would be very broad and go beyond the "resource set" perspective the authors adopt. Second, this value will heavily depend on timing and the relationship between maximum initial growth rates and competitive abilities at high stand densities.

      First, the "competitive effect" focusses on resource competition and other forms of competition (presumably interference competition) are included in the negative interactions.

      Second, competitive growth response varies over time and with density, and so do NE, CE, SE, and interspecific interactions.

      The authors then progress to define relative competitive ability (RC), and this time simply uses monoculture biomass as a measure of competitive ability. To express this biomass in a standardized way, they express it as different from the mean of the other species and then divide by the maximum monoculture biomass of all species.

      I have two concerns here: first, if competitive ability is the capability of a species to preempt resources from a pool also accessed by another species, as the authors argued before, then this seems wrong because one would expect that a species can simply be more productive because it has a broader niche space that it exploits. This contradicts the very narrow perspective on competitive ability the authors have adopted. This also is difficult to reconcile with the idea that specialist species with a narrow niche would outcompete generalist species with a broad niche. Second, I am concerned by the mathematical form. Standardizing by the maximum makes the scaling dependent on a single value.

      First, growth conditions are controlled in biodiversity experiments, i.e., both monocultures and mixtures are the same in resource space. Species do not have opportunity to exploit resources outside experimental area. For example, if less productive species on normal soils outperform more competitive species on saline/alkaline soil, these “less productive species” are considered “more productive”.    

      Second, as discussed in our paper (lines 367-376; Figure 1), more research is needed to determine relationships between species traits (biomass or height) and relative competitive ability. By then, scaling by the maximum would not be needed. There has been quite a lot of research on such relationships; we should leave this to subject experts to determine what would be mostly appropriate for species studied.

      As a final step, the authors calculate a "competitive expectation" for a species' biomass in the mixture, by scaling deviations from the expected yield by the product MG ⨯ RC. This would mean a species does better in a mixture when (1) it benefits most from a conspecific density reduction, and (2) has a relatively high biomass.

      Put simply, the assumption would be that if a species is productive in monoculture (high RC), it effectively does not "see" the competitors and then grows like it would be the sole species in the community, i.e. like in the partial density monoculture.

      Correct, if species competitive ability differs substantially, the more competitive species in the mixture would grow like partial density monoculture. This extra growth should not be treated as sources of positive biodiversity effects, simply because it does not result from positive species interactions.   

      Overall, I am not very convinced by the proposed method.

      (1) The proposed method seems not very systematic but rather "ad hoc". It also is much less a partitioning method than the AP method because the other term is simply the difference. It would be good if the authors investigated the mathematical form of this remainder and explored its properties.. when does complementarity occur? Would it capture complementarity and facilitation?

      AP is, by no means, systematic. Remember, AP is based on covariance equation (or Price equation) that has nothing to do with species interactions, other than nice-looking mathematical form (Bourrat et al., 2023). Ecological meanings are subjectively given to CE and SE. Therefore,  CE and SE reflect what we call them, not what they really mean.    

      The remainder measures deviations from the null expectation, due to only competition effect, and can not be partitioned any further. The remainder would be positive for more competitive species and negative for less competitive species in mixture relative to their full density monoculture. The deviation of observed yields from competitive expectations indicates dominance of positive or negative species interactions. All these are clearly outlined at lines 201-221.   

      (2) The justification for the calculation of MG and RC does not seem to follow the very strict assumptions of what competition (in the absence of complementarity) is. See my specific comments above.

      We do not see why not.

      (3) Overall, the manuscript is hard to read. This is in part a problem of terminology and presentation, and it would be good to use more systematic terms for "response patterns" and "biological mechanisms".

      To help understand the variations of competitive growth response with relative competitive ability, the x axis of Figure 1 is labelled with null expectation, competitive expectation, and competitive exclusion from minimum to maximum deviation of competitive ability from community average.

      We have followed terms used in biodiversity partitioning and changing terms can be confusing.  

      Examples:

      - on line 30, the authors write that CE is used to measure "positive" interactions and SE to measure "competitive interactions", and later name "positive" and "negative" interactions "mechanisms of species interactions". Here the authors first use "positive interaction" as any type of effect that results in a community-level biomass gain, but then they use "interaction" with reference to specific biological mechanisms (e.g. one species might attract a parasite that infests another species, which in turn may cause further changes that modify the growth of the first and other species).

      There are some differences in meaning, but that is what CE and SE have been generally used for. Using different terms can be confusing and does not help understanding the problems with AP.

      - on line 70, the authors state that "positive interaction" increases productivity relative to the null expectation, but it is clear that an interaction can have "negative" consequences for one interaction partner and "positive" ones for the other. Therefore, "positive" and "negative" interactions, when defined in this way, cannot be directly linked to "resource partitioning" and "facilitation", and "species interference" as the authors do. Also, these categories of mechanisms are still simple. For example, how do biotic interactions with enemies classify, see above?

      We are explaining effects of competitive interactions on species yield, and ultimately on community yield that can be linked to “resource partitioning" and "facilitation", and "species interference".

      More specific species interactions require detailed biological investigation and cannot be determined through partitioning of biomass production.  

      - line 145: "Under the null hypothesis, species in the mixture are assumed to be competitively equivalent (i.e., absence of interspecific interactions)". This is wrong. The assumption is that there are interspecific interactions, but that these are the same as the intraspecific ones. Weirdly, what follows is a description of the AP method, which does not belong here. This paragraph would better be moved to the introduction where the AP method is mentioned. Or omitted, since it is basically a repetition of the original Loreau & Hector paper.

      As suggested, “absence of interspecific interactions” was replaced with “equal interspecific and intraspecific interactions”.

      We have removed lines 155-162 to reduce duplication. However, our method is based on null expectation that needs to be introduced, despite it is part of AP.

      Other points:

      - line 66: community productivity, not ecosystem productivity.

      Both community productivity and ecosystem productivity are used in biodiversity research, although meaning can be slightly different. Comparatively, ecosystem productivity is more common.

      - line 68: community average responses are with respect to relative yields - this is important!

      - line 64: what are "species effects of species interactions"?

      We searched and did not find “species effects of species interactions”.

      - line 90: here "competitive" and "productive" are mixed up, and it is important to state that "suffers more" refers to relative changes, not yield changes.

      It, in fact, refers to yield changes. For example, less productive species, at active growth, are more responsive to changes in competition, while more productive species, at inactive growth (i.e., aging), are less responsive to changes in competition.   

      - line 92: "positive effect of competitive dominance": I don't understand what is meant here.

      The phrase was modified to “positive contribution of competitive dominance to ecosystem productivity based on the null expectation”.

      Reviewer #3 (Public Review):

      Summary:

      This manuscript by Tao et al. reports on an effort to better specify the underlying interactions driving the effects of biodiversity on productivity in biodiversity experiments. The authors are especially concerned with the potential for competitive interactions to drive positive biodiversity-ecosystem functioning relationships by driving down the biomass of subdominant species. The authors suggest a new partitioning schema that utilizes a suite of partial density treatments to capture so-called competitive ability. While I agree with the authors that understanding the underlying drivers of biodiversity-ecosystem functioning relationships is valuable - I am unsure of the added value of this specific approach for several reasons.

      Strengths:

      I can find a lot of value in endeavouring to improve our understanding of how biodiversity-ecosystem functioning relationships arise. I agree with the authors that competition is not well integrated into the complementarity and selection effect and interrogating this is important.

      Weaknesses:

      (1) The authors start the introduction very narrowly and do not make clear why it is so important to understand the underlying mechanisms driving biodiversity-ecosystem functioning relationships until the end of the discussion.

      There are different ways to start introduction; we believe that starting with the problems of the current approach is the most effective for outlining the study’s objective.  

      (2) The authors criticize the existing framework for only incorporating positive interactions but this is an oversimplification of the existing framework in several ways:

      We did not criticize the existing framework for only incorporating positive interactions. We criticize the existing framework, because it is not based on mechanisms of species interactions, but is extensively used to determine underlying mechanisms driving biodiversity-ecosystem functioning relationships.

      a. The existing partitioning scheme incorporates resource partitioning which is an effect of competition.

      Resource partitioning means that species utilize resources differently, while competition means species use the same resources. “resource partitioning is an effect of competition” is not true in biodiversity experiments that are often short in duration and controlled in conditions.  

      b. The authors neglect the potential that negative feedback from species-specific pests and pathogens can also drive positive BEF and complementarity effects but is not a positive interaction, necessarily. This is discussed in Schnitzer et al. 2011, Maron et al. 2011, Hendriks et al. 2013, Barry et al. 2019, etc.

      We did not. The feedback effect will be reflected in the differences between observed yields and competitive expectations if species in mixtures have different pests and pathogens relative to monocultures. The additive partitioning does not identify these feedback effects either.

      c. Hector and Loreau (and many of the other citations listed) do not limit competition to SE because resource partitioning is a byproduct of competition.

      Positive SE has been largely interpreted as the result of competition including Hector and Loreau (2001) and many others. It needs to be clear that neither of the additive components can be linked to specific mechanisms of species interactions. 

      Does “resource partitioning is a byproduct of competition” mean that species change their niche to avoid competition? If this is what the reviewer means, it may occur through long-term evolution, but not in short-term biodiversity experiments. Hector and Loreau (2001) clearly indicated that their complementarity effect includes both resource partitioning and facilitation.   

      (3) It is unclear how this new measure relates to the selection effect, in particular. I would suggest that the authors add a conceptual figure that shows some scenarios in which this metric would give a different answer than the traditional additive partition. The example that the authors use where a dominant species increases in biomass and the amount that it increases in biomass is greater than the amount of loss from it outcompeting a subdominant species is a general example often used for a selection effect when exactly would you see a difference between the two?:<br /> a. Just a note - I do think you should see a difference between the two if the species suffers from strong intraspecific competition and has therefore low monoculture biomass but this would tend to also be a very low-density monoculture in practice so there would potentially be little difference between a low density and high-density monoculture because the individuals in a high-density monoculture would die anyway. So I am not sure that in practice you would really see this difference even if partial density plots were incorporated.

      Linking new measure to SE or CE would be difficult (see many comparisons in Tables and Figures in our manuscript), as SE and CE are derived from mathematical equation and do not represent specific mechanisms of species interactions (Hector and Loreau 2012; Bourrat et al., 2023).

      (4) One of the tricky things about these endeavors is that they often pull on theory from two different subfields and use similar terminology to refer to different things. For example - in competition theory, facilitation often refers to a positive relative interaction index (this seems to be how the authors are interpreting this) while in the BEF world facilitation often refers to a set of concrete physical mechanisms like microclimate amelioration. The truth is that both of these subfields use net effects. The relative interaction index is also a net outcome as is the complementarity effect even if it is only a piece of the net biodiversity effect. Trying to combine these two subfields to come up with a new partitioning mechanism requires interrogating the underlying assumptions of both subfields which I do not see in this paper.

      Agree, microclimate amelioration is also part of positive effect and will be reflected in the difference between observed yield and competitive expectation. We can not separate the two mechanisms of positive species interactions without investigating influences of microclimate on growth and yield.

      (5) The partial density treatment does not isolate competition in the way that the authors indicate. All of the interactions that the authors discuss are density-dependent including the mechanism that is not discussed (negative feedback from species-specific pests and pathogens). These partial density treatment effects therefore cannot simply be equated to competition as the authors indicate.:

      We use partial density monoculture to determine maximum competitive growth response, effect of density-dependent intraspecific interactions, and species competitive ability to determine the level of maximum competitive growth response species can achieve in mixtures. There may be changes in species-specific pests and pathogens from partial to full density monocultures, which will be captured in competitive growth responses of individuals. We added at lines 186-188 to indicate that the maximum competitive growth response estimated would also include the effects of density-dependent pests, pathogens, or microclimates.   

      a. Additionally - the authors use mixture biomass as a stand-in for competitive ability in some cases but mixture biomass could also be determined by the degree to which a plant is facilitated in the mixture (for example).

      We used monoculture biomass, not mixture biomass, to assess competitive ability

      (6) I found the literature citation to be a bit loose. For example, the authors state that the additive partition is used to separate positive interactions from competition (lines 70-76) and cite many papers but several of these (e.g. Barry et al. 2019) explicitly do not say this.

      Barry et al. (2019) defined CE as overproduction from monocultures, an effect of positive interactions.  

      (7) The natural take-home message from this study is that it would be valuable for biodiversity experiments to include partial density treatments but I have a hard time seeing this as a valuable addition to the field for two reasons:

      a. In practice - adding in partial density treatments would not be feasible for the vast majority of experiments which are already often unfeasibly large to maintain.

      The reviewer suggested that quantity is more important than quality. Without partial density monocultures no one can separate different effects of species interactions, as suggested by Loreau and Hector, reviewers, and many others that effects of species interactions can not be clearly differentiated with replacement series design. Unreliable scientific findings are not valuable.

      b. The density effect would likely only be valuable during the establishment phase of the experiment because species that are strongly limited by intraspecific competition will die in the full-density plots resulting in low-density monocultures. You can see this in many biodiversity experiments after the first years. Even though they are seeded (or rarely planted) at a certain density, the density after several years in many monocultures is quite low.

      True. High or low density also depends on individual size; if individuals do not get enough resources, density is high. Therefore, density effect can be strong even as density drops substantially from initial levels.  

      Reviewer #4 (Public Review):

      Summary:

      This manuscript claims to provide a new null hypothesis for testing the effects of biodiversity on ecosystem functioning. It reports that the strength of biodiversity effects changes when this different null hypothesis is used. This main result is rather inevitable. That is, one expects a different answer when using a different approach. The question then becomes whether the manuscript’s null hypothesis is both new and an improvement on the null hypothesis that has been in use in recent decades.

      It needs to be clear that we use two hypotheses, null hypothesis that is currently used with AP, and competitive hypothesis that is new with this manuscript. The null hypothesis helps determine changes in ecosystem productivity from all species interactions, while the competitive hypothesis helps partition changes in ecosystem productivity by mechanisms of species interactions, i.e., positive, negative, or competitive interactions.    

      Strengths:

      In general, I appreciate studies like this that question whether we have been doing it all wrong and I encourage consideration of new approaches.

      Weaknesses:

      Despite many sweeping critiques of previous studies and bold claims of novelty made throughout the manuscript, I was unable to find new insights. The manuscript fails to place the study in the context of the long history of literature on competition and biodiversity and ecosystem functioning. The Introduction claims the new approach will address deficiencies of previous approaches, but after reading further I see no evidence that it addresses the limitations of previous approaches noted in the Introduction. Furthermore, the manuscript does not reproducibly describe the methods used to produce the results (e.g., in Table 1) and relies on simulations, claiming experimental data are not available when many experiments have already tested these ideas and not found support for them. Finally, it is unclear to me whether rejecting the ‘new’ null hypothesis presented in the manuscript would be of interest to ecologists, agronomists, conservationists, or others. I will elaborate on each of these points below.

      First, there are many biodiversity experiments but those with partial density monocultures are rare. We found only one greenhouse experiment. We have to use simulation to illustrate different scenarios of species interactions to demonstrate how our approach works and how different it is from the AP.  

      Because of different methods used, the results of long history competition research (generally based on additive series design) cannot be used to define effects of competitive interactions in biodiversity research (generally based on replacement series design). This may be the reason that few competition researchers were cited in Loreau and Hector (2001).

      Our approach requires two hypotheses, null and competitive, and the meaning of deviation from these hypotheses are outlined at lines 201-221 for both individual species and community level assessments. Distinguishing changes in ecosystem productivity by species interactions would be of great interest to “ecologists, agronomists, conservationists, or others”.

      The critiques of biodiversity experiments and existing additive partitioning methods are overstated, as is the extent to which this new approach addresses its limitations. For example, the critique that current biodiversity experiments cannot reveal the effects of species interactions (e.g., lines 37-39) isn't generally true, but it could be true if stated more specifically. That is, this statement is incorrect as written because comparisons of mixtures, where there are interspecific and intraspecific interactions, with monocultures, where there are only intraspecific interactions, certainly provide information about the effects of species interactions (interspecific interactions). These biodiversity experiments and existing additive partitioning approaches have limits, of course, for identifying the specific types of interactions (e.g., whether mediated by exploitative resource competition, apparent competition, or other types of interactions). However, the approach proposed in this manuscript gets no closer to identifying these specific mechanisms of species interactions. It has no ability to distinguish between resource and apparent competition, for example. Thus, the motivation and framing of the manuscript do not match what it provides. I believe the entire Introduction would need to be rewritten to clarify what gap in knowledge this proposed approach is addressing and what would be gained by filling this knowledge gap.

      Our approach helps determine underlying mechanisms of species interactions, i.e., positive (resources partitioning or facilitation), negative, or competitive interactions. I am not sure how much we need to go further in identifying more specific mechanisms. If resource and apparent competition refers to resource and interference competition, our approach can tease apart them.

      I recommend that the Introduction instead clarify how this study builds on and goes beyond many decades of literature considering how competition and biodiversity effects depend on density. This large literature is insufficiently addressed in this manuscript. This fails to give credit to previous studies considering these ideas and makes it unclear how this manuscript goes beyond the many previous related studies. For example, see papers and books written by de Wit, Harper, Vandermeer, Connolly, Schmid, and many others. Also, note that many biodiversity experiments have crossed diversity treatments with a density treatment and found no significant effects of density or interactions between density and diversity (e.g., Finn et al. 2013 Journal of Applied Ecology). Thus, claiming that these considerations of density are novel, without giving credit to the enormous number of previous studies considering this, is insufficient.

      A misunderstanding here. Our approach is not designed to test density effect. The same density is held across full density monocultures and mixtures. We use partial density monocultures to determine what species may competitively achieve in full density mixture, without positive or negative interspecific interactions.  

      Replacement series designs emerged as a consensus for biodiversity experiments because they directly test a relevant null hypothesis. This is not to say that there are no other interesting null hypotheses or study designs, but one must acknowledge that many designs and analyses of biodiversity experiments have already been considered. For example, Schmid et al. reviewed these designs and analyses two decades ago (2002, chapter 6 in Loreau et al. 2002 OUP book) and the overwhelming consensus in recent decades has been to use a replacement series and test the corresponding null hypothesis.

      Some wrong impressions. We are not trying to supplant “replacement series” with “additive series”; we use “additive series” designs to supplement “replacement series” design for partitioning changes in ecosystem productivity by mechanisms of species interactions, which would not be possible with “replacement series” design alone, as suggested by many including reviewers.   

      It is unclear to me whether rejecting the 'new' null hypothesis presented in the manuscript would be of interest to ecologists, agronomists, conservationists, or others. Most biodiversity experiments and additive partitions have tested and quantified diversity effects against the null hypothesis that there is no difference between intraspecific and interspecific interactions. If there was no less competition and no more facilitation in mixtures than in monocultures, then there would be no positive diversity effects. Rejecting this null hypothesis is relevant when considering coexistence in ecology, overyielding in agronomy, and the consequences of biodiversity loss in conservation (e.g., Vandermeer 1981 Bioscience, Loreau 2010 Princeton Monograph). This manuscript proposes a different null hypothesis and it is not yet clear to me how it would be relevant to any of these ongoing discussions of changes in biodiversity.

      Our method begins with the null expectation: that intraspecific and interspecific interactions are equivalent. We then propose the competitive hypothesis as a second non-exclusive hypothesis which tests the dominance of positive or negative specific interactions. As shown by its name, the additive partitioning model has been advocated for partitioning biodiversity effects by some ecological mechanisms (CE and SE). The ecological meaning of deviation from the two hypotheses are outlined at lines 201-221 for both individual species and community level assessments.   

      The claim that all previous methods 'are not capable of quantifying changes in ecosystem productivity by species interactions and species or community level' is incorrect. As noted above, all approaches that compare mixtures, where there are interspecific interactions, to monocultures, where there are no species interactions, do this to some extent. By overstating the limitations of previous approaches, the manuscript fails to clearly identify what unique contribution it is offering, and how this builds on and goes beyond previous work.

      The reviewer implies that a partial truth equals the whole truth. The same argument can also be applied to the additive partitioning if relative yield total or response ratio provides a kind of comparison between mixture and monocultures. Our statement is correct in the way that previous approaches are not designed to separate changes in ecosystem productivity by species interactions, as indicated by other reviewers. The additive partitioning is built on Price equation (covariance equation) that has never been biologically demonstrated for relevance in biodiversity partitioning (Bourrat et al., 2023).  

      We made clear that our work is built on and beyond the null expectation with addition of competitive expectation.

      The manuscript relies on simulations because it claims that current experiments are unable to test this, given that they have replacement series designs (lines 128-131). There are, however, dozens of experiments where the replacement series was repeated at multiple densities, which would allow a direct test of these ideas. In fact, these ideas have already been tested in these experiments and density effects were found to be nonsignificant (e.g., Finn et al. 2013).

      Out of point. Again, we are not testing density effect. Partial density is used to determine competitive growth responses that species may achieve in mixture based on their relative competitive ability. We used simulations, as partial density monocultures are used only in one experimental study that has been included in our study.  

      It seems that the authors are primarily interested in trees planted at a fixed density, with no opportunity for changes in density, and thus only changes in the size of individuals (e.g., Fig. 1). In natural and experimental systems, realized density differs from the initial planted density, and survivorship of seedlings can depend on both intraspecific and interspecific interactions. Thus, the constrained conditions under which these ideas are explored in this manuscript seem narrow and far from the more complex reality where density is not fixed.

      We use fixed density only for convenience. In biodiversity experiments, density can increase or decrease over time from initial levels. However, initial density is generally used in evaluation of species interactions. If interest is community productivity, density change does not need to be considered. Again, we are not testing density effects.    

      Additional detailed comments:

      It is unclear to me which 'effects' are referred to on line 36. For example, are these diversity effects or just effects of competition? What is the response variable?

      It means the effect of competitive interactions on productivity and should be clear based on previous sentences.

      The usefulness of the approach is overstated on line 52. All partitioning approaches, including the new one proposed here, give the net result of many types of species interactions and thus cannot 'disentangle underlying mechanisms of species interactions.'

      Not sure how many types of species interactions the reviewer referred to. If mechanisms of species interactions are grouped in three categories (positive, negative, and competitive) as has been in biodiversity research, our approach can tease them apart.   

      The weaknesses of previous approaches are overstated throughout the manuscript, including in lines 60-61. All approaches provide some, but not all insights. Sweeping statements that previous approaches are not effective, without clarifying what they can and can't do, is unhelpful and incorrect. Also, these statements imply that the approach proposed here addresses the limitations of these previous approaches. I don't yet see how it does so.

      The weaknesses of previous approaches are not overstated in terms of separating changes in ecosystem productivity by species interactions. As pointed by other reviewers, none of the previous approaches are designed for quantifying changes in ecosystem productivity by species interactions.   

      The definitions given for the CE and SE on line 71 are incorrect. Competition affects both terms and CE can be negative or have nothing to do with positive interactions, as noted in many of the papers cited.

      We are not trying to define CE and SE but only point out how CE and SE have been generally used in biodiversity research (see recent publication by Feng et al., 2022).

      The proposed approach does not address the limitations noted on lines 73 and 74.

      It does in terms of sources of net biodiversity effect, whether from positive, negative or competitive interactions.

      The definition of positive interactions in lines 77 and 78 seems inconsistent with much of the literature, which instead focuses on facilitation or mutualism, rather than competition when describing positive interactions.

      Much of the literature supports our definition (see Loreau and Hector, 2001). In biodiversity research, positive interactions include resource partitioning and facilitation. What we are trying to point out is that competition affects species and community level assessments based on the null expectation and needs to be separated.

      Throughout the manuscript, competition is often used interchangeably with resource competition (e.g., line 82) and complementarity is often attributed to resource partitioning (e.g., line 77). This ignores apparent competition and partitioning enemy-free niche space, which has been found to contribute to biodiversity effects in many studies.

      If apparent competition refers to interference competition, it is included in negative interaction. Changes in species-specific pests and pathogens in mixture will be captured in positive or negative effects through facilitation or interference.  

      In what sense are competitive interactions positive for competitive species (lines 82-83)? By definition, competition is an interaction that has a negative effect. Do you mean that interspecific competition is less than intraspecific competition? I am having a very difficult time following the logic.

      I am glad the reviewer raised this question that may confuse many others and has never been clearly discussed. It all depends on how comparison is made. If species performance in mixture are compared with that in partial density monocultures, as is in competition research, competition effect is negative for all species. If comparison is made between mixture and full density monocultures, as is done in biodiversity research, competition effect should be positive for more competitive species and negative for less competitive species, with resources flowing from less to more competitive species in mixture relative to full density monocultures.   

      Therefore, the definitions of competitive interactions based on additive series design in competition research cannot be used to describe competitive interactions based on replacement series design in biodiversity research. In biodiversity research, the effects of competitive interactions are never clearly defined at species or community level and mixed up with those of other species interactions.      

      Results are asserted on lines 93-95, but I cannot find the methods that produced these results. I am unable to evaluate the work without a repeatable description of the methods.

      We have added references on sources of these data.

      The description of the null hypothesis in the common additive partitioning approach on lines 145-146 is incorrect. In the null case, it does not assume that there are no interspecific interactions, but rather that interspecific and intraspecific interactions are equivalent.

      Correct, changes have been made as suggested.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      I recommend to:

      - re-organize the presentation of the material (see my concerns in the public review section). The manuscript is very difficult to read.

      Changes have been made to help with understanding of our approach. Figure 1 was modified to show the variations of competitive growth response with relative competitive ability from minimum (null expectation) to maximum (competitive exclusion).

      - explore the mathematical form the the remainder term. It seems important to understand that the remainder capture terms unrelated to competition as defined in the present scope.

      The remainder measures deviations from the null expectation, due to species differences in growth and competitive ability or competition effect. The term has clear meaning, positive for more competitive species and negative for less competitive species (lines 202-204), and does not need to be further explored or partitioned. The deviations of observed yields from competitive expectations are outlined in lines 205-221.  

      Reviewer #4 (Recommendations For The Authors):

      The authors should be sure to include reproducible methods and share any data and code.

      Both simulation and experimental data are shared through supplementary tables. Calculations are included in excel spreadsheets and do not require program coding.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This research offers an in-depth exploration and quantification of social vocalization within three families of Mongolian gerbils. In an enlarged, semi-natural environment, the study continuously monitored two parent gerbils and their four pups from P14 to P34. Through dimensionality reduction and clustering, a diverse range of gerbil call types was identified. Interestingly, distinct sets of vocalizations were used by different families in their daily interactions, with unique transition structures exhibited across these families. The primary results of this study are compelling, although some elements could benefit from clarification

      Strengths:

      Three elements of this study warrant emphasis. Firstly, it bridges the gap between laboratory and natural environments. This approach offers the opportunity to examine natural social behavior within a controlled setting (such as specified family composition, diet, and life stages), maintaining the social relevance of the behavior. Secondly, it seeks to understand short-timescale behaviors, like vocalizations, within the broader context of daily and life-stage timescales. Lastly, the use of unsupervised learning precludes the injection of human bias, such as pre-defined call categories, allowing the discovery of the diversity of vocal outputs.

      Weaknesses:

      (1) While the notable differences in vocal clusters across families are convincing, the drivers of these differences remain unclear. Are they attributable to "dialect," call usage, or specific vocalizing individuals (e.g., adults vs. pups)? Further investigation, via a literature review or additional observation, into acoustic differences between adult and pup calls is recommended. Moreover, a consistent post-weaning decrease in the bottom-left cluster (Fig. S3) invites interpretation: could this reflect drops in pup vocalization?

      Thank you for bringing up this point of clarification. Without knowledge of individual vocalizers, we are unable to rigorously assess pronunciation differences between individuals, however we can get a clear proxy for dialect through observing usage differences between families. We’ve added the following text (blue) in the Discussion to help clarify:

      “To address whether gerbils also exhibit family specific vocal features, we compared GMM-labeled vocal cluster usages across the three recorded families and showed differences in vocal type usage (Figure 3). The differences in this study align with the definition of human vocal dialect, which is a regional or social variety of language that can differ in pronunciation, grammatical, semantic and/or language use differences (Henry et al., 2015). This definition of dialect is inclusive of both pronunciation differences (e.g. a Bostonian’s characteristic pronunciation of “car” as “cah”) and usage differences (e.g. a Bostonian’s preferential usage of the words “Go Red Sox” vs. a New Yorker’s preferential usage of the words “Go Yankees”). In our case, vocal clusters can be rarely observed in some families yet highly over-expressed in others (e.g. analogous to language usage differences in humans), or highly expressed in both families, but contain subtle spectrotemporal variations (Figure 3D, Family 1 cluster 11 vs. Family 3 clusters 2, 18, 30; e.g. analogous to pronunciation differences in humans).”

      Indeed, our recordings obtained after pup removal could suggest that adults may use fewer low frequency calls (bottom left cluster in UMAP). However, this dataset does not permit a proper assessment of post-weaning pup calls. In fact, our results and the literature shows that adults are likely to use low frequency calls, but only during social interactions with pups or other adults. For example, Furuyama et al. 2022 describe a number of low frequency call types used by adults in agonistic social interactions, which look similar to a low frequency call type used by pups described in Silberstein et al. 2023. Similarly, Ter-Mikaelian et al. 2012 (their Figure 6) recorded several types of sonic vocalizations during adult social interaction. To our knowledge, it has not been shown whether gerbil pups and adults produce distinct call types. It is a challenging problem to solve, as animals placed in isolation (i.e. an experimental condition for which the identity of the vocalizer is known) vocalize infrequently and of the limited number they might emit, they do not use the full range of vocalizations described in the literature (RP personal observations). To properly address this question, one would need to elicit full use of the vocal repertoire through free social interaction, then attribute calls to individual vocalizers via sound source localization and/or head-mounted microphones — we are currently pursuing both of these technical challenges, but this is outside the scope of this manuscript.

      Although the literature reflects the limitations discussed above, we have added a brief paragraph to the Discussion (limitations section) that addresses the reviewer’s question about the development of vocalizations:

      “Although we were not able to attribute vocalizations to individual family members, we did seek to determine the importance of family structure by comparing audio recordings before and after removal of the pups at P30. The results show a clear effect of family integrity, and the sudden reduction of sonic calls following pup removal (Figure S3) could suggest that these vocalizations are produced selectively by pups.

      However, there is ample evidence that adult gerbils also produce sonic vocalizations. For example, a number of low frequency call types are used by adults during a range of social interactions (Ter-Mikaelian et al., 2012; Furuyama et al., 2022), some of which are similar to a low frequency call type used by pups (Silberstein et al., 2023). Vocalization patterns of developing gerbils depend on isolation or staged interactions. Thus, when gerbil pups are recorded during isolation, ultrasonic vocalization rate declines and sonic vocalizations increase for animals that are in a high arousal state (De Ghett 1974, Silberstein et al., 2023). As gerbils progress from juvenile to adolescent development (P17-55) a significant increase in ultrasonic vocalization rate is observed during dyadic social encounters, with a distinct change in usage pattern that depends upon the sex of each animal (Holman & Seale 1991, Holman et al. 1995). The development of vocalization types has been assessed in another member of the Gerbillinae subfamily, called fat-tailed gerbils (Pachyuromys duprasi), during isolation and handling. Here, the number of ultrasonic vocalization syllable types increase from neonatal to adult animals (Zaytseva et al. 2019), while some very low frequency sonic call types were rarely observed after P20 (Zaytseva et al. 2020). By comparison, mouse syllable usage changes during development, but pups produced 10 of the 11 syllable types produced by adults (Grimsley et al. 2011). In summary, our understanding of the maturation of vocalization usage remains limited by our inability to obtain longitudinal data from individual animals within their natural social setting. For example, when recorded in their natural environment, chimpanzees display a prolonged maturation of vocalization complexity, such as the probability of a unique utterance in a sequence, with the greatest changes occuring when animals begin to experience non-kin social interactions (Bortolato et al. 2023).”

      (2) Developmental progression, particularly during pre-weaning periods when pup vocal output remains unstable, might be another factor influencing cross-family vocal differences. Representing data from this non-stationary process as an overall density map could result in the loss of time-dependent information. For instance, were dominating call types consistently present throughout the recording period, or were they prominent only at specific times? Displaying the evolution of the density map would enhance understanding of this aspect.

      This is a great suggestion. Thank you for bringing it up. To address this, we have added an additional figure (Figure 4) to the main text (Note that the former Figure 4 is now Figure 5). New text associated with this new figure was added to the Results and Discussion sections:

      Results

      “Vocal usage differences remain stable across days of development It is possible that the observed vocal usage differences could result from varying developmental progression of vocal behavior or overexpression of certain vocal types during specific periods within the recording. To assess the potential effect of daily variation on family specific vocal usage, we visualized density maps of vocal usage across days for each of the families (Figure 4A). There are two noteworthy trends: 1.) the density map remains coarsely stable across days (rows) and 2.) the maps look distinct across families on any given day (columns). This is a qualitative approximation for the repertoire’s stability, but does not take into account variation of call type usage (as defined by GMM clustering of the latent space). Figure 4B, shows the normalized usage of each cluster type over development for each family. Cluster usages during the period of “full family, shared recording days” (postnatal days beneath the purple bars) are stable across days within families – as is apparent by the horizontal striations in the plot – though each family maintains this stability through using a unique set of call types. This is addressed empirically in Figure 4C, which shows clearly separable PCA projections of the cluster usages shown in Figure 4B (purple days). Finally, we computed the pairwise Mean Max Discrepancy (MMD) between latent distributions of vocalizations from individual recording days for each of the families (Figure 4D). This shows that across-family repertoire differences are substantially larger than within-family differences. This is visualized in a multidimensional scaling projection of the MMD matrix in Figure 4E.”

      Discussion

      “The described family differences collapse data from multiple days into a single comparison, however it’s possible that factors such as vocal development and/or high usage of particular vocal types during specific periods of the recording could explain family differences. Therefore, we took advantage of the longitudinal nature of our dataset to assess whether repertoire differences remain stable across time. First, we visualized vocal repertoire usage across days as either UMAP probability density maps (Figure 4A) or daily GMM cluster usages (Figure 4B). Though qualitative, one can appreciate that family repertoire usage remains stable across days and appears to differ on a consistent daily basis across families. To formally quantify this, we first projected GMM cluster usages from Figure 4B into PC space and show that family GMM cluster usage patterns are highly separable, regardless of postnatal day (Figure 4C). If families had used a more overlapping set of call types, then the projections would have appeared intermixed. Next, we performed a cluster-free analysis by computing the pairwise MMD distance between VAE latent distributions of vocalizations from each family and day (Figure 4D). This analysis shows very low MMD values across days within a family (i.e. the repertoire is highly consistent with itself), and high MMD values across families/days (greater than would be expected by chance; see shuffle control in Figure S2D). The relative differences in this matrix are made clear in Figure 4E, which provides additional evidence that family vocal repertoires remain stable across days and are consistently different from other families. Taken together, we believe that this is compelling evidence that differences in vocal repertoires between families are not driven by dominating call types during specific phases in the recording period; rather, families consistently emit characteristic sets of call types across days. This opens up the possibility to assess repertoire differences over much shorter time periods (e.g. 24 hours) in future studies.”

      (3) Family-specific vocalizations were credited to the transition structure, a finding that may seem obvious if the 1-gram (i.e., the proportion of call types) already differs. This result lacks depth unless it can be demonstrated that, firstly, the transition matrix provides a robust description of the data, and secondly, different families arrange the same set of syllables into unique sequences.

      Thank you for these important suggestions. We agree that it is true that the 2-gram transition structure must vary based on the 1-gram structure. To determine whether this influences the interpretation of the finding, we have added Figure S5 and the following text in the Results section:

      “To determine whether differences in 1-gram structure contribute to differences in the transition (2-gram) structure, we performed a number of controls. Although subtle, vertical streaks are clearly present in shuffled transition matrices that correspond to 1-gram usages (Figure S5A-B). Given the shuffled data structure, we sought to determine whether the observed transition probabilities differed significantly from chance levels. We randomly shuffled label sequences 1000 times independently for each family to generate a null transition matrix distribution. Using these null distributions and the observed transition probabilities, we computed a p-value for each transition using a one-sample t-test and created a binary transition matrix indicating which transitions happen above chance levels (Figure S5C, black pixels, p <= 0.05 after post hoc Benjamini-Hochberg multiple comparisons correction). As is made clear in Figure S5C, most transitions for each family occur significantly above chance levels, despite the inherent 1-gram structure. Moreover, by looking at transitions from a highly usage cluster type used roughly the same proportion across families (cluster 12), we show that families arrange the same sets of vocal clusters into unique sequences (Figure S5D). We believe that this provides compelling evidence that the 1-gram structure does not change the interpretation of the main claim that transition structure varies by family. “””

      To address your second point, we inspected frequent transitions from individual syllables to all other syllables using bigram transition probability graphs. This revealed a common trend that across all families, many shared and unshared transitions existed, suggesting that families use the same sets of syllables to make unique transition patterns. Figure S5D shows a single syllable example of the phenomenon, with red lines indicating the shared transition types between families and black showing transition patterns not shared between families (i.e. unique family-specific transitions, or lack thereof).”

      Reviewer #2 (Public Review):

      Peterson et al., perform a series of behavioral experiments to study the repertoire and variance of Mongolian gerbil vocalizations across social groups (families). A key strength of the study is the use of a behavioral paradigm which allows for long term audio recordings under naturalistic conditions. This experimental set-up results in the identification of additional vocalization types. In combination with state of the art methods for vocalization analysis, the authors demonstrate that the distribution of sound types and the transitions between these sound types across three gerbil families is different. This is a highly compelling finding which suggests that individual families may develop distinct vocal repertoires. One potential limitation of the study lies in the cluster analysis used for identifying distinct vocalization types. The authors use a Gaussian Mixed Model (GMM) trained on variational auto Encoder derived latent representation of vocalizations to classify recorded sounds into clusters. Through the analysis the authors identify 70 distinct clusters and demonstrate a differential usage of these sound clusters across families. While the authors acknowledge the inherent challenges in cluster analysis and provide additional analyses (i.e. maximum mean discrepancy, MMD), additional analysis would increase the strength of the conclusions. In particular, analysis with different cluster sizes would be valuable. An additional limitation of the study is that due to the methodology that is used, the authors can not provide any information about the bioacoustic features that contribute to differences in sound types across families which limits interpretations about how the animals may perceive and react to these sounds in an ethologically relevant manner.

      The conclusions of this paper are well supported by data, but certain parts of the data analysis should be expanded and more fully explained.

      • Can the authors comment on the potential biological significance of the 70 sound clusters? Does each cluster represent a single sound type? How many vocal clusters can be attributed to a single individual? Similarly, can the authors comment on the intra-individual and inter-individual variability of the sound types within and across families?

      Previous work documenting the Mongolian gerbil repertoire (Ter-Mikaelian 2012, Kobayasi 2012) has revealed ~12 vocalization types that vary with social context. Our thinking is that we are capturing these ~12 (plus a few more, as illustrated in Figure 2C) as well as individual or family-specific variations of some call types. Although the number of discrete call types is likely less than 70, it’s plausible that variation due to vocalizer identity pushes some calls into unique clusters. This idea is supported by the fact that both naked mole rats and Mongolian gerbils have been shown to exhibit individual-specific variation in vocalizations, though only in single call types (Barker 2021, Figure 1; Nishiyama 2011, Table I). The current study is not ideal to test this prediction, as we cannot attribute each vocalization to individual family members. Using our 4-mic array, we attempted to apply established sound source localization techniques to assign vocalizations to individuals (Neunuebel 2015), but the technique failed, presumably due to high amounts of reverberation in the arena. We are currently developing a custom deep learning based sound localization algorithm, and had hoped to extract individual animal vocalizations from our data set (part of the reason why this manuscript has taken longer than expected to return!), but the performance is not yet satisfactory for large groups of animals. We have added text to the Methods sections with the context outlined above to further justify the use of ~70 clusters.

      • As a main conclusion of the paper rests on the different distribution of sound clusters across families, it is important to validate the robustness of these differences across different cluster parameters. Specifically, the authors state that "we selected 70 clusters as the most parsimonious fit". Could the authors provide more details about how this was fit? Specifically, could the authors expand upon what is meant by "prior domain knowledge about the number of vocal types...". If the authors chose a range of cluster values (i.e. 10, 30, 50, 90) does the significance of the results still hold?

      Thank you for the suggestion, this is an important point that we have addressed with new analyses in the revision (see GMM clustering methods and new Figure S4). The prior domain knowledge referenced is with respect to the information known about the Mongolian gerbil vocal types provided in the response above. We have made this more clear in the discussion.

      We mainly based our selection of the number of clusters using the elbow method on GMM held-out log likelihood (Figure S2C). Around 70 clusters is when the likelihood begins to plateau, though it’s clear that there are a number of reasonable cluster sizes. To assess whether cluster size has an effect on interpretation of the family differences result, we added Figure S5, where we varied the number of GMM clusters used and compared cluster usage differences across families (Figure S4A). We quantified pairwise family differences in cluster usage by computing the sum of the absolute value of differential cluster usages, for each GMM cluster value (Figure S4B). We find that relative usage differences remain unchanged across the range of cluster values used, indicating that GMM cluster size does bias the finding.

      • While VAEs are powerful tools for analyzing complex datasets in this case they are restricted to analysis of spectrogram images. Have the authors identified any acoustic differences (i.e. in pitch, frequency, and other sound components) across families?

      Though it’s true that this VAE is limited to spectrograms, the VAE latent space has been shown to correspond to real acoustic features such as frequency and duration, and contain a higher representational capacity than traditional acoustic features (Goffinet 2021, Figure 2). Therefore, clustering of the latent space necessarily means that vocalizations with similar acoustic features are clustered together regardless of their family identity.

      Despite this, your point is well taken that there could be systematic differences in certain acoustic features for specific call types. We are not able to ascertain this with the current dataset. This is addressed in Barker 2021 by recording a single call type (soft chirp) from individuals within and across families. Mongolian gerbils have been shown to exhibit individual differences in the initial, terminal, minimum, and maximum frequency of the ultrasonic up-frequency modulated call type (Figure 2, top right green; Nishiyama 2011, Figure 1A ). Therefore it’s possible that family-specific differences exist for that particular call type. To assess whether other call types show family or individual differences, it’s necessary to either 1.) elicit all call types from an animal in isolation or 2.) determine vocalizer identity in social-vocal interactions. The problem with the former idea is that gerbils only produce up-frequency modulated USVs in isolation and there is no known way to elicit the full vocal repertoire in single animals. The latter idea would allow for full use of the vocal repertoire, but requires invasive techniques (e.g., skull-implanted microphones, or awake-behaving laryngeal nerve recordings) that permit assignment of vocalizations to individuals during a natural social interaction. We are actively exploring solutions to both problems.

      It’s likely that future studies will look deeper into acoustic differences between individuals and families. Therefore, we have added acoustic feature quantification of vocalizations in each of the GMM clusters as a reference (Figure S6).

      Reviewer #3 (Public Review):

      Summary:

      In this study, Peterson et al. longitudinally record and document the vocal repertoires of three Mongolian gerbil families. Using unsupervised learning techniques, they map the variability across these groups, finding that while overall statistics of, e.g., vocal emission rates and bout lengths are similar, families differed markedly in their distributions of syllable types and the transitions between these types within bouts. In addition, the large and rich data are likely to be valuable to others in the field.

      Strengths:

      - Extensive data collection across multiple days in multiple family groups.

      -  Thoughtful application of modern analysis techniques for analyzing vocal repertoires. - Careful examination of the statistical structure of vocal behavior, with indications that these gerbils, like naked mole rats, may differ in repertoire across families.

      Weaknesses:

      - The work is largely descriptive, documenting behavior rather than testing a specific hypothesis.

      - The number of families (N=3) is somewhat limited.

      We agree that the number of families is relatively small. However, our new analysis of vocal repertoire by postnatal day (Figure 4) demonstrates that the finding is quite robust. A high sample-size study was outside the scope of this initial observational study given the difficulty of obtaining and processing longitudinal data of this scale. In light of new analyses in Figure 4, we are confident that future studies will not need so much data to characterize family-specific differences. A single 24-hour recording should be sufficient, making comparison of many more families relatively straightforward.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Several minor concerns:

      (1) The three thresholds used for vocalization segmentation lack explanation.

      Figure 1C's first vocal event appears to define the first gap via the gray threshold (th_2, as the trace does not cross the black line) and the second gap via the black threshold (th_1 or th_3). And this is not addressed in the Methods section.

      Thank you for bringing this to our attention. We agree, this is presented in an unnecessarily complicated way. We have updated the methods section describing the thresholding procedure.

      “Sound onsets are detected when the amplitude exceeds 'th_3' (black dashed line, Figure 1C), and sound offset occurs when there is a subsequent local minimum e.g., amplitude less than 'th_2' (gray dashed line, Figure 1C), or 'th_1' (black dashed line, Figure 1C), whichever comes first. In this specific use case, th_2 (5) will always come before th_1 (2), therefore the gray dashed line will always be the offset. A subsequent onset will be marked if the sound amplitude crosses th_2 or th_3, whichever comes first. For example, the first sound event detected in Figure 1C shows the sound amplitude rising above the black dashed line (th_3) and marks an onset. Subsequently, the amplitude trace falls below the gray dashed line (th_2) and an offset is marked. Finally, the amplitude rises above th_2 without dipping below th_3 and an onset for a new sound event is marked. Had the amplitude dipped below th_3, a new sound event onset would be marked when the amplitude trace subsequently exceeded th_3 (e.g. between sound event 2 and 3, Figure 1C). The maximum and minimum syllable durations were selected based on published duration ranges of gerbil vocalizations (Ter-Mikaelian et al. 2012, Kobayasi & Riquimaroux, 2012).”

      (2) The determination of multi-syllabic calls could be explained further. In Figure 1C, for instance, do syllables separated by short gaps (e.g., the first syllable and the rest of the first group, and the third group in this example) belong to the same call or different calls?

      We have added an operational definition of mono vs. multisyllabic calls in the Results section:

      “Vocalizations occur as either single syllables bounded by silence (monosyllabic) or consist of combinations of single syllables without a silent interval (multisyllabic).”

      Under this definition, the examples you mentioned in Figure 1C are considered monosyllabic. One could reasonably expand the definition to include calls separated by less than X ms of silence for example, however we choose not to do that in this study. A deeper understanding of the phonation mechanisms for different gerbil vocalization types would be helpful to more rigorously determine the distinction between mono vs. multisyllabic vocalizations.

      (3) Labeling the calls shown in Fig. 3D in the latent feature space would help highlight within-family diversity and between-family similarities.

      Great suggestion. We have updated Figure 3 to include where in UMAP space each family’s preferred clusters are.

      (4) In the introduction, the statement, "Therefore, our study considers the possibility that there is a diversity of vocalizations within the gerbil family social group" doesn't naturally follow from the previous example. This could be rephrased.

      Agreed, thank you. We revised this section of the introduction to flow better.

      Reviewer #2 (Recommendations For The Authors):

      While outside the scope of the current study the authors may consider the following experiments and analysis for future studies:

      • Do vocal repertories retain their family signatures across subsequent generations of pups? (i.e. if vocalizations are continually monitored during second or third litters of the same parents).

      • Do the authors observe any long-term changes in family repertoires related to the developmental trajectory of the pups? Are there changes in individual pup vocal features or sound type usage throughout development?

      Thank you for these great suggestions. Given that naked mole rats learn vocalizations through cultural transmission, it would be interesting to see whether other subterranean species with complex social structures (gerbils, voles, rats) have similar abilities. A straightforward way to assess this possibility could be as you suggest — are latent distributions of vocalizations from multi-generational families closer together than cross-family differences? If true, this would provide compelling evidence to investigate further.

      We partially address your second suggestion in our response to Reviewer 1 and in Figure S4, which shows that the family repertoire remains stable throughout this particular period of development. This doesn’t rule out the possibility that there could be other phases of development that undergo more vocal change. Your final suggestion is an area that we are actively researching and eager to know the answer to. A follow-up question: could differences in pup vocal features contribute to differential care by parents?

      Reviewer #3 (Recommendations For The Authors):

      In all, I found the paper clearly written and the figures easy to follow. One small suggestion:

      Figure 1: I can't see the black and gray thresholds described in the caption very well. Perhaps a zoom-in to the first 0.15s or so of the normalized amplitude plot would better display these.

      Agreed, thank you. We added a zoom-in to Figure 1.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Unckless and colleagues address the issue of the maintenance of genetic diversity of the gene diptericin A, which encodes an antimicrobial peptide in the model organism Drosophila melanogaster.

      Strengths:

      The data indicate that flies homozygous for the dptA S69 allele are better protected against some bacteria. By contrast, male flies homozygous for the R69 allele better resist starvation than flies homozygous for the S69 allele.

      Weaknesses:

      -I am surprised by the inconsistency between the data presented in Fig. 1A and Fig. S2A for the survival of male flies after infection with P. rettgeri. I am not convinced that the data presented support the claim that females have lower survival rates than males when infected with P. rettgeri (lines 176-182).

      The two figures are pasted above (1A left, S2A right). The reviewer is correct that the two experiments look different in terms of overall outcomes for males, though qualitatively similar. These two experiments were performed by different researchers, and as much as we attempt to infect consistently from researcher to researcher, some have heavier hands than others. It is true that the genotype that has the largest sex effect is the arginine line (blue) where females (in this experiment) are as bad as the null allele, and males are more intermediate. Also note that the experiments in S2A (male and female) were done in the same block so they are the better comparison. We’ve reflected this in the manuscript.

      - The data in Fig. 2 do not seem to support the claim that female flies with either the dptA S69 or the R69 alleles have a longer lifespan than males (lines 211-215). A comment on the [delta] dpt line, which is one of the CRISPR edited lines, would be welcome.

      We’ve reworded this section based on these comments.

      - The data in Fig. 2B show that male flies with the dptA S69 or R69 alleles have the same lifespan when poly-associated with L. plantarum and A. tropicalis, which contradicts the claim of the authors (lines 256-260).

      This is correct – the effect is only in females. It has been corrected.

      Reviewer #2 (Public Review):

      Summary: In this study, the authors delve into the mechanisms responsible for the maintenance of two diptericin alleles within Drosophila populations. Diptericin is a significant antimicrobial peptide that plays a dual role in fly defense against systemic bacterial infections and in shaping the gut bacterial community, contributing to gut homeostasis.

      Strengths: The study unquestionably demonstrates the distinct functions of these two diptericin alleles in responding to systemic infections caused by specific bacteria and in regulating gut homeostasis and fly physiology. Notably, these effects vary between male and female flies.

      Weaknesses: Although the findings are highly intriguing and shed light on crucial mechanisms contributing to the preservation of both diptericin alleles in fly populations, a more comprehensive investigation is warranted to dissect the selection mechanisms at play, particularly concerning diptericin's roles in systemic infection and gut homeostasis. Unfortunately, the results from the association study conducted on wild-caught flies lack conclusive evidence.

      This is true that the wild fly association study is mostly a negative result. We’ve backed off the claim about the Morganella association.

      Major Concerns:

      Lines 120-134: The second hypothesis is not adequately defined or articulated. Please revise it to provide more clarity. Additionally, it should be explicitly stated that the first part of the first hypothesis (pathogen specificity), i.e., the superior survival of the S allele in Providencia infections compared to the R allele, has been previously investigated and supported by the results in the Unckless et al. 2016 paper. The current study aims to additionally investigate the opposite scenario: whether the R allele exhibits better survival in a different infection. Please consider revising to emphasize this point.

      We’ve reworded this section and added references to both the Unckless et al. 2016 and Hanson et al. 2023 papers.

      Figures and statistical analyses: It is essential to present the results of significant differences from the statistical analyses within Figures 1B, 2B, and 3. Additionally, please include detailed descriptions of the statistical analysis methods in the figure legends. Specify whether the error bars represent standard error or standard deviation, particularly in Figure 3, where assays were conducted with as few as 3 flies.

      We have added statistical details as requested.

      Lines 317-318 (as well as 320-328): The data related to P. rettgeri appear somewhat incomplete, and the authors acknowledge that bacterial load varies significantly, and this bacterium establishes poorly in the gut. These data may introduce more noise than clarity to the study. Please consider revising these sections by either providing more data, refining the presentation, or possibly removing them altogether.

      The fact that P. rettgeri establishes poorly in the gut in wildtype flies is the result of several unpublished experiments in the Lazzaro and Unckless labs. We don’t have this as a figure because it was not directly tested in these experiments. We’ve added a note that it is personal observation and we’ve reworked the discussion in the second section.

      Lines 335-387 and Figure 4: Although these results are intriguing and suggest interactions between functional diptericin and fly physiology, some mediated by the gut microbiome, they remain descriptive and do not significantly contribute to our understanding of the mechanism that maintains the diptericin alleles.

      While the reviewer is correct that these experiments do not elucidate mechanism, they do strongly suggest (based on the controlled nature of the experiments) that the physiological tradeoffs are due to Diptericin genotype. The disagreement is the level of “mechanism”. At the evolutionary level, the demonstration of a physiological cost of a protective immune allele is sufficient to explain the maintenance of alleles. However, we have not determined (and did not attempt to determine) why Diptericin genotype influences these traits. That will have to wait for future experiments.

      Lines 399-400: The contrast between this result and statement and the highly reproducible data presented in Figures 2-4 should be discussed.

      We’ve added some discussion to this section including a reference to the “inconstancy” of the Drosophila gut microbiome.

      Lines 422-429 and Figure 5D: The conclusion regarding an association between diptericin alleles and Morganellaceae bacteria is not clearly supported by Figure 5D and lacks statistical evidence.

      We’ve changed this to just be suggestive.

      Reviewer #3 (Public Review):

      Summary:

      This paper investigates the evolutionary aspects around a single amino acid polymorphism in an immune peptide (the antimicrobial peptide Diptericin A) of Drosophila melanogaster. This polymorphism was shown in an earlier population genetic study to be under long-term balancing selection. Using flies with different AA at this immune peptide it was found that one allelic form provides better survival of systemic infections by a bacterial pathogen, but that the alternative allele provides its carriers a longer lifespan under certain conditions (depending on the microbiota). It is suggested that these contrasting fitness effects of the two alleles contribute to balance their long-term evolutionary fate.

      Strengths:

      The approach taken and the results presented are interesting and show the way forward for studying such polymorphisms experimentally.

      Weaknesses:

      (1) A clear demonstration (in one experiment) that the antagonistic effect of the two selection pressures isolated is not provided.

      The study is overwhelming with many experiments and countless statistical tests. The overall conclusion of the many experiments and tests suggests that "dptS69 flies survive systemic infection better, while dptS69R flies survive some opportunistic gut infections better." (line 444-446). Given the number of results, different experiments, and hundreds of tests conducted, how can we make sure that the result is not just one of many possible combinations? I suggest experimentally testing this conclusion in one experiment (one may call this the "killer-experiment") with the relevant treatments being conducted at the same time, side by side, and the appropriate statistical test being conducted by a statistical test for a treatment x genotype interaction effect.

      This is a nice idea but would not work in practice since the fly lines used are different (gnotobiotic vs conventional) and gnotobiotics have to be derived from axenic lines that need a few generations to recover from the bleaching treatment.

      (2) The implication that the two forms of selection acting on the immune peptide are maintained by balancing selection is not supported.

      The picture presented about how balancing selection is working is rather simplistic and not convincing. In particular, it is not distinguished between fluctuating selection (FL) and balancing selection (BL). BL is the result of negative frequency-dependent selection. It may act within populations (e.g. Red Queen type processes, mating types) or between populations (local adaptation). FL is a process that is sometimes suggested to produce BL, but this is only the case when selection is negative frequency dependent. In most cases, FL does not lead to BL.

      The presented study is introduced with a framework of BL, but the aspects investigated are all better described as FL (as the title says: "A suite of selective pressures ..."). The two models presented in the introduction (lines 62 to 69; two pathogens, cost of resistance) are both examples for FL, not for BL.

      We’ve added a discussion of how fluctuating selection and balancing selection relate at the end of the discussion.

      Finally, no evidence is presented that the different selection pressures suggested to select on the different allelic forms of the immune peptide are acting to produce a pattern of negative frequency dependence.

      We are not arguing for negative frequency dependent selection. We assume throughout that Dpt allele does not drive overall frequency of P. rettgeri in populations since it is a ubiquitous microbe. So evolution within D. melanogaster therefore has little to no effect on density of the pathogen.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      Minor Comments:

      Line 31: Rewrite the sentence mentioning "homozygous serine" for improved clarity, especially since the S/R polymorphism of Diptericin has not been introduced yet.

      This has been changed to be vague in terms of specific alleles and just refers to “one allele” vs the other.

      Lines 87-94: Consider reorganizing this paragraph to maintain a logical flow of the discussion on the Drosophila immune system and the IMD pathway.

      We explored other orders, but we think that as is (IMD to AMPs in general to AMPs in Drosophila) makes the most sense here.

      Line 99: Provide an explanation of balancing selection for a broader readership, differentiating it from other modes of selection.

      We added a brief discussion but note that the intro has significant discussion of balancing selection.

      Lines 105-106: Please provide a proper reference. Additionally, ensure that the Unkless et al. 2016 paper is correctly referenced, both in lines 111 and 138-141.

      This has been added.

      Lines 138-141: It would be beneficial to state that the previous study by Unkless et al. 2016 did not control for genetic background, which is why the assay was redone with gene editing.

      This has been added.

      Lines 296-303: Clarify the source of the survival observations and consider incorporating this data into Figure 2 for improved visualization.

      We’ve clarified that this is Figure 2.

      Lines 390-394: Explain the distinctions between vials and cages, particularly in terms of food consumption, exposure to bacteria, etc., which can be relevant to gut homeostasis.

      We’ve added a discussion of why these two approaches are complementary.

      Reviewer #3 (Recommendations For The Authors):

      Statistics

      Statistical results are limited to the presentation of p-values (several hundred of them!). For a proper assessment of the statistical analyses, one would also want to see the models used and the test statistics obtained.

      The statistical tests done are often unclear. For example, in several experiments, pools of 3 trials (blocs) of multiple animals were tested. The blocs need to be included in the model. Likewise, it seems that multiple delta-dpt fly genotypes were produced. Apparently, they were not distinguished later. Were they considered in the statistical analyses? By contrast, two lines of dptS69R flies were reported to show differences. What concept was applied to test for line difference in some cases and not in others?

      In the same dataset (i.e. data resulting from one experiment), it seems that mostly multiple tests were done. For example, in one case each treatment was contrasted to the dptS69 flies. It is generally not acceptable to break down one dataset in multiple subsets and conduct tests with each subtest. One single model for each experiment should be done. This may then be followed by post-hoc tests to see which treatments differ from each other.

      We’ve attempted to clarify these statistical approaches throughout.

      Minor points

      In the legend of Figure 3 it says: "A) monoassociations where each plot represents a different experiment,". This is unclear to me. First, how many plots are there: 3 or 12? Second, what means "experiment"? Are these treatments, or entirely different experiments? How was this statistically taken into account?

      We’ve changed this to “different condition” which is clearer. We performed statistical analysis independently for each condition and we’ve now discussed that.

      Fig. 5D. It is suggested in the text ("Most intriguing", line 426) and the figure legend that the abundance of Morganellaceae in wild-caught flies differs among genotypes. This is not visible in the figure and not convincingly shown in the text. No stats are given.

      We’ve now added that these differences are not significant.

      Line 458-461: This sentence is unclear.

      We’ve attempted to clarify.

      What is a "a traditional adaptive immune system"?

      We’ve reworded to “an adaptive immune system”.

      There are several typos in the manuscript. Please correct.

      We’ve attempted to fix typos throughout.

      Bold statements are often without references.

      We’ve attempted to add appropriate references throughout.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In the manuscript, the authors explore the mechanism by which Taenia solium larvae may contribute to human epilepsy. This is extremely important question to address because T. solium is a significant cause of epilepsy and is extremely understudied. Advances in determining how T. solium may contribute to epilepsy could have significant impact on this form of epilepsy. Excitingly, the authors convincingly show that Taenia larvae contain and release glutamate sufficient to depolarize neurons and induce recurrent excitation reminiscent of seizures. They use a combination of cutting-edge tools including electrophysiology, calcium and glutamate imaging, and biochemical approaches to demonstrate this important advance. They also show that this occurs in neurons from both mice and humans. This is relevant for pathophysiology of chronic epilepsy development. This study does not rule out other aspects of T. solium that may also contribute to epilepsy, including immunological aspects, but demonstrates a clear potential role for glutamate.

      Strengths:

      - The authors examine not only T. solium homogenate, but also excretory/secretory products which suggests glutamate may play a role in multiple aspects of disease progression.

      - The authors confirm that the human relevant pathogen also causes neuronal depolarization in human brain tissue

      - There is very high clinical relevance. Preventing epileptogenesis/seizures possibly with Glu-R antagonists or by more actively removing glutamate as a second possible treatment approach in addition to/replacing post-infection immune response.

      - Effects are consistent across multiple species (rat, mouse, human) and methodological assays (GluSnFR AND current clamp recordings AND Ca imaging)

      - High K content (comparable levels to high-K seizure models) of larvae could have also caused depolarization. Adequate experiments to exclude K and other suspected larvae contents (i.e. Substance P).

      Weaknesses:

      - Acute study is limited to studying depolarization in slices and it is unclear what is necessary/sufficient for in vivo seizure generation or epileptogenesis for chronic epilepsy. - There is likely a significant role of the immune system that is not explored here. This issue is adequately addressed in the discussion, however, and the glutamate data is considered in this context.

      Discuss impact:

      - Interfering with peri-larval glutamate signaling may hold promise to prevent ictogenesis and chronic epileptogenesis as this is a very understudied cause of epilepsy with unknown mechanistic etiology.

      Additional context for interpreting significance:

      - High medical need as most common adult onset epilepsy in many parts of the world

      We thank Reviewer 1 for their positive and thorough assessment of our manuscript. We have elected to respond to and address the following aspects from their “Recommendations For The Authors” below:

      Reviewer #1 (Recommendations For The Authors):

      Additional experiments/analysis:

      -   Fig 4a-c: Larva on a slice and not next to it? Negative results maybe because its E/S products are just washed away (assuming submerged recording chamber/conditions)? Experiments and negative results described here do not seem conclusive. Should be discussed at least?

      We agree with the reviewer and have added the following sentence to the relevant section of the Results: ‘Our submerged recording setup might have led to swift diffusion or washout of released glutamate, possibly explaining the lack of observable changes.’

      Writing & presentation:

      - Data is not always reported consistently in text and figures, examples:

      - Results in text are reported varyingly without explanation:

      - Mean and/or median? SEM or SD and/or IQR? Stat info included in text or not? i.e. lines 130/131 vs. 160/161

      Results and data are now presented in a more uniform fashion. We report medians and IQRs, sample size, statistical test result, statistical test used in that order.

      - Larval release data interrupts reading flow, lines 246-252 double up results presented in Fig 5F.

      This section has now been significantly abbreviated and reads as follows: ‘T. crassiceps larvae released a relatively constant median daily amount of glutamate, ranging from 41.59 – 60.15 ug/20 larvae, which showed no statistically significant difference across days one to six. Similarly, T. crassiceps larvae released a relatively constant median daily amount of aspartate, ranging from 9.431 – 14.18 ug/20 larvae, which showed no statistically significant difference across days one to six.’

      - Results in figures are reported in different styles:

      Results have now been made uniform, reporting medians and IQRs and: sample size, p test result, statistical test used, figure # reported in that order.

      - Fig 6: E/S glu concentration seems to be significantly higher in solium vs crassiceps (about 6fold higher in solium). Should be discussed at least.

      Given the small sample size from T. solium (see response below), we do not draw attention to this difference and instead simply make the point that T. solium larvae contain and release glutamate.

      - In this context - N=1 may be sufficient for proof of principle (release) but seems too small of a cohort to describe non-constant release of glu over days (Fig 6D). Is initial release on day 1, no release and recovery in the following days reproducible? Is very high glu content of E/S content (15-fold higher in comparison to solium homogenate AND 6-fold higher in comparison to crassiceps homogenate and E/S content). Not sure if Fig 6D is adding relevant information, especially since it is based on n = 1

      We agree that a N=1 is only sufficient for proof of principle. However it is worth noting that the measurements still reflect the cumulative release from 20 larvae. Nonetheless, the statement in text has been simplified to say: ‘These results demonstrate that T. solium larvae continually release glutamate and aspartate into their immediate surroundings.’ As this focusses on the point that the larvae release glutamate and aspartate continuously and that we can’t draw conclusions about the variability over days.

      Methods:

      - Human slices, mention cortex - what part, patient data would be interesting. I.e. etiology of epilepsy, epilepsy duration 

      In the Materials and Methods section “Brain slice preparation” we have now added a table with the requested information.

      - For Taenia solium: How were they acquired and used in these experiments?

      In the Materials and Methods section “Taenia maintenance and preparation of whole cyst homogenates and E/S products” we describe how Taenia solium larvae were acquired and used.

      - Was access resistance monitored? Add exclusion criteria for patch experiments

      Figure supplement tables containing the basic properties for each cell recording have been added for each figure and the following statements were added to the electrophysiology section of the Methods: ‘Basic properties of each cell were recorded (supplementary files 1, 2, 3, 4, 6).’ and ‘Cells were excluded from analyses if the Ra was greater than 80 Ω or if the resting membrane potential was above –40 mV.’  

      - Cannot see any reference to mouse slices in methods? Also, mouse organotypic cultures (for AAV?)? Or only acute slices from mice and organotypic hip cultures from rats? Seems to have been mouse and rat organotypic cultures? But not clear with further clarification in methods.

      We have now added the following clarification to the methods: ‘For experiments using calcium and glutamate imaging mouse hippocampal organotypic brain slices were used. For all other experiments rat hippocampal organotypic brain slices were used. A subset of experiments used acute human cortical brain slices and are specified.’

      - How long after the wash-in phase was the wash-out phase data collected?

      For wash-in recordings drugs were washed in for 8 mins before recordings were made. Drugs were washed out for at least 8 mins before wash-out recordings were made. This information has been added to the Materials and Methods section.

      - In general, the M&M section seems to have been written hastily - author's internal remarks "supplier?" are still present.

      The M&M section has been thoroughly proofread for errors and internal remarks removed or corrected.

      - A little more information on the clinical subjects would be appreciated. I.e. duration of epilepsy? Localization? What cortex? Usual temporal lobe or other regions?

      We have now added a table with this information to the Materials and Methods section “Brain slice preparation”.

      Minor corrections text/figures:

      - i.e. 3D,F,H,J show individual data points, thats great, but maybe add mean/median marker (as results are reported like this in text)  like in fig 4G,I and others

      Figures 3D,F,H & J have been revised to include median and IQR.

      - Only one patient mentioned in acknowledgements, but 2 in methods and text

      We apologize for this oversight and now acknowledge both patients in the acknowledgements.

      - Fig 1 B-F individual puffs are described as increasing - consistent with cellular effects (1st puff depolarizes, 2nd puff elicits 1 AP, 3rd puff elicits AP burst)  However, dilution ratio of homogenate or puff concentrations are not mentioned (or potentially longer than 20 ms puffs for 2nd and 3rd stimulus?) in text or figures. Seems to be enough space to indicate in figure as well (i.e. multiple or thicker arrows for subsequent puffs or label with homogenate dilution/concentration in figure).

      We state in the results section associated with Fig. 1 that increasing the amount of homogenate delivered was achieved by increasing the pressure applied to the ejection system. We now include this information in the figure legend.

      - Figure legend describes 30 ms puff for Ca imaging whereas ephys data (from text) is 20 ms puff. Was Ca imaging performed in acute mouse hippocampal slices (as figure text suggests) or were those organotypic hippocampal cultures from mice?

      Ca2+  imaging was performed in mouse hippocampal organotypic brain slice cultures. The figure text for Fig. 1 E) states “widefield fluorescence image of neurons in the dentate gyrus of a mouse hippocampal organotypic brain slice culture expressing the genetically encoded Ca2+ reporter GCAMP6s...”

      - 11.4 mM K is reported for homogenate in text only. How variable is that? How many n? No SD reported in text and no individual data points reported since this experiment is not represented as a figure.

      This has been clarified in the text by adding (N = 1, homogenate prepared from >100 larvae).

      - Same results (effect of 11.4 mM K on Vm) described twice in one paragraph, compare lines 126-131 with 131-136.

      The repetition has been removed.

      - Line 182 - example for consistency: decide IQR or SD/SEM

      To improve consistency, we have changed to median and IQR throughout.

      - Neuronal recordings are reported as hippocampal pyramidal neurons (i.e. line 222) but some recordings were made from dentate granule cells - please clarify which neurons were recorded in ephys, ca imaging, GluSnFr imaging

      For each experiment we describe which type of neurons were recorded from. For rodent recordings these were hippocampal pyramidal neurons except in the case of the Ca2+ imaging example where the widefield recording was over the dentate gyrus subfield.

      - Line 309: "should" seems to be an extra word

      We have removed the word ‘should’ and made the sentence shorter and clearer. It now reads: ‘Given our finding that cestode larvae contain and release significant quantities of glutamate, it is possible that homeostatic mechanisms for taking up and metabolizing glutamate fail to compensate for larvalderived glutamate in the extracellular space. Therefore, similar glutamate-dependent excitotoxic and epileptogenic processes that occur in stroke, traumatic brain injury and CNS tumors are likely to also occur in NCC.’

      Reviewer #2 (Public Review):

      Since neurocysticercosis is associated with epilepsy, the authors wish to establish how cestode larvae affect neurons. The underlying hypothesis is that the larvae may directly excite neurons and thus favor seizure genesis.

      To test this hypothesis, the authors collected biological materials from larvae (from either homogenates or excretory/secretory products), and applied them to hippocampal neurons (rats and mice) and human cortical neurons.

      This constitutes a major strength of the paper, providing a direct reading of larvae's biological effects. Another strength is the combination of methods, including patch clamp, Ca, and glutamate imaging.

      We thank the Reviewer 2 for their review of the strength and weaknesses of our manuscript. We respond to the identified weaknesses below.

      There are some weaknesses:

      (1) The main one relates to the statement: "Together, these results indicate that T. crassiceps larvae homogenate results not just in a transient depolarization of cells in the immediate vicinity of application, but can also trigger a wave of excitation that propagates through the brain slice in both space and time. This demonstrates that T. crassiceps homogenate can initiate seizurelike activity under suitable conditions."

      The only "evidence" of propagation is an image at two time points. It is one experiment, and there is no quantification. Either increase n's and perform a quantification, or remove such a statement.

      We acknowledge that the data is from one experiment, with the intention of demonstrating that it is plausible for intense depolarization of a subset of neurons to result in the initiation and propagation of seizure-like activity to nearby neurons under suitable conditions. However, we agree that it is prudent to remove this statement and have done so.

      Likewise, there is no evidence of seizure genesis. A single cell recording is shown. The presence of a seizure-like event should be evaluated with field recordings.

      In this experiment the Ca2+ imaging demonstrates activity spreading from the site of the restricted homogenate puff to all surrounding neurons. Furthermore, the whole-cell recoding is typical of a slice wide seizure-like event.  

      (2) Control puff experiments are lacking for Fig 1. Would puffing ACSF also produce a depolarization, and even firing, as suggested in Fig. 2D? This is needed for at least one species.

      We agree and have added this data for the rat and mouse neuron in a new Figure 1-figure supplement 1.

      (3) What is the rationale to use a Cs-based solution? Even in the presence of TTX and with blocking K channels, the depolarization may be sufficient to activate Ca channels (LVGs), which would further contribute to the depolarization. Why not perform voltage clamp recordings to directly the current?

      The intention of the Cs-based solution was to block K+ channels and reduce the effect of moderately raised K+ in the homogenate to isolate the contribution of other causative agents of depolarization (i.e. glutamate / aspartate). We agree that performing voltage clamp recordings would have been useful for directly recording the currents responsible for depolarization. 

      (4) Why did you use organotypic slices? Since you wish to model adult epilepsy, it would have been more relevant to use fresh slices from adult rats/mice. At least, discuss the caveat of using a network still in development in vitro.

      Recordings were performed 6–14 days post culture, which is equivalent to postnatal Days (P) 12 to 22. Previous work has shown that neurons in the organotypic hippocampal brain slice are relatively mature (Gähwiler et al., 1997). For example they possess mature Cl- homeostasis mechanisms at this point, as evidenced by their hyperpolarizing EGABA (Raimondo et al., 2012).  

      (5) Please include both the number of slices and number of cells recorded in each condition. This is the standard (the number of cells is not enough).

      This has now been added to all relevant sections of the results text.  

      (6) Please provide a table with the basic properties of cells (Rin, Rs, etc.). This is standard to assess the quality of the recordings.

      Tables containing the basic properties for each cell recording have been created for each figure (as Figure supplements) and the following statement was added to the electrophysiology section of the Methods: ‘Basic properties of each cell were recorded (see Figure supplements).’

      (7) Please provide a table on patient's profile. This is standard when using human material. Were these TLE cases (and "control" cortex) or epileptogenic cortex?

      We have now added a basic table on the patient’s profiles to the Materials and Methods section.

      Globally, the authors achieved their aims. They show convincingly that larvae material can depolarize neurons, with glutamate (and aspartate) as the most likely candidates.

      This is important not only because it provides mechanistic insight but also potential therapeutic targets. The result is impactful, as the authors use quasi-naturalistic conditions, to assess what might happen in the human brain. The experimental design is appropriate to address the question. It can be replicated by any interested person.

      We thank the Reviewer 2 for their enthusiastic and constructive assessment of our manuscript. We have elected to respond to and address the following aspects from their “Recommendations For The Authors” below:

      Reviewer #2 (Recommendations For The Authors):

      lines 132 and following are a repetition of those above

      These have been removed.

      line 151 Fig "2" missing

      This has been added.

      187, 190 should be E, F not C, D

      This has been changed in the text.  

      481, 482 supplier?

      This has been corrected and the correct suppliers described.

      Reviewer #3 (Public Review):

      This paper has high significance because it addresses a prevalent parasitic infection of the nervous system, Neurocysticercosis (NCC). The infection is caused by larvae of the parasitic cestode Taenia solium It is a leading cause of epilepsy in adults worldwide

      To address the effects of cestode larvae, homogenates and excretory/secretory products of larvae were added to organotypic brain slice cultures of rodents or layer 2/3 of human cortical brain slices from patients with refractory epilepsy.

      We thank Reviewer 3 for their helpful comments and suggestions for improvement which we address below.

      A self-made pressure ejection system was used to puff larvae homogenate (20 ms puff) onto the soma of patched neurons. The mechanical force could have caused depolarizaton so a vehicle control is critical. On line 150 they appear to have used saline in this regard, and clarification would be good. Were the controls here (and aCSF elsewhere) done with the low Mg2+o aCSF like the larvae homogenates?

      We agree and have added examples where aCSF alone was pressure ejected onto the same rat and mouse neurons in a new Figure 1-figure supplement 1. In Figure 1, the same aCSF as that was used to bathe the slices was used. In Figure 2D-G, either PBS (which larval homogenates were prepared in) or growth medium (which contain larval E/S products) were used as comparative controls.

      They found that neurons depolarized after larvae homogenate exposure and the effect was mediated by glutamate but not nicotinic receptors for acetylcholine (nAChRs), acid-sensing channels or substance P. To address nAChRs, they used 10uM mecamyline, and for ASICs 2mM amiloride which seems like a high concentration. Could the concentrations be confirmed for their selectivity? 

      We did not independently verify the selectivity of the antagonist concentrations used in our study. However, the persistence of depolarizations despite the use of high concentrations of mecamylamine (10 μM) and amiloride (2 mM) provides strong evidence that neither nAChRs nor ASICs are primarily responsible for mediating these responses. The high concentrations used, while potentially raising concerns about specificity, actually strengthen our conclusion that these receptor types are not involved in the observed effect.

      Glutamate receptor antagonists, used in combination, were 10uM CNQX, 50uM DAP5, and 2mM kynurenic acid. These concentrations are twice what most use. Please discuss. 

      We intentionally used higher-than-typical concentrations of glutamate receptor antagonists in our experimental design. Our rationale for this approach was to ensure maximal blockade of glutamate receptors, thereby minimizing the possibility of residual receptor activity confounding our results.

      Also, it would be very interesting to know if the glutamate receptor is AMPA, Kainic acid, or NMDA. Were metabotropic antagonists ever tested? That would be logical because CNQX/DAPR/Kynurenic acid did not block all of the depolarization.

      We appreciate the reviewer's interest in the specific glutamate receptor subtypes involved in our study. Our research primarily focused on ionotropic glutamate receptors as a group, without differentiating the individual contributions of AMPA, Kainate, and NMDA receptors. This approach, while broad, allowed us to establish the involvement of glutamatergic signalling in the observed effects. We acknowledge that we did not investigate metabotropic glutamate receptors in this study. Importantly, we demonstrate later in our manuscript that the larval products contain both glutamate and aspartate. Therefore the precise nature of the glutamate-dependent depolarization observed using a particular experimental preparation would depend on the specific types of neurons exposed to the homogenate and the expression profile of different glutamate receptor subtypes on these neurons.

      They also showed the elevated K+ in the homogenate (~11 mM) could not account for the depolarization. However, the experiment with K+ was not done in a low Mg2+o buffer (Or was it -please clarify). 

      The experiment where 11.39 mM K+ as well as the experiment with T. crass. Homogenate with a cesium internal and added TTX were all done in standard 2 mM Mg2+ containing aCSF.

      They also confirmed that only small molecules led to the depolarization after filtering out very large molecules. That supports the conclusion that glutamate - which is quite small - could be responsible. It is logical to test substance P because the Intro points out prior work links the larvae and seizures by inflammation and implicates substance P. However, why focus on nAChRs and ASIC?

      These were chosen as they are ionotropic receptors which mediate depolarization and hence could conceivably be responsible for the homogenate-induced depolarization we observed.

      The depolarizations caused seizure-like events in slices. The slices were exposed to a proconvulant buffer though- low Mg2+o. This buffer can cause spontaneous seizure-like events so it is important to know what the buffer did alone.

      We agree that a low M2+ buffer solution can elicit seizure-like events in organotypic slices alone. However, the timing of the onset of the seizure-like event in the example presented in Figure 1 strongly suggests that it was triggered by the T. crass homogenate puff. Nonetheless, on the suggestion of the other reviewers we have reduced emphasis on our experimental evidence for the ability of T. crass. homogenate to illicit seizure-like events.  

      They suggest the effects could underlie seizure generation in NCC. However, there is only one event that is seizure-like in the paper and it is just an inset. Were others similar? How frequency were they? How long?

      Please see the response above as well as our response to Reviewer 1 who raised a similar concern.

      Using Glutamate-sensing fluorescent reporters they found the larvae contain glutamate and can release it, a strength of the paper.

      Fig. 4. Could an inset be added to show the effects are very fast? That would support an effect of glutamate.

      We have not added an inset. However, given the scale bar (500 ms) for the trace provided, the response is very fast.  

      Why is aspartate relatively weak and glutamate relatively effective as an agonist?

      Glutamate generally has a higher affinity for glutamate receptors compared to aspartate. This is particularly true for AMPA and kainate receptors, where glutamate is the primary endogenous agonist. Similarly iGluSnFR has a higher sensitivity for glutamate over aspartate (Marvin et al., 2013).

      Could some of the variability in Fig 4G be due to choice of different cell types? That would be consistent with Fig 5B where only a fraction of cells in the culture showed a response to the larvae nearby. 

      Whilst differences in cell types could contribute to the variability in Fig 4G, all the responses were recorded from hippocampal pyramidal neurons and hence it is more likely that the variability is a function of other sources of variation including differences in iGluSnFR expression, depth of the cell imaged, the proximity of the puffer pipette etc. In Fig. 5B we think the lack of response may be due to the fact that any released glutamate by the live larvae was not able reach the iGluSnFR neurons at sufficient concentrations due to the nature of our submerged recording setup. We have added the following sentence to the results. ‘Our submerged recording setup might have led to swift diffusion or washout of released glutamate, possibly explaining the lack of observable changes.’

      On what basis was the ROI drawn in Fig. 5B.

      The ROI drawn in Fig. 5B was selected to include all iGluSnFR expressing neurons in the brain slice. which were captured in the field of view.

      Also in 5B, I don't see anything in the transmitted image. What should be seen exactly?

      We agree that it is difficult to resolve much in the transmitted image. However, both the brain slice on the left as well as a T. crass. larva on the right is visible and outlined with a green or orange dashed line respectively.

      Human brain slices were from temporal cortex of patients with refractory epilepsy. Was the temporal cortex devoid of pathology and EEG abnormalities? This area may be quite involved in the epilepsy because refractory epilepsy that goes to surgery is often temporal lobe epilepsy. Please discuss the limitations of studying the temporal cortex of humans with epilepsy since it may be more susceptible to depolarizations of many kinds, not just larvae.

      We acknowledge the important limitations of using temporal cortex tissue from patients with refractory epilepsy. While we aimed to use visually normal tissue, we recognize that the tissue may have underlying pathology or functional abnormalities not visible to the naked eye. It may also be more susceptible to induced depolarizations due to epilepsy-related changes in neuronal excitability. Despite these limitations, we believe our human tissue data still provides valuable data that the larval homogenates can induce depolarization in human as well as rodent neurons.  

      Please discuss the limitations of the cultures - they are from very young animals and cultured for 6-14 days.

      We acknowledge the potential limitations of our experimental model using organotypic hippocampal slice cultures from young animals. The use of relatively immature tissue may not fully represent the adult nervous system due to developmental differences in receptor expression, synaptic connections, and network properties. The 6-14 day culture period, while allowing some maturation, may induce changes that differ from the in vivo environment, including alterations in cellular physiology and network reorganization. Despite these limitations, this model provides a valuable balance between preserved local circuitry and experimental accessibility. Future studies comparing results with acute adult slices and in vivo models would be beneficial to validate and extend our findings.

      References:

      Gähwiler, B.H. et al. (1997) ‘Organotypic slice cultures: a technique has come of age.’, Trends in neurosciences, 20(10), pp. 471–7.

      Marvin, J.S. et al. (2013) ‘An optimized fluorescent probe for visualizing glutamate neurotransmission.’, Nature methods, 10(2), pp. 162–70. Available at: https://doi.org/10.1038/nmeth.2333.

      Raimondo, J.V. et al. (2012) ‘Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission.’, Nat. Neurosci., 15(8), pp. 1102–4. Available at: https://doi.org/10.1038/nn.3143.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors describe a method to probe both the proteins associated with genomic elements in cells, as well as 3D contacts between sites in chromatin. The approach is interesting and promising, and it is great to see a proximity labeling method like this that can make both proteins and 3D contacts. It utilizes DNA oligomers, which will likely make it a widely adopted method. However, the manuscript over-interprets its successes, which are likely due to the limited appropriate controls, and of any validation experiments. I think the study requires better proteomic controls, and some validation experiments of the "new" proteins and 3D contacts described. In addition, toning down the claims made in the paper would assist those looking to implement one of the various available proximity labeling methods and would make this manuscript more reliable to non-experts.

      Strengths:

      (1) The mapping of 3D contacts for 20 kb regions using proximity labeling is beautiful.

      (2) The use of in situ hybridization will probably improve background and specificity.

      (3) The use of fixed cells should prove enabling and is a strong alternative to similar, living cell methods.

      Weaknesses:

      (1) A major drawback to the experimental approach of this study is the "multiplexed comparisons". Using the mtDNA as a comparator is not a great comparison - there is no reason to think the telomeres/centrosomes would look like mtDNA as a whole. The mito proteome is much less complex. It is going to provide a large number of false positives. The centromere/telomere comparison is ok, if one is interested in what's different between those two repetitive elements. But the more realistic use case of this method would be "what is at a specific genomic element"? A purely nuclear-localized control would be needed for that. Or a genomic element that has nothing interesting at it (I do not know of one). You can see this in the label-free work: non-specific, nuclear GO terms are enriched likely due to the random plus non-random labeling in the nucleus. What would a Telo vs general nucleus GSEA look like? (GSEA should be used for quantitative data, no GO). That would provide some specificity. Figures 2G and S4A are encouraging, but a) these proteins are largely sequestered in their respective locations, and b) no validation by an orthogonal method like ChIP or Cut and Run/Tag is used.

      You can also see this in the enormous number of "enriched" proteins in the supplemental volcano plots. The hypothesis-supporting ones are labeled, but do the authors really believe all of those proteins are specific to the loci being looked at? Maybe compared to mitochondria, but it's hard to believe there are not a lot of false positives in those blue clouds. I believe the authors are more seeing mito vs nucleus + Telo than the stated comparison. For example, if you have no labeling in the nucleus in the control (Figures 1C and 2C) you cannot separate background labeling from specific labeling. Same with mito vs. nuc+Telo. It is not the proper control to say what is specifically at the Telo.

      I would like to see a Telo vs nuclear control and a Centromere vs nuc control. One could then subtract the background from both experiments, then contrast Telo vs Cent for a proper, rigorous comparison. However, I realize that is a lot of work, so rewriting the manuscript to better and more accurately reflect what was accomplished here, and its limitations, would suffice.

      (2) A second major drawback is the lack of validation experiments. References to literature are helpful but do not make up for the lack of validation of a new method claiming new protein-DNA or DNA-DNA interactions. At least a handful of newly described proximal proteins need to be validated by an orthogonal method, like ChIP qPCR, other genomic methods, or gel shifts if they are likely to directly bind DNA. It is ok to have false positives in a challenging assay like this. But it needs to be well and clearly estimated and communicated.

      (3) The mapping of 3D contacts for 20 kb regions is beautiful. Some added discussion on this method's benefits over HiC-variants would be welcomed.

      (4) The study claims this method circumvents the need for transfectable cells. However, the authors go on to describe how they needed tons of cells, now in solution, to get it to work. The intro should be more in line with what was actually accomplished.

      (5) Comments like "Compared to other repetitive elements in the human genome...." appear to circumvent the fact that this method is still (apparently) largely limited to repetitive elements. Other than Glopro, which did analyze non-repetitive promoter elements, most comparable methods looked at telomeres. So, this isn't quite the advancement you are implying. Plus, the overlap with telomeric proteins and other studies should be addressed. However, that will be challenging due to the controls used here, discussed above.

      We thank the Reviewer for their careful reading of manuscript and constructive suggestions. We plan to substantially revise the framing and presentation of manuscript to address the concerns raised by all three reviewers.

      Reviewer #2 (Public review):

      Summary

      Liu and MacGann et al. introduce the method DNA O-MAP that uses oligo-based ISH probes to recruit horseradish peroxidase for targeted proximity biotinylation at specific DNA loci. The method's specificity was tested by profiling the proteomic composition at repetitive DNA loci such as telomeres and pericentromeric alpha satellite repeats. In addition, the authors provide proof-of-principle for the capture and mapping of contact frequencies between individual DNA loop anchors.

      Strengths

      Identifying locus-specific proteomes still represents a major technical challenge and remains an outstanding issue (1). Theoretically, this method could benefit from the specificity of ISH probes and be applied to identify proteomes at non-repetitive DNA loci. This method also requires significantly fewer cells than other ISH- or dCas9-based locus-enrichment methods. Another potential advantage to be tested is the lack of cell line engineering that allows its application to primary cell lines or tissue.

      Weaknesses

      The authors indicate that DNA O-MAP is superior to other methods for identifying locus-specific proteomes. Still, no proof exists that this method could uncover proteomes at non-repetitive DNA loci. Also, there is very little validation of novel factors to confirm the superiority of the technique regarding specificity.

      The authors first tested their method's specificity at repetitive telomeric regions, and like other approaches, expected low-abundant telomere-specific proteins were absent (for example, all subunits of the telomerase holoenzyme complex). Detecting known proteins while identifying noncanonical and unexpected protein factors with high confidence could indicate that DNA O-MAP does not fully capture biologically crucial proteins due to insufficient enrichment of locus-specific factors. The newly identified proteins in Figure 1E might still be relevant, but independent validation is missing entirely. In my opinion, the current data cannot be interpreted as successfully describing local protein composition.

      Finally, the authors could have discussed the limitations of DNA O-MAP and made a fair comparison to other existing methods (2-5). Unlike targeted proximity biotinylation methods, DNA O-MAP requires paraformaldehyde crosslinking, which has several disadvantages. For instance, transient protein-protein interactions may not be efficiently retained on crosslinked chromatin. Similarly, some proteins may not be crosslinked by formaldehyde and thus will be lost during preparation (6).

      (1) Gauchier M, van Mierlo G, Vermeulen M, Dejardin J. Purification and enrichment of specific chromatin loci. Nat Methods. 2020;17(4):380-9.

      (2) Dejardin J, Kingston RE. Purification of proteins associated with specific genomic Loci. Cell. 2009;136(1):175-86.

      (3) Liu X, Zhang Y, Chen Y, Li M, Zhou F, Li K, et al. In Situ Capture of Chromatin Interactions by Biotinylated dCas9. Cell. 2017;170(5):1028-43 e19.

      (4) Villasenor R, Pfaendler R, Ambrosi C, Butz S, Giuliani S, Bryan E, et al. ChromID identifies the protein interactome at chromatin marks. Nat Biotechnol. 2020;38(6):728-36.

      (5) Santos-Barriopedro I, van Mierlo G, Vermeulen M. Off-the-shelf proximity biotinylation for interaction proteomics. Nat Commun. 2021;12(1):5015.

      (6) Schmiedeberg L, Skene P, Deaton A, Bird A. A temporal threshold for formaldehyde crosslinking and fixation. PLoS One. 2009;4(2):e4636.

      We thank the Reviewer for their constructive feedback on our work. As noted above, we plan to substantially revise the framing and presentation of manuscript to address the concerns raised by all three reviewers.

      Reviewer #3 (Public review):

      Significance of the Findings:

      The study by Liu et al. presents a novel method, DNA-O-MAP, which combines locus-specific hybridisation with proximity biotinylation to isolate specific genomic regions and their associated proteins. The potential significance of this approach lies in its purported ability to target genomic loci with heightened specificity by enabling extensive washing prior to the biotinylation reaction, theoretically improving the signal-to-noise ratio when compared with other methods such as dCas9-based techniques. Should the method prove successful, it could represent a notable advancement in the field of chromatin biology, particularly in establishing the proteomes of individual chromatin regions - an extremely challenging objective that has not yet been comprehensively addressed by existing methodologies.

      Strength of the Evidence:

      The evidence presented by the authors is somewhat mixed, and the robustness of the findings appears to be preliminary at this stage. While certain data indicate that DNA-O-MAP may function effectively for repetitive DNA regions, a number of the claims made in the manuscript are either unsupported or require further substantiation. There are significant concerns about the resolution of the method, with substantial biotinylation signals extending well beyond the intended target regions (megabases around the target), suggesting a lack of specificity and poor resolution, particularly for smaller loci. Furthermore, comparisons with previous techniques are unfounded since the authors have not provided direct comparisons with the same mass spectrometry (MS) equipment and protocols. Additionally, although the authors assert an advantage in multiplexing, this claim appears overstated, as previous methods could achieve similar outcomes through TMT multiplexing. Therefore, while the method has potential, the evidence requires more rigorous support, comprehensive benchmarking, and further experimental validation to demonstrate the claimed improvements in specificity and practical applicability.

      We thank the Reviewer for providing detailed critiques of our manuscript. As noted above, we plan to substantially revise the framing and presentation of manuscript to address the concerns raised by all three reviewers.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      The crystal structure of the Sld3CBD-Cdc45 complex presented by Li et al. is a novel contribution that significantly advances our understanding of CMG formation during the rate-limiting step of DNA replication initiation. This structure provides insights into the intermediate steps of CMG formation. The study builds upon previously known structures of Sld3 and Cdc45 and offers new perspectives into how Cdc45 is loaded onto MCM DH through Sld3-Sld7. The most notable finding is the structural difference in Sld3CBD when bound to Cdc45, particularly the arrangement of the α8-helix, which is essential for Cdc45 binding and may also pertain to its metazoan counterpart, Treslin. Additionally, the conformational shift in the DHHA1 domain of Cdc45 suggests a possible mechanism for its binding to MCM2NTD.

      Strengths:

      The manuscript is generally well-written, with a precise structural analysis and a solid methodological section that will significantly advance future studies in the field. The predictions based on structural alignments are intriguing and provide a new direction for exploring CMG formation, potentially shaping the future of DNA replication research.

      Weaknesses:

      The main weakness of the manuscript lies in the lack of experimental validation for the proposed Sld3-Sld7-Cdc45 model. Specifically, the claim that Sld3 binding to Cdc45-MCM does not inhibit GINS binding, a finding that contradicts previous research, is not sufficiently substantiated with experimental evidence. To strengthen their model, the authors must provide additional experimental data to support this mechanism. Also, the authors have not compared the recently published Cryo-EM structures of the metazoan CMG helicases with their predicted models to see if Sld3/Treslin does not cause any clash with the GINS when bound to the CMG. Still, the work holds great potential in its current form but requires further experiments to confirm the authors' conclusions.

      We appreciate the reviewers’ careful reading and the comments.

      The structure of Sld3CBD-Cdc45 showed that the binding site of Cdc45 to Sld3CBD was distinct from the binding ranges of Cdc45 to GINS and MCM, indicating that the Sld3CBD, MCM, and GINS bind to separate sites of Cdc45 on the CMG complex. The SCMG-DNA model confirmed such a binding situation but did not show whether the binding of Sld3 to Cdc45 affects the recruitment of GINS (by GINS-Dbp11-Sld2) for CMG formation. We will modify our manuscript and discuss this point. Also, we will check the recently published Cryo-EM structures of the metazoan CMG helicases with their predicted models to confirm our conclusions. We will try to conduct the experiments as suggested.

      Reviewer #2 (Public review):

      Summary

      The manuscript presents valuable findings, particularly in the crystal structure of the Sld3CBD-Cdc45 interaction and the identification of additional sequences involved in their binding. The modeling of the Sld7-Sld3CBD-CDC45 subcomplex is novel, and the results provide insights into potential conformational changes that occur upon interaction. However, the work remains incomplete as several main claims are only partially supported by experimental data, particularly the proposed model for Sld3 interaction with GINS on the CMG. Additionally, the single-stranded DNA binding data from different species do not convincingly advance the manuscript's central arguments.

      Strengths

      (1) The Sld3CBD-Cdc45 structure is a novel contribution, revealing critical residues involved in the interaction.

      (2) The model structures generated from the crystal data are well presented and provide valuable insights into the interaction sequences between Sld3 and Cdc45.

      (3) The experiments testing the requirements for interaction sequences are thorough and conducted well, with clear figures supporting the conclusions.

      (4) The conformational changes observed in Sld3 and Cdc45 upon binding are interesting and enhance our understanding of the interaction.

      (5) The modeling of the Sld7-Sld3CBD-CDC45 subcomplex is a new and valuable addition to the field.

      Weaknesses

      (1) The proposed model for Sld3 interacting with GINS on the CMG needs more experimental validation and conflicts with published findings. These discrepancies need more detailed discussion and exploration.

      (2) The section on the binding of Sld3 complexes to origin single-stranded DNA needs significant improvement. The comparisons between Sld3-CBD, Sld3CBD-Cdc45, and Sld7-Sld3CBD-Cdc45 involve complexes from different species, limiting the comparisons' value.

      (3) The authors' model proposing the release of Sld3 from CMG based on its binding to single-stranded DNA is unclear and needs more elaboration.

      We appreciate your positive comments. As suggested, we will try to improve the experiments and manuscript and discuss in more detail, including the interaction between Sld3 and GINS on the CMG, ssDNA-binding section, and the explanations of why we use different species for comparison and more elaboration on the Sld3-release proposal.

      Reviewer #3 (Public review):

      Summary:

      The paper by Li et al. describes the crystal structure of a complex of Sld3-Cdc45-binding domain (CBD) with Cdc45 and a model of the dimer of an Sld3-binding protein, Sld7, with two Sld3-CBD-Cdc45 for the tethering. In addition, the authors showed the genetic analysis of the amino acid substitution of residues of Sld3 in the interface with Cdc45 and biochemical analysis of the protein interaction between Sld3 and Cdc45 as well as DNA binding activity of Sld3 to the single-strand DNAs of the ARS sequence.

      Strengths:

      The authors provided a nice model of an intermediate step in the assembly of an active Cdc45-MCM-GINS (CMG) double hexamers at the replication origin, which is mediated by the Sld3-Sld7 complex. The dimer of the Sld3-Sld7 complexes tethers two MCM hexamers together for the recruitment of GINS-Pol epsilon on the replication origin.

      Weaknesses:

      The biochemical analysis should be carefully evaluated with more quantitative ways to strengthen the authors' conclusion.

      We thank your positive assessment. We will provide more quantitative information and try to quantify the experiments as suggested.

    1. Author response:

      Reviewer 1:

      (1) I think the article is a little too immature in its current form. I'd recommend that the authors work on their writing. For example, the objectives of the article are not completely clear to me after reading the manuscript, composed of parts where the authors seem to focus on SGCs, and others where they study "engram" neurons without differentiating the neuronal type (Figure 5). The next version of the manuscript should clearly establish the objectives and sub-aims.

      Our overarching focus was to identify whether intrinsic physiology and circuit connectivity of SGCs contribute to their unique overrepresentation in neurons labeled as part of a behaviorally relevant dentate engram. Since our systematic analysis of “engram SGCs” did not support the proposal that engram SGCs drive robust feedforward excitation of engram GCs or feedback inhibition of non-engram GCs, we examined an alternative hypothesis that inputs drive recruitment of neurons, regardless of subtype (in figure 5). These are sparsely labeled neurons, with mixed populations of GCs and SGCs undergoing paired recordings. Since the focus of the experiment was input correlation between two simultaneously recorded neurons, we did not report the individual cell types. We regret that this caused confusion and will clarify this issue in the revised manuscript.

      (2) In addition, some results are not entirely novel (e.g., the disproportionate recruitment as well as the distinctive physiological properties of SGCs), and/or based on correlations that do not fully support the conclusions of the article. In addition to re-writing, I believe that the article would benefit from being enriched with further analyses or even additional experiments before being resubmitted in a more definitive form.

      We would like to note that while we and others have previously reported the distinctive SGC physiology, this study is the first to compare physiological properties of SGCs labeled as part of an engram to unlabeled SGCs. That was the thrust of the data presented which may have been missed and will be emphasized in the revision. Similarly, while others have shown higher SGC recruitment in dentate engrams, we had to validate this in the dentate dependent behaviors that we adopted in this study. We also note that the proportional SGC recruitment in our study, based on morphometric classification, differs from what was reported previously. These aspects of study, which were considered confirmatory, represent the necessary validation needed to proceed with the novel cell-type specific paired recordings and optogenetic analyses of engram neurons presented in subsequent sections of the manuscript. We will emphasize these considerations in the revised manuscript.

      Reviewer 2:

      (1) The authors conclude that SGCs are disproportionately recruited into cfos assemblies during the enriched environment and Barnes maze task given that their classifier identifies about 30% of labelled cells as SGCs in both cases and that another study using a different method (Save et al., 2019) identified less than 5% of an unbiased sample of granule cells as SGCs. To make matters worse, the classifier deployed here was itself established on a biased sample of GCs patched in the molecular layer and granule cell layer, respectively, at even numbers (Gupta et al., 2020). The first thing the authors would need to show to make the claim that SGCs are disproportionately recruited into memory ensembles is that the fraction of GCs identified as SGCs with their own classifier is significantly lower than 30% using their own method on a random sample of GCs (e.g. through sparse viral labelling). As the authors correctly state in their discussion, morphological samples from patch-clamp studies are problematic for this purpose because of inherent technical issues (i.e. easier access to scattered GCs in the molecular layer).

      We regret that there seems to be some confusion about use of a classifier. We did NOT use any automated classifier in this study. All cell type classifications in the study were conducted by experienced investigators examining cell morphology and classifying cells based on established morphometric criteria. In our prior study (Gupta et al., 2020) we had conducted an automated cluster analysis that was able to classify GCs and SGCs as different cell types. The principal components underlying the automated clustering in Gupta et al 2020 were consistent with the major criteria identified in prior morphology-based analyses by us and others (including Williams et al 2010 and Save et al., 2019). To date, in the absence of a validated molecular marker, morphometry from recorded and filled cells or sparsely labeled neurons is the only established method to classify SGCs. This was the approach we adopted, and this will be further clarified in the revisions.

      (2) The authors claim that recurrent excitation from SGCs onto GCs or other SGCs is irrelevant because they did not find any connections in 32 simultaneous recordings (plus 63 in the next experiment). Without a demonstration that other connections from SGCs (e.g. onto mossy cells or interneurons) are preserved in their preparation and if so at what rates, it is unclear whether this experiment is indicative of the underlying biology or the quality of the preparation. The argument that spontaneous EPSCs are observed is not very convincing as these could equally well arise from severed axons (in fact we would expect that the vast majority of inputs are not from local excitatory cells). The argument on line 418 that SGCs have compact axons isn't particularly convincing either given that the morphologies from which they were derived were also obtained in slice preparations and would be subject to the same likelihood of severing the axon. Finally, even in paired slice recordings from CA3 pyramidal cells the experimentally detected connectivity rates are only around 1% (Guzman et al., 2016). The authors would need to record from a lot more than 32 pairs (and show convincing positive controls regarding other connections) to make the claim that connectivity is too low to be relevant.

      As noted in our discussion, we are fully cognizant that potential SGC to GC connections may have been missed by the nature of slice physiology experiments and made every effort to limit this possibility. As noted in the manuscript, we only analyzed GC/SGC pairs where hilar axon collaterals of the neurons were recovered. We do not claim that SGC to GC/SGC connections are irrelevant, rather, we indicate that these connections, if present, are sparse and unlikely to drive engram refinement. Interestingly, wide field optical stimulation, designed to activate multiple labeled engram neurons and axon terminals including those of SGCs whose somata were outside the slice, did not lead to EPSCs in other unlabeled GCs or SGCs suggesting the lack of robust SGC to GC/SGC synaptic connectivity. While we have previously published paired recordings from interneurons to GCs (Proddutur  et al 2023) , we agree that recordings demonstrating the presence of SGC/GC to hilar neuron synapses would serve as an added control in the revised manuscript.

      (3) Another troubling sign is the fact that optogenetic GC stimulation rarely ever evokes feedback inhibition onto other cells which contrasts with both other in vitro (e.g. Braganza et al., 2020) and in vivo studies (Stefanelli et al., 2016) studies. Without a convincing demonstration that monosynaptic connections between SGCs/GCs and interneurons in both directions is preserved at least at the rates previously described in other slice studies (e.g. Geiger et al., 1997, Neuron, Hainmueller et al., 2014, PNAS, Savanthrapadian et al., 2014, J. Neurosci), the notion that this setting could be closer to naturalistic memory processing than the in vivo experiments in Stefanelli et al. (e.g. lines 443-444) strikes me as odd. In any case, the discussion should clearly state that compromised connectivity in the slice preparation is likely a significant confound when comparing these results.

      We would like to note that our data are consistent with Braganza 2020 study, as we explain below. Moreover, we would like to point out that the demonstration of “feedback inhibition” in the Stefanelli study was NOT in engram or behaviorally labeled neurons nor was it in vivo. As we explain below, the physiological assay in Stefanelli was in slices and in a cohort of GCs with virally driven ChR2 expression. Thus, we are fully confident that our experimental paradigm better reflects a behavioral engram. As noted in response (2, we have previously published paired monosynaptic connections from interneurons to GCs (Proddutur  et al 2023) and find the connectivity consistent with published data. However, we agree that recordings demonstrating the presence of SGC/GC to hilar neuron synapses  or recruitment of feedback inhibition by focal activation of GCs would serve to allay concerns regarding slice preparation. We also submit that we already discuss the potential concerns regarding compromised connectivity in slice preparations.

      Regarding the lack of optically evoked feedback inhibition, we would like to point out that the Braganza 2020 study examined focal optogenetic activation of GCs, where a high density of GCs was labeled using a Prox-cre line. They reported that about 2-4% of these densely labeled cells need to be recruited to evoke feedback IPSCs. Our experimental condition, where ChR2 was expressed in behaviorally labeled neurons, leads to sparse labeling much less than the focal 4% needed to evoke IPSCs in the Braganza study. We do not claim that feedback inhibition cannot be activated by focal activation of a cohort of GCs and even show an example of paired recording with feedback GC inhibition of an SGC. Our conclusion is that the few sparsely labeled neurons during a behavioral episode do not support robust feedback inhibition proposed to mediate engram refinement. We submit that our findings are fully consistent with the sparse GC driven feedback inhibition, and the need to activate a cohort of focal GCs to recruit feedback inhibition, reported in Braganza 2020

      Regarding the Stefanelli study, we maintain that our behaviorally relevant in vivo labeling approach is more naturalistic than the DREADD and Channelrhodopsin driven artificial “engrams” generated in the Stefanelli study. Of note, we used cFOS driven TRAP mice to label, in vivo, neurons active during a behavior and then undertook slice physiology studies in these mice a week later. In contrast, the slice physiology data demonstrating putative feedback inhibition in the Stefanelli study (Fig 5) used wildtype mice injected with AAV CAMKII-cre and AAV-DIO-ChR2. Thus, unlike our study, the physiological data demonstrating feedback inhibition in the Stefanelli study was not performed in a behaviorally labeled engram. Apart from the one set of histological experiments using AAV-SARE-GFP to demonstrate increased GFP labeling of SST neurons in behavior, all other data presented in the Stefanelli study are generated based on artificially generated engrams where optogenetic activation or silencing on granule cells was used to manipulate the numbers of neurons active during a task followed by histological analysis of cFOS staining or behaviors. Thus, the physiological experiments in the Stefanelli et al (2016) generated by wide field activation of a large cohort of GCs labeled by focal virally driven ChR2 expression, were similar to wide field optical stimulation studies in the Braganza 2020 study, and were NOT conducted in a behavioral engram. The strength of our study is in the use of a behaviorally tagged engram neurons for analysis and our findings in sparsely labeled neurons are consistent with the reports in Braganza 2020. We will further clarify in our discussion that the data presented in the Stefanelli study do NOT represent a natural behavior generated engram.

      (4) Probably the most convincing finding in this study is the higher zero-time lag correlation of spontaneous EPSCs in labelled vs. unlabeled pairs. Unfortunately, the fact that the authors use spontaneous EPSCs to begin with, which likely represent a mixture of spontaneous release from severed axons, minis, and coordinated discharge from intact axon segments or entire neurons, makes it very hard to determine the meaning and relevance of this finding. At the bare minimum, the authors need to show if and how strongly differences in baseline spontaneous EPSC rates between different cells and slices are contributing to this phenomenon. I would encourage the authors to use low-intensity extracellular stimulation at multiple foci to determine whether labelled pairs really share higher numbers of input from common presynaptic axons or cells compared to unlabeled pairs as they claim. I would also suggest the authors use conventional Cross correlograms (CCG; see e.g. English et al., 2017, Neuron; Senzai and Buzsaki, 2017, Neuron) instead of their somewhat convoluted interval-selective correlation analysis to illustrate co-dependencies between the event time series. The references above also illustrate a more robust approach to determining whether peaks in the CCGs exceed chance levels.

      We appreciate the comment can provide additional data on the EPSC frequency in individual labeled and unlabeled cells in the revised manuscript. As indicated in the manuscript, we constrained our analysis to cell pairs with comparable EPSC frequency in order to avoid additional confounds in analysis. We have additional experiments to show that over 50% of the sEPSCs represent action potential driven events which we will include in the revised manuscript. We thank the reviewer for the suggestion to explores alternative methods of analyses including CCGs to further strengthen our findings.

      (5) Finally, one of the biggest caveats of the study is that the ensemble is labelled a full week before the slice experiment and thereby represents a latent state of a memory rather than encoding consolidation, or recall processes. The authors acknowledge that in the discussion but they should also be mindful of this when discussing other (especially in vivo) studies and comparing their results to these. For instance, Pignatelli et al 2018 show drastic changes in GC engram activity and features driven by behavioral memory recall, so the results of the current study may be very different if slices were cut immediately after memory acquisition (if that was possible with a different labelling strategy), or if animals were re-exposed to the enriched environment right before sacrificing the animal.

      As noted by the reviewer, we fully acknowledge and are cognizant of the concern that slices prepared a week after labeling may not reflect ongoing encoding. Although our data show that labeled cells are reactivated in higher proportion during recall, we have discussed this caveat and will include alternative experimental strategies in the discussion.

      Reviewer 3:

      (1) Engram cells are (i) activated by a learning experience, (ii) physically or chemically modified by the learning experience, and (iii) reactivated by subsequent presentation of the stimuli present at the learning experience (or some portion thereof), resulting in memory retrieval. The authors show that exposure to Barnes Maze and the enriched environment-activated semilunar granule cells and granule cells preferentially in the superior blade of the dentate gyrus, and a significant fraction were reactivated on re-exposure. However, physical or chemical modification by experience was not tested. Experience modifies engram cells, and a common modification is the Hebbian, i.e., potentiation of excitatory synapses. The authors recorded EPSCs from labeled and unlabeled GCs and SGCs. Was there a difference in the amplitude or frequency of EPSCs recorded from labeled and unlabeled cells?

      We agree that we did not examine the physical or chemical modifications by experience. Although we constrained our sEPSC analysis to cell pairs with comparable sEPSC frequency, we will include data on sEPSC parameters in labeled and unlabeled cells in the revised manuscript.

      (2) The authors studied five sequential sections, each 250 μm apart across the septotemporal axis, which were immunostained for c-Fos and analyzed for quantification. Is this an adequate sample? Also, it would help to report the dorso-ventral gradient since more engram cells are in the dorsal hippocampus. Slices shown in the figures appear to be from the dorsal hippocampus.

      We thank the reviewer for the comment. We analyzed sections along the dorso-ventral gradient. As explained in the methods, there is considerable animal to animal variability in the number of labeled cells which was why we had to use matched littermate pairs in our experiments This variability could render it difficult to tease apart dorsoventral differences.

      (3) The authors investigated the role of surround inhibition in establishing memory engram SGCs and GCs. Surprisingly, they found no evidence of lateral inhibition in the slice preparation. Interneurons, e.g., PV interneurons, have large axonal arbors that may be cut during slicing. Similarly, the authors point out that some excitatory connections may be lost in slices. This is a limitation of slice electrophysiology.

      We agree that slice physiology has limitations and discuss this caveat. As noted in response (2, we have previously published paired monosynaptic connections from interneurons to GCs (Proddutur  et al 2023) and find the connectivity consistent with published data. However, we agree that recordings demonstrating the presence of SGC/GC to hilar neuron synapses  or recruitment of feedback inhibition by focal activation of GCs would serve to allay concerns regarding slice preparation.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The study by Chikermane and colleagues investigates the functional, structural, and dopaminergic network substrates of cortical beta oscillations (13-30 Hz). The major strength of the work lies in the methodology taken by the authors, namely a multimodal lesion network mapping. First, using invasive electrophysiological recordings from healthy cortical territories of epileptic patients they identify regions with the highest beta power. Next, they leverage open-access MRI data and PET atlases and use the identified high-beta regions as seeds to find (1) the whole-brain functional and structural maps of regions that form the putative underlying network of high-beta regions and (2) the spatial distribution of dopaminergic receptors that show correlation with nodal connectivity of the identified networks. These steps are achieved by generating aggregate functional, structural, and dopaminergic network maps using lead-DBS toolbox, and by contrasting the results with those obtained from high-alpha regions.

      The main findings are:

      (1) Beta power is strongest across frontal, cingulate, and insular regions in invasive electrophysiological data, and these regions map onto a shared functional and structural network. (2) The shared functional and structural networks show significant positive correlations with dopamine receptors across the cortex and basal ganglia (which is not the case for alpha, where correlations are found with GABA).

      Nevertheless, a few clarifications regarding the choice of high-power electrodes and distributions of functional connectivity maps (i.e., strength and sign across cortex and sub-cortex) can help with understanding the results.

      We thank the reviewer for this critical expert assessment. 

      Reviewer #1 (Recommendations For The Authors):

      To potentially enhance the quality of the manuscript in the current version, I kindly ask the authors to address the following points:

      Major:

      (A) Power analysis of electrophysiological data

      (1) How were significant peaks identified exactly? I understand that the authors used FOOOF methodology to estimate periodic components of brain activity.

      Thank you for pointing us to this lack of clarity. The application of FOOOF consists of the fitting of a one-over-f curve that delineates the aperiodic component followed by the definition of gaussians to fit periodic activity. This allows for extraction of periodic peak power estimates that are corrected for offset and exponent of the one-over-f or non-oscillatory aperiodic component in the spectrum (further information can be found here https://fooof-tools.github.io/fooof/auto_tutorials/plot_02-FOOOF.html). We included all peaks that could be fitted using the process.

      How about aperiodic components (Figure 1, PSD plots)? 

      We share the interest in aperiodic activity with the reviewer. However, given that the primary aim of this study was the description of beta oscillations and the methodology and results presentation is already very complex, we did not include the analysis of aperiodic activity in this manuscript. This could be done in the future and it would surely be interesting to visualize the whole brain connectomic fingerprints of aperiodic exponent and offset. With regard to the purely anatomical description of nonoscillatory aperiodic activity we would like to refer to Figure 8 in Frauscher et al. Brain 2018 (https://doi.org/10.1093/brain/awy035) where this is described. We have decided not to include additional information on this matter, because a) we felt that this would further convolute the results and discussion without directly addressing any of the hypotheses and aims that we set out to tackle and b) the interpretation of aperiodic activity is still a matter of intense research with conflicting results, which warrants very careful considerations of many aspects that again would go beyond the scope of this paper. 

      In addition, to what degree would the results change if one identified the peaks relative to sites with no peak, similar to Frauscher et al. 

      Beta activity, the oscillation of interest in our analysis is ubiquitous in the brain. In fact, of 1772 channels, only 21 channels did not exhibit a beta peak detectable with FOOOF. Thus, a comparison of 1751 against 21 would not yield meaningful results. We have therefore decided to focus on the channels in which beta activity is the strongest and dominant observable oscillation. 

      If the FOOOF approach has some advantages, these should be pointed out or discussed.

      FOOOF indeed has the advantage that it provides an objective and reproducible estimation of peak oscillatory activity that accounts for differences in aperiodic activity. To the best of our knowledge, there is no other approach that is nearly as well documented, validated and computationally reproducible. 

      Changes in manuscript: We have now further clarified the definition of peak amplitudes in the results and methods section and have discussed the use of alternative measures in the limitations section of our manuscript.

      Results: “The frequency band with the highest peak amplitude was identified using the extracted peak parameter (pw) for each channel and depicted as the dominant rhythm for the respective localisation (Figure 1).”

      Methods: “Peak height was extracted using the pw parameter, which depicts peak amplitude after subtraction of any aperiodic activity.”

      Discussion: “Alternative approaches could yield different results, e.g. reusing channels for each peak that is observable and contrasting them to channels where such peak was not present. However, in our study the majority of channels exhibited beta activity, even if peaks were of low amplitude, which we believe would have led to less interpretable results.”

      (2) How exactly do the authors deal with channels with more than one peak? Some elaboration on this and how this could potentially impact the results would be appreciated. Sorry if I have missed it.

      Indeed, a description of this was lacking so we are very thankful that the reviewer pointed this out. The maximum peak amplitude method was a winner-takes-all approach where in the case of multiple peaks, the peak with the higher amplitude was chosen. This method of course has drawbacks in the form of lost or disregarded peaks and remains a limitation to this study. 

      Changes in manuscript: We have now clarified this in the methods and results sections, which now read: 

      Methods: “In case of multiple peaks within the same region, we used only the highest peak amplitude.”

      Results: “In case of multiple peaks within the same frequency band, we focused the analysis on the peak with the highest amplitude.”

      And added the following to the Limitations section of the discussion: 

      “Another limitation in our study is the fact that the statistical approach for the comparison of beta and alpha networks and even for multiple peaks within the same frequency band follows a winner takes all logic that is, by definition, a simplification, as most areas will contribute to more than one spatiospectrally distinct oscillatory network. Specifically, while multiple peaks within or across frequency bands could be present in each channel, we decided to allocate this channel to only the frequency band containing the highest peak amplitude.” 

      (B) Network mapping

      (1) Knowing that fMRI data are preprocessed by regressing the global signal, there are negative correlations across the functional networks. Unfortunately, the distribution, sign, and strength of the correlations are not quantitatively shown in any of the plots. Thus, it is unclear whether, e.g., corticocortical vs. subcortico-cortical correlations differ in strength and/or sign. I think this additional information is important for better understanding the up/down-regulation of beta, e.g., by DA signaling. Some discussion around this point in addition would be insightful, I think.

      The referee is touching upon a very important and difficult point, which we have considered very carefully. Global signal regression is a controversial topic and the neurophysiological basis of negative correlations remains to be elucidated. We can justify our use of this approach based on an expert consensus described in Murphy & Fox 2017 (https://doi.org/10.1016%2Fj.neuroimage.2016.11.052), which highlights that global signal regression can improve the specificity of positive correlations, improve the correspondence to anatomical connectivity. The truth however is that, we relied on it, because it is the more commonly used and validated approach used in lesion network and DBS connectivity mapping and implemented in the Lead Mapper pipeline. Indeed all connectivity estimates are shown in Supplementary figure 3. We remain hesitant to raise the focus to these points, because of the uncertain underlying neural correlates. However, when looking at the values, it is interesting to note that most key regions of interest exhibit positive connectivity values. 

      Changes in manuscript: We now point to the supplement containing all connectivity values in the results section more prominently: “All connectivity values including their sign are shown in figures as brain region averages parcellated with the automatic anatomical labelling atlas in supplementary figures 2&3.”

      (2) I assume no thresholding is applied to the functional connectivity maps (in a graph-theoretical sense). Please clarify (this is also related to the comment above, in particular, the strength of correlations.

      Indeed, we demonstrate SPM maps using family wise error corrected stats in figure 2, but all further analyses were performed on unthresholded maps as correctly pointed out by the referee. 

      Changes in manuscript: 

      Results: “Specifically, we analysed to what degree the spatial uptake patterns of dopamine, as measurable with fluorodopa (FDOPA; cohort average of 12 healthy subjects) and other dopamine signalling related tracers that bind D1/D2 receptors (average of N=17/44 respectively healthy subjects) or the dopamine transporter (DAT; cohort average of N=180 healthy subjects) were correlated with the unthresholded MRI connectivity maps.”

      Methods: “This parcellation was applied to both PET and unthresholded structural and functional connectivity maps using SPM and custom code.”

      Minor

      (1) Methods, Connectivity analysis: The description of (mass-univariate) GLM analysis is confusing. The maps underwent preprocessing? Which preprocessing steps are meant here? What is the dependent variable and what are the predictors exactly?

      We thank the reviewer for catching this error in our methods. We apologise for the confusion and mistake and thank the reviewer for catching it. Indeed, we have used t-tests without further preprocessing instead of a GLM. 

      Changes in manuscript: The respective section has been removed from the methods section and intermediate steps have been clarified. The section now reads: “To investigate differences between beta dominant and alpha dominant functional connectivity networks, a two sample t-test was calculated for the condition where beta was greater than alpha and vice versa using SPM. Here, the connectivity maps from each dominant channel (1005 beta functional connectivity maps and 397 alpha connectivity maps) Estimation of model parameters yielded t-values for each voxel, indicating the strength and direction of differences between the two contrasts (beta > alpha, alpha > beta). To address the issue of multiple comparisons, we applied Family-Wise Error (FWE) correction, adjusting significance thresholds such that only voxels with p < 0.05 would be included.”

      (2) I encourage the authors to find a better (visual) way of reporting Table 1, to make the main observations easier to grasp and compare (maybe a two-dimensional bar plot? Or color-coding the cells?)

      Reply: Thank you for your suggestion to improve the table, the new table is adjusted to the recommended changes to make it more readable.

      Reviewer #2 (Public Review):

      Summary:

      This is a very interesting paper that leveraged several publicly available datasets: invasive cortical recording in epilepsy patients, functional and structural connectomic data, and PET data related to dopaminergic and gaba-ergic synapses. These were combined to create a unified hypothesis of beta band oscillatory activity in the human brain. They show that beta frequency activity is ubiquitous, not just in sensorimotor areas, and cortical regions where beta predominated had high connectivity to regions high in dopamine re-uptake.

      Strengths:

      The authors leverage and integrate three publicly available human brain datasets in a creative way. While these public datasets are powerful tools for human neuroscience, it is innovative to combine these three types of data into a common brain space to generate novel findings and hypotheses. Findings are nicely controlled by separately examining cortical regions where alpha predominates (which have a different connectivity pattern). GABA uptake from PET studies is used as a control for the specificity of the relationship between beta activity and dopamine uptake. There is much interest in synchronized oscillatory activity as a mechanism of brain function and dysfunction, but the field is short on unifying hypotheses of why particular rhythms predominate in particular regions. This paper contributes nicely to that gap. It is ambitious in generating hypotheses, particularly that modulation of beta activity may be used as a "proxy" for modulating phasic dopamine release.

      Weaknesses:

      As the authors point out, the use of normative data is excellent for exploring hypotheses but does not address or explore individual variations which could lead to other insights. It is also biased to resting state activity; maps of task-related activity (if they were available) might show different findings.

      The figures, results, introduction, and methods are admirably clear and succinct but the discussion could be both shorter and more convincing.

      Reviewer #2 (Recommendations For The Authors):

      The tone of the discussion is excessively lofty and abstract, and hard to follow in places. Specific examples in comments to authors below.

      We thank the reviewer for their positive assessment and their constructive feedback on the discussion. Also in light of the other reviewers we have made a sincere effort to shorten, restructure and improve the discussion. Additionally, we have addressed all the specific comments the reviewer had below. We appended each change to the manuscript where appropriate below and have addressed all comments in the main text. Having that said, we see this paper and discussion to provide our most up-to-date and personal perspective on a correct concept on the interplay of beta oscillations and dopamine that is generalizable. Providing a concept that is so generalizable is very challenging and so far very few authors have even attempted this. One notable exception is the “status quo” concept by Fries & Engel. While we will do our very best to address the comments, we have decided not to deviate from our initial ambition to provide a discussion on a generalizable concept. Naturally such a concept must be very complex and therefore it will be hard to understand in parts. Through the revision, we hope that the readability and comprehensibility has improved, while it provides an in-depth perspective and hypothesis on how beta oscillations, dopamine and their brain circuits may facilitate brain function. Nevertheless, we want to express our honest gratitude for the thoroughness with which the reviewer has read and scrutinized our paper. The review clearly tells that the reviewer had the ambition to follow and understand what we were trying to convey, which can be rare nowadays. We are truly thankful for this.

      The first sentence is not quite true, as invasive neurophysiology was not, and cannot be, done in healthy humans. "The present study combined three openly available datasets of invasive neurophysiology, MRI connectomics, and molecular neuroimaging in healthy humans to characterise the spatial distribution of brain regions exhibiting resting beta activity, their shared circuit architecture, and its correlation with molecular markers of dopamine signaling in the human brain."

      Changes in manuscript: We have now removed the “healthy” from the respective sentence.

      "Our results motivate to conceptualise the capacity to generate.... This is not clear.

      Changes in manuscript: “Our results suggest that one common denominator of brain regions that generate beta activity, is their affiliation with beta oscillations as a feature that arises from a largescale global brain network that is modulated by dopamine.”

      "Similarly, the robust beta modulation that is elicited by voluntary action in sensorimotor cortex and its correlation with motor symptoms of Parkinson's disease is long known" - the association between movement-related cortical beta desynchronization and Parkinson's motor signs is not well described - could the authors specify and reference this?

      We thank the reviewer for pointing out this lack of clarity. We meant that independently beta is known for “movement” and for “movement disorders” and not “movement in movement disorders”. Having that said, there are some studies that suggest that beta ERD is altered in PD (e.g.https://doi.org/10.1093/cercor/bht121), but saying that this is “long known” would be an overstatement and was not our intention. We rephrased this sentence accordingly.

      Changes in manuscript: The sentence now reads: “Moreover, the robust beta modulation that is elicited by voluntary action in sensorimotor cortex and its correlation with motor symptoms of Parkinson’s disease is long known.”

      "...first fast-cyclic voltammetry experiments that allowed for combined measurement of dopamine release with invasive neurophysiology have provided first evidence that beta band oscillations in healthy non-human primates can differentially link dopamine release, beta oscillations and reward and motor control, depending on the contextual information and striatal domain" - This is not very clear - not sure what "differentially link" signifies.

      I think the fact that this is not easy to understand signifies the complexity that we and the authors of the cited paper from Ann Graybiel’s lab aimed to communicate. In fact, we stayed very close to the phrasing used in their paper to try and avoid confusion (Title: Dopamine and beta-band oscillations differentially link to striatal value and motor control” - https://doi.org/10.1126/sciadv.abb9226). The specific results go beyond the scope of the discussion but are very interesting, so I would be happy if our paper would inspire readers to look it up. 

      Changes in manuscript: We have now adapted the sentence to “In line with this more complex picture, direct measurement of dopamine concentration in non-human primates revealed specific interactions between dopamine release, beta oscillations, reward value and motor control, depending on contextual information and striatal domain. This shows that the relationship of dopamine and beta activity is not solely associated with either reward or movement and depends on where in the striatum beta activity is recorded.”

      "In fact, one could argue that it can be contextualised in a recently described framework of neural reinforcement, that serves to orchestrate the re-entrance and refinement of neural population dynamics for the production of neural trajectories" - this is not clear - for example what is a neural trajectory? What is meant by "re-entrance and refinement"?

      A neural trajectory refers to the path that the activity of a neural population takes through a high-dimensional space over time. It can be obtained through multivariate analysis of population activity with dimensionality reduction techniques, such as PCA. The concept of low-dimensional representations of high-dimensional neural activity has gained a lot of attention in computational neuroscience ever since high-channel count recordings of neural population activity have become available (an early and prominent example is Churchland et al., 2012 Nature https://doi.org/10.1038/nature11129 , while a more recent example is Safaie et al., Nature 2023 https://doi.org/10.1038/s41586-023-06714-0). The review we refer to by Rui Costa and colleagues (Athalye, V. R., Carmena, J. M. & Costa, R. M. Neural reinforcement: re-entering and refining neural dynamics leading to desirable outcomes. Curr Opin Neurobiol 60, 145–154 (2020) https://doi.org/10.1016/j.conb.2019.11.023) suggests that dopamine may serve to modulate the likelihood of a specific pattern to emerge and re-enter the cortex – basal ganglia loop, for the “reliable production of neural trajectories driving skillful behavior on-demand”. We believe that this concept could be revolutionary in our understanding of dopaminergic modulation and disoroders and together with colleague Alessia Cavallo have written an invited perspective on this topic (https://doi.org/10.1111/ejn.16222), which may help further clarify the topic. 

      Changes in manuscript: We realize that this aspect may sound a bit unclear or far away from the data in this manuscript. However, given that we have spent more than a decade thinking about beta oscillations and how they can be conceptualized, we would prefer not to entirely change our points and rather bet on the possibility that the concepts become more widely accepted and well-known. Nevertheless, we have now adapted the text to make this a bit more clear:

      “We hypothesise that, this “status quo” hypothesis could be equally or maybe even more adequately posed on the neural level. Namely, it could provide insights to what degree a certain activity pattern or synaptic connection is to be strengthened or weakened, in light of neural learning. We propose that this putative function can be contextualised in a recently described framework of neural reinforcement, that serves to orchestrate the re-entrance and refinement of neural population dynamics for the production of neural trajectories.”

      "....after which it was quickly translated to first experimental studies using cortical or subcortical beta signals in human patients44." - reference 44 only deals with the use of subcortical beta, not cortical, in adaptive control.

      The reviewer is right, in fact there is no study using motor cortex beta for adaptive DBS yet, but different studies have used different markers (especially gamma) since then. 

      Changes in manuscript: We have rephrased and added citations accordingly: “This approach, also termed adaptive DBS, was first demonstrated based on cortical beta activity that was used to adapt pallidal DBS in the MPTP non-human primate model of PD43. It was quickly translated to first experimental studies using subcortical beta signals in human patients44, followed by further research using more complex cortical and subcortical sensing setups and biomarker combinations45,46.”

      The paragraph headed " Implications for neurotechnology" is quite long and should be condensed and focused. It doesn't seem to support the last sentence, "....targeted interventions that can increase and decrease beta activity, as recently shown through phase specific modulation45 could be utilised to mimic phasic dopamine release as a neuroprosthetic approach to alter neural reinforcement38." - I don't quite follow the logic. The authors have clearly shown that beta-related circuits tend to be those linked to dopamine modulation, and may subserve tasks for which reinforcement learning is an important mechanism. However the logic of how modulation of beta activity can "substitute" for modulation of dopamine isn't clear. That would seem to require that the mechanism by which dopamine produces reinforcement, is via an effect on beta oscillation properties (phase, amplitude, frequency). Is there evidence for this? If so it should be better spelled out.

      We realize that this is very speculative at this point. Indeed, we believe that subthalamic DBS can mimic dopaminergic control and in the future there may be new treatment avenues, e.g. using neurochemical using neurochemical interfaces for which beta could be informative to mimic dopamine release but ultimately explaining this would be very complex, so we have removed the sentence. With regard to the remaining text in the section, we considered shortening / condensing but felt that this paragraph is highly relevant for the ongoing development of neurotechnology and therefore decided to only remove the first and last sentences.

      Changes in manuscript: We have removed the first and last sentences.

      "While the abovementioned prospects are promising we should cautiously consider the limitations of our study." - an unnecessary sentence to start a "limitations" section, its clearly a paragraph about limitations. In general, authors should go thru discussion and reduce verbosity; it is not nearly as well edited as the rest of the paper.

      Agreed. 

      Changes in manuscript: We removed the sentence. 

      Reviewer #3 (Public Review):

      Summary:

      In this paper, Chikermane et al. leverages a large open dataset of intracranial recordings (sEEG or ECoG) to analyze resting state (eyes closed) oscillatory activity from a variety of human brain areas. The authors identify a dominant proportion of channels in which beta band activity (12-30Hz) is most prominent and subsequently seek to relate this to anatomical connectivity data by using the sEEG/ECoG electrodes as seeds in a large set of MRI data from the human connectome project. This reveals separate regions and white matter tracts for alpha (primarily occipital) and beta (prefrontal cortex and basal ganglia) oscillations. Finally, using a third available dataset of PET imaging, the authors relate the parcellated signals to dopamine signaling as estimated by spatial uptake patterns of dopamine, and reveal a significant correlation between the functional connectivity maps and the dopamine reuptake maps, suggesting a functional relationship between the two.

      Strengths:

      Overall, I found the paper well justified, focused on an important topic, and interesting. The authors' use of 3 different open datasets was creative and informative, and it significantly adds to our understanding of different oscillatory networks in the human brain, and their more elusive relation with neuromodulator signaling networks by adding to our knowledge of the association between beta oscillations and dopamine signaling. Even my main comments about the lack of a theta network analysis and discussion points are relatively minor, and I believe this paper is valuable and informative.

      Weaknesses:

      The analyses were adequate, and the authors cleverly leveraged these different datasets to build an interesting story. The main aspect I found missing (in addition to some discussion items, see below) was an examination of the theta network. Theta oscillations have been involved in a number of cognitive processes including spatial navigation and memory, and have been proposed to have different potential originating brain regions, and it would be informative to see how their anatomical networks (e.g. as in Figure 2) look like under the author's analyses.

      The authors devote a significant portion of the discussion to relating their findings to a popular hypothesis for the function of beta oscillations, the maintenance of the "status quo", mostly in the context of motor control. As the authors acknowledge, given the static nature of the data and lack of behavior, this interpretation remains largely speculative and I found it a bit too far-reaching given the data shown in the paper. In contrast, I missed a more detailed discussion on the growing literature indicating a role for beta in mood (e.g. in Kirkby et al. 2018), especially given the apparent lack of hippocampal and amygdala involvement in the paper, which was surprising.

      We thank the reviewer for their insightful review of our manuscript. One of the aims of our paper was to provide the ground for a circuit-based conceptualization of beta activity, which does not primarily relate to behavior. Practically we have the ambition to provide a generalizable concept that can be applied to all behavioral domains including mood. The reason we focus on the “status quo” hypothesis, is that it is one of the very few if not only generalizable concept of the function of beta oscillations. Through our paper and the discussion, we have to redirect this concept towards a less cognitive/behavioral and more anatomical network based domain, while acknowledging principles that may overlap. We realize that this is very ambitious and this endeavour is necessarily very complex and not easy to communicate. In light of the reviewers comments, we have made an effort to improve the discussion as best we could without trailing too far away from what our initial aim was. We are thankful for the suggested reference, which we have now added to the discussion in the section where we have previously discussed beta as biomarker for mood, also noting the absence of beta dominant channels in amygdala and hippocampus. Here it should be clarified however, that a) only three channels were located in the amygdala of which one exhibited beta activity, we should be cautious to not overinterpret this result and b) most channels exhibited beta and just because beta wasn’t dominant, it doesn’t mean that beta is not present or important in these brain areas. Absence of evidence is not evidence for absence with the way we approached the analysis. We are thankful for the interesting reference, which we have now included our discussion. Notably the study used a complex network analysis, which we could not perform because we did not have parallel recordings from these areas in multiple patients. This is now noted in the limitations. 

      Changes in manuscript: “For example, it was shown that beta is implicated in working memory28, utilisation of salient sensory cues29, language processing30, motivation31, sleep32, emotion recognition33, mood34 and may even serve as a biomarker for depressive symptom severity in the anterior cingulate cortex35” and “One impactful study reported that beta oscillatory sub-networks of Amygdala and hippocampus could reflect human variations in mood 34. This is interesting, but highlights another relevant limitation of our study, namely that recordings in different areas were stemming from different patients and thus, such sub-network analyses on the oscillatory level could not be conducted.” 

      Major comment:

      • Although the proportion of electrodes with theta-dominant oscillations was lower (~15%) than alpha (~22%) or beta (~57%), it would be very valuable to also see the same analyses the authors carried out in these frequency bands extended to theta oscillations.

      We agree with the reviewer and appreciate the interest in other frequency bands; theta, alpha and gamma. Our primary interest was to provide a network concept of beta activity, but anticipated that interest would go beyond that frequency band. However, we also had to limit ourselves to what is communicable and comprehensible. The key aim for us was to provide a data-driven circuit description of beta activity that can lay ground for a generalizable concept of where beta oscillations emerge. Reproducing all analyses for every frequency band would clutter both the results and the discussion. Moreover, the honest truth is that funding and individual career plans of the researchers currently do not allow to allocate time for a reanalysis of all data which would be a significant effort. Therefore, we have decided to just add the topography of theta and gamma channels as a supplement. In case the reviewer is interested on a collaboration on extending this project to other frequency bands and circuits, we would like to invite them to get in touch and perhaps this could be a new collaborative project. Until then, we have extended our limitation that this would be important work for the future. 

      Changes in manuscript: 

      We have added and cited the new supplementary figure for the results from theta in the results section, which now reads: 

      “Further information on the topography of theta channels are shown in supplementary figure 1.”

      We would like to add that a sensible interpretation of results from gamma dominant channels is unlikely to be possible given the low count of channels with prominent resting activity in this frequency band. We have added the following text to the limitations section: “The aim of this study was to elucidate the circuit architecture of beta oscillations, which is why insights from this study for other frequency bands are limited. Future research investigating the specific circuits of theta, alpha and gamma oscillations and their relationship with neurotransmitter uptake could yield new important insights on the networks underlying human brain rhythms.“ 

      Reviewer #3 (Recommendations For The Authors):

      Minor comments:

      • Results: "we performed non-parametric Spearman's correlations between the structural and functional connectivity maps of beta networks with neurotransmitter uptake". This is a significantly complex analysis that requires more detail for the reader to evaluate. There is more detail in the Figure 3 legend but still insufficient. The Methods offer more detail, but I found the description of the parcellation to be vague and I would appreciate a more detailed description.

      We thank the reviewer for bringing the insufficient explanation of the methods used to calculate the correlations in analysis to our attention. We have now made an effort to provide more level of detail in the relevant paragraphs. 

      Changes in manuscript: We have now made changes to both the Results and Methods sections and added the following explanations respectively:

      Results: “Next, we resliced the beta network map and the PET images to allow for a meaningful comparison, using a combined parcellation with 476 brain regions that include cortex19, basal ganglia20, and cerebellum21. Here, each parcel – which was a collection of voxels belonging to a particular brain region – from the connectivity map was correlated with the same parcel containing average neurotransmitter uptake from the respective PET scan (see Figure 3A). In this way nonparametric Spearman’s correlations between PET intensity and structural and functional connectivity maps of beta networks were obtained, which indicate to what degree the spatial distribution of connectivity is similar to the distribution of neurotransmitter uptake.“

      Methods: “A custom master parcellation in MNI space was created in Matlab using SPM functions by combining three existing parcellations to include cortical regions19, structures of the basal ganglia20 and cerebellar regions21. Regions that were (partially) overlapping between the atlases were only selected once. The final compound parcellation had 476 regions in total. This parcellation was applied to both PET and structural and functional connectivity maps using SPM and custom code. This allowed for the calculation of spatial correlations, providing a statistical measure of spatial similarity of the PET intensity and MRI connectivity distributions. For this, Spearman’s ranked correlations were used to calculate correlations between the PET images, such as the dopamine aggregate map and both functional and structural beta connectivity networks (Figure 3). The analysis was repeated for individual tracers showing similar results Supplementary figure 2. Finally, to validate these results, a control analysis was performed using a GABA PET scan from the same open dataset of neurotransmitter uptake following the same pipeline (Figure 2A, 2B).”

      • All of the recordings were taken in an eyes-closed condition. This is likely to affect the power of alpha oscillations; the authors should comment on this.

      We agree with the reviewer that this will likely have influenced the results. However, given that the key result of our paper is the abundance and circuit topography of beta oscillations, it is unlikely that increased alpha in some channels will have led to false positive results for beta. If anything, it may have increased the contrast leading to a more conservative estimate of which channels truly show strong beta dominance. On the other hand, we should acknowledge that this limitation can affect the interpretation of the alpha result. Another reason for us to primarily focus on beta in the discussion and results presentation. 

      Changes in manuscript: We now comment on this in the results:

      “It should be noted that that alpha recordings were performed in eyes closed which is known to increase alpha power, which may influence the generalizability of the alpha maps to an eyes open condition. However, given that our primary use of alpha was to act as a control, we believe that this should not affect the interpretability of the key findings of our study.” 

      • Although the relative proportion of theta and gamma channels is lower, it would be interesting to see the distribution of channels in a SOM figure.

      As described above, we have now added supplementary figure 1 that accommodates the topography but not the network analyses.

      • Figure legend - typo - "Neither, alpha nor beta" - no comma needed.

      Now fixed, thank you for pointing is to this lapse!

      • Results: " ere, we aimed to investigate the whole brain circuit representation of beta activity, which is impossible with current neurophysiology approaches" not entirely accurate; suggest rephrasing it to "Here, we aimed to investigate the whole brain circuit representation of beta activity, which is impossible with non-invasive neurophysiology approaches "

      Thank you for suggesting the alternative formulation. 

      Changes in manuscript: The text has been modified as per the suggestion and now reads “Here, we aimed to investigate the whole brain circuit representation of beta activity, which is impossible with non-invasive neurophysiology approaches”.

      • Results - typo - "cortical brain areas, that exhibit resting beta activity share a common brain network" - no comma needed.

      Thank you for the suggestion, the comma has been removed to better the flow of the sentence structure as suggested.

    1. Author response:

      eLife Assessment

      This useful study presents the first detailed and comprehensive description of brain sulcus anatomy of a range of carnivoran species based on a robust manual labeling model allowing species comparisons. Although the database is recognized and the method for reconstructing cortical surfaces is convincing, the evidence supporting the conclusions is incomplete due to the lack of appropriate quantitative measurements and analyses. Considering additional specimens to assess intraspecies variations, as well as exploring the functional correlates of interspecies differences would increase the scope of the study. Setting an instructive foundation for comparative anatomy, this study will be of interest to neuroscientists and neuroimaging researchers interested in that field, as well as in brain morphology and sulcal patterns, their phylogeny, and ontogeny in relation to functional development and behaviour. 

      We are pleased that our primary objective of creating a comprehensive framework to navigate carnivoran brains is considered as successfully achieved and that our work is expected to be of broad interest to various disciplines, as it provides the foundation for future investigations into carnivoran brain organization.

      As we will set out below, a description of the major sulci is an appropriate measure for large-scale comparative anatomy — it is stable enough in the population of each species to not require a large N, provides a suitable variability across species, and can be related to other aspects of between-species diversity. We will include a number of additional species to increase the scope of the study, as suggested. Although a quantitative assessment of functional correlates is, in principle, beyond the scope of this first foundational paper, we will provide a first start of this as well. We emphasize, however, that this was a secondary outcome, emerging after first application of the framework.

      Public Reviews: 

      Reviewer #1 (Public review): 

      Summary: 

      The paper by Boch and colleagues, entitled Comparative Neuroimaging of the Carnivore Brain: Neocortical Sulcal Anatomy, compares and describes the cortical sulci of eighteen carnivore species, and sets a benchmark for future work on comparative brains. 

      Based on previous observations, electrophysiological, histological and neuroimaging studies and their own observations, the authors establish a correspondence between the cortical sulci and gyri of these species. The different folding patterns of all brain regions are detailed, put into perspective in relation to their phylogeny as well as their potential involvement in cortical area expansion and behavioral differences. 

      Strengths: 

      This is a pioneering article, very useful for comparative brain studies and conducted with great seriousness and based on many past studies. The article is well-written and very didactic. The different protocols for brain collection, perfusion, and scanning are very detailed. The images are self-explanatory and of high quality. The authors explain their choice of nomenclature and labels for sulci and gyri on all species, with many arguments. The opening on ecology and social behavior in the discussion is of great interest and helps to put into perspective the differences in folding found at the level of the different cortexes. In addition, the authors do not forget to put their results into the context of the laws of allometry. They explain, for example, that although the largest brains were the most folded and had the deepest folds in their dataset, they did not necessarily have unique sulci, unlike some of the smaller, smoother brains. 

      Weaknesses: 

      The article is aware of its limitations, not being able to take into account inter-individual variability within each species, inter-hemispheric asymmetries, or differences between males and females. However, this does not detract from their aim, which is to lay the foundations for a correspondence between the brains of carnivores so that navigation within the brains of these species can be simplified for future studies. This article does not include comparisons of morphometric data such as sulci depth, sulci wall surface, or thickness of the cortical ribbon around the sulci. 

      We thank the reviewer for their overwhelmingly positive evaluation of our work. As noted by the reviewer, our primary aim was to establish a framework for navigating carnivoran brains to lay the foundation for future research. We are pleased that this objective is deemed as successfully achieved.

      As the reviewer points out, we do not quantify within-species intraindividual differences. This is a conscious choice; we aimed to emphasize breadth of species over individuals, as is standard in large-scale comparative anatomy (cf. Heuer et al., 2023, eLife; Suarez et al., 2022, eLife). Following the logic of phylogenetic relationships, the presence of a particular sulcus in related species is also a measure of reliability. We felt safe in this choice, as previous work in both primates and carnivorans has shown that differences across major sulci across individuals are a matter of degree rather than a case of presence or absence (Connolly, 1950, External morphology of the primate brain, C.C. Thomas; Hecht et al., 2019 J Neurosci; Kawamuro 1971 Acta Anat., Kawamuro & Naito, 1977, Acta Anat.). In our revised manuscript, we aim to include some additional individuals of selected species as supplementary material, further illustrating this point.

      We feel that measures such as sulci depth, sulci wall surface, or thickness of the cortical ribbon are measures that vary more across individuals and we have therefore not included them in the study. In addition, these are measures that are not generally used as between-species comparative measures, whereas sulcal patterning is (cf. Amiez et al., 2019, Nat Comms; Connolly, 1950; Miller et al., 2021, Brain Behav Evol; Radinsky 1975, J Mammal; Radinsky 1969, Ann N Y Acad Sci; Welker & Campos 1963 J. Comp Neurol).

      Reviewer #2 (Public review): 

      Summary: 

      The authors have completed MRI-based descriptions of the sulcal anatomy of 18 carnivoran species that vary greatly in behaviour and ecology. In this descriptive study, different sulcal patterns are identified in relation to phylogeny and, to some extent, behaviour. The authors argue that the reported differences across families reflect behaviour and electrophysiology, but these correlations are not supported by any analyses. 

      Strengths: 

      A major strength of this paper is using very similar imaging methods across all specimens. Often papers like this rely on highly variable methods so that consistency reduces some of the variability that can arise due to methodology. 

      The descriptive anatomy was accurate and precise. I could readily follow exactly where on the cortical surface the authors referring. This is not always the case for descriptive anatomy papers, so I appreciated the efforts the authors took to make the results understandable for a broader audience. 

      I also greatly appreciate the authors making the images open access through their website. 

      Weaknesses: 

      Although I enjoyed many aspects of this manuscript, it is lacking in any quantitative analyses that would provide more insights into what these variations in sulcal anatomy might mean. The authors do discuss inter-clade differences in relation to behaviour and older electrophysiology papers by Welker, Campos, Johnson, and others, but it would be more biologically relevant to try to calculate surface areas or volumes of cortical fields defined by some of these sulci. For example, something like the endocast surface area measurements used by Sakai and colleagues would allow the authors to test for differences among clades, in relation to brain/body size, or behaviour. Quantitative measurements would also aid significantly in supporting some of the potential correlations hinted at in the Discussion. 

      Although quantitative measurements would be helpful, there are also some significant concerns in relation to the specimens themselves. First, almost all of these are captive individuals. We know that environmental differences can alter neocortical development and humans and nonhuman animals and domestication affects neocortical volume and morphology. Whether captive breeding affects neocortical anatomy might not be known, but it can affect other brain regions and overall brain size and could affect sulcal patterns. Second, despite using similar imaging methods across specimens, fixation varied markedly across specimens. Fixation is unlikely to affect the ability to recognize deep sulci, but variations in shrinkage could nevertheless affect overall brain size and morphology, including the ability to recognize shallow sulci. Third, the sample size = 1 for every species examined. In humans and nonhuman animals, sulcal patterns can vary significantly among individuals. In domestic dogs, it can even vary greatly across breeds. It, therefore, remains unclear to what extent the pattern observed in one individual can be generalized for a species, let alone an entire genus or family. The lack of accounting for inter-individual variability makes it difficult to make any firm conclusions regarding the functional relevance of sulcal patterns. 

      We thank the reviewer for their assessment of our work. The primary aim of this study was to establish a framework for navigating carnivoran brains by providing a comprehensive overview of all major neocortical sulci across eighteen different species. Given the inconsistent nomenclature in the literature and the lack of standardized criteria (“recipes”) for identifying the major sulci, we specifically focused on homogenizing the terminology and creating recipes for their identification. Moreover, we also generated digital surfaces of all brains and will also add sulcal masks to further facilitate future research building on our framework. We are pleased to hear that we succeeded in our primary objective.

      We respectfully disagree with the reviewer on two accounts, where we believe the reviewer is not judging the scope of the current work.

      The first is with respect to individual differences. To the best of our knowledge, differences between captive and wild animals, or indeed between individuals, do not affect the presence or absence of any major sulci. No differences in sulcal patterns were detected between captive and (semi-)wild macaques (cf. Sallet et al., 2011, Science; Testard et al., 2022, Sci Adv), different dog breeds (Hecht et al., 2019 J Neurosci) or foxes selectively bred to simulate domestication, compared to controls (Hecht et al., 2021 J. Neurosci). Indeed, we do not find major differences between wolf-like canid species, suggesting that a difference between individuals of the same species is even more unlikely. Nevertheless, we agree with the reviewer that building up a database like ours will benefit from providing as much information about the samples as possible to enable these issues to be tested. We, therefore, will update our table to include if the animals were from captive or wild populations. Moreover, we aim, where possible, to include both wild and captive animals of the same species if they are available in our revision.

      The second is in the quantification of structure/function relationships. We believe the sulci atlases themselves are the main deliverables of this project. We felt it prudent to include some qualitative descriptions of the relationship between sulci as we observed them and behaviours as known from the literature as an illustration of the possibilities that this foundational work opens us. This approach also allowed us to confirm previous findings based on observations from a less diverse range of carnivoran species and families (Radinsky 1968 J Comp Neurol; Radinsky 1969, Ann N Y Acad Sci; Welker & Campos 1963 J Comp Neurol; Welker & Seidenstein, 1959 J Comp Neurol). However, a full statistical framework for analysis is beyond the scope of this paper. Our group has previously worked on methods to quantitatively compare brain organization across species — indeed, we have developed a full framework for doing so (Mars et al., 2021, Annu Rev Neurosci), based on the idea that brains that differ in size and morphology should be compared based on anatomical features in a common feature space. Previously, we have used white matter anatomy (Mars et al., 2018, eLife) and spatial transcriptomics (Beauchamp et al., 2021, eLife). The present work presents the foundation for this approach to be expanded to sulcal anatomy, but the full development of this approach will be the topic of future communications.

      Nevertheless, we aim to include a first step quantitative analysis of the relationship between the presence and absence of particular sulci and the two behaviours of interest in our manuscript.

      We also would like to emphasize that we strongly believe that looking at measures of brain organization at a more detailed level than brain size or relative brain size is informative. Indeed, studies looking at correlations between brain size and particular behavioural variables, although very prominent in the literature, have found it very difficult to distinguish between competing behavioural hypotheses (Healy, 2021, Adaptation and the brain, OUP). In contrast, connectivity has a much more direct relationship to behavioural differences across species (Bryant et al., 2024, bioRxiv), as does sulcal anatomy (Amiez et al., 2019, Nat Comms; Miller et al., 2021, Brain Behav Evol). Moreover, such measures are less sensitive to the effects of fixation since that will affect brain size but not the presence or absence of a sulcus.

      Following the reviewer’s recommendations, we will endeavour to include an even broader range of species in the revised version.

    1. Author response:

      Public Reviews: 

      Reviewer #1 (Public review): 

      Summary: 

      The authors address a fundamental question for cell and tissue biology using the skin epidermis as a paradigm and ask how stratifying self-renewing epithelia induce diCerentiation and upward migration in basal dividing progenitor cells to generate suprabasal barrier-forming cells that are essential for a functional barrier formed by such an epithelium. The authors show for the first time that an increase in intracellular actomyosin contractility, a hallmark of barrier-forming keratinocytes, is suCicient to trigger terminal diCerentiation. Hence the data provide in vivo evidence of the more general interdependency of cell mechanics and diCerentiation. The data appear to be of high quality and the evidences are strengthened through a combination of diCerent genetic mouse models, RNA sequencing, and immunofluorescence analysis. 

      To generate and maintain the multilayered, barrier-forming epidermis, keratinocytes of the basal stem cell layer diCerentiate and move suprabasally accompanied by stepwise changes not only in gene expression but also in cell morphology, mechanics, and cell position. Whether any of these changes is instructive for diCerentiation itself and whether consecutive changes in diCerentiation are required remains unclear. Also, there are few comprehensive data sets on the exact changes in gene expression between diCerent states of keratinocyte diCerentiation. In this study, through genetic fluorescence labeling of cell states at diCerent developmental time points the authors were able to analyze gene expression of basal stem cells and suprabasal diCerentiated cells at two diCerent stages of maturation: E14 (embryonic day 14) when the epidermis comprises mostly two functional compartments (basal stem cells and suprabasal so-called intermediate cells) and E16 when the epidermis comprise three (living) compartments where the spinous layer separates basal stem cells from the barrier-forming granular layer, as is the case in adult epidermis. Using RNA bulk sequencing, the authors developed useful new markers for suprabasal stages of diCerentiation like MafB and Cox1. The transcription factor MafB was then shown to inhibit suprabasal proliferation in a MafB transgenic model. 

      The data indicate that early in development at E14 the suprabasal intermediate cells resemble in terms of RNA expression, the barrier-forming granular layer at E16, suggesting that keratinocytes can undergo either stepwise (E16) or more direct (E14) terminal diCerentiation. 

      Previous studies by several groups found an increased actomyosin contractility in the barrier-forming granular layer and showed that this increase in tension is important for epidermal barrier formation and function. However, it was not clear whether contractility itself serves as an instructive signal for diCerentiation. To address this question, the authors use a previously published model to induce premature hypercontractility in the spinous layer by using spastin overexpression (K10-Spastin) to disrupt microtubules (MT) thereby indirectly inducing actomyosin contractility. A second model activates myosin contractility more directly through overexpression of a constitutively active RhoA GEF (K10Arhgef11CA). Both models induce late diCerentiation of suprabasal keratinocytes regardless of the suprabasal position in either spinous or granular layer indicating that increased contractility is key to induce late diCerentiation of granular cells. A potential weakness of the K10-spastin model is the disruption of MT as the primary eCect which secondarily causes hypercontractility. However, their previous publications provided some evidence that the eCect on diCerentiation is driven by the increase in contractility (Ning et al. cell stem cell 2021). Moreover, the data are confirmed by the second model directly activating myosin through RhoA. These previous publications already indicated a role for contractility in diCerentiation but were focused on early diCerentiation. The data in this manuscript focus on the regulation of late diCerentiation in barrier-forming cells. These important data help to unravel the interdependencies of cell position, mechanical state, and diCerentiation in the epidermis, suggesting that an increase in cellular contractility in most apical positions within the epidermis can induce terminal diCerentiation. Importantly the authors show that despite contractility-induced nuclear localization of the mechanoresponsive transcription factor YAP in the barrier-forming granular layer, YAP nuclear localization is not suCicient to drive premature diCerentiation when forced to the nucleus in the spinous layer. 

      Overall, this is a well-written manuscript and a comprehensive dataset. Only the RNA sequencing result should be presented more transparently providing the full lists of regulated genes instead of presenting just the GO analysis and selected target genes so that this analysis can serve as a useful repository. The authors themselves have profited from and used published datasets of gene expression of the granular cells. Moreover, some of the previous data should be better discussed though. The authors state that forced suprabasal contractility in their mouse models induces the expression of some genes of the epidermal diCerentiation complex (EDC). However, in their previous publication, the authors showed that major classical EDC genes are actually not regulated like filaggrin and loricrin (Muroyama and Lechler eLife 2017). This should be discussed better and necessitates including the full list of regulated genes to show what exactly is regulated. 

      We thank all the reviewers for their suggestions and comments.

      Thank you especially for the reminder to include gene lists. We had an excel document with all this data but neglected to upload it with the initial manuscript decision. This includes all the gene signatures for the diCerent cell compartments across development. We will also include a page that lists all EDC genes and whether they were up-regulated in intermediate cells and cells in which contractility was induced. Further, we note that all the RNA-Seq datasets are available for use on GEO. 

      In our previous publication, we indeed included images showing a lack of change in loricrin and filaggrin in the embryos where spastin was expressed in the diCerentiated epidermis. Consistent with this, there is no change in Lor mRNA levels by RNA-Seq, (it is one of the rare EDC genes that is unchanged). In contrast, Flg mRNA was up in the RNASeq, though we didn’t see a dramatic change in protein levels. We have not further pursued whether this reflects translational regulation. That said, our data clearly show that other genes associated with granular fate were increased in the contractile skin.  

      Reviewer #2 (Public review): 

      Summary: 

      The manuscript from Prado-Mantilla and co-workers addresses mechanisms of embryonic epidermis development, focusing on the intermediate layer cells, a transient population of suprabasal cells that contributes to the expansion of the epidermis through proliferation. Using bulk-RNA they show that these cells are transcriptionally distinct from the suprabasal spinous cells and identify specific marker genes for these populations. They then use transgenesis to demonstrate that one of these selected spinous layer-specific markers, the transcription factor MafB is capable of suppressing proliferation in the intermediate layers, providing a potential explanation for the shift of suprabasal cells into a non-proliferative state during development. Further, lineage tracing experiments show that the intermediate cells become granular cells without a spinous layer intermediate. Finally, the authors show that the intermediate layer cells express higher levels of contractilityrelated genes than spinous layers and overexpression of cytoskeletal regulators accelerates the diCerentiation of spinous layer cells into granular cells. 

      Overall the manuscript presents a number of interesting observations on the developmental stage-specific identities of suprabasal cells and their diCerentiation trajectories and points to a potential role of contractility in promoting diCerentiation of suprabasal cells into granular cells. The precise mechanisms by which MafB suppresses proliferation, how the intermediate cells bypass the spinous layer stage to diCerentiate into granular cells, and how contractility feeds into these mechanisms remain open. Interestingly, while the mechanosensitive transcription factor YAP appears deferentially active in the two states, it is shown to be downstream rather than upstream of the observed diCerences in mechanics. 

      Strengths: 

      The authors use a nice combination of RNA sequencing, imaging, lineage tracing, and transgenesis to address the suprabasal to granular layer transition. The imaging is convincing and the biological eCects appear robust. The manuscript is clearly written and logical to follow. 

      Weaknesses: 

      While the data overall supports the authors' claims, there are a few minor weaknesses that pertain to the aspect of the role of contractility, The choice of spastin overexpression to modulate contractility is not ideal as spastin has multiple roles in regulating microtubule dynamics and membrane transport which could also be potential mechanisms explaining some of the phenotypes. Use of Arghap11 overexpression mitigates this eCect to some extent but overall it would have been more convincing to manipulate myosin activity directly. It would also be important to show that these manipulations increase the levels of F-actin and myosin II as shown for the intermediate layer. It would also be logical to address if further increasing contractility in the intermediate layer would enhance the diCerentiation of these cells. 

      We agree with the reviewer that the development of additional tools to precisely control myosin activity will be of great use to the field. That said, our series of publications has clearly demonstrated that ablating microtubules results in increased contractility and that this phenocopies the eCects of Arhgef11 induced contractility (Ning et al, Cell Stem Cell 2021). Further, we showed that these phenotypes were rescued by myosin inhibition with blebbistatin. Our prior publications also showed a clear increase in junctional acto-myosin through expression of either spastin or Arhgef11, as well as increased staining for the tension sensitive epitope of alpha-catenin (alpha-18) (also in Ning et al, 2021).  We are not aware of tools that allow direct manipulation of myosin activity that currently exist in mouse models.  

      The gene expression analyses are relatively superficial and rely heavily on GO term analyses which are of course informative but do not give the reader a good sense of what kind of genes and transcriptional programs are regulated. It would be useful to show volcano plots or heatmaps of actual gene expression changes as well as to perform additional analyses of for example gene set enrichment and/or transcription factor enrichment analyses to better describe the transcriptional programs 

      We will include an excel document that lists all the gene signatures. Additionally, all of our data are deposited in GEO for others to perform their own analyses.  

      Claims of changes in cell division/proliferation changes are made exclusively by quantifying EdU incorporation. It would be useful to more directly look at mitosis. At minimum Y-axis labels should be changed from "% Dividing cells" to % EdU+ cells to more accurately represent findings 

      We will change the axis label to precisely match our analysis.  

      Despite these minor weaknesses the manuscript is overall of high quality, sheds new light on the fundamental mechanisms of epidermal stratification during embryogenesis, and will likely be of interest to the skin research community. 

      Reviewer #3 (Public review): 

      Summary: 

      This is an interesting paper by Lechler and colleagues describing the transcriptomic signature and fate of intermediate cells (ICs), a transient and poorly defined embryonic cell type in the skin. ICs are the first suprabasal cells in the stratifying skin and unlike laterdeveloping suprabasal cells, ICs continue to divide. Using bulk RNA seq to compare ICs to spinous and granular transcriptomes, the authors find that IC-specific gene signatures include hallmarks of granular cells, such as genes involved in lipid metabolism and skin barrier function that are not expressed in spinous cells. ICs were assumed to diCerentiate into spinous cells, but lineage tracing convincingly shows ICs diCerentiate directly into granular cells without passing through a spinous intermediate. Rather, basal cells give rise to the first spinous cells. They further show that transcripts associated with contractility are also shared signatures of ICs and granular cells, and overexpression of two contractility inducers (Spastin and ArhGEF-CA) can induce granular and repress spinous gene expression. This contractility-induced granular gene expression does not appear to be mediated by the mechanosensitive transcription factor, Yap. The paper also identifies new markers that distinguish IC and spinous layers and shows the spinous signature gene, MafB, is suCicient to repress proliferation when prematurely expressed in ICs. 

      Strengths: 

      Overall this is a well-executed study, and the data are clearly presented and the findings convincing. It provides an important contribution to the skin field by characterizing the features and fate of ICs, a much-understudied cell type, at high levels of spatial and transcriptomic detail. The conclusions challenge the assumption that ICs are spinous precursors through compelling lineage tracing data. The demonstration that diCerentiation can be induced by cell contractility is an intriguing finding and adds a growing list of examples where cell mechanics influence gene expression and diCerentiation. 

      Weaknesses: 

      A weakness of the study is an over-reliance on overexpression and suCiciency experiments to test the contributions of MafB, Yap, and contractility in diCerentiation. The inclusion of loss-of-function approaches would enable one to determine if, for example, contractility is required for the transition of ICs to granular fate, and whether MafB is required for spinous fate. Second, whether the induction of contractility-associated genes is accompanied by measurable changes in the physical properties or mechanics of the IC and granular layers is not directly shown. The inclusion of physical measurements would bolster the conclusion that mechanics lies upstream of diCerentiation. 

      We agree that loss of function studies would be useful. For MafB, these have been performed in cultured human keratinocytes, where loss of MafB and its ortholog cMaf results in a phenotype consistent with loss of spinous diCerentiation (Lopes-Pajares, Dev Cell 2015). Due to the complex genetics involved, generating these double mutant mice is beyond the scope of this study. Loss of function studies of myosin are also complicated by genetic redundancy of the non-muscle type II myosin genes, as well as the role for these myosins in actin cross linking in addition to contractility. In addition, we have found that these myosins are quite stable in the embryonic intestine, with loss of protein delayed by several days from the induction of recombination. Therefore, elimination of myosins by embryonic day e14.5 with our current drivers is not likely possible. Thus, generation of inducible inhibitors of contractility is a valuable future goal. 

      A number of recent papers have used AFM of skin sections to probe tissue rigidity. We have not attempted these studies and are unclear about the spatial resolution and whether, in the very thin epidermis at these stages we could spatially resolve diCerences. That said, we previously assessed the macro-contractility of tissues in which myosin activity was induced and demonstrated that there was a significant increase in this over a tissue-wide scale (Ning et al, Cell Stem Cell, 2021).  

      Finally, whether the expression of granular-associated genes in ICs provides them with some sort of barrier function in the embryo is not addressed, so the role of ICs in epidermal development remains unclear. Although not essential to support the conclusions of this study, insights into the function of this transient cell layer would strengthen the overall impact.  

      By traditional dye penetration assays, there is no epidermal barrier at the time that intermediate cells exist. One interpretation of the data is that cells are beginning to express mRNAs (and in some cases, proteins) so that they are able to rapidly generate a barrier as they become granular cells. We have attempted experiments to ablate intermediate cells with DTA expression - this resulted in ineCicient and delayed cell death and thus did not yield strong conclusions. Our findings that transcriptional regulators of granular diCerentiation (such as Grhl3 and Hopx) are also present in intermediate cells, should allow future analysis of the eCects of their ablation on the earliest stages of granular diCerentiation from intermediate cells.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      This paper aims to address the establishment and maintenance of neural circuitry in the case of a massive loss of neurons. The authors used genetic manipulations to ablate the principal projection neurons, the mitral/tufted cells, in the mouse olfactory bulb. Using diphtheria toxin (Tbx21-Cre:: loxP-DTA line) the authors ablated progressively large numbers of M/T cells postnatally. By injecting diphtheria toxin (DT) into the Tbx21-Cre:: loxP-iDTR line, the authors were able to control the timing of the ablation in the adult stage. Both methods led to the successful elimination of a majority of M/TCs by 4 months of age. The authors made a few interesting observations. First, they found that the initial pruning of the remaining M/T cell primary dendrite was unaffected. However, in adulthood, a significant portion of these cells extended primary dendrites to innervate multiple glomeruli. Moreover, the incoming olfactory sensory neuron (OSN) axons, as examined for those expressing the M72 receptor, showed a divergent innervation pattern as well. The authors conclude that M/T cell density is required to maintain the dendritic structures and the olfactory map. To address the functional consequences of eliminating a large portion of principal neurons, the authors conducted a series of behavioral assays. They found that learned odor discrimination was largely intact. On the other hand, mating and aggression were reduced. The authors concluded that learned behaviors are more resilient than innate ones.

      The study is technically sound, and the results are clear-cut. The most striking result is the contrast between the normal dendritic pruning during early development and the expanded dendritic innervation in adulthood. It is a novel discovery that can lead to further investigation of how the single-glomerulus dendritic innervation is maintained. The authors conducted a

      few experiments to address potential mechanisms, but it is inconclusive, as detailed below. It is also interesting to see that the massive neuronal loss did not severely impact learned odor discrimination. This result, together with previous studies showing nearly normal odor discrimination in the absence of large portions of the olfactory bulb or scrambled innervation patterns, attests to the redundancy and robustness of the sensory system. The discussion should take into account these other studies in a historical context.

      Main comments:

      (1) In previous studies, it has been concluded that dendritic pruning unfolds independently, regardless of the innervation pattern or activity of the OSNs. The new observation bolsters this conclusion by showing that a loss of neighboring M/T cells does not affect the developmental process. A more nuanced discussion comparing the results of these studies would strengthen the paper.

      We thank the reviewer for the suggestion. We now include an extended discussion citing relevant previous works in the manuscript (Lines 351-374).

      (2) The authors propose that a certain density of M/T is required to prevent the divergent innervation of primary dendrites, but the evidence is not sufficient to support this proposal. The experiment with low-dose DT injection to ablate a smaller portion of M/T cells did not change the percentage of cells innervating two or more glomeruli. The authors suggest that a threshold must be met, but this threshold is not determined.  

      In our experiments using high-dose DT, we hypothesized that there may be many empty glomeruli (glomeruli not innervated by M/T cells), and as a result, that some of the remaining M/T cells could branch their apical dendrite tuft into multiple empty glomeruli. To test this hypothesis, we carried out another experiment using a lower dose of DT. In this experiment, the fraction of remaining M/T cells was 25% (~10,000 M/T cells), which was higher than with the high DT dose (5%, or around 2,000 M/T cells) , but still significantly lower than wild type mice (~40,000 cells M/T cells). With around 2,000 glomeruli and 10,000 M/T per bulb, it could be expected that each glomerulus would be innervated by ~5 M/T cells (on average). However, we found that the percentage of M/T cells projecting to multiple glomeruli (around 40%) was similar when either 10,000 or 2,000 of M/T remained in the bulb. In addition, it is important to emphasize that even in wt animals with a full set of M/T cells, a small percentage of M/T cells still innervate more than one glomerulus (Lin et al., 2000). Together, these observations suggest that the innervation of multiple glomeruli by M/T cells is not simply due to the presence of empty glomeruli, and that our hypothesis was not correct.

      We have added a comment explaining this issue in the Results section (Lines 200-203).

      (3) The authors suggest that neural activity is not required for this plasticity. The evidence was derived primarily from naris occlusion and neuronal silencing using Kir2.1. While the results are consistent with the notion, it is a rather narrow interpretation of how neural activity affects circuit configuration. Perturbation of neural activity also entails an increase in firing. Inducing the activity of the neurons may alter this plasticity. Silencing per se may induce a homeostatic response that expands the neurite innervation pattern to increase synaptic input to compensate for the loss of activity. Thus, further silencing the cells may not reduce multiglomerular innervation, but an increased activity may.

      The experiments with Kir2.1 demonstrate that the structural plasticity observed after reducing the total number of M/T cells in an animal is not regulated by the firing action potentials in the remaining cells. Instead, this experiment indicates that the observed structural plasticity may be regulated by other types of mechanisms (including increased synaptic excitation as suggested by the reviewer) that do not require the firing of action potentials in M/T cells. 

      We now have included a comment regarding this point (Lines 243-247).  

      (4) There is a discrepancy between this study and the one by Fujimoto et al. (Developmental Cell; 2023), which shows that not only glutamatergic inputs to the primary dendrite can facilitate pruning of remaining dendrites but also Kir2.1 overexpression can significantly perturb dendritic pruning. This discrepancy is not discussed by the authors.

      We agree that it would be useful to contrast these two works.

      In our experiments, performed in adult animals, we blocked sensory input by performing naris occlusion before we induced ablation of M/T cells. In a separate experiment, also in adult animals, we expressed the Kir2.1 channel, to reduce the ability of neurons to fire action potentials. With both types of manipulations, we observed that the ablation of a large fraction of M/T cells still caused the remaining M/T cells to maintain a single apical dendrite that sprouts several new tufts towards multiple glomeruli. A recent paper (Fujimoto et al., 2023)) in which Kir2.1 was expressed in a large percentage of M/T starting during embryonic development showed that these “silent” M/T cells failed to prune their arbors to a single dendrite. In aggregate, these observations indicate that action potentials are necessary for the normal pruning that occurs during perinatal development (Fujimoto et al., 2023), but are not required for the expansion of dendritic trees caused by ablating a large fraction of M/T cells in adult animals (our current manuscript).

      We have now explained the differences between both studies in the manuscript (Lines 427-439).

      (5) An alternative interpretation of the discrepancy between the apparent normal pruning by p10 and expanded dendritic innervation in adulthood is that there are more cells before P10, when ~25% of M/T cells are present, but at a later date only 1-3% are present. 

      The relationship between the number of M/T cells and single glomerulus innervation has not been explored during postnatal development. It would be important to test this hypothesis.

      We agree with this comment, and in lines 375-381 we discuss the discrepancy between normal refinement during development, and dendritic sprouting in adults.

      Cre is expressed in M/T cells and it induces DTA expression starting around P0. The elimination of M/T cells starts at this time, and continues until by P10, when more than 75% of M/T have been eliminated. At P21 more than 90% of M/T have been eliminated, and their number remains stable thereafter.

      Pruning of the dendrites of M/T cells starts at P0 and it is mostly complete by P10. Therefore, it is possible that between P0 and P7, when dendrites are being pruned, the number of M/T cells remaining in the bulb is still over a threshold that does not interfere with the process of normal dendrite pruning. We agree that it would be very informative to perform additional experiments in the future where a large set of M/T cells could be ablated before pruning occurs (ideally before P0). 

      (6) The authors attribute the change in the olfactory map to the loss of M/T cells. Another obvious possibility is that the diffused projection is a response to the change in the olfactory bulb size. With less space to occupy, the axons may be forced to innervate neighboring glomeruli. It is not known how the total number of glomeruli is affected. This question could be addressed by tracking developmental changes in bulb volume and glomerular numbers.

      Certainly, this is a possibility, and we have now included a comment on this regard in the manuscript (Lines 473-480). 

      We believe that there are three likely scenarios that could account for these observations:

      (a) After ablating M/T cells, the tufts of the remaining M/T cells sprout into multiple glomeruli, and this causes the axons of OSNs to project into multiple glomeruli.

      (b) Ablating M/T cells may cause changes in other OB cells that make synapses in the glomeruli (ETCs, PGCs, sAC, etc…), and the misrouting of OSN axons that we observed in our experiments may be a secondary effect caused by the elimination of M/T cells.

      (c) After ablating the majority of M/T cells, the olfactory bulb gets reduced in size, and the axons of OSNs find it difficult to precisely converge on a target that now has become smaller. As a result, the axons of OSNs fail to converge on single glomeruli.

      (7) The retained ability to discriminate odors upon reinforced training is not surprising in light of a number of earlier studies. For example, Slotnick and colleagues have shown that rats losing ~90% of the OB can retain odor discrimination. Weiss et al have shown that humans without an olfactory bulb can perform normal olfactory tasks. Gronowitz et al have used theoretical prediction and experimental results to demonstrate that perturbing the olfactory map does not have a major impact on olfactory discrimination. Fleischmann et al have shown that mice with a monoclonal nose can discriminate odors. The authors should discuss their results in these contexts.

      We apologize for this important oversight - we now include a more elaborate discussion including the relevant references as suggested in the manuscript (Line 483-496).

      (8) It should be noted that odor discrimination resulting from reinforcement training does not mean normal olfactory function. It is a highly artificial situation as the animals are overtrained. It should not be used as a measure of the robustness of the olfactory sense. Natural odor discrimination (without training), detection threshold, and innate appetitive/aversive response to certain odors may be affected. These experiments were not conducted.

      We agree that the standard tests commonly used to measure olfactory function require substantial training, and thus, are quite artificial. However, these tests are used because they allow a more precise quantification of olfactory function than those relying on natural behaviors.  

      We have now included a few sentences to address this point in the results (Lines 321322) and discussion sections (Lines 541-543).

      (9) The social behaviors were conducted using relatively coarse measures (vaginal plug and display of aggression). Moreover, these behaviors are most likely affected by the disruption of the AOB mitral cells and have little to do with the dendritic pruning process described in the paper. It is misleading to lump social behaviors with innate responses to odors.

      This point follows the same logic as the previous one. The olfactory tests that rely on natural behaviors are quite coarse and difficult to quantify. In contrast, the olfactory tests using apparatuses such as olfactometers can be quantified with precision, but they are artificial. We agree that some of the naturalistic behaviors that we studied such as mating or aggression may depend to a large extent on the AOB (although it is possible that the MOB may also be involved in these tasks to a degree). In our initial version of the manuscript, we commented on the anticipated relative involvement of the MOB and AOB in the studied tasks, but we have now added some additional sentences to make this point clearer. In addition, we now add a comment indicating that it is possible that the abnormal behaviors could simply be due to a reduction in the number of AOB M/T cells (~98.5% and ~ 85% elimination of M/T cells in the AOB in Tbx::DTA and Tbx::iDTR mice, respectively), regardless of the abnormal dendritic pruning of main OB M/T cells (Lines 530-534).

      See Figure 5E - M/T cells in AOB (Lines 1238-1239). 

      Reviewer #2 (Public Review):

      The authors make the interesting observation that the developmental refinement of apical M/T cell dendrites into individual glomeruli proceeds normally even when the majority of neighboring M/T cells are ablated. At later stages, the remaining neurons develop additional dendrites that invade multiple glomeruli ectopically, and similarly, OSN inputs to glomeruli lose projection specificity as well. The authors conclude that the normal density of M/T neurons is not required for developmental refinement, but rather for maintaining specific connectivity in adults.

      The observations are indeed quite striking; however, the authors' conclusions are not entirely supported by the data.

      (1) It is unclear whether the expression of diphtheria toxin that eventually leads to the ablation of the large majority of M/T neurons compromises the cell biology of the remaining ones.

      DT is an extremely potent toxin that kills cells by inhibiting proteins translation, and it has been demonstrated that the presence of a single DT molecule in a cell is sufficient to kill it, because of its highly efficient catalytic activity. Accordingly, previous experiments have shown that DT kills cells within a few hours after its appearance in the cytoplasm (Yamaizumi et al., 1978). In other words, all the published evidence suggests that if a cell is exposed to the action of DT, that cell will die shortly. There is no evidence that cells exposed to DT can survive and experience long-term effects. Finally, previous works have not observed any long-term changes in neurons directly caused by the actions of DT (Johnson et al., 2017).

      (2) The authors interpret the growth of ectopic dendrites later in life as a lack of maintenance of dendrite structure; however, maybe the observed changes reflect actually adaptations that optimize wiring for extremely low numbers of M/T neurons. The finding that olfactory behavior was less affected than predicted supports this interpretation.

      We do not know the cellular or molecular mechanisms that explain why reducing the density of M/T cells is followed by the growth of ectopic dendrites from the remaining M/T cells. We agree that the functional outcome of growing ectopic dendrites may result in an optimization of wiring in the bulb and could explain why olfactory function is relatively preserved. We now include a comment regarding this possibility (Lines 513-525).   

      (3) The number of remaining M/T neurons is much higher at P10 than later. Can the relatively large number of remaining neurons (or their better health status) be the reason that dendrites refine normally at the early developmental stages rather than a (currently unknown) developmental capacity that preserves refinement?

      We thank the reviewer for the suggestion, which was also raised by reviewer 1. 

      We agree with this comment, and in lines 375-381 we discuss the discrepancy between normal refinement during development, and dendritic sprouting in adults.

      Cre is expressed in M/T cells and it induces DTA expression starting around P0. The elimination of M/T cells starts at this time, and continues until by P10, when more than 75% of M/T have been eliminated. At P21 more than 90% of M/T have been eliminated, and their number remains stable thereafter.

      Pruning of the dendrites of M/T cells starts at P0 and it is mostly complete by P10. Therefore, it is possible that between P0 and P7, when dendrites are being pruned, the number of M/T cells remaining in the bulb is still over a threshold that does not interfere with the process of normal dendrite pruning. We agree that it would be very informative to perform additional experiments in the future where a large set of M/T cells could be ablated before pruning occurs (ideally before P0). 

      (4) While the effect of reduced M/T neuron density on both M/T dendrites and OSN axons is described well, the relationship between both needs to be characterized better: Is one effect preceding the other or do they occur simultaneously? Can one be the consequence of the other?

      Previous works have demonstrated that disrupting the topographic projection of the OSN axons has no effect on the structure of the apical dendrite of M/T cells (Ma et al., 2014; Nishizumi et al., 2019). Our experiments ablating a large fraction of M/T cells suggest that they are necessary for the correct targeting of OSN axons into the bulb. However, our experiments do not allow us to tell apart these 2 scenarios: 

      (a) the ablation of a large fraction of M/T cells directly causes the sprouting of the apical dendrite of M/T cells, and that this sprouting in turn causes the abnormal projection of OSN axons onto the bulb. 

      (b) the ablation of a large fraction of M/T cells first causes the axons of OSN to project abnormally onto multiple glomeruli in the bulb, and this in turn causes the dendrite of remaining M/T cells to sprout onto multiple glomeruli. 

      We now include a comment on the manuscript explaining this point. (Lines 473-492)

      (5) Page 7: the observation that not all neurons develop additional dendrites is not a sign of differences between cell types, it may be purely stochastic.

      This is correct, and we mention these 2 scenarios in the discussion (Line 407-408). 

      (6) Page 8: the fact that activity blockade did not affect the formation of ectopic dendrites does not suggest that the process is not activity-dependent: both manipulations have the same effect and may just mask each other.

      The experiments with Kir2.1 demonstrate that the structural plasticity observed after reducing the total number of M/T cells in an animal is not regulated by the firing action potentials in the remaining cells. Instead, this experiment indicates that the observed structural plasticity may be regulated by other types of mechanisms (including increased synaptic excitation as suggested by the reviewer) that do not require the firing of action potentials in M/T cells. 

      We now have included a comment regarding this point (Lines 243-247).  

      (7) It remains unclear how the observed structural changes can explain the behavioral effects.

      We agree that the relationship between structural changes and behavior was not appropriately explained in our manuscript. Our manipulations cause two major changes in the olfactory system, one primary, and several secondary. The primary change is a large reduction in the number of M/T cells both in the MOB and AOB. This reduction in M/T cell number triggers significant secondary changes in the connectivity of the bulb, including an abnormal projection of OSNs onto the OB, and the growth of ectopic dendrites from the remaining M/T cells into multiple glomeruli.

      The behavioral abnormalities displayed by these mice is ultimately caused by the reduction in the number of M/T cells, but it is likely that the secondary structural changes could regulate some of the behavioral phenomena that we observed. For example, in principle, it is possible that the ectopic dendrites innervating several glomeruli could help the bulb to perceive smells with a much reduced number of M/T cells. On the other hand, this promiscuous growth of dendrites into multiple glomeruli could make it more difficult for the animals to discriminate between smells. The same argument could be made about the fact that OSN axons project onto multiple glomeruli: we simply do not know if this change helps or makes it more difficult for the animal to detect smells.  

      We now include a comment regarding this issue (Lines 513-525).   

      Reviewer #1 (Recommendations For The Authors):

      Additional experiments and a more thorough discussion of the results, as suggested in the public review, would significantly strengthen the paper. Below are some specific parts that need to be addressed.

      There is a lack of information on how M/T cell numbers are quantified. Without the information, it is difficult to evaluate the claim. Using the tdTomato signal may miss cells that are not labeled due to the transgenic effect. 

      Although we cannot conclude that we are identifying the complete set of M/T cells (because the transgenic lines may fail to label some M/T cells), the number of M/T cells that we observed is similar to that previously reported (Richard et al., 2010). This concern has been included in the Results section (Lines 121-124).

      A more detailed description about M/T cells quantification has been added into the method section (Lines 627-632).

      There is a lack of information on the timeline of treatment and how measurement of the olfactory bulb volume is conducted.

      We now include a more detailed description of how the volume of the OB was measured in the methods (Lines 621-623).

      The volume measurement is inconsistent with the pictures shown. In Figure 1, supplemental data 2 panels B and C, it appears that the bulbs in DTA and DTR mice are about half in length in each dimension. This would translate into ~1/8 of the volume of the control mice.

      We measured the volume of the bulbs based on the Neurolucida reconstructions, and we observed that in both DTA and iDTR mice the volumes of their bulbs are roughly 50% compared to a wild type mouse. In Figure 1 - figure supplement 2 the sections that were shown for wild type, DTA and iDTR mice were not taken at the same position in the bulb, and this gave the impression that the bulbs from DTA and iDTR were much smaller than they really are. We now show sections for these three animals at equivalent positions in the bulb. 

      Figure 1 E and F have no legend.

      We apologize for this mistake - we have now added the legend for Figures 1E and F (Lines 1009-1013).

      Figure 3, supplemental data 2, it is not clear what the readers should be looking at. The data is confusing even for experts in the field. The authors should describe the figures more clearly, pointing out what they are supposed to show.

      We apologize for this, and we have now added a more detailed description of Figure3 – figure supplement 2 (Lines 1153-1167).

      In several figures, it is not clearly written what the comparisons were for where there are indications of statistical significance above the bars.

      We have now included a more detailed description of the statistics comparison in the figure legends.

      AAV serotype should be specified.

      The AAV serotype used to label M/T cells was the AAV-PHP.eB. We have added this information in the methods section of the manuscript. 

      Reviewer #2 (Recommendations For The Authors):

      Minor points

      Page 5, para 2: "The decrease in neuronal plasticity with age": it is unclear what "the decrease" refers to.

      We have changed this sentence in the text to make it clear:

      “The decrease in structural plasticity of M/T cells after apical dendrite refinement (Mizrahi and Katz, 2003),….”

      Line 146-148

      Is there a quantification of the effect of Kir2.1 overexpression alone (example shown in Figure 3D)?

      We did an experiment in IDTR animals in which a fraction of M/T cells expressed Kir2.1, and we split these animals in 2 groups: (a) animals that received an injection of DT, and (b) animals that did not receive any DT. We quantified the effect of Kir2.1 on M/T cells from animals that received DT injection (with an ablation of around of 90% of M/T cells) and we did not observe any clear statistically significant differences between cells expressing Kir2.1 or neurons that did not express Kir2.1 from other iDTR animals that also received DT injections. We did not quantify the possible effects of kir2.1 in the group of animals that did not receive DT because on a first inspection we did not observe any clear differences between Kir2.1 cells and neighboring wild type cells. 

      References

      Fujimoto S, Leiwe MN, Aihara S, Sakaguchi R, Muroyama Y, Kobayakawa R, Kobayakawa K, Saito T, Imai T. 2023. Activity-dependent local protection and lateral inhibition control synaptic competition in developing mitral cells in mice. Dev Cell S1534-5807(23)00237-X. doi:10.1016/j.devcel.2023.05.004

      Johnson RE, Tien N-W, Shen N, Pearson JT, Soto F, Kerschensteiner D. 2017. Homeostatic plasticity shapes the visual system’s first synapse. Nat Commun 8:1220. doi:10.1038/s41467-017-01332-7

      Lin DM, Wang F, Lowe G, Gold GH, Axel R, Ngai J, Brunet L. 2000. Formation of precise connections in the olfactory bulb occurs in the absence of odorant-evoked neuronal activity. Neuron 26:69–80. doi:10.1016/s0896-6273(00)81139-3

      Ma L, Wu Y, Qiu Q, Scheerer H, Moran A, Yu CR. 2014. A developmental switch of axon targeting in the continuously regenerating mouse olfactory system. Science 344:194–197. doi:10.1126/science.1248805

      Nishizumi H, Miyashita A, Inoue N, Inokuchi K, Aoki M, Sakano H. 2019. Primary dendrites of mitral cells synapse unto neighboring glomeruli independent of their odorant receptor identity. Commun Biol 2:1–12. doi:10.1038/s42003-018-0252-y

      Richard MB, Taylor SR, Greer CA. 2010. Age-induced disruption of selective olfactory bulb synaptic circuits. Proc Natl Acad Sci U S A 107:15613–15618. doi:10.1073/pnas.1007931107

      Yamaizumi M, Mekada E, Uchida T, Okada Y. 1978. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15:245–250. doi:10.1016/0092-8674(78)90099-5

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      In their manuscript, "Nicotine enhances the stemness and tumorigenicity in intestinal stem cells via Hippo-YAP/TAZ and Notch signal pathway", authors Isotani et al claimed that this study identifies a NIC-triggered pathway regulating the stemness and tumorigenicity of ISCs and suggest the use of DBZ as a potential therapeutic strategy for treating intestinal tumors. However, the presented data do not support the primary claims.

      Weaknesses:

      My main reservation is that the quality of the results presented in the manuscript may not fully substantiate their conclusions. For instance, in Figure 2 A and B, it is challenging to discern a healthy organoid. This is significant, as the entirety of Figure 2 and several panels in Figures 3 - 5 are based on these organoid assays. Additionally, there seems to be a discrepancy in the quality of results from the western blot, as the lanes of actin do not align with other proteins (Figure 6B).

      We directly count organoids under microscopy as described previously (Igarashi M et.al., Cell.2016 Igarashi M et.al., Aging Cell.2019). When we count the number of organoids, we exactly can discern which are alive or dead organoids under microscope. Hence, we will detail the method and show which are alive or dead organoids using arrows in our revised version (Figure2A and B).

      Moreover, as reviewer1 pointed out, the number of organoids originated from intestinal or colonic crypts can be affected by dead organoids as in Figure2A and 2B. However, almost all colonies from isolated intestinal stem cells (ISCs) (Figure 2C and D) are alive, so the number of colonies are less affected by dead colonies in those experiments using isolated ISCs. Since all organoid data in Figure 3-5 are based on the same method as that of Figure2C and D, the data quality of Figures 3-5 cannot be affected by dead colonies.

      Finally, to improve data quality of Figure6B, we repeated this experiments and replaced it by new figures.

      Reviewer #2 (Public Review):

      Summary:

      The manuscript by Isotani et al characterizes the hyperproliferation of intestinal stem cells (ISCs) induced by nicotine treatment in vivo. Employing a range of small molecule inhibitors, the authors systematically investigated potential receptors and downstream pathways associated with nicotine-induced phenotypes through in vitro organoid experiments. Notably, the study specifically highlights a signaling cascade involving α7-nAChR/PKC/YAP/TAZ/Notch as a key driver of nicotine-induced stem cell hyperproliferation. Utilizing a Lgr5CreER Apcfl/fl mouse model, the authors extend their findings to propose a potential role of nicotine in stem cell tumorgenesis. The study posits that Notch signaling is essential during this process.

      Strengths and Weaknesses:

      One noteworthy research highlight in this study is the indication, as shown in Figure 2 and S2, that the trophic effect of nicotine on ISC expansion is independent of Paneth cells. In the Discussion section, the authors propose that this independence may be attributed to distinct expression patterns of nAChRs in different cell types. To further substantiate these findings, it is suggested that the authors perform tissue staining of various nAChRs in the small intestine and colon. This additional analysis would provide more conclusive evidence regarding how stem cells uniquely respond to nicotine. It is also recommended to present the staining of α7-nAChR from different intestinal regions. This will provide insights into the primary target sites of nicotine in the gut tract. Additionally, it is recommended that the authors consider rephrasing the conclusion in this section (lines 123-124). The current statement implies that nicotine does not affect Paneth cells, which may be inaccurate based on the suggestion in line 275 that nicotine might influence Paneth cells through α2β4-nAChR. Providing a more nuanced conclusion would better reflect the complexity of nicotine's potential impact on Paneth cells.

      It was difficult to obtain nAchRs antibodies usable in immunostaining. Hence, we instead performed qPCR of nAchRs in ISCs and Paneth cells from isolated whole small intestine (new Figure3C), although we cannot know the difference of the nAchRs expression in different intestinal regions by this method. Although the comparatively high expression was observed in α7-nAChR and α8nAChR in both ISCs and Paneth cells, the significant difference between ISCs and Paneth cells were not observed (Figure3C). 

      Interestingly, nicotine up-regulated only the expression of α7-nAChR in ISCs, suggesting the specifical response of α7-nAChR to nicotine (Figures 3C and D). We paraphrased the conclusion of the paragraph according to reviewer’s suggestion.

      As shown in the same result section, the effect of nicotine on ISC organoid formation appears to be independent of CHIR99021, a Wnt activator. Despite this, the authors suggest a potential involvement of Wnt/β-catenin activation downstream of nicotine in Figure 4F. In the Lgr5CreER Apcfl/fl mouse model, it is known that APC loss results in a constitutive stabilization of β-catenin, thus the hyperproliferation of ISCs by nicotine treatment in this mouse model is likely beyond Wnt activation. Therefore, it is recommended that the authors reconsider the inclusion of Wnt/β-catenin as a crucial signaling pathway downstream of nicotine, given the experimental evidence provided in this study.

      We appreciate for this important suggestion. Certainly, Wnt/β-catenin was activated in Nicotine treated ISCs. However, as reviewer points out, the hyperproliferation of ISCs by nicotine treatment is likely beyond Wnt activation.  According to the reviewer’s suggestion, we removed Wnt/β-catenin as a crucial signaling pathway downstream of nicotine (Figure 5G).

      In Figure 4, the authors investigate ISC organoid formation with a panPKC inhibitor, revealing that PKC inhibition blocks nicotine-induced ISC expansion. It's noteworthy that PKC inhibitors have historically been used successfully to isolate and maintain stem cells by promoting self-renewal. Therefore, it is surprising to observe no effect or reversal effect on ISCs in this context. A previous study demonstrated that the loss of PKCζ leads to increased ISC activity both in vivo and in vitro (DOI: 10.1016/j.celrep.2015.01.007). Additionally, to strengthen this aspect of the study, it would be beneficial for the authors to present more evidence, possibly using different PKC inhibitors, to reproduce the observed results with Gö 6983. This could help address potential concerns or discrepancies and contribute to a more comprehensive understanding of the role of PKC in nicotine-induced ISC expansion.

      Gö 6983 is a pan-PKC inhibitor against for PKCα, PKCβ, PKCγ, PKCδ and PKCζ with IC50 of 7 nM, 7 nM, 6 nM, 10 nM and 60 nM, respectively. Since we used Gö 6983 at the concentration of 10nM in our experiment, we consider PKCζ may not be possible target of nicotine. Additionally, we treated using 5nM Sotrastaurin, another pan-PKC inhibitor, which is supposed not to affect PKCζ. The observed result with Gö 6983 was reproduced by Sotrastaurin (Supplemental Figure 3E).

      An additional avenue that could enhance the clinical relevance of the study is the exploration of human datasets. Specifically, leveraging scRNA-seq datasets of the human intestinal epithelium (DOI: 10.1038/s41586-021-03852-1) could provide valuable insights. Analyzing the expression patterns of nAChRs across diverse regions and cell types in the human intestine may offer a potential clinical implication.

      We analyzed distribution pattern nAChRs of by scRNA-seq datasets of the human intestinal epithelium (DOI: 10.1038/s41586-021-03852-1). In consistent with mouse data (Figure3C), the expression of human α7-nAChR is higher than that of other nAChRs. The difference of the expression between ISCs and Paneth cells is not clear as in that of mouse (Supplemental Figure4A and B). From mouse and human data, we speculate the induction of specific nAChR by nicotine is essence of ISC response to nicotine, rather than the distribution of nAChRs.

      Reviewer #2 (Recommendations For The Authors):

      The manuscript could benefit from addressing a few minor points to enhance its quality before publication:

      (1) Ensure all images are presented in higher resolution to improve visual clarity.

      We replaced all images by those with higher resolution.

      (2) Quantify Western blot results accurately for rigor and precision in data representation.

      We quantified all blots.

      (3) Include error bars in control groups where missing, particularly in Figures 3C and 4D, to enhance data interpretation.

      We included error bars in control groups in new Figure 3C and 4D.

      (4) The layout of Figure S3B, S4A and S4B should be corrected.

      We corrected the layout of those Figures.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      Petty and Bruno investigate how response characteristics in the higher-order thalamic nuclei POm (typically somatosensory) and LP (typically visual) change when a stimulus (whisker air puff or visual drifting grating) of one or the other modality is conditioned to a reward. Using a two-step training procedure, they developed an elegant paradigm, where the distractor stimulus is completely uninformative about the reward, which is reflected in the licking behavior of trained mice. While the animals seem to take on to the tactile stimulus more readily, they can also associate the reward with the visual stimulus, ignoring tactile stimuli. In trained mice, the authors recorded single-unit responses in both POm and LP while presenting the same stimuli. The authors first focused on POm recordings, finding that in animals with tactile conditioning POm units specifically responded to the air puff stimulus but not the visual grating. Unexpectedly, in visually conditioned animals, POm units also responded to the visual grating, suggesting that the responses are not modality-specific but more related to behavioral relevance. These effects seem not be homogeneously distributed across POm, whereas lateral units maintain tactile specificity and medial units respond more flexibly. The authors further ask if the unexpected cross-modal responses might result from behavioral activity signatures. By regressing behavior-coupled activity out of the responses, they show that late activity indeed can be related to whisking, licking, and pupil size measures. However, cross-modal short latency responses are not clearly related to animal behavior. Finally, LP neurons also seem to change their modality-specificity dependent on conditioning, whereas tactile responses are attenuated in LP if the animal is conditioned to visual stimuli.

      The authors make a compelling case that POm neurons are less modality-specific than typically assumed. The training paradigm, employed methods, and analyses are mostly to the point, well supporting the conclusions. The findings importantly widen our understanding of higher-order thalamus processing features with the flexibility to encode multiple modalities and behavioral relevance. The results raise many important questions on the brain-wide representation of conditioned stimuli. E.g. how specific are the responses to the conditioned stimuli? Are thalamic cross-modal neurons recruited for the specific conditioned stimulus or do their responses reflect a more global shift of attention from one modality to another? 

      To elaborate on higher-order thalamic activity in relationship to conditioned behavior, a trialby-trial analysis would be very useful. Is neuronal activity predictive of licking and at which relative timing? 

      To elaborate on the relationship between neuronal activity and licking, we have created a new supplementary figure (Figure S1), where we present the lick latency of each mouse on the day of recording. We also perform more in-depth analysis of neural activity that occurs before lick onset, which is presented in a new main figure (new Figure 4). 

      Furthermore, I wonder why the (in my mind) major and from the data obvious take-away, "POm neurons respond more strongly to visual stimuli if visually conditioned", is not directly tested in the summary statistics in Figure 3h.

      We have added a summary statistic to Figure 3h and to the Results section (lines 156-157) comparing the drifting grating responses in visually and tactilely conditioned mice.  

      The remaining early visual responses in POm in visually conditioned mice after removing behavior-linked activity are very convincing (Figure 5d). It would help, however, to see a representation of this on a single-neuron basis side-by-side. Are individual neurons just coupled to behavior while others are independent, or is behaviorally coupled activity a homogeneous effect on all neurons on top of sensory activity?

      In lieu of a new figure, we have performed a new analysis of individual neurons to classify them as “stimulus tuned” and/or “movement tuned.” We find that nearly all POm cells encode movement and arousal regardless of whether they also respond to stimuli. This is presented in the Results under the heading “POm correlates with arousal and movement regardless of conditioning” (Lines 219-231).

      The conclusions on flexible response characteristics in LP in general are less strongly supported than those in POm. First, the differentiation between POm and LP relies heavily on the histological alignment of labeled probe depth and recording channel, possibly allowing for wrong assignment. 

      We appreciate the importance in differentiating between POm, LP, and surrounding regions to accurately assign a putative cell to a brain region. The method we employed (aligning an electrode track to a common reference atlas) is widely used in rodent neuroscience, especially in regions like POm and LP which are difficult to differentiate molecularly (for example, see Sibille, Nature Communications, 2022; and Schröder, Neuron, 2020). 

      Furthermore, it seems surprising, but is not discussed, that putative LP neurons have such strong responses to the air puff stimuli, in both conditioning cases. In tactile conditioning, LP air puff responses seem to be even faster and stronger than POm. In visual conditioning, drifting grating responses paradoxically seem to be later than in tactile conditioning (Fig S2e). These differences in response changes between POm and LP should be discussed in more detail and statements of "similar phenomena" in POm and LP (abstract) should be qualified.  

      We have further developed our analysis and discussion of LP activity. Our analysis of LP stimulus response latencies are now presented in greater detail in Figure S3, and we have expanded the results section accordingly (lines 266-275). We have also expanded the discussion section to both address these new analyses and speculate on what might drive these surprising “tactile responses” in LP.

      Reviewer #2 (Public Review): 

      Summary  

      This manuscript by Petty and Bruno delves into the still poorly understood role of higherorder thalamic nuclei in the encoding of sensory information by examining the activity in the Pom and LP cells in mice performing an associative learning task. They developed an elegant paradigm in which they conditioned head-fixed mice to attend to a stimulus of one sensory modality (visual or tactile) and ignore a second stimulus of the other modality. They recorded simultaneously from POm and LP, using 64-channel electrode arrays, to reveal the contextdependency of the firing activity of cells in higher-order thalamic nuclei. They concluded that behavioral training reshapes activity in these secondary thalamic nuclei. I have no major concerns with the manuscript's conclusions, but some important methodological details are lacking and I feel the manuscript could be improved with the following revisions.

      Strengths 

      The authors developed an original and elegant paradigm in which they conditioned headfixed mice to attend to a stimulus of one sensory modality, either visual or tactile, and ignore a second stimulus of the other modality. As a tactile stimulus, they applied gentle air puffs on the distal part of the vibrissae, ensuring that the stimulus was innocuous and therefore none aversive which is crucial in their study. 

      It is commonly viewed that the first-order thalamus performs filtering and re-encoding of the sensory flow; in contrast, the computations taking place in high-order nuclei are poorly understood. They may contribute to cognitive functions. By integrating top-down control, high-order nuclei may participate in generating updated models of the environment based on sensory activity; how this can take place is a key question that Petty and Bruno addressed in the present study.

      Weaknesses  

      (1) Overall, methods, results, and discussion, involving sensory responses, especially for the Pom, are confusing. I have the feeling that throughout the manuscript, the authors are dealing with the sensory and non-sensory aspects of the modulation of the firing activity in the Pom and LP, without a clear definition of what they examined. Making subsections in the results, or a better naming of what is analyzed could convey the authors' message in a clearer way, e.g., baseline, stim-on, reward.  

      We thank Reviewer 2 for this suggestion. We have adjusted the language throughout the paper to more clearly state which portions of a given trial we analyzed. We now consistently refer to “baseline,” “stimulus onset,” and “stimulus offset” periods. 

      In line #502 in Methods, the authors defined "Sensory Responses. We examined each cell's putative sensory response by comparing its firing rate during a "stimulus period" to its baseline firing rate. We first excluded overlapping stimuli, defined as any stimulus occurring within 6 seconds of a stimulus of a different type. We then counted the number of spikes that occurred within 1 second prior to the onset of each stimulus (baseline period) and within one second of the stimulus onset (stimulus period). The period within +/-50ms of the stimulus was considered ambiguous and excluded from analysis." 

      Considering that the responses to whisker deflection, while weak and delayed, were shown to occur, when present, before 50 ms in the Pom (Diamond et al., 1992), it is not clear what the authors mean and consider as "Sensory Responses"? 

      We have addressed this important concern in three ways. First, we have reanalyzed our data to include the 50ms pre- and post-stimulus time windows that were previously excluded. This did not qualitatively change our results, but updated statistical measurements are reflected in the Results and the legends of figures 3 and 7. Second, we have created a new figure (new Figure 4) which provides a more detailed analysis of early POm stimulus responses at a finer time scale. Third, we have amended the language throughout the paper to refer to “stimulus responses” rather than “sensory responses” to reflect how we cannot disambiguate between bottom-up sensory input and top-down input into POm and LP with our experimental setup. We refer only to “putative sensory responses” when discussing lowlatency (<100ms) stimulus responses.

      Precise wording may help to clarify the message. For instance, line #134: "Of cells from tactilely conditioned mice, 175 (50.4%) significantly responded to the air puff, as defined by having a firing rate significantly different from baseline within one second from air puff onset (Figure 3d, bottom)", could be written "significantly responded to the air puff" should be written "significantly increased (or modified if some decreased) their firing rate within one second after the air puff onset (baseline: ...)". This will avoid any confusion with the sensory responses per se.

      We have made this specific change suggested by the reviewer (lines 145-146) and made similar adjustments to the language throughout the manuscript to better communicate our analysis methods. 

      (2) To extend the previous concern, the latency of the modulation of the firing rate of the Pom cells for each modality and each conditioning may be an issue. This latency, given in Figure S2, is rather long, i.e. particularly late latencies for the whisker system, which is completely in favor of non-sensory "responses" per se and the authors' hypothesis that sensory-, arousal-, and movement-evoked activity in Pom are shaped by associative learning. Latency is a key point in this study. 

      Therefore, 

      - latencies should be given in the main text, and Figure S2 could be considered for a main figure, at least panels c, d, and e, could be part of Figure 3. 

      - the Figure S2b points out rather short latency responses to the air puff, at least in some cells, in addition to late ones. The manuscript would highly benefit from an analysis of both early and late latency components of the "responses" to air puffs and drafting grating in both conditions. This analysis may definitely help to clarify the authors' message. Since the authors performed unit recordings, these data are accessible.

      - it would be highly instructive to examine the latency of the modulation of Pom cells firing rate in parallel with the onset of each behavior, i.e. modification of pupil radius, whisking amplitude, lick rate (Figures 1e, g and 3a, b). The Figure 1 does not provide the latency of the licks in conditioned mice.

      - the authors mention in the discussion low-latency responses, e.g., line #299: "In both tactilely and visually conditioned mice, movement could not explain the increased firing rate at air puff onset. These low-latency responses across conditioning groups is likely due in part to "true" sensory responses driven by S1 and SpVi."; line #306: "Like POm, LP displayed varied stimulus-evoked activity that was heavily dependent on conditioning. LP responded to the air puff robustly and with low latency, despite lacking direct somatosensory inputs."  But which low-latency responses do the authors refer to? Again, this points out that a robust analysis of these latencies is missing in the manuscript but would be helpful to conclude.

      We have moved our analysis of stimulus response latency in POm to new Figure 4 in the main text and have expanded both the Results and Discussion sections accordingly. We have also analyzed the lick latency on the day of recording, included in a new supplemental Figure S1. 

      (3) Anatomical locations of recordings in the dorsal part of the thalamus. Line #122 "Our recordings covered most of the volume of POm but were clustered primarily in the anterior and medial portions of LP (Figure 2d-f). Cells that were within 50 µm of a region border were excluded from analysis." 

      How did the authors distinguish the anterior boundary of the LP with the LD nucleus just more anterior to the LP, another higher-order nucleus, where whisker-responsive cells have been isolated (Bezdudnaya and Keller, 2008)? 

      Cells within 50µm of any region boundary were excluded, including those at the border of LP and LD. We also reviewed our histology images by eye and believe that our recordings were all made posterior of LD. 

      (4) The mention in the Methods about the approval by an ethics committee is missing.  All the surgery (line #381), i.e., for the implant, the craniotomy, as well as the perfusion, are performed under isoflurane. But isoflurane induces narcosis only and not proper anesthesia. The mention of the use of analgesia is missing. 

      We thank Reviewer 2 for drawing our attention to this oversight. All experiments were conducted under the approval of the Columbia University IACUC. Mice were treated with the global analgesics buprenorphine and carprofen, the local analgesic bupivacaine, and anesthetized with isoflurane during all surgical procedures. We have amended the Methods section to include this information (Lines 458-470).

      Reviewer #3 (Public Review): 

      Petty and Bruno ask whether activity in secondary thalamic nuclei depends on the behavioral relevance of stimulus modality. They recorded from POm and LP, but the weight of the paper is skewed toward POm. They use two cohorts of mice (N=11 and 12), recorded in both nuclei using multi-electrode arrays, while being trained to lick to either a tactile stimulus (air puff against whiskers, first cohort) or a visual stimulus (drifting grating, second cohort), and ignore the respective other. They find that both nuclei, while primarily responsive to their 'home' modality, are more responsive to the relevant modality (i.e. the modality predicting reward). 

      Strengths: 

      The paper asks an important question, it is timely and is very well executed. The behavioral method using a delayed lick index (excluding impulsive responses) is well worked out. Electrophysiology methods are state-of-the-art with information about spike quality in Figure S1. The main result is novel and important, convincingly conveying the point that encoding of secondary thalamic nuclei is flexible and clearly includes aspects of the behavioral relevance of a stimulus. The paper explores the mapping of responses within POm, pointing to a complex functional structure, something that has been reported/suggested in earlier studies. 

      Weaknesses: 

      Coding: It does not become clear to which aspect of the task POm/LP is responding. There is a motor-related response (whisking, licking, pupil), which, however, after regressing it out leaves a remaining response that the authors speculate could be sensory.

      Learning: The paper talks a lot about 'learning', although it is only indirectly addressed. The authors use two differently (over-)trained mice cohorts rather than studying e.g. a rule switch in one and the same mouse, which would allow us to directly assess whether it is the same neurons that undergo rule-dependent encoding. 

      We disagree that our animals are “overtrained,” as every mouse was fully trained within 13 days. We agree that it would be interesting to study a rule-switch type experiment, but such an experiment is not necessary to reveal the profound effect that conditioning has on stimulus responses in POm and LP. 

      Mapping: The authors treat and interpret the two nuclei very much in the same vein, although there are clear differences. I would think these differences are mentioned in passing but could be discussed in more depth. Mapping using responses on electrode tracks is done in POm but not LP.

      The mapping of LP responses by anatomical location is presented in the supplemental Figure S4 (previously S3). We have expanded our discussion of LP and how it might differ from POm.

      Reviewer #1 (Recommendations For The Authors):  

      Minor writing issues: 

      122 ...67 >LP< cells?

      301 plural "are”

      We have fixed these typos.

      Figure issues

      *  3a,b time ticks are misaligned and the grey bar (bottom) seems not to align with the visual/tactile stimulus shadings.

      *  legend to Figure 3b refers to Figure 1c which is a scheme, but if 1g is meant, this mouse does not seem to have a session 12? 

      *  3c,e time ticks slightly misaligned. 

      *  5e misses shading for the relevant box plots, assuming it should be like Figure 3h.  

      We thank Reviewer 1 for pointing out these errors. We have adjusted Figures 1, 3, and 5 accordingly.

      Analyses 

      I am missing a similar summary statistics for LP as in Figure 3h 

      We have added a summary box chart of LP stimulus responses (Figure 7g), similar to that of POm in Figure 3. We have also performed similar statistical analyses, the results of which are presented in the legend for Figure 7. 

      Reviewer #2 (Recommendations For The Authors): 

      More precisions are required for the following points: 

      (1) The mention of the use of analgesia is missing and this is not a minor concern. Even if the recordings are performed 24 hours after the surgery for the craniotomy and screw insertion and several days after the main surgery for the implant, taking into account the pain of the animals during surgeries is crucial first for ethical reasons, and second because it may affect the data, especially in Pom cells: pain during surgery may induce the development of allodynia and/or hyperalgesia phenomenae and Pom responses to sensory stimuli were shown to be more robust in behavioral hyperalgesia (Masri et al., 2009).  

      We neglected to include details on the analgesics used during surgery and post-operation recovery in our original manuscript. Mice were administered buprenorphine, carprofen, and bupivacaine immediately prior to the head plate surgery and were treated with additional carprofen during recovery. Mice were similarly treated with analgesics for the craniotomy procedure. Mice were carefully observed after craniotomy, and we saw no evidence of pain or discomfort. Furthermore, mice performed the behavior at the same level pre- and postcraniotomy (now presented in Figure 1j), which also indicates that they were not in any pain. 

      (2) The head-fixed preparation is only poorly described.

      Line #414: "Prior to conditioning, mice were habituated to head fixation and given ad libitum water in the behavior apparatus for 15-25 minutes." 

      And line #425 "Mice were trained for one session per day, with each session consisting of an equal number of visual stimuli and air puffs. Sessions ranged from 20-60 minutes and about 40-120 of each stimulus. " 

      More details should be given about the head-fixation training protocol. Are 15-25 minutes the session time duration, 60 minutes, or other time duration? How long does it take to get mice well trained to the head fixation, and on which criteria?  

      Line #389: "Mice were then allowed to recover for 24 hours, after which the sealant was removed and recordings were performed. At the end of experiments,"

      The timeline is not clear: is there one day or several days of recordings? 

      We have expanded on our description of the head fixation protocol in the Methods. We describe in more detail how mice were habituated to head fixation, the timing of water restriction, and the start of conditioning/training (Habituation and Conditioning, lines 492-500).

      (4) Line #411: "Mice were deprived of water 3 days prior to the start of conditioning" followed by line #414 "Prior to conditioning, mice were habituated to head fixation and given ad libitum water in the behavior apparatus for 15-25 minutes".

      If I understood correctly, the mice were then not fully water-deprived for 3 days since they received water while head-fixed. This point may be clarified. 

      We addressed these concerns in the changes to the Methods section mentioned in the preceding point (3).

      (5) Line #157: "Modality selectivity varies with anatomical location in Pom" while the end of the previous paragraph is "This suggests that POm encoding of reward and/or licking is insensitive to task type, an observation we examine further below."

      The authors then come to anatomical concerns before coming back to what the Pom may encode in the following section. This makes the story quite confusing and hard to follow even though pretty interesting.  

      We have reordered our Figures and Results to improve the flow of the paper and remove this point of confusion. We now present results on the encoding of movement before analyzing the relationship between POm stimulus responses and anatomical location. What was old Figure 5 now precedes what was old Figure 4.

      (6) Licks Analysis. Line #99 "However, this mouse also learned that the air puff predicted a lack of reward in the shaping task, as evidenced by withholding licking upon the onset of the air puff. The mouse thus displayed a positive visual lick index and a negative tactile lick index, suggesting that it attended to both the tactile and visual stimuli (Figure 1f, middle arrow)."

      Line #105 "All visually conditioned mice exhibited a similar learning trajectory (Figure 1i left, 1j left)". 

      Interestingly, the authors revealed that mice withheld licking upon the onset of the air puff in the visual conditioning, which they did not do at the onset of the drifting grating in the tactile conditioning. This withholding was extinguished after the 8th session, which the authors interpret as the mice finally ignoring the air puff. Is this effect significant, is there a significant withholding licking upon the onset of the air puff on the 12 tested mice? 

      The withholding of licking was significant (assessed with a sign-rank test) in visually conditioned mice prior to switching to the full version of the task. Indeed, it was the abolishment of this effect after conditioning with the full version of the task that was our criterion for when a mouse was fully trained. We have elaborated on this in the Habituation and Conditioning section in the Methods.

      (1) Throughout the manuscript "Touch" is used instead of passive whisker deflection, and may be confusing with "active touch" for the whisker community readers. I recommend avoiding using "touch" instead of "passive whisker deflection".

      We appreciate that “touch” can be an ambiguous term in some contexts. However, we have limited our use of the word to refer to the percept of whisker deflection; we do not describe the air puff stimulus as a “touch.” We respectfully would like to retain the use of the word, as it is useful for comparing somatosensory stimuli to visual stimuli.

      (2) Line #395: "Air puffs (0.5-1 PSI) were delivered through a nozzle (cut p1000 pipet tip, approximately 3.5mm diameter aperture)".

      Are air puffs of <1 PSI applied, not <1 bar?  

      We thank Reviewer 3 for pointing out this inaccuracy. The air puffs were indeed between 0.5 and 1 bar, not PSI. We have addressed this in the Methods.

      (3) Line #441: "In the full task, the stimuli and reward were identical, but stimuli were presented at uncorrelated and less predictable intervals."  Do the authors mean that all stimuli are rewarded?  

      The stimuli and reward were identical between the shaping and full versions of the task. In the full version of the task, the unrewarded stimulus was truly uncorrelated with reward, rather than anticorrelated. 

      (4) Line #445 "for a mean ISI of 20 msec." ISI is not defined, I guess that it means interstimulus interval. Even if pretty obvious, to avoid any confusion for future readers, I would recommend using another acronym, especially in a manuscript about electrophysiology, since ISI is a dedicated acronym for inter-spike interval. 

      We have defined the acronym ISI as “inter-stimulus interval” when first introduced in the results (Line 82) and in the Methods (Line 511).

      (5) Line #416 "In the first phase of conditioning ("shaping"), mice were separated into two cohorts: a "tactile" cohort and a "visual" cohort. Mice were presented with tactile stimuli (a two-second air puff delivered to the distal whisker field) and visual stimuli (vertical drifting grating on a monitor). Throughout conditioning, mice were monitored via webcam to ensure that the air puff only contacted the whiskers and did not disturb the facial fur nor cause the mouse to blink, flinch, or otherwise react - ensuring the stimulus was innocuous. The stimulus types were randomly ordered. In the visual conditioning cohort, the visual stimulus was paired with a water reward (8-16µL) delivered at the time of stimulus offset. In the tactile conditioning cohort, the reward was instead paired with the offset of the air puff. Regardless of the type of conditioning, stimulus type was a balanced 50:50 with an inter-stimulus interval of 8-12 seconds (uniform distribution)." 

      The mention of the "full version of the task" will be welcome in this paragraph to clarify what the task is for the mouse in the Methods part.

      We have more clearly defined the full version of the task in a later paragraph (line 506). We believe this addresses the potential confusion caused by the original description of the conditioning paradigm. 

      (6) Line #467: "Units were assigned to the array channel on which its mean waveform was largest". 

      Should it read mean waveform "amplitude"? 

      This is correct, we have adjusted the statement accordingly. 

      (7) Line #482 "The eye camera was positioned on the right side of the face and recorded at 60 fps." Then line #487 "The trace of pupil radius over time was smoothed over 5 frames (8.3 msec).” 5 frames, with a 60fps, represent then 83 ms and not 8.3 ms.

      We have corrected this error.  

      (8) Line #121: "257 POm cells and 67 cells from 12 visually conditioned mice" 

      67 LP cells, LP is missing 

      We have corrected this error. 

      (9) Line #354: "A consistent result of attention studies in humans and nonhuman primates is the enhancement of cortical and thalamic sensory responses to an attended visual stimuli. Here, we show not just enhancement of sensory responses to stimuli within a single modality, but also across modalities. It is worth investigating further how secondary thalamus and high-order sensory cortex encode attention to stimuli outside of their respective modalities. Our surprising conclusion that the nuclei are equivalently activated by behaviorally relevant stimuli is nevertheless compatible with these previous studies."  Since higher-order thalamic nuclei are integrative centers of many cortical and subcortical inputs, they cannot be viewed simply as relay nuclei, and there is therefore no "surprising" conclusion in these results. Not surprising, but still an elegant demonstration of the contextdependent activity/responses of the Pom/LP cells. 

      We disagree. Visual stimuli activating strong POm responses and tactile stimuli activating strong LP responses - however they do it - is a surprising result. We agree that higher-order thalamic nuclei are integrative centers, but exactly what they integrate and what the integrated output means is still poorly understood.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The models described are not fundamentally novel, essentially a random intercept model (with a warping function), and some flexible covariate effects using splines (i.e., additive models).

      We respectfully but strongly disagree with the reviewer’s assessment of the novelty of our work. The models referred to by the reviewer as “random intercept models … and some flexible covariate effects” seem to relate to the estimation of normative models derived cross-sectionally as developed in and adopted from previous work, not to the work presented here. To be clear, the contributions of this work are: (i) a principled methodology to make statistical predictions for individual subjects in longitudinal studies based on a novel z-diff score, (ii) an approach to transfer information large scale normative models estimated on large scale cross-sectional data to longitudinal studies (iii) an extensive theoretical analysis of the properties of this approach and (iv) empirical evaluation on an unpublished psychosis dataset. Put simply, we provide the ability to estimate within subject change in normative models which until now only provide the ability to show a subject's position in the normative range at a given timepoint. With the exception of the reference [13] cited in the main text, we are not aware of any methods available that can achieve this. Based on this feedback combined with the feedback of the Reviewer 2, we now improved our introduction and clearly state our contribution right from the outset of the manuscript whilst also shortening the introduction to make it more concise. In this work, we are trying to be very transparent in showing to the reader that our method builds on a previously peer-reviewed model.

      The assumption of constant quantiles is very strong, and limits the utility of the model to very short term data.

      We now provide an extensive theoretical analysis of our approach (section 2.1.3), where we show that this assumption is actually not strictly necessary and that our approach yields valid inferences even under much milder assumptions. More specifically, we first provide a mathematical grounding for the assumption we made in the initial submission, then generalise our method to a wider class of residual processes and show that our original assumption of constant quantiles is not too restrictive. We also provide a simulation study to show how the practitioner can evaluate the validity and implications of this assumption on a case-by-case basis. This generalisation is described in depth in section 2.1.3.

      The schizophrenia example leads to a counter-intuitive normalization of trajectories, which leads to suspicions that this is driven by some artifact of the data modeling/imaging pipelines.

      We understand that the observed normalisation effects might appear surprising. As we outlined in our provisional response, we would like to emphasise that there is increasing evidence that the old neurodegenerative view of psychosis is an oversimplification and that trajectories of cortical thickness are highly variable across different individuals after the first psychotic episode. More specifically, we have shown in an independent sample and with different methodology that individuals treated with second-generation antipsychotics and with careful clinical follow-up can show normalisation of cortical thickness atypicalities after the first episode (https://www.medrxiv.org/content/10.1101/2024.04.19.24306008v2, now accepted in Schizophrenia Bulletin). These results are well-aligned with the results we show in this manuscript. We now added remarks on this topic into the discussion. We would also like to re-emphasise that the data were processed with the utmost rigour using state of the art processing pipelines including quality control, which we have reported as transparently as possible. The confidence that the results are not ‘driven by some artifact of the data modeling/imaging pipelines’ is also supported by the fact that analysis of a group of healthy controls did not show any significant z-diffs (see Discussion section), neither frontally nor elsewhere. If the reviewer believes there are additional quality control checks that would further increase confidence in our findings, we would welcome the reviewer to provide specific details.

      The method also assumes that the cross-sectional data is from a "healthy population" without describing what this population is (there is certainly every chance of ascertainment bias in large scale studies as well as small scale studies). This issue is completely elided over in the manuscript.

      Indeed, we do not describe the cross-sectional population used for training the models, as these models were already trained and published with in-depth description of the datasets used for the training (https://elifesciences.org/articles/72904). We now make this more explicit in the section 2.1.1. of the manuscript (page 7), and also more explicitly acknowledge the possibility of ascertainment bias in the simulation section 2.1.4. However, we would like to emphasise that such ascertainment bias is not in any way specific to the analyses we report. In fact it is present in all studies that utilise large scale cohorts such as UK Biobank. Indeed, we are currently working on another manuscript to address this question in detail, but given the complexity of this problem and the fact that many publicly available legacy studies simply do not record sufficient demographic information, e.g. to assess racial bias properly, we believe that this is beyond the scope of the current work.

      Reviewer #2 (Public Review):

      The organization and clarity of this manuscript need enhancement for better comprehension and flow. For example, in the first few paragraphs of the introduction, the wording is quite vague. A lot of information was scattered and repeated in the latter part of the introduction, and the actual challenges/motivation of this work were not introduced until the 5th paragraph.

      As noted above in our response to Reviewer 1, we significantly pruned the introduction, stating our objective in the first paragraph and elaborating on the topic later in the text. We hope that it is now less repetitive and easier to follow.

      There are no simulation studies to evaluate whether the adjustment of the crosssectional normative model to longitudinal data can make accurate estimations and inferences regarding the longitudinal changes. Also, there are some assumptions involved in the modeling procedure, for example, the deviation of a healthy control from the population over time is purely caused by noise and constant variability of error/noise across x_n, and these seem to be quite strong assumptions. The presentation of this work's method development would be strengthened if the authors can conduct a formal simulation study to evaluate the method's performance when such assumptions are violated, and, ideally, propose some methods to check these assumptions before performing the analyses.

      This comment encouraged us to zoom out from our original assumption and generalise our method to a wider class of residual processes (stationary Gaussian processes) in section 2.1.3. We now present a theoretical analysis of our model to show that our original assumption (of stable quantiles plus noise) is actually not necessary for valid inference in our method, which broadens the applicability of our method. Of course, we also discuss in what way the original assumption is restrictive and how it aligns with the more general dynamics. We also include a simulation study to evaluate the method's performance and elucidate the role of the more general dynamics in section 2.1.4.

      The proposed "z-diff score" still falls in the common form of z-score to describe the individual deviation from the population/reference level, but now is just specifically used to quantify the deviation of individual temporal change from the population level. The authors need to further highlight the difference between the "z-score" and "z-diff score", ideally at its first mention, in case readers get confused (I was confused at first until I reached the latter part of the manuscript). The z-score can also be called a measure of "standardized difference" which kind of collides with what "z-diff" implies by its name.

      We added the mention of the difference between z-score and z-diff score into the last paragraph of introduction.

      Explaining that one component of the variance is related to the estimation of the model and the other is due to prediction would be helpful for non-statistical readers.

      We now added an interpretation of the z-score in the original model below equation 7.

      It would be easier for the non-statistical reader if the authors consistently used precision or variance for all variance parameters. Probably variance would be more accessible.

      This was a very useful observation, we unified the notation and now only use variance.

      The functions psi were never explicitly described. This would be helpful to have in the supplement with a reference to that in the paper.

      Indeed, while describing the original model we had to make choices about how to condense the necessary information from the original model so that we can build upon it. As the phi function is only used for data transformation in the original model, we did not further elaborate on it, however, we now refer to the specific section of the original paper of Fraza et al. 2021 where it is described more in detail (https://www.sciencedirect.com/science/article/pii/S1053811921009873).

      What is the goal of equations (13) and (14)? The authors should clarify what the point of writing these equations is prior to showing the math. It seems like it is to obtain an estimate of \sigma_{\ksi}^2, which the reader only learns at the end.

      We corrected the formatting.

      What is the definition of "adaption" as used to describe equation (15)? In this equation, I think norm on subsample was not defined.

      We added a more detailed description of the adaptation after equation 15.

      "(the sandwich part with A)" - maybe call this an inner product so that it is not confused with a sandwich variance estimator. This is a bit unclear. Equation (8) does have the inner product involving A and \beta^{-1} does include variability of \eta. It seems like you mean that equation (8) incorrectly includes variability of \eta and does not have the right term vector component of the inner product involving A, but this needs clarifying.

      We now changed the formulation to be less confusing and also explicitly clarified the caveat regarding the difference of z-scores.

      One challenge with the z-diff score is that it does not account for whether a person sits above or below zero at the first time point. It might make it difficult to interpret the results, as the results for a particular pathology could change depending on what stage of the lifespan a person is in. I am not sure how the authors would address those challenges.

      We agree with the outlined limitation in interpretation of overall trends when the position in the visit one is different between the subjects. However, this is a much broader challenge and is not specific to our approach. This effect is generally independent of the lifespan, but may further interact with the typical lifespan of disease. rWhen the z scores are taken in the context of the cross-sectional normative models, it does make it possible to identify what the overall trend of an illness is across the lifespan, and individual patient’s z-diffs not in line (with what would this typical group trajectory predicts) may e.g. correspond to early/late onset of their individual atrophy. We now make these considerations explicitly in the discussion section.

      Reviewer #2 (Recommendations For The Authors):

      Other minor suggestions to help improve the text:...

      We thank Reviewer #2 for the list of minor suggestions to improve the text, which we all implemented in the manuscript.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Freas et al. investigated if the exceedingly dim polarization pattern produced by the moon can be used by animals to guide a genuine navigational task. The sun and moon have long been celestial beacons for directional information, but they can be obscured by clouds, canopy, or the horizon. However, even when hidden from view, these celestial bodies provide directional information through the polarized light patterns in the sky. While the sun's polarization pattern is famously used by many animals for compass orientation, until now it has never been shown that the extremely dim polarization pattern of the moon can be used for navigation. To test this, Freas et al. studied nocturnal bull ants, by placing a linear polarizer in the homing path on freely navigating ants 45 degrees shifted to the moon's natural polarization pattern. They recorded the homing direction of an ant before entering the polarizer, under the polarizer, and again after leaving the area covered by the polarizer. The results very clearly show, that ants walking under the linear polarizer change their homing direction by about 45 degrees in comparison to the homing direction under the natural polarization pattern and change it back after leaving the area covered by the polarizer again. These results can be repeated throughout the lunar month, showing that bull ants can use the moon's polarization pattern even under crescent moon conditions. Finally, the authors show, that the degree in which the ants change their homing direction is dependent on the length of their home vector, just as it is for the solar polarization pattern. 

      The behavioral experiments are very well designed, and the statistical analyses are appropriate for the data presented. The authors' conclusions are nicely supported by the data and clearly show that nocturnal bull ants use the dim polarization pattern of the moon for homing, in the same way many animals use the sun's polarization pattern during the day. This is the first proof of the use of the lunar polarization pattern in any animal.

      Reviewer #2 (Public Review): 

      Summary: 

      The authors aimed to understand whether polarised moonlight could be used as a directional cue for nocturnal animals homing at night, particularly at times of night when polarised light is not available from the sun. To do this, the authors used nocturnal ants, and previously established methods, to show that the walking paths of ants can be altered predictably when the angle of polarised moonlight illuminating them from above is turned by a known angle (here +/- 45 degrees).

      Strengths: 

      The behavioural data are very clear and unambiguous. The results clearly show that when the angle of downwelling polarised moonlight is turned, ants turn in the same direction. The data also clearly show that this result is maintained even for different phases (and intensities) of the moon, although during the waning cycle of the moon the ants' turn is considerably less than may be expected.

      Weaknesses: 

      The final section of the results - concerning the weighting of polarised light cues into the path integrator - lacks clarity and should be reworked and expanded in both the Methods and the Results (also possibly with an extra methods figure). I was really unsure of what these experiments were trying to show or what the meaning of the results actually are.

      Rewrote these sections and added figure panel to Figure 6.

      Impact: 

      The authors have discovered that nocturnal bull ants while homing back to their nest holes at night, are able to use the dim polarised light pattern formed around the moon for path integration. Even though similar methods have previously shown the ability of dung beetles to orient along straight trajectories for short distances using polarised moonlight, this is the first evidence of an animal that uses polarised moonlight in homing. This is quite significant, and their findings are well supported by their data.

      Reviewer #3 (Public Review): 

      Summary: 

      This manuscript presents a series of experiments aimed at investigating orientation to polarized lunar skylight in a nocturnal ant, the first report of its kind that I am aware of.

      Strengths: 

      The study was conducted carefully and is clearly explained here. 

      Weaknesses: 

      I have only a few comments and suggestions, that I hope will make the manuscript clearer and easier to understand.

      Time compensation or periodic snapshots 

      In the introduction, the authors compare their discovery with that in dung beetles, which have only been observed to use lunar skylight to hold their course, not to travel to a specific location as the ants must. It is not entirely clear from the discussion whether the authors are suggesting that the ants navigate home by using a time-compensated lunar compass, or that they update their polarization compass with reference to other cues as the pattern of lunar skylight gradually shifts over the course of the night - though in the discussion they appear to lean towards the latter without addressing the former. Any clues in this direction might help us understand how ants adapted to navigate using solar skylight polarization might adapt use to lunar skylight polarization and account for its different schedule. I would guess that the waxing and waning moon data can be interpreted to this effect.

      Added a paragraph discussing this distinction in mechanisms and the limits of the current data set in untangling them. An interesting topic for a follow up to be sure.

      Effects of moon fullness and phase on precision 

      As well as the noted effect on shift magnitudes, the distributions of exit headings and reorientations also appear to differ in their precision (i.e., mean vector length) across moon phases, with somewhat shorter vectors for smaller fractions of the moon illuminated. Although these distributions are a composite of the two distributions of angles subtracted from one another to obtain these turn angles, the precision of the resulting distribution should be proportional to the original distributions. It would be interesting to know whether these differences result from poorer overall orientation precision, or more variability in reorientation, on quarter moon and crescent moon nights, and to what extent this might be attributed to sky brightness or degree of polarization.

      See below for response to this and the next reviewer comment

      N.B. The Watson-Williams tests for difference in mean angle are also sensitive to differences in sample variance. This can be ruled out with another variety of the test, also proposed by Watson and Williams, to check for unequal variances, for which the F statistic is = (n2-1)*(n1-R1) / (n1-1)*(n2-R2) or its inverse, whichever is >1. 

      We have looked at the amount of variance from the mean heading direction in terms of both the shifts and the reorientations and found no significant difference in variance between all relevant conditions. It is possible (and probably likely) that with a higher n we might find these differences but with the current data set we cannot make statistical statements regarding degradations in navigational precision.  

      As an additional analysis to address the Watson-Williams test‘s sensitivity to changes in variance, we have added var test comparisons for each of the comparisons, which is a well-established test to compare variance changes. None of these were significantly different, suggesting the observed differences in the WW tests are due to changes in the mean vector and not the distribution. We have added this test to the text.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      I have only very few minor suggestions to improve the manuscript: 

      (1) While I fully agree with the authors that their study, to the best of my knowledge, provides the first proof (in any animal) of the use of the moon's polarization pattern, the many repetitions of this fact disturb the flow of the text and could be cut at several instances. 

      Yes, it is indeed repeated to an annoying degree. 

      We have removed these beyond bookending mentions (Abstract and Discussion).

      (2) In my opinion, the authors did not change the "ambient polarization pattern" when using the linear polarization filter (e.g., l. 55, 170, 177 ...). The linear polarizer presents an artificial polarization pattern with a much higher degree of polarization in comparison to the ambient polarization pattern. I would suggest re-phrasing this, to emphasize the artificial nature of the polarization pattern under the polarizer.

      We have made these suggested changes throughout the text to clarify. We no longer say the ambient pattern was   

      (3) Line 377: I do not see the link between the sentence and Figure 7 

      Changed where in the discussion we refer to Figure 7.

      (4) Figure 7 upper part: In my opinion, the upper part of Figure 7 does not add any additional value to the illustration of the data as compared to Figure 5 and could be cut.

      We thought it might be easier for some reader to see the shifts as a dial representation with the shift magnitude converted to 0-100% rather than the shifts in Figure 5. This makes it somewhat like a graphical abstract summarising the whole study.

      I agree that Figure 5 tells the same story but a reader that has little background in directional stats might find figure 7 more intuitive. This was the intent at least. 

      If it becomes a sticking point, then we can remove the upper portion.  

      Reviewer #2 (Recommendations For The Authors): 

      MINOR CORRECTIONS AND QUERIES 

      Line 117: THE majority 

      Corrected

      Lines 129-130: Do you have a reference to support this statement? I am unaware of experiments that show that homing ants count their steps, but I could have missed it.

      We have added the references that unpack the ant pedometer.  

      Line 140: remove "the" in this line. 

      Removed

      Line 170: We need more details here about the spectral transmission properties of the polariser (and indeed which brand of filter, etc.). For instance, does it allow the transmission of UV light?

      Added

      Line 239: "...tested identicALLY to ...." 

      Corrected

      Lines 242-258 (Vector testing): I must admit I found the description of these experiments very difficult to follow. I read this section several times and felt no wiser as a result. I think some thought needs to be given to better introduce the reader to the rationale behind the experiment (e.g., start by expanding lines 243-246, and maybe add a methods figure that shows the different experimental procedures).

      I have rewritten this section of the methods to clearly state the experiment rational and to be clearer as to the methodology.

      Also Added a methods panel to Figure 6.

      Line 247: "reoriented only halfway". What does this mean? Do you mean with half the expected angle?

      Yes, this is a bit unclear. We have altered for clarity:

      ‘only altered their headings by about half of the 45° e-vector shift (25.2°± 3.7°), despite being tested on near-full-moon nights.’

      Results section (in general): In Figure 1 (which is a very nice figure!) you go to all the trouble of defining b degrees (exit headings) and c degrees (reorientation headings), which are very intuitive for interpreting the results, and then you totally abandon these convenient angles in favour of an amorphous Greek symbol Phi (Figs. 2-6) to describe BOTH exit and reorientation headings. Why?? It becomes even more confusing when headings described by Phi can be typically greater than 300 degrees in the figures, but they are never even close to this in the text (where you seem to have gone back to using the b degrees and c degrees angles, without explicitly saying so). Personally, I think the b degrees and c degrees angles are more intuitive (and should be used in both the text and the figures), but if you do insist on using Phi then you should use it consistently in both the text and the figures. 

      Replaced Phi with b° and c° for both figures and in the text.

      Finally, for reorientation angles in Figure 4A, you say that the angle is 16.5 degrees. This angle should have been 143.5 degrees to be consistent with other figures. 

      Yes, the reorientation was erroneously copied from the shift data (it is identical in both the +45 shift and reorientation for Figure 4A). This has now been corrected

      Line 280, and many other lines: Wherever you refer to two panels of the same figure, they should be written as (say) Figure 2A, B not Figure 2AB.

      Changed as requested throughout the text.

      Line 295 (Waxing lunar phases): For these experiments, which nest are you using? 1 or 2?

      We have added that this is nest 1. 

      Figure 3B: The title of this panel should be "Waxing Crescent Moon" I think. 

      Ah yes, this is incorrect in the original submission. I have fixed this.

      Lines 312-313: Here it sounds as though the ants went right back to the full +/- 45 degrees orientations when they clearly didn't (it was -26.6 degrees and 189.9 degrees). Maybe tone the language down a bit here.

      Changed this to make clear the orientation shift is only ‘towards’ the ambient lunar e-vector.

      Line 327: Insert "see" before "Figure 5" 

      Added

      Line 329: See comment for Line 295. 

      We have added that this is nest 1. 

      Lines 357-373 (Vector testing): Again, because of the somewhat confusing methods section describing these experiments, these results were hard to follow, both here and in the Discussion. I don't really understand what you have shown here. Re-think how you present this (and maybe re-working the Methods will be half the battle won). 

      I have rewritten these sections to try to make clear these are ant tested with differences in vector length 6m vs. 2m, tested at the same location. Hopefully this is much clearer, but I think if these portions remain a bit confusing that a full rename of the conditions is in order. Something like long vector and short vector would help but comes with the problem of not truly describing what the purpose of the test is which is to control for location, thus the current condition names. As it stands, I hope the new clarifications adequately describe the reasoning while keeping the condition names. Of course, I am happy to make more changes here as making this clear to readers is important for driving home that the path integrator is in play.

      See current change to results as an example: ‘Both forgers with a long ~6m remaining vector (Halfway Release), or a short ~2m remaining vector (Halfway Collection & Release), tested at the same location_,_ exhibited significant shifts to the right of initial headings when the e-vector was rotated clockwise +45°.’

      Line 361: I think this should be 16.8 not 6.8 

      Yes, you are correct. Fixed in text (16.8).

      Line 365: I think this should be -12.7 not 12.7 

      Yes, you are correct. Fixed in text (–12.7).

      Line 408: "morning twilight". Should this be "morning solar twilight"? Plus "M midas" should be "M. midas"

      Added and fixed respectively.

      Line 440. "location" is spelt wrong. 

      Fixed spelling.

      Line 444: "...WITH longer accumulated vectors, ..." 

      Added ‘with’ to sentence. 

      Line 447: Remove "that just as"

      Removed.

      Line 448: "Moonlight polarised light" should be "Polarised moonlight" 

      Corrected.

      Lines 450-453: This sentence makes little sense scientifically or grammatically. A "limiting factor" can't be "accomplished". Please rephrase and explain in more detail.

      This sentence has been rephrased:

      ‘The limiting factors to lunar cue use for navigation would instead be the ant’s detection threshold to either absolute light intensity, polarization sensitivity and spectral sensitivity. Moonlight is less UV rich compared to direct sunlight and the spectrum changes across the lunar cycle (Palmer and Johnsen 2015).’

      Line 474: Re-write as "... due to the incorporation of the celestial compass into the path integrator..."

      Added.

      Reviewer #3 (Recommendations For The Authors): 

      Minor comments 

      Line 84 I am not sure that we can infer attentional processes in orientation to lunar skylight, at least it has not yet been investigated.

      Yes, this is a good point. We have changed ‘attend’ to ‘use’.  

      Line 90 This description of polarized light is a little vague; what is meant by the phrase "waves which occur along a single plane"? (What about the magnetic component? These waves can be redirected, are they then still polarized? Circular polarization?). I would recommend looking at how polarized light is described in textbooks on optics.

      Response: We have rewritten the polarised light section to be clearer using optics and light physics for background. 

      Line 92 The phrase "e-vector" has not been described or introduced up to this point.

      We now introduce e-vector and define it. 

      ‘Polarised light comprises light waves which occur along a single plane and are produced as a by-product of light passing through the upper atmosphere (Horváth & Varjú 2004; Horváth et al., 2014). The scattering of this light creates an e-vector pattern in the sky, which is arranged in concentric circles around the sun or moon's position with the maximum degree of polarisation located 90° from the source. Hence when the sun/moon is near the horizon, the pattern of polarised skylight is particularly simple with uniform direction of polarisation approximately parallel to the north-south axes (Dacke et al., 1999, 2003; Reid et al. 2011; Zeil et al., 2014).’

      Happy to make further changes as well.  

      Line 107 Diurnal dung beetles can also orient to lunar skylight if roused at night (Smolka et al., 2016), provided the sky is bright enough. Perhaps diurnal ants might do the same?

      Added the diurnal dung beetles mention as well as the reference.

      Also, a very good suggestion using diurnal bull ants.

      Line 146 Instead of lunar calendar the authors appear to mean "lunar cycle". 

      Changed

      Line 165 In Figure 1B, it looks like visual access to the sky was only partly "unobstructed". Indeed foliage covers as least part of the sky right up to the zenith.

      We have added that the sky is partially obstructed. 

      Line 179 This could also presumably be checked with a camera? 

      For this testing we tried to keep equipment to a minimum for a single researcher walking to and from the field site given the lack of public transport between 1 and 4am. But yes, for future work a camera based confirmation system would be easier. 

      Line 243 The abbreviation "PI" has not been described or introduced up to this point.

      Changes to ‘path integration derived vector lengths….’

      Line 267 The method for comparing the leftwards and rightwards shifts should be described in full here (presumably one set of shifts was mirrored onto the other?).

      We have added the below description to indicate the full description of the mirroring done to counterclockwise shifts.

      ‘To assess shift magnitude between −45° and +45° foragers within conditions, we calculated the mirror of shift in each −45° condition, allowing shift magnitude comparisons within each condition. Mirroring the −45° conditions was calculated by mirroring each shift across the 0° to 180° plane and was then compared to the corresponding unaltered +45 condition.’

      Discussion Might the brightness and spectrum of lunar skylight also play a role here?

      We have added a section to the discussion to mention the aspects of moonlight which may be important to these animals, including the spectrum, brightness and polarisation intensity.  

      Line 451 The sensitivity threshold to absolute light intensity would not be the only limiting factor here. Polarization sensitivity and spectral sensitivity may also play a role (moonlight is less UV rich than sunlight and the spectrum of twilight changes across the lunar cycle: Palmer & Johnsen, 2015). 

      Added this clarification.

      Line 478 Instead of the "masculine ordinal" symbol used (U+006F) here a degree symbol (U+00B0) should be used.

      Ah thank you, we have replaced this everywhere in the text.  

      Line 485 It should be possible to calculate the misalignment between polarization pattern before and after this interruption of celestial cues. Does the magnitude of this misalignment help predict the size of the reorientation?

      Reorientations are highly correlated with the shift size under the filter, which makes sense as larger shifts mean that foragers need to turn back more to reorient to both the ambient pattern and to return to their visual route. Reorientation sizes do not show a consistent reduction compared to under-the-filter shifts when the lunar phase is low and is potentially harder to detect.

      I have reworked this line in the text as I do not think there is much evidence for misalignment and it might be more precise to say that overnight periods where the moon is not visible may adversely impact the path integrator estimate, though it is currently unknown the full impact of this celestial cue gap of if other cues might also play a role.

      Line 642 "from their" should be "relative to" 

      Changed as requested

      Figure 1B Some mention should be made of the differences in vegetation density. 

      Added a sentence to the figure caption discussing the differences in both vegetation along the horizon and canopy cover.

      Figures 2-6 A reference line at 0 degrees change might help the reader to assess the size of orientation changes visually. Confidence intervals around the mean orientation change would also help here.

      We have now added circular grid lines and confidence intervals to the circular plots. These should help make the heading changes clear to readers.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment <br /> This valuable study is a companion to a paper introducing a theoretical framework and methodology for identifying Cancer Driving Nucleotides (CDNs). While the evidence that recurrent SNVs or CDNs are common in true cancer driver genes is solid, the evidence that many more undiscovered cancer driver mutations will have CDNs, and that this approach could identify these undiscovered driver genes with about 100,000 samples, is limited. 

      Same criticism as in the eLife assessment of eLife-RP-RA-2024-99340 (https://elifesciences.org/reviewed-preprints/99340). Hence, please refer to the responses to the companion paper.

      Public Reviews:

      Reviewer #1 (Public Review):

      The study investigates Cancer Driving Nucleotides (CDNs) using the TCGA database, finding that these recurring point mutations could greatly enhance our understanding of cancer genomics and improve personalized treatment strategies. Despite identifying 50-150 CDNs per cancer type, the research reveals that a significant number remain undiscovered, limiting current therapeutic applications, and underscoring the need for further larger-scale research.

      Strengths:

      The study provides a detailed examination of cancer-driving mutations at the nucleotide level, offering a more precise understanding than traditional gene-level analyses. The authors found a significant number of CDNs remain undiscovered, with only 0-2 identified per patient out of an expected 5-8, indicating that many important mutations are still missing. The study indicated that identifying more CDNs could potentially significantly impact the development of personalized cancer therapies, improving patient outcomes.

      Weaknesses:

      The study is constrained by relatively small sample sizes for each cancer type, which reduces the statistical power and robustness of the findings. ICGC and other large-scale WGS datasets are publicly available but were not included in this study.

      Thanks. We indeed have used all public data, including GENIE (figure 7 of the companion paper), ICGC and other integrated resources such as COSMIC. The main study is based on TCGA because it is unbiased for estimating the probability of CDN occurrences. In many datasets, the numerators are given but the denominators are not (the number of patients with the mutation / the total number of patients surveyed). In GENIE, we observed that E(u) estimated upon given sequencing panels are much smaller than in TCGA, this might be due to the selective report of nonsynonymous mutations for synonymous mutations are generally considered irrelevant in tumorigenesis.

      To be able to identify rare driver mutations, more samples are needed to improve the statistical power, which is well-known in cancer research. The challenges in direct functional testing of CDNs due to the complexity of tumor evolution and unknown mutation combinations limit the practical applicability of the findings.

      We fully agree. We now add a few sentences, making clear that the theory allows us to see how much more can be gained by each stepwise increase in sample size. For example, when the sample size reaches 106, further increases will yield almost no gain in confidence of CDNs identified (see figures of eLife-RP-RA-2024-99340. As pointed out in our provisional responses, an important strength of this pair of studies is that the results are testable. The complexity is the combination of mutations required for tumorigenesis and the identification of such combinations is the main goal and strength of this pair of studies. We add a few sentences to this effect.

      While the importance of large sample sizes in identifying cancer drivers is well-recognized, the analytical framework presented in the companion paper (https://elifesciences.org/reviewed-preprints/99340) goes a step further by quantitatively elucidating the relationship between sample size and the resolution of CDN detection.

      The question is very general as it is about multigene interactions, or epistasis. The challenges are true in all aspects of evolutionary biology, for example, the genetics of reproductive isolation(Wu and Ting 2004). The issue of epistasis is difficult because most, if not all, of the underlying mutations have to be identified in order to carry out functional tests. While the full identification is rarely feasible, it is precisely the objective of the CDN project. When the sample size increases to 100,000 for a cancer type, all point mutations for that cancer type should be identifiable.

      The QC of the TCGA data was not very strict, i.e, "patients with more than 3000 coding region point mutations were filtered out as potential hypermutator phenotypes", it would be better to remove patients beyond +/- 3*S.D from the mean number of mutations for each cancer type. Given some point mutations with >3 hits in the TCGA dataset, they were just false positive mutation callings, particularly in the large repeat regions in the human genome.

      Thanks. The GDC data portal offers data calls from multiple pipelines, enabling us to select mutations detected by at least two pipelines. While including patients with hypermutator phenotypes could introduce potential noise, as shown in Eq. 10 of the main text, our method for defining the upper limit of i* is relative robust to the fluctuations in the E(u) of the corresponding cancer population. Since readers may often ask about this, we expand the Methods section somewhat to emphasize this point.

      The codes for the statistical calculation (i.e., calculation of Ai_e, et al) are not publicly available, which makes the findings hard to be replicated.

      We have now updated the section of “Data Availability” in both papers. The key scripts for generating the major results are available at: https://gitlab.com/ultramicroevo/cdn_v1.

      Reviewer #2 (Public Review):

      Summary:

      The study proposes that many cancer driver mutations are not yet identified but could be identified if they harbor recurrent SNVs. The paper leverages the analysis from Paper #1 that used quantitative analysis to demonstrate that SNVs or CDNs seen 3 or more times are more likely to occur due to selection (ie a driver mutation) than they are to occur by chance or random mutation.

      Strengths:

      Empirically, mutation frequency is an excellent marker of a driver gene because canonical driver mutations typically have recurrent SNVs. Using the TCGA database, the paper illustrates that CDNs can identify canonical driver mutations (Figure 3) and that most CDNs are likely to disrupt protein function (Figure 2). In addition, CDNs can be shared between cancer types (Figure 4).

      Weaknesses:

      Driver alteration validation is difficult, with disagreements on what defines a driver mutation, and how many driver mutations are present in a cancer. The value proposed by the authors is that the identification of all driver genes can facilitate the design of patient-specific targeting therapies, but most targeted therapies are already directed towards known driver genes. There is an incomplete discussion of oncogenes (where activating mutations tend to target a single amino acid or repeat) and tumor suppressor genes (where inactivating mutations may be more spread across the gene). Other alterations (epigenetic, indels, translocations, CNVs) would be missed by this type of analysis.

      The above paragraph has three distinct points. We shall respond one by one.

      First, …  can facilitate the design of patient-specific targeting therapies, but most targeted therapies are already directed towards known driver genes…

      We state in the text of Discussion the following that shows only a few best-known driving mutations have been targeted. It is accurate to say that < 5% of CDNs we have identified are on the current targeting list. Furthermore, this list we have compiled is < 10% of what we expect to find.

      Direct functional test of CDNs would be to introduce putative cancer-driving mutations and observe the evolution of tumors. Such a task of introducing multiple mutations that are collectively needed to drive tumorigenesis has been done only recently, and only for the best-known cancer driving mutations (Ortmann et al. 2015; Takeda et al. 2015; Hodis et al. 2022). In most tumors, the correct combination of mutations needed is not known. Clearly, CDNs, with their strong tumorigenic strength, are suitable candidates.

      Second, “There is an incomplete discussion of oncogenes (where activating mutations tend to target a single amino acid or repeat) and tumor suppressor genes (where inactivating mutations may be more spread across the gene).”

      We sincerely thank the reviewer for this insightful comment. Below are two new paragraphs in the Discussion pertaining to the point:

      In this context, we should comment on the feasibility of targeting CDNs that may occur in either oncogenes (ONCs) or tumor suppressor genes (TSGs). It is generally accepted that ONCs drive tumorigenesis thanks to the gain-of-function (GOF) mutations whereas TSGs derive their tumorigenic powers by loss-of-function (LOF) mutations. It is worthwhile to point out that, since LOF mutations are likely to be more widespread on a gene, CDNs are biased toward GOF mutations. The often even distribution of non-sense mutations along the length of TSGs provide such evidence. As gene targeting aims to diminish gene functions, GOF mutations are perceived to be targetable whereas LOF mutations are not. By extension, ONCs should be targetable but TSGs are not. This last assertion is not true because mutations on TSGs may often be of the GOF kind as well.

      The data often suggest that mis-sense mutations on TSGs are of the GOF kind. If mis-sense mutations are far more prevalent than nonsense mutations in tumors, the mis-sense mutations cannot possibly be LOF mutations. (After all, it is not possible to lose more functions than nonsense mutations.) For example, AAA to AAC (K to Q) is a mis-sense mutation while AAA to AAT (K to stop) is a non-sense mutation. In a separate study (referred to as the escape-route analysis), we found many cases where the mis-sense mutations on TSGs are more prevalent (> 10X) than nonsense mutations. Another well-known example is the distribution of non-sense mutations TSGs. For example, on APC, a prominent TSG, non-sense mutations are far more common in the middle 20% of the gene than the rest (Zhang and Shay 2017; Erazo-Oliveras et al. 2023). The pattern suggests that even these non-sense mutations could have GOF properties. 

      The following response is about the clinical implications of our CDN analysis. Canonical targeted therapy often relies on the Tyrosine Kinase Inhibitors (TKIs) (Dang et al. 2017; Danesi et al. 2021; Waarts et al. 2022). Theoretically, any intervention that suppresses the expression of gain-of-function (GOF) CDNs could potentially have therapeutic value in cancer treatment. This leads us to a discussion of oncogenes versus TSGs in the context of GOF / LOF (loss of function) mutations. Not all mutations on oncogenes have oncogenic effect, besides, truncated mutations in oncogenes are often subject to negative selection (Bányai et al. 2021), the identification of CDNs within oncogenes is therefore crucial for developing effective cancer treatment guidelines. Secondly, while TSGs are generally believed to promote cancer development via loss of function mutations, research suggests that certain mutations within TSGs can have GOF-like effect, such as the dominant negative effect of truncated TP53 mutations (Marutani et al. 1999; de Vries et al. 2002; Gerasimavicius et al. 2022). Characterizing driver mutations as GOF or LOF mutations could potentially expand the scope of targeted cancer therapy. We’ll address this issue in a third study in preparation.

      The method could be more valuable when applied to the noncoding genome, where driver mutations in promoters or enhancers are relatively rare, or as yet to be discovered. Increasingly more cancers have had whole genome sequencing. Compared to WES, criteria for driver mutations in noncoding regions are less clear, and this method could potentially provide new noncoding driver CDNs. Observing the same mutation in more than one cancer specimen is empirically unusual, and the authors provide a solid quantitative analysis that indicates many recurrent mutations are likely to be cancer-driver mutations.

      Again, we are grateful for the comments which prompt us to expand a paragraph in Discussion, reproduced below.

      The CDN approach has two additional applications. First, it can be used to find CDNs in non-coding regions. Although the number of whole genome sequences at present is still insufficient for systematic CDN detection, the preliminary analysis suggests that the density of CDNs in non-coding regions is orders of magnitude lower than in coding regions. Second, CDNs can also be used in cancer screening with the advantage of efficiency as the targeted mutations are fewer. For the same reason, the false negative rate should be much lower too. Indeed, the false positive rate should be far lower than the gene-based screen which often shows a false positive rate of >50% (supplement File S1).

      Again, we are grateful that Reviewer #2 have addressed the potential value of our study in finding cancer drivers in non-coding regions. A major challenge in this area lies in defining the appropriate L value as presented in Eq. 10. In the main text, we used a gamma distribution to account for the variability of mutation rates across sites in coding region. For the non-coding region, we will categorize these regions based on biological annotations. The goal is to set different i* cutoffs for different genomic regions (such as heterochromatin / euchromatin, GC-rich regions or centromeric regions), and avoid false positive calls for CDN in repeated regions (Elliott and Larsson 2021; Peña et al. 2023).

      References

      Bányai L, Trexler M, Kerekes K, Csuka O, Patthy L. 2021. Use of signals of positive and negative selection to distinguish cancer genes and passenger genes. Elife 10:e59629.

      Danesi R, Fogli S, Indraccolo S, Del Re M, Dei Tos AP, Leoncini L, Antonuzzo L, Bonanno L, Guarneri V, Pierini A, et al. 2021. Druggable targets meet oncogenic drivers: opportunities and limitations of target-based classification of tumors and the role of Molecular Tumor Boards. ESMO Open 6:100040.

      Dang CV, Reddy EP, Shokat KM, Soucek L. 2017. Drugging the “undruggable” cancer targets. Nat Rev Cancer 17:502–508.

      Elliott K, Larsson E. 2021. Non-coding driver mutations in human cancer. Nat Rev Cancer 21:500–509.

      Erazo-Oliveras A, Muñoz-Vega M, Mlih M, Thiriveedi V, Salinas ML, Rivera-Rodríguez JM, Kim E, Wright RC, Wang X, Landrock KK, et al. 2023. Mutant APC reshapes Wnt signaling plasma membrane nanodomains by altering cholesterol levels via oncogenic β-catenin. Nat Commun 14:4342.

      Gerasimavicius L, Livesey BJ, Marsh JA. 2022. Loss-of-function, gain-of-function and dominant-negative mutations have profoundly different effects on protein structure. Nat Commun 13:3895.

      Hodis E, Triglia ET, Kwon JYH, Biancalani T, Zakka LR, Parkar S, Hütter J-C, Buffoni L, Delorey TM, Phillips D, et al. 2022. Stepwise-edited, human melanoma models reveal mutations’ effect on tumor and microenvironment. Science 376:eabi8175.

      Marutani M, Tonoki H, Tada M, Takahashi M, Kashiwazaki H, Hida Y, Hamada J, Asaka M, Moriuchi T. 1999. Dominant-negative mutations of the tumor suppressor p53 relating to early onset of glioblastoma multiforme. Cancer Res 59:4765–4769.

      Ortmann CA, Kent DG, Nangalia J, Silber Y, Wedge DC, Grinfeld J, Baxter EJ, Massie CE, Papaemmanuil E, Menon S, et al. 2015. Effect of Mutation Order on Myeloproliferative Neoplasms. N Engl J Med 372:601–612.

      Peña MV de la, Summanen PAM, Liukkonen M, Kronholm I. 2023. Chromatin structure influences rate and spectrum of spontaneous mutations in Neurospora crassa. Genome Res. 33:599–611.

      Takeda H, Wei Z, Koso H, Rust AG, Yew CCK, Mann MB, Ward JM, Adams DJ, Copeland NG, Jenkins NA. 2015. Transposon mutagenesis identifies genes and evolutionary forces driving gastrointestinal tract tumor progression. Nat Genet 47:142–150.

      de Vries A, Flores ER, Miranda B, Hsieh H-M, van Oostrom CThM, Sage J, Jacks T. 2002. Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proceedings of the National Academy of Sciences 99:2948–2953.

      Waarts MR, Stonestrom AJ, Park YC, Levine RL. 2022. Targeting mutations in cancer. J Clin Invest 132:e154943.

      Wu C-I, Ting C-T. 2004. Genes and speciation. Nat Rev Genet 5:114–122.

      Zhang L, Shay JW. 2017. Multiple Roles of APC and its Therapeutic Implications in Colorectal Cancer. JNCI: Journal of the National Cancer Institute 109:djw332.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      The authors proposed a framework to estimate the posterior distribution of parameters in biophysical models. The framework has two modules: the first MLP module is used to reduce data dimensionality and the second NPE module is used to approximate the desired posterior distribution. The results show that the MLP module can capture additional information compared to manually defined summary statistics. By using the NPE module, the repetitive evaluation of the forward model is avoided, thus making the framework computationally efficient. The results show the framework has promise in identifying degeneracy. This is an interesting work.

      We thank the reviewer for the positive comments made on our manuscript. 

      Reviewer #1 (Recommendations For The Authors): 

      I have some minor comments. 

      (1) The uGUIDE framework has two modules, MLP and NPE. Why are the two modules trained jointly? The MLP module is used to reduce data dimensionality. Given that the number of features for different models is all fixed to 6, why does one need different MLPs? This module should, in principle, be general-purpose and independent of the model used.

      The MLP must be trained together with the NPE module to maximise inference performance in terms of accuracy and precision. Although the number of features predicted by the MLP was fixed to six, the characteristics of these six features can be very different, depending on the chosen forward model and the available data, as we showed in Appendix 1 Figure 1. Training the MLP independently of the NPE would result in suboptimal performance of µGUIDE, with potentially higher bias and variance of the predicted posterior distributions. We have now added these considerations in the Methods section.

      (2) The authors mentioned at L463 that all the 3 models use 6 features. From L445 to L447, it seems model 3 has 7 unknown parameters. How can one use 6 features to estimate 7 unknowns? 

      Thank you for pointing out the lack of clarity regarding the parameters to estimate in this section. Model 3 is a three-compartment model, whose parameters of interest are the signal fraction and diffusivity from water diffusing in the neurite space (fn and Dn), the neurites orientation dispersion index (ODI), the signal fraction in cell bodies (fs), a proxy to soma radius and diffusivity (Cs), and the signal fraction and diffusivity in the extracellular space (fe and De). The signal fractions are constrained by the relationship fn + fs + fe = 1, hence fe  i_s calculated from the estimated _fn and fs. This leaves us with 6 parameters to estimate: fn, Dn, ODI, fs, Cs, De. We clarified it in the revised version of the paper. 

      (3) L471, Rician noise is not a proper term. Rician distribution is the distribution of pixel intensities observed in the presence of noise. And Rician distribution is the result of magnitude reconstruction. See "Noise in magnitude magnetic resonance images" published in 2008. I assume that real-valued Gaussian noise is added to simulated data. 

      We apologize for the confusion. We added Gaussian noise to the real and imaginary parts of the simulated signals and then used the magnitude of this noisy complex signal for our experiments. We rephrased the sentence for more clarity.

      (4) L475, why thinning is not used in MCMC? In figure 3, the MCMC results are more biased than uGUIDE, is it related to no thinning in MCMC? 

      We followed the recommendations by Harms et al. (2018) for the MCMC experiments. They analysed the impact of thinning (among other parameters) on the estimated posterior distributions. Their findings indicate that thinning is unnecessary and inefficient, and they recommend using more samples instead. For further details, we refer the reviewer to their publication, along with the theoretical works they cite. We have now added this note in the Methods section.

      (5) Did the authors try model-fitting methods with different initializations to get a distribution of the parameters? Like the paper "Degeneracy in model parameter estimation for multi‐compartmental diffusion in neuronal tissue". For the in vivo data, it is informative to see the model-fitting results.

      No, we did not try model-fitting methods with different initializations because such methods provide only a partial description of the solution landscape, which can be interpreted as a partial posterior distribution. Although this approach can help to highlight the problem of degeneracy, it does not provide a complete description of all potential solutions. In contrast, MCMC estimates the full posterior distribution, offering a more accurate and precise characterization of degeneracies and uncertainties compared to model-fitting methods with varying initializations. Hence, we decided to use MCMC as benchmark. We have now added these considerations to the Discussion section. 

      Reviewer #2 (Public Review): 

      Summary: 

      The authors improve the work of Jallais et al. (2022) by including a novel module capable of automatically learning feature selection from different acquisition protocols inside a supervised learning framework. Combining the module above with an estimation framework for estimating the posterior distribution of model parameters, they obtain rich probabilistic information (uncertainty and degeneracy) on the parameters in a reasonable computation time. 

      The main contributions of the work are: 

      (1) The whole framework allows the user to avoid manually defining summary statistics, which may be slow and tedious and affect the quality of the results. 

      (2) The authors tested the proposal by tackling three different biophysical models for brain tissue and using data with characteristics commonly used by the diffusion-MRmicrostructure research community. 

      (3) The authors validated their method well with the state-of-the-art. 

      The main weakness is: 

      (1) The methodology was tested only on scenarios with a signal-to-noise ratio (SNR) equal to 50. It is interesting to show results with lower SNR and without noise that the method can detect the model's inherent degenerations and how the degeneration increases when strong noise is present. I suggest expanding the Figure in Appendix 1 to include this information. 

      The authors showed the utility of their proposal by computing complex parameter descriptors automatically in an achievable time for three different and relevant biophysical models. 

      Importantly, this proposal promotes tackling, analysing, and considering the degenerated nature of the most used models in brain microstructure estimation. 

      We thank the reviewer for these positive remarks. 

      Concerning the main weakness highlighted by the reviewer: In our submitted work, we presented results both without noise and with a signal-to-noise ratio (SNR) equal to 50 (similar to the SNR in the experimental data analysed). Figure 5 shows exemplar posterior distributions obtained in a noise-free scenario, and Table 1 reports the number of degeneracies for each model on 10000 noise-free simulations. These results highlight that the presence of degeneracies is inherent to the model definition. Figures 3, 6 and 7 present results considering an SNR of 50. We acknowledge that results with lower SNR have not been included in the initial submission. To address this, we added a figure in the appendix illustrating the impact of noise on the posterior distributions. Specifically, Figure 1A of Appendix 2 shows posterior distributions estimated from signals generated using an exemplar set of model parameters with varying noise levels

      (no noise, SNR=50 and SNR=25). Figure 1B presents uncertainties values obtained on 1000 simulations for each noise level. We observe that, as the SNR reduces, uncertainty increases. Noise in the signal contributes to irreducible variance. The confidence in the estimates therefore reduces as the noise level increases.  

      Reviewer #2 (Recommendations For The Authors):  

      Some suggestions: 

      Panel A of Figure 2 may deserve a better explanation in the Figure's caption. 

      We agree that the description of panel A of figure 2 was succinct and added more explanation in the figure’s caption.  

      The caption of Figure 3 should mention that the panel's titles are the parameters of the used biophysical models. 

      We added in the caption of figure 3 that the names of the model parameters are indicated in the titles of the panels. We apologise for the confusion it may have created.

      In equation (3), the authors should indicate the summation index. 

      We apologise for not putting the summation index in equation 3. We added it in the revised version.

      In line 474, the authors should discuss if the systematic use of the maximum likelihood estimator as an initializer for the sampling does not bias the computed results. 

      Concerning the MCMC estimations, we followed the recommendations from Harms et al. (2018). They investigated the use of starting from the maximum likelihood estimator (MLE). They concluded that starting from the MLE allows to start in the stationary distribution of the Markov chain, removing the need for some burn-in. Additionally, they showed that initializing the sampling from the MLE has the advantage of removing salt- and pepper-like noise from the resulting mean and standard deviation maps. We have now added this note in the Methods section.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Tubert C. et al. investigated the role of dopamine D5 receptors (D5R) and their downstream potassium channel, Kv1, in the striatal cholinergic neuron pause response induced by thalamic excitatory input. Using slice electrophysiological analysis combined with pharmacological approaches, the authors tested which receptors and channels contribute to the cholinergic interneuron pause response in both control and dyskinetic mice (in the L-DOPA off state). They found that activation of Kv1 was necessary for the pause response, while activation of D5R blocked the pause response in control mice. Furthermore, in the L-DOPA off-state of dyskinetic mice, the absence of the pause response was restored by the application of clozapine. The authors claimed that (1) the D5R-Kv1 pathway contributes to the cholinergic interneuron pause response in a phasic dopamine concentration-dependent manner, and (2) clozapine inhibits D5R in the L-DOPA off state, which restores the pause response.

      Strengths:

      The electrophysiological and pharmacological approaches used in this study are powerful tools for testing channel properties and functions. The authors' group has well-established these methodologies and analysis pipelines. Indeed, the data presented were robust and reliable.

      Thank you for your comments.

      Weaknesses:

      Although the paper has strengths in its methodological approaches, there is a significant gap between the presented data and the authors' claims.

      There was no direct demonstration that the D5R-Kv1 pathway is dominant when dopamine levels are high. The term 'high' is ambiguous, and it raises the question of whether the authors believe that dopamine levels do not reach the threshold required to activate D5R under physiological conditions.

      We acknowledge that further work is necessary to clarify the role of the D5R in physiological conditions. While we haven’t found effects of the D1/D5 receptor antagonist SCH23390 on the pause response in control animals (Fig. 3), it is still possible that dopamine levels reach the threshold to stimulate D5R when burst firing of dopaminergic neurons contributes to dopamine release. We believe the pause response depends, among other factors, on the relative stimulation levels of SCIN D2 and D5 receptors, which is likely not an all-or-nothing phenomenon. To reduce ambiguity, we will change the labels referring to dopamine levels in Figure 6F.

      Furthermore, the data presented in Figure 6 are confusing. If clozapine inhibits active D5R and restores the pause response, the D5R antagonist SCH23390 should have the same effect. The data suggest that clozapine-induced restoration of the pause response might be mediated by other receptors, rather than D5R alone.

      Thank you for letting us clarify this issue. Please note that the levels of endogenous dopamine 24 h after the last L-DOPA challenge in severe parkinsonian mice are expected to be very low. In the absence of an agonist, a pure D1/D5 antagonist would not exert an effect, as demonstrated with SCH23390 alone, which did not have an impact on the SCIN response to thalamic stimulation (Fig. 6). While clozapine can also act as a D1/D5 receptor antagonist, its D1/D5 effects in absence of an agonist are attributed to its inverse agonist properties (PMID: 24931197). Notably, SCH23390 prevented the effect of clozapine, allowing us to conclude that ligand-independent D1/D5 receptor-mediated mechanisms are involved in suppressing the pause response in dyskinetic mice. We will make the point clearer in the Discussion.

      Reviewer #2 (Public review):

      Summary:

      This manuscript by Tubert et al presents the role of the D5 receptor in modulating the striatal cholinergic interneuron (CIN) pause response through D5R-cAMP-Kv1 inhibitory signaling. Their model elucidates the on / off switch of CIN pause, likely due to the different DA affinity between D2R and D5R. This machinery may be crucial in modulating synaptic plasticity in cortical-striatal circuits during motor learning and execution. Furthermore, the study bridges their previous finding of CIN hyperexcitability (Paz et al., Movement Disorder 2022) with the loss of pause response in LID mice.

      Strengths:

      The study had solid findings, and the writing was logically structured and easy to follow. The experiments are well-designed, and they properly combined electrophysiology recording, optogenetics, and pharmacological treatment to dissect/rule out most, if not all, possible mechanisms in their model.

      Thank you for your comments.

      Weaknesses:

      The manuscript is overall satisfying with only some minor concerns that need to be addressed. Manipulation of intracellular cAMP (e.g. using pharmacological analogs or inhibitors) can add additional evidence to strengthen the conclusion.

      Thank you for the suggestion. While we acknowledge that we are not providing direct evidence of the role of cAMP, we chose not to conduct these experiments because cAMP levels influence several intrinsic and synaptic currents beyond Kv1, significantly affecting  membrane oscillations and spontaneous firing, as shown in Paz et al. 2021. However, we are modifying the manuscript so there is no misinterpretation about our findings in the current work.

      Reviewer #3 (Public review):

      Summary:

      Tubert et al. investigate the mechanisms underlying the pause response in striatal cholinergic interneurons (SCINs). The authors demonstrate that optogenetic activation of thalamic axons in the striatum induces burst activity in SCINs, followed by a brief pause in firing. They show that the duration of this pause correlates with the number of elicited action potentials, suggesting a burst-dependent pause mechanism. The authors demonstrated this burst-dependent pause relied on Kv1 channels. The pause is blocked by an SKF81297 and partially by sulpiride and mecamylamine, implicating D1/D5 receptor involvement. The study also shows that the ZD7288 does not reduce the duration of the pause and that lesioning dopamine neurons abolishes this response, which can be restored by clozapine.

      Weaknesses:

      While this study presents an interesting mechanism for SCIN pausing after burst activity, there are several major concerns that should be addressed:

      (1) Scope of the Mechanism:

      It is important to clarify that the proposed mechanism may apply specifically to the pause in SCINs following burst activity. The manuscript does not provide clear evidence that this mechanism contributes to the pause response observed in behavioral animals. While the thalamus is crucial for SCIN pauses in behavioral contexts, the exact mechanism remains unclear. Activating thalamic input triggers burst activity in SCINs, leading to a subsequent pause, but this mechanism may not be generalizable across different scenarios. For instance, approximately half of TANs do not exhibit initial excitation but still pause during behavior, suggesting that the burst-dependent pause mechanism is unlikely to explain this phenomenon. Furthermore, in behavioral animals, the duration of the pause seems consistent, whereas the proposed mechanism suggests it depends on the prior burst, which is not aligned with in vivo observations. Additionally, many in vivo recordings show that the pause response is a reduction in firing rate, not complete silence, which the mechanism described here does not explain. Please address these in the manuscript.

      Thank you for your valuable feedback. While the absence of an initial burst in some TANs in vivo may suggest the involvement of alternative or additional mechanisms, it does not exclude a participation of Kv1 currents. We have seen that subthreshold depolarizations induced by thalamic inputs are sufficient to produce an afterhyperpolarization (AHP) mediated by Kv1 channels (see Tubert et al., 2016, PMID: 27568555). Although such subthreshold depolarizations are not captured in current recordings from behaving animals, intracellular in vivo recordings have demonstrated an intrinsically generated AHP after subthreshold depolarization of SCIN caused by stimulation of excitatory afferents (PMID: 15525771). Additionally, when pause duration is plotted against the number of spikes elicited by thalamic input (Fig. 1G), we found that one elicited spike is followed by an interspike interval 1.4 times longer than the average spontaneous interspike interval. We acknowledge the potential involvement of additional factors, including a decrease of excitatory thalamic input coinciding with the pause, followed by a second volley of thalamic inputs (Fig. 1G-J, after observations by Matsumoto et al., 2001- PMID: 11160526), as well as the timing of elicited spikes relative to ongoing spontaneous firing (Fig. 1D-E). Dopaminergic modulation (Fig. 3) and regional differences among striatal regions (PMID: 24559678) may also contribute to the complexity of these dynamics.

      (2) Terminology:

      The use of "pause response" throughout the manuscript is misleading. The pause induced by thalamic input in brain slices is distinct from the pause observed in behavioral animals. Given the lack of a clear link between these two phenomena in the manuscript, it is essential to use more precise terminology throughout, including in the title, bullet points, and body of the manuscript.

      While we acknowledge that our study does not include in vivo evidence, we believe ex vivo preparations have been instrumental in elucidating the mechanisms underlying the responses observed in vivo. We also agree with previous ex vivo studies in using consistent terminology. However, we will clarify the ex vivo nature of our work in the abstract and bullet points for greater transparency.

      (3) Kv1 Blocker Specificity:

      It is unclear how the authors ruled out the possibility that the Kv1 blocker did not act directly on SCINs. Could there be an indirect effect contributing to the burst-dependent pause? Clarification on this point would strengthen the interpretation of the results.

      Thank you for letting us clarify this issue. In our previous work (Tubert et al., 2016) we showed that the Kv1.3 and Kv1.1 subunits are selectively expressed in SCIN throughout the striatum. Moreover, gabaergic transmission is blocked in our preparations. We are including a phrase to make it clearer in the manuscript.

      (4) Role of D1 Receptors:

      While it is well-established that activating thalamic input to SCINs triggers dopamine release, contributing to SCIN pausing (as shown in Figure 3), it would be helpful to assess the extent to which D1 receptors contribute to this burst-dependent pause. This could be achieved by applying the D1 agonist SKF81297 after blocking nAChRs and D2 receptors.

      Thank you for letting us clarify this point. We show that blocking D2R or nAChR reduces the pause only for strong thalamic stimulation eliciting 4 SCIN spikes (Figure 3G), whereas the D1/D5 agonist SKF81297 is able to reduce the pause induced by weaker stimulation as well (Figure 3C). This may indicate that nAChR-mediated dopamine release induced by thalamic-induced bursts more efficiently activates D2R compared to D5R. We speculate that, in this context, lack of D5R activation may be necessary to keep normal levels of Kv1 currents necessary for SCIN pauses.

      (5) Clozapine's Mechanism of Action:

      The restoration of the burst-dependent pause by clozapine following dopamine neuron lesioning is interesting, but clozapine acts on multiple receptors beyond D1 and D5. Although it may be challenging to find a specific D5 antagonist or inverse agonist, it would be more accurate to state that clozapine restores the burst-dependent pause without conclusively attributing this effect to D5 receptors.

      Thank you for your insightful observation. We acknowledge the difficulty of targeting dopamine receptors pharmacologically due to the lack of highly selective D1/D5 inverse agonists. We used SCH23390, which is a highly selective D1/D5 receptor antagonist devoid of inverse agonist effects, to block clozapine’s ability to restore SCIN pauses (Figure 6C). This indicates that the restoration of SCIN pauses by clozapine depends on D1/D5 receptors. Furthermore, in a previous study, we demonstrated that clozapine’s effect on restoring SCIN excitability in dyskinetic mice (a phenomenon mediated by Kv1 channels in SCIN; Tubert et al., 2016) was not due to its action on serotonin receptors (Paz, Stahl et al., 2022). While our data do not rule out the potential contribution of other receptors, such as muscarinic acetylcholine receptors, we believe they strongly support the role of D1/D5 receptors. To reflect this, we will add a statement discussing the potential contribution of receptors beyond D1/D5.

    1. Author response:

      We thank the editor and reviewers for their feedback. We believe we can address the substantive criticisms in full, first, by providing a more explicit theoretical basis for the method. Then, we believe criticism based on assumptions about phase consistency across time points are not well founded and can be answered. Finally, in response to some reviewer comments, we will improve the surrogate testing of the method.

      We will enhance the theoretical justification for the application of higher-order singular value decomposition (SVD) to the problem of irregular sampling of the cortical area. The initial version of the manuscript was written to allow informal access to these ideas (if possible), but the reviewers find a more rigorous account appropriate. We will add an introduction to modern developments in the use of functional SVD in geophysics, meteorology & oceanography (e.g., empirical orthogonal functions) and quantitative fluid dynamics (e.g., dynamic mode decomposition) and computational chemistry. Recently SVD has been used in neuroscience studies (e.g., cortical eigenmodes). To our knowledge, our work is the first time higher-order SVD has been applied to a neuroscience problem. We use it here to solve an otherwise (apparently) intractable problem, i.e., how to estimate the spatial frequency (SF) spectrum on a sparse and highly irregular array with broadband signals.

      We will clarify the methodological strategy in more formal terms in the next version of the paper. But essentially SVD allows a change of basis that greatly simplifies quantitative analysis. Here it allows escape from estimating the SF across millions of data-points (triplets of contacts, at each sample), each of which contains multiple overlapping signals plus noise (noise here defined in the context of SF estimation) and are inter-correlated across a variety of known and unknown observational dimensions. Rather than simply average over samples, which would wash out much of the real signal, SVD allows the signals to be decomposed in a lossless manner (up to the choice of number of eigenvectors at which the SVD is truncated). The higher-order SVD we have implemented reduces the size of problem to allow quantification of SF over hundreds of components, each of which is guaranteed certain desirable properties, i.e., they explain known (and largest) amounts of variance of the original data and are orthonormal. This last property allows us to proceed as if the observations are independent. SF estimates are made within this new coordinate system.

      We will also more concretely formalise the relation between Fourier analysis and previous observations of eigenvectors of phase that are smooth gradients.

      We will very briefly review Fourier methods designed to deal with non-uniform sampling. The problems these methods are designed for fall into the non-uniform part of the spectrum from uniform–non-uniform–irregular–highly-irregular–noise. They are highly suited to, for example, interpolating between EEG electrodes to produce a uniform array for application of the fast Fourier transform (Alamia et al., 2023). However, survey across a range of applied maths fields suggests that no method exists for the degree of irregular sampling found in the sEEG arrays at issue here. In particular, the sparseness of the contact coverage presents an insurmountable hurdle to standard methods. While there exists methods for sparse samples (e.g., Margrave & Fergusen, 1999; Ying 2009), these require well-defined oscillatory behavior, e.g., for seismographic analysis. Given the problems of highly irregular sampling, sparseness of sampling and broadband, nonstationary signals, we have attempted a solution via the novel methods introduced in the current manuscript. We were able to leverage previous observations regarding the relation between eigenvectors of cortical phase and Fourier analysis, as we outline in the manuscript.

      We will extend the current 1-dimensional surrogate data to better demonstrate that the method does indeed correctly detect the ordinal relations in power on different parts of the SF spectrum. We will include the effects of a global reference signal. Simulations of cortical activity are an expensive way to achieve this goal. While the first author has published in this area, such simulations are partly a function of the assumptions put into them (i.e., spatial damping, boundary conditions, parameterization of connection fields). We will therefore use surrogate signals derived from real cortical activity to complete this task.

      Some more specific issues raised:<br /> (1) Application of the method to general neuroscience problems:<br /> The purpose of the manuscript was to estimate the SF spectrum of phase in the cortex, in the range where it was previously not possible. The purpose was not specifically to introduce a new method of analysis that might be immediately applicable to a wide range of available data-sets. Indeed, the specifics of the method are designed to overcome an otherwise intractable disadvantage of sEEG (irregular spatial sampling) in order to take advantage of its good coverage (compared to ECoG) and low volume conduction compared to extra-cranial methods. On the other hand, the developing field of functional SVD would be of interest to neuroscientists, as a set of methods to solve difficult problems, and therefore of general interest. We will make these points explicit in the next version of the manuscript. In order to make the method more accessible, we will also publish code for the key routines (construction of triplets of contacts, Morlet wavelets, calculation of higher-order SVD, calculation of SF).

      (2) Novelty:<br /> We agree with the third reviewer: if our results can convince, then the study will have an impact on the field. While there is work that has been done on phase interactions at a variety of scales, such as from the labs of Fries, Singer, Engels, Nauhaus, Logothetis and others, it does not quantify the relative power of the different spatial scales. Additionally, the research of Freeman et al. has quantified only portions of the SF spectrum of the cortex, or used EEG to estimate low SFs. We would appreciate any pointers to the specific literature the current research contributes to, namely, the SF spectrum of activity in the cortex.

      (3) Further analyses:<br /> The main results of the research are relatively simple: monotonically falling SF-power with SF; this effect occurs across the range of temporal frequencies. We provide each individual participant’s curves in the supplementary Figures. By visual inspection, it can be seen that the main result of the example participant is uniformly recapitulated. One is rarely in this position in neuroscience research, and we will make this explicit in the text.

      The research stands or falls by the adequacy of the method to estimate the SF curves. For this reason most statistical analyses and figures were reserved for ruling out confounds and exploring the limits of the methods. However, for the sake of completeness, we will now include the SF vs. SF-power correlations and significance in the next version, for each participant at each frequency.

      Since the main result was uniform across participants, and since we did not expect that there was anything of special significance about the delayed free recall task, we conclude that more participants or more tasks would not add to the result. As we point out in the manuscript, each participant is a test of the main hypothesis. The result is also consistent with previous attempts to quantify the SF spectrum, using a range of different tasks and measurement modalities (Barrie et al., 1996; Ramon & Holmes 2015; Alexander et al., 2019; Alexander et al., 2016; Freeman et al., 2003; Freeman et al. 2000). The search for those rare sEEG participants with larger coverage than the maximum here is a matter of interest to us, but will be left for a future study.

      (4) Sampling of phase and its meaningfulness:<br /> The wavelet methods used in the present study have excellent temporal resolution but poor frequency resolution. We additionally oversample the frequency range to produce visually informative plots (usually in the context of time by frequency plots, see Alexander et al., 2006; 2013; 2019). But it is not correct that the methods for estimating phase assume a narrow frequency band. Rather, the poor frequency resolution of short time-series Morlet wavelets means the methods are robust to the exact shape of the waveforms; the signal need be only approximately sinusoidal; to rise and fall. The reason for using methods that have excellent resolution in the time-domain is that previous work (Alexander et al., 2006; Patten et al. 2012) has shown that traveling wave events can last only one or two cycles, i.e., are not oscillatory in the strict sense but are non-stationary events. So while short time-window Morlet wavelets have a disadvantage in terms of frequency resolution, this means they precisely do not have the problem of assuming narrow-band sinusoidal waveforms in the signal. We strongly disagree that our analysis requires very strong assumptions about oscillations (see last point in this section).

      Our hypothesis was about the SF spectrum of the phase. When the measurement of phase is noise-like at some location, frequency and time, then this noise will not substantially contribute to the low SF parts of the spectrum compared to high SFs. Our hypothesis also concerned whether it was reasonable to interpret the existing literature on low SF waves in terms of cortically localised waves or small numbers of localised oscillators. This required us to show that low SFs dominate, and therefore that this signal must dominate any extra-cranial measurements of apparent low SF traveling waves. It does not require us to demonstrate that the various parts of the SF spectrum are meaningful in the sense of functionally significant. This has been shown elsewhere (see references to traveling waves in manuscript, to which we will also add a brief survey of research on phase dynamics).

      The calculation of phase can be bypassed altogether to achieve the initial effect described in the introduction to the methods (Fourier-like basis functions from SVD). The observed eigenvectors, increasing in spatial frequency with decreasing eigenvalues, can be reproduced by applying Gaussian windows to the raw time-series (D. Alexander, unpublished observation). For example, undertaking an SVD on the raw time-series windowed over 100ms reproduces much the same spatial eigenvectors (except that they come in pairs, recapitulating the real and imaginary parts of the signal). This reproducibility is in comparison to first estimating the phase at 10Hz using Morlet wavelets, then applying the SVD to the unit-length complex phase values.

      (5) Other issues to be addressed and improved:<br /> clarity on which experiments were analyzed (starting in the abstract) discussion of frequencies above 60Hz and caution in interpretation due to spike-waveform artefact or as a potential index of multi-unit spiking discussion of whether the ad hoc, quasi-random sampling achieved by sEEG contacts somehow inflates the low SF estimates

      References (new)<br /> Patten TM, Rennie CJ, Robinson PA, Gong P (2012) Human Cortical Traveling Waves: Dynamical Properties and Correlations with Responses. PLoS ONE 7(6): e38392. https://doi.org/10.1371/journal.pone.0038392<br /> Margrave GF, Ferguson RJ (1999) Wavefield extrapolation by nonstationary phase shift, GEOPHYSICS 64:4, 1067-1078<br /> Ying Y (2009) Sparse Fourier Transform via Butterfly Algorithm SIAM Journal on Scientific Computing, 31:3, 1678-1694

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This paper examines changes in relaxation time (T1 and T2) and magnetization transfer parameters that occur in a model system and in vivo when cells or tissue are depolarized using an equimolar extracellular solution with different concentrations of the depolarizing ion K+. The motivation is to explain T2 changes that have previously been observed by the authors in an in vivo model with neural stimulation (DIANA) and to try provide a mechanism to explain those changes.

      Strengths:

      The authors argue that the use of various concentrations of KCL in the extracellular fluid depolarize or hyperpolarize the cell pellets used and that this change in membrane potential is the driving force for the T2 (and T1-supplementary material) changes observed. In particular, they report an increase in T2 with increasing KCL concentration in the extracellular fluid (ECF) of pellets of SH-SY5Y cells. To offset the increasing osmolarity of the ECF due to the increase in KCL, the NaCL molarity of the ECF is proportionally reduced. The authors measure the intracellular voltage using patch clamp recordings, which is a gold standard. With 80 mM of KCL in the ECF, a change in T2 of the cell pellets of ~10 ms is observed with the intracellular potential recorded as about -6 mv. A very large T1 increase of ~90 ms is reported under the same conditions. The PSR (ratio of hydrogen protons on macromolecules to free water) decreases by about 10% at this 80 mM KCL concentration. Similar results are seen in a Jurkat cell line and similar, but far smaller changes are observed in vivo, for a variety of reasons discussed. As a final control, T1 and T2 values are measured in the various equimolar KCL solutions. As expected, no significant changes in T1 and T2 of the ECF were observed for these concentrations.

      Weaknesses:

      While the concepts presented are interesting, and the actual experimental methods seem to be nicely executed, the conclusions are not supported by the data for a number of reasons. This is not to say that the data isn't consistent with the conclusions, but there are other controls not included that would be necessary to draw the conclusion that it is membrane potential that is driving these T1 and T2 changes. Unfortunately for these authors, similar experiments conducted in 2008 (Stroman et al. Magn. Reson. in Med. 59:700-706) found similar results (increased T2 with KCL) but with a different mechanism, that they provide definite proof for. This study was not referenced in the current work.

      It is well established that cells swell/shrink upon depolarization/hyperpolarization. Cell swelling is accompanied by increased light transmittance in vivo, and this should be true in the pellet system as well. In a beautiful series of experiments, Stroman et al. (2008) showed in perfused brain slices that the cells swell upon equimolar KCL depolarization and the light transmittance increases. The time course of these changes is quite slow, of the order of many minutes, both for the T2-weighted MRI signal and for the light transmittance. Stroman et al. also show that hypoosmotic changes produce the exact same timecourse as the KCL depolarization changes (and vice versa for the hyperosmotic changes - which cause cell shrinkage). Their conclusion, therefore, was that cell swelling (not membrane potential) was the cause of the T2-weighted changes observed, and that these were relatively slow (on the scale of many minutes).

      What are the implications for the current study? Well, for one, the authors cannot exclude cell swelling as the mechanism for T2 changes, as they have not measured that. It is however well established that cell swelling occurs during depolarization, so this is not in question. Water in the pelletized cells is in slow/intermediate exchange with the ECF, and the solutions for the two compartment relaxation model for this are well established (see Menon and Allen, Magn. Reson. in Med. 20:214-227 (1991). The T2 relaxation times should be multiexponential (see point (3) further below). The current work cannot exclude cell swelling as the mechanism for T2 changes (it is mentioned in the paper, but not dealt with). Water entering cells dilutes the protein structures, changes rotational correlation times of the proteins in the cell and is known to increase T2. The PSR confirms that this is indeed happening, so the data in this work is completely consistent with the Stroman work and completely consistent with cell swelling associated with depolarization. The authors should have performed light scattering studies to demonstrate the presence or absence of cell swelling. Measuring intracellular potential is not enough to clarify the mechanism.

      We appreciate the reviewer’s comments. We agree that changes in cell volume due to depolarization and hyperpolarization significantly contribute to the observed changes in T2, PSR, and T1, especially in pelletized cells. For this reason, we already noted in the Discussion section of the original manuscript that cell volume changes influence the observed MR parameter changes, though this study did not present the magnitude of the cell volume changes. In this regard, we thank the reviewer for introducing the work by Stroman et al. (Magn Reson Med 59:700-706, 2008). When discussing the contribution of the cell volume changes to the observed MR parameter changes, we will additionally discuss the work of Stroman et al. in the revised manuscript.

      In addition, we acknowledge that the title and main conclusion of the original manuscript may be misleading, as we did not separately consider the effect of cell volume changes on MR parameters. To more accurately reflect the scope and results of this study and to consider the reviewer 2’s suggestion, we will adjust the title to “Responses to membrane potential-modulating ionic solutions measured by magnetic resonance imaging of cultured cells and in vivo rat cortex” and will also revise the relevant phrases in the main text.

      Finally, when [K+]-induced membrane potential changes are involved, there seems to be factors other than cell volume changes also appear to influence T2 changes. Our ongoing study shows that there are differences in T2 changes (for the same volume changes) between two different situations: pure osmotic volume changes vs. [K+]-induced volume changes (e.g., hypoosmotic vs. depolarization). Furthermore, this study suggests that mechanisms such as changes in free (primarily intracellular) and bound water within a voxel play an important role in generating this T2 difference. Our group is preparing a manuscript for this follow-up study and will report on it shortly.

      So why does it matter whether the mechanism is cell swelling or membrane potential? The reason is response time. Cell swelling due to depolarization is a slow process, slower than hemodynamic responses that characterize BOLD. In fact, cell swelling under normal homeostatic conditions in vivo is virtually non-existent. Only sustained depolarization events typically associated with non-naturalistic stimuli or brain dysfunction produce cell swelling. Membrane potential changes associated with neural activity, on the other hand, are very fast. In this manuscript, the authors have convincingly shown a signal change that is virtually the same as what was seen in the Stroman publication, but they have not shown that there is a response that can be detected with anything approaching the timescale of an action potential. So one cannot definitely say that the changes observed are due to membrane potential. One can only say they are consistent with cell swelling, regardless of what causes the cell swelling.

      For this mechanism to be relevant to explaining DIANA, one needs to show that the cell swelling changes occur within a millisecond, which has never been reported. If one knows the populations of ECF and pellet, the T2s of the ECF and pellet and the volume change of the cells in the pellet, one can model any expected T2 changes due to neuronal activity. I think one would find that these are minuscule within the context of an action potential, or even bulk action potential.

      In the context of cell swelling occurring at rapid response times, if we define cell swelling simply as an “increase in cell volume,” there are several studies reporting transient structural (or volumetric) changes (e.g., ~nm diameter change over ~ms duration) in neuron cells during action potential propagation (Akkin et al., Biophys J 93:1347-1353, 2007; Kim et al., Biophys J 92:3122-3129, 2007; Lee et al., IEEE Trans Biomed Eng 58:3000-3003, 2011; Wnek et al., J Polym Sci Part B: Polym Phys 54:7-14, 2015; Yang et al., ACS Nano 12:4186-4193, 2018). These studies show a good correlation between membrane potential changes and cell volume changes (even if very small) at the cellular level within milliseconds.

      As mentioned in the Response 1 above, this study does not address rapid dynamic membrane potential changes on the millisecond scale, which we explicitly discussed as one of the limitations in the Discussion section of the original manuscript. For this reason, we do not claim in this study that we provide the reader with definitive answers about the mechanisms involved in DIANA. Rather, as a first step toward addressing the mechanism of DIANA, this study confirms that there is a good correlation between changes in membrane potential and measurable MR parameters (e.g., T2 and PSR) when using ionic solutions that modulate membrane potential. Identifying T2 changes that occur during millisecond-scale membrane potential changes due to rapid neural activation will be further addressed in future studies.

      There are a few smaller issues that should be addressed.

      (1) Why were complicated imaging sequences used to measure T1 and T2? On a Bruker system it should be possible to do very simple acquisitions with hard pulses (which will not need dictionaries and such to get quantitative numbers). Of course, this can only be done sample by sample and would take longer, but it avoids a lot of complication to correct the RF pulses used for imaging, which leads me to the 2nd point.

      We appreciate the reviewer’s suggestion regarding imaging sequences. We would like to clarify that dictionaries were used for fitting in vivo T2 decay data, not in vitro data. Sample-by-sample nonlocalized acquisition with hard pulses may be applicable for in vitro measurements. However, for in vivo measurements, a slice-selective multi-echo spin-echo sequence was necessary to acquire T2 maps within a reasonable scan time. Our choice of imaging sequence was guided by the need to spatially resolve MR signals from specific regions of interests while balancing scan time constraints.

      (2) Figure S1 (H) is unlike any exponential T2 decay I have seen in almost 40 years of making T2 measurements. The strange plateau at the beginning and the bump around TE = 25 ms are odd. These could just be noise, but the fitted curve exactly reproduces these features. A monoexponential T2 decay cannot, by definition, produce a fit shaped like this.

      The T2 decay curves in Figure S1(H) indeed display features that deviate from a simple monoexponential decay. In our in vivo experiments, we used a multi-echo spin-echo sequence with slice-selective excitation and refocusing pulses. In such sequences, the echo train is influenced by stimulated echoes and imperfect slice profiles. This phenomenon is inherent to the pulse sequence rather than being artifacts or fitting errors (Hennig, Concepts Magn Reson 3:125-143, 1991; Lebel and Wilman, Magn Reson Med 64:1005-1014, 2010; McPhee and Wilman, Magn Reson Med 77:2057-2065, 2017). Therefore, we fitted the T2 decay curve using the technique developed by McPhee and Wilman (2017).

      (3) As noted earlier, layered samples produce biexponential T2 decays and monoexponential T1 decays. I don't quite see how this was accounted for in the fitting of the data from the pellet preparations. I realize that these are spatially resolved measurements, but the imaging slice shown seems to be at the boundary of the pellet and the extracellular media and there definitely should be a biexponential water proton decay curve. Only 5 echo times were used, so this is part of the problem, but it does mean that the T2 reported is a population fraction weighted average of the T2 in the two compartments.

      We understand the reviewer’s concern regarding potential biexponential decay due to the presence of different compartments. In our experiments, we carefully positioned the imaging slice sufficiently remote from the pellet-media interface. This approach ensures that the signal predominantly arises from the cells (and interstitial fluid), excluding the influence of extracellular media above the cell pellet. We will clearly describe the imaging slice in the revised manuscript. As mentioned in our Methods section, for in vitro experiments, we repeated a single-echo spin-echo sequence with 50 difference echo times. While Figure 1C illustrates data from five echo times for visual clarity, the full dataset with all 50 echo times was used for fitting. We will clarify this point in the revised manuscript to avoid any misunderstanding.

      (4) Delta T1 and T2 values are presented for the pellets in wells, but no absolute values are presented for either the pellets or the KCL solutions that I could find.

      As requested by the reviewer, we will include the absolute values in the revised manuscript.

      Reviewer #2 (Public review):

      Summary:

      Min et al. attempt to demonstrate that magnetic resonance imaging (MRI) can detect changes in neuronal membrane potentials. They approach this goal by studying how MRI contrast and cellular potentials together respond to treatment of cultured cells with ionic solutions. The authors specifically study two MRI-based measurements: (A) the transverse (T2) relaxation rate, which reflects microscopic magnetic fields caused by solutes and biological structures; and (B) the fraction or "pool size ratio" (PSR) of water molecules estimated to be bound to macromolecules, using an MRI technique called magnetization transfer (MT) imaging. They see that depolarizing K+ and Ba2+ concentrations lead to T2 increases and PSR decreases that vary approximately linearly with voltage in a neuroblastoma cell line and that change similarly in a second cell type. They also show that depolarizing potassium concentrations evoke reversible T2 increases in rat brains and that these changes are reversed when potassium is renormalized. Min et al. argue that this implies that membrane potential changes cause the MRI effects, providing a potential basis for detecting cellular voltages by noninvasive imaging. If this were true, it would help validate a recent paper published by some of the authors (Toi et al., Science 378:160-8, 2022), in which they claimed to be able to detect millisecond-scale neuronal responses by MRI.

      Strengths:

      The discovery of a mechanism for relating cellular membrane potential to MRI contrast could yield an important means for studying functions of the nervous system. Achieving this has been a longstanding goal in the MRI community, but previous strategies have proven too weak or insufficiently reproducible for neuroscientific or clinical applications. The current paper suggests remarkably that one of the simplest and most widely used MRI contrast mechanisms-T2 weighted imaging-may indicate membrane potentials if measured in the absence of the hemodynamic signals that most functional MRI (fMRI) experiments rely on. The authors make their case using a diverse set of quantitative tests that include controls for ion and cell type-specificity of their in vitro results and reversibility of MRI changes observed in vivo.

      Weaknesses:

      The major weakness of the paper is that it uses correlational data to conclude that there is a causational relationship between membrane potential and MRI contrast. Alternative explanations that could explain the authors' findings are not adequately considered. Most notably, depolarizing ionic solutions can also induce changes in cellular volume and tissue structure that in turn alter MRI contrast properties similarly to the results shown here. For example, a study by Stroman et al. (Magn Reson Med 59:700-6, 2008) reported reversible potassium-dependent T2 increases in neural tissue that correlate closely with light scattering-based indications of cell swelling. Phi Van et al. (Sci Adv 10:eadl2034, 2024) showed that potassium addition to one of the cell lines used here likewise leads to cell size increases and T2 increases. Such effects could in principle account for Min et al.'s results, and indeed it is difficult to see how they would not contribute, but they occur on a time scale far too slow to yield useful indications of membrane potential. The authors' observation that PSR correlates negatively with T2 in their experiments is also consistent with this explanation, given the inverse relationship usually observed (and mechanistically expected) between these two parameters. If the authors could show a tight correspondence between millisecond-scale membrane potential changes and MRI contrast, their argument for a causal connection or a useful correlational relationship between membrane potential and image contrast would be much stronger. As it is, however, the article does not succeed in demonstrating that membrane potential changes can be detected by MRI.

      We appreciate the reviewer’s comments. We agree that changes in cell volume due to depolarization and hyperpolarization significantly contribute to the observed MR parameter changes. For this reason, we have already noted in the Discussion section of the original manuscript that cell volume changes influence the observed MR parameter changes. In this regard, we thank the reviewer for introducing the work by Stroman et al. (Magn Reson Med 59:700-706, 2008) and Phi Van et al. (Sci Adv 10:eadl2034, 2024). When discussing the contribution of the cell volume changes to the observed MR parameter changes, we will additionally discuss both work of Stroman et al. and Phi Van et al. in the revised manuscript.

      In addition, this study does not address rapid dynamic membrane potential changes on the millisecond scale, which we explicitly discussed as one of the limitations of this study in the Discussion section of the original manuscript. For this reason, we do not claim in this study that we provide the reader with definitive answers about the mechanisms involved in DIANA. Rather, as a first step toward addressing the mechanism of DIANA, this study confirms that there is a good correlation between changes in membrane potential and measurable MR parameters (although on a slow time scale) when using ionic solutions that modulate membrane potential. Identifying T2 changes that occur during millisecond-scale membrane potential changes due to rapid neural activation will be further addressed in future studies.

      Together, we acknowledge that the title and main conclusion of the original manuscript may be misleading. To more accurately reflect the scope and results of this study and to consider the reviewer’s suggestion, we will adjust the title to “Responses to membrane potential-modulating ionic solutions measured by magnetic resonance imaging of cultured cells and in vivo rat cortex” and will also revise the relevant phrases in the main text.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In this manuscript, Molnar, Suranyi and colleagues have probed the genomic stability of Mycobacterium smegmatis in response to several anti-tuberculosis drugs as monotherapy and in combination. Unlike the study by Nyinoh and McFaddden http://dx.doi.org/10.1002/ddr.21497 (which should be cited), the authors use a sub-lethal dose of antibiotic. While this is motivated by sound technical considerations, the biological and therapeutic rationale could be further elaborated.

      In the mutation accumulation experiments, we needed to ensure continuous and reproducible growth of a small number of colonies across multiple passages. This technical requirement necessitated the use of sublethal drug concentrations. However, sublethal doses also have biological relevance. Noncompliance with prescribed antibiotic regimens and the presence of antibiotic residues in food due to the extensive use of antibiotics in agricultural mass production are two obvious sources of prolonged exposure to sublethal antibiotics.

      The results the authors obtain are in line with papers examining the genomic mutation rate in vitro and from patient samples in Mycobacterium tuberculosis, in vitro in Mycobacterium smegmatis and in vitro in Mycobacterium tuberculosis (although the study by HL David (PMID: 4991927) is not cited). The results are confirmatory of previous studies.

      The two cited studies, along with several others, did not distinguish between genetic mutations and phenotypic responses to drug exposure (the fluctuation test alone is not suitable for this). Therefore, their objectives are not comparable to ours, which specifically investigated whether resistant colonies carry adaptive mutations. Nevertheless, we acknowledge the relevance of these studies and have now cited them in the appropriate sections in the text.

      It is therefore puzzling why the authors propose the opposite hypothesis in the paper (i.e antibiotic exposure should increase mutation rates) merely to tear it down later. This straw-man style is entirely unnecessary.  

      The phenomenon of stress-inducible mutagenesis in bacterial evolution remains a topic of heated debate. The emergence of genetically encoded resistance may stem from either microevolution or the dissemination of pre-existing variants from polyclonal infections under drug pressure. We believe that the Introduction presents both of these hypotheses in a balanced manner to elucidate the rationale behind our mutation accumulation investigations.  

      The results on the nucleotide pools are interesting, but the statistically significant data is difficult to identify as presented, and therefore the new biological insights are unclear.

      We now indicate statistical significance in the figure, in addition to the detailed statistical analysis of all dNTP measurements provided in Table S5.

      Finally, the authors show that a fluctuation assay generates mutations with higher frequencies that the genetic stability assays, confirming the well-known effect of phenotypic antibiotic resistance.

      What we show is that the fluctuation assay generated bacteria that tolerated the applied antibiotic without developing mutations. Conclusions about mutation rates are often drawn from fluctuation assays without confirming genetic-level changes, a discrepancy that persists despite these assays accounting for both phenotypic and genotypic alterations. By combining genome sequencing with fluctuation assays, our approach emphasizes the importance of distinguishing between these changes. While fluctuation assays remain valuable, inexpensive, and simple tools for evaluating the response of bacterial populations to various selective environments, they should not be considered definitive indicators of genetic changes.

      Recommendations For The Authors:

      The quality of the figures can be significantly improved. In Figure 1, cell lengths can be shown on separate histograms or better still as violin plots to enable better comparisons.

      Thank you for the suggestion. We have revised the data presentation accordingly.

      Details for statistical tests should be provided in the figure legend.  

      Statistical details are now added in the figure legend.

      In Figure 2, the number of data points is not mentioned.

      Statistical information is now added to the new Figure 2, which has been revised extensively based on suggestions from all Referees.

      The data in Figure 3 would be much easier to comprehend as a heatmap.  

      The figure we provided is a color gradient table representing different gene expression levels, along with numerical data and statistical significance indicated within the color boxes, expanding the information content of a traditional heatmap. In response to the Referee's suggestion, we also prepared a hierarchical clustering heatmap, demonstrating that the grouping of rows and columns based on functional information in the original figure is consistent with the clustering pattern observed in the heatmap (Figure S5). As the original figure is more informative and better structured, we have included the new figure in the supplementary materials.

      No statistical tests are provided for Figure 4.

      We now indicate statistical significance in the figure and describe the statistical analysis in the figure legend, as suggested. Additionally, Table S5 is dedicated to the statistical analysis of the dNTP data.  

      Reviewer #2 (Public Review):

      In this study, the authors assess whether selective pressure from drug chemotherapy influences the emergence of drug resistance through the acquisition of genetic mutations or phenotypic tolerance. I commend the authors on their approach of utilizing the mutation accumulation (MA) assay as a means to answer this and whole genome sequencing of clones from the assay convincingly demonstrates low mutation rates in Mycobacteria when exposed to sub-inhibitory concentrations of antibiotics. Also, quantitative PCR highlighted the upregulation of DNA repair genes in Mycobacteria following drug treatment, implying the preservation of genomic integrity via specific repair pathways.

      Even though the findings stem from M. smegmatis exposure to antibiotics under in vitro conditions, this is still relevant in the context of the development of drug resistance so I can see where the authors' train of thought was heading in exploring this. However, I think important experiments to perform to more fully support the conclusion that resistance is largely associated with phenotypic rather than genetic factors would have been to either sequence clones from the ciprofloxacin tolerance assay (to show absence/ minimal genetic mutations) or to have tested the MIC of clones from the MA assay (to show an increase in MIC).

      Thank you for acknowledging the values of the manuscript and for the insightful suggestions for improvement. We agree on the necessity to directly connect the mutation accumulation experiments with the tolerance assay, and we have performed both suggested additional experiments.  

      (1) We repeated the ciprofloxacin tolerance assay (Figure S6) using a large number of plates to gather enough cells for genomic DNA extraction and whole genome sequencing. The sequencing confirmed the absence of mutations in bacteria grown in both 0.3 and 0.5 ug/ml ciprofloxacin. We integrated this result in the revised manuscript text, while the sequencing data are available at the European Nucleotide Archive (ENA) with PRJEB71590 project number.

      (2) We resuscitated three different clones from the MA assays stored at -80°C and tested the MIC of the respective drugs. The results are presented in Figure 2C. Except for EMB, we observed an increase in MIC values across the treatments.

      There seems to be a disconnect between making these conclusions from experiments conducted under different conditions, or perhaps the authors can clarify why this was done.  

      Molecular biology analysis methods are not easily compatible with long-term mutation accumulation experiments, or at least we could not establish the necessary conditions. When DNA or RNA extraction was required, we had to adjust the experimental scale for further analysis, which could be done in liquid culture. We believe that the suggested critical back-and-forth control experiments have significantly improved the comparability of the results.

      With regards to the sub-inhibitory drug concentration applied, there is significant variation in the viability as calculated by CFUs following the different treatments and there is evidence that cell death greatly affects the calculation of mutation rate (PMCID: PMC5966242). For instance, the COMBO treatment led to 6% viability whilst the INH treatment led to 80% cell viability. Are there any adjustments made to take this into account?

      We agree with and have been aware of the notion that cell death affects the calculation of the mutation rate. We included treatment optimization data on agar plates (Table 1 and Figure S2), which now demonstrate that the applied subinhibitory drug concentrations resulted in ≤10% viability across all treatments in the MA assay. This minimizes the potential discrepancy in the mutation rate calculation caused by variable cell death.  

      It would also be useful to the reader to include a supplementary table of the SNPs detected from the lineages of each treatment - to determine if at any point rifampicin treatment led to mutations in rpoB, isoniazid to katG mutations, etc.  

      Overall, while this study is tantalizingly suggestive of phenotypic tolerance playing a leading role in drug resistance (and perhaps genetic mutations a sub-ordinate role) a more substantial link is needed to clarify this.

      The SNPs identified from the lineages of each treatment are compiled in the 'unique_muts.xls' file within the Figshare document bundle that was originally enclosed with the manuscript. In response to your suggestion, we have now added a simplified version of this data set in Table S2, listing the detected SNPs. Notably, no confirmed adaptive mutation developed in our experiments; rifampicin treatment did not result in mutations in rpoB, nor did isoniazid lead to mutations in katG.

      Recommendations For The Authors:

      I would suggest moving Figure 1 to the supplementary - it shows that cell wall targeting drugs cause cell shortening and DNA replication targeting drugs cause cell elongation as would be expected and this is simply a secondary observation, not one that is central to the paper.  

      We agree that this is not a novel or unexpected observation. However, we used it as an indicator of drug effectiveness, particularly for bacteriostatic cell wall-targeting drugs in liquid culture that induced moderate cell death. Following Reviewer 1's suggestions, we extensively revised the figure to better convey our intended message. We believe the updated version now more clearly demonstrates the drugs' impact, and for this reason, we have opted to keep it in the main text.

      Figure 2 and Table 2 show the same data so this can be combined as a paneled figure or one moved to the supplementary. It would be useful to include a diagram of how the MA assay was conducted, similar to the CIP tolerance assay figure.

      Thank you for the suggestions. We have added a diagram to Figure 2 explaining the MA assay (Figure 2A), as well as the MIC experiment conducted on the MA cells (Figure 2C). To avoid redundancy, Table 2 has been removed.

      Reviewer #3 (Public Review):

      Summary:

      This manuscript describes how antibiotics influence genetic stability and survival in Mycobacterium smegmatis. Prolonged treatment with first-line antibiotics did not significantly impact mutation rates. Instead, adaptation to these drugs appears to be mediated by upregulation of DNA repair enzymes. While this study offers robust data, findings remain correlative and fall short of providing mechanistic insights.

      Strengths:

      The strength of this study is the use of genome-wide approaches to address the specific question of whether or not mycobacteria induce mutagenic potential upon antibiotic exposure.

      Weaknesses:

      The authors suggest that the upregulation of DNA repair enzymes ensures a low mutation rate under drug pressure. However, this suggestion is based on correlative data, and there is no mechanistic validation of their speculations in this study.

      Furthermore, as detailed below, some of the statements made by the authors are not substantiated by the data presented in the manuscript.

      Finally, some clarifications are needed for the methodologies employed in this study. Most importantly, reduced colony growth should be demonstrated on agar plates to indicate that the drug concentrations calculated from liquid culture growth can be applied to agar surface growth. Without such validations, the lack of induced mutation could simply be due to the fact that the drug concentrations used in this study were insufficient.

      Thank you for appreciating the manuscript's merits and for the instructive suggestions. We agree that demonstrating reduced colony growth on agar plates is important to validate the relevance of the drug concentrations used in the study. In response, we have added the treatment optimization data on agar plates in Figure S2 and reorganized Table 1 to show the decrease in CFU achieved with the applied subinhibitory drug concentrations.

      We acknowledge that the observed upregulation of DNA repair enzymes and the low mutation rates under drug pressure represent correlative data. We removed the reference to mechanism from the abstract and avoided presenting the qPCR results as a mechanistic explanation in the text. We have only raised the possibility that correlation could be a causal relationship: "The observed upregulation of the relevant DNA repair enzymes might account for the low mutation rate even under drug pressure." We recognize the necessity for a new series of targeted experiments to provide mechanistic explanations. We added the following text to the Discussion:

      “The observed activation of DNA repair processes likely mitigates mutation pressure, ensuring genome stability. However, to confirm this hypothesis, these investigations should be conducted using genetically modified DNA repair mutant strains.”

      In the current manuscript, we aim to convincingly demonstrate that long-term antibiotic pressure did not induce the occurrence of new adaptive mutations.

      Recommendations For The Authors:

      Additional specific comments are:

      Page 2. Do not italicize "Mycobacteria", which is not considered a scientific name.

      Corrected.

      Page 4. "Bacto pepcone" is a typo.

      Corrected.

      Page 6. "Quiagen" is a typo.

      Corrected.

      Page 9. In Table 1, RIF being described as a protein synthesis inhibitor is misleading.

      Corrected.

      Page 9. The statement "Specifically, following RIF, CIP, and MMC treatments, we observed cells elongating by more than twofold, whereas INH and EMB treatments led to a reduction in cell length." cannot be justified by Figure 1, as the cell length information is not conveyed in this figure.

      Thank you for pointing this out, the revised Figure 1 conveys the cell length information.

      Page 10. If the experiment shown in Figure S1 was done in an acidic growth condition, the figure legend should clearly indicate the fact. Additionally, the assay condition should be described in detail in the Methods section.

      Thank you, the required information is now included in both the figure legend and the Methods section.

      Page 10. If PZA does not work against M. smegmatis, it seems pointless to add it to the COMBO treatment. Please clarify why it was included in the drug combination experiment.

      We added the following text to clarify the use of PZA: “Regardless of its inefficacy as a monotherapy, we included PZA in the combination treatment, as we could not rule out the possibility that PZA interacts with the other three drugs or that PZA elimination mechanisms are equally active in M. smegmatis under this regimen.”

      Page 10. Generation times calculated from liquid culture cannot be applied to colony growth on an agar plate. The growth behaviors on a solid surface will be totally different from planktonic suspension growth. The numbers of generations indicated here will be inaccurate.

      You are absolutely right. We conducted an experiment to calculate the number of generations on plates under the same conditions as used in the MA assay. We found, indeed, a different (doubled) generation time from what was determined in liquid culture. We have adjusted the mutation rates accordingly.

      Page 12. Was the experiment shown in Figure 3 done in a liquid culture? If so, the transcriptional profile could be different from the experiment shown in Figure 2, which was done on an agar plate.

      Yes, the experiment shown in Figure 3 was conducted in liquid culture. We acknowledge that the transcriptional profile could differ from the experiment shown in Figure 2, which was performed on an agar plate. However, technical limitations required us to use liquid cultures for these experiments.

      Page 14. Regarding the statement "INH and EMB coincided with a decreased concentration of these [dCTP and dTTP] nucleotides", by examining Table S5, I do not see any statistical reductions in dCTP and dTTP levels.

      Thank you for bringing this to our attention. We have made the necessary corrections to ensure that the text and data are now aligned.

      Page 14. Similarly to the comment above, the statement "RIF, CIP and MMC treatments promoted an increase in the dCTP and dTTP pools" is misleading as each drug seems to increase either dCTP or dTTP, not both.

      Same as above.

      Page 14. The authors state, "a larger overall dNTP pool size coincides with a larger cell size and vice versa (Figure 4H)". Please indicate the unit of the pool size for the graph shown in Figure 4H. According to the legend, I assume that it refers to the concentration. The term "pool size" may be misleading as it implies quantity rather than concentration.

      Page 15. Figure 4H is impossible to understand. The left y-axis label looks as if it is a ratio of cell length to volume. There is no point in having these three data on a single graph. Please separate them into individual graphs. Also, what is the spacing between the tick marks? The data also seem inconsistent with the values given in Table S1. For example, the mean volume of COMBO is larger than the control (according to Table S1), and yet the graph in Figure 4H indicates that COMBO's relative length is less than 1.

      Thank you for your feedback. We have corrected these and created what we hope is a clearer figure.

      Figure S1. Clarify what the gray shade in the graph represents.

      The gray shade was unnecessary, so we removed it when recoloring the figure to ensure a more coherent color scheme across the different treatments.

      Figure S1. Relative viability cannot be determined by OD600. CFU needs to be determined to assess cell viability.

      Thank you. We changed the incorrect term viability to growth inhibition.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      This work describes the induction of SIV-specific NAb responses in rhesus macaques infected with SIVmac239, a neutralization-resistant virus. Typically, host NAb responses are not detected in animals infected with SIVmac239. In this work, seventy SIVmac239-infected macaques were retrospectively screened for NAb responses and a subset of nine animals were identified as NAb-inducers. The viral genomes from 7/9 animals that induced NAb responses were found to encode nonsynonymous mutation in the Nef gene (amino acid G63E). In contrast, Nef G63E mutation was found only in 2/19 NAb non-inducers - implicating that the Nef G63E mutation is selected in NAb inducers. Measurement of Nef G63E frequencies in plasma viruses suggested that Nef G63E selection preceded NAb induction. Nef G63E mutation was found to mediate escape from Nef-specific CD8+ T-cell responses. To examine the functional phenotype of Nef G63E mutant, its effect on downmodulation of Nef-interacting host proteins was examined. Infection of rhesus and cynomolgus macaque CD4+ T cell lines with WT or Nef G63E mutant SIV suggested that Nef mutant reduces S473 phosphorylation of AKT. Using flow cytometry-based proximity ligation assay, it was shown that Nef G63E mutation reduced binding of Nef to PI3K p85/p110 and mTORC2 GβL/mLST8 and MTOR components - kinase complex responsible AKT-S473 phosphorylation. In vitro B-cell Nef invasion and in vivo imaging/flow cytometry-based assays were employed to suggest that Nef from infected cells can target Env-specific B cells. Lastly, it was determined that NAb inducers have significantly higher Env-specific B-cells responses after Nef G63E selection when compared to NAb non-inducers. Finally, a corollary was drawn between the Nef G63E-associated B-cell/NAb induction phenotype and activated PI3K delta syndrome (APDS), which is caused by activating GOF mutations in PI3K, to suggest that Nef G63E-meidated induction of NAb response is reciprocal to APDS.

      Strengths:

      This study aims to understand the viral-host interaction that governs NAb induction in SIVmac239-infected macaques - this could enable identification of determinants important for induction of NAb responses against hard-to-neutralize tier-2/3 HIV variants. The finding that SIV-specific B-cell responses are induced following Nef G63E CD8+ T-cell escape mutant selection argue for an evolutionary trade-off between CTL escape and NAb induction. Exploitation of such a cellular-humoral immune axis could be important for HIV/AIDS vaccine efforts.

      Although more validation and mechanistic basis are needed, the corollary between PI3K hyperactive signaling during autoimmune disorders and Nef-mediated abrogated PI3K signaling could help identify novel targets and modalities for targeting immune disorders and viral infections.

      We are grateful for the supportive and insightful comments. The work did seem to unintendedly highlight a conceptual link between extrinsic and intrinsic immune perturbations. We will keep working on both wings, aiming to evoke synergisms.

      Weaknesses:

      Although the paper does have strengths in principle, the weaknesses of the paper are that the mechanistic basis of Nef-mediated induction of NAb responses are not directly examined. For example, it remains unclear whether SIVmac239 with engineered G63E mutation in Nef would induce faster and potent NAb responses. A macaque challenge study is needed to address this point.

      We appreciate the point. We do have certain difficulties in availability of macaques for de novo experiments. As partially discussed in ver1, the identified Nef phenotype selected post-acute infection confers an enhanced CD4+ T cell-killing effect (revised Fig 4F), and it is likely that de novo infection with the mutant would redirect the trajectory of infection to rapid disease/AIDS progression accompanying generalized immune failure by boosting acute-phase CD4 destruction. In other words, mutant de novo infection may not necessarily be directly discussable as an attempt for reconstitution. It appears equally critical to understand the mutant in vitro on an immunosignaling basis, and in the current work we have focused on depicting this as the first step. We will work on reconstitution experiments with emphasis on pharmacology in our future study.

      As presented, the central premise of the paper involves infected cell-generated Nef (WT or G63E mutant) being targeted to adjacent Env-specific B cells. However, it remains unclear how this is transfer takes place. A direct evidence demonstrating CD4+ T cell-associated and/or cell-free Nef being transferred to B-cell is needed to address this concern.

      We appreciate the point, also pointed out by Reviewers 2 and 3. We have performed three sets of in vitro reconstitution experiments graphically/functionally addressing how Nef transfer from CD4+ T cells to B cells can be modulated (new Fig 6) and edited text accordingly.

      The interaction between Nef and PI3K signaling components (p85, p110, GβL/mLST8, and MTOR) has been explored using PLA assay, however, this requires validation using additional biochemical and/or immunoprecipitation-based approaches. For example, is Nef (WT or mutant form) sufficient to affect PI3K-induced phosphorylation of Akt in an in vitro kinase assay? Moreover, the details regarding the binding events of WT vs mutant Nef with PI3K signaling components is lacking in this study. Lastly, it is unclear whether the interaction of Nef with PI3K signaling components is a conserved function of all primate lentiviruses or is this SIV-specific phenotype.

      We appreciate the point. Co-immunoprecipitation analysis via pulldown with the mTORC2-intrinsic cofactor Sin1 (revised Fig 4E), showing decreased G63E-Nef binding, should confer robustness to the statement combined with initial manipulation results (Fig 4C). As Sin1 is mTORC2- and not mTORC1-intrinsic, results should be strengthened. Phosflow may be a standard readout nowadays for pAkt itself. Related with sequence variation, conservation will be addressed in studies ahead. We concisely mentioned on this in the revision (Lines 390-391).

      It has been previously reported that the region of Nef encoding glycine at position 63 is not conserved in HIV-1 (Schindler et al, Journal of Virology 2004). Thus, does HIV-1 Nef also function in induction of NAb responses in humans? or the observed phenotype specific to SIV?

      We appreciate the point, and do not have an answer at the moment. We will explore in our HIV-1-infected patient cohort (Hau et al, AIDS 2022) and other occasions whether corresponding phenotypes may exist. We have mentioned on this point in the revised manuscript (Line 392-393).

      Reviewer #2 (Public Review):

      It is well known that human and simian immunodeficiency viruses (HIV and SIV, respectively) evolved numerous mechanisms to compromise effective immune responses but the underlying mechanisms remain incompletely understood. Here, Yamamoto and Matano examined the humoral immune response in a large number of rhesus macaques infected with the difficult-to-neutralize SIVmac239 strain. They identified a subgroup of animals that showed significant neutralizing Ab responses. Sequence analyses revealed that in most of these animals (7/9) but only a minority in the control group (2/19) SIVmac variants containing a CD8+ T-cell escape mutation of G63E/R in the viral Nef gene emerged. They further show that this change attenuates the ability of Nef to stimulate PI3K/Akt/mTORC2 signaling. The authors propose that this induction of SIVmac239 nAb induction is reciprocal to antibody dysregulation caused by a previously identified human PI3K gain-of-function (Ref). Altogether, the results suggest that PI3K signaling plays a key role in B-cell maturation and generation of effective nAb responses.

      Strengths of the study are that the authors analyzed a large number of SIVmac-infected macaques to unravel the biological significance of the known effect of the interaction of Nef with PI3K/Akt/mTORC2 signaling. This is interesting and may provide a novel means to improve humoral immune responses to HIV. Weaknesses are that only G63E and not G63R that also emerged in most animals was examined in most functional assays. Some effects of the G63E mutation seem modest and comparison to a grossly nef-defective SIVmac construct would be desirable to better assess to impact of the mutation of Nef-mediated stimulation of PI3K. While the impact of this Nef mutations on PI3K and the association with improved nAb responses is largely convincing, the results on the potential impact of soluble Nef on neighboring B cells is much less clear. SIVmac239 infects and manipulates helper CD4 T cells and these are essential for the activation and differentiation of B cells into antibody-producing plasma cells and effective humoral immune responses. Without additional functional evidence that Nef indeed specifically targets and manipulated B cells these results and conclusions should be made with much greater caution. Finally, the presentation of the results and conclusions is partly very convoluted and difficult to comprehend. Editing to improve clarity is highly recommended.

      We are very grateful for the supportive and visionary review and suggestions. Experiments have been performed to improve the points raised. This work inevitably involved interdisciplinary factors to even hit on the schematic (NAbs, B cells, CD4+T, CD8+T, viral escape, immunosignaling, IEI as extrapolation & microscopy implementations) and convoluted sections should have existed. We attempted streamlining of certain portions and edited writing throughout, and hope that it became more straightforward.

      Reviewer #2 (Recommendations For The Authors):

      As outlined in the public review, I found the results potentially very interesting but parts of the manuscript much more complex and confusing than necessary. In addition, the methods on the potential impact of soluble Nef on neighboring B cells in vivo was difficult to assess but altogether this part was not convincing. Have the following specific suggestions:

      We are very grateful for the scholarly review, and encouraging and suggestive comments on this orphan work. In the revision we designed experiments to address the properties of Nef transfer to append understanding on the in vivo B-cell data. Recommendations have been addressed as follows.

      (1) Title: "AIDS virus-neutralizing antibody induction reciprocal to a PI3K gain-of-function disease". Think this title hardly reflects the data; SIVmac cause simian AIDS and is not the "AIDS virus" the 2nd part is more appropriate for discussion than for the title (and the abstract).

      We appreciate the point. The original intent of the title was to conceptually bridge two differing fields of virus-host interaction and inborn errors of immunity/immunosignaling on an original article basis. Certain papers (Mudd et al, Nature 2012 etc) do utilize the term AIDS virus, and we similarly chose the term for simplification to non-virologists at initial submission.

      That being said, we understand the scholarly point raised, and feel that the initial aim can be well attained by retaining the key host effector PI3K in the title, as in the revised submission titled “SIV-specific neutralizing antibody induction following selection of a PI3K drive-attenuated nef variant”.

      (2) Abstract and throughout: As the authors show, SIVmac is not generally "neutralization resistant"; difficult to neutralize is more appropriate and should be used throughout. Also, the abstract and other parts are more complicated than necessary.

      We appreciate the point. HIV/SIV Env immunology work utilizes “neutralization-resistant” for SIVmac239 (e.g., Mason et al, PLoS Pathog 2016), and autologous titer positivity of ~10% at this size of examination does appear low amongst lentiviruses. Nevertheless, as recommended, “difficult-to-neutralize” better describes the nature, and we have switched the term accordingly.

      Linked with title modification, we reflected the comment on abstract structure and switched the main introductory sentence (Here we…) to a more data-based one instead of depicting extrapolation, and have modified phrasings in the latter half.

      (3) The intro seems a bit biased. Immune evasion due to mutations and proviral integration that play key roles in viral persistence are not mentioned. nAbs are not known to efficiently control HIV or SIV replication in vivo (not even in the present study). Thus, a more "balanced" presentation of the role of nAbs in vivo is desirable.

      We agree with the comment. Introduction in ver1 submission was compressed to just display humoral immune perturbation examples across persistence-prone viral infections, and indeed it should be much better to layout the multiscale strategies of lentiviruses in manifesting viral persistence. We have appended two sets of texts, one on the fundamental integrating retroviral life cycle and another on the wide spectrum of accessory protein-driven perturbation. As pointed out, the current endogenous induction is of course not early enough to exert suppressive impact on replication as like in exogenous Ab passive infusions. We have accordingly modulated text to improve the balance.

      (4) Lines 73-76: rephrase for clarity.

      We acknowledge the comment and have rephrased accordingly.

      (5) Line 92: "linked with sustained Env-specific B-cell responses after the mutant Nef selection". After or during in one case; the time frame varies enormously and this should be discussed.

      We appreciate the comment. The six Nef-G63E mutant-selecting NAb inducers subjected to B-cell analysis were the ones that showed precedence in Fig 2D (mutant before induction). That being said, we modified text as suggested (Line 104 in revised uploaded text). Text related to temporal deviation has been appended (Lines 378-383 in revised uploaded text).

      (6) The authors should discuss G63R and include it in the functional analyses.

      We appreciate the comment. Discussion on Nef-G63R in ver1 submission was kept minimal because statistical significance for selection was marginal. We generated a Nef-G63R mutant and results are appended in Fig 4-Figure Supplement 2.

      (7) Lines 124/5: conservation only applies to SIVsmm/mac Nefs and this region is also frequently deleted/length-variable in primary HIV-1 Nefs.

      We appreciate the comment. We modified description of the region accordingly (Lines 139-141 in revised text).

      (8) Lines 153-155: Statement doesn't seem to make sense. The triple mutant Nef SIVmac construct was not attenuated for replication but specifically disrupted in CD3 down-modulation.

      We acknowledge the comment. It had meant that the consequent plasma viral load showed a trend of decrease (as in the Graphical Abstract of the work) which should (in a simplistic view) influence antigenicity for humoral immune responses. Yet it is very true that virological replicative capacity was comparable with wild-type as in Fig.1. We have taken down the related text and rephrased it (Ref remains cited in introduction).

      (9) Lines 178/9: levels in PI3K gain-of-function mice "with full disease phenotype (Avery et al., 2018)". This needs more information, e.g. what disease exactly are they talking about?

      We are grateful for the correction, and have appended text and introduced the mentioned congenital disease in the Introduction section in advance. In-detail description is also appended in the Discussion section.

      (10) Lines 186/7: "Env-stimulating high-MOI infection also accelerated phenotype appearance, with enhanced 50% reduction (Figure 4C, right)". Modify text and corresponding figure for clarity.

      We acknowledge the comment. We revised as: “A high-MOI SIV infection, comprising higher initial concentration of extracellular Env stimuli, also accelerated phenotype appearance from day 3 to day 1 post-infection with stronger pAkt reduction”.

      (11) The validity of the results described in the section "Targeting of lymph node Env-specific B cells by Nef in vivo" was difficult to assess. Altogether, however, I didn't find them convincing, especially since a negative control (e.g. macaques infected with nef-deleted SIVmac) are missing.

      We acknowledge the comment. As a pure experimental control, whole-Nef deletion may assist for subtracted baselines. Within this work, the staining per se at least should be highly specific (mAb multiply verified in other applications and cytometry panel also designed for minimal spillover into AF488 channel). On in vivo basis, direct comparison may be somewhat frustrated by the fact that reduction in other pleiotropic effects of Nef seem to more dominate upon Nef deletion, as a set of reduced viremia, robust CD8 responses, killer CD4 responses and increased binding Ab titers (Johnson et al, J Virol 1997, Gauduin et al, J Exp Med 2006, Fukazawa et al, Nat Med 2012, Adnan et al, PLoS Pathog 2016 etc) leading to altered trajectory. We promise that we will work on refinement of the methodology in studies ahead.

      (12) Lines 309-319: This paragraph made little sense to me (as did lines 328-331).

      We acknowledge the comment and have edited both sections.

      Reviewer #3 (Additional Reviewer):

      In this manuscript, Hiroyuki Yamamoto et al examined virus-specific antibody responses and identified a subgroup of nine individuals, out of seventy SIVmac239 rhesus macaques of Burmese origin infected with SIVmac239, that develop neutralizing antibodies (NAb). The authors propose the emergence of a nef mutant (Nef-G63E) that impacts on B cell maturation resulting in PI3K gain-of-function.

      My major concerns are:

      The authors by different aspect addressed the role of the emergence of Nef-G63E mutant in individuals developing NAb. The manuscript is confused and the rational not always clearly stated. This reflects the two aspects of the manuscript (i) NAb identification in a subgroup of macaque and (2) the identification this nef mutation.

      We are grateful for the comprehensive and scholarly comments. As pointed out, the work did need to confront potential bifurcation of the influence of the obtained viral immunosignaling phenotype for CD4-intrinsic (which might be your specialty) and B-cell-intrinsic impact. Based on your suggestions we have acquired additional data and revised the manuscript as attached.

      The authors used both males (n=57) and females (n=13). However, there is no indication related to the sex regarding NAb inducers versus non-NAb Inducers. The notion of "highly pathogenic" is certainly not correct (see the introduction). Pathogenicity is also depending on monkey origin. Thus, cynomolgus are less sensitive to SIVmac239 or SIVmac251 compared to rhesus macaques (Ling B Aids 2002; Reimann KA, J Virol 2005; Cumont MC, J Virol 2008), or to pigtails used in US. Indeed, the authors used Burmese macaques, and therefore the dynamics of pathogenicity is different to rhesus macaque (Indian origin) housed in US. How many animals have been sacrificed out of the 61 animals? Herein, the animals are surviving longer (more than one year), and therefore the notion of "highly pathogenic" merits to be modulated.

      We appreciate the comment. We have accordingly appended sex information (M/F: 8/1 versus 49/12 in NAb inducers vs non-inducers, p > 0.99 by Fisher’s exact test) in the methods section. As pointed out there are differences in the frequency and rate of AIDS progression among macaques of differing origin, whereas we have also previously reported reproducible AIDS progression dependent on MHC-I genotypes in the Burmese rhesus macaques utilized (Nomura, Yamamoto et al., J Virol 2012). Adhering to advice, we have attenuated the term to “pathogenic” in the revised manuscript and appended one reference showing pathogenesis gradation from a cell-death perspective (Cumont 2008).

      Furthermore, no indication is provided regarding CD4 T cell dynamics, or CD8 T cells. In particular, the extent of T cell immunodeficiency may compromise humoral response. Therefore, this data needs to be shown. Indeed, previous reports have indicated that early CD4 T cell depletion is associated with defective humoral response. Furthermore, Tfh cell depletion was reported in several immune tissues, which are essential for B cell immune response like the spleen. Thus, this should be discussed as an alternative mechanism to the absence of NAb. Indeed, the authors found higher and persistent env-specific plasmablast cells in NAb inducers than that observed in non-NAb inducers figure 6. Why to have selected twelve individuals out of 61 individuals for assessing anti-env response (Supplemental S3 for figure 1, panel 1), and only eleven for western blots. The explanation in the text is absent. This requires to be clearly stated. See lines 108-110.

      We appreciate the comment. As in other sections, this study utilized available cryopreserved samples from a retrospective cohort, also having heterogeneity in data acquisition along the way. We acknowledge that some supplemental data are particularly limited in information, which is also a reason they are presented in SI. We felt that one important core was to secure samples for Nef-G63E-selecting NAb inducers versus viremic non-inducers, for which we acquired six versus twelve in the B-cell analysis.

      We (Nakane et al, PLoS ONE 2013) and others (Hirsch et al, J Virol 2004) have already reported on western blotting-basis that SIV-infected rapid progressors tend to manifest serological failure (impaired binding Ab-WB bands). Therefore, to compare quantitative traits at this basal stage (Fig 1), we judged that NAb inducer comparison with more non-rapid-progressing (>60 wk survival) non-inducers would be a criterion. We have mentioned on this in the revised manuscript (results/methods). Additionally, we have replaced the immunoblotting result with one more non-inducer (n = 12) to enhance results. Please note that there are lot deviations in strip-coated antigen (e.g., gp160) but the result is comparable (now covers 12/13 of animals with >60-wk survival).

      The authors indicated the frequencies of Nef-G63E mutant in figure 2 panel C. However. no information is indicated in the legend about the number of NAb non-inducers used to calculate this frequency. The authors indicated line 127, "only in two of the nineteen NAb non-inducers, including one rapid progressor". Thus, different numbers of individuals are used through the manuscript. For the readers, this is clearly a statement that needs to be clarify and to refer to what. This is not homogeneous along the text and the analyses performed.

      We appreciate the comment, and have appended the number in the revised Fig 2C. As aforementioned, heterogeneity of sample number in different sections is indeed a limitation of the work, and have mentioned this in the Discussion.

      The rational related to the sentence lines 140-142. Please clarify.. "NAb induction is not associated with these MHC-I genotypes (P = 0.25 by Fisher's exact test, data not shown) but with the Nef-G63E mutation itself".

      We appreciate the comment. We have rephrased it as:

      “Ten of nineteen NAb non-inducers also had either of these alleles (Figure 1-figure supplement 1). This did not significantly differ with the NAb inducer group (P = 0.25 by Fisher’s exact test, data not shown), indicating that NAb induction was not simply linked with possession of these MHC-I genotypes but instead required furthermore specific selection of the Nef-G63E mutation.” (Lines 159-162).

      In supplemental figure 3, only 7 individuals have been tested, while the authors indicated "Ten of nineteen NAb non-inducers also had either of these alleles". Why only seven? In NAb Burmese monkeys, the authors indicate specific T cells capable to recognize WT nef peptide, but not G63E peptide mutant. Thus, nef is immunogenic in vivo generating T cells despite to be mutated.

      In contrary, non-NAb-inducers demonstrate the absence of nef specific T cells (supplemental figure 3, excepted R01-011 panel A). Although, the authors propose an escape mutant for CD8 T cells, this is not associated with the absence of immunogenicity and not with a difference in viral load in comparison to NAb inducers (panel C). Therefore, the conclusions merit to be revised. Thus, this part of the manuscript is confusing. Please clarify the rational to link NAb and Nef specific CD8 T cells.

      We appreciate the comment. 7 out of 8 non-inducers positive for the allele and not selecting for the Nef-G63E mutant was available for analysis. The relative contribution of this single Nef62-70 epitope-specific CTL response is speculated not to be largely impacting viral control, among the many induced. This is basally discussed in a previous paper (Nomura, Yamamoto et al., J Virol 2012), more suggestive of an MHC-I haplotype-level correlation with plasma viral load. We assume that the CTL pressure-driven selection of Nef-G63E mutant was a rather pure immunosignaling trigger under persistent viremia. We appended this in the revised text (Line 172).

      In the next part of the manuscript, the authors assessed the function of this Nef-G63E mutant. The rational to introduce Ferritin in this part of the document is not clear for the reader. Furthermore, a subgroup for each (NAb+ versus NAb-) is shown: 4 for NAbneg versus 6 for NAbpos.

      We appreciate the point. As introduced, Swingler et al Cell Host Microbe 2008 reported HIV-infected macrophage-derived ferritin as a potentially B cell-disrupting factor. In that paper, viral load, ferritin and binding antibody titers positively correlated. Current data shows that SIVmac239-specific NAb induction is distinct from such kinetics already versus viral load (Fig 3-Supplement 1C), and ferritin levels were measured for some available samples more simply for confirmation. We appended three more available samples in the NAb- group. (The six NAb+/G63E animals correspond to the ones with B-cell data in Figure 7.) Statistical results appear unaffected and robust, as shown in this version. The revised manuscript incorporates appended explanation for the former.

      Similarly, whereas the authors observed a role of nef mutant on pAkt Ser473 (less induced) in comparison to WT, the authors suggest that this may have an impact on T cell survival.

      We appreciate the point. In the first submission we obtained peripheral memory Tfh decrease, whereas it is true that this is indirect. In the current revision we have addressed apoptotic cell death, shown to increase with Nef-G63E mutation (Figure 4F).

      The rational to analyze CXCR3-CXCR5+PD-1+ memory follicular Th (Tfh) is not clear. Moreover, the references used are not the adequately cited. Indeed, these papers show an expansion. See the literature for a depletion (Xu H, J Immunol. 2015; Moukambi F, PLoS Pathog. 2015; Yamamoto T, Sci Transl Med. 2015; Xu H, J Immunol. 2018 Moukambi F, Mucosal Immunol. 2019).

      We appreciate these points on in vivo CD4+ T cells.

      Peripheral memory Tfh was reported to correlate with Ab cross-reactivity in one human cohort (Locci et al, Immunity 2013) and we concisely examined the subset in the current NAb induction. We mentioned this in the revised manuscript.

      Moukambi F et al, PLoS Pathog 2015 & Mucosal Immunol 2019 are demonstrative work on acute-phase destruction. We have cited non-neonatal/vaccine-related ones suggested, including these two, in the revised manuscript. The biphasic dysregulation of Th (acute-phase destruction and chronic-phase adverse hyper-expansion) may indeed have a unique role with the current phenotype, which is beyond aim of the current analysis. We have concisely mentioned on this in the Discussion.

      Then, the authors assess the potential B-cell-intrinsic influence of the G63E-Nef phenotype. The rational here is clearly indicated, making sense with figure 1. Furthermore, this part is clearer. The dot-plots merit to be revised and the markers used better stated. The authors indicate that Nef invasion upregulates pAkt Ser473 assuming aberrant PI3K/mTORC2 signaling. What is the impact of Nef-G63E mutant on pAkt Ser473 using in vitro model of transfer. This is not addressed for comparison.

      We appreciate the remarks/suggestions, also pointed out by Reviewers 1 and 2. We have performed three sets of in vitro reconstitution experiments visually and functionally addressing how Nef transfer to B cells can be modulated (new Fig 6), and edited text accordingly.

      Minor points are:

      - the presence of references in the legend.

      -some Ab clones are in the table, however they are not used such CD38 and CD138, which are well known to be non-valid B cell markers for monkeys."

      We appreciate the suggestions.

      Mentioning on reference have been removed from the legend (Fig.1, Fig. 3) and moved to the corresponding Methods section (Fig. 1).

      We also understood this well in advance (CD38/CD138), and incorporated them in the memory B-cell panel just to check whether they ever behave in a specific pattern. As expected, no notable behavior was observed in these NAb inducers.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This valuable study examines the effects of NFKB2 mutations on pituitary gland development through hypothalamic-pituitary organoids. The evidence supporting the main conclusions is solid, although analysis of additional clones to exclude inter-clone variability would strengthen the conclusions. Insight into the mechanism of action of NFKB2 during pituitary development is incomplete. This work will be of interest to endocrinologists and biologists working on pituitary gland development and disease.

      We agree with these considerations and the summary and thank the Editors for their assessment. Although we indeed share the idea that reproduction of the experiments on a second clone would be a useful confirmatory step, we have not been able to reach this goal within a reasonable time frame for the reason mentioned above (unavailability of the main research engineer knowledgeable in the challenging methods involved for organoids differentiation) and due to the long turnaround time of this kind of experiments (3 months for the whole differentiation starting form iPSC). We therefore decided to publish on a single clone while we are still aiming at reproducing our results on at least a second one and will hopefully be able to provide these additional data in a subsequent revised version. We now acknowledge this limitation in the final part of the Discussion.

      Revised text: “Conversely, a limitation of this model is the long duration of the differentiation period (approximately 3 months) and the fact that not all hiPSC clones lead to full differentiation of hypothalamo-pituitary organoids despite similar conditions of culture. For these reasons, we could not include confirmation of our results on an independent clone in the present paper.”

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      NFKB mutations are thought to be one of the causes of pituitary dysfunction, but until now they could not be reproduced in mice and their pathomechanism was unknown. The authors used the differentiation of hypothalamic-pituitary organoids from human pluripotent stem cells to recapitulate the disease in human iPS cells carrying the NFKB mutation.

      Strengths:

      The authors achieved their primary goal of recapitulating the disease in human cells. In particular, the differentiation of the pituitary gland is closely linked to the adjacent hypothalamus in embryology, and the authors have again shown that this method is useful when the hypothalamus is suspected to be involved in pituitary abnormalities caused by genetic mutations.

      Weaknesses:

      On the other hand, the pathomechanism is still not fully understood. This study provides some clues to the pathomechanism, but further analysis of NFKB expression and experiments investigating the relevant factors in more detail may help to clarify it further.

      We thank this reviewer for acknowledging that we've reached our primary objective, in particular the fact that the HPO (hypothalamo-pituitary organoid) model allows recapitulation of the disease in human cells, including hypothalamic-pituitary interactions. Regarding the pathophysiological mechanism of the disease, we must admit that it remains incompletely understood. However, we have analysed more samples by RT-qPCR and further analysed RNASeq data from NFKB2 KI organoids, which provided with more insights into the different levels where NFKB2 may play a role. We have now provided several additional figures derived from these analyses, including a synthetic figure to summarize the most relevant observed effects (Fig. 14). 

      Reviewer #2 (Public Review):

      We also thank this reviewer for the detailed analysis of our manuscript, for the valuable comments, suggestions and questions that are addressed point-by point below. 

      Summary:

      DAVID syndrome is a rare autosomal dominant disorder characterized by variable immune dysfunction and variable ACTH deficiency. Nine different families have been reported, and all have heterozygous mutations in NFKB2. The mechanism of NFKB2 action in the immune systems has been well-studied, but nothing is known about its role in the pituitary gland.

      The DAVID mutations cluster in the C-terminus of the NFKB2 and interfere with cleavage and nuclear translocation. The mutations are likely dominant negative, by affecting dimer function. ACTH deficiency can be life-threatening in neonates and adults, thus, understanding the mechanism of NFKB2 action in pituitary development and/or function is important.

      The authors use CRISPR/Cas gene editing of human iPSC-derived pituitary-hypothalamic organoids to assess the function of NFKB2 and TBX19 in pituitary development. Mutations in TBX19 are the most common, known cause of pituitary ACTH deficiency, and the mechanism of action has been studied in mice, which phenocopy the human condition. Thus, the TBX19 organoids can serve as a positive control. The Nfkb2<Lym1/Lym1> mouse model has a p.Y868* mutation that impairs cleavage of NFKB2 p100, and the immune phenotype mimics the patients with DAVID mutations, but no pituitary phenotype was evident. Thus, a human organoid model might be the only approach suitable to discover the etiology of the pituitary phenotype.

      Overall, the authors have selected an important problem, and the results suggest that the pituitary insufficiency in DAVID syndrome is caused by a developmental defect rather than an autoimmune hypophysitis condition. The use of gene editing in human iPSC-derived hypothalamic-pituitary organoids is significant, as there is only one example of this previously, namely studies on OTX2. Only a few laboratories have demonstrated the ability to differentiate iPSC or ES cells to these organoids, and the authors have improved the efficiency of differentiation, which is also significant.

      The strength of the evidence is excellent. However, the two ACTH-deficient organoid models use a single genetically engineered clone, and the potential for variability amongst clones makes the conclusions less compelling. Since the authors obtained two independent clones for NFKB2 it is not clear why only one clone was studied.

      We experienced difficulties obtaining an hiPSC population devoid of spontaneous differentiation while purifying this second clone, and did not want to delay the start of the experiments. This clone will be analysed in a follow-up study.

      Finally, the effect of TBX19 on early pituitary fate markers is somewhat surprising given the phenotype of the knockout mice and patients with mutations. Thus, the use of a single clone for that study is also worrisome.

      We agree that the effect of the TBX19 mutant on early pituitary progenitor development is rather puzzling. In our model, TBX19 is expressed throughout the whole experiment, although it is at very low levels in undifferentiated hiPSCs compared to peak expression (over 50-fold difference).

      During the CRISPR-Cas9 gene edition, we obtained a clone with a homozygous one base insertion at the cutting site, leading to a frameshift and a premature stop codon 48 bases downstream. This would result in an expected protein of 163 amino acids instead of 488, but with potentially still functional DNA-binding ability. This mutation had a similar effect on LHX3 and PITX1 as the TBX19 KI mutation, although it was even more severe. Our most likely explanation is that the two TBX19 mutants we generated have dominant negative effects. Contrary to mouse, little is known about TBX19 expression in early human pituitary development, but scRNA-seq data on human embryonic pituitaries (Zhang et al.) show low expression in undifferentiated pituitary progenitors between 7 and 9 weeks of gestation. Therefore, early expression of these dominant negative proteins could perturb differentiation in the organoids. Future development of hiPSCs lines with total absence of TBX19 should help clarify these questions.

      Strengths:

      The authors make mutations in TBX19 and NFKB2 that exist in affected patients. The TBX19 p.K146R mutation is recessive and causes isolated ACTH deficiency. Mutations in this gene account for 2/3 of isolated ACTH deficiency cases. The NFKB2 p.D865G mutation is heterozygous in a patient with recurrent infections and isolated ACTH deficiency. NFKB2 mutations are a rare cause of ACTH deficiency, and they can be associated with the loss of other pituitary hormones in some cases. However, all reported cases are heterozygous.

      The developmental studies of organoid differentiation seem rigorous in that 200 organoids were generated for each hiPSC line, and 3-10 organoids were analyzed for each time point and genotype. Differentiation analysis relied on both RNA transcript measurements and immunohistochemistry of cleared organoids using light sheet microscopy. Multiple time points were examined, including seven times for gene expression at the RNA level and two times in the later stages of differentiation for IHC.<br /> TBX19 deficient organoids exhibit reduced levels of PITX1, LHX3, and POMC (ACTH precursor) expression at the RNA and IHC level, and there are fewer corticotropes in the organoids, as ascertained by POMC IHC.

      The NFKB2 deficient organoids have a normal expression of the early pituitary transcription factor HESX1, but reduced expression of PITX2, LHX3, and POMC. Because there is no immune component in the organoid, this shows that NFKB2 mutations can affect corticotrope differentiation to produce POMC. RNA sequencing analysis of the organoids reveals potential downstream targets of NFKB2 action, including a potential effect on epithelial-to-mesenchymal-like transition and selected pituitary and hypothalamic transcription factors and signaling pathways.

      Weaknesses:

      There could be variation between individual iPSC lines that is unrelated to the genetically engineered change. While the authors check for off-target effects of the guide RNA at predicted sites using WGS, a better control would be to have independently engineered clones or to correct the engineered clone to wild type and show that the phenotypic effects are reversed.

      All NFKB2 patients are heterozygous for what appear to be dominant negative mutations that affect protein cleavage and nuclear localization of processed protein as homo or heterdimers. The organoids are homozygous for this mutation. Supplemental Figure 4 indicates that one heterozygous clone and two homozygous mutant clones were obtained. Analysis of these additional clones would give more strength to the conclusions, showing reproducibility and the effect of mutant gene dosage.

      The main goal of this work was to evaluate if and how NFKB2D865G mutation affects hypothalamic-pituitary organoids development, in order to determine if these organoids would constitute a valuable model to study DAVID syndrome.

      We thank this reviewer for noting that we identified an important question and have used appropriate novel and not widely used methods to address it, including CRISPR/Cas9 genome editing of iPSCs and disease modelling in iPSC-derived HPOs that had not previously been reported by a team other than the one that initially described it, allowing to confirm our working hypothesis that DAVID syndrome is caused by a developmental defect rather than an autoimmune hypophysitis condition. We also agree that analysing more clones, generated from same or different hiPSC lines, carrying homozygous or heterozygous mutations, and corrected mutations will be necessary in the future.

      Reviewer #3 (Public Review):

      We also thank this reviewer for the detailed analysis of our manuscript, for the valuable comments, suggestions and questions that are addressed point-by point below. 

      Summary:

      This manuscript by Mac et al addresses the causes of pituitary dysfunction in patients with DAVID syndrome which is caused by mutations in the NFKB2 gene and leads to ACTH deficiency. The authors seek to determine whether the mutation directly leads to altered pituitary development, as opposed to an autoimmune defect, by using mutating human iPSCs and then establishing organoids that differentiate into pituitary tissue. They first seek to validate the system using a well-characterised mutation of the transcription factor TBX19, which also results in ACTH deficiency in patients. Then they characterise altered pituitary cell differentiation in mutant NFKB2 organoids and show that these lack corticotrophs, which would lead to ACTH deficiency.

      Strengths:

      The conclusion of the paper that ACTH deficiency in DAVID syndrome is independent of an autoimmune input is strong.

      Weaknesses:

      (1) The authors correctly emphasise the importance of establishing the validity of an iPSC-based model in being able to recapitulate in vivo dysfunctional pituitary development through characterisation of a TBX19 knock-in mutation. Whilst this leads to the expected failure of functional corticotroph differentiation, other aspects of the normal pituitary differentiation pathway upstream of corticotroph commitment seem to have been affected in surprising ways. In particular, the loss of LHX3 and PITX1 in TBX19 mutant organoids compared with wild type requires explanation, especially as the mutant protein would only be expected to be expressed in a small proportion of anterior pituitary lineage cells.

      If the developmental expression profile of key transcription factors in mutant organoids does not recapitulate that which occurs in vivo, any interpretation of the relevance of expression differences in the NFKB2 organoids to the mechanism(s) leading to corticotroph function in vivo has to be questionable.

      See response to Reviewer #2

      It is notable that the manipulation of iPSC cells used to generate mutants through CRISPR/Cas9 editing is not applied to the control iPSC line. It is possible that these manipulations lead to changes to the iPSC cells that are independent of the mutations introduced and this may change the phenotype of the cells. A better control would have been an iPSC line with a benign knock-in (such as GFP into the ROSA26 locus).

      We agree that the issue of off-target mutations should be addressed. However, we performed whole genome sequencing on TBX19 KI and did not observe any pathogenic variants other than the intended edition. We also checked that clones isolated during the screening procedure but that returned negative for editing still had the ability to generate pituitary cells. However, we made the choice to use the isogenic original hiPSC line as it could be compared to both TBX19 KI and NFKB2 KI simultaneously, therefore reducing workload and cost of the experiments. Any other knock-in mutation, such as GFP into the ROSA26 locus would imply the same risk of off-target mutations, but presumably at other sites in the genome.

      (2) In the results section of the manuscript the authors acknowledge that hypothalamic tissue in the NFKB2 mutant organoid may be having an effect on the development of pituitary tissue. However, in the discussion the emphasis is entirely on pituitary autonomous mechanisms such as pituitary HESX1 expression or POMC gene regulation; in the conclusion of the abstract, a direct role for NFKB2 in pituitary differentiation is described. Whilst the data here may suggest a non-immune mediated alteration in pituitary function in DAVID syndrome, if this is due to alteration of the developing hypothalamus then this is not direct. A fuller discussion of the potential hypothalamic contribution and/or further characterisation of this aspect is warranted.

      We agree with this reviewer that contributions of both hypothalamic and pituitary developing tissues should be taken into account. We performed more experiments and analysed the effect of both mutations on hypothalamic growth factors expression. These results are displayed in new figure 10. The role of the hypothalamus is now clearly mentioned and highlighted in the Discussion.

      (3) qRT-PCR data presented in Figure 6A shows negligible alteration of HESX1 expression at all time points in NFKB2 mutant organoids. This is not consistent with the 2-fold increase in HESX1 expression described in day 48 organoids found by bulk RNA sequencing.

      How do the authors reconcile these results and why is one result focused on in the discussion where a potential mechanism for a blockade of normal pituitary cell differentiation is suggested? Further confirmation of HESX1 expression is required.

      In the previous version on the manuscript, the HESX1 fold-change ratio between NFKB2 KI and WT at d48 was of 2.06 (p=0.22). However, the type of representation for expression kinetics (values relative to the expression peak in WT) and the scale used made it difficult to see. In the new version of the manuscript, we analysed more samples from the same experiments, and new figure (now 6B) shows significant increase of HESX1 expression (Fc = 2.46, p=0.019) in NFKB2 KI.

      Also, qPCR results come from at least two different experiments whereas RNAseq come from a single one. For RT-qPCR, 6 HPOs per genotype were picked and further analysed. As we found that only 60-70% of organoids show signs of pituitary cell differentiation, we chose to perform a preselection of organoids, based on RT-qPCR expression of selected markers (SOX2, HESX1, PITX1, LHX3, TBX19, POU1F1 and POMC) in order to avoid having “empty” HPOs sent for bulk RNAseq. We compared HESX1 expression ratios obtained by the two different techniques on the same samples (the ones used for RNA-seq) and found values of 2.19 (p=0.03) and 1.83 (p=0.061) for RNA-seq and RT-qPCR respectively. This is illustrated in Supplementary Figure 7. Our new results thus clearly demonstrate the increase in HESX1 expression in NFKB2 KI from d27 to d75.

      (4) Throughout the authors focus on POMC gene expression and ACTH antibody immunopositive as being indicative of corticotroph cell identity. In the human fetal pituitary melanotrophs are present and most ACTH antibodies are unable to distinguish these cells from corticotrophs. Is the antibody used specifically for ACTH rather than other products of the POMC gene? It is unlikely that all the ACTH-positive cells are melanotrophs, nevertheless, it is important to know what the proportions of the 2 POMC-positive cell types are. This could be distinguished by looking for the expression of NeuroD1, which would also define whether corticotrophs are committed but not fully differentiated in the NFKB2 mutant organoids. In support of an effect on corticotrophs, it is notable that CRHR1 expression (which would be expected to be restricted to this cell type) is reduced by 84% in bulk RNAseq data (Table 1) and this may be an indicator of the loss of corticotrophs in the model.

      The antibody we used is directed against ACTH. In HPOs, PAX7 expression was barely detected during the whole experiment. Moreover, although PCSK2 transcripts were observed, their expression started very early (d27) and remained constant, suggesting that an expression of this gene in hypothalamic cells rather than pituitary cells. All these observations suggest that melanotrophs are very unlikely to be present in HPOs.

      (5) Notwithstanding the caveats about whether the organoid model recapitulates in vivo pituitary differentiation (see 1 above) and whether the bulk RNAseq accurately reflects expression levels (see 3 above), there are potentially some extremely interesting changes in gene expression shown in Table 1 which warrant further discussion. For example, there is a 25-fold reduction in POU1F1 expression which may be expected to reflect a loss of somatotrophs in the organoid (and possibly lactotrophs) and highlights the importance of characterising the effect of NFKB2 on other anterior pituitary cell types within the organoid. If somatotrophs are affected, this may be relevant to the organoids as a model of DAVID syndrome as GH deficiency has been described in some individuals with NFKB2 mutations. The huge increase in CGA expression may reflect a switch in cell fate to gonadotrophs, as has been described with a loss of TPIT in the mouse. These are examples of the changes that warrant further characterisation and discussion.

      We performed a more in-depth analysis of other pituitary lineages (mainly somatotrophs). We confirmed the strong reduction in PROP1 and POU1F1 expression in NFKB2 KI organoids. Although the strong increase in CGA expression in the mutant may raise the possibility of a redirection towards gonadotroph lineage, the lack of change in NR5A1 expression may suggest otherwise.

      These results are now illustrated in figure 12 and discussed in a full paragraph.

      (6) How do the authors explain the lack of effect of NFKB2 mutation on global NFKB signalling?

      The most likely explanation is that p100/p52 is not involved in controlling the expression of other members of NFKB signalling. Therefore, the absence of global alteration of NFKB signaling pathway shows that mutant p100/p52 protein is directly responsible for the observed phenotype.

      Recommendations for the authors:

      Reviewing editor summary of recommendation to authors:

      The use of hypothalamic-pituitary organoids can provide a fundamental understanding of pituitary gland development and differentiation. Their use to study human pituitary insufficiency is important, gaining insight into the aetiology of disease and if it implicates the hypothalamus or anterior pituitary. To this end, there is only one other example of their use in the literature, where Matsumoto et al, (2019), used OTX2-mutant hypothalamic-pituitary organoids to understand the aetiology of pituitary hypoplasia driven by OTX2 mutations. This being the second example of using gene editing in human iPSC-derived hypothalamic-pituitary organoids, these studies have improved the efficiency of differentiation previously published by Suga et al. (2011) for ES cells, and Matsumoto et al. (2019) for iPS cells. In addition, it has solidified that this method is useful, especially when studying hypothalamic involvement in human pituitary anomalies, due to the concerted development of these two structures.

      The reviewers recognise the valuable insight provided into the mechanism of NFKB2 action during pituitary development and how this human organoid model might be one of the few or only approaches suitable to discover the aetiology of the pituitary phenotype.

      The reviewers agree that both the evidence provided from the organoid model, as well as the characterisation of the phenotype are incomplete. In particular, the strength of evidence would be improved by analysing additional independent clones for both NFKB2 as well as TBX19 gene-edited iPSCs. Additionally, analysis of NFKB2 expression both in vivo and in the organoids, as well as analysis for the NFKB2 targets put forward, would be a lot more informative to help understand this phenotype.

      The main recommendations discussed are summarised here and the reviewers have elaborated on these points in their individual reviews:

      The two ACTH-deficient organoid models use a single genetically engineered clone, and the potential for variability amongst clones, unrelated to the mutation, makes the conclusions less compelling. Two independent homozygous clones were obtained for NFKB2 but only one was used, so analysis of the second clone would strengthen the findings. A heterozygous clone was also obtained and given all NFKB2 patients are heterozygous for what appears to be dominant negative mutations, the heterozygous clone ought to be analysed. Analyses of these additional clones would give more strength to the conclusions, showing reproducibility and the effect of mutant gene dosage. The reviewers provide excellent suggestions for alternative controls for the engineered iPSC lines in their specific comments.

      The effect of TBX19 mutation on early pituitary fate markers LHX3 and PITX1 is surprising given the phenotype of the knockout mice and patients with mutations. If the developmental profile of essential transcription factors does not recapitulate the in vivo expression in this well-characterised mutant, this brings the organoid model into question. Thus, analysis of a further clone for the study of mutant TBX19 would be crucial. The validity of this control affects the interpretations relying on expression differences in the NFKB2-mutant organoids.

      The study has implicated NFKB2 in pituitary development, but more insight is needed to fully understand disease pathogenesis. The authors presented potential downstream targets of NFKB2 action, including transcription factors and key signalling pathway components; further analyses of NFKB2 expression and experiments investigating the relevant factors in more detail will help elucidate this point.

      Discerning between the hypothalamus and pituitary tissue is fundamental to interpreting phenotypes: (i) To pinpoint the primary tissue affected by NFKB2 deficiency, staining for NFKB2 during development in vivo will determine if this is expressed both in the developing hypothalamus and anterior pituitary gland or only one of these tissues. (ii) Using markers of hypothalamus and pituitary to discern between these two tissues in organoids, will provide a lot of valuable information where expression changes are presented. This would help discern the contribution of the developing hypothalamus as this is still unclear and has not been discussed. Knowing which tissue compartments NFKB2 is expressed in the organoids would also be of great value.

      The organoids provide an opportunity to characterise the effects of NFKB2 on other pituitary cell types, since the bulk RNAseq presents intriguing changes indicating that not only corticotrophs may be affected. This may be of relevance to patients, which can have additional pituitary hormone deficiencies. If NFKB2 is expressed in the pituitary, demonstrating expression in the different cell types in vivo as well as in the organoids would help interpret the phenotype. Is this expressed only in corticotrophs/corticotroph precursors, or in additional endocrine cells?

      We agree with these considerations and the summary and thank the Editors for their assessment. Although we indeed share the idea that reproduction of the experiments on a second clone would be a useful confirmatory step, we have not been able to reach this goal within a reasonable time frame for the reason mentioned above (unavailability of the main research engineer knowledgeable in the challenging methods involved for organoids differentiation) and due to the long turnaround time of this kind of experiments (3 months for the whole differentiation starting form hiPSC). We therefore decided to publish on a single clone while we are still aiming at reproducing our results on at least a second one and will hopefully be able to provide these additional data in a subsequent revised version. We now acknowledge this limitation in the final part of the Discussion.

      We have analysed more samples by RT-qPCR and further analysed RNASeq data from NFKB2 KI organoids, which provided with more insights into the different levels where NFKB2 may play a role. Specifically, we now show the effect of NFKB2 mutation on hypothalamic growth factors and pituitary progenitor differentiation (figure 10), different stages of corticotroph maturation (figure 11) and effects on PROP1/POU1F1-dependent lineages (figure 12). We confronted our results to publicly available ChIPseq data concerning p52 transcriptional targets (figure 13). We have now provided several additional figures derived from these analyses, including a synthetic figure to summarize the most relevant observed effects (Fig. 14). 

      Reviewer #1 (Recommendations For The Authors):

      In organoids, it is essential to stain for NFKB: is it the hypothalamus or the pituitary that expresses NFKB, and if the pituitary, is it the corticotroph itself or the surrounding cells? If immunostaining is not available, FISH or RNAscope can be used to look at expression.

      Figure 7 shows stronger expression of p100/p52 in pituitary progenitors, and some expression in the hypothalamic part of the organoid. Due to current lack of biological material and length of experimental procedure, we could not yet determine which differentiated cell types express p100/p52, but this is clearly something we will look at in further experiments.

      Regarding Figure 7, NFKB2 (D865G/D865G) shows no LHX3 expression already at day 48. It would be better to look at expression including PITX1 at an earlier time point to see at what point differentiation is impaired.

      RT-qPCR results show no statistically significant changes in PITX1 (Fc=0.58, p=0.25) or LHX3 (Fc = 0.15; p=0.22) expression at d27, although there was a tendency towards downregulation.

      Is it really just a species difference that NFKB2-deficient mice do not have abnormal pituitary function? This needs to be discussed in the manuscript.

      Nfkb2_Lym1/Lym1 mice and _NFKB2 KI model have different but functionally very similar mutations, as they both lead to an abnormal processing of p100 and a strong reduction of p52 content. In mice, these mutations are more severe than the complete absence of Nfkb2 gene product, and they have been called “super repressors”. It is therefore surprising that no pituitary phenotype as been observed in mice. In our opinion, this constitutes a strong argument in favour of an inter-species difference, at least for the pathogenicity of this type of mutations.

      This point is now addressed in the Discussion

      Just looking at changes in gene expression by qPCR and bulk RNA-seq does not give enough information about localisation. We wish RNA-seq had at least been separated by FACS first. For example, FACS can separate the anterior pituitary and hypothalamus by EpCAM positivity/negativity (PMID: 35903276), so we would like to see gene expression in such separated samples.

      This is a pertinent suggestion. We are aware of these techniques and we hope we will be able to include them in future studies

      For Figures 2 and 6, just looking at changes in gene expression by qPCR does not provide localisation information, so either (1) immunostaining for LHX3 and NKX2.1 should be shown in each aggregate as in FigS3, or (2) qPCR should be performed on the FACSed cells. (2) qPCR on FACSed cells.

      PITX1, LHX3 (as confirmed by our immunofluorescence data) and HESX1 are only expressed in non-neural tissue. TBX19 could be expressed in the hypothalamic part of the organoid, but we observed very little immunostaining outside the outermost layers of organoids (i.e. pituitary tissue). The antibody we used to detect corticotrophs only recognizes ACTH, and therefore only marks pituitary cells.

      In addition, pathway and gene ontology analyses should be performed.

      Pathways and gene ontology have been performed. However, as organoids consist of two different tissues, the analysis of over 4800 differentially expressed genes did not give us very informative results, apart from an impairment of retinoic acid signalling that we are currently investigating

      Reviewer #2 (Recommendations For The Authors):

      The differentiation of iPSC to organoids could be variable. The authors indicate that 200 organoids were analyzed for each line, and 3-10 organoids were analyzed per time point, genotype, and assay. Is it clear that 100% of the organoids differentiate to produce corticotropes? Please clarify.

      In our experiments, almost 90% of organoids give rise to non-neural ectoderm, as demonstrated by PITX1 expression. However, depending on experiments, only 60-70% of organoids give rise to pituitary progenitors (LHX3+) and subsequently to corticotropes. This has been clarified in the text.

      For TBX19, it seems surprising that there is an effect on PITX1 and LHX3 expression, since TBX19 expression is normally activated after these genes are expressed. An effect of TBX19 on EMT would also be surprising as the knockout mice do not have dysmorphology of the stem cell niche. The only evidence for an effect is the reduced IHC for E-cadherin. If this is an important point, the authors should examine other EMT markers such as Zeb2. The TBX19 knockout mice appear to form corticotropes based on the expression of NeuroD1, even though they lack TBX19 and POMC expression. It would be reassuring to see that NeuroD1 is normally expressed in the TBX19 mutant organoids.

      We agree that the effect of the TBX19 mutant on early pituitary progenitor development is rather puzzling. In our model, TBX19 is expressed throughout the whole experiment, although it is at very low levels in undifferentiated hiPSCs compared to peak expression (over 50-fold difference).

      During the CRISPR-Cas9 gene edition, we obtained a clone with a homozygous one base insertion at the cutting site, leading to a frameshift and a premature stop codon 48 bases downstream. This would result in an expected protein of 163 amino acids instead of 488, but with potentially still functional DNA-binding ability. This mutation had a similar effect on LHX3 and PITX1 as the TBX19 KI mutation, although it was even more severe. Our most likely explanation is that the two TBX19 mutants we generated have dominant negative effects. Contrary to mouse, little is known about TBX19 expression in early human pituitary development, but scRNA-seq data on human embryonic pituitaries (Zhang et al.) show low expression in undifferentiated pituitary progenitors between 7 and 9 weeks of gestation. Therefore, early expression of these dominant negative proteins could perturb differentiation in the organoids. Future development of hiPSCs lines with total absence of TBX19 should help clarify these questions.

      Apart from the lack of change in ZEB2 expression in TBX19 KI (Fc = 1.15; p = 0.35), we did not look further for changes in EMT markers in TBX19 KI. However, we added a more detailed analysis for EMT markers expression in NFKB2 KI based on RNAseq results (see table 2).

      Due to lack of material, we could not confirm NEUROD1 expression by immunostaining. However, RT-qPCR showed there was no change in NEUROD1 expression in TBX19 KI (Fc = 0.81; p = 0.64)

      NFKB2 IHC was markedly reduced in NFKB2 D865G/D865G organoids. Based on previous experiments, the mutant protein should be expressed but not activated by proteolytic cleavage. It is possible that the antibody has a different affinity for the mutant protein and/or the uncleaved protein may be unstable. Can this be clarified? The mRNA for mutant NFKB2 appears unchanged in Table 1.

      This is puzzling indeed. We did not notice any change in NFKB2 from d27 to d105, and no significant change either between WT and NFKB2 KI. Although the antibody we used recognizes both p100 and p52, we cannot rule out the possibility that p100/p52 is degraded by pathways other than proteasome. Another possibility is that p100 interactions with other proteins may decrease the accessibility of the antibody to the epitope

      The RNA sequencing data from the NFKB2 organoids is intriguing. It suggests that the NFKB2 mutation may have a modest effect on Tbx19 transcription but not Neurod1. It also suggests there are hypothalamic effects, i.e. altered expression of hypothalamic markers in mutant organoids. Is NFKB2 expressed in the developing hypothalamus? Can normal NEUROD1 IHC be confirmed? It is also intriguing that there may be an effect on EMT. However, there seem to be some discrepancies in the direction of effect on these markers. Please clarify.

      This is related to the point just above. P100/p52 is described as a ubiquitously expressed protein. We think that it is expressed in the hypothalamic part of the organoids, but at a lower level compared to pituitary progenitors.

      As mentioned before, we could not yet confirm NEUROD1 expression by immunostaining, but RT-qPCR clearly showed there was no change in NEUROD1 expression in TBX19 KI (Fc = 0.81; p = 0.64) or NFKB2 KI (Fc = 0.88; p = 0.5). However, we investigated other markers of different stages of corticotroph differentiation (see figure 11) and found that the later stages are most affected.

      Concerning the EMT, we also found changes in the expression of other markers that are shown in Table 2 and discussed further in the text.

      Cytokines have been proposed to play important roles in pituitary differentiation, i.e. IL6. Is there any evidence for an altered cytokine or chemokine expression in the NFKB2 organoids?

      We didn’t see any change in IL6 expression NFKB2 KI (Fc = 2.34; p = 0.55), but RNAseq shows a strong increase in IL6R (Fc = 8.89; p = 2.13e-09). But at this point, the relevance of these observations remains elusive.

      Minor:

      Some patients with DAVID syndrome have pituitary hypoplasia. The authors measure organoid size and find no differences based on genotype. However, each organoid probably has a variable amount of tissue differentiated to pituitary and hypothalamic fates, therefore, the volume of the whole organoid may not be a good proxy for the amount of pituitary tissue.

      We are aware of this issue. However, for most pituitary genes measured by RT-qPCR (PITX1, LHX3, TBX19), the deltaCt values did not drastically vary for a given time point/genotype, suggesting a stable pituitary/hypothalamic ratio.

      Figure 9 shows whole transcriptome data for the NFKB2 organoids, and Table 1 lists the data for selected genes. There appears to be disagreement between the significance cut-offs used in the figure and the table. Please adjust.

      We removed the fold-change cut-offs to improve clarity

      elife120868_0_supp_2945725_rxl2z4. "haft" appears several times, but it should be "half".

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1 (Public Review):

      The contribution of individual resides is shown in Figure 3c, which highlights one of the strengths of this RBM implementation - it is interpretable in a physically meaningful way. However, there are several decisions here, the justification of which is not entirely clear.

      i) Some of the residues in Fig 3c are stated as "relevant" for aminoacylated PG production. But is this the only such hidden unit? Or are there others that are sparse, bimodal, and involve "relevant" AA?

      Thanks for bringing this important question to our attention. In fact,  this was the only hidden unit involving the combination of positions 152 and 212.  Although we don't  have knowledge of all relevant amino acids for this catalytic process, the residues we uncover were however shown through experimental analysis to be critical for the catalytic function of two MprF variants, and thus since our protein of interest involved this function, any domain which did not contain these residues were excluded. We can't rule out that the domains we excluded from further analysis could be performing similar catalytic functions, but we found it unlikely considering the amino acids found in the negative portion of the weight were chemically unlikely to form a complex with the amino acid lysine. We have clarified in the text, that this selection is probably a subset of all important amino acids, however, this selection provided predictive power.

      ii) In order to filter the sequences for the second stage, only those that produce an activation over +2.0 in this particular hidden unit were taken. How was this choice made?

      The +2.0 was chosen as it ensured that the bimodal distribution was split into two distinct distributions.

      iii) How many sequences are in the set before and after this filtering? On the basis of the strength of the results that follow I expect that there are good reasons for these choices, but they should be more carefully discussed.  

      We started with 11,507 sequences and after filtering we had 7,890 to train our model with.  We think this number still maintains robust statistics. This is noted in the Dataset acquisition and pre-processing section of the Methods section.

      iv) Do the authors think that this gets all of the aminoacylated PG enzymes? Or are some missed?

      This is an interesting question that prompted us to do further analysis. We have added a new supplemental figure providing more details to this question. Based on the Uniprot derived annotations and the Pfam domain-based analysis of these sequences, the large majority of sequences that were excluded were proteins which included the LPG_synthase_C domain but not the transmembrane flippase domain required by the MprF class of enzymes, and were instead accompanied by different domains which  seem less relevant to our enzyme of interest.  It is true though, and related to question (i), that variants which might retain the functionality despite losing experimentally determined key catalytic residues could have been excluded by this method, but such sequences could still be reasonably excluded due to their dissimilarity with MprF from Streptococcus agalactiae.

      However, some similar criticisms from the last point occur here as well, namely the selection of which weights should be used to classify the enzymes' function. Again the approach is to identify hidden unit activations that are sparse (with respect to the input sequence), have a high overall magnitude, and "involve residues which could be plausibly linked to the lipid binding specificity."

      (i) Two hidden units are identified as useful for classification, but how many candidates are there that pass the first two criteria? Indeed, how many hidden units are there?

      We note in the Model training section of the methods that our final model used had 300 hidden units in total.  As to the first part of your question,  rather than systematically test the predictive power of all other hidden units to this task, we decided to use the weights that we did because of their connection to a proposed lipid binding pocket found through Autodocking experiments. While another weight might provide predictive power, it might lack this critical secondary information. Moreover, the direction of our research necessitated finding weights which first satisfied our lipid-binding pocket plausibility before using these weights to propose MprF variants to test for our novel functionality. Given the limited information we had early in the research process, to go in reverse would have provided too many options for experimental testing with reduced mechanistic justification. We included a brief explanation of our rationale in section " Restricted Boltzmann Machines can provide sensitive, rational guidance for sequence classification “ in the updated manuscript.

      ii) The criterion "involve residues which could be plausibly linked to the lipid binding specificity" is again vague. Do all of the other candidate hidden units *not* involve significant contributions from substrate-binding residues? Maybe one of the other units does a better job of discriminating substrate specificity. (As indicated in Figure 8, there are examples of enzymes that confound the proposed classification.) Why combine the activations of two units for the classification, instead of 1 or 3 or...?

      In fact, it is true that the other hidden units do not involve significant contribution to substrate-binding residues, and we will clarify this. The weights found through this RBM methodology are biased to be probabilistically independent, meaning that the residues and amino acids implicated by each weight are not shared among the other weights through the design of the model. We will update the Model Weight selection section to clarify that the weights we chose had more significantly weighted residues overlapping with the residues near the lipid-binding region than the other weights we checked. We combined these two because they were the only ones which had both overlap with these residues and predictive power of lipid activity with the few sequences we had detailed knowledge of at the time of decision (Figure 5b).

      The Model Weight section reads as follows:

      “Weights were chosen which involved sequence coordinates implicated in our function of interest. Specifically, locations identified through Autodock (Hebecker et al., 2015) where the lipid was likely to interact, and a small radius around this region to select a small set of coordinates. We chose the only weights which had both overlap with multiple residues in this chosen radius and predictive power (separation) for the three examples we had to start with.”

      Author Recommendations:

      The manuscript will likely be read by many membrane biologists/biochemists, and they might like to better understand how the RBM might be useful in their own approach. Here are some suggestions along these lines. The overall goal is to explain the RBM in *plain English* - the mathematical description in Eqs 2-4 is not easily interpretable.

      (1a) Explain that the RBM is a two-layer structure, in which one layer is the "visible" elements of the input sequence, and the other is called "hidden units." Connections are only made between visible and hidden units, but all such connections are made.

      (1b) The strengths of these connections are called "weights", and are determined in a statistical way based on a large set of input sequences. Once parametrized, the RBM is capable of capturing correlations among many positions in an input sequence - a significant advantage over the DCA approach.

      We agree with this assessment, and have updated the section of the text where we introduce the RBM with a non-technical explanation of what this method is doing. It reads as:

      “The design of this RBM can be seen in Figure 4, where the model architecture is represented by purple dots and green triangles. The dots are the “visible” layer, which take in input sequences and encode them into the “hidden” layer, where each triangle represents a separate hidden unit. The lines connecting the visible and hidden layers show that each hidden unit can see all the visible units (the statistics are global), but they cannot see any of the other hidden units, meaning the hidden units are mutually independent. This global model with mutually independent hidden units (see also the marginal distribution form shown in Equation 3) has the following useful properties: higherorder couplings between... “

      (1c) Although strictly true that the DCA model is a Boltzmann machine, it's not a typical Boltzmann machine, because all of the units are visible. Typically a Boltzmann machine would also include hidden units, in order to increase its capacity/power. 

      We have clarified the relationship between DCA and Boltzmann machines, and this section now reads as:

      This class of models is closely related to another model termed the Boltzmann machine. The Boltzmann machine formulation is closely related to the Potts model from physics, which was successfully applied in biology to elucidate important residues in protein structure and function (Morcos et al., 2011), and another example being the careful tuning of enzyme specificity in bacterial two-component regulatory systems (Cheng et al., 2014; Jiang et al., 2021). The Boltzmann machine-like formulation from Morcos et al. (2011), termed Direct Coupling Analysis (DCA), stores patterns...

      (1d) Throughout, the authors refer to the activation of the hidden units as weights, but this is not a typical usage of this terminology. Connections between units are weights and have two subscripts. Given an input sequence, the sum over these weights for a given hidden unit is its activation (Eq. 1). I suggest aligning the description with the typical usage in order to make the presentation easier to follow. Hereafter I will refer to these hidden unit activations as simply activations. 

      We agree with you, the hidden units are a collection of edge weights. We have modified the terminology in the text and in our figures to consistently refer to the collections of weights as hidden units and refer to the hidden unit outputs given a sequence input as activations.

      (1e) How many hidden units are there?

      The final model was trained with 300 hidden units.

      (2) It is redundant to say that lipids are both amphiphiles and hydrophobic...amphiphile already means hydrophobic plus hydrophilic. 

      This is true, we have edited the manuscript to reflect this.

      (3) What does this mean, and what's the point of this remark? "They [lipids] are relatively smaller than other complex biomolecules, such as proteins, thereby allowing a larger portion of their surface to interact with other macromolecules." 

      We have removed this sentence.

      Reviewer 2 (Author Recommendations):

      While the idea of filtering out a part of the sequence data obtained with BLAST makes sense per se, it would be nice if the authors could comment on the nature of the sequences corresponding to the left peak in Figure 3b. It is hypothesised in conclusion that these sequences could lack any catalytic function. Could the authors experimentally check that this is the case or provide further evidence for this hypothesis?

      Yes, in this revision we provide further evidence as a new supplementary figure S2. At the time we performed domain analysis of the sequences we excluded; most of these sequences lacked the flippase domain associated with MprF function, and instead were combined with different domains. On this basis we excluded them due to their lack of relevance to the MprF from Streptococcus agalactiae we were interested in. Although there is possibility that some relevant sequences might be excluded, our assessment is that we gained specificity by reducing the set of sequences. 

      A key step in the RBM-based approach is the identification of "meaningful" hidden units, i.e. whose values are related to biological function. In Methods, the authors explain how they selected these units based on the L1 norms of the weights and the region of interaction with the lipid. While these criteria are reasonable, I wonder whether they are too stringent. In particular, one could think that regions in the proteins not in direct contact with the lipid could also be important for binding. It is known for instance that the length of loops can affect flexibility and help regulate activity in some catalytic enzymes. So my question is: if one relaxes the criterion about the coordinates of large weight values, what happens? Are other potentially interesting hidden units identified?

      We completely agree that other regions of the protein are likely involved in determining enzyme specificity, and that focusing on solely regions which interact with the lipid is perhaps missing important contributions to the catalytic function; we hypothesize that the flippase domain itself and its interaction with the catalytic domain are involved, especially considering the concerted mechanism by which they must operate. We are currently investigating these theories and will be the subject of future work. As an initial step, we present this current work with restricted information that led to concrete predictions. We focused on the lipid binding pocket because it was one of just a few bits of information we had from the start, but as the reviewer suggests, we plan to follow up our research to try to identify other relevant hidden units and domains. 

      From a purely machine-learning point of view, it would be good to see more about cross-validation of the model. More precisely, could the authors show the log-likelihood of test set data compared to the one of training sequence data?

      We agree this is an important piece of information. We will update our methods section with this information. We performed a parameter sweep to search for the parameter’s we used in our final model, and in that testing with a random 80/20% training/test split we had a training log probability loss of -0.91, and a test loss of -0.98. However, for our final model we used all available data and did not perform a split; the final result did not change dramatically by including the additional data, and the weight structure and composition was consistent with the results presented in the paper.

      Reviewer 3 (Public Review):

      In many of the analyzed strains, the presence of the lipid species Lys-PG, Lys-Glc-DAG, and Lys-Glc2-DAG is correlated to the presence of the MprF enzyme(s), but one should keep in mind that a multitude of other membrane proteins are present that in theory could be involved in the synthesis as well. Therefore, there is no direct evidence that the MprF enzymes are linked to the synthesis of these lipid species. Although, it is unlikely that other enzymes are involved, this weakens the connection between the observed lipids and the type of MprF. 

      While there are a number of proteins found on the membrane that could play a role, we have specifically used a background strain that has a transposon in mprF that makes the bacteria incapable of synthesizing Lys-lipids (Figure 7B) unless complemented back with a functional MprF (Figure 7D-E). This led us to conclude that MprF is responsible for Lys-lipid synthesis.

      Related to this, in a few cases MprF activity is tested, but the manuscript does not contain any information on protein expression levels. Heterologous expression of membrane proteins is in general challenging and due to various reasons, proteins end up not being expressed at all. As an example, the absence of activity for the E. faecalis MprF1 and E. faecium MprF2 could very well be explained by the entire absence of the protein.

      The genes were expressed on the same plasmid to control for expression. While we did not run a western blot to examine expression levels the plasmid backbone was used as a control for protein expression. Previous research supports E. faecalis MprF1 and E. faecium MprF2 not synthesizing Lys-lipids and instead most likely play a different role in the cell membrane. 

      The title is somewhat misleading. The sequence statistics and machine learning categorized the MprFs, but the identification of a novel lipid species was a coincidence while checking/confirming the categorization. 

      We believe the title is appropriate given that the identification of Enterococcus dispar was through computational methods that led to the discovery Lys-Glc2-DAG. In other words, the categorization of potential organisms that produce lipids related to MprF has been driven by the proposition from the computational method. We agree, however, that the discovery was unexpected but would not have happened without the suggested organisms coming from the methodology presented here.  

      Please read the manuscript one more time to correct textual errors.  

      The example of the role of LPS in delivering siRNA to targeted cancer cells is a bit farfetched as LPS is very different from the lipids that are being discussed here. I would rather focus on the role of Lysyl-lipids in antibiotic resistance in the introduction.  

      We included LPS here to explain that natural lipids/components of the bacterial cell membrane could be used for drug delivery systems. While it is true LPS is quite different from Lys-lipid compounds, our goal was to create an emphasis on how the bacterial domain is a rich untapped source of lipids that could be used in biotechnology.  In this way we wanted our statement to be more broadly about bacterial lipids and the importance of their continued study for diverse applications like pharmaceuticals.

      The MS identification of Lys-Glc2-DAG is convincing, especially in combination with the fragmentation data, but the ion counts suggest low abundance. The observation would be strengthened if the identification of Lysyl-Glc2-DAG with different acyl-chain configurations has been observed. This should be then mentioned or visualized in the manuscript. 

      We agree and have added an updated Figure 8A to demonstrate the presence of different acyl-chain configurations in Enterococcus dispar.  

      Further analysis of the Enterococcus strains shows the presence of the three lipids Lys-PG, Lys-Glc-DAG, and LysGlc2-DAG, although the Lys-Glc-DAG is only detected in trace amounts. This raises questions on the specificity of the MprF for the substrate Glc-DAG. If the ratio of Glc2-DAG compared to Glc-DAG abundance is similar to the ratio of Lys-Glc2-DAG vs. Lys-Glc-DAG abundance, this would strengthen the observation that the enzyme has equal affinity. However, if there is a rather large amount of Glc-DAG but a small amount of Lys-Glc-DAG, the production of Lys-Glc-DAG might be a side-reaction. 

      The reviewer brings a relevant point of discussion, however, a clear resolution might be part of future work as we do not use spike in controls when completing lipid extractions. Because of this, it  it is not possible for us to compare lipid levels across different samples. We now include a note clarifying this in the discussion section.  

      The plotting of the MprF sequence variants using the chosen RBM weights reveals a rather complex distribution over the quadrants (Figure 8). It is rather unclear in Figure 8 why only 1 sequence is plotted for Enterococcus faecalis and faecium, while 2 different MprFs are present (and tested) for these two organisms. This should be clarified.  

      We agree this can be a source of confusion. We have further clarified this in the text that only the functional alleles were plotted in Figure 8 and that all Enterococcal alleles are plotted in Figure S3 regardless of function.

    1. Author response:

      Reviewer 1:

      The role of Fgf signaling in gliogenesis and Foxg1 in neurogenesis is well known. It is not clear if Fgf18 is a direct target of Foxg1.

      We agree with the reviewer- Fgf signaling is an established pro-gliogenic pathway (Duong et al 2019) and Foxg1 overexpression is known to promote neurogenesis in cultured neural stem cells (Branacaccio et al 2019). Our study links these two mechanisms, as the Reviewer has summarized: (a) we demonstrate that FOXG1 works via modulating Fgf signaling cell-autonomously within progenitors by regulating the levels of Fgfr3. (b) Loss of Foxg1 in postmitotic neurons results in the upregulation of Fgf ligand expression (possibly via indirect mechanisms) and this non-cell autonomously increases Fgf signaling in progenitors. Our study is entirely performed in vivo.

      Proposed revision: We will revise the manuscript to reflect that Fgf18 may be an indirect target of FOXG1 in postmitotic neurons.

      Reviewer 2:

      It wasn't clear to me why the authors chose postnatal day 14 to examine the effects of Foxg1 deletion at E15 - this is a long time window, giving time for indirect consequences of Foxg1 deletion to influence development and thereby potentially complicating the interpretation of findings. For example, the authors show that there is no increased proliferation of astrocytes or death of neurons lacking Foxg1 shortly after cre-mediated deletion, but it remains formally possible (if perhaps unlikely) that these processes could be affected later during the time window. The rationale underlying the choice of this time point should be explained.

      I don't agree with the statement in the very last sentence of the results section that "neurogenesis is not possible in the absence of [Foxg1]" as there are multiple reports in the literature demonstrating the presence of neurons in Foxg1-/- mice (eg: Xuan et al., 1995; Hanashima et al., 2002, Martynoga et al., 2005, Muzio and Mallamaci 2005). Perhaps the statement refers specifically to late-born cortical neurons. This point also arises in the discussion section.

      Proposed revisions:

      (a) We will revise the manuscript to explain why we chose postnatal day 14 to examine the effects of Foxg1 deletion at E15.

      ● We have examined the transcriptomic dysregulation after Foxg1 deletion at E17.5, which is a reasonable period to identify potential direct targets. Furthermore, FOXG1 occupies the Fgfr3 locus in ChIP-seq performed at E15.5. Together, these support the interpretation that Fgfr3 is a direct target of Foxg1.

      ● As the Reviewer notes, we have investigated the possibility of increased proliferation of astrocytes and death of neurons and found no evidence that suggests these phenomena occur in the 3 days after loss of Foxg1. Cortical neurons are postmitotic and differentiated by E18.5, the stage at which we examined CC3 staining and found no difference in cell death in control and mutants (Supplementary Figure S2C, C’). The majority of progenitors (PAX6+ve cells) that lose Foxg1 at E15.5 express the gliogenic transcription factor NFIA by E18.5 (Figure 2C, C’), but hardly any express intermediate (neurogenic) progenitor marker TBR2 (Supplementary Figure S2B, B’). It is therefore unlikely that neurons are born from Foxg1 mutant progenitors and then die at a later stage.

      ● The cellular consequences of loss of Foxg1 require additional time to detect e.g. it takes ~ 5 days for GFAP to be detected in astrocytes once they are born. The P14 timepoint permits the assessment of oligogenesis which begins after astrogliogenesis and therefore permits a comprehensive assessment of the lineage of E15.5 Foxg1 null progenitors.

      (b) Thank you for pointing out that the last sentence of the results section implied (incorrectly) that ALL neurogenesis is not possible in the absence of Foxg1 We will modify this (and the discussion) to reflect that this applies to E14/15 progenitors and late-born cortical neurons.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      Sun et al. are interested in how experience can shape the brain and specifically investigate the plasticity of the Toll-6 receptor-expressing dopaminergic neurons (DANs). To learn more about the role of Toll-6 in the DANs, the authors examine the expression of the Toll-6 receptor ligand, DNT-2. They show that DNT-2 expressing cells connect with DANs and that loss of function of DNT-2 in these cells reduces the number of PAM DANs, while overexpression causes alterations in dendrite complexity. Finally, the authors show that alterations in the levels of DNT-2 and Toll-6 can impact DAN-driven behaviors such as climbing, arena locomotion, and learning and long-term memory.

      Strengths:

      The authors methodically test which neurotransmitters are expressed by the 4 prominent DNT-2 expressing neurons and show that they are glutamatergic. They also use Trans-Tango and Bac-TRACE to examine the connectivity of the DNT-2 neurons to the dopaminergic circuit and show that DNT-2 neurons receive dopaminergic inputs and output to a variety of neurons including MB Kenyon cells, DAL neurons, and possibly DANS.

      We are very pleased that Reviewer 1 found our connectivity analysis a strength.

      Weaknesses:

      (1) To identify the DNT-2 neurons, the authors use CRISPR to generate a new DN2-GAL4. They note that they identified at least 12 DNT-2 plus neurons. In Supplementary Figure 1A, the DNT-2-GAL4 driver was used to express a UAS-histoneYFP nuclear marker. From these figures, it looks like DNT-2-GAL4 is labeling more than 12 neurons. Is there glial expression?

      Indeed, we claimed that DNT-2 is expressed in at least 12 neurons (see line 141, page 6 of original manuscript), which means more than 12 could be found. The membrane tethered reporters we used – UAS-FlyBow1.1, UASmcD8-RFP, UAS-MCFO, as well as UAS-DenMark:UASsyd-1GFP – gave a consistent and reproducible pattern. However, with DNT-2GAL4>UAS-Histone-YFP more nuclei were detected that were not revealed by the other reporters. We have found also with other GAL4 lines that the patterns produced by different reporters can vary. This could be due to the signal strength (eg His-YFP is very strong) and perdurance of the reporter (e.g. the turnover of His-YFP may be slower than that of the other fusion proteins).

      We did not test for glial expression, as it was not directly related to the question addressed in this work.

      (2) In Figure 2C the authors show that DNT-2 upregulation leads to an increase in TH levels using q-RT-PCR from whole heads. However, in Figure 3H they also show that DNT-2 overexpression also causes an increase in the number of TH neurons. It is unclear whether TH RNA increases due to expression/cell or the number of TH neurons in the head.

      Figure 3H shows that over-expression of DNT-2 FL increased the number of Dcp1+ apoptotic cells in the brain, but not significantly (p=0.0939). The ability of full-length neurotrophins to induce apoptosis and cleaved neurotrophins promote cell survival is well documented in mammals. We had previously shown that DNT-2 is naturally cleaved, and that over-expression of DNT-2 does not induce apoptosis in the various contexts tested before (McIlroy et al 2013 Nature Neuroscience; Foldi et al 2017 J Cell Biol; Ulian-Benitez et al 2017 PLoS Genetics). Similarly, throughout this work we did not find DNT-2FL to induce apoptosis.

      Instead, in Figure 3G we show that over-expression of DNT-2FL causes a mild yet statistically significant increase in the number of TH+ cells. This is an important finding that supports the plastic regulation of PAM cell number. We thank the Reviewer for highlighting this point, as we had forgotten to add the significance star in the graph. In this context, we cannot rule out the possibility that the increase in TH mRNA observed when we over-express DNT-2FL could not be due to an increase in cell number instead. Unfortunately, it is not possible for us to separate these two processes at this time. Either way, the result would still be the same: an increase in dopamine production when DNT-2 levels rise.

      (3) DNT-2 is also known as Spz5 and has been shown to activate Toll-6 receptors in glia (McLaughlin et al., 2019), resulting in the phagocytosis of apoptotic neurons. In addition, the knockdown of DNT-2/Spz5 throughout development causes an increase in apoptotic debris in the brain, which can lead to neurodegeneration. Indeed Figure 3H shows that an adult-specific knockdown of DNT-2 using DNT2-GAL4 causes an increase in Dcp1 signal in many neurons and not just TH neurons.

      Indeed, we did find Dcp1+ cells in TH-negative cells too (although not widely throughout the brain). This is not surprising, as DNT-2 neurons have large arborisations that can reach a wide range of targets; DNT-2 is secreted, and could reach beyond its immediate targets; Toll-6 is expressed in a vast number of cells in the brain; DNT-2 can bind promiscuously at least also Toll-7 and other Keks, which are also expressed in the adult brain (Foldi et al 2017 J Cell Biology; Ulian-Benitez et al 2017 PLoS Genetics; Li et al 2020 eLife). Together with the findings by McLaughlin et al 2019, our findings further support the notion that DNT-2 is a neuroprotective factor in the adult brain. It will be interesting to find out what other neuron types DNT-2 maintains.

      We would like to thank Reviewer 1 for their positive comments on our work and their interesting and valuable feedback.

      Reviewer #2 (Public review):

      This paper examines how structural plasticity in neural circuits, particularly in dopaminergic systems, is regulated by Drosophila neurotrophin-2 (DNT-2) and its receptors, Toll-6 and Kek-6. The authors show that these molecules are critical for modulating circuit structure and dopaminergic neuron survival, synaptogenesis, and connectivity. They show that loss of DNT-2 or Toll-6 function leads to loss of dopaminergic neurons, dendritic arborization, and synaptic impairment, whereas overexpression of DNT-2 increases dendritic complexity and synaptogenesis. In addition, DNT-2 and Toll-6 modulate dopamine-dependent behaviors, including locomotion and long-term memory, suggesting a link between DNT-2 signaling, structural plasticity, and behavior.

      A major strength of this study is the impressive cellular resolution achieved. By focusing on specific dopaminergic neurons, such as the PAM and PPL1 clusters, and using a range of molecular markers, the authors were able to clearly visualize intricate details of synapse formation, dendritic complexity, and axonal targeting within defined circuits. Given the critical role of dopaminergic pathways in learning and memory, this approach provides a good opportunity to explore the role of DNT-2, Toll-6, and Kek-6 in experience-dependent structural plasticity. However, despite the promise in the abstract and introduction of the paper, the study falls short of establishing a direct causal link between neurotrophin signaling and experience-induced plasticity.

      Simply put, this study does not provide strong evidence that experience-induced structural plasticity requires DNT-2 signaling. To support this idea, it would be necessary to observe experience-induced structural changes and demonstrate that downregulation of DNT-2 signaling prevents these changes. The closest attempt to address this in this study was the artificial activation of DNT-2 neurons using TrpA1, which resulted in overgrowth of axonal arbors and an increase in synaptic sites in both DNT-2 and PAM neurons. However, this activation method is quite artificial, and the authors did not test whether the observed structural changes were dependent on DNT-2 signaling. Although they also showed that overexpression of DNT-2FL in DNT-2 neurons promotes synaptogenesis, this phenotype was not fully consistent with the TrpA1 activation results (Figures 5C and D).

      In conclusion, this study demonstrates that DNT-2 and its receptors play a role in regulating the structure of dopaminergic circuits in the adult fly brain. However, it does not provide convincing evidence for a causal link between DNT-2 signaling and experience-dependent structural plasticity within these circuits.

      We would like to thank Reviewer 2 for their very positive assessment of our approach to investigate structural circuit plasticity. We are delighted that this Reviewer found our cellular resolution impressive. We are also very pleased that Reviewer 2 found that our work demonstrates that DNT-2 and its receptors regulate the structure of dopaminergic circuits in the adult fly brain. This is already a very important finding that contributes to demonstrating that, rather than being hardwired, the adult fly brain is plastic, like the mammalian brain.

      We are very pleased that this Reviewer acknowledges that this work provides a good opportunity to explore the role of DNT-2, Toll-6, and Kek-6 in experience-dependent structural plasticity. We provide a molecular mechanism and proof of principle, and we demonstrate a direct link between the function of DNT-2 and its receptors in circuit plasticity, and a suggestive link to neuronal activity. Finding out the direct link to lived experience is a big task, beyond the scope of this manuscript, and we will be testing this with future projects. Nevertheless, it is important to place our findings within this context, as it opens opportunities for discovery by the neuroscience community.

      We would like to thank Reviewer 2 for the positive and thoughtful evaluation of our work, and for their feedback.

      Reviewer #3 (Public review):

      Summary:

      The authors used the model organism Drosophila melanogaster to show that the neurotrophin Toll-6 and its ligands, DNT-2 and kek-6, play a role in maintaining the number of dopaminergic neurons and modulating their synaptic connectivity. This supports previous findings on the structural plasticity of dopaminergic neurons and suggests a molecular mechanism underlying this plasticity.

      Strengths:

      The experiments are overall very well designed and conclusive. Methods are in general state-of-the-art, the sample sizes are sufficient, the statistical analyses are sound, and all necessary controls are in place. The data interpretation is straightforward, and the relevant literature is taken into consideration. Overall, the manuscript is solid and presents novel, interesting, and important findings.

      We are delighted that Reviewer 3 found our work solid, novel, interesting and with important findings. We are also very pleased that this Reviewer found that all necessary controls have been carried out.

      Weaknesses:

      There are three technical weaknesses that could perhaps be improved.

      First, the model of reciprocal, inhibitory feedback loops (Figure 2F) is speculative. On the one hand, glutamate can act in flies as an excitatory or inhibitory transmitter (line 157), and either situation can be the case here. On the other hand, it is not clear how an increase or decrease in cAMP level translates into transmitter release. One can only conclude that two types of neurons potentially influence each other.

      Thank you for pointing out that glutamate can be inhibitory. In mammals, the neurotrophin BDNF has an important function in glutamatergic synapses, thus we were intrigued by a potential evolutionary conservation. Our evidence that DNT-2A neurons could be excitatory is indirect, yet supportive: exciting DNT-2 neurons with optogenetics resulted in an increase in GCaMP in PAMs (data not shown); over-expression of DNT-2 in DNT-2 neurons increased TH mRNA levels; optogenetic activation of DNT-2 neurons results in the Dop2R-dependent downregulation of cAMP levels in DNT-2 neurons. Dop2R signals in response to dopamine, which would be released only if dopaminergic neurons had been excited. Accordingly, glutamate released from DNT-2 neurons would have been rather unlikely to inhibit DANs.

      cAMP is a second messenger that enables the activation of PKA. PKA phosphorylates many target proteins, amongst which are various channels. This includes the voltage gated calcium channels located at the synapse, whose phosphorylation increases their opening probability. Thus, a rise in cAMP could facilitate neurotransmitter release, and a downregulation would have the opposite effect. Other targets of PKA include CREB, leading to changes in gene expression. Conceivably, a decrease in PKA activity could result in the downregulation of DNT-2 expression in DNT-2 neurons. This negative feedback loop would restore the homeostatic relationship between DNT-2 and dopamine levels.

      Our data indeed demonstrate that DNT-2 and PAM neurons influence each other, not potentially, but really. We have provided data that: DNT-2 and PAMs are connected through circuitry; that the DNT-2 receptors Toll-6 and kek-6 are expressed in DANs, including in PAMs; that alterations in the levels of DNT-2 (both loss and gain of function) and loss of function for the DNT-2 receptors Toll-6 and Kek-6 alter PAM cell number, alter PAM dendritic complexity and alter synaptogenesis in PAMs; alterations in the levels of DNT-2, Toll-6 and kek-6 in adult flies alters dopamine dependent behaviours of climbing, locomotion in an arena and learning and long-term memory. These data firmly demonstrate that the two neuron types DNT-2 and PAMs influence each other.

      We have also shown that over-expression of DNT-2 in DNT-2 neurons increases TH mRNA levels, whereas activation of DNT-2 neurons decreases cAMP levels in DNT-2 neurons in a dopamine/Dop2R-dependent manner. These data show a functional interaction between DNT-2 and PAM neurons.

      Second, the quantification of bouton volumes (no y-axis label in Figure 5 C and D!) and dendrite complexity are not convincingly laid out. Here, the reader expects fine-grained anatomical characterizations of the structures under investigation, and a method to precisely quantify the lengths and branching patterns of individual dendritic arborizations as well as the volume of individual axonal boutons.

      Figure 5C, D do contain Y-axis labels, all our graphs in main manuscript and in supplementary files contain Y-axis labels.

      In fact, we did use a method to precisely quantify the lengths and branching patterns of individual dendritic arborisations, volume of individual boutons and bouton counting. These analyses were carried out using Imaris software. For dendritic branching patterns, the “Filament Autodetect” function was used. Here, dendrites were analysed by tracing semi-automatically each dendrite branch (ie manual correction of segmentation errors) to reconstruct the segmented dendrite in volume. From this segmented dendrite, Imaris provides measurements of total dendrite volume, number and length of dendrite branches, terminal points, etc. For bouton size and number, we used the Imaris “Spot” function. Here, a threshold is set to exclude small dots (eg of background) that do not correspond to synapses/boutons. All samples and genotypes are treated with the same threshold, thus the analysis is objective and large sample sizes can be analysed effectively. We have already provided a description of the use of Imaris in the methods section.

      Third, Figure 1C shows two neurons with the goal of demonstrating between-neuron variability. It is not convincingly demonstrated that the two neurons are actually of the very same type of neuron in different flies or two completely different neurons.

      We thank Reviewer 3 for raising this interesting point. It is not possible to prove which of the four DNT-2A neurons per hemibrain, which we visualised with DNT-2>MCFO, were the same neurons in every individual brain we looked at. This is because in every brain we have looked at, the soma of the neurons were not located in exactly the same location. Furthermore, the arborisation patterns are also different and unique, for each individual brain. Thus, there is natural variability in the position of the soma and in the arborisation patterns. Such variability presumably results from the combination of developmental and activity-dependent plasticity.

      We would like to thank Reviewer 3 for the very positive evaluation of our work and the interesting and valuable feedback.

    1. Author response:

      Public Reviews: 

      Reviewer #1 (Public review): 

      Summary: 

      Here the authors present their evidence linking the mitochondrial uniporter (MCU-1) and olfactory adaptation in C. elegans. They clearly demonstrate a behavioral defect of mcu-1 mutants in adaptation over 60 minutes and present evidence that this gene functions in the AWC primary sensory neurons at, or close to, the time of adaptation. 

      Strengths: 

      The paper is very well organized and their approach to unpacking the role of mcu-1 mutants in olfactory adaptation is very reasonable. The authors lean into diverse techniques including behavior, genetics, and pharmacological manipulation in order to flesh out their model for how MCU-1 functions in AWC neurons with respect to olfaction. 

      Weaknesses: 

      I would like to see the authors strengthen the link between mitochondrial calcium and olfactory adaptation. The authors present some gCaMP data in Figure 5 but it is unclear to me why this tool is not better utilized to explore the mechanism of MCU-1 activity. I think this is very important as the title of the paper states that "mitochondrial calcium modulates.." behavior in AWC and so it would be nice to see more evidence to support this direct connection. I would also like to see the authors place their findings into a model based on previous findings and perhaps examine whether mcu-1 is required for EGL-4 nuclear translocation, which would be straightforward to examine. 

      We agree that observing calcium levels inside the mitochondria would conclusively demonstrate that mitochondria calcium directly impacts neuropeptide secretion and behavior. We will try to do this with a mitochondrially targeted calcium indicator. We will also better integrate our findings to existing models in the literature, such as EGL-4 nuclear localization in AWC in response to prolonged odor exposure. Thank you for your comments.

      Reviewer #2 (Public review): 

      Summary: 

      In their manuscript, "Mitochondrial calcium modulates odor-mediated behavioural plasticity in C. elegans", Lee et al. aim to link a mitochondrial calcium transporter to higher-order neuronal functions that mediate memory and aversive learning behaviours. The authors characterise the role of the mitochondrial calcium uniporter, and a specific subunit of this complex, MCU-1, within a single chemosensory neuron (AWCOFF) during aversive odor learning in the nematode. By genetically manipulating mcu-1 as well as using pharmacological activators and blockers of MCU activity, the study presents compelling evidence that the activity of this individual mitochondrial ion transporter in AWCOFF is sufficient to drive animal behaviour through aversive memory formation. The authors show that perturbations to mcu-1 and MCU activity prevent aversive learning to several chemical odors associated with food absence. The authors propose a model, experimentally validated at several steps, whereby an increase in MCU activity during odor conditioning stimulates mitochondrial calcium influx and an increase in mitochondrial reactive oxygen species (mtROS) production, triggering the release of the neuropeptide NLP-1 from AWC, all of which are required to mediate future avoidance behaviour of the chemical odor. 

      Strengths: 

      Overall, the authors provided robust evidence that mitochondrial function, mediated through MCU activity, contributes to behavioural plasticity. They also demonstrated that ectopic MCU activation or mtROS during odor exposure could accelerate learning. This is quite profound, as it highlights the importance of mitochondrial function in complex neuronal processes beyond their general roles in the development and maintenance of neurons through energy homeostasis and biosynthesis, amongst their other cell-non-specific roles. 

      Weaknesses: 

      While the manuscript is generally robust, there are some concerns that should be addressed to improve the strength of the proposed model: 

      (1) Throughout the manuscript, it is implied that MCU activation caused by odor conditioning changes mitochondrial calcium levels. However, there is no direct experimental evidence of this. For example, the authors write on p.10 "This shows that H2O2 production occurs downstream of MCU activation and calcium influx into the mitochondria", and on p. 11, the statement that prolonged exposure to odors causes calcium influx. Because this is a key element of the proposed model, experimental evidence would be required to support it. 

      We are planning to measure mitochondrial calcium levels directly by using a mitochondrially targeted calcium indicator. We agree that this is a key element of our model.

      (2) Some controls missing, e.g. a heat-shock-only control in WT and mcu-1 (non-transgenic) background in Figure 1h is required to ensure the heat-shock stress does not interfere with odor learning. 

      We will conduct the experiments again with necessary controls.

      (3) Lee et al propose that mcu-1 is required at the adult stage to accomplish odor learning because inducing mcu-1 expression at larval stages did not rescue the phenotype of mcu-1 mutants during adulthood. However, the requirement of MCU for odor learning was narrowed down to a 15' window at the end of odor conditioning (Figure 5c). Is it possible that MCU-1 protein levels decline after larval induction so that MCU-1 is no longer present during adulthood when odor conditioning is performed? 

      Yes, we also noted that the early induction of MCU-1 is not effective to restore learning, and hypothesized that MCU-1 protein may be subject to high turnover. It may be that MCU-1 induced during larval stages no longer exist by the time odor conditioning is performed, although we have not confirmed this. We had a brief sentence noting this in the discussion section, but we will discuss this a little further in the revision. Thank you.

      (4) There is a limited learning effect observable after 30 minutes, and a very pronounced effect in all animals after 90 minutes. The authors very carefully dissect the learning mechanism at 60 minutes of exposure and distinguish processes that are relevant at 60 minutes from those important at 30 minutes. Some explanation or speculation as to why the processes crucial at the 60-minute mark are redundant at 90 minutes of exposure would be important. 

      I think this is in line with Reviewer #1’s comments that we should discuss our findings more in relation to existing models in the literature. We will do this in our revision.

      (5) Given the presumably ubiquitous function of mcu-1/MCU in mitochondrial calcium homeostasis, it is remarkable that its perturbation impacts only a very specific neuronal process in AWC at a very specific time. The authors should elaborate on this surprising aspect of their discovery in the discussion. 

      We will discuss the implication further in our revised manuscript.

      (6) Associated with the above comment, it remains possible that mcu-1 is required in coelomocytes for their ability to absorb NLP-1::Venus (Figure 3B), and the AWC-specific role of mcu-1 for this phenotype should be determined. 

      To confirm that mcu-1 is not required for coelomocyte uptake, we can stimulate NLP-1:Venus secretion in mcu-1 worms by adding H2O2, then observe whether Venus is observed in the coelomocytes. We will include this in our revised manuscript. Thank you for your comments.

      Reviewer #3 (Public review): 

      Summary: 

      This manuscript reports a role for the mitochondrial calcium uniporter gene (mcu-1) in regulating associative learning behavior in C. elegans. This regulation occurs by mcu-1-dependent secretion of the neuropeptide NLP-1 from the sensory neuron AWC. The authors report a post-developmental role for mcu-1 in AWC to promote learning. The authors further show that odor conditioning leads to increases in NLP-1 secretion from AWC, and that interfering with mcu-1 function reduces NLP-1 secretion. Finally, the authors show that NLP-1 secretion increases when ROS levels in AWC are genetically or pharmacologically elevated. The authors propose that mitochondrial calcium entry through MCU-1 in response to odor conditioning leads to the generation of ROS and the subsequent increase in neuropeptide secretion to promote conditioned behavior. 

      Strengths: 

      (1) The authors show convincingly that genetically or pharmacologically manipulating MCU function impacts chemotaxis in a conditioned learning paradigm. 

      (2) The demonstration that the secretion of a specific neuropeptide can be up-regulated by MCU, ROS and odor conditioning is an important and interesting advance that addresses mechanisms by which neuropeptide secretion can be regulated in vivo. 

      Weaknesses: 

      (1) The authors conclusion that mcu-1 functions in the AWC-on neuron is not adequately supported by their rescue experiments. The promoter they use for rescue drives expression in a number of additional neurons including AWC-on, that themselves are implicated in adaptation, leaving open the possibility that mcu-1 may function non-autonomously instead of autonomously in AWC to regulate this behavior. 

      We recognized this as well, and we now have a promoter construct more specific to AWCON (str-2). Using this more specific promoter, we will confirm that the role of mcu-1 is indeed AWCON-specific in our revised manuscript.

      (2) The authors conclude MCU promotes neuropeptide release from AWC by controlling calcium entry into mitochondria, but they did not directly examine the effects of altered MCU function on calcium dynamics either in mitochondria or in the soma, even though they conducted calcium imaging experiments in AWC of wild type animals. Examination of calcium entry in mitochondria would be a direct test of their model.

      We agree. As we stated above for reviewer #1 and #2, we will include results from the mitochondrial calcium data in our revised manuscript.

      (3) The authors' conclusion that mitochondrial-derived ROS produced by MCU activation drives neuropeptide release does not appear to be experimentally supported. A major weakness of this paper is that experiments addressing whether mcu-1 activity indeed produces ROS are not included, leaving unanswered the question of whether MCU is the endogenous source of ROS that drives neuropeptide secretion.

      We can confirm this using mitochondrially targeted redox indicator roGFP, and we will be sure to include the data in the revised manuscript. Thank you for your comments.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      The manuscript by Nicoletti et al. presents a minimal model of habituation, a basic form of non-associative learning, addressing both from dynamical and information theory aspects of how habituation can be realized. The authors identify that negative feedback provided with a slow storage mechanism is sufficient to explain habituation.

      Strengths:

      The authors combine the identification of the dynamical mechanism with information-theoretic measures to determine the onset of habituation and provide a description of how the system can gain maximum information about the environment.

      We thank the reviewer for highlighting the strength of our work.

      Weaknesses:

      I have several main concerns/questions about the proposed model for habituation and its plausibility. In general, habituation does not only refer to a decrease in the responsiveness upon repeated stimulation but as Thompson and Spencer discussed in Psych. Rev. 73, 16-43 (1966), there are 10 main characteristics of habituation, including (i) spontaneous recovery when the stimulus is withheld after response decrement; dependence on the frequency of stimulation such that (ii) more frequent stimulation results in more rapid and/or more pronounced response decrement and more rapid spontaneous recovery; (iii) within a stimulus modality, the less intense the stimulus, the more rapid and/or more pronounced the behavioral response decrement; (iv) the effects of repeated stimulation may continue to accumulate even after the response has reached an asymptotic level (which may or may not be zero, or no response). This effect of stimulation beyond asymptotic levels can alter subsequent behavior, for example, by delaying the onset of spontaneous recovery.

      These are only a subset of the conditions that have been experimentally observed and therefore a mechanistic model of habituation, in my understanding, should capture the majority of these features and/or discuss the absence of such features from the proposed model.

      We are really grateful to the reviewer for pointing out these aspects of habituation that we overlooked in the previous version of our manuscript. Indeed, our model is able to capture most of these 10 observed behaviors, specifically: 1) habituation; 2) spontaneous recovery; 3) potentiation of habituation; 4) frequency sensitivity; and 5) intensity sensitivity. Here, we are following the same terminology employed in bioRxiv 2024.08.04.606534, the paper highlighted by the referee. Regarding the hallmark 6) subliminal accumulation, we also believe that our model can capture it as well, but more analyses are needed to substantiate this claim. We will include the discussion of these points in the revised version.

      Notably, in line with the discussion in bioRxiv 2024.08.04.606534, we also think that feature 10) long-term habituation, is ambiguous and its appearance might be simply related to the other features discussed above. In the revised version, we will detail our take on this aspect in relation to the presented model.

      All other hallmarks require the presence of multiple stimuli and, as a consequence, they cannot be observed within our model, but are interesting lines of research for future investigations. We believe that this addition will help clarify the validity of the model and the relevance of our result, consequently improving the quality of our manuscript.

      Furthermore, the habituated response in steady-state is approximately 20% less than the initial response, which seems to be achieved already after 3-4 pulses, the subsequent change in response amplitude seems to be negligible, although the authors however state "after a large number of inputs, the system reaches a time-periodic steady-state". How do the authors justify these minimal decreases in the response amplitude? Does this come from the model parametrization and is there a parameter range where more pronounced habituation responses can be observed?

      The referee is correct, but this is solely a consequence of the specific set of parameters we selected. We made this choice solely for visualization purposes. In the next version, when different emerging behaviors characterizing habituation are discussed, we will also present a set of parameters for which habituation can be better appreciated, justifying our new choice.

      We stated that the time-periodic steady-state is reached “after a large number of stimuli” from a mathematical perspective. However, by using a habituation threshold, as defined in bioRxiv 2024.08.04.606534 for example, we can say that the system is habituated after a few stimuli for the set of parameters selected in the first version of the manuscript. We will also discuss this aspect in the Supplemental Material of the revised version, as it will also be important to appreciate the hallmarks of habituation listed above.

      The same is true for the information content (Figure 2f) - already at the first pulse, IU, H ~ 0.7 and only negligibly increases afterwards. In my understanding, during learning, the mutual information between the input and the internal state increases over time and the system extracts from these predictions about its responses. In the model presented by the authors, it seems the system already carries information about the environment which hardly changes with repeated stimulus presentation. The complexity of the signal is also limited, and it is very hard to clarify from the presented results, whether the proposed model can actually explain basic features of habituation, as mentioned above.

      The point about information is more subtle. We can definitely choose a set of parameters for which the information gain is higher and we will show it in the Supplemental Material of the revised version. However, as the reviewer correctly points out, it is difficult to give an interpretation of the specific value of I_U,H for such a minimal model.

      We also remark that, since the readout population and the receptor both undergo a fast dynamics (with appropriate timescales as discussed in the text), we are not observing the transient gain of information associated with the first stimulus and, as such, the mutual information presents a discontinuous behavior resembling the dynamics of the readout.

      Additionally, there have been two recent models on habituation and I strongly suggest that the authors discuss their work in relation to recent works (bioRxiv 2024.08.04.606534; arXiv:2407.18204).

      We thank the reviewer for pointing out these relevant references. We will discuss analogies and differences in the revised version of the main text. The main difference is the fact that information-theoretic aspects of habituation are not discussed in the presented references, while the idea of this work is to elucidate exactly the interplay between information gain and habituation dynamics.

      Reviewer #2 (Public review):

      In this study, the authors aim to investigate habituation, the phenomenon of increasing reduction in activity following repeated stimuli, in the context of its information-theoretic advantage. To this end, they consider a highly simplified three-species reaction network where habituation is encoded by a slow memory variable that suppresses the receptor and therefore the readout activity. Using analytical and numerical methods, they show that in their model the information gain, the difference between the mutual information between the signal and readout after and before habituation, is maximal for intermediate habituation strength. Furthermore, they demonstrate that the Pareto front corresponds to an optimization strategy that maximizes the mutual information between signal and readout in the steady state, minimizes some form of dissipation, and also exhibits similar intermediate habituation strength. Finally, they briefly compare predictions of their model to whole-brain recordings of zebrafish larvae under visual stimulation.

      The author's simplified model might serve as a solid starting point for understanding habituation in different biological contexts as the model is simple enough to allow for some analytic understanding but at the same time exhibits all basic properties of habituation in sensory systems. Furthermore, the author's finding of maximal information gain for intermediate habituation strength via an optimization principle is, in general, interesting. However, the following points remain unclear or are weakly explained:

      We thank the reviewer for deeming our work interesting and for considering it a solid starting point for understanding habituation in biological systems.

      (1) Is it unclear what the meaning of the finding of maximal information gain for intermediate habituation strength is for biological systems? Why is information gain as defined in the paper a relevant quantity for an organism/cell? For instance, why is a system with low mutual information after the first stimulus and intermediate mutual information after habituation better than one with consistently intermediate mutual information? Or, in other words, couldn't the system try to maximize the mutual information acquired over the whole time series, e.g., the time series mutual information between the stimulus and readout?

      This is an important and delicate aspect to discuss. We considered the mutual information with a prolonged stimulation when building the Pareto front, by maximizing this quantity while minimizing the dissipation. The observation that the Pareto front lies in the vicinity of the maximum of the information gain hints at the fact that reducing the information gain by increasing the mutual information at each stimulation will require more energy. However, we did not thoroughly explore this aspect by considering all sources of dissipation and the fact that habituation is, anyway, a dynamical phenomenon. In the revised version, we will clarify this point, extending our analyses.

      We would like to add that, from a naive perspective, while the first stimulation will necessarily trigger a certain mutual information, multiple observations of the same stimulus have to reflect into accumulated infor

      mation that consequently drives the onset of observed dynamical behaviors, such as habituation.

      (2) The model is very similar to (or a simplification of previous models) for adaptation in living systems, e.g., for adaptation in chemotaxis via activity-dependent methylation and demethylation. This should be made clearer.

      We apologize for having missed this point. Our choice has been motivated by the fact that we wanted to avoid any confusion between the usual definition of (perfect) adaptation and habituation. At any rate, we will add this clarification in the revised version.

      (3) It remains unclear why this optimization principle is the most relevant one. While it makes sense to maximize the mutual information between stimulus and readout, there are various choices for what kind of dissipation is minimized. Why was \delta Q_R chosen and not, for instance, \dot{\Sigma}_int or the sum of both? How would the results change in that case? And how different are the results if the mutual information is not calculated for the strong stimulation input statistics but for the background one?

      We thank the referee for giving us the opportunity to deepen this aspect of the manuscript. We decided to minimize \delta Q_R since this dissipation is unavoidable. In fact, considering the existence of two different pathways implementing sensing and feedback, the presence of any input will result in a dissipation produced by the receptor. This energy consumption is reflected in \delta Q_R. Conversely, the dissipation associated with the storage is always zero in the limit of a fast memory. However, we know that such a limit is pathological and leads to no habituation. As a consequence, in the revised version we will discuss other choices for our optimization approach, along with their potentialities and limitations.

      The dependence of the Pareto front on the stimulus strength is shown in the Supplemental Material, but not in relation to habituation and information gain. We will strengthen this part in the revised version of the manuscript, elaborating more on the connection between optimality, information gain, and dynamical behavior.

      (4) The comparison to the experimental data is not too strong of an argument in favor of the model. Is the agreement between the model and the experimental data surprising? What other behavior in the PCA space could one have expected in the data? Shouldn't the 1st PC mostly reflect the "features", by construction, and other variability should be due to progressively reduced activity levels?

      The agreement between data and model is not surprising - we agree on this - since the data exhibit habituation. However, the fact that, without any explicit biological details, our minimal model is able to capture the features of a complex neural system just by looking at the PCs is non-trivial. The 1st PC only reflects the feature that captures most of the variance of the data and, as such, it is difficult to have a-priori expectations on what it should represent. Depending on the behavior of higher-order PCs, we may include them in the revised version if any interesting results arise.

      Reviewer #3 (Public review):

      The authors use a generic model framework to study the emergence of habituation and its functional role from information-theoretic and energetic perspectives. Their model features a receptor, readout molecules, and a storage unit, and as such, can be applied to a wide range of biological systems. Through theoretical studies, the authors find that habituation (reduction in average activity) upon exposure to repeated stimuli should occur at intermediate degrees to achieve maximal information gain. Parameter regimes that enable these properties also result in low dissipation, suggesting that intermediate habituation is advantageous both energetically and for the purpose of retaining information about the environment.

      A major strength of the work is the generality of the studied model. The presence of three units (receptor, readout, storage) operating at different time scales and executing negative feedback can be found in many domains of biology, with representative examples well discussed by the authors (e.g. Figure 1b). A key takeaway demonstrated by the authors that has wide relevance is that large information gain and large habituation cannot be attained simultaneously. When energetic considerations are accounted for, large information gain and intermediate habituation appear to be a favorable combination.

      We thank the referee for this positive assessment of our work and its generality.

      While the generic approach of coarse-graining most biological detail is appealing and the results are of broad relevance, some aspects of the conducted studies, the problem setup, and the writing lack clarity and should be addressed:

      (1) The abstract can be further sharpened. Specifically, the "functional role" mentioned at the end can be made more explicit, as it was done in the second-to-last paragraph of the Introduction section ("its functional advantages in terms of information gain and energy dissipation"). In addition, the abstract mentions the testing against experimental measurements of neural responses but does not specify the main takeaways. I suggest the authors briefly describe the main conclusions of their experimental study in the abstract.

      We thank the referee for this suggestion. The revised version will present a modified abstract in line with the reviewer’s proposal.

      (2) Several clarifications are needed on the treatment of energy dissipation.

      - When substituting the rates in Eq. (1) into the definition of δQ_R above Eq. (10), "σ" does not appear on the right-hand side. Does this mean that one of the rates in the lower pathway must include σ in its definition? Please clarify.

      We apologize to the referee for this typo. Indeed, \sigma sets the energy scale of the feedback and, as such, it appears in the energetic driving given by the feedback on the receptor, i.e., together with \kappa in Eq. (1). We will fix this issue in the revised version. Moreover, we will check the entire manuscript to be sure that all formulas are consistent.

      - I understand that the production of storage molecules has an associated cost σ and hence contributes to dissipation. The dependence of receptor dissipation on <H>, however, is not fully clear. If the environment were static and the memory block was absent, the term with <H> would still contribute to dissipation. What would be the nature of this dissipation?

      In the spirit of building a paradigmatic minimal model with a thermodynamic meaning, we considered H to act as an external thermodynamic driving. Since this driving acts on a different pathway with respect to the one affected by the storage, the receptor is driven out of equilibrium by its presence. By eliminating the memory block, we would also be necessarily eliminating the presence of the pathway associated with the storage effect (“internal pathway” in the manuscript). In this case, the receptor is a 2-state, 1-pathway system and, as such, it always satisfies an effective detailed balance. As a consequence, the definition of \delta Q_R reported in the manuscript does not hold anymore and the receptor does not exhibit any dissipation. Our choice to model two different pathways has been biologically motivated. We will make this crucial aspect clearer in the revised manuscript.

      - Similarly, in Eq. (9) the authors use the ratio of the rates Γ_{s → s+1} and Γ_{s+1 → s} in their expression for internal dissipation. The first-rate corresponds to the synthesis reaction of memory molecules, while the second corresponds to a degradation reaction. Since the second reaction is not the microscopic reverse of the first, what would be the physical interpretation of the log of their ratio? Since the authors already use σ as the energy cost per storage unit, why not use σ times the rate of producing S as a metric for the dissipation rate?

      In the current version of the manuscript, we employed the scheme of a controlled birth and death process to model the coupled process of readout and storage production. Since we are not dealing with a detailed biochemical underlying network, we used this coarse-grained description to capture the main features of the dynamics. In this sense, the considered reactions produce and destroy a molecule from a certain pool even if they are controlled in different ways by the readout. However, we completely agree with the point of view of the referee and will analyze our results following their suggestion.

      (3) Impact of the pre-stimulus state. The plots in Figure 2 suggest that the environment was static before the application of repeated stimuli. Can the authors comment on the impact of the pre-stimulus state on the degree of habituation and its optimality properties? Specifically, would the conclusions stay the same if the prior environment had stochastic but aperiodic dynamics?

      The initial stimulus is indeed stochastic with an average constant in time. Model response depends on the pre-stimulus level, since it also sets the stationary storage concentration before the first “strong” stimulation arrives. This dependence is not crucial for our result but deserves proper discussion, as the referee correctly pointed out. We will clarify this point in the revised version of this study.

      (4) Clarification about the memory requirement for habituation. Figure 4 and the associated section argue for the essential role that the storage mechanism plays in habituation. Indeed, Figure 4a shows that the degree of habituation decreases with decreasing memory. The graph also shows that in the limit of vanishingly small Δ⟨S⟩, the system can still exhibit a finite degree of habituation. Can the authors explain this limiting behavior; specifically, why does habituation not vanish in the limit Δ⟨S⟩ -> 0?

      We apologize for the lack of clarity here. Actually, Δ⟨S⟩ is not strictly zero, but equal to 0.15% at the final point. However, due to rounding this appears as 0% in the plot, and we will fix it in the revised version. Let us note that the fact that Δ⟨S⟩ is small signals a nonlinear dependence of Δ⟨U⟩ from Δ⟨S⟩, but no contradiction. We will clarify this aspect in the revised version.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This study investigates a dietary intervention that employs a smartphone app to promote meal regularity, which may be useful. Despite no observed changes in caloric intake, the authors report significant weight loss. While the concept is very interesting and deserves to be studied due to its potential clinical relevance, the study's rigor needs to be revised, notably for its reliance on self-reported food intake, a highly unreliable way to assess food intake. Additionally, the study theorizes that the intervention resets the circadian clock, but the study needs more reliable methods for assessing circadian rhythms, such as actigraphy.

      Thank you for the positive yet critical feedback on our manuscript. We are pleased with the assessment that our study is very interesting and deserves to be continued. We have addressed the points of criticism mentioned and discussed the limitations of the study in more detail in the revised version than before.

      Nevertheless, we would like to note that one condition for our study design was that the participants were able to carry out the study in their normal everyday environment. This means that it is not possible to fully objectively record food intake - especially not over a period of eight weeks. In our view, self-reporting of food intake is therefore unavoidable and also forms the basis of comparable studies on chrononutrition. We believe that recording data with a smartphone application at the moment of eating is a reliable means of recording food consumption and is better suited than questionnaires, for example, which have to be completed retrospectively. Objectivity could be optimized by transferring photographs of the food consumed. However, even this only provides limited protection against underreporting, as photos of individual meals, snacks, or second servings could be omitted by the participants. Sporadic indirect calorimetric measurements can help to identify under-reporting, but this cannot replace real-time self-reporting via smartphone application.

      Our data show that at the behavioral level, the rhythms of food intake are significantly less variable during the intervention. Our assumption that precise mealtimes influence the circadian rhythms of the digestive system is not new and has been confirmed many times in animal and human studies. It can therefore be assumed that comparable effects also apply to the participants in our study. Of course, a measurement of physiological rhythms is also desirable for a continuation of the study. However, we suspect that cellular rhythms in tissues of the digestive tract in particular are decisive for the changes in body weight. The characterization of these rhythms in humans is at best indirectly possible via blood factors. Reduced variability of the sleep-wake rhythm, which is measured by actigraphy, may result from our intervention, but in our view is not the decisive factor for the optimization of metabolic processes.

      We have addressed the specific comments and made changes to the manuscript as indicated below.

      Reviewer #1 (Public Review):

      The authors Wilming and colleagues set out to determine the impact of regularity of feeding per se on the efficiency of weight loss. The idea was to determine if individuals who consume 2-3 meals within individualized time frames, as opposed to those who exhibit stochastic feeding patterns throughout the circadian period, will cause weight loss.

      The methods are rigorous, and the research is conducted using a two-group, single-center, randomized-controlled, single-blinded study design. The participants were aged between 18 and 65 years old, and a smartphone application was used to determine preferred feeding times, which were then used as defined feeding times for the experimental group. This adds strength to the study since restricting feeding within preferred/personalized feeding windows will improve compliance and study completion. Following a 14-day exploration phase and a 6-week intervention period in a cohort of 100 participants (inclusive of both the controls and the experimental group that completed the study), the authors conclude that when meals are restricted to 45min or less durations (MTVS of 3 or less), this leads to efficient weight loss. Surprisingly, the study excludes the impact of self-reported meal composition on the efficiency of weight loss in the experimental group. In light of this, it is important to follow up on this observation and develop rigorous study designs that will comprehensively assess the impact of changes (sustained) in dietary composition on weight loss. The study also reports interesting effects of regularity of feeding on eating behavior, which appears to be independent of weight loss. Perhaps the most important observation is that personalized interventions that cater to individual circadian needs will likely result in more significant weight loss than when interventions are mismatched with personal circadian structures.

      We would like to thank the reviewer for the positive assessment of our study.

      (1) One concern for the study is its two-group design; however, single-group cross-over designs are tedious to develop, and an adequate 'wash-out' period may be difficult to predict.

      A cross-over design would of course be highly desirable and, if feasible, would be able to provide more robust data than a two-group design. However, we have strong doubts about the feasibility of a cross-over design. Not only does the determination of the length of the washout period to avoid carry-over effects of metabolic changes pose a difficulty, but also the assumption that those participants who start with the TTE intervention will consciously or unconsciously pay attention to adherence to certain eating times in the next phase, when they are asked to eat at times like before the study.

      In a certain way, however, our study fulfills at least one arm of the cross-over design. During the follow-up period of our study, there were some participants who, by their own admission, started eating at more irregular times again, which is comparable to the mock treatment of the control subjects. And these participants gained weight again.

      (2)  A second weakness is not considering the different biological variables and racial and ethnic diversity and how that might impact outcomes. In sum, the authors have achieved the aims of the study, which will likely help move the field forward.

      In the meantime, we have at least added analyses regarding the age and gender of the participants and found no correlations with weight loss. The sample size of this pilot study was too small for a reliable analysis of the influence of ethnic diversity. If the study is continued with a larger sample size, this type of analysis will certainly come into play.

      We are pleased with the assessment that we have achieved our goals and are helping to advance the field.

      Reviewer #2 (Public Review):

      Summary:

      The authors investigated the effects of the timing of dietary occasions on weight loss and well-being with the aim of explaining if a consistent, timely alignment of dietary occasions throughout the days of the week could improve weight management and overall well-being. The authors attributed these outcomes to a timely alignment of dietary occasions with the body's own circadian rhythms. However, the only evidence the authors provided for this hypothesis is the assumption that the individual timing of dietary occasions of the study participants identified before the intervention reflects the body's own circadian rhythms. This concept is rooted in understanding of dietary cues as a zeitgeber for the circadian system, potentially leading to more efficient energy use and weight management. Furthermore, the primary outcome, body weight loss, was self-reported by the study participants.

      Strengths:

      The innovative focus of the study on the timing of dietary occasions rather than daily energy intake or diet composition presents a fresh perspective in dietary intervention research. The feasibility of the diet plan, developed based on individual profiles of the timing of dietary occasions identified before the intervention, marks a significant step towards personalised nutrition.

      We thank the reviewer for the generally positive assessment of our study and for sharing the view that our personalized approach represents an innovative step in chrononutrion.

      Weaknesses:

      (1) Several methodological issues detract from the study's credibility, including unclear definitions not widely recognized in nutrition or dietetics (e.g., "caloric event"), lack of comprehensive data on body composition, and potential confounders not accounted for (e.g., age range, menstrual cycle, shift work, unmatched cohorts, inclusion of individuals with normal weight, overweight, and obesity).

      We have replaced the term "caloric event" with "calorie intake occasion" and otherwise revised our manuscript with regard to other terminology in order to avoid ambiguity.

      We agree with the reviewer that the determination of body composition is a very important parameter to be investigated. Such investigations will definitely be part of the future continuation of the study. In this pilot study, we aimed to clarify in principle whether our intervention approach shows effects. Since we believe that this is certainly the case, we would like to address the question of what exactly the physiological mechanisms are that explain the observed weight loss in the future.

      Part of these future studies will also include other parameters in the analyses. However, in response to the reviewer's suggestions, we have already completed analyses regarding age and gender of the participants, which show that both variables have no influence on weight loss.

      In our view, the menstrual cycle should not have a major influence on the effectiveness of a 6-week intervention.

      The inclusion of shift workers is not a problem from our point of view. If their work shifts allow them to follow their personal eating schedule, we see no violation of our hypothesis. If this is not the case, as our data in Fig. 1G show, we do not expect any weight loss. Nevertheless, the reviewer is of course right that shift work can generally be a confounding factor and have an influence on weight loss success. To our knowledge, none of the 100 participants evaluated were shift workers. In a continuation of the study, however, shift work should be an exclusion criterion. Yet, our intervention approach could be of great interest for shift workers in particular, as they may be at a particularly high risk of obesity due to irregular eating times. A separate study with shift workers alone could therefore be of particular interest.

      The fact that it turned out that the baseline BMI of the remaining 67 EG and 33 CG participants did not match is discussed in detail in the section "3.1 Limitations". Although this is a limitation, it does not raise much doubt about the effectiveness of the intervention, as a subgroup analysis shows that intervention subjects lose more weight than control subjects of the same BMI.

      The inclusion of a wide BMI range was intentional. Our hypothesis is that reduced temporal variability in eating times optimizes metabolism and therefore excess body weight is lost (which we would like to investigate specifically in future studies). We hypothesize that people living with a high BMI will experience greater optimization than people with a lower BMI. Our data in Figs. 1H and S2I suggest that this assumption is correct.

      (2) The primary outcome's reliance on self-reported body weight and subsequent measurement biases further undermines the reliability of the findings.

      Self-reported data is always more prone to errors than objectively measured data. With regard to the collection of body weight, we were severely restricted in terms of direct contact with the participants during the conduct of the study due to the Covid-19 pandemic. At least the measurement of the initial body weight (at T0), the body weight after the end of the exploration phase (at T1) and the final body weight (at T2) were measured in video calls in the (virtual) presence of the study staff. These are the measurement points that were decisive for our analyses. Intermediate self-reported measurement points were not considered for analyses. We have added in the Materials & Methods section that video calls were undertaken to minimize the risk of misreporting.

      (3) Additionally, the absence of registration in clinical trial registries, such as the EU Clinical Trials Register or clinicaltrials.gov, and the multiple testing of hypotheses which were not listed a priori in the research protocol published on the German Register of Clinical Trials impede the study's transparency and reproducibility.

      Our study was registered in the DRKS - German Clinical Trials Register in accordance with international requirements. The DRKS fulfills the same important criteria as the EU Clinical Trial Register and clinicaltrials.gov.

      We quote from the homepage of the DRKS: „The DRKS is the approved WHO Primary Register in Germany and thus meets the requirements of the International Committee of Medical Journal Editors (ICMJE). […] The WHO brings together the worldwide activities for the registration of clinical trials on the International Clinical Trials Registry Platform (ICTRP). […] As a Primary Register, the DRKS is a member of the ICTRP network.”

      We are therefore convinced that we registered our study in the correct place.

      Furthermore, in our view, we did not provide less information on planned analyses than is usual and all our analyses were covered by the information in the study registry. We have stated the hypothesis in the study register that „strict adherence to [personalized] mealtimes will lead to a strengthening of the circadian system in the digestive tract and thus to an optimization of the utilization of nutrients and ultimately to the adjustment of body weight to an individual ideal value.“

      In our view, numerous analyses are necessary to test this hypothesis. We investigated whether it is the adherence to eating times that is related to the observed weight loss (Fig. 1), or possibly other variables resulting from adherence to the meal schedule (Fig. 3). In addition, we analyzed whether the intervention optimized the utilization of nutrients, which we did based on the food composition and number of calories during the exploration and intervention phases (Fig. 2). We investigated whether the personalization of meal schedules plays a role (Fig. 3). And we attempted to analyze whether the adjustment of body weight to an individual ideal value occurs by correlating the influence of the original BMI with weight loss. Only the hypothesis that the circadian system in the digestive tract is strengthened has not yet been directly investigated, a fact that is listed as a limitation. Although it can be assumed that this has happened, as the Zeitgeber “food” has lost significant variability as a result of the intervention. The analyses on general well-being are covered in the study protocol by the listing of secondary endpoints.

      Beyond that, we did not analyze any hypotheses that were not formulated a priori.

      For these reasons, we see no restriction in transparency, reproducibility or requirements and regulations.

      Achievement of Objectives and Support for Conclusions:

      (4) The study's objectives were partially met; however, the interpretation of the effects of meal timing on weight loss is compromised by the weaknesses mentioned above. The evidence only partially supports some of the claims due to methodological flaws and unstructured data analysis.

      We hope that we have been able to dispel uncertainties regarding some interpretations through supplementary analyses and the addition of some methodological details.

      Impact and Utility:

      (5) Despite its innovative approach, significant methodological and analytical shortcomings limit the study's utility. If these issues were addressed, the research could have meaningful implications for dietary interventions and metabolic research. The concept of timing of dietary occasions in sync with circadian rhythms holds promise but requires further rigorous investigation.

      We are pleased with the assessment that our data to date is promising. We hope that the revised version will already clarify some of the doubts about the data available so far. Furthermore, we absolutely agree with the reviewer: the present study serves to verify whether our intervention approach is potentially effective for weight loss - which we believe is the case. In the next steps, we plan to include extensive metabolic studies and to adjust the limitations of the present study.

      Reviewer #3 (Public Review):

      The authors tested a dietary intervention focused on improving meal regularity in this interesting paper. The study, a two-group, single-center, randomized, controlled, single-blind trial, utilized a smartphone application to track participants' meal frequencies and instructed the experimental group to confine their eating to these times for six weeks. The authors concluded that improving meal regularity reduced excess body weight despite food intake not being altered and contributed to overall improvements in well-being.

      The concept is interesting, but the need for more rigor is of concern.

      We would like to thank the reviewer for the interest in our study.

      (1) A notable limitation is the reliance on self-reported food intake, with the primary outcome being self-reported body weight/BMI, indicating an average weight loss of 2.62 kg. Despite no observed change in caloric intake, the authors assert weight loss among participants.

      As already described above in the responses to the reviewer 2, the body weight assessment took place in video calls in the (virtual) presence of study staff, so that the risk of misreporting is minimized. We have added this information to the manuscript.

      When recording food intake, we had to weigh up the risk of misreporting against the risk of a lack of validity in a permanently monitored setting. It was important to us to investigate the effectiveness of the intervention in the participants' everyday environment and not in a laboratory setting in order to be able to convincingly demonstrate its applicability in everyday life. The restriction of self-reporting is therefore unavoidable in our view and must be accepted. It can possibly be reduced by photographing the food, but even this is not a complete protection against underreporting, as there is no guarantee that everything that is ingested is actually photographed.

      However, our analyses show that the reporting behavior of individual participants did not change significantly between the exploration and intervention phases. We do not assume that participants who underreported only did so during the exploration phase (and only ate more than reported in this study phase) and reported correctly in the intervention phase (and then indeed consumed fewer calories).  We discuss this point in the section "3.1 Limitations".

      (2) The trial's reliance on self-reported caloric intake is problematic, as participants tend to underreport intake; for example, in the NEJM paper (DOI: 10.1056/NEJM199212313272701), some participants underreported caloric intake by approximately 50%, rendering such data unreliable and hence misleading. More rigorous methods for assessing food intake are available and should have been utilized. Merely acknowledging the unreliability of self-reported caloric intake is insufficient as it would still leave the reader with the impression that there is no change in food intake when we actually have no idea if food intake was altered. A more robust approach to assessing food intake is imperative. Even if a decrease in caloric intake is observed through rigorous measurement, as I am convinced a more rigorous study would unveil testing this paradigm, this intervention may merely represent another short-term diet among countless others that show that one may lose weight by going on a diet, principally due to heightened dietary awareness.

      The risks of self-reporting, our considerations, and our analysis of participants' reporting behavior and caloric intake over the course of the study are discussed in detail both in our responses above and in the manuscript. 

      With regard to the reviewer's second argument, we have largely adapted the study protocol of the control group to that of the experimental group. Apart from the fact that the control subjects were not given guidelines on eating times and were instead only given a very rough time window of 18 hours for food intake, the content of the sessions and the measurement methods were the same in both groups. This means that the possibility of increased nutritional awareness was equally present in both groups, but only the participants in the experimental group lost a significant amount of body weight.

      In future continuations of the study, further follow-up after an even longer period than four weeks (e.g. after 6 months) can be included in the protocol in order to examine whether the effects can be sustained over a longer period.

      (3) Furthermore, the assessment of circadian rhythm using the MCTQ, a self-reported measure of chronotype, may not be as reliable as more objective methods like actigraphy.

      The MCTQ is a validated means of determining chronotype and its results are significantly associated with the results of actigraphic measurements. In our view, the MCTQ is sufficient to test our hypothesis that matching the chronobiological characteristics of participants is beneficial. Nevertheless, measurements using actigraphy could be of interest, for example to correlate the success of weight loss with parameters of the sleep-wake rhythm.

      (4) Given the potential limitations associated with self-reported data in both dietary intake and circadian rhythm assessment, the overall impact of this manuscript is low. Increasing rigor by incorporating more objective and reliable measurement techniques in future studies could strengthen the validity and impact of the findings.

      The body weight data was not self-reported, but the measurements were taken in the presence of study staff. Although optimization might be possible (see above), we do not currently see any other way of recording all calorie intake occasions in the natural environment of the participants over a period of several weeks (or possibly longer, as noted by the reviewer) other than self-report and, in our opinion, it would not be feasible. For the future continuation of the study, we are planning occasional indirect calorimetry measurements that can provide information about the actual amount of food consumed in different phases of the study. These can reveal errors in the self-report but will not be able to replace daily data collection by means of self-report.

      Reviewer #1 (Recommendations For The Authors):

      Summary:

      This interesting and timely study by Wilming and colleagues examines the effect of regularity vs. irregularity of feeding on body weight dynamics and BMI. A rigorous assessment of the same in humans needs to be improved, which this study provides. The study is well-designed, with a 14-day exploration phase followed by 6 weeks of intervention, and it is commendable to see the number of participants (100) who completed the study. Incorporation of a follow-up assessment 4 weeks after the conclusion of the study shows maintained weight loss in a subset of Experimental Group (EG) participants who continue with regular meals. There are several key observations, including particular meal times (lunch and dinner), which, when restricted to 45min or less in duration (MTVS of 3 or less), will lead to efficient weight loss, as well as correlations between baseline BMI and weight loss. The authors also exclude the impact of self-reported meal composition on the efficiency of weight loss in the EG group in the context of this study. The study reports interesting effects of regularity of feeding on eating behavior, which appears to be independent of weight loss. Finally, the authors highlight an important point: to provide attention to personalized feeding and circadian windows and that personalized interventions that cater to individual circadian structures will result in more significant weight loss. This is an important concept that needs to be brought to light. There are only a few minor comments listed below:

      Minor comments:

      (1) The authors may provide explanations for the reduction in the MTVS in the EG and the increase in the same for the Control Group (CG). The increases in MTVS in CG are surprising (lines 105-106) because it is assumed that there is no difference in CG eating patterns prior to and during the study.

      As the reviewer correctly states, our assumption was that there should be no change in the MTVS before and during the study - but we could not rule this out, as the subjects were not given any indication of the regularity of food intake in the fixed time window in the meetings with the study staff, i.e. they were not instructed to continue eating exactly as before. This would possibly have led to an effort on the part of the participants to adhere to a schedule as precisely as possible. As a result, there was a statistically significant worsening of the MTVS in the CG, which was less than 0.6 MTVS, i.e. a time span of only approx. ± 7.5 min, and remained within the MTVS 3. Since there were no correlations between the measured MTVS and the weight of the subjects in the CG and a change of about half an MTVS value has only a rather minor effect on weight, we do not attribute great significance to the observed deterioration in the MTVS.

      (2) There would be greater clarity for the readers if the authors clearly defined the study design in detail at the outset of the study, e.g., in section 2.1.

      We have included a brief summary of the study design at the end of the introduction so that the reader is already familiar with it at the beginning of the manuscript without having to switch to the material and methods section.

      (3) The data in Fig S2H is important and informs readers that the regularity of lunch and dinner is more related to body weight changes than breakfast. These data should be incorporated in the Main Figure. In addition, analyses of Table S7 data indicate that MTVS of no greater than 3 or -/+45mins of the meal-timing window is associated with efficient weight loss) should be represented in a figure panel in the Main Figures.

      As suggested by the reviewer, we have moved Fig. S2H to the main Fig. 1. In addition, Table S7 is now no longer inserted as a supplementary table but as main Table 1 in the manuscript.

      (4) The authors state in lines 222-223 that "weight changes of participants were not related to one of these changes in eating characteristics (Fig. 3B-D, Tab. S6)", referring to the shortening of feeding windows as noted in the EG group. This is a rather simplistic statement, which should be amended to include that weight changes may not relate to changes in eating characteristics per se but likely relate to changes in metabolic programming, for instance, energy expenditure increases, which have been shown to associate with these changes in eating characteristics. This is important to note.

      We have changed the wording at this point so that it is clear that we are only referring here in the results section to the results of the mathematical analysis, which showed no correlation between the eating time window and weight loss in our sample. However, we have now explicitly mentioned the change in metabolic programming correctly noted by the reviewer in the discussion at the end of section 3.

      (5) Please provide more background and details on the attributes that define individual participant chronotypes in the manuscript before discussing datasets, e.g., mSP and mEP. This is relation to narratives between 228-230: "Indeed, our data show that the later the chronotype of participants (measured by the MCTQ mid-sleep phase, mSP [24]), the later their mid-eat phase (mEP) on weekends (Fig. 3E, Tab. S6), with the mSP and mEP being almost antiphasic on average (Fig. 3F, Tab. S10)." This will help readers unfamiliar with circadian biology/chronobiology research understand the contents of this manuscript, particularly Fig 3.

      We have explained the new chronobiology terms that appear in the chapter better in the revised version so that they are easier to understand.

      Reviewer #2 (Recommendations For The Authors):

      (1) Clarify Terminology: Define or avoid using ambiguous terms such as "caloric event" to prevent confusion, especially for readers less familiar with chronobiology. Consider providing clear explanations or opting for more widely understood terms.

      We have replaced "caloric event" with “calorie intake occasion” and explain various chronobiology terms better, so that hopefully readers from other disciplines can now follow the text more easily.

      (2) Detailed Methodological Descriptions: Improve the transparency of your methods, especially concerning the measurement of primary and secondary outcomes. Address the concerns raised about the reliability of self-reported weight and the potential biases in measurement methods.

      In the section "3.1 Limitations", we have examined the aspect of the reliability of self-reported data and our measures to reduce this uncertainty in more detail. We have also added further details on the measurement of outcomes in the materials and methods section.

      (3) Address Participant Selection Criteria: Reevaluate the inclusion criteria and consider discussing the implications on the study's findings of the broad age range, the inclusion of shift work, unmatched cohorts, and inclusion of individuals with normal weight, overweight, and obesity. Provide a subgroup analysis or discuss how BMI might have influenced the results. Even though this is an additional post-hoc analysis, it would directly address one of the major weaknesses of the study design.

      We have supplemented the analyses and now show in Fig. S2G that neither age nor gender had any influence on weight loss as a result of the intervention. To our knowledge, none of the 100 participants evaluated were shift workers. Even if shift workers were part of the study without our knowledge, we do not consider this to be a problem as long as their shifts allow them to keep to certain eating times. The fact that it turned out that the baseline BMI of the remaining 67 EG and 33 CG participants did not match is discussed in detail in the section "3.1 Limitations". Our previous analysis in Fig. S2I already showed that there is a negative correlation between baseline BMI and weight loss - an interesting result, as it shows that people with a high BMI particularly benefit from the intervention. In addition, we already showed in Fig. S2J in a subgroup analysis that in all strata the BMI of EG subjects decreased more than that of CG subjects, even if they had the same initial BMI. We do not consider the wide dispersion of the BMIs of the included participants to be a weakness of the study design. On the contrary, it allows us to make a statement about which target group the intervention is particularly suitable for.

      (4) Improve Statistical Analysis: If not already done, involve a biostatistician to review the statistical analyses, particularly concerning post-hoc tests, correlation analyses, and the handling of measurement biases. Ensure that deviations from the original study protocol are clearly documented and justified.

      All analyses have already been checked by a statistician, decided together with him and approved by him.

      (5) Data Interpretation and Speculation: Limit speculation and clearly distinguish between findings supported by your data from hypotheses and future directions. Ensure that discussions about the implications of meal timing on metabolism are supported by evidence with adequate references and clearly state where further research is needed.

      We have revised the discussion and, especially through the detailed discussions of the limitations, we have emphasized more clearly what has been achieved and what still needs to be proven in future studies.

      (6) Clinical Trial Registration: Address the lack of registration in the EU Clinical Trials Register and clinicaltrials.gov. Discuss its potential implications on the study's transparency and how it aligns with current requirements and regulations.

      Our study was registered in the DRKS - German Clinical Trials Register in accordance with international requirements. The DRKS fulfills the same important criteria as the EU Clinical Trial Register and clinicaltrials.gov.

      We quote from the homepage of the DRKS: „The DRKS is the approved WHO Primary Register in Germany and thus meets the requirements of the International Committee of Medical Journal Editors (ICMJE).[…] The WHO brings together the worldwide activities for the registration of clinical trials on the International Clinical Trials Registry Platform (ICTRP). […] As a Primary Register, the DRKS is a member of the ICTRP network.”

      We are therefore convinced that we registered our study in the correct place before it began and see no restriction in transparency or requirements and regulations.

      (7) Use of Sensitive and Current Terminology: Update the manuscript to reflect the latest recommendations regarding the language used to describe obesity and patients living with obesity. This ensures respect and accuracy in reporting and aligns with contemporary standards in the field.

      We updated the manuscript accordingly.

      (8) Strengthen the Introduction: Expand the literature review to include more recent and relevant studies that contextualise your work within the broader field of chrononutrition. This could help clarify how your study builds upon or diverges from existing research.

      We have included further studies in the introduction that aim to reduce body weight by restricting food intake to certain time periods. We have also more clearly contrasted the designs of these studies with the design of our study.

      (9) Clarify Discrepancies and Errors: Address any inconsistencies, such as the discrepancy in meal timing instructions (90 minutes reported in the conclusion vs. 60 minutes reported in the methods), and ensure all figures, tables, and statistical analyses are correctly referenced and described.

      The first point mentioned by the reviewer is not an inconsistency. To ensure the feasibility of the intervention, each participant was initially given a time window of +/- 30 minutes (60 min) from the specified eating time. Our later analyses show that even a time window of +/- 45 minutes (90 min) around the specified eating time is sufficient to lose weight efficiently (see results in Table 1).

      We have checked all references to figures, tables and statistical analyses and updated them if necessary.

      (10) Discuss Limitations and Bias: More thoroughly discuss the limitations of your study, including the potential impacts of biases and how they were mitigated. Additionally, consider the effects of including shift workers and how this choice impacts the applicability of your findings.

      Section “3.1 Limitations” has now been supplemented by a number of points and discussions. As described above, we do not consider the inclusion of shift workers to be a limitation as long as they are able to adhere to the specifications of the eating time plan. We cannot derive any indications to the contrary from our data.

      (11) Consider Publishing Separate Manuscripts: If the study encompasses a wide range of outcomes or post-hoc analyses, consider separating these into distinct publications to allow for a more focused and detailed exploration of each set of findings.

      We will take this advice into consideration for future publications on the continuation of the study. As this is a pilot study that is intended to clarify whether and to what extent the intervention is effective, we believe it makes sense to report all the data in a publication.

      (12) By addressing these recommendations, the authors can significantly improve their manuscript's clarity, reliability, and impact. This would not only support the dissemination of their findings but also would contribute valuable insights into the growing field of chrononutrition.

      We hope that we have satisfactorily answered, discussed and implemented the points mentioned by the reviewer in the manuscript, so that clarity, reliability, and impact have been increased and it can offer a valuable contribution to the named field.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The report describes the control of the activity of the RNA-activated protein kinase, PKR, by the Vaccinia virus K3 protein. Repressive binding of K3 to the kinase prevents phosphorylation of its recognised substrate, EIF2α (the α subunit of the Eukaryotic Initiation Factor 2). The interaction of K3 is probed by saturation mutation within four regions of PKR chosen by modelling the molecules' interaction. They identify K3-resistant PKR variants that recognise that the K3/EIF2α-binding surface of the kinase is malleable. This is reasonably interpreted as indicating the potential adaptability of this antiviral protein to combat viral virulence factors.

      Strengths:

      This is a well-conducted study that probes the versatility of the antiviral response to escape a viral inhibitor. The experimentation is very diligent, generating and screening a large number of variants to recognise the malleability of residues at the interface between PKR and K3.

      Weaknesses:

      (1) These are minor. The protein interaction between PKR and K3 has been previously well-explored through phylogenetic and functional analyses and molecular dynamics studies, as well as with more limited site-directed mutational studies using the same experimental assays.

      Accordingly, these findings largely reinforce what had been established rather than making major discoveries.

      First, thank you for your thoughtful feedback. We agree that our results are concordant with previous findings and recognize the importance of emphasizing what we find novel in our results. We have revised the introduction (lines 65-74 of the revised_manuscript.pdf) to emphasize three findings of interest: (1) the PKR kinase domain is largely pliable across its substrate-binding interface, a remarkable quality that is most fully revealed through a comprehensive screen, (2) we were able to differentiate variants that render PKR nonfunctional from those that are susceptible to Vaccinia K3, and (3) we observe a strong correlation between PKR variants that are resistant to K3 WT and K3-H47R.

      There are some presumptions:

      (2) It isn't established that the different PKR constructs are expressed equivalently so there is the contingency that this could account for some of the functional differences.

      This is an excellent point. We have revised the manuscript to raise this caveat in the discussion (lines 247-251). One indirect reason to suppose that expression differences among our PKR variants are not a dominant source of variation is that we did not observe much variation in kinase activity in the absence of K3.

      (3) Details about the confirmation of PKR used to model the interaction aren't given so it isn't clear how accurately the model captures the active kinase state. This is important for the interaction with K3/EIF2α.

      We have expanded on Supplemental Figure 12 and our description of the AlphaFold2 models in the Materials and Methods section (lines 573-590). We clarify that these models may not accurately capture the phosphoacceptor loop of eIF2α (residues Glu49-Lys60) and the PKR β4-5 linker (Asp338-Asn350) as these are highly flexible regions that are absent in the existing crystal structure complex (PDB 2A1A) and have low AlphaFold2 confidence scores (pLDDT < 50). We also noted, in the Materials and Methods section and in the caption of Figure 1, that the modeled eIF2α closely resembles the crystal structure of standalone yeast eIF2α, which places the Ser51 phosphoacceptor site far from the PKR active site. Thus, we expect there are additional undetermined PKR residues that contact eIF2α.

      (4) Not all regions identified to form the interface between PKR and K3 were assessed in the experimentation. It isn't clear why residues between positions 332-358 weren't examined, particularly as this would have made this report more complete than preceding studies of this protein interaction.

      Great questions. We designed and generated the PKR variant library based on the vaccinia K3 crystal structure (PDB 1LUZ) aligned to eIF2α in complex with PKR (PDB 2A1A), in which PKR residues 338-350 are absent. After the genesis of the project, we generated the AlphaFold2-predicted complex of PKR and vaccinia K3, and have become very interested in the β4-β5 linker, a highly diverse region across PKR homologs which includes residues 332-358. However, this region remains unexamined in this manuscript.

      Reviewer #2 (Public Review):

      Chambers et al. (2024) present a systematic and unbiased approach to explore the evolutionary potential of the human antiviral protein kinase R (PKR) to evade inhibition by a poxviral antagonist while maintaining one of its essential functions.

      The authors generated a library of 426 single-nucleotide polymorphism (SNP)-accessible non-synonymous variants of PKR kinase domain and used a yeast-based heterologous virus-host system to assess PKR variants' ability to escape antagonism by the vaccinia virus pseudo-substrate inhibitor K3. The study identified determinant sites in the PKR kinase domain that harbor K3-resistant variants, as well as sites where variation leads to PKR loss of function. The authors found that multiple K3-resistant variants are readily available throughout the domain interface and are enriched at sites under positive selection. They further found some evidence of PKR resilience to viral antagonist diversification. These findings highlight the remarkable adaptability of PKR in response to viral antagonism by mimicry.

      Significance of the findings:

      The findings are important with implications for various fields, including evolutionary biology, virus-host interfaces, genetic conflicts, and antiviral immunity.

      Strength of the evidence:

      Convincing methodology using state-of-the-art mutational scanning approach in an elegant and simple setup to address important challenges in virus-host molecular conflicts and protein adaptations.

      Strengths:

      Systematic and Unbiased Approach:

      The study's comprehensive approach to generating and characterizing a large library of PKR variants provides valuable insights into the evolutionary landscape of the PKR kinase domain. By focusing on SNP-accessible variants, the authors ensure the relevance of their findings to naturally occurring mutations.

      Identification of Key Sites:

      The identification of specific sites in the PKR kinase domain that confer resistance or susceptibility to a poxvirus pseudosubstrate inhibition is a significant contribution.

      Evolutionary Implications:

      The authors performed meticulous comparative analyses throughout the study between the functional variants from their mutagenesis screen ("prospective") and the evolutionarily-relevant past adaptations ("retrospective").

      Experimental Design:

      The use of a yeast-based assay to simultaneously assess PKR capacity to induce cell growth arrest and susceptibility/resistance to various VACV K3 alleles is an efficient approach. The combination of this assay with high-throughput sequencing allows for the rapid characterization of a large number of PKR variants.

      Areas for Improvement:

      (5) Validation of the screen: The results would be strengthened by validating results from the screen on a handful of candidate PKR variants, either using a similar yeast heterologous assay, or - even more powerfully - in another experimental system assaying for similar function (cell translation arrest) or protein-protein interaction.

      Thank you for your thoughtful feedback. We agree that additional data to validate our findings would strengthen the manuscript. We have individually screened a handful of PKR variants in duplicate using serial dilution to measure yeast growth, and found that the results generally support our original findings. We have revised the manuscript to include these validation experiments (lines 117-119 of the revised_manuscript.pdf, Supplemental Figure 4).

      (6) Evolutionary Data: Beyond residues under positive selection, the screen would allow the authors to also perform a comparative analysis with PKR residues under purifying selection. Because they are assessing one of the most conserved ancestral functions of PKR (i.e. cell translation arrest), it may also be of interest to discuss these highly conserved sites.

      This is a great point. We do find that there are regions of the PKR kinase domain that are not amenable to genetic perturbation, namely in the glycine rich loop and active site. We contrast the PKR functional scores at conserved residues under purifying selection with those under positive selection in Figure 2E (lines 141-143).

      (7) Mechanistic Insights: While the study identifies key sites and residues involved in vaccinia K3 resistance, it could benefit from further investigation into the underlying molecular mechanisms. The study's reliance on a single experimental approach, deep mutational scanning, may introduce biases and limit the scope of the findings. The authors may acknowledge these limitations in the Discussion.

      We agree that further investigation into the underlying molecular mechanisms is warranted and we have revised the manuscript to acknowledge this point in the discussion (lines 284-288).

      (8) Viral Diversity: The study focuses on the viral inhibitor K3 from vaccinia. Expanding the analysis to include other viral inhibitors, or exploring the effects of PKR variants on a range of viruses would strengthen and expand the study's conclusions. Would the identified VACV K3-resistant variants also be effective against other viral inhibitors (from pox or other viruses)? or in the context of infection with different viruses? Without such evidence, the authors may check the manuscript is specific about the conclusions.

      This is a fantastic question that we are interested in exploring in our future studies. In the manuscript we note a strong correlation between PKR variants that evade vaccinia wild-type K3 and the K3-H47R enhanced allele, but we are curious to know if this holds when tested against other K3 orthologs such as variola virus C3. That said, we have revised the manuscript to clarify this limitation to our findings and specify vaccinia K3 where appropriate.

      Reviewer #3 (Public Review):

      Summary:

      -  This study investigated how genetic variation in the human protein PKR can enable sensitivity or resistance to a viral inhibitor from the vaccinia virus called K3.

      -  The authors generated a collection of PKR mutants and characterized their activity in a high-throughput yeast assay to identify 1) which mutations alter PKR's intrinsic biochemical activity, 2) which mutations allow for PKR to escape from viral K3, and 3) which mutations allow for escape from a mutant version of K3 that was previously known to inhibit PKR more efficiently.

      -  As a result of this work, the authors generated a detailed map of residues at the PKR-K3 binding surface and the functional impacts of single mutation changes at these sites.

      Strengths:

      -  Experiments assessed each PKR variant against three different alleles of the K3 antagonist, allowing for a combinatorial view of how each PKR mutant performs in different settings.

      -  Nice development of a useful, high-throughput yeast assay to assess PKR activity, with highly detailed methods to facilitate open science and reproducibility.

      -  The authors generated a very clean, high-quality, and well-replicated dataset.

      Weaknesses:

      (9) The authors chose to focus solely on testing residues in or near the PKR-K3 predicted binding interface. As a result, there was only a moderately complex library of PKR mutants tested. The residues selected for investigation were logical, but this limited the potential for observing allosteric interactions or other less-expected results.

      First, we greatly appreciate all your feedback on the manuscript, as well as raising this particular point. We agree that this is a moderately complex library of PKR variants, from which we begin to uncover a highly pliable domain with a few specific sites that cannot be altered. We have revised the manuscript to raise this limitation (lines 284-288 of the revised_manuscript.pdf) and encourage additional exploration of the PKR kinase domain.

      (10) For residues of interest, some kind of independent validation assay would have been useful to demonstrate that this yeast fitness-based assay is a reliable and quantitative readout of PKR activity.

      We agree that additional data to validate our findings would strengthen the manuscript. We have individually screened a handful of PKR variants in duplicate using serial dilution to measure yeast growth, and generally found that the results support our original findings. We have revised the manuscript to include this validation experiment (lines 117-119, Supplemental Figure 4).

      (11) As written, the current version of the manuscript could use more context to help a general reader understand 1) what was previously known about these PKR and K3 variants, 2) what was known about how other genes involved in arms races evolve, or 3) what predictions or goals the authors had at the beginning of their experiment. As a result, this paper mostly provides a detailed catalog of variants and their effects. This will be a useful reference for those carrying out detailed, biochemical studies of PKR or K3, but any broader lessons are limited.

      Thank you for bringing this to our attention. We have revised the introduction of the manuscript to provide more context regarding previous work demonstrating an evolutionary arms race between PKR and K3 and how single residue changes alter K3 resistance (lines 51-64).

      (12) I felt there was a missed opportunity to connect the study's findings to outside evolutionary genetic information, beyond asking if there was overlap with PKR sites that a single previous study had identified as positively selected. For example, are there any signals of balancing selection for PKR? How much allelic diversity is there within humans, and are people typically heterozygous for PKR variants? Relatedly, although PKR variants were tested in isolation here, would the authors expect their functional impacts to be recessive or dominant, and would this alter their interpretations? On the viral diversity side, how much variation is there among K3 sequences? Is there an elevated evolutionary rate, for example, in K3 at residues that contact PKR sites that can confer resistance? None of these additions are essential, but some kind of discussion or analysis like this would help to connect the yeast-based PKR phenotypic assay presented here back to the real-world context for these genes.

      We appreciate this suggestion to extend our findings to a broader evolutionary context. There is little allelic diversity of PKR in humans, with all nonsynonymous variation listed in gnomAD being rare. (PKR shows sequence diversity in comparisons across species, including across primates.) Thus, barring the possibility of variation being present in under-studied populations, there is unlikely to be balancing selection on PKR in humans. Our expectation is that beneficial mutations in PKR for evading a pseudosubstrate inhibitor would be dominant, as a small amount of eIF2α phosphorylation is capable of halting translation (Siekierka, PNAS, 1984). There is a recent report citing PKR missense variants associated with dystonia that can be dominantly or recessively inherited (Eemy et al. 2020 PMID 33236446). Elde et al. 2009 (PMID 19043403) notes that poxvirus K3 homologs are under positive selection but no specific residues have been cited to be under positive selection. The lack of allelic diversity in PKR in humans notwithstanding, PKR could experience future selection in the human population as evidenced by its rapid evolution in primates, so we fully agree that a connection to the real-world context is useful. We have noted these topics in the discussion section (lines 289-294).

      Reviewer #1 (Recommendations For The Authors):

      I have no major criticisms but ask for some clarifications and make some comments about the perceived weaknesses.

      (13)  If the authors disagree with my summation that the findings largely replicate what was known, could they detail how the findings differ from what was known about this protein interaction and the major new insights stemming from the study? Currently, the abstract is a little philosophical rather than listing the explicit discoveries of the study.

      Thank you again for raising the need for us to clearly convey the novelty of our findings. We have revised the final paragraph in our introduction as described in comment #1.

      (14) As the experimental approach is well reported it is unnecessary to confirm the proposed activity by, for instance, measures of Sui2 phosphorylation. However, previous reports have recognised that point mutants of PKR can be differentially expressed. The impact of this potential effect is unknown in the current experimentation as there are no measures of the expression of the different mutant PKR constructs. The large number of constructs used makes this verification onerous. The potential impact could be ameliorated by redundant replacing each residue (hoping different residues have different effects on expression). Still, this limitation of the study should be acknowledged in the text.

      We greatly appreciate this comment and agree that this should be made clear in the text, which we have added to the discussion of the manuscript (lines 247-251).

      (15) Preceding findings and the modeling in this report recognise an involvement in the kinase insert region (residues 332 to 358) in PKR's interaction with K3 but this region is excluded from the analysis. These residues have been largely disregarded in the preceding analysis (it is absent from the molecular structure of the kinase) so its inclusion here might have lent a more novel aspect or delivered a more complete investigation. Is there a justification for excluding this flexible loop?

      The PKR variant library was designed based on the crystal structure of K3 (PDB 1LUZ) aligned to eIF2α in complex with PKR (PDB 2A1A). After the library was designed and made we attained complete predicted structures of PKR in complex with eIF2α and K3, which largely agrees with the predicted crystal structures but contain the additional flexible loops that were not captured in the crystal structures. Though the library studied here does not explore variation in the kinase insert region, we are very interested in doing so in our future studies.

      (16)  Could the explanation of the 'PKR functional score' be clarified? The description given within the legend of SF1 was helpful, so could this be replicated earlier in the main body of the text when introducing these experiments? e.g. As PKR activity is toxic to yeast, the number of cells in the pool expressing the functional PKR will decrease over time. Thus the associated barcode read count will also decrease, while the read count for the nonfunctional PKR will increase. This is termed the PKR function score, which will be relatively lower for cells transformed with less active PKR than those with more active PKR.

      Thank you for suggesting this clarification, we have revised the manuscript to clarify our definition of the PKR functional score (lines 106-109).

      (17)  Another suggestion to clarify this term is to modify the figures. Currently, the intent of the first simulated graph in Fig 1E is clear but the inversion of the response (shown by the transposition of the colours) in the next graph (to the right) is less immediately obvious. Accordingly, the orientation of the 'PKR functional score' is uncertain. Could the authors add text to the rightmost graphic in Figure 1E by, for instance, indicating the PKR activity in the vertical column with text such as 'less active' (at the bottom), 'WT' (in the centre), and 'more activity' (at the top)? Also, the position of the inactive K296R mutant might be added to Figure 2A complementing the positioning of the active WT kinase in the first data graph of this kind.

      We appreciate your specific feedback to improve the figures of the manuscript, we have made adjustments to Figure 1E to clarify how we derive the PKR functional scores.

      (18) The authors don't use existing structures of PKR in their modelling. However, there is no information about the state of the PKR molecule used for modelling. Specific elements of the kinase domain affect its interaction with K3 so it would be informative to know the orientation of these elements in the model. Could the authors detail the state of pivotal kinase elements in their models? This could involve the alignment of the N- and C-lobes, the orientation of kinase spines (C- and R-spines), and the phosphorylation stasis of residues in the activation loop, or at least the position of this loop in relationship to that adopted in the active dimeric kinase (e.g. PDB-2A1A, 3UIU or 6D3L). Alternatively, crystallographic structures of active inactive PKR could be overlayed with the theoretical structure used for modelling (as supplementary information).

      We have revised the manuscript to describe the alignment of the predicted PKR-K3 complex with active and inactive PKR, and we have extended Supplemental Figure 12 with an overlay of the predicted structures with existing structures. We have also added a supplemental data file containing the RMSD values of PKR (from the predicted PKR-K3 complex) aligned to active (PDB 2A1A) and inactive (PDB 3UIU) or unphosphorylated (PDB 6D3L) PKR (5_Structure-Alignment-RMSD-Values.xlsx). We have also provided the AlphaFold2 best model predictions for the PKR-eIF2α complex (6_AF2_PKR-KD_eIF2a.pdb) and PKR-K3 complex (7_AF2_PKR-KD_VACV-K3.pdb). Looking across the RMSD values, the AlphaFold2 model of PKR most closely resembles unphosphorylated PKR (PDB 6D3L) though we note the activation loop is absent from PDB 6D3L and 3UIU. We also aligned the Ser51 phosphoacceptor loop of AlphaFold2 eIF2α model to PDB 1Q46 and we see that the model reflects the pre-phosphorylation state. This loop is expected to interact with the PKR active site, which is not captured in our model and we state this explicitly in the caption of Figure 1 (lines 665-668).

      (19) Could some specific residue in Figure 7 be labelled (numbered) to orient the findings? Also, the key in this figure doesn't title the residues coloured white (RE red/black/blue). The white also isn't distinguished from the green (outside the regions targeted for mutagenesis).

      Excellent suggestion, we have revised this figure to include labels for the sites to orient the reader and clarify our categorization of PKR residues in the kinase domain.

      (20)  Regarding the discussion, the authors adopt the convention of describing K3 as a pseudosubstrate. Although I realize it is common to refer to K3 as a pseudosubstrate, it isn't phosphorylated and binds slightly differently to PKR so alternative descriptors, such as 'a competitive binder', would more accurately present the protein's function. Possibly for this reason, the authors declared an expectation that evolution pressures should shift K3 to precisely mimic EIF2α. However, closer molecular mimicry shouldn't be expected for two reasons. The first is a risk of disrupting other interactions, such as the EIF2 complex. Secondly, equivalent binding to PKR would demote K3 to merely a stoichiometric competitor of EIF2α. In this instance, effective inhibition would require very high levels of K3 to compete with equivalent binding by EIF2α. This would be demanding particularly upon induction of PKR during the interferon response. To be an effective inhibitor K3 has to bind more avidly than EIF2α and merely requires a sufficient overlap with the EIF2α interface on PKR to disrupt this alternative association. This interpretation predicts that K3 is under pressure to bind PKR by a different mechanism than EIF2α.

      We appreciate your thoughtful point about the usage of the term pseudosubstrate. Ultimately, we’ve decided to continue using the term due to its historical usage in the field. The question of the optimal extent of mimicry in K3 is a fascinating one, and we greatly appreciate your thoughts. We wholly agree that the possibility of K3 having superior PKR binding relative to eIF2α would be preferable to perfect mimicry. In our Ideas and Speculation section, we propose that benefits towards increasing PKR affinity may need to be balanced against potential loss of host range resulting from overfitting to a given host’s PKR. However, the possibility that reduced mimicry could be selected to avoid disruption of eIF2 function had not occurred to us; thank you for pointing it out!

      (21) The discussion of the 'positive selection' of sites is also interesting in this context. To what extent has the proposed positive selection been quantified? My understanding is that all of the EIF2α kinases are conserved and so demonstrate lower levels of residue change that might be expected by random mutagenesis i.e. variance is under negative selection. The relatively higher rate of variance in PKR orthologs compared to other EIF2α kinases could reflect some relaxation of these constraints, rather than positive selection. Greater tolerance of change may stem from PKR 's more sporadic function in the immune response (infrequent and intermittent presence of its activating stimuli) rather than the ceaseless control of homeostasis by the other EIF2α kinases. Also, induction of PKR during the immune response might compensate for mutations that reduce its activity. I believe that the entire clade of extant poxviruses is young relative to the divergence between their hosts. Accordingly, genetic variance in PKR predates these viruses. Although a change in PKR may become fixed if it affords an advantage during infection, such an advantage to the host would be countered by the much higher mutation rates of the virus. This would appear to diminish the opportunity for a specific mutation to dominate a host population and, thereby, to differentiate host species. Rather, pressure to elude control by a rapidly evolving viral factor would favour variation at sites where K3 binds. This speculation offers an alternative perspective to the current discussion that the variance in PKR orthologs stems from positive selection driven by viral infection.

      We appreciate this stimulating feedback for discussion. Three of the four eIF2α kinases (HIR, PERK, and GCN2) appear to be under purifying selection (Elde et al. 2009, PMID 19043403), which stand in contrast to PKR. Residues under positive selection have been found throughout PKR, including the dsRNA binding domains, linker region, and the kinase domain. Importantly, the selection analysis from Elde et al. and Rothenburg et al. concluded that positive selection at these sites is more likely than relaxed selection. We agree that poxviruses are young, though we would guess that viral pseudosubstrate inhibition of PKR is ancient. Many viral proteins have been reported to directly interact with PKR, including herpes virus US11, influenza A virus NS1A, hepatitis C virus NS5A, and human immunodeficiency virus Tat. The PKR kinase domain does contain residues under purifying selection that are conserved among all four eIF2α kinases, but it also contains residues under positive selection that interface with the natural substrate eIF2α. Our work suggests that PKR is genetically pliable across several sites in the kinase domain, and we are curious to know if this pliability would hold at the same sites across the other three eIF2α kinases.

      (22) The manuscript is very well written but has a small number of typos; e.g. an aberrant 'e' ln 7 of the introduction, capitalise the R in ranavirus on the last line of the fourth paragraph of the discussion, and eIF2α (EIF2α?) is occasionally written as eIFα in the materials&methods.

      Thank you for bringing these typos to our attention! We’ve deleted the aberrant ‘e’ in the introduction, capitalized ‘Ranavirus’ in the discussion (line 265), and corrected ‘eIFα’ to ‘eIF2α’ throughout the manuscript.

      Reviewer #2 (Recommendations For The Authors):

      Additional minor edits or revisions:

      (23) Paragraph 3 of the Introduction gives the impression that most of the previous work on the PKR-virus arms race is speculative. However, it is one of the best-described and most convincing examples of virus-host arms races. Can the authors edit the paragraph accordingly?

      Thank you for bringing this to our attention. We have revised the third paragraph and strengthened the description of the evolutionary arms race between PKR and viral pseudosubstrate antagonists.

      (24) Introduction: PKR has "two" double-stranded RNA binding domains. Can the authors update the text accordingly?

      We have updated the manuscript to clarify PKR has two dsRNA binding domains (lines 44-45).

      (25) The authors test here for one of the key functions of PKR: cell growth/translation arrest. Because of PKR pleiotropy, the manuscript may be edited accordingly: For example, statements such as "We found few genetic variants render the PKR kinase domain nonfunctional" are too speculative as they may retain other (not tested here) functions.

      This is a great suggestion, we have revised the manuscript to specify our definition of nonfunction in the context of our experimental screen (lines 86-92 and 106-109) and acknowledge this limitation in our experimental screen (lines 304-307).

      (26) The authors should specify "vaccinia" K3 whenever appropriate.

      We appreciate this comment and have revised the manuscript to specify vaccinia K3 where appropriate (e.g. lines 62,66, 70, 80, 108, and 226).

      (27) Ref for ACE2 diversification may include Frank et al 2022 PMID: 35892217.

      Thank you for pointing us to this paper, we have included it as a reference in the manuscript (line 277).

      (28) Positive selection of PKR as referred to by the authors corresponds to analyses performed in primates. As shown by several studies, the sites under positive selection may vary according to host orders. Can the authors specify this ("primate") in their manuscript? And/or shortly discuss this aspect.

      Thank you for raising this point. In the manuscript we performed our analysis using vertebrate sites under positive selection as identified in Rothenburg et al. 2009 PMID 19043413 (lines 51 and figure legends). We performed the same analysis using sites under positive selection in primates (as identified by Elde et al. 2009 PMID 19043403) and again found a significant difference in PKR functional scores versus K3. We have revised the manuscript to clarify our use of vertebrate sites under positive selection (line 80-81).

      (29) We view deep mutational scanning experiments as a complementary approach to positive selection": The authors should edit this and acknowledge previous and similar work of other antiviral factors, in particular one of the first studies of this kind on MxA (Colon-Thillet et al 2019 PMID: 31574080), and TRIM5 (Tenthorey et al 2020 PMID: 32930662).

      Thank you for raising up these two papers, which we acknowledge in the revised manuscript (line 299).

      (30) We believe Figure S7 brings important results and should be placed in the Main.

      We appreciate this suggestion, and have moved the contents of the former supplementary Figure 7 to the main text, in Figure 6.

      (31) The title may specify "poxvirus".

      Thank you for the suggestion to specify the nature of our experiment, we have adjusted the title to: Systematic genetic characterization of the human PKR kinase domain highlights its functional malleability to escape a poxvirus substrate mimic (line 3).

      Reviewer #3 (Recommendations For The Authors):

      (32) No line numbers or page numbers are provided, which makes it difficult to comment.

      We sincerely apologize for this oversight and have included line numbers in our revised manuscript as well as the tracked changes document.

      (33) In the introduction, I recommend defining evolutionary arms races more clearly for a broad audience.

      Thank you for this suggestion. We have revised the manuscript in the first and third paragraphs to more clearly introduce readers to the concept of an evolutionary arms race.

      (34) The introduction could use a clearer statement of the question being considered and the gap in knowledge this paper is trying to address. Currently, the third paragraph includes many facts about PKR and the fourth paragraph jumps straight into the approach and results. Some elaboration here would convey the significance of the study more clearly. As is, the introduction reads a bit like "We wanted to do deep mutational scanning. PKR seemed like an ok protein to look at", rather than conveying a scientific question.

      This is a great suggestion to improve the introduction section. We have heavily revised the third and fourth paragraphs of the introduction to clarify the motivation, approach, and significance of our work.

      (35) Relatedly, did the authors have any hypotheses at the start of the experiment about what kinds of results they expected? e.g. What parts of PKR would be most likely to generate escape mutants? Would resistant mutants be rare or common? etc? This would help the reader to understand which results are expected vs. surprising.

      These are all great questions. We have revised the introduction of the manuscript to point out that previous studies have characterized a handful of PKR variants that evade vaccinia K3, and these variants were made at sites found to be under positive selection (lines 60-64).

      (36) A description of the different K3 variants and information about why they were chosen for study should also be added to the Introduction. It was not until Figure 5 that the reader was told that K3-H47R was the same as the 'enhanced' K3 allele you are testing.

      Thank you for bringing this to our attention, we have revised the introduction to clarify the experimental conditions (lines 65-67) and specify K3-H47R as the enhanced allele earlier in the manuscript (line 100).

      (37) Does every PKR include just a single point mutation? It would be nice to see data about the number and types of mutations in each PRK window added to Supplemental Figure 1.

      Thank you for the suggestion to improve this figure. Every PKR variant that we track has a single point mutation that generates a nonsynonymous mutation. In our PacBio sequencing of the PKR variant library we identified a few off-target variants or sequences with multiple variants, but we identified the barcodes linked to those constructs and discarded those variants in our analysis. We have revised Supplemental Figure 1 to include the number and types of mutations made at each PKR window.

      (38) In terms of the paper's logical flow, personally, I would expect to begin by testing which variants break PKR's function (Figure 3) and then proceeding to see which variants allow for K3 escape (Figure 2). Consider swapping the order of these sections.

      Thank you for this suggestion, and we can appreciate how the flow of the manuscript may be improved by swapping Figures 2 and 3. We have decided to maintain the current order of the figures because we use Figure 3 to emphasize the distinction of PKR sites that are nonfunctional versus susceptible to vaccinia K3.

      (39) Figure 3A seems like a less-informative version of Figure 4A, recommend combining these two. Same comment with Figure 5A and Figure 6A.

      We appreciate this specific feedback for the figures. Though there are similarities between figure panels (e.g. 3A and 4A) we use them to emphasize different points in each figure. For example, in Figure 3 we emphasize the general lack of variants that impair PKR kinase activity, and in Figure 4 we distinguish kinase-impaired variants from K3-susceptible variants. For this reason, and given space constraints, we have chosen to maintain the figures separately. We did decide to move the former Figure 6 to the supplement.

      (40) In general, it felt like there was a lot of repetition/re-graphing of the same data in Figures 3-6. I recommend condensing some of this, and/or moving some of the panels to supplemental figures.

      Thank you for your suggestion, we have revised the manuscript and have moved Figure 6 to Supplemental Figure 7.

      (41) In contrast, Supplemental Figure 7 is helpful for understanding the distribution of the data. Recommend moving to the main text.

      This is a great recommendation, and we have moved Supplemental Figure 7 into Figure 6.

      (42) How do the authors interpret an enrichment of positively selected sites in K3-resistant variants, but not K3-H74R-resistant variants? This seems important. Please explain.

      Thank you for this suggestion to improve the manuscript; we agree that this observation warranted further exploration. We found a strong correlation in PKR functional scores between K3 WT and K3-H47R, and with that we find sites under positive selection that are resistant to K3 WT are also resistant to K3-H47R. The lack of enrichment at positively selected sites appears to be caused by collapsed dynamic range between PKR wild-type-like and nonfunctional variants in the K3-H47R screen. We have revised the manuscript to clarify this point (line 202-204).

      (43) Discussion: The authors compare and contrast between PKR and ACE2, but it would be worth mentioning other examples of genes involved in antiviral arms races wherein flexible, unstructured loops are functionally important and are hotspots of positive selection (e.g. MxA, NLRP1, etc).

      We greatly appreciate this suggestion to improve the discussion. We note this contrast between the PKR kinase domain and the flexible linkers of MxA and NLRP1 in the revised manuscript (lines 273-274).

      (44) Speculation section: What is the host range of the vaccinia virus? Is it likely to be a generalist amongst many species' PKRs (and if so, how variable are those PKRs)? Would be worth mentioning for context if you want to discuss this topic.

      Thank you for raising this question. Vaccinia virus is the most well studied of the poxviruses, having been used as a vaccine to eradicate smallpox, and serves as a model poxvirus. Vaccinia virus has a broad host range, and though the name vaccinia derives from the Latin word “vacca” for cow the viruses origin remains uncertain (Smith 2007 https://doi.org/10.1007/978-3-7643-7557-7_1). has been used to eradicate smallpox as a vaccine and serves as a model poxvirus. Thought the natural host is unknown, it appears to be a general inhibitor of vertebrate PKRs The natural host of vaccinia virus is unknown, though there is some evidence to suggest it may be native to rabbits and does appear to be generalist.

      (45) Many papers in this field discuss interactions between PKR and K3L, rather than K3. I understand that this is a gene vs. protein nomenclature issue, but consider matching the K3L literature to make this paper easier to find.

      Thank you for bringing this to our attention. We have revised the manuscript to specify that vaccinia K3 is expressed from the K3L gene in both the abstract (line 26) and the introduction (line 56) to help make this paper easier to find when searching for “K3L” literature.

      (46) Which PKR sequence was used as the wild-type background?

      This is a great question. We used the predominant allele circulating in the human population represented by Genbank m85294.1:31-1686. We cite this sequence in the Methods (line 421) and have added it to the results section as well (lines 84).

      (47) Figure 1C: the black dashed line is difficult to see. Recommend changing the colors in 1A-1C.

      Thank you for this suggestion, we have changed the dashed lines from black to white to make them more distinguishable.

      (48) Figure 1D: Part of the point of this figure is to convey overlaps between sites under selection, K3 contact sites, and eIF2alpha contact sites, but at this scale, many of the triangles overlap. It is therefore impossible to tell if the same sites are contacted vs. nearby sites. Perhaps the zoomed-in panels showing each of the four windows in the subsequent figures are sufficient?

      Thank you for bringing this to our attention. We have scaled the triangles down to reduce their overlap in Figure 1D and list all sites of interest (predicted eIF2α and vaccinia contacts, conserved sites, and positive selection sites) in the Materials and Methods section “Predicted PKR complexes and substrate contacts”.

      (49) Figure 1E: under "1,293 Unique Combinations", there is a line between the PKR and K3 variants, which makes it look like they are expressed as a fusion protein. I believe these proteins were expressed from the same plasmid, but not as a fusion, so I recommend re-drawing. Then in the graph, the y-axis says "PKR abundance", but from the figure, it is not clear that this refers to relative abundance in a yeast pool. Perhaps "yeast growth" or similar would be clearer?

      Thank you for the specific feedback to improve Figure 1. We have made the suggested edits to clarify that PKR and vaccinia K3 are not fused but each is expressed from their own promoter. We have also changed the y-axis from “PKR Abundance” to “Yeast Growth”.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      (1) Correct capitalization errors, ensuring the first letter of each sentence is capitalized.

      Thank you for your comment. We have corrected capitalization errors.

      (2) Ensure that all technical terms and abbreviations are introduced in full when first mentioned and consistently used throughout the text.

      Thank you for your comment. we have checked and corrected the issue.

      (3) Review the manuscript for grammatical errors and improve sentence structures to enhance readability.

      Thank you for your comment. we have checked and corrected the issue.

      (4) Ensure all figures referenced in the text, such as Fig. 3G, are appropriately discussed and integrated into the narrative.

      Thank you for your comment. we have discussed and integrated Fig. 3G into the narrative (Page 12, Line 162-166).

      (5) Maintain consistent formatting, including first-line indentation and spacing before paragraphs, to improve the document's visual coherence.

      Thank you for your comment. we have checked and corrected the issue.

      (6) Provide additional explanations for the selection criteria of final model variables, particularly the rationale behind choosing the λ_1se criterion in the LASSO regression.

      Thank you for your comment. we have provided explanations for choosing the λ_1se criterion in the LASSO regression (Page 25, Line 315-316; Page 27, Line 363-364).

      (7) Conduct validation studies with cohorts from other high-altitude regions to assess the generalizability and robustness of the prediction models.

      Thank you for your comment. The lack of validation of cohorts from other high-altitude regions is a weakness in this study, and in our follow-up study, we will conduct external validation with cohorts from more other high-altitude regions to assess the generalizability and robustness of our prediction models.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In this manuscript, Bockorny, Muthuswamy, and Huang et al. performed proteomics analysis of plasma extracellular vesicles (EVs) from pancreatic ductal adenocarcinoma (PDAC) patients and patients with benign pancreatic diseases (chronic pancreatitis and intraductal papillary mucinous neoplasm, IPMN) to develop a 7-EV protein signature that predicts PDAC. Moreover, the authors identified PSMB4, RUVBL2, and ANKAR as being associated with metastasis. These studies provide important insight into alterations of EVs during PDAC progression and the data supporting predict PDAC with EV protein signatures are solid. However, there are certain concerns regarding the rigor and novelty of the data analysis and interpretation, as well as the clinical implications, as detailed below.

      (1) Plasma EVs were characterized by transmission electron microscopy and nanoparticle tracking analysis to confirm their morphology and size. The authors should also include an analysis of putative EV markers (e.g., tetraspanins, syntenin, ALIX, etc.) to confirm that the analyzed particles are EVs.

      We thank the reviewer for this comment. In the previous study from our co-authors who developed EVtrap method (PMID:32396726), they used electron microscopy and NTA , as well as quantification of typical EV protein markers, such as CD9, to confirm that particles isolated using EVtrap had typical characteristics of the extracellular vesicles. As such, these experiments were not replicated here. We added the following statement to the manuscript:

      “Previous analyses using electron microscopy and nanoparticle tracking also confirmed that the vast majority of particles isolated by EVtrap had diameters between 100-200 nm, consistent with exosomes (PMID:32396726). In addition, EVtrap isolates demonstrates higher abundance of CD9, a common exosome marker, as compared to isolates from other traditional EV isolation methods such as size exclusion chromatography and ultracentrifugation (PMID:32396726)”

      (2) The authors identified multiple over-expressed proteins in PDAC based on their foldchange and p-value; however, due to the heterogeneity of PDAC, it is necessary to show a heatmap displaying their abundance in all samples. High fold change does not necessarily indicate consistently high abundance in all PDAC samples.

      We thank the reviewer for this suggestion. We have now included the heatmap in the new Supplementary Figure 3.

      (3) PSMB4, RUVBL2, and ANKAR were identified as being associated with metastasis. The authors state that they intended to distinguish early and late-stage cancer samples, but it is unclear why they chose to compare metastatic and non-metastatic samples, as the non-metastatic group also includes late-stage cancer samples. This sentence should be rephrased to more accurately reflect the sample types profiled.

      We thank the reviewer for pointing this out. We would like to clarify that this analyses shown in Figures 3B and 3C pertain to patients with Metastatic vs Non-Metastatic disease, not early versus late stage. We edited the text to ensure this information is clear.

      (4) Non-metastatic and metastatic patients were separated based on global protein abundance. The samples within each group display significant heterogeneity, with some samples displaying similar patterns although they were classified into different groups (Figure 3A), and the samples within the same group, particularly the metastasis group, did not consistently exhibit similar patterns of protein abundance. The authors should clarify this point.

      We thank the reviewer for this comment. The EV proteomic expression is anticipated not to show the exact pattern across of samples of each group. The purpose of this experiment depicted in Figure 3 heatmap is to show the enrichment for pattern of expressions, but we acknowledge that not all samples from the same group have the exact proteome pattern.

      We added this statement in the discussion section:

      “As expected, the EV proteomic profiles of PDAC patients exhibited significant heterogeneity. While the above mentioned markers exhibited strong association with disease states at population levels, their abundances in individual patients varied significantly. Those observations highlight the need to develop multi-protein panels for pancreatic cancer diagnosis and prognosis.”

      (5) The authors performed the survival analysis on a set of EV proteins but did not specify the origin of these markers or how many markers were examined. The authors should show their abundances across different groups, such as different stages and metastasis status.

      We thank the reviewer for the comments. The goal of this experiment was not to identify EV proteins that performed similarly well for diagnosing and prognostication. In Figure 3A, 3B and 3C, we identified EV proteins that had better performance for diagnosis of metastatic disease. In these experiments we made  comparative analysis between patients with metastasis versus non-metastasis. In the experiment depicted in Figure 3D, the goal was to identify EV markers that had better performance is prognosticating outcomes as measured by overall survival, out of the markers identified in the previous experiments from Figure 3A. We would like to further clarify that based on our observation and others, it has become clear that EV profiles from cancer patients are highly heterogenous and we do not anticipate that a single marker will have sufficient test performance for cancer diagnosis or prognosis assessment when measured isolated. Rather, we anticipate that a panel of markers may yield better performance for diagnosis while a different combination of EV markers may have better performance for prognosis assessment.

      (6) The classification model yielded a 100% accuracy, which may refer to AUC, in their discovery cohort, but it decreased to 89% in the independent cohort. This suggests that the authors have encountered overfitting issues with their model, where it performed well on the discovery cohort but did not generalize well to the independent cohort. The authors should clarify this point. The AUC score of the 7-EV signature is 0.89 and is not equivalent to prediction accuracy. In order to demonstrate prediction accuracy, the authors should show the confusion matrix of training and testing data as well as other evaluation metrics, such as accuracy, precision, and recall.

      We thank the reviewer for providing these insightful comments. As you noted, the 7-biomarker signature machine learning model attained an impressive 100% accuracy within the internal Discovery Cohort, raising concerns about potential overfitting in the external validation dataset. Acknowledging the noted difference in AUROC of 0.11 in the external validation cohort, which surpasses the typical reported range of ~0.06-0.09, the model demonstrated a commendable AUROC of 0.89 in an independent patient cohort. Moreover, the utilization of an alternate technology to measure protein abundance in the validation dataset, underscores the model’s reproducibility and validity. We have provided the model metrics for both internal- and external-validation cohort. For these, please see updated Supplementary Figure 7, as well as the new Supplementary Figure 6 and Supplementary Figure 8. We also amended the discussion section to acknowledge that the validation cohort had limited sample size and proteins were measured in using a different method. Those factors likely contributed to the lower accuracy of predictions in the validation cohort. We addressed these limitations in the discussion section of the manuscript.

      (7) The authors should include more details of their model and the process of selection of signatures to enhance the reproducibility and transparency of their methods.

      We thank the reviewer for their valuable comments. To enhance clarity, we have incorporated additional information regarding the method employed for biomarker signature identification into the ‘Methods Section’ in page 23.  We note that Supplementary Table 7a provides details on ‘Sensitivity, Specificity, Precision, and AUC’ for the 16 markers included in the external validation study. Additionally, Supplementary Table 7b presents the contingency table for 7-biomarker signature, offering insights into model accuracy for both the Internal-Discovery and External Validation cohorts.  

      Reviewer #2 (Public Review):

      The authors intended to identify a protein signature in extracellular vesicles of serum to distinguish pancreatic ductal adenocarcinoma from benign pancreatic diseases.

      A major strength of the work presented is the valuable profiling of a significant number of patient samples, with a rich cohort of patients with pancreatic cancer, benign pancreatic diseases, and healthy controls. However, despite the strong cohorts presented, the numbers of patient samples for benign pancreatic diseases as well as controls were very limited.

      Also, the method used to isolate vesicles, EVTrap, recognizes double bilayers, which means that it can detect cellular debris and apoptotic bodies, which are very common in the circulation of patients that are undergoing chemotherapy. It would be important to identify the patients that are therapy naïve and the ones that are not because of this possible bias.

      We thank the Reviewer for these comments. We want to point out that the experiments presented in Supplementary Figure 1 (Transmission electron microscopy images and Nanoparticle tracking analysis) confirm that the vesicles isolated with EVTrap are not cellular debris and apoptotic bodies. Rather, these structures are in the nano range expected for exosomes. This is further supported by the additional work from our co-author and collaborator describing the development of EVtrap and its performance in isolating exosomes when compared to other traditional methods such as ultracentrifugation and size exclusion chromatography (PMID:32396726).

      As per the Reviewer’s request, we have provided an additional heatmap figure depicting whose patients are treatment naïve to differentiate from those who have received treatment (revised Figure 2C).

      Additionally, the transmission electron microscopy data reflect this heterogeneity of the samples, also with little identification of double bilayered vesicles. It would be important to identify some extracellular vesicles markers in those preparations to strengthen the quality of the samples analyzed.

      We appreciate the comment from the Reviewer and acknowledge the importance of identifying exosome markers on the isolate from EVtrap. These experiments have already been done and are reported in the original paper describing the development of this method by our co-authors in a separate work. In the manuscript PMID: 30080416, our collaborators demonstrated the detection of CD9, a well-known exosome marker, using Western Blot from isolates using EVtrap or ultra-centrifugation, a traditional technique to isolate exosomes. This work showed that EVtrap yielded much higher recovery rate of exosomes with lower contamination from soluble proteins. We did not repeat these already published experiments, but we amended our manuscript to reference these results.

      What is more, previously published work with this same methodology identifies around 2000 proteins per sample. It would be important to explain why in this study there seems to be a reduction in more than 50% of the amount of proteins identified in the vesicles.

      We thank the Reviewer for pointing out this important detail. In the previous work in which EVtrap was developed by our co-authors, the blood samples were processed using a different protocol, with shorter centrifugation (2,500g for 10 min) (PMID: 32396726). In the current work, we employed three centrifugation steps. As detailed in the Methods section of the manuscript, blood samples were centrifuged at 1,300g for 15 min. Then  plasma was removed from the top carefully avoiding cell pellet;  Repeat centrifugation of plasma at 2,500g for 15 min;  Again, plasma was removed from the top carefully avoiding cell pellet;  Third centrifugation at 2,500g for 15 min. This more extensive centrifugation process was intended to further increase the removal of platelets, apoptotic bodies, and other large particles and aggregates. Accordingly, we anticipate that the additional centrifugation steps decreased the contamination of our isolates but may have also decreased the amount of exosome proteins, hence the lower amount of exosome proteins identified in our study as compared to the original study from our co-authors (PMID: 32396726).

      One of the proteins that constantly surges on the analysis is KRT20. It would be important to proceed with the analysis by first filtering out possible contaminants of the proteomics, of which keratins are the most common ones.

      We thank the Reviewer for this comment. We would like to point out that we do believe that KRT20 is, in fact, cancer related and a not a contaminant. This is supported by our results presented in this manuscript showing enrichment or KRT20 in PDAC cases, and lower expression in benign samples. If this protein was a contaminant, its expression would be found uniformly in all samples, there would be no apparent reason for different expression between malignant vs benign cases, as all samples were processed following the same procedures. In addition, increased expression of KRT20 in PDAC tissues has also been reported by others. For instance, in a study by Schmiz-Winnthal  (PMID: 16364723), the authors showed that Cytokeratin 20 (KRT20) were expressed in 76% of PDAC patients and expression of KRT20 was associated with poor survival after surgical resection. Based on these observations, we believe that the KRT20 identified in our study is indeed a tumor associated EV protein rather than contamination.

      Finally, none of the 7-extracellular vesicle protein signatures has been validated by other techniques, such as western blot, in extracellular vesicles isolated by other, standard, methods, such as size exclusion chromatography.

      A distinct technique for protein analysis was done but not a different method of isolation of these vesicles. This would strengthen the results and the origin of the proteins.

      We appreciate the Reviewer’s comment. We would like to again emphasize that the goal of this manuscript was not to compare the performance of EVtrap with other traditional EV isolation approaches such as ultracentrifugation and size exclusion chromatography.  The main goal of study is to determine proteomic profiles of EVs isolated from clinical samples and provide such information to research community for further studies. As the Reviewer points out, proteins in EVs are highly heterogeneous which highlight the complexity of EV biology and interpatient heterogeneity of pancreatic cancer.  We do not anticipate the development of EV-based markers for pancreatic diagnosis can be achieved by a single team, but by a community of researchers. We hope information presented in the current study will help other researchers identify additional candidates for validation in future work. Nonetheless, we edited the manuscript to discuss the limitation of not doing cross-validation of protein detection using a different method.

      The conclusions that are reached do not fully meet the proposed aims of the identification of a protein signature in circulating extracellular vesicles that could improve early detection of the disease. The authors did not demonstrate the superiority of detection of these proteins in extracellular vesicles versus simply performing an ELISA, nor their superiority with respect to the current standard procedure for diagnosis.

      We would like to clarify to the Reviewer that the goal of this manuscript was not to prove superiority of the EV signature biomarker in diagnosing pancreatic cancer as compared to current standard of care (SOC) practice, i.e., CT scans, endoscopic ultrasound and CA19-9. In order to prove such superiority, one would require a large, randomized phase III trial with several hundred patients. This was not the pursue of our discovery EV proteomics study and we double checked our manuscript to ensure no such claim was made. Rather, we aimed at developing a new pipeline for discovery of new EV biomarkers and we believe we were able to prove that this approach was successful in discovering a new class of biomarkers based on proteins expressed on extra-cellular vesicles that have predominant expression on patients with pancreatic cancer. Future studies should continue to advance this field with goals of improving on the current standard of care diagnostic methods.

      The authors also suggest that profiling of circulating extracellular vesicles provides unique insights into systemic immune changes during pancreatic cancer development. How is this better than a regular hemogram is not clear.

      We would like to clarify that the overall goal of this study is to provide patient-relevant information for the research community to further investigate biology of extracellular vesicles. For the state 'unique insights into systemic immune changes' we referred to the fact that we discovered EVs carrying proteins involved in immune responses. Previous studies have shown that EVs play important roles in cell-cell communication, discoveries from our study provide candidates for future studies on cellular mechanisms underlying immune regulation during pancreatic cancer development.

      Finally, it would be important to determine how this signature compares with many others described in the literature that have the exact same aim. Why and how would this one be better?

      We would like to again clarify that comparing the diagnostic performance of the EV biomarkers discovered in the study against standard of care methods (CA19-9, ctDNA, CT scan) was beyond the scope of this discovery EV proteomics work. We reviewed the manuscript to ensure that no claims were made as far as superiority against point-of-care tests available in clinic.

      Reviewer #3 (Public Review):

      This work investigates the use of extracellular vesicles (EVs) in blood as a noninvasive 'liquid biopsy' to aid in the differentiation of patients with pancreatic cancer (PDAC) from those with benign pancreatic disease and healthy controls, an important clinical question where biopsies are frequently non-diagnostic. The use of extracellular vesicles as biomarkers of disease has been gaining interest in recent history, with a variety of published methods and techniques, looking at a variety of different compositions ('the molecular cargo') of EVs particularly in cancer diagnosis (Shah R, et al, N Engl J Med 2018; 379:958-966).

      This study adds to the growing body of evidence in using EVs for earlier detection of pancreatic cancer, identifying both new and known proteins of interest. Limitations in studying EVs, in general, include dealing with low concentrations in circulation and identifying the most relevant molecular cargo. This study provides validation of assaying EVs using the novel EVtrap method (Extracellular Vesicles Total Recovery And Purification),which the authors show to be more efficient than current standard techniques and potentially more scalable for larger clinical studies.

      The strength of this study is in its numbers - the authors worked with a cohort of 124 cases,93 of them which were PDAC samples, which are considered large for an EV study (Jia, E etal. BMC Cancer 22, 573 (2022)). The benign disease group (n=20, between chronic pancreatitis and IPMNs) and healthy control groups (n=11) were relatively small, but the authors were not only able to identify candidate biomarkers for diagnosis that clearly stood out in the PDAC cohort, but also validate it in an independent cohort of 36 new subjects.

      Proteins they have identified as associated with pancreatic cancer over benign disease included PDCD6IP, SERPINA12, and RUVBL2. They were even able to identify a set of EV proteins associated with metastasis and poorer prognosis, which include the proteins PSMB4, RUVBL2 and ANKAR and CRP, RALB and CD55. Their 7-EV protein signature yielded an 89% prediction accuracy for the diagnosis of PDAC against a background of benign pancreatic diseases that is compelling and comparable to other studies in the literature (Jia,E. et al. BMC Cancer 22, 573 (2022)).

      The limitations of this study are its containment within a single institution - further studies are warranted to apply the authors' 7-EV protein PRAC panel to multiple other cases at other institutions in a larger cohort.

      We are very thankful to the Reviewer for the positive feedback. We are similarly optimistic that EV-based biomarkers will assist future researchers to develop better diagnostic assays for patients with pancreatic cancer, as well as other tumor types lacking accurate blood-based tests.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This study evaluates whether species can shift geographically, temporally, or both ways in response to climate change. It also teases out the relative importance of geographic context, temperature variability, and functional traits in predicting the shifts. The study system is large occurrence datasets for dragonflies and damselflies split between two time periods and two continents. Results indicate that more species exhibited both shifts than one or the other or neither, and that geographic context and temp variability were more influential than traits. The results have implications for future analyses (e.g. incorporating habitat availability) and for choosing winner and loser species under climate change. The methodology would be useful for other taxa and study regions with strong community/citizen science and extensive occurrence data.

      We thank Reviewer 1 for their time and expertise in reviewing our study. The suggestions are very helpful and will improve the quality of our manuscript.

      Strengths:

      This is an organized and well-written paper that builds on a popular topic and moves it forward. It has the right idea and approach, and the results are useful answers to the predictions and for conservation planning (i.e. identifying climate winners and losers). There is technical proficiency and analytical rigor driven by an understanding of the data and its limitations.

      We thank Reviewer 1 for this assessment.

      Weaknesses:

      (1) The habitat classifications (Table S3) are often wrong. "Both" is overused. In North America, for example, Anax junius, Cordulia shurtleffii, Epitheca cynosura, Erythemis simplicicollis, Libellula pulchella, Pachydiplax longipennis, Pantala flavescens, Perithemis tenera, Ischnura posita, the Lestes species, and several Enallagma species are not lotic breeding. These species rarely occur let alone successfully reproduce at lotic sites. Other species are arguably "both", like Rhionaeschna multicolor which is mostly lentic. Not saying this would have altered the conclusions, but it may have exacerbated the weak trait effects.

      We thank the reviewer for their expertise on this topic. We obtained these habitat classifications from field guides and trait databases, and we will review our primary sources to clarify the trait classifications. We will also reclassify the species according to the expertise of this reviewer and perform our analysis again. 

      (2) The conservative spatial resolution (100 x 100 km) limits the analysis to wide- ranging and generalist species. There's no rationale given, so not sure if this was by design or necessity, but it limits the number of analyzable species and potentially changes the inference.

      It is really helpful to have the opportunity to contextualize study design decisions like this one, and we thank the reviewer for the query. Sampling intensity is always a meaningful issue in research conducted at this scale, and we addressed it head-on in this work.

      Very small quadrats covering massive geographical areas will be critically and increasingly afflicted by sampling weaknesses, as well as creating a potentially large problem with pseudoreplication. There is no simple solution to this problem. It would be possible to create interpolated predictions of species’ distributions using Species Distribution Models, Joint Species Distribution Models, or various kinds of Occupancy Models. None of these approaches then leads to analyses that rely on directly observed patterns. Instead, they are extrapolations, and those extrapolations typically fail when tested, (for example, papers by Lee-Yaw demonstrate that it is rare for SDMs to predict things well; occupancy models often perform less well than SDMs and do not capture how things change over time - Briscoe et al. 2021, Global Change Biology). The result of employing such techniques would certainly be to make all conclusions speculative, rather than directly observable. 

      Rather than employing extrapolative models, we relied on transparent techniques that are used successfully in the core macroecology literature that address spatial variation in sampling explicitly and simply. Moreover, we constructed extensive null models that show that range and phenology changes, respectively, are contrary to expectations that arise from sampling difference. 100km quadrats make for a reasonable “middle-ground” in terms of the effects of sampling, and we will add a reference to the methods section to clarify this.

      (3) The objective includes a prediction about generalists vs specialists (L99-103) yet there is no further mention of this dichotomy in the abstract, methods, results, or discussion.

      Thank you for pointing this out - it is an editing error that should have been resolved prior to submission. We will replace the terms specialist and generalist with specific predictions based on traits.

      (4) Key references were overlooked or dismissed, like in the new edition of Dragonflies & Damselflies model organisms book, especially chapters 24 and 27.

      We thank Reviewer 1 for making us aware of this excellent reference. We will review this text and include it as a reference, in addition to other references recommended by Reviewer 1 and other reviewers.

      Reviewer #2 (Public review):

      Summary:

      This paper explores a highly interesting question regarding how species migration success relates to phenology shifts, and it finds a positive relationship. The findings are significant, and the strength of the evidence is solid. However, there are substantial issues with the writing, presentation, and analyses that need to be addressed. First, I disagree with the conclusion that species that don't migrate are "losers" - some species might not migrate simply because they have broad climatic niches and are less sensitive to climate change. Second, the results concerning species' southern range limits could provide valuable insights. These could be used to assess whether sampling bias has influenced the results. If species are truly migrating, we should observe northward shifts in their southern range limits. However, if this is an artifact of increased sampling over time, we would expect broader distributions both north and south. Finally, Figure 1 is missed panel B, which needs to be addressed.

      We thank Reviewer 2 for their time and expertise in reviewing our study.

      It is possible that some species with broad niches may not need to migrate, although in general failing to move with climate change is considered an indicator of “climate debt”, signaling that a species may be of concern for conservation (ex. Duchenne et al. 2021, Ecology Letters). We will revise the discussion to acknowledge potential differences in outcomes.

      We used null models to test whether our results regarding range shifts were robust, and if they varied due to increased sampling over time. We found that observed northern range limit shifts are not consistent with expectations derived from changes in sampling intensity (Figure S1, S2). 

      We thank Reviewer 2 for pointing out this error in Figure 1. This conceptual figure was a challenge to construct, as it must illustrate how phenology and range shifts can occur simultaneously or uniquely to enable a hypothetic odonate to track its thermal niche over time. In a previous version of the figure, we had a second panel and we failed to remove the reference to that panel when we simplified the figure. 

      Reviewer #3 (Public review):

      Summary:

      In their article "Range geographies, not functional traits, explain convergent range and phenology shifts under climate change," the authors rigorously investigate the temporal shifts in odonate species and their potential predictors. Specifically, they examine whether species shift their geographic ranges poleward or alter their phenology to avoid extreme conditions. Leveraging opportunistic observations of European and North American odonates, they find that species showing significant range shifts also exhibited earlier phenological shifts. Considering a broad range of potential predictors, their results reveal that geographical factors, but not functional traits, are associated with these shifts.

      We thank Reviewer 3 for their expertise and the time they spent reviewing our study. Their suggestions are very helpful and will improve the quality of our manuscript.

      Strengths:

      The article addresses an important topic in ecology and conservation that is particularly timely in the face of reports of substantial insect declines in North America and Europe over the past decades. Through data integration the authors leverage the rich natural history record for odonates, broadening the taxonomic scope of analyses of temporal trends in phenology and distribution to this taxon. The combination of phenological and range shifts in one framework presents an elegant way to reconcile previous findings improving our understanding of the drivers of biodiversity loss.

      We thank Reviewer 3 for this assessment.

      Weaknesses:

      The introduction and discussion of the article would benefit from a stronger contextualization of recent studies on biological responses to climate change and the underpinning mechanism.

      The presentation of the results (particularly in figures) should be improved to address the integrative character of the work and help readers extract the main results. While the writing of the article is generally good, particularly the captions and results contain many inconsistencies and lack important detail. With the multitude of the relationships that were tested (the influence of traits) the article needs more coherence.

      We thank Reviewer 3 for these suggestions. We will revise the introduction and discussion to better contextualize species’ responses to climate change and the mechanisms behind them. We will carefully review all figures and captions, and we will make changes to improve the clarity of the text and the presentation of results.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors show that the Gαs-stimulated activity of human membrane adenylyl cyclases (mAC) can be enhanced or inhibited by certain unsaturated fatty acids (FA) in an isoform-specific fashion. Thus, with IC50s in the 10-20 micromolar range, oleic acid affects 3-fold stimulation of membrane-preparations of mAC isoform 3 (mAC3) but it does not act on mAC5. Enhanced Gαs-stimulated activities of isoforms 2, 7, and 9, while mAC1 was slightly attenuated, but isoforms 4, 5, 6, and 8 were unaffected. Certain other unsaturated octadecanoic FAs act similarly. FA effects were not observed in AC catalytic domain constructs in which TM domains are not present. Oleic acid also enhances the AC activity of isoproterenol-stimulated HEK293 cells stably transfected with mAC3, although with lower efficacy but much higher potency. Gαs-stimulated mAC1 and 4 cyclase activity were significantly attenuated in the 20-40 micromolar by arachidonic acid, with similar effects in transfected HEK cells, again with higher potency but lower efficacy. While activity mAC5 was not affected by unsaturated FAs, neutral anandamide attenuated Gαs-stimulation of mAC5 and 6 by about 50%. In HEK cells, inhibition by anandamide is low in potency and efficacy. To demonstrate isoform specificity, the authors were able to show that membrane preparations of a domain-swapped AC bearing the catalytic domains of mAC3 and the TM regions of mAC5 are unaffected by oleic acid but inhibited by anandamide. To verify in vivo activity, in mouse brain cortical membranes 20 μM oleic acid enhanced Gαs-stimulated cAMP formation 1.5-fold with an EC50 in the low micromolar range.

      Strengths:

      (1) A convincing demonstration that certain unsaturated FAs are capable of regulating membrane adenylyl cyclases in an isoform-specific manner, and the demonstration that these act at the AC transmembrane domains.

      (2) Confirmation of activity in HEK293 cell models and towards endogenous AC activity in mouse cortical membranes.

      (3) Opens up a new direction of research to investigate the physiological significance of FA regulation of mACs and investigate their mechanisms as tonic or regulated enhancers or inhibitors of catalytic activity.

      (4) Suggests a novel scheme for the classification of mAC isoforms.

      Weaknesses:

      (1) Important methodological details regarding the treatment of mAC membrane preps with fatty acids are missing.

      We will address this issue in more detail.

      (2) It is not evident that fatty acid regulators can be considered as "signaling molecules" since it is not clear (at least to this reviewer) how concentrations of free fatty acids in plasma or endocytic membranes are hormonally or otherwise regulated.

      Although this question is not the subject of this ms., we will address this question in more detail in the discussion of the revision.

      Reviewer #2 (Public review):

      Summary:

      The authors extend their earlier findings with bacterial adenylyl cyclases to mammalian enzymes. They show that certain aliphatic lipids activate adenylyl cyclases in the absence of stimulatory G proteins and that lipids can modulate activation by G proteins. Adding lipids to cells expressing specific isoforms of adenylyl cyclases could regulate cAMP production, suggesting that adenylyl cyclases could serve as 'receptors'.

      Strengths:

      This is the first report of lipids regulating mammalian adenylyl cyclases directly. The evidence is based on biochemical assays with purified proteins, or in cells expressing specific isoforms of adenylyl cyclases.

      Weaknesses:

      It is not clear if the concentrations of lipids used in assays are physiologically relevant. Nor is there evidence to show that the specific lipids that activate or inhibit adenylyl cyclases are present at the concentrations required in cell membranes. Nor is there any evidence to indicate that this method of regulation is seen in cells under relevant stimuli.

      Although this question is not the subject of this ms., we will address this question in more detail in the discussion of the revision.

      Reviewer #3 (Public review):

      Summary:

      Landau et al. have submitted a manuscript describing for the first time that mammalian adenylyl cyclases can serve as membrane receptors. They have also identified the respective endogenouse ligands which act via AC membrane linkers to modify and control Gs-stimulated AC activity either towards enhancement or inhibition of ACs which is family and ligand-specific. Overall, they have used classical assays such as adenylyl cyclase and cAMP accumulation assays combined with molecular cloning and mutagenesis to provide exceptionally strong biochemical evidence for the mechanism of the involved pathway regulation.

      Strengths:

      The authors have gone the whole long classical way from having a hypothesis that ACs could be receptors to a series of MS studies aimed at ligand indentification, to functional studies of how these candidate substances affect the activity of various AC families in intact cells. They have used a large array of techniques with a paper having clear conceptual story and several strong lines of evidence.

      Weaknesses:

      (1) At the beginning of the results section, the authors say "We have expected lipids as ligands". It is not quite clear why these could not have been other substances. It is because they were expected to bind in the lipophilic membrane anchors? Various lipophilic and hydrophilic ligands are known for GPCR which also have transmembrane domains. Maybe 1-2 additional sentences could be helpful here.

      Will be done as suggested.

      (2) In stably transfected HEK cells expressing mAC3 or mAC5, they have used only one dose of isoproterenol (2.5 uM) for submaximal AC activation. The reference 28 provided here (PMID: 33208818) did not specifically look at Iso and endogenous beta2 adrenergic receptors expressed in HEK cells. As far as I remember from the old pharmacological literature, this concentration is indeed submaximal in receptor binding assays but regarding AC activity and cAMP generation (which happen after signal amplification with a so-called receptor reserve), lower Iso amounts would be submaximal. When we measure cAMP, these are rather 10 to 100 nM but no more than 1 uM at which concentration response dependencies usually saturate. Have the authors tried lower Iso concentrations to prestimulate intracellular cAMP formation? I am asking this because, with lower Iso prestimulation, the subsequent stimulatory effects of AC ligands could be even greater.

      The best way to address this issue is to establish a concentration-response curve for Iso-stimulated cAMP formation using the permanently transfected cells. We note that in the past isoproterenol concentrations used in biochemical or electrophysiological experiments differed substantially.

      (3) The authors refer to HEK cell models as "in vivo". I agree that these are intact cells and an important model to start with. It would be very nice to see the effects of the new ligands in other physiologically relevant types of cells, and how they modulate cAMP production under even more physiological conditions. Probably, this is a topic for follow-up studies.

      The last sentence is correct.

      Appraisal of whether the authors achieved their aims, and whether the results support their conclusions:

      The authors have achieved their aims to a very high degree, their results do nicely support their conclusions. There is only one point (various classical GPCR concentrations, please see above) that would be beneficial to address.

      Without any doubt, this is a groundbreaking study that will have profound implications in the field for the next years/decades. Since it is now clear that mammalian adenylyl cyclases are receptors for aliphatic fatty acids and anandamide, this will change our view on the whole signaling pathway and initiate many new studies looking at the biological function and pathophysiological implications of this mechanism. The manuscript is outstanding.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      It is not clear from the methods section how free FAs were applied to membrane preparations or HEK293 cells. Were FAs solubilized in organic solvents, or introduced as micelles?

      The requested info is inserted into the M&M section

      Could the authors comment on what is known about the concentration of oleic acid and other non-saturated fatty acids in plasma membranes relative to those required to produce allosteric effects on cyclase activity?

      This info is now included in the last paragraph of the discussion.

      It would be worthwhile to test the effect of FAs on basal (not Gαs-stimulated) activity of mACs.

      This has been carried with mAC isoforms 2, 3, 7, and 9 in which oleic acid enhances Gsα-stimulated activity. Due to the low levels of basal activities interpretable data were not obtained.

      Do triglycerides esterified with oleic acid stimulate mAC3 and other sensitive isoforms?

      Experiments were done with triolein and 2-oleoyl-glycerol (the answer is no). The data are presented in Fig. 3 and in the appendix Fig.’s 8, 9, 14; structural formulas in appendix 2 Fig. 4 were updated.

      Does the quantity plotted on the vertical axis of Figure 1, right panel represent "Fractional Stimulation by Oleic acid" rather than simply "Fold Stimulation"? Clearly, as shown in the two left-most panels, Gαs stimulates both mAC and mAC5. Rather it seems that the ratio (oleic acid stimulation) / (Gαs stimulation) remains constant. This observation supports the statement in the discussion that "We suppose that in mAC3 the equilibrium of two differing ground states favors a Gαs-unresponsive state and the effector oleic acid concentration-dependently shifts this equilibrium to a Gαs-responsive state". It could also be said that the effect of oleic acid is additive, and in constant proportion to that of Gαs.

      This comment certainly is related to Fig. 2:

      The ratio would be (Gsα + oleic acid stimulation) / (Gsα-stimulation), i.e., fractional stimulation by addition of oleic acid is identical to fold stimulation.

      We have amended the legend to fig. 2C for clarification.

      The last sentence is wrong because oleic acid alone does not stimulate.

      It is stated on page 3, 2nd to last line that "The action of oleic acid on mAC3 was instantaneous...". Since the earliest time point is taken at 5 minutes, the claim that the action of the lipid is instantaneous cannot be made. Information about kinetics would be useful to have, since it is possible that the lipid must be released from a micelle and be incorporated into the AC membrane fraction before it is active.

      The first point is 3 min.

      We deleted the word “instantaneous” and added the correlation coefficients for both conditions in the legend to appendix 2; fig. 1 for clarification.

      The data spread in Figure 4 and other figures showing similar data is significant, to the extent that the computed value for EC50 may not be of high precision. Authors should cite the correlation coefficient for the overall fit and uncertainty for the EC50 value (in addition to significances by t-test of individual data points).

      This will not add valuable information. Pearsons correlation coefficients are only for linear relationships.

      (cf. N.N. Kachouie, W. Deebani (2020) Association Factor for Identifying Linear and Nonlinear Correlations in Noisy Conditions. Entropy 22:440)

      The "switch" between relatively low potency and high efficacy in membrane preps to high potency and low efficacy in cells is remarkable. Could this have a methodological basis or is it reflective of the mechanism by which FAs access mACs in membrane preps vs. cell membranes, or perhaps some biochemical transformation of the lipid in cells?

      Honestly, we do not know.

      The authors should note that there is some precedence for this work:

      J Nakamura , N Okamura, S Usuki, S Bannai, Inhibition of adenylyl cyclase activity in brain membrane fractions by arachidonic acid and related unsaturated fatty acids. Arch Biochem Biophys. 2001 May 1;389(1):68-76. doi: 10.1006/abbi.2001.2315.

      The effects of FA deficiencies on AC and related activities have been noted:

      Alam SQ, Mannino SJ, Alam BS, McDonough K Effect of essential fatty acid deficiency on forskolin binding sites, adenylate cyclase, and cyclic AMP-dependent protein kinase activity, the levels of G proteins and ventricular function in rat heart. J Mol Cell Cardiol. 1995 Aug;27(8):1593-604. doi: 10.1016/s0022-2828(95)90491-3. PMID: 8523422

      The latter publications are supportive of, and provide context to, the author's findings.

      Both references are mentioned and cited.

      Minor points:

      The significance of the coloring scheme in Figure 5C bar graph should be stated in the legend.

      Done.

      In the introduction, it is stated that "The protein displayed two similar catalytic domains (C1 and C2) and two dissimilar hexahelical membrane anchors (TM1 and TM2)". In both cases, the respective domains can be said to be similar in overall fold, but - certainly in the case of the catalytic domains - different in amino acid sequence in functionally important regions of the domain.

      Done: Changed wording.

      The statement in the introduction that "The domain architecture, TM1-C1-TM2-C2, clearly indicated a pseudoheterodimeric protein composed of two concatenated bacterial precursor proteins" The authors refer to the fact that mammalian enzymes are pseudo heterodimers whereas bacterial type III cyclases are dimers of identical subunits.

      Done.

      Reviewer #2 (Recommendations for the authors):

      The title need not state that a 'new class of receptors' has been identified. There is no direct evidence that the lipids bind to the enzymes, and the affinities can only be surmised from the EC50 graphs. To call a protein a receptor requires evidence to show that the binding is specific by showing that binding can be inhibited by a large excess of 'unlabelled' ligand. This could have been done by procuring labelled lipids for experimental verification.

      As is well known, lipids easily bind to proteins. In this study no purified proteins were used. Therefore, binding assays most likely would result in unreliable data.

      The paper would have benefitted from showing sequence alignments in the TM domains of the ACs discussed in the paper. Further, a phylogenetic tree of mammalian ACs would also reveal which enzymes from other species may be regulated similarly to those described in the paper. This would be important for researchers who use other model organisms to study cAMP signalling.

      Such data are in multiple papers accessible in the literature. Where deemed appropriate we inserted references.

      Figures 1A and 1B show data from only two experiments. A third experiment would have been useful in order to show the statistical significance of the data.

      At this stage more experiments would not have affected further experimental plans.

      Statements made in the text (for example, the last paragraph on page 6) state only the mean value and not the SDs. This would have been important to include even if the data is shown in the appendix. The same is true in the Legend of Figure 2. Why have the authors decided to use SEM and not SDs?

      The reason is specified in M&M.

      Concentrations of lipids used in biochemical assays are in the micromolar range. This suggests that we have moderate affinity binding, more in the range of an enzyme for a substrate rather than a receptor-ligand interaction.

      We happen to disagree. Clearly, the differential activities, enhancing or attenuating Gsα-stimulated mAC activities is most plausibly explained by mAC receptor properties. mACs have enzyme activities using fatty acids as substrates.

      The authors add lipids to cells and show changes in cAMP levels in their presence and absence. They also discuss how these extracellular lipids could be produced. Do you think this is necessary in vivo, though? Could the lipids present in membranes naturally act as regulators? Do specific lipid concentrations differ in different cell types, suggesting tissue-specific regulation of these mammalian Acs?

      These are things that could be discussed in the manuscript.

      The last paragraph of the discussion deals with these questions.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The extra macrochaetae (emc) gene encodes the only Inhibitor of DNA binding protein (Id protein) in Drosophila. Its best-known function is to inhibit proneural genes during development. However, the emc mutants also display nonproneural phenotypes. In this manuscript, the authors examined four non-proneural phenotypes of the emc mutants and reported that they are all caused by inappropriate non-apoptotic caspase activity. These non-neuronal phenotypes are: reduced growth of imaginal discs, increased speed of the morphogenetic furrow, and failure to specify R7 photoreceptor neurons and cone cells during eye development. Double mutants between emc and either H99 (which deletes the three pro-apoptotic genes reaper, grim, and hid) or the initiator caspase dronc suppress these mutant phenotypes of emc suggesting that the cell death pathway and caspase activity are mediating these emc phenotypes. In previous work, the authors have shown that emc mutations elevate the expression of ex which activates the SHW pathway (aka the Hippo pathway). One known function of the SHW pathway is to inhibit Yorkie which controls the transcription of the inhibitor of apoptosis, Diap1. Consistently, in emc clones the levels of Diap1 protein are reduced which might explain why caspase activity is increased in emc clones giving rise to the four non-neural phenotypes of emc mutants.

      However, this increased caspase activity is not causing ectopic apoptosis, hence the authors propose that this is nonapoptotic caspase activity. In the last part of the manuscript, the authors ruled out that Wg, Dpp, and Hh signaling are the target of caspases, but instead identified Notch signaling as the target of caspases, specifically the Notch ligand Delta. Protein levels of Delta are increased in emc clones in an H99- and dronc-dependent manner. The authors conclude that caspase-dependent non-apoptotic signaling underlies multiple roles of emc that are independent of proneural bHLH proteins.

      Strengths:

      Overall, this is an interesting manuscript and the findings are intriguing. It adds to the growing number of non-apoptotic functions of apoptotic proteins and caspases in particular. The manuscript is well written and the data are usually convincingly presented.

      Weaknesses:

      (1)  One major concern I have is the observation by the authors in Figure 3C in which protein levels of Diap1 are still reduced in emc H99 double mutant clones. If Diap1 is still reduced in these clones, shouldn't caspases still be derepressed? Given that emc H99 double mutants rescue all emc phenotypes examined, the observation that Diap1 levels are still reduced in emc H99 clones is inconsistent with the authors' model. The authors need to address this inconsistency.

      The effect of H99 emc clones on Diap1 protein levels is consistent with our conclusions.  The reviewer’s concern probably relates to previous work that shows that RHG proteins act by antagonizing DIAP1, so that Diap1 is epistatic to RHG (PMID:10481910), and that RHG proteins affect DIAP1 protein levels, and in particular that HID promotes DIAP1 ubiquitylation leading to its destruction (PMID:12021767).  First, epistasis means that in the absence of DIAP1, RHG levels do not affect cell survival.  DIAP1 protein is not absent in emc/emc eye clones, however, it is reduced.  It is not only possible but expected that RHG levels would affect survival when DIAP1 levels are only reduced.  Secondly, we did not see a difference in DIAP1 levels between H99/H99 clones and H99/+ cells within the same specimen, suggesting that rpr, grim and hid might not affect DIAP1 levels. It is possible that Hid protein only affects DIAP1 levels when overexpressed, as in the aforementioned paper (PMID:12021767), and that physiological RHG levels affect DIAP1 activity.  The H99 deficiency also eliminates Rpr and Grim, which may affect DIAP1 without ubiquitylating it. In our experiments, however, there are no cells completely wild type for the H99 region for comparison in the same specimen, so our results do not rule out the H99 deletion having a dominant effect on DIAP1 levels both inside and outside the clones.  What our data clearly showed is that emc affected DIAP1 levels independently of any potential RHG effect, and we hypothesized this was through diap1 transcription, because we showed previously that emc affects yki, a transcriptional regulator of the diap1 gene, but we have not demonstrated transcriptional regulation of diap1 directly in emc clones.  We modified the manuscript to better delineate these issues (lines 275-284).    

      (2) Are Diap1 protein levels reduced in all emc clones, including clones anterior to the furrow? This is difficult to see in Figure 3B. it is also recommended to look in emc mosaic wing discs.

      We now mention that DIAP1 levels were only reduced in  emc clones posterior to the morphogenetic furrow, not anterior to the morphogenetic furrow or in emc clones in wing imaginal discs (lines 284-5) and Figure 3 supplement 1.  

      (3) The authors speculate that Delta may be a direct target of caspase cleavage (Figure 9B), but then rule it out for a good reason. However, I assume that the increased protein levels of Delta in emc clones (Figure 7) are the results of increased transcription. In that case, shouldn't caspases control the transcriptional machinery leading to Delta expression?

      Thank you for suggesting that caspases control the transcription of Dl.  We added this possibility to the manuscript (lines 499-500).  At one time there was a Dl-LacZ transcriptional reporter, which would have made it straightforward to assess Dl transcription in emc clones, but this strain does not seem to exist now.  We have not attempted in situ hybridization to Dl transcripts in mosaic discs.  

      (4) How does caspase activity in emc clones cause reduced growth? Is this also mediated through Delta signaling?

      We do not know what is the caspase target responsible for reduced growth in wing discs.

      (5) Figure 1M: Is there a similar result with emc dronc mosaics?

      The emc dronc clones do not show as dramatic a growth advantage in a Minute background.  This is consistent with the smaller effect of emc dronc in the non-Minute background also (Figure 1N).  We mention this in the revised paper (lines 232-3).     

      Reviewer #2 (Public Review):

      Id proteins are thought to function by binding and antagonizing basic helix-loop-helix (bHLH) transcription factors but new findings demonstrate roles for emc including in tissues where no proneural (Drosophila bHLH) genes are known to function. The authors propose a new mechanism for developmental regulation that entails restraining new/novel non-apoptotic functions of apoptotic caspases.

      Specifically, the data suggest that loss of emc leads to reduced expression of diap1 and increased apoptotic caspase activity, which does not induce apoptosis but elevates Delta expression to increase N activity and cause developmental defects. Indeed, many of the phenotypes of emc mutant clones can be rescued by a chromosomal deficiency that reduces caspase activation or by mutations in the initiator caspase Dronc. A related manuscript that shows that loss of emc results in increased da, linked previously to diap1 expression, provides supporting data. There is increasing appreciation that apoptotic caspases have non-apoptotic roles. This study adds to the emerging field and should be of interest to readers.

      The data, for the most part, support the conclusions but I do have concerns about some of the data and the interpretations that should be addressed.

      Reviewer #3 (Public Review):

      The work extends earlier studies on the Drosophila Id protein EMC to uncover a potential pathway that explains several tissue-scale developmental abnormalities in emc mutants. It also describes a non-apoptotic role for caspases in cell biology.

      Strengths:

      The work adds to an emerging new set of functions for caspases beyond their canonical roles as cell death mediators. This novelty is a major strength as well as its reliance on genetic-based in vivo study. The study will be of interest to those who are curious about caspases in general.

      Weaknesses:

      The manuscript relies on imaging experiments using genetic mosaic imaginal discs. It is for the most part a qualitative analysis, showing representative samples with a small number of mutant clones in each. Although the senior author has a long track record of using experiments like this to rigorously discover regulatory mechanisms in this system, it is straightforward in 2023 to use Fiji and other image analysis tools to measure fluorescence. Such measurements could be done for all replicate clones of a given genotype as well as genetic control sampling. These could be presented in plots that would not only provide quantitative and statistical measurements, but will be more reader- friendly to those who are not fly people.

      We added quantification of anti-Delta and anti-Diap1 levels to the manuscript (Figures 3E and 7E).  We agree that this facilitates statistical confirmation of the results and may be more accessible to non-experts.  We do have concerns that these quantifications might be given too much weight.  For example, we cannot measure the background level of anti-DIAP1 labeling by labeling diap1 null mutant cells, because such cells do not survive.  Although we measure ~20% reduction in emc clones in the eye disc, and none in the wing disc, both measures could be underestimates if some of the labeling is non-specific, as is very possible.  We discuss this in the Methods (lines 166-9).

      Likewise, more details are needed to describe how clone areas were measured in Figure 1. Did they measure each clone and its twin spot, and then calculate the area ratio for each clone and its paired twin spot? This would be the correct way to analyze the data, yielding many independent measurements of the ratio. And doing so would obviate the need to log transform the data which is inexplicable unless they were averaging clones and twins within a disc and making replicates. More explanation is needed and if they indeed averaged, then they need to calculate the ratios pairwise for each clone and twin.

      We added details of clone size measurements and analysis to the methods (lines 141-6).  Although it might be useful to compare individual clones and corresponding twin spots, the only rigorous way to associate individual clones with individual twin spots, or even to determine what is one clone and what is one twin spot, is to use recombination rates low enough that significantly less than one recombination occurs per disc.  This would require many more dissections and we did not do this.  We now clarify in the manuscript that the analysis is indeed based on the ratio of total area of clones and twin spots with replicates, and that Log-transformation is to improve the normality of the ratio data suitable for parametric significance testing, not because clones and twin spots were summed from each sample.  We consulted with a statistician over this approach.  

      Reviewer #1 (Recommendations For The Authors):

      Lines 319/320: "Frizzled-3 RFP expression was not changed in in emc clones (Figure 4A)". This was actually not shown in Fig 4A (in fact this result was not shown at all). Fig 4A shows the result for emc nkd3 which the authors incorrectly assigned to Figure 4B (line 324).

      We apologize for labeling Figure 4A and 4B incorrectly.

      The title of Figure 6 is inaccurate. The title does not indicate what is shown in this figure. A more accurate title would be: Notch activity and function in emc mutant clones.

      We provided a new title for Figure 6. 

      Reviewer #2 (Recommendations For The Authors):

      There is no information on how reproducible the data is. How many discs were examined in each experiment and in how many technical or biological replicates? Can fluorescence signals be quantified within and outside the clones and presented to illustrate reproducibility and significance? This is especially needed for Fig 7, which shows key data that N ligand Delta is elevated in emc clones but dronc and H99 mutations rescue this phenotype. I can see that the Dl signal is brighter in the GFP- emc clone in Fig 7B but I can also see a brighter Dl signal in the small clone and perhaps also in the large clone in C. The difference between B and C could be simply disc-to-disc variation, which should be addressed with quantification and presentation of all data points.

      We added the number of samples to each figure legend.  We quantified the fluorescence signals for Figures 3 and 7.  Quantification shows that the difference between 7B and 7C is highly significant, not disc to disc variation.

      Fig 2B does not support the conclusion. It is supposed to show premature Sens expression and therefore abnormal morphogenetic furrow progression in emc clones. But the yellow arrow is pointing to GFP+ (wild type) cells and it is within this GFP+ region that most premature Sens expression is seen.

      We relocated the arrows in Figure 2B to point precisely to the premature differentiation.  When the morphogenetic furrow is accelerated in emc mutant, GFP – tissue, it does not stop when wild type, GFP+ tissue is encountered again, it continues at a normal pace.  Accordingly, emc+ regions that are anterior to emc- regions can also experience accelerated differentiation (please see lines 594-8).

      Fig 1 shows that while H99 deficiency restores the growth of emc clones to wild type level (Fig 1N), placing these in the Minute background made emc clones grow better than emc wild type but Minute neighbors (Fig 1M). The latter cells were nearly absent, suggesting elimination through cell competition. For the rest of the figures, some experiments are done in the Minute background (e.g., emc H99 clones in Fig 2D) while others are not in the Minute background (e.g., emc H99 clones in Fig 7D). Why the switch between backgrounds from experiment to experiment?

      Figure 2D shows emc H99 clones in a Minute background so that it can be compared with panels 2A-C, which show clones of other genotypes in a Minute background.  These clones almost take over the eye disc.  In Figure 7D, it was important to show the Dl expression pattern in a substantial wild type region, which could only be shown using the non-Minute background.  We have no indication that a Minute background changes the properties of the nonMinute clone, other than allowing its greater growth.  

      The first 3 paragraphs of the Introduction are overly detailed and read more like a review article. These could be made more concise to focus on the founding data for this manuscript, which are the published findings that emc mutations elevate ex expression (line 129) and that ex mutants show elevated diap1 expression (line 125). These do not show up until the very end of the Introduction.

      We shortened the Introduction to focus more rapidly on the topics relevant to these experiments.

      In several places, the space between the end of the sentence and the citation is missing (e.g., lines 57, 68, and 75).

      The spacing of citations was fixed.

      Line 247. 'morphogenetic furrow that found each ommatidia...' should use a word besides 'found.'

      We corrected line 247.

      Reviewer #3 (Recommendations For The Authors):

      (1) The authors show that inhibiting caspases rescues the growth defect of emc clones. However, they did not find excessive TUNEL staining in emc clones that would explain why the clones would be so small - excessive cell death. How reliable was their tunel staining in being able to detect excessive apoptosis (only negative data was shown). Could they induce excessive cell death using radiation or some other means to ensure the assay is robust? If death is not occurring in emc clones, a deficiency worth addressing is that they do not discuss or explore how the caspases then inhibit clone growth. Is it expanded cell cycle times, or smaller cells?? And that phenotype does not fit with their end model of Delta being the only moderator of emc since it is not playing a significant role in tissue growth anterior to the furrow.One would assume using the commercial antibody against activated caspase would be another readout for emc clones and this would bolster their claim that excessive caspase activation occurs in the emc cells.

      We have added Dcp1 staining in Figure 2 supplement 3 to show that TUNEL staining is reliable.

      (2) Figure 3D has really large emc clones when GMR-Diap is present. But the large clones are anterior to the furrow where Diap would not be overexpressed. Is this just an unusual sample with a coincidentally big emc M+ clone? It speaks to my concerns about the qualitative nature of the data.

      We replaced Figure 3D with an example of smaller clones.  Nowhere have we suggested that  GMR-DIAP1 affects clone size.

      (3) Figure 9B is very speculative and not appropriate since the authors have zero data to support that cleavage mechanism. It is fit for the next paper if the idea is correct. The panel should be removed.

      We did not intend Figure 9B to imply that we think Dl itself is the relevant target of non-apoptotic caspases.  Since apparently we gave that impression, we removed this to a supplemental figure.  We still think it is worth showing that Dl does not contain predicted caspase sites expected to activate signaling. 

      (4) Figure 9A could be made more clear. Their pathway represents the mutant cells in the mosaic disc. Why not also outline what you think is happening in the emc+ cells as well?

      It is difficult to make a comparable diagram for normal cells, because none of this pathway happens in normal cells.  We modified the figure legend to indicate this (lines 677-8).

      (5) The one emc ci clone they show spanning the furrow has a very non-continuous furrow advance phenotype. This is unlike the emc clones where the furrow advance is graded about the clone. And it resembles the SuH clones they show. This result and the synergistic effect on clone sizes they mention need more discussion and thought put into it. It argues ci is doing something with respect to emc action. loss of ci might not rescue size and furrow advance but actually, it makes it worse! This is interesting and might suggest an inhibitory role for ci in emc or a parallel role for ci in mediating growth and progression that is redundant with emc.

      We agree that aspects of the emc ci phenotype are not clear.  We discuss this in the revised manuscript (lines 373-5).  

      (6) Related to point 7, it is a weak argument for non-autonomy that graded furrow advance in emc clones is evidence for emc acting nonautonomously through Delta. Its weakness is combined with its lack of significance relative to the other findings. It should be deleted as should the SuH data.

      We agree that the evidence that emc affects morphogenetic furrow progression non-autonomously is not compelling and have revised the manuscript to soften this conclusion (lines 426-7).  We do not want to remove this idea, because it does in fact have significance for other findings.  Specifically, it supports the idea that the emc effect in the morphogenetic furrow is due to trans-activation by Delta, whereas  the effect on R7 and cone cell differentiation is due to autonomous cis-inhibition.  We think this is important to keep in the paper.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1) This experiment sought to determine what effect congenital/early-onset hearing loss (and associated delay in language onset) has on the degree of inter-individual variability in functional connectivity to the auditory cortex. Looking at differences in variability rather than group differences in mean connectivity itself represents an interesting addition to the existing literature. The sample of deaf individuals was large, and quite homogeneous in terms of age of hearing loss onset, which are considerable strengths of the work. The experiment appears well conducted and the results are certainly of interest. I do have some concerns with the way that the project has been conceptualized, which I share below.

      Thank you for acknowledging the strengths and novelty of our study. We have now addressed the conceptual issues raised; please see below in the specific comments.

      (2) The authors should provide careful working definitions of what exactly they think is occurring in the brain following sensory deprivation. Characterizing these changes as 'largescale neural reorganization' and 'compensatory adaptation' gives the impression that the authors believe that there is good evidence in support of significant structural changes in the pathways between brain areas - a viewpoint that is not broadly supported (see Makin and Krakauer, 2023). The authors report changes in connectivity that amount to differences in coordinated patterns of BOLD signal across voxels in the brain; accordingly, their data could just as easily (and more parsimoniously) be explained by the unmasking of connections to the auditory cortex that are present in typically hearing individuals, but which are more obvious via MR in the absence of auditory inputs.

      We thank the Reviewer for the suggestion to clarify and better support our stance regarding reorganization. We indeed believe that the adaptive changes in the auditory cortex in deafness represent real functional recruitment for non-auditory functions, even in the relatively limited large-scale anatomical connectivity changes. This is supported by animal works showing causal evidence for the involvement of deprived auditory cortices in non-auditory tasks, in a way that is not found in hearing controls (e.g., Lomber et al., 2010, Meredith et al., 2011, reviewed in Alencar et al., 2019; Lomber et al., 2020). Whether the word “reorganization” should be used is indeed debated recently (Makin and Krakauer, 2023). Beyond terminology, we do agree that the basis for the changes in recruitment seen in the brains of people with deafness or blindness is largely based on the typical anatomical connectivity at birth. We also agree that at the group level, there is poor evidence of large-scale anatomical connectivity differences in deprivation. However, we think there is more than ample evidence that the unmasking and more importantly re-weighting of non-dominant inputs gives rise to functional changes. This is supported by the relatively weaker reorganization found in late-onset deprivation as compared to early-onset deprivation. If unmasking of existing connectivity without any functional additional changes were sufficient to elicit the functional responses to atypical stimuli (e.g., non-visual in blindness and non-auditory in deafness), one would expect there to be no difference between early- and late-onset deprivation in response patterns. Therefore, we believe that the fact that these are based on functions with some innate pre-existing inputs and integration is the mechanism of reorganization, not a reason not to treat it as reorganization. Specifically, in the case of this manuscript, we report the change in variability of FC from the auditory cortex, which is greater in deafness than in typically hearing controls. This is not an increase in response per se, but rather more divergent values of FC from the auditory cortex, which are harder to explain in terms of ‘unmasking’ alone, unless one assumes unmasking is particularly variable. The mechanistic explanation for our findings is that in the absence of auditory input’s fine-tuning and pruning of the connectivity of the auditory cortex, more divergent connectivity strength remains among the deaf. Thus, auditory input not only masks non-dominant inputs but also prunes/deactivates exuberant connectivity, in a way that generates a more consistently connected auditory system. We have added a shortened version of these clarifications to the discussion (lines 351-372).

      (3) I found the argument that the deaf use a single modality to compensate for hearing loss, and that this might predict a more confined pattern of differential connectivity than had been previously observed in the blind to be poorly grounded. The authors themselves suggest throughout that hearing loss, per se, is likely to be driving the differences observed between deaf and typically-hearing individuals; accordingly, the suggestion that the modality in which intentional behavioral compensation takes place would have such a large-scale effect on observed patterns of connectivity seems out of line.

      Thank you for your critical insight regarding our rationale on modality use and its impact on connectivity patterns in the deaf compared to the blind. After some thought, we agree that the argument presented may not be sufficiently strong and could distract from the main findings of our study. Therefore, we have decided to remove this claim from our revised manuscript.

      (4) The analyses highlighting the areas observed to be differentially connected to the auditory cortex and areas observed to be more variable in their connectivity to the auditory cortex seem somewhat circular. If the authors propose hearing loss as a mechanism that drives this variability in connectivity, then it is reasonable to propose hypotheses about the directionality of these changes. One would anticipate this directionality to be common across participants and thus, these areas would emerge as the ones that are differently connected when compared to typically hearing folks.

      We are a little uncertain how to interpret this concern.  If the question was about the logic leading to our statement that variability is driven by hearing loss, then yes, we indeed were proposing hearing loss as a mechanism that drives this variability in connectivity to the auditory cortex; we regret this was unclear in the original manuscript. This logic parallels the proposal made with regard to the increased variability in FC in blindness; deprivation leads to more variable outcomes, due to the lack of developmental environmental constraints (Sen et al., 2022). Specifically, we first analyzed the differences in within-group variability between deaf and hearing individuals (Fig. 1A), followed by examining the variability ratio (Fig. 1B) in the same regions that demonstrated differences. The first analysis does not specify which group shows higher variability; therefore, the second analysis is essential to clarify the direction of the effect and identify which group, and in which regions, exhibits greater variability. We have clarified this in the revised manuscript (lines 125-127): “To determine which group has larger individual differences in these regions (Figure 1B), we computed the ratio of variability between the two groups (deaf/hearing) in the areas that showed a significant difference in variability (Figure 1A)”. Nevertheless, this comment can also be interpreted as predicting that any change in FC due to deafness would lead to greater variability. In this case, it is also important to mention that while we would expect regions with higher variability to also show group differences between the deaf and the hearing (Figure 2), our analysis demonstrates that variability is present even in regions without significant group mean differences. Similarly, many areas that show a difference between the groups in their FC do not show a change in variability (for example, the bilateral anterior insula and sensorimotor cortex). In fact, the correlation between the regions with higher FC variability (Figure 1A) and those showing FC group differences (Figure 2B) is significant but rather modest, as we now acknowledge in our revised manuscript (lines 324-328). Therefore, increased FC and increased variability of FC are not necessarily linked. 

      (5) While the authors describe collecting data on the etiology of hearing loss, hearing thresholds, device use, and rehabilitative strategies, these data do not appear in the manuscript, nor do they appear to have been included in models during data analysis. Since many of these factors might reasonably explain differences in connectivity to the auditory cortex, this seems like an omission.

      We thank the Reviewer for their comment regarding the inclusion of these variables in our manuscript. We have now included additional information in the main text and a supplementary table in the revised manuscript that elaborates further on the etiology of hearing loss and all individual information that characterizes our deaf sample. Although we initially intended to include individual factors (e.g., hearing threshold, duration of hearing aid use, and age of first use) in our models, this was not feasible for the following reasons: 1) for some subjects, we only have a level  of hearing loss rather than specific values, which we could not use quantitatively as a nuisance variable (it was typical in such testing to ascertain the threshold of loss as belonging to a deafness level, such as “profound” and not necessarily go into more elaborate testing to identify the specific threshold), and 2) this information was either not collected for the hearing participants (e.g., hearing threshold) or does not apply to them (e.g., age of hearing aid use), which made it impossible to use the complete model with all these variables. Modeling the groups separately with different variables would also be inappropriate. Last, the distribution of the values and the need for a large sample to rigorously assess a difference in variability also precluded sub-dividing the group to subgroup based on these values. 

      Therefore, we opted for a different way to control for the potential influence of these variables on FC variability in the deaf. We tested the correlation between the FC from the auditory cortex and each of these parameters in the areas that showed increased FC in deafness (Figures 1A, B), to see if it could account for the increased variability. This ROI analysis did not reveal any significant correlations (all p > .05, prior to correction for multiple comparisons; see Figures S4, S5, and S6 for scatter plots). The maximal variability explained in these ROIs by the hearing factors was r2\=0.096, whereas the FC variability (Figure 1B) was increased by at least 2 in the deaf. Therefore, it does not seem like these parameters underlie the increased variability in deafness. To test if these variables had a direct effect on FC variability in other areas in the brain, we also directly computed the correlation between FC and each factor individually. At the whole-brain level, the results indicate a significant correlation between AC-FC and hearing threshold, as well as a correlation between AC-FC and the age of hearing aid use onset, but not for the duration of hearing aid use (Figure S3). While these may be interesting on their own, and are added to the revised manuscript, the regions that show significant correlations with hearing threshold and age of hearing aid use are not the same regions that exhibit FC variability in the deaf (Figures 1A, B).

      Overall, these findings suggest that although some of these factors may influence FC, they do not appear to be the driving factors behind FC variability. Finally, in terms of rehabilitative strategies, only one deaf subject reported having received long-term oral training from teachers. This participant started this training at age 2, as now described in the participants’ section. We thank the reviewer for raising this concern and allowing us to show that our findings do not stem from simple differences ascribed to auditory experience in our participants. 

      Reviewer #2 (Public Review):

      (1) The paper has two main merits. Firstly, it documents a new and important characteristic of the re-organization of the brains of the deaf, namely its variability. The search for a welldefined set of functions for the deprived auditory cortex of the deaf has been largely unsuccessful, with several task-based approaches failing to deliver unanimous results. Now, one can understand why this was the case: most likely there isn't a fixed one well-defined set of functions supported by an identical set of areas in every subject, but rather a variety of functions supported by various regions. In addition, the paper extends the authors' previous findings from blind subjects to the deaf population. It demonstrates that the heightened variability of connectivity in the deprived brain is not exclusive to blindness, but rather a general principle that applies to other forms of deprivation. On a more general level, this paper shows how sensory input is a driver of the brain's reproducible organization.

      We thank the Reviewer for their observations regarding the merits of our study. We appreciate the recognition of the novelty in documenting the variability of brain reorganization in deaf individuals. 

      (2) The method and the statistics are sound, the figures are clear, and the paper is well-written. The sample size is impressively large for this kind of study.

      We thank the Reviewer for their positive feedback on the methodology, statistical analysis, clarity of figures, and the overall composition of our paper. We are also grateful for the acknowledgment of our large sample size, which we believe significantly strengthens the statistical power and the generalizability of our findings.

      (3) The main weakness of the paper is not a weakness, but rather a suggestion on how to provide a stronger basis for the authors' claims and conclusions. I believe this paper could be strengthened by including in the analysis at least one of the already published deaf/hearing resting-state fMRI datasets (e.g. Andin and Holmer, Bonna et al., Ding et al.) to see if the effects hold across different deaf populations. The addition of a second dataset could strengthen the evidence and convincingly resolve the issue of whether delayed sign language acquisition causes an increase in individual differences in functional connectivity to/from Broca's area. Currently, the authors may not have enough statistical power to support their findings.

      We thank the Reviewer for their constructive suggestion to reinforce the robustness of our findings. While we acknowledge the potential value of incorporating additional datasets to strengthen our conclusions, the datasets mentioned (Andin and Holmer, Bonna et al., Ding et al.) are not publicly available, which limits our ability to include them in our analysis. Additionally, datasets that contain comparable groups of delayed and native deaf signers are exceptionally rare, further complicating the possibility of their inclusion. Furthermore, to discern individual differences within these groups effectively, a substantially larger sample size is necessary. As such, we were unfortunately unable to perform this additional analysis. This is a challenge we acknowledge in the revised manuscript (lines 442-445), especially when the group is divided into subcategories based on the level of language acquisition, which indeed reduces our statistical power. We have however, now integrated the individual task accuracy and reaction time parameters as nuisance variables in calculating the variability analyses; all the results are fully replicated when accounting for task difficulty. We also report that there was no group difference in activation for this task between the groups which could affect our findings. 

      We would like to note that while we would like to replicate these findings in an additional cohort using resting-state, we do not anticipate the state in which the participants are scanned to greatly affect the findings. FC patterns of hearing individuals have been shown to be primarily shaped by common system and stable individual features, and not by time, state, or task (Finn et al., 2015; Gratton et al., 2018; Tavor et al., 2016). While the task may impact FC variability, we have recently shown that individual FC patterns are stable across time and state even in the context of plasticity due to visual deprivation (Amaral et al., 2024). Therefore, we expect that in deafness as well there should not be meaningful differences between resting-state and task FC networks, in terms of FC individual differences. That said, we are exploring collaborations and other avenues to access comparable datasets that might enable a more powerful analysis in future work. This feedback is very important for guiding our ongoing efforts to verify and extend our conclusions.

      (4) Secondly, the authors could more explicitly discuss the broad implications of what their results mean for our understanding of how the architecture of the brain is determined by the genetic blueprint vs. how it is determined by learning (page 9). There is currently a wave of strong evidence favoring a more "nativist" view of brain architecture, for example, face- and object-sensitive regions seem to be in place practically from birth (see e.g. Kosakowski et al., Current Biology, 2022). The current results show what is the role played by experience.

      We thank the Reviewer for highlighting the need to elaborate on the broader implications of our findings in relation to the ongoing debate of nature vs. nurture. We agree that this discussion is crucial and have expanded our manuscript to address this point more explicitly. We now incorporate a more detailed discussion of how our results contribute to understanding the significant role of experience in shaping individual neural connectivity patterns, particularly in sensory-deprived populations (lines 360-372).

      Reviewer #3 (Public Review):

      Summary:

      (1) This study focuses on changes in brain organization associated with congenital deafness. The authors investigate differences in functional connectivity (FC) and differences in the variability of FC. By comparing congenitally deaf individuals to individuals with normal hearing, and by further separating congenitally deaf individuals into groups of early and late signers, the authors can distinguish between changes in FC due to auditory deprivation and changes in FC due to late language acquisition. They find larger FC variability in deaf than normal-hearing individuals in temporal, frontal, parietal, and midline brain structures, and that FC variability is largely driven by auditory deprivation. They suggest that the regions that show a greater FC difference between groups also show greater FC variability.

      Strengths:

      -  The manuscript is well written.

      -  The methods are clearly described and appropriate.

      -  Including the three different groups enables the critical contrasts distinguishing between different causes of FC variability changes.

      -  The results are interesting and novel.

      We thank the Reviewer for their positive and detailed feedback. Their acknowledgment of the clarity of our methods and the novelty of our results is greatly appreciated.

      Weaknesses:

      (2) Analyses were conducted for task-based data rather than resting-state data. It was unclear whether groups differed in task performance. If congenitally deaf individuals found the task more difficult this could lead to changes in FC.

      We thank the Reviewer for their observation regarding possible task performance differences between deaf and hearing participants and their potential effect on the results. Indeed, there was a difference in task accuracy between these groups. To account for this variation and ensure that our findings on functional connectivity were not confounded by task performance, we now included individual task accuracy and reaction time as nuisance variables in our analyses. This approach allowed us to control for any performance differences. The results now presented in the revised manuscript account for the inclusion of these two nuisance variables (accuracy and reaction time) and completely align with our original conclusions, highlighting increased variability in deafness, which is found in both the entire deaf group at large, as well as when equating language experience and comparing the hearing and native signers. The correlation between variability and group differences also remains significant, but its significance is slightly decreased, a moderate effect we acknowledge in the revised manuscript (see comment #4). The differences between the delayed signers and native signers are also retained (Figure 3), now aligning better with language-sensitive regions, as previously predicted. The inclusion of the task difficulty predictors also introduced an additional finding in this analysis, a significant cluster in the right aIFG. Therefore, the inclusion of these predictors reaffirms the robustness of the conclusions drawn about FC variability in the deaf population.

      We would like to note that while we would like to replicate these findings in an additional cohort using resting-state if we had access to such data, we do not anticipate the state in which the participants are scanned to greatly affect the findings. FC patterns of hearing individuals have been shown to be primarily shaped by common system and stable individual features, and not by time, state, or task (Finn et al., 2015; Gratton et al., 2018; Tavor et al., 2016). While the task may impact FC variability, we have recently shown that individual FC patterns are stable across time and state even in the context of plasticity due to visual deprivation (Amaral et al., 2024). Therefore, we expect that in deafness as well there should not be meaningful differences between resting-state and task FC networks, in terms of FC individual differences. We have also addressed this point in our manuscript (lines 442-451).

      (3) No differences in overall activation between groups were reported. Activation differences between groups could lead to differences in FC. For example, lower activation may be associated with more noise in the data, which could translate to reduced FC.

      We thank the reviewer for noting the potential implications of overall activation differences on FC. In our analysis of the activation for words, we found no significant clusters showing a group difference between the deaf and hearing participants (p < .05, cluster-corrected for multiple comparisons) - we also added this information to the revised manuscript (lines 542-544). This suggests that the differences in FC observed are not confounded by variations in overall brain activation between the groups under these conditions.

      (4) Figure 2B shows higher FC for congenitally deaf individuals than normal-hearing individuals in the insula, supplementary motor area, and cingulate. These regions are all associated with task effort. If congenitally deaf individuals found the task harder (lower performance), then activation in these regions could be higher, in turn, leading to FC. A study using resting-state data could possibly have provided a clearer picture.

      We thank the Reviewer for pointing out the potential impact of task difficulty on FC differences observed in our study. As addressed in our response to comment #2, task accuracy and reaction times were incorporated as nuisance variables in our analysis. Further, these areas showed no difference in activation between the groups (see response to comment #3 above). Notably, the referred regions still showed higher FC in congenitally deaf individuals even when controlling for these performance differences. Additionally, these findings are consistent with results from studies using resting-state data in deaf populations, further validating our observations. Specifically, using resting-state data, Andin & Holmer (2022), have shown higher FC for deaf (compared to hearing individuals) from auditory regions to the cingulate cortex, insular cortex, cuneus and precuneus, supramarginal gyrus, supplementary motor area, and cerebellum. Moreover, Ding et al. (2016) have shown higher FC for the deaf between the STG and anterior insula and dorsal anterior cingulated cortex. This suggests that the observed FC differences are likely reflective of genuine neuroplastic adaptations rather than mere artifacts of task difficulty. Although we wish we could augment our study with resting-state data analyzed similarly, we could not at present acquire or access such a dataset. We acknowledge this limitation of our study (lines 442-451) in the revised manuscript and intend to confirm that similar results will be found with resting state data in the future.

      (5) The correlation between the FC map and the FC variability map is 0.3. While significant using permutation testing, the correlation is low, and it is not clear how great the overlap is.

      We acknowledge that the correlation coefficient of 0.3, while statistically significant, indicates a moderate overlap. It's also worth noting that, using our new models that include task performance as a nuisance variable, this value has decreased somewhat, to 0.24 (which is still highly significant). It is important to note that the visual overlap between the maps is not a good estimate of the correlation, which was performed on the unthresholded maps, to estimate the link not only between the most significant peaks of the effects, but across the whole brain patterns. This correlation is meant to suggest a trend rather than a strong link, but especially due to its consistency with the findings in blindness, we believe this observation merits further investigation and discussion. As such, we kept it in the revised manuscript while moderating our claims about its strength.

      Reviewer #1 (Recommendations For The Authors):

      (1) Page 4: Does auditory cortex FC variability..." FC is not yet defined.

      Corrected, thanks.

      (2) Page 4: "It showed lower variability..." What showed this?

      Clarified, thanks.

      (3) Page 11: "highlining the importance" should read "highlighting the importance".

      Corrected, thanks.

      (4) Page 11: Do you really mean to suggest functional connectivity does not vary as a function of task? This would not seem well supported.

      We do not suggest that FC doesn’t vary as a function of task, and have revised this section (lines 447-451). 

      (5) Page 12: "there should not to be" should read "there should not be".

      Corrected, thanks.

      (6) Page 12: "and their majority" should read "and the majority".

      Corrected, thanks.

      Reviewer #2 (Recommendations For The Authors):

      Major

      (1) Although this is a lot of work, I nonetheless have another suggestion on how to test if your results are strong and robust. Perhaps you could analyze your data using an ROI/graph-theory approach. I am not an expert in graph theory analysis, but for sure there is a simple and elegant statistic that captures the variability of edge strength variability within a population. This approach could not only validate your results with an independent analysis and give the audience more confidence in their robustness, but it could also provide an estimate of the size of the effect size you found. That is, it could express in hard numbers how much more variable the connections from auditory cortex ROI's are, in comparison to the rest of the brain in the deaf population, relative to the hearing population.

      We thank the Reviewer for suggesting the use of graph theory as a method to further validate our findings. While we see the potential value in this approach, we believe it may be beyond the scope of the current paper, and merits a full exploration of its own, which we hope to do in the future.  However, we understand the importance of showing the uniqueness of the connectivity of the auditory cortex ROI as compared to the rest of the brain. So, in order to bolster our results, we conducted an additional analysis using control regions of interest (ROIs). Specifically, we calculated the inter-individual variability using all ROIs from the CONN Atlas (except auditory and language regions) as the control seed regions for the FC. We showed that the variability of connectivity from the auditory cortex is uniquely more increased on deafness, as compared to these control ROIs (Figure S1). This additional analysis supports the specificity of our findings to the auditory cortex in the deaf population. We aim to integrate more analytic approaches, including graph theory methods, in our future work.

      Minor

      (1) Some citations display the initial of the author in addition to the last name, unless there is something I don't know about the citation system, the initial shouldn't be there.

      This is due to the citation style we're using (APA 7th edition, as suggested by eLife), which requires including the first author's initials in all in-text citations when citing multiple authors with the same last name.  

      Reviewer #3 (Recommendations For The Authors):

      (1) I recommend that the authors provide behavioral data and results for overall neural activation.

      Thanks. We have added these to the revised manuscript. Specifically, we report that there was no difference in the activation for words (p < .05, cluster-corrected for multiple comparisons) between the deaf and hearing participants. Further, we report the behavioral averages for accuracy and reaction time for each group, and have now used these individual values explicitly as nuisance variables in the revised analyses.

      (2) For the correlation between FC and FC variability, it seemed a bit odd that the permuted data were treated additionally (through Gaussian smoothing). I understand the general logic (i.e., to reintroduce smoothness), but this approach provides more smoothing to the permutation than the original data. It is hard to know what this does to the statistical distribution. I recommend using a different approach or at least also reporting the p-value for non-smoothed permutation data.

      In response to this suggestion and to ensure transparency in our results, we have now included also the p-value for the non-smoothed permutation data in our revised manuscript (still highly significant; p < .0001). Thanks for this proposal.

      (3) For the map comparison, a plot with different colors, showing the FC map, the FC variability map, and one map for the overlap on the same brain may be helpful.

      We thank the Reviewer for their suggestion to visualize the overlap between the maps. However, we performed the correlation analysis using the unthresholded maps, as mentioned in the methods section of our manuscript, specifically to estimate the link not only between the most significant peaks of the effects, but across the whole brain patterns. This is why the maps displayed in the figures, which are thresholded for significance, may not appear to match perfectly, and may actually obscure the correlation across the brain. This methodological detail is crucial for interpreting the relationship and overlap between these maps accurately but also explains why the visualization of the overlap is, unfortunately, not very informative.

    1. Author response:

      Reviewer #1 (Public Review):

      Summary

      The authors asked if parabrachial CGRP neurons were only necessary for a threat alarm to promote freezing or were necessary for a threat alarm to promote a wider range of defensive behaviors, most prominently flight.

      Major Strengths of Methods and Results

      The authors performed careful single-unit recording and applied rigorous methodologies to optogenetically tag CGRP neurons within the PBN. Careful analyses show that single-units and the wider CGRP neuron population increases firing to a range of unconditioned stimuli. The optogenetic stimulation of experiment 2 was comparatively simpler but achieved its aim of determining the consequence of activating CGRP neurons in the absence of other stimuli. Experiment 3 used a very clever behavioral approach to reveal a setting in which both cue-evoked freezing and flight could be observed. This was done by having the unconditioned stimulus be a "robot" traveling along a circular path at a given speed. Subsequent cue presentation elicited mild flight in controls and optogenetic activation of CGRP neurons significantly boosted this flight response. This demonstrated for the first time that CGRP neuron activation does more than promote freezing. The authors conclude by demonstrating that bidirectional modulation of CGRP neuron activity bidirectionally aTects freezing in a traditional fear conditioning setting and aTects both freezing and flight in a setting in which the robot served as the unconditioned stimulus. Altogether, this is a very strong set of experiments that greatly expand the role of parabrachial CGRP neurons in threat alarm.

      We would like to sincerely thank the reviewer for the positive and insightful comments on our work. We greatly appreciate the acknowledgment of our new behavioral approach, which allowed us to observe a dynamic spectrum of defensive behaviors in animals. Our use of the robot-based paradigm, which enables the observation of both freezing and flight, has been instrumental in expanding our understanding of how parabrachial CGRP neurons modulate diverse threat responses. We are pleased that the reviewer found this methodological innovation to be a valuable contribution to the field.

      Weaknesses

      In all of their conditioning studies the authors did not include a control cue. For example, a sound presented the same number of times but unrelated to US (shock or robot) presentation. This does not detract from their behavioral findings. However, it means the authors do not know if the observed behavior is a consequence of pairing. Or is a behavior that would be observed to any cue played in the setting? This is particularly important for the experiments using the robot US.

      We appreciate the reviewer’s insightful comment regarding the absence of a control cue in our conditioning studies. First, we would like to mention that, in response to the Reviewer 3, we have updated how we present our flight data by following methods from previously published papers (Fadok et al., 2017; Borkar et al., 2024). Instead of counting flight responses, we calculated flight scores as the ratio of the velocity during the CS to the average velocity in the 7 s before the CS on the conditioning day (or 10 s for the retention test). This method better captures both the speed and duration of fleeing during CS. With this updated approach, we observed a significant difference in flight scores between the ChR2 and control groups, even during conditioning, which may partly address the reviewer’s concern about whether the observed behavior is a consequence of CS-US pairing.

      However, we agree with the reviewer that including an unpaired group would provide stronger evidence, and in response, we conducted an additional experiment with an unpaired group. In this unpaired group, the CS was presented the same number of times, but the robot US was delivered randomly within the inter-trial interval. The unpaired group did not exhibit any notable conditioned freezing or flight responses. We believe that this additional experiment, now reflected in Figure 3, further strengthens our conclusion that the fleeing behavior is driven by associative learning between the CS and US, rather than a reaction to the cue itself.

      The authors make claims about the contribution of CGRP neurons to freezing and fleeing behavior, however, all of the optogenetic manipulations are centered on the US presentation period. Presently, the experiments show a role for these neurons in processing aversive outcomes but show little role for these neurons in cue responding or behavior organizing. Claims of contributions to behavior should be substantiated by manipulations targeting the cue period.

      We appreciate the reviewer’s constructive comments. We would like to emphasize that our primary objective in this study was to investigate whether activating parabrachial CGRP neurons—thereby increasing the general alarm signal—would elicit different defensive behaviors beyond passive freezing. To this end, we focused on manipulating CGRP neurons during the US period rather than the cue period.

      Previous studies have shown that CGRP neurons relay US signals, and direct activation of CGRP neurons has been used as the US to successfully induce conditioned freezing responses to the CS during retention tests (Han et al., 2015; Bowen et al., 2020). In our experiments, we also observed that CGRP neurons responded exclusively to the US during conditioning with the robot (Figure 1F), and stimulating these neurons in the absence of any external stimuli elicited strong freezing responses (Figure 2B). These findings, collectively, suggest that activation of CGRP neurons during the CS period would predominantly result in freezing behavior.

      Therefore, we manipulated the activity of CGRP neurons during the US period to examine whether adjusting the perceived threat level through these neurons would result in diverse dfensive behaivors when paired with chasing robot. We observed that enhancing CGRP neuron activity while animals were chased by the robot at 70 cm/s made them react as if chased at a higher speed (90 cm/s), leading to increased fleeing behaviors. While this may not fully address the role of these neurons in cue responding or behavior organizing, we found that silencing CGRP neurons with tetanus toxin (TetTox) abolished fleeing behavior even when animals were chased at high speeds (90 cm/s), which usually elicits fleeing without CGRP manipulation (Figure 5). This supports the conclusion that CGRP neurons are necessary for processing fleeing responses.

      In summary, manipulating CGRP neurons during the US period was essential for effectively investigating their role in adjusting defensive responses, thereby expanding our understanding of their function within the general alarm system. We hope this clarifies our experimental design and addresses the concern the reviewer has raised.

      Appraisal

      The authors achieved their aims and have revealed a much greater role for parabrachial CGRP neurons in threat alarm.

      Discussion

      Understanding neural circuits for threat requires us (as a field) to examine diverse threat settings and behavioral outcomes. A commendable and rigorous aspect of this manuscript was the authors decision to use a new behavioral paradigm and measure multiple behavioral outcomes. Indeed, this manuscript would not have been nearly as impactful had they not done that. This novel behavior was combined with excellent recording and optogenetic manipulations - a standard the field should aspire to. Studies like this are the only way that we as a field will map complete neural circuits for threat.

      We sincerely thank the reviewer for their positive and encouraging comments. We are grateful for the acknowledgment of our efforts in employing a novel behavioral paradigm to study diverse defensive behaviors. We are pleased that our work contributes to advancing the understanding of neural circuits involved in threat responses.

      Reviewer #3 (Public Review):

      Strengths:

      The study used optogenetics together with in vivo electrophysiology to monitor CGRP neuron activity in response to various aversive stimuli including robot chasing to determine whether they encode noxious stimuli diTerentially. The study used an interesting conditioning paradigm to investigate the role of CGRP neurons in the PBN in both freezing and flight behaviors.

      Weakness:

      The major weakness of this study is that the chasing robot threat conditioning model elicits weak unconditioned and conditioned flight responses, making it diTicult to interpret the robustness of the findings. Furthermore, the conclusion that the CGRP neurons are capable of inducing flight is not substantiated by the data. No manipulations are made to influence the flight behavior of the mouse. Instead, the manipulations are designed to alter the intensity of the unconditioned stimulus.

      We sincerely thank the reviewer for the thoughtful and constructive comments on our manuscript. In response to this feedback, we revisited our analysis of the flight responses and compared our methods with those used in previous literatures examining similar behaviors.

      We reviewed a study investigating sex differences in defensive behavior using rats (Gruene et al., 2015). In that study, the CS was presented for 30 s, and active defensive behvaior – referred to as ‘darting’ – was quantified as ‘Dart rate (dart/min)’. This was calculated by doubling the number of darts counted during the 30-s CS presentation to extrapolate to a per-min rate. The highest average dart rate observed was approximatley 1.5. Another relevant studies using mice quantified active defensive behavior by calculating a flight score—the ratio of the average speed during each CS to the average speed during the 10 s pre-CS period (Fadok et al., 2017; Borkar et al., 2024). This method captures multiple aspects of flight behavior during CS presentation, including overall velocity, number of bouts, and duration of fleeing. Moreover, it accounts for each animal’s individual velocity prior to the CS, reflecting how fast the animals were fleeing relative to their baseline activity.

      In our original analysis, we quantified flight responses by counting rapid fleeing movements, defined as movements exceeding 8 cm/s. This approach was consistent with our previous study using the same robot paradigm to observe unique patterns of defensive behavior related to sex differences (Pyeon et al., 2023). Based on our earlier findings, where this approach effectively identified significant differences in defensive behaviors, we believed that this method was appropriate for capturing conditioned flight behavior within our specific experimental context. However, prompted by the reviewer's insightful comments, we recognized that our initial method might not fully capture the robustness of the flight responses. Therefore, we re-analyzed our data using the flight score method described by Fadok and colleagues, which provides a more sensitive measure of fleeing during the CS.

      Re-analyzing our data revealed a more robust flight response than previously reported, demonstrating that additional CGRP neuron stimulation promoted flight behavior in animals during conditioning, addressing the concern that the data did not substantiate the role of CGRP neurons in inducing flight. In addition, we would like to emphasize the findings from our final experiment, where silencing CGRP neurons, even under high-threat conditions (90 cm/s), prevented animals from exhibiting flight responses. This demonstrates that CGRP neurons are necessary in influencing flight responses.

      We have updated all flight data in the manuscript and revised the relevant figures and text accordingly. We appreciate the opportunity to enhance our analysis. The reviewer's insightful observation led us to adopt a better method for quantifying flight behavior, which substantiates our conclusion about the role of CGRP neurons in modulating defensive responses.

      Borkar, C.D., Stelly, C.E., Fu, X., Dorofeikova, M., Le, Q.-S.E., Vutukuri, R., et al. (2024). Top- down control of flight by a non-canonical cortico-amygdala pathway. Nature 625(7996), 743-749.

      Bowen, A.J., Chen, J.Y., Huang, Y.W., Baertsch, N.A., Park, S., and Palmiter, R.D. (2020). Dissociable control of unconditioned responses and associative fear learning by parabrachial CGRP neurons. Elife 9, e59799.

      Fadok, J.P., Krabbe, S., Markovic, M., Courtin, J., Xu, C., Massi, L., et al. (2017). A competitive inhibitory circuit for selection of active and passive fear responses. Nature 542(7639), 96-100.

      Gruene, T.M., Flick, K., Stefano, A., Shea, S.D., and Shansky, R.M. (2015). Sexually divergent expression of active and passive conditioned fear responses in rats. Elife 4, e11352.

      Han, S., Soleiman, M.T., Soden, M.E., Zweifel, L.S., and Palmiter, R.D. (2015). Elucidating an a_ective pain circuit that creates a threat memory. Cell 162(2), 363-374.

      Pyeon, G.H., Lee, J., Jo, Y.S., and Choi, J.-S. (2023). Conditioned flight response in female rats to naturalistic threat is estrous-cycle dependent. Scientific Reports 13(1), 20988.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      This manuscript from So et al. describes what is suggested to be an improved protocol for single-nuclei RNA sequencing (snRNA-seq) of adipose tissue. The authors provide evidence that modifications to the existing protocols result in better RNA quality and nuclei integrity than previously observed, with ultimately greater coverage of the transcriptome upon sequencing. Using the modified protocol, the authors compare the cellular landscape of murine inguinal and perigonadal white adipose tissue (WAT) depots harvested from animals fed a standard chow diet (lean mice) or those fed a high-fat diet (mice with obesity). 

      Strengths: 

      Overall, the manuscript is well-written, and the data are clearly presented. The strengths of the manuscript rest in the description of an improved protocol for snRNA-seq analysis. This should be valuable for the growing number of investigators in the field of adipose tissue biology that are utilizing snRNA-seq technology, as well as those other fields attempting similar experiments with tissues possessing high levels of RNAse activity. 

      Moreover, the study makes some notable observations that provide the foundation for future investigation. One observation is the correlation between nuclei size and cell size, allowing for the transcriptomes of relatively hypertrophic adipocytes in perigonadal WAT to be examined. Another notable observation is the identification of an adipocyte subcluster (Ad6) that appears "stressed" or dysfunctional and likely localizes to crown-like inflammatory structures where proinflammatory immune cells reside. 

      Weaknesses:  

      Analogous studies have been reported in the literature, including a notable study from Savari et al. (Cell Metabolism). This somewhat diminishes the novelty of some of the biological findings presented here. Moreover, a direct comparison of the transcriptomic data derived from the new vs. existing protocols (i.e. fully executed side by side) was not presented. As such, the true benefit of the protocol modifications cannot be fully understood. 

      We agree with the reviewer’s comment on the limitations of our study. Following the reviewer's suggestion, we performed a new analysis by integrating our data with those from the study by Emont et al. Please refer to the Recommendation for authors section below for further details.

      Reviewer #2 (Public Review):

      Summary: 

      In the present manuscript So et al utilize single-nucleus RNA sequencing to characterize cell populations in lean and obese adipose tissues. 

      Strengths: 

      The authors utilize a modified nuclear isolation protocol incorporating VRC that results in higherquality sequencing reads compared with previous studies. 

      Weaknesses:  

      The use of VRC to enhance snRNA-seq has been previously published in other tissues. The snRNA-seq snRNA-seq data sets presented in this manuscript, when compared with numerous previously published single-cell analyses of adipose tissue, do not represent a significant scientific advance. 

      Figure 1-3: The snRNA-seq data obtained by the authors using their enhanced protocol does not represent a significant improvement in cell profiling for the majority of the highlighted cell types including APCs, macrophages, and lymphocytes. These cell populations have been extensively characterized by cytoplasmic scRNA-seq which can achieve sufficient sequencing depth, and thus this study does not contribute meaningful additional insight into these cell types. The authors note an increase in the number of rare endothelial cell types recovered, however this is not translated into any kind of functional analysis of these populations. 

      We acknowledge the reviewer's comments on the limitations of our study, particularly the lack of extension of our snRNA-seq data into functional studies of new biological processes. However, this manuscript has been submitted as a Tools and Resources article. As an article of this type, we provide detailed information on our snRNA-seq methods and present a valuable resource of high-quality mouse adipose tissue snRNA-seq data. In addition, we demonstrate that our improved method offers novel biological insights, including the identification of subpopulations of adipocytes categorized by size and functionality. We believe this study offers powerful tools and significant value to the research community.

      Figure 4: The authors did not provide any evidence that the relative fluorescent brightness of GFP and mCherry is a direct measure of the nuclear size, and the nuclear size is only a moderate correlation with the cell size. Thus sorting the nuclei based on GFP/mCherry brightness is not a great proxy for adipocyte diameter. Furthermore, no meaningful insights are provided about the functional significance of the reported transcriptional differences between small and large adipocyte nuclei. 

      To address the reviewer's point, we analyzed the Pearson correlation coefficient for nucleus size vs. adipocyte size and found R = 0.85, indicating a strong positive correlation. In addition, we performed a new experiment to determine the correlation between nuclear GFP intensity and adipocyte nucleus size, finding a strong correlation with R = 0.91. These results suggest that nuclear GFP intensity can be a strong proxy for adipocyte size. Furthermore, we performed gene ontology analysis on genes differentially regulated between large and small adipocyte nuclei. We found that large adipocytes promote processes involved in insulin response, vascularization and DNA repair, while inhibiting processes related to cell migration, metabolism and the cytoskeleton. We have added these new data as Figure 4E, S6E, S6G, and S6H (page 11)

      Figure 5-6: The Ad6 population is highly transcriptionally analogous to the mAd3 population from Emont et al, and is thus not a novel finding. Furthermore, in the present data set, the authors conclude that Ad6 are likely stressed/dying hypertrophic adipocytes with a global loss of gene expression, which is a well-documented finding in eWAT > iWAT, for which the snRNA-seq reported in the present manuscript does not provide any novel scientific insight. 

      As the reviewer pointed out, a new analysis integrating our data with the previous study found that Ad3 from our study is comparable to mAd3 from Emont et al. in gene expression profiles. However, significant discrepancies in population size and changes in response to obesity were observed, likely due to differences in technical robustness. The dysfunctional cellular state of this population, with compromised RNA content, may have hindered accurate capture in the previous study, while our protocol enabled precise detection. This underscores the importance of our improved snRNA-seq protocol for accurately understanding adipocyte population dynamics. We have revised the manuscript to include new data in Figure S7 (page 14).

      Reviewer #3 (Public Review): 

      Summary:  

      The authors aimed to improve single-nucleus RNA sequencing (snRNA-seq) to address current limitations and challenges with nuclei and RNA isolation quality. They successfully developed a protocol that enhances RNA preservation and yields high-quality snRNA-seq data from multiple tissues, including a challenging model of adipose tissue. They then applied this method to eWAT and iWAT from mice fed either a normal or high-fat diet, exploring depot-specific cellular dynamics and gene expression changes during obesity. Their analysis included subclustering of SVF cells and revealed that obesity promotes a transition in APCs from an early to a committed state and induces a pro-inflammatory phenotype in immune cells, particularly in eWAT. In addition to SVF cells, they discovered six adipocyte subpopulations characterized by a gradient of unique gene expression signatures. Interestingly, a novel subpopulation, termed Ad6, comprised stressed and dying adipocytes with reduced transcriptional activity, primarily found in eWAT of mice on a high-fat diet. Overall, the methodology is sound, the writing is clear, and the conclusions drawn are supported by the data presented. Further research based on these findings could pave the way for potential novel interventions in obesity and metabolic disorders, or for similar studies in other tissues or conditions. 

      Strengths:  

      • The authors developed a robust snRNA-seq technique that preserves the integrity of the nucleus and RNA across various tissue types, overcoming the challenges of existing methods. 

      • They identified adipocyte subpopulations that follow adaptive or pathological trajectories during obesity. 

      • The study reveals depot-specific differences in adipose tissues, which could have implications for targeted therapies. 

      Weaknesses: 

      • The adipose tissues were collected after 10 weeks of high-fat diet treatment, lacking the intermediate time points for identifying early markers or cell populations during the transition from healthy to pathological adipose tissue. 

      We agree with the reviewers regarding the limitations of our study. To address the reviewer’s comment, we revised the manuscript to include this in the Discussion section (page 17).  

      • The expansion of the Ad6 subpopulation in obese iWAT and gWAT is interesting. The author claims that Ad6 exhibited a substantial increase in eWAT and a moderate rise in iWAT (Figure 4C). However, this adipocyte subpopulation remains the most altered in iWAT upon obesity. Could the authors elaborate on why there is a scarcity of adipocytes with ROS reporter and B2M in obese iWAT?

      We observed an increase in the levels of H2DCFA reporter and B2M protein fluorescence in adipocytes from iWAT of HFD-fed mice, although this increase was much less compared to eWAT, as shown in Figure 6B (left panel). These increases in iWAT were not sufficient for most cells to exceed the cutoff values used to determine H2DCFA and B2M positivity in adipocytes during quantitative analysis. We have revised the manuscript to clarify these results (page 13).

      • While the study provides extensive data on mouse models, the potential translation of these findings to human obesity remains uncertain. 

      To address the reviewer’s point, we expanded our discussion on the differences in adipocyte heterogeneity between mice and humans. We attempted to identify human adipocyte subclusters that resemble the metabolically unhealthy Ad6 adipocytes found in mice in our study; however, we did not find any similar adipocyte types. It has been reported that human adipocyte heterogeneity does not correspond well to that of mouse adipocytes (Emont et al. 2022). In addition, the heterogeneity of human adipocyte populations is not reproducible between different studies (Massier et al. 2023). Interestingly, this inconsistency is unique to adipocytes, as other cell types in adipose tissues display reproducible sub cell types across species and studies (Massier et al. 2023). Our findings indicate that adipocytes may exhibit a unique pathological cellular state with significantly reduced RNA content, which may contribute to the poor consistency in adipocyte heterogeneity in prior studies with suboptimal RNA quality. Therefore, using a robust method to effectively preserve RNA quality may be critical for accurately characterizing adipocyte populations, especially in disease states. It may be important to test in future studies whether our snRNA-seq protocol can identify consistent heterogeneity in adipocyte populations across different species, studies, and individual human subjects. We have revised the manuscript to include this new discussion (page 17).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Suggested points to address: 

      (1) The authors suggest that their improved protocol for maintaining RNA/nucleus integrity results in a more comprehensive analysis of adipose tissue heterogeneity. The authors compare the quality of their snRNA-seq data to those generated in prior studies (e.g., Savari et al.). What is not clear is whether additional heterogeneity/clusters can be observed due directly to the protocol modifications. A direct head-to-head comparison of the protocols executed in parallel would of course be ideal; however, integrating their new dataset with the corresponding data from Savari et al. could help address this question and help readers understand the benefits of this new protocol vs. existing protocols. 

      The data from Savari et al. are of significantly lower quality, likely because they were generated using earlier versions of the 10X Genomics system, and this study lacks iWAT data. To address the reviewer’s point, we instead integrated our data with those from the other study by Emont et al. (2022), which used comparable tissue types and experimental systems. The integrated analysis confirmed the improved representation of all cell types present in adipose tissues in our study, with higher quality metrics such as increased Unique Molecular Identifiers (UMIs) and the number of genes per nucleus. These results indicate that our protocol offers significant advantages in generating a more accurate representation of each cell type and their gene expression profiles. New data are included in Figure S2 (page 7).

      (2) The exact frequency of the Ad6 population in eWAT of mice maintained on HFD is a little unclear. From the snRNA-seq data, it appears that roughly 47% of the adipocytes are in this "stressed state." In Figure 6, it appears that greater than 75% of the adipocytes express B2M (Ad6 marker) and greater than 75% of adipocytes are suggested to be devoid of measurable PPARg expression. The latter seems quite high as PPARg expression is essential to maintain the adipocyte phenotype. Is there evidence of de-differentiation amongst them (i.e. acquisition of progenitor cell markers)? Presenting separate UMAPs for the chow vs. HFD state may help visualize the frequency of each adipocyte population in the two states. Inclusion of the stromal/progenitor cells in the visualization may help understand if cells are de-differentiating in obesity as previously postulated by the authors. Related to Point # 1 above, is this population observed in prior studies and at a similar frequency?

      To address the reviewer’s point, we analyzed the expression of adipocyte progenitor cell (APC) markers, such as Pdgfra, in the Ad6 population. We did not detect significant expression of APC markers, suggesting that Ad6 does not represent dedifferentiating adipocytes. Instead, they are likely stressed and dying cells characterized by an aberrant state of transcription with a global decline.

      When integrating our data with the datasets by Emont et al., we observed an adipocyte population in the previous study, mAd3, comparable to Ad6 in our study, with similar marker gene expression and lower transcript abundance. However, the population size of mAd3 was much smaller than that of Ad6 in our data and did not show consistent population changes during obesity. This discrepancy may be due to different technical robustness; the dysfunctional cellular state of this population, with its severely compromised RNA contents, may have made it difficult to accurately capture using standard protocols in the previous study, while our protocol enabled robust and precise detection. We added new data in Figure S6I and S7 (page 14) and revised the Discussion (page 17).

      Additional points  

      (1) The authors should be cautious in describing subpopulations as "increasing" or "decreasing" in obesity as the data are presented as proportions of a parent population. A given cell population may be "relatively increased." 

      To address the reviewer's point, we revised the manuscript to clarify the "relative" changes in cell populations during obesity in the relevant sections (pages 8, 9, 10, 11, and 15).

      (2) The authors should also be cautious in ascribing "function" to adipocyte populations based solely on their expression signatures. Statements such as those in the abstract, "...providing novel insights into the mechanisms orchestrating adipose tissue remodeling during obesity..." should probably be toned down as no such mechanism is truly demonstrated. 

      To address the reviewer's point, we revised the manuscript by removing or replacing the indicated terms or phrases with more suitable wording in the appropriate sections (page 2, 10, 12, 14)

      Reviewer #3 (Recommendations For The Authors): 

      (1) The authors might consider expanding a discussion on the potential implications of their findings, especially the newly identified adipocyte subpopulations and depot-specific differences for human studies. 

      To address the reviewer’s point, we attempted to identify human adipocyte subclusters that resembled our dysfunctional Ad6 adipocytes in mice; however, we did not find any similar adipocyte types. It has been reported that human adipocyte heterogeneity does not correspond well to that of mouse adipocytes (Emont et al. 2022). In addition, the heterogeneity of human adipocyte populations is not reproducible between different studies (Massier et al. 2023). Interestingly, this inconsistency is unique to adipocytes, as other cell types in adipose tissues display reproducible sub cell types across species and studies (Massier et al. 2023). Our findings indicate that adipocytes may exhibit a unique pathological cellular state with significantly reduced RNA content, which may contribute to the poor consistency in adipocyte heterogeneity in prior studies with suboptimal RNA quality. Therefore, using a robust method to effectively preserve RNA quality may be critical for accurately characterizing adipocyte populations, especially in disease states. It may be important to test in future studies whether our snRNA-seq protocol can identify consistent heterogeneity in adipocyte populations across different species, studies, and individual human subjects. We have revised the manuscript to include this new discussion (page 17)

      (2) typo: "To generate diet-induced obesity models". 

      We revised the manuscript to correct it.

    1. Author response:

      Reviewer #1 (Public Review):

      The authors examined the hypothesis that plasma ApoM, which carries sphingosine-1-phosphate (S1P) and activates vascular S1P receptors to inhibit vascular leakage, is modulated by SGLT2 inhibitors (SGLTi) during endotoxemia. They also propose that this mechanism is mediated by SGLTi regulation of LRP2/ megalin in the kidney and that this mechanism is critical for endotoxin-induced vascular leak and myocardial dysfunction. The hypothesis is novel and potentially exciting. However, the author's experiments lack critical controls, lack rigor in multiple aspects, and overall does not support the conclusions.

      Thank you for these comments. We have now directly addressed this hypothesis by using proximal tubule-specific inducible megalin/Lrp2 knockout mice, which remains an innovative hypothesis about how SGLT2i can reduce vascular leak.

      Reviewer #2 (Public Review):

      Apolipoprotein M (ApoM) is a plasma carrier for the vascular protective lipid mediator sphingosine 1-phospate (S1P). The plasma levels of S1P and its chaperones ApoM and albumin rapidly decline in patients with severe sepsis, but the mechanisms for such reductions and their consequences for cardiovascular health remain elusive. In this study, Ripoll and colleagues demonstrate that the sodium-glucose co-transporter inhibitor dapagliflozin (Dapa) can preserve serum ApoM levels as well as cardiac function after LPS treatment of mice with diet-induced obesity. They further provide data to suggest that Dapa preserves serum ApoM by increasing megalin-mediated reabsorption of ApoM in renal proximal tubules and that ApoM improves vascular integrity in LPS treated mice. These observations put forward a potential therapeutic approach to sustain vascular protective S1P signaling that could be relevant to other conditions of systemic inflammation where plasma levels of S1P decrease. However, although the authors are careful with their statements, the study falls short of directly implicating megalin in ApoM reabsorption and of ApoM/S1P depletion in LPS-induced cardiac dysfunction and the protective effects of Dapa.

      The observations reported in this study are exciting and potentially of broad interest. The paper is well written and concise, and the statements made are mostly supported by the data presented. However, the mechanism proposed and implied is mostly based on circumstantial evidence, and the paper could be substantially improved by directly addressing the role of megalin in ApoM reabsorption and serum ApoM and S1P levels and the importance of ApoM for the preservation for cardiac function during endotoxemia. Some observations that are not necessarily in line with the model proposed should also be discussed.

      The authors show that Dapa preserves serum ApoM and cardiac function in LPS-treated obese mice. However, the evidence they provide to suggest that ApoM may be implicated in the protective effect of Dapa on cardiac function is indirect. Direct evidence could be sought by addressing the effect of Dapa on cardiac function in LPS treated ApoM deficient and littermate control mice (with DIO if necessary).

      The authors also suggest that higher ApoM levels in mice treated with Dapa and LPS reflect increased megalin-mediated ApoM reabsorption and that this preserves S1PR signaling. This could be addressed more directly by assessing the clearance of labelled ApoM, by addressing the impact of megalin inhibition or deficiency on ApoM clearance in this context, and by measuring S1P as well as ApoM in serum samples.

      Methods: More details should be provided in the manuscript for how ApoM deficient and transgenic mice were generated, on sex and strain background, and on whether or not littermate controls were used. For intravital microscopy, more precision is needed on how vessel borders were outland and if this was done with or without regard for FITC-dextran. Please also specify the type of vessel chosen and considerations made with regard to blood flow and patency of the vessels analyzed. For statistical analyses, data from each mouse should be pooled before performing statistical comparisons. The criteria used for choice of test should be outlined as different statistical tests are used for similar datasets. For all data, please be consistent in the use of post-tests and in the presentation of comparisons. In other words, if the authors choose to only display test results for groups that are significantly different, this should be done in all cases. And if comparisons are made between all groups, this should be done in all cases for similar sets of data.

      Thank you for these comments. We have now tested the direct role of Lrp2 with respect to SGLT2i in vivo and in vitro, and our study now shows that Lrp2 is required for the effect of dapagliflozin on ApoM. ApoM deficient and transgenic mice were previously described and published by our group (PMID: 37034289) and others (PMID: 24318881), and littermate controls were used throughout our manuscript. We agree that the effect on cardiac function is likely indirect in these models, and as yet we do not have the tools in the LPS model to separate potential endothelial protective vs cardiac effects. In addition, since the ApoM knockout has multiple abnormalities that include hypertension, secondary cardiac hypertrophy, and an adipose/browning phenotype, all of which may influence its response to Dapa in terms of cardiac function, these studies will be challenging to perform and will require additional models that are beyond the scope of this manuscript.

      For intravital microscopy, vessel borders were outlined blindly without regard for FITC-dextran. We believe it is important to show multiple blood vessels per mouse since, as the reviewer points out, there is quite a bit of vessel heterogeneity. These tests were performed in the collaborator’s laboratory, and data analysis was blinded, and the collaborator was unaware of the study hypothesis at the time the measurements were performed and analyzed. They have previously reported this is a valid method to show cremaster vessel permeability (PMID: 26839042).

      We have updated our methods section and updated the figure legends to clearly indicate the statistical analyses we used. For 2 group comparison we used student’s t-test, and for multiple groups one-way ANOVA with Sidak's correction for multiple comparisons was used throughout the paper when the data are normally distributed, and Kruskal-Wallis was used when the data are not normally distributed.

      Reviewer #3 (Public Review):

      The authors have performed well designed experiments that elucidate the protective role of Dapa in sepsis model of LPS. This model shows that Dapa works, in part, by increasing expression of the receptor LRP2 in the kidney, that maintains circulating ApoM levels. ApoM binds to S1P which then interacts with the S1P receptor stimulating cardiac function, epithelial and endothelial barrier function, thereby maintaining intravascular volume and cardiac output in the setting of severe inflammation. The authors used many experimental models, including transgenic mice, as well as several rigorous and reproducible techniques to measure the relevant parameters of cardiac, renal, vascular, and immune function. Furthermore, they employ a useful inhibitor of S1P function to show pharmacologically the essential role for this agonist in most but not all the benefits of Dapa. A strength of the paper is the identification of the pathway responsible for the cardioprotective effects of SGLT2is that may yield additional therapeutic targets. There are some weaknesses in the paper, such as, studying only male mice, as well as providing a power analysis to justify the number of animals used throughout their experimentation. Overall, the paper should have a significant impact on the scientific community because the SGLT2i drugs are likely to find many uses in inflammatory diseases and metabolic diseases. This paper provides support for an important mechanism by which they work in conditions of severe sepsis and hemodynamic compromise.

      Thank you for these comments.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewers' 1 and 2 concern on endothelial cells (ECs) transcription changes on culture.

      We have now addressed this concern by FACS-sorting ECs (Fig. 7A revised) and comparing our data with previous studies (S. Fig. 1C). Our major claim was the epigenetic repression of EC genes, including those involved in BBB formation and angiogenesis, during later development. To further strengthen our claim, we knocked out HDAC2 during the later stages of development to prevent this epigenetic repression. As shown in the first version of the manuscript, this knockout results in enhanced angiogenesis and a leaky BBB.

      In the revised version, we have FACS-sorted CD31+ ECs from E-17.5 WT and HDAC2 ECKO mice, followed by ultra-low mRNA sequencing. Confirming the epigenetic repression via HDAC2, the HDAC2-deleted ECs showed high expression of BBB genes such as ZO-1, OCLN, MFSD2A, and GLUT1, and activation of the Wnt signaling pathway as indicated by the upregulation of Wnt target genes such as Axin2 and APCDD1. Additionally, to validate the increased angiogenesis phenotype observed, angiogenesis-related genes such as VEGFA, FLT1, and ENG were upregulated.

      Since the transcriptomics of brain ECs during developmental stages has already been published in Hupe et al., 2017, we did not attempt to replicate this. However, we compared our differentially regulated genes from E-13.5 versus adult stages with the transcriptome changes during development reported by Hupe et al., 2017. We found a significant overlap in important genes such as CLDN5, LEF1, ZIC3, and MFSD2A (S. Fig. 1C).

      As pointed out by the reviewer, culture-induced changes cannot be ruled out from our data. We have included a statement in the manuscript: "Even though we used similar culture conditions for both embryonic and adult cortical ECs, culture-induced changes have been reported previously and should be considered as a varying factor when interpreting our results."

      Reviewer-1 Comment 2- An additional concern is that for many experiments, siRNA knockdowns are performed without validation of the efficacy of the knockdown.

      We have now provided the protein expression data for HDAC2 and EZH2 in the revised manuscript Supplementary Figure- 2A.

      Reviewer-1 Comment 3- Some experiments in the paper are promising, however. For example, the knockout of HDAC2 in endothelial cells resulting in BBB leakage was striking. Investigating the mechanisms underlying this phenotype in vivo could yield important insights.

      We appreciate your positive comment. The in vivo HDAC2 knockout experiment serves as a validation of our in vitro findings, demonstrating that the epigenetic regulator HDAC2 can control the expression of endothelial cell (EC) genes involved in angiogenesis, blood-brain barrier (BBB) formation, and maturation. To investigate the mechanism behind the underlying phenotype of HDAC2 ECKO, we performed mRNA sequencing on HDAC2 ECKO E-17.5 ECs and discovered that vascular and BBB maturation is hindered by preventing the epigenetic repression of BBB, angiogenesis, and Wnt target genes (Fig. 7A). As a result, the HDAC2 ECKO phenotype showed increased angiogenesis and BBB leakage. This strengthens our hypothesis that HDAC2-mediated epigenetic repression is critical for BBB and vascular maturation.

      Reviewer 2 Comment-2 The use of qPCR assays for quantifying ChIP and transcript levels is inferior to ChIPseq and RNAseq. Whole genome methods, such as ChIPseq, permit a level of quality assessment that is not possible with qPCR methods. The authors should use whole genome NextGen sequencing approaches, show the alignment of reads to the genome from replicate experiments, and quantitatively analyze the technical quality of the data.

      We appreciate the reviewer's comment. While whole-genome methods like ChIP-seq offer comprehensive and high-throughput data, ChIP-qPCR assays remain valuable tools due to their sensitivity, specificity, and suitability for validation and targeted analysis. Our ChIP analysis identify the crucial roles of HDAC2 and PRC2, two epigenetic enzymes, in CNS endothelial cells (ECs). In vivo data presented in Figure 4 further support this finding through observed phenotypic differences. We concur that a comprehensive analysis of HDAC2 and PRC2 target genes in ECs is essential. A comprehensive analysis of HDAC2 and PRC2 target genes in ECs is currently underway and will be the subject of a separate publication due to the extensive nature of the data.

      Reviewer 2 Comment-3 Third, the observation that pharmacologic inhibitor experiments and conditional KO experiments targeting HDAC2 and the Polycomb complex perturb EC gene expression or BBB integrity, respectively, is not particularly surprising as these proteins have broad roles in epigenetic regulation in a wide variety of cell types.

      We appreciate the comments from the reviewers. Our results provide valuable insights into the specific epigenetic mechanisms that regulate BBB genes It is important to recognize that different cell types possess stage-specific distinct epigenetic landscapes and regulatory mechanisms. Rather than having broad roles across diverse cell types, it is more likely that HDAC2 (eventhough there are several other class and subtypes of HDACs) and the Polycomb complex exhibit specific functions within the context of EC gene expression or BBB integrity.

      Moreover, the significance of our findings is enhanced by the fact that epigenetic modifications are often reversible with the assistance of epigenetic regulators. This makes them promising targets for BBB modulation. Targeting epigenetic regulators can have a widespread impact, as these mechanisms regulate numerous genes that collectively have the potential to promote the vascular repair.

      A practical advantage is that FDA-approved HDAC2 inhibitors, as well as PRC2 inhibitors (such as those mentioned in clinical trials NCT03211988 and NCT02601950, are already available. This facilitates the repurposing of drugs and expedites their potential for clinical translation.

    1. Author response:

      Reviewer #1 (Public Review):

      Padilha et al. aimed to find prospective metabolite biomarkers in serum of children aged 6-59 months that were indicative of neurodevelopmental outcomes. The authors leveraged data and samples from the cross-sectional Brazilian National Survey on Child Nutrition (ENANI-2019), and an untargeted multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS) approach was used to measure metabolites in serum samples (n=5004) which were identified via a large library of standards. After correlating the metabolite levels against the developmental quotient (DQ), or the degree of which age-appropriate developmental milestones were achieved as evaluated by the Survey of Well-being of Young Children, serum concentrations of phenylacetylglutamine (PAG), cresol sulfate (CS), hippuric acid (HA) and trimethylamine-N-oxide (TMAO) were significantly negatively associated with DQ. Examination of the covariates revealed that the negative associations of PAG, HA, TMAO and valine (Val) with DQ were specific to younger children (-1 SD or 19 months old), whereas creatinine (Crtn) and methylhistidine (MeHis) had significant associations with DQ that changed direction with age (negative at -1 SD or 19 months old, and positive at +1 SD or 49 months old). Further, mediation analysis demonstrated that PAG was a significant mediator for the relationship of delivery mode, child's diet quality and child fiber intake with DQ. HA and TMAO were additional significant mediators of the relationship of child fiber intake with DQ.

      Strengths of this study include the large cohort size and study design allowing for sampling at multiple time points along with neurodevelopmental assessment and a relatively detailed collection of potential confounding factors including diet. The untargeted metabolomics approach was also robust and comprehensive allowing for level 1 identification of a wide breadth of potential biomarkers. Given their methodology, the authors should be able to achieve their aim of identifying candidate serum biomarkers of neurodevelopment for early childhood. The results of this work would be of broad interest to researchers who are interested in understanding the biological underpinnings of development and also for tracking development in pediatric populations, as it provides insight for putative mechanisms and targets from a relevant human cohort that can be probed in future studies. Such putative mechanisms and targets are currently lacking in the field due to challenges in conducting these kind of studies, so this work is important.

      However, in the manuscript's current state, the presentation and analysis of data impede the reader from fully understanding and interpreting the study's findings.

      Particularly, the handling of confounding variables is incomplete. There is a different set of confounders listed in Table 1 versus Supplementary Table 1 versus Methods section Covariates versus Figure 4. For example, Region is listed in Supplementary Table 1 but not in Table 1, and Mode of Delivery is listed in Table 1 but not in Supplementary Table 1. Many factors are listed in Figure 4 that aren't mentioned anywhere else in the paper, such as gestational age at birth or maternal pre-pregnancy obesity.

      We thank the reviewer for their comment. We would like to clarify that initially, the tables had different variables because they have different purposes. Table 1 aims to characterize the sample on variables directly related to the children’s and mother’s features and their nutritional status. Supplementary File 1(previously named supplementary table 1) summarizes the sociodemographic distribution of the development quotient. Neither of the tables concerned the metabolite-DQ relationships and their potential covariates, they only provide context for subsequent analyses by characterizing the sample and the outcome. Instead, the covariates included in the regression models were selected using the Direct Acyclic Graph presented in Figure 1.

      To avoid this potential confusion however, we included the same variables in Table 1 and Supplementary File 1(page 38) and we discussed the selection of model covariates in Figure 4 in more detail here in the letter and in the manuscript.

      The authors utilize the directed acrylic graph (DAG) in Figure 4 to justify the further investigation of certain covariates over others. However, the lack of inclusion of the microbiome in the DAG, especially considering that most of the study findings were microbial-derived metabolite biomarkers, appears to be a fundamental flaw. Sanitation and micronutrients are proposed by the authors to have no effect on the host metabolome, yet sanitation and micronutrients have both been demonstrated in the literature to affect microbiome composition which can in turn affect the host metabolome.

      Thank you for your comment. We appreciate that the use of DAG and lack of the microbiome in the DAG are concerns. This has been already discussed in reply #1 to the editor that has been pasted below for convenience:

      Thank you for the comment and suggestions. It is important to highlight that there is no data on microbiome composition. We apologize if there was an impression such data is available. The main goal of conducting this national survey was to provide qualified and updated evidence on child nutrition to revise and propose new policies and nutritional guidelines for this demographic. Therefore, collection of stool derived microbiome (metagenomic) data was not one of the objectives of ENANI-2019. This is more explicitly stated as a study limitation in the revised manuscript on page 17, lines 463-467:

      “Lastly, stool microbiome data was not collected from children in ENANI-2019 as it was not a study objective in this large population-based nutritional survey. However, the lack of microbiome data does not reduce the importance/relevance, since there is no evidence that microbiome and factors affecting microbiome composition are confounders in the association between serum metabolome and child development.”

      Besides, one must consider the difficulties and costs in collecting and analyzing microbiome composition in a large population-based survey. In contrast, the metabolome data has been considered a priority as there was already blood specimens collected to inform policy on micronutrient deficiencies in Brazil. However, due to funding limitations we had to perform the analysis in a subset of our sample, still representative and large enough to test our hypothesis with adequate study power (more details below).

      We would like to argue that there is no evidence that microbiome and factors affecting microbiome composition are confounders on the association between serum metabolome and child development. First, one should revisit the properties of a confounder according to the epidemiology literature that in short states that confounding refers to an alternative explanation for a given conclusion, thus constituting one of the main problems for causal inference (Kleinbaum, Kupper, and Morgenstern, 1991; Greenland & Robins, 1986; VanderWeele, 2019). In our study, we highlight that certain serum metabolites associated with the developmental quotient (DQ) in children were circulating metabolites (e.g., cresol sulfate, hippuric acid, phenylacetylglutamine, TMAO) previously reported to depend on dietary exposures, host metabolism and gut microbiota activity. Our discussion cites other published work, including animal models and observational studies, which have reported how these bioactive metabolites in circulation are co-metabolized by commensal gut microbiota, and may play a role in neurodevelopment and cognition as mediated by environmental exposures early in life.

      In fact, the literature on the association between microbiome and infant development is very limited. We performed a search using terms ‘microbiome’ OR ‘microbiota’ AND ‘child development’ AND ‘systematic’ OR ‘meta-analysis’ and found only one study: ‘Associations between the human immune system and gut microbiome with neurodevelopment in the first 5 years of life: A systematic scoping review’ (DOI 10.1002/dev.22360). The authors conclude: ‘while the immune system and gut microbiome are thought to have interactive impacts on the developing brain, there remains a paucity of published studies that report biomarkers from both systems and associations with child development outcomes.’ It is important to highlight that our criteria to include confounders on the directed acyclic graph (DAG) was based on the literature of systematic reviews or meta-analysis and not on single isolated studies.

      In summary, we would like to highlight that there is no microbiome data in ENANI-2019 and in the event such data was present, we are confident that based on the current stage of the literature, there is no evidence to consider such construct in the DAG, as this procedure recommends that only variables associated with the exposure and the outcome should be included. Please find more details on DAG below.

      Moreover, we would like to clarify that we have not stated that sanitation and micronutrients have no effect on the serum metabolome, instead, these constructs were not considered on the DAG.

      To make it clearer, we have modified the passage about DAG in the methods section. New text, page 9, lines 234-241:

      “The subsequent step was to disentangle the selected metabolites from confounding variables. A Directed Acyclic Graph (DAG; Breitling et al., 2021) was used to more objectively determine the minimally sufficient adjustments for the regression models to account for potentially confounding variables while avoiding collider variables and variables in the metabolite-DQ causal pathways, which if controlled for would unnecessarily remove explained variance from the metabolites and hamper our ability to detect biomarkers. To minimize bias from subjective judgments of which variables should and should not be included as covariates, the DAG only included variables for which there was evidence from systematic reviews or meta-analysis of relationships with both the serum metabolome and DQ (Figure 1). Birth weight, breastfeeding, child's diet quality, the child's nutritional status, and the child's age were the minimal adjustments suggested by the DAG. Birth weight was a variable with high missing data, and indicators of breastfeeding practice data (referring to exclusive breastfeeding until 6 months and/or complemented until 2 years) were collected only for children aged 0–23 months. Therefore, those confounders were not included as adjustments. Child's diet quality was evaluated as MDD, the child's nutritional status as w/h z-score, and the child's age in months.”

      Additionally, the authors emphasized as part of the study selection criteria the following, "Due to the costs involved in the metabolome analysis, it was necessary to further reduce the sample size. Then, samples were stratified by age groups (6 to 11, 12 to 23, and 24 to 59 months) and health conditions related to iron metabolism, such as anemia and nutrient deficiencies. The selection process aimed to represent diverse health statuses, including those with no conditions, with specific deficiencies, or with combinations of conditions. Ultimately, through a randomized process that ensured a balanced representation across these groups, a total of 5,004 children were selected for the final sample (Figure 1)."

      Therefore, anemia and nutrient deficiencies are assumed by the reader to be important covariates, yet, the data on the final distribution of these covariates in the study cohort is not presented, nor are these covariates examined further.

      Thank you for the comments. We apologize for the misunderstanding and will amend the text to make our rationale clearer in the revised version of the manuscript.

      We believed the original text was clear enough in stating that the sampling process was performed aiming to maintain the representativeness of the original sample. This sampling process considered anemia and nutritional deficiencies, among other variables. However, we did not aim to include all relevant covariates of the DQ-metabolome relationship; these were decided using the DAG, as described in the manuscript and other sessions of this letter. Therefore, we would like to emphasize that our description of the sampling process does not assumes anemia and nutritional deficiencies are important covariates for the DQ-metabolome relationship.

      We rewrote this text part, page 11, lines 279-285:

      “Due to the costs involved in the metabolome analysis, it was necessary to reduce the sample size that is equivalent to 57% of total participants from ENANI-2019 with stored blood specimens. Therefore, the infants were stratified by age groups (6 to 11, 12 to 23, and 24 to 59 months) and health conditions such as anemia and micronutrient deficiencies. The selection process aimed to represent diverse health statuses to the original sample. Ultimately, 5,004 children were selected for the final sample through a random sampling process that ensured a balanced representation across these groups (Figure 2).”

      The inclusion of specific covariates in Table 1, Supplementary Table 1, the statistical models, and the mediation analysis is thus currently biased as it is not well justified.

      We appreciate the reviewer comment. However, it would have been ideal to receive a comment/critic with a clearer and more straightforward argumentation, so we could try to address it based on our interpretation.

      Please refer to our response to item #1 above regarding the variables in the tables and figures. The covariates in the statistical models were selected using the DAG, which is a cutting-edge procedure that aims to avoid bias and overfitting, a common situation when confounders are adjusted for without a clear rationale. We elaborate on the advantages of using the DAG in response to item #6 and in page 9 of the manuscript. The statistical models we use follow the best practices in the field when dealing with a large number of collinear predictors and a continuous outcome (see our response to the editor’s 4th comment). Finally, the mediation analyses were done to explore a few potential explanations for our results from the PLSR and multiple regression analyses. We only ran mediation analyses for plausible mechanisms for which the variables of interest were available in our data. Please see our response to reviewer 3’s item #1 for a more detailed explanation on the mediation analysis.

      Finally, it is unclear what the partial-least squares regression adds to the paper, other than to discard potentially interesting metabolites found by the initial correlation analysis.

      Thank you for the question. As explained in response to the editor’s item #4, PLS-based analyses are among the most commonly used analyses for parsing metabolomic data (Blekherman et al., 2011; Wold et al., 2001; Gromski et al. 2015). This procedure is especially appropriate for cases in which there are multiple collinear predictor variables as it allows us to compare the predictive value of all the variables without relying on corrections for multiple testing. Testing each metabolite in separate correlations corrected for multiple comparisons is less appropriate because the correlated nature of the metabolites means the comparisons are not truly independent and would cause the corrections (which usually assume independence) to be overly strict. As such, we only rely on the correlations as an initial, general assessment that gives context to subsequent, more specific analyses. Given that our goal is to select the most predictive metabolites, discarding the less predictive metabolites is precisely what we aim to achieve. As explained above and in response to the editor’s item #4, the PLSR allows us to reach that goal without introducing bias in our estimates or losing statistical power.  

      Reviewer #2 (Public Review):

      A strength of the work lies in the number of children Padilha et al. were able to assess (5,004 children aged 6-59 months) and in the extensive screening that the Authors performed for each participant. This type of large-scale study is uncommon in low-to-middle-income countries such as Brazil.

      The Authors employ several approaches to narrow down the number of potentially causally associated metabolites.

      Could the Authors justify on what basis the minimum dietary diversity score was dichotomized? Were sensitivity analyses undertaken to assess the effect of this dichotomization on associations reported by the article? Consumption of each food group may have a differential effect that is obscured by this dichotomization.

      Thank you for the observation. We would like to emphasize that the child's diet quality was assessed using the minimum dietary diversity (MDD) indicator proposed by the WHO (World Health Organization & United Nations Children’s Fund (UNICEF), 2021). This guideline proposes the cutoff used in the present study. We understand the reviewer’s suggestion to use the consumption of healthy food groups as an evaluation of diet quality, but we chose to follow the WHO proposal to assess dietary diversity. This indicator is widely accepted and used as a marker and provides comparability and consistency with other published studies.

      Could the Authors specify the statistical power associated with each analysis?

      To the best of our knowledge, we are not aware of power calculation procedures for PLS-based analyses. However, given our large sample size, we do not believe power was an issue with the analyses. For our regression analyses, which typically have 4 predictors, we had 95% power to detect an f-squared of 0.003 and an r of 0.05 in a two-sided correlation test considering an alpha level of 0.05.

      New text, page 11, lines 296-298:

      “Given the size of our sample, statistical power is not an issue in our analyses. Considering an alpha of 0.05 for a two-sided test, a sample size of 5000 has 95% power to detect a correlation of r = 0.05 and an effect of f2 = 0.003 in a multiple regression model with 4 predictors.”

      Could the Authors describe in detail which metric they used to measure how predictive PLSR models are, and how they determined what the "optimal" number of components were?

      We chose the model with the fewest number of components that maximized R2 and minimized root mean squared error of prediction (RMSEP). In the training data, the model with 4 components had a lower R2 but a lower RMSEP, therefore we chose the model with 3 components which had a higher R2 than the 4-component model and lower RMSEP than the model with 2 components. However, the number of components in the model did not meaningfully change the rank order of the metabolites on the VIP index.

      New text, page 8, lines 220-224:

      “To better assess the predictiveness of each metabolite in a single model, a PLSR was conducted. PLS-based analyses are the most commonly used analyses when determining the predictiveness of a large number of variables as they avoid issues with collinearity, sample size, and corrections for multiple-testing (Blekherman et al., 2011; Wold et al., 2001; Gromski et al. 2015).”

      New text, page 12, lines 312-314:

      “In PLSR analysis, the training data suggested that three components best predicted the data (the model with three components had the highest R2, and the root mean square error of prediction (RMSEP) was only slightly lower with four components). In comparison, the test data showed a slightly more predictive model with four components (Figure 3—figure supplement 2).”

      The Authors use directed acyclic graphs (DAG) to identify confounding variables of the association between metabolites and DQ. Could the dataset generated by the Authors have been used instead? Not all confounding variables identified in the literature may be relevant to the dataset generated by the Authors.

      Thank you for the question. The response is most likely no, the current dataset should not be used to define confounders as these must be identified based on the literature. The use of DAGs has been widely explored as a valid tool for justifying the choice of confounding factors in regression models in epidemiology. This is because DAGs allow for a clear visualization of causal relationships, clarify the complex relationships between exposure and outcome. Besides, DAGs demonstrate the authors' transparency by acknowledging factors reported as important but not included/collected in the study. This has been already discussed in reply #1 to the editor that has been pasted below for convenience.

      Thank you for the comment and suggestions. It is important to highlight that there is no data on microbiome composition. We apologize if there was an impression such data is available. The main goal of conducting this national survey was to provide qualified and updated evidence on child nutrition to revise and propose new policies and nutritional guidelines for this demographic. Therefore, collection of stool derived microbiome (metagenomic) data was not one of the objectives of ENANI-2019. This is more explicitly stated as a study limitation in the revised manuscript on page 17, lines 463-467:

      “Lastly, stool microbiome data was not collected from children in ENANI-2019 as it was not a study objective in this large population-based nutritional survey. However, the lack of microbiome data does not reduce the importance/relevance, since there is no evidence that microbiome and factors affecting microbiome composition are confounders in the association between serum metabolome and child development.”

      Besides, one must consider the difficulties and costs in collecting and analyzing microbiome composition in a large population-based survey. In contrast, the metabolome data has been considered a priority as there was already blood specimens collected to inform policy on micronutrient deficiencies in Brazil. However, due to funding limitations we had to perform the analysis in a subset of our sample, still representative and large enough to test our hypothesis with adequate study power (more details below).

      We would like to argue that there is no evidence that microbiome and factors affecting microbiome composition are confounders on the association between serum metabolome and child development. First, one should revisit the properties of a confounder according to the epidemiology literature that in short states that confounding refers to an alternative explanation for a given conclusion, thus constituting one of the main problems for causal inference (Kleinbaum, Kupper, and Morgenstern, 1991; Greenland & Robins, 1986; VanderWeele, 2019). In our study, we highlight that certain serum metabolites associated with the developmental quotient (DQ) in children were circulating metabolites (e.g., cresol sulfate, hippuric acid, phenylacetylglutamine, TMAO) previously reported to depend on dietary exposures, host metabolism and gut microbiota activity. Our discussion cites other published work, including animal models and observational studies, which have reported how these bioactive metabolites in circulation are co-metabolized by commensal gut microbiota, and may play a role in neurodevelopment and cognition as mediated by environmental exposures early in life.

      In fact, the literature on the association between microbiome and infant development is very limited. We performed a search using terms ‘microbiome’ OR ‘microbiota’ AND ‘child development’ AND ‘systematic’ OR ‘meta-analysis’ and found only one study: ‘Associations between the human immune system and gut microbiome with neurodevelopment in the first 5 years of life: A systematic scoping review’ (DOI 10.1002/dev.22360). The authors conclude: ‘while the immune system and gut microbiome are thought to have interactive impacts on the developing brain, there remains a paucity of published studies that report biomarkers from both systems and associations with child development outcomes.’ It is important to highlight that our criteria to include confounders on the directed acyclic graph (DAG) was based on the literature of systematic reviews or meta-analysis and not on single isolated studies.

      In summary, we would like to highlight that there is no microbiome data in ENANI-2019 and in the event such data was present, we are confident that based on the current stage of the literature, there is no evidence to consider such construct in the DAG, as this procedure recommends that only variables associated with the exposure and the outcome should be included. Please find more details on DAG below.

      Moreover, we would like to clarify that we have not stated that sanitation and micronutrients have no effect on the serum metabolome, instead, these constructs were not considered on the DAG.

      To make it clearer, we have modified the passage about DAG in the methods section. New text, page 9, lines 234-241:

      “The subsequent step was to disentangle the selected metabolites from confounding variables. A Directed Acyclic Graph (DAG; Breitling et al., 2021) was used to more objectively determine the minimally sufficient adjustments for the regression models to account for potentially confounding variables while avoiding collider variables and variables in the metabolite-DQ causal pathways, which if controlled for would unnecessarily remove explained variance from the metabolites and hamper our ability to detect biomarkers. To minimize bias from subjective judgments of which variables should and should not be included as covariates, the DAG only included variables for which there was evidence from systematic reviews or meta-analysis of relationships with both the serum metabolome and DQ (Figure 1). Birth weight, breastfeeding, child's diet quality, the child's nutritional status, and the child's age were the minimal adjustments suggested by the DAG. Birth weight was a variable with high missing data, and indicators of breastfeeding practice data (referring to exclusive breastfeeding until 6 months and/or complemented until 2 years) were collected only for children aged 0–23 months. Therefore, those confounders were not included as adjustments. Child's diet quality was evaluated as MDD, the child's nutritional status as w/h z-score, and the child's age in months.”

      Were the systematic reviews or meta-analyses used in the DAG performed by the Authors, or were they based on previous studies? If so, more information about the methodology employed and the studies included should be provided by the Authors.

      Thank you for the question. The reviews or meta-analyses used in the DAG have been conducted by other authors in the field. This has been laid out more clearly in our methods section.

      New text, page 9, lines 234-241:

      “The subsequent step was to disentangle the selected metabolites from confounding variables. A Directed Acyclic Graph (DAG; Breitling et al., 2021) was used to more objectively determine the minimally sufficient adjustments for the regression models to account for potentially confounding variables while avoiding collider variables and variables in the metabolite-DQ causal pathways, which if controlled for would unnecessarily remove explained variance from the metabolites and hamper our ability to detect biomarkers. To minimize bias from subjective judgments of which variables should and should not be included as covariates, the DAG only included variables for which there was evidence from systematic reviews or meta-analysis of relationships with both the metabolome and DQ (Figure 1). Birth weight, breastfeeding, child's diet quality, the child's nutritional status, and the child's age were the minimal adjustments suggested by the DAG. Birth weight was a variable with high missing data, and indicators of breastfeeding practice data (referring to exclusive breastfeeding until 6 months and/or complemented until 2 years) were collected only for children aged 0–23 months. Therefore, those confounders were not included as adjustments. Child's diet quality was evaluated as MDD, the child's nutritional status as w/h z-score, and the child's age in months.”

      Approximately 72% of children included in the analyses lived in households with a monthly income superior to the Brazilian minimum wage. The cohort is also biased towards households with a higher level of education. Both of these measures correlate with developmental quotient. Could the Authors discuss how this may have affected their results and how generalizable they are?

      Thank you for your comment. This has been already discussed in reply #6 to the editor and that has been pasted below for convenience.

      Thank you for highlighting this point. The ENANI-2019 is a population-based household survey with national coverage and representativeness for macroregions, sex, and one-year age groups (< 1; 1-1.99; 2-2.99; 3-3.99; 4-5). Furthermore, income quartiles of the census sector were used in the sampling. The study included 12,524 households 14,588 children, and 8,829 infants with blood drawn.

      Due to the costs involved in metabolome analysis, it was necessary to further reduce the sample size to around 5,000 children that is equivalent to 57% of total participants from ENANI-2019 with stored blood specimens. To avoid a biased sample and keep the representativeness and generability, the 5,004 selected children were drawn from the total samples of 8,829 to keep the original distribution according age groups (6 to 11 months, 12 to 23 months, and 24 to 59 months), and some health conditions related to iron metabolism, e.g., anemia and nutrient deficiencies. Then, they were randomly selected to constitute the final sample that aimed to represent the total number of children with blood drawn. Hence, our efforts were to preserve the original characteristics of the sample and the representativeness of the original sample.

      The ENANI-2019 study does not appear to present a bias towards higher socioeconomic status. Evidence from two major Brazilian population-based household surveys supports this claim. The 2017-18 Household Budget Survey (POF) reported an average monthly household income of 5,426.70 reais, while the Continuous National Household Sample Survey (PNAD) reported that in 2019, the nominal monthly per capita household income was 1,438.67 reais. In comparison, ENANI-2019 recorded a household income of 2,144.16 reais and a per capita income of 609.07 reais in infants with blood drawn, and 2,099.14 reais and 594.74 reais, respectively, in the serum metabolome analysis sample.

      In terms of maternal education, the 2019 PNAD-Education survey indicated that 48.8% of individuals aged 25 or older had at least 11 years of schooling. When analyzing ENANI-2019 under the same metric, we found that 56.26% of ≥25 years-old mothers of infants with blood drawn had 11 years of education or more, and 51.66% in the metabolome analysis sample. Although these figures are slightly higher, they remain within a reasonable range for population studies.

      It is well known that higher income and maternal education levels can influence child health outcomes, and acknowledging this, ENANI-2019 employed rigorous sampling methods to minimize selection biases. This included stratified and complex sampling designs to ensure that underrepresented groups were adequately included, reducing the risk of skewed conclusions. Therefore, the evidence strongly suggests that the ENANI-2019 sample is broadly representative of the Brazilian population in terms of both socioeconomic status and educational attainment.

      Further to this, could the Authors describe how inequalities in access to care in the Brazilian population may have affected their results? Could they have included a measure of this possible discrepancy in their analyses?

      Thank you for the concern.

      The truth is that we are not in a position to answer this question because our study focused on gathering data on infant nutritional status and there is very limited information on access to care to allow us to hypothesize. Another important piece of information is that this national survey used sampling procedures that aimed to make the sample representative of the 15 million Brazilian infants under 5 years. Therefore, the sample is balanced according to socio-economic strata, so there is no evidence to make us believe inequalities in access to health care would have played a role.

      The Authors state that the results of their study may be used to track children at risk for developmental delays. Could they discuss the potential for influencing policies and guidelines to address delayed development due to malnutrition and/or limited access to certain essential foods?

      The point raised by the reviewer is very relevant. Recognizing that dietary and microbial derived metabolites involved in the gut-brain axis could be related to children's risk of developmental delays is the first step to bringing this topic to the public policy agenda. We believe the results can contribute to the literature, which should be used to accumulate evidence to overcome knowledge gaps and support the formulation and redirection of public policies aimed at full child growth and development; the promotion of adequate and healthy nutrition and food security; the encouragement, support, and protection of breastfeeding; and the prevention and control of micronutrient deficiencies.  

      Reviewer #3 (Public Review):

      The ENANI-2019 study provides valuable insights into child nutrition, development, and metabolomics in Brazil, highlighting both challenges and opportunities for improving child health outcomes through targeted interventions and further research.

      Readers might consider the following questions:

      (1) Should investigators study the families through direct observation of diet and other factors to look for a connection between food taken in and gut microbiome and child development?

      As mentioned before, the ENANI-2019 did not collect data on stool derived microbiome. However, there is data on child dietary intake with 24-hour recall that can be further explored in other studies.

      (2) Can an examination of the mother's gut microbiome influence the child's microbiome? Can the mother or caregiver's microbiome influence early childhood development?

      The questions raised by the reviewer are interesting and has been explored by other authors. However, we do not have microbiota data from the child nor from the mother/caregiver.

      (3) Is developmental quotient enough to study early childhood development? Is it comprehensive enough?

      Yes, we are confident it is comprehensive enough.

      According to the World Health Organization, the term Early Childhood Development (ECD) refers to the cognitive, physical, language, motor, social and emotional development between 0 - 8 years of age. The SWCY milestones assess the domains of cognition, language/communication and motor. Therefore, it has enough content validity to represent ECD.

      The SWYC is recommended for screening ECD by the American Society of Pediatrics. Furthermore, we assessed the internal consistency of the SWYC milestones questionnaire using ENANI-2019 data and Cronbach's alpha. The findings indicated satisfactory reliability (0.965; 95% CI: 0.963–0.968).

      The SWCY is a screening instrument and indicates if the ECD is not within the expected range. If one of the above-mentioned domains are not achieved as expected the child may be at risk of ECD delay. Therefore, DQ<1 indicates that a child has not reached the expected ECD for the age group. We cannot say that children with DQ≥1 have full ECD, since we do not assess the socio-emotional domains. However, DQ can track the risk of ECD delay.

      References

      Blekherman, G., Laubenbacher, R., Cortes, D. F., Mendes, P., Torti, F. M., Akman, S., ... & Shulaev, V. (2011). Bioinformatics tools for cancer metabolomics. Metabolomics, 7, 329-343.

      Gromski, P. S., Muhamadali, H., Ellis, D. I., Xu, Y., Correa, E., Turner, M. L., & Goodacre, R. (2015). A tutorial review: Metabolomics and partial least squares-discriminant analysis–a marriage of convenience or a shotgun wedding. Analytica chimica acta, 879, 10-23.

      Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and intelligent laboratory systems, 58(2), 109-130.

      LUIZ, RR., and STRUCHINER, CJ. Inferência causal em epidemiologia: o modelo de respostas potenciais [online]. Rio de Janeiro: Editora FIOCRUZ, 2002. 112 p. ISBN 85-7541-010-5. Available from SciELO Books http://books.scielo.org.

      GREENLAND, S. & ROBINS, J. M. Identifiability, exchangeability, and epidemiological Confounding. International Journal of Epidemiolgy, 15(3):413-419, 1986.

      Freitas-Costa NC, Andrade PG, Normando P, et al. Association of development quotient with nutritional status of vitamins B6, B12, and folate in 6–59-month-old children: Results from the Brazilian National Survey on Child Nutrition (ENANI-2019). The American journal of clinical nutrition 2023;118(1):162-73. doi: https://doi.org/10.1016/j.ajcnut.2023.04.026

      Sheldrick RC, Schlichting LE, Berger B, et al. Establishing New Norms for Developmental Milestones. Pediatrics 2019;144(6) doi: 10.1542/peds.2019-0374 [published Online First: 2019/11/16]

      Drachler Mde L, Marshall T, de Carvalho Leite JC. A continuous-scale measure of child development for population-based epidemiological surveys: a preliminary study using Item Response Theory for the Denver Test. Paediatric and perinatal epidemiology 2007;21(2):138-53. doi: 10.1111/j.1365-3016.2007.00787.x [published Online First: 2007/02/17]

      VanderWeele, TJ Princípios de seleção de fatores de confusão. Eur J Epidemiol 34, 211–219 (2019). https://doi.org/10.1007/s10654-019-00494-6

      David G. Kleinbaum, Lawrence L. Kupper; Hal Morgenstern. Epidemiologic Research: Principles and Quantitative Methods. 1991

      Yan R, Liu X, Xue R, Duan X, Li L, He X, Cui F, Zhao J. Association between internet exclusion and depressive symptoms among older adults: panel data analysis of five longitudinal cohort studies. EClinicalMedicine 2024;75. doi: 10.1016/j.eclinm.2024.102767.

      Zhong Y, Lu H, Jiang Y, Rong M, Zhang X, Liabsuetrakul T. Effect of homemade peanut oil consumption during pregnancy on low birth weight and preterm birth outcomes: a cohort study in Southwestern China. Glob Health Action. 2024 Dec 31;17(1):2336312.

      Aristizábal LYG, Rocha PRH, Confortin SC, et al. Association between neonatal near miss and infant development: the Ribeirão Preto and São Luís birth cohorts (BRISA). BMC Pediatr. 2023;23(1):125. Published 2023 Mar 18. doi:10.1186/s12887-023-03897-3

      Al-Haddad BJS, Jacobsson B, Chabra S, et al. Long-term risk of neuropsychiatric disease after exposure to infection in utero. JAMA Psychiatry. 2019;76(6):594-602. doi:10.1001/jamapsychiatry.2019.0029

      Chan, A.Y.L., Gao, L., Hsieh, M.HC. et al. Maternal diabetes and risk of attention-deficit/hyperactivity disorder in offspring in a multinational cohort of 3.6 million mother–child pairs. Nat Med 30, 1416–1423 (2024).

      Hernan MA, Robins JM (2020). Causal Inference: What If. Boca Raton: Chapman & Hall/CRC.

      Greenland S; Pearl J; Robins JM. Confounding and collapsibility in causal inference. Statist Sci. 14 (1) 29 - 46 1999. https://doi.org/10.1214/ss/1009211805

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1:

      Summary: 

      This paper is focused on the role of Cadherin Flamingo (Fmi) - also called Starry night (stan) - in cell competition in developing Drosophila tissues. A primary genetic tool is monitoring tissue overgrowths caused by making clones in the eye disc that express activated Ras (RasV12) and that are depleted for the polarity gene scribble (scrib). The main system that they use is ey-flp, which makes continuous clones in the developing eye-antennal disc beginning at the earliest stages of disc development. It should be noted that RasV12, scrib-i (or lgl-i) clones only lead to tumors/overgrowths when generated by continuous clones, which presumably creates a privileged environment that insulates them from competition. Discrete (hs-flp) RasV12, lgl-i clones are in fact outcompeted (PMID: 20679206), which is something to bear in mind. 

      We think it is unlikely that the outcome of RasV12, scrib (or lgl) competition depends on discrete vs. continuous clones or on creation of a privileged environment. As shown in the same reference mentioned by the reviewer, the outcome of RasV12, scrib (or lgl) tumors greatly depends on the clone being able to grow to a certain size. The authors show instances of discrete clones where larger RasV12, lgl clones outcompete the surrounding tissue and eliminate WT cells by apoptosis, whereas smaller clones behave more like losers. It is not clear what aspect of the environment determines the ability of some clones to grow larger than others, but in neither case are the clones prevented from competition. Other studies show that in mammalian cells, RasV12, scrib clones are capable of outcompeting the surrounding tissue, such as in Kohashi et al (2021), where cells carrying both mutations actively eliminate their neighbors.

      The authors show that clonal loss of Fmi by an allele or by RNAi in the RasV12, scrib-i tumors suppresses their growth in both the eye disc (continuous clones) and wing disc (discrete clones). The authors attributed this result to less killing of WT neighbors when Myc over-expressing clones lacking Fmi, but another interpretation (that Fmi regulates clonal growth) is equally as plausible with the current results. 

      See point (1) for a discussion on this.

      Next, the authors show that scrib-RNAi clones that are normally out-competed by WT cells prior to adult stages are present in higher numbers when WT cells are depleted for Fmi. They then examine death in RasV12, scrib-i ey-FLP clones, or in discrete hsFLP UAS-Myc clones. They state that they see death in WT cells neighboring RasV12, scrib-i clones in the eye disc (Figures 4A-C). Next, they write that RasV12, scrib-I cells become losers (i.e., have apoptosis markers) when Fmi is removed. Neither of these results are quantified and thus are not compelling. They state that a similar result is observed for Myc over-expression clones that lack Fmi, but the image was not compelling, the results are not quantified and the controls are missing (Myc over-expressing clones alone and Fmi clones alone). 

      We assayed apoptosis in UAS-Myc clones in eye discs but neglected to include the results in Figure 4. We include them in the updated manuscript. Regarding Fmi clones alone, we direct the reviewer’s attention to Fig. 2 Supplement 1 where we showed that fminull clones cause no competition. Dcp-1 staining showed low levels of apoptosis unrelated to the fminull clones or twin-spots.

      Regarding the quantification of apoptosis, we did not provide a quantification, in part because we observe a very clear visual difference between groups (Fig. 4A-K), and in part because it is challenging to come up with a rigorous quantification method. For example, how far from a winner clone can an apoptotic cell be and still be considered responsive to the clone? For UASMyc winner clones, we observe a modest amount of cell death both inside and outside the clones, consistent with prior observations. For fminull UAS-Myc clones, we observe vastly more cell death within the fminull UAS-Myc clones and modest death in nearby wildtype cells, and consequently a much higher ratio of cell death inside vs outside the clone. Because of the somewhat arbitrary nature of quantification, and the dramatic difference, we initially chose not to provide a quantification. However, given the request, we chose an arbitrary distance from the clone boundary in which to consider dying cells and counted the numbers for each condition. We view this as a very soft quantification, but we nevertheless report it in a way that captures the phenomenon in the revised manuscript. 

      They then want to test whether Myc over-expressing clones have more proliferation. They show an image of a wing disc that has many small Myc overexpressing clones with and without Fmi. The pHH3 results support their conclusion that Myc overexpressing clones have more pHH3, but I have reservations about the many clones in these panels (Figures 5L-N). 

      As the reviewer’s reservations are not specified, we have no specific response.

      They show that the cell competition roles of Fmi are not shared by another PCP component and are not due to the Cadherin domain of Fmi. The authors appear to interpret their results as Fmi is required for winner status. Overall, some of these results are potentially interesting and at least partially supported by the data, but others are not supported by the data.

      Strengths: 

      Fmi has been studied for its role in planar cell polarity, and its potential role in competition is interesting.

      Weaknesses:

      (1) In the Myc over-expression experiments, the increased size of the Myc clones could be because they divide faster (but don't outcompete WT neighbors). If the authors want to conclude that the bigger size of the Myc clones is due to out-competition of WT neighbors, they should measure cell death across many discs of with these clones. They should also assess if reducing apoptosis (like using one copy of the H99 deficiency that removes hid, rpr, and grim) suppresses winner clone size. If cell death is not addressed experimentally and quantified rigorously, then their results could be explained by faster division of Myc over-expressing clones (and not death of neighbors). This could also apply to the RasV12, scrib-i results.

      Indeed, Myc clones have been shown to divide faster than WT neighbors, but that is not the only reason clones are bigger. As shown in (de la Cova et al, 2004), Myc-overexpressing cells induce apoptosis in WT neighbors, and blocking this apoptosis results in larger wings due to increased presence of WT cells. Also, (Moreno and Basler, 2004) showed that Myc-overexpressing clones cause a reduction in WT clone size, as WT twin spots adjacent to 4xMyc clones are significantly smaller than WT twin spots adjacent to WT clones. In the same work, they show complete elimination of WT clones generated in a tub-Myc background. Since then, multiple papers have shown these same results. It is well established then that increased cell proliferation transforms Myc clones into supercompetitors and that in the absence of cell competition, Myc-overexpressing discs produce instead wings larger than usual. 

      In (de la Cova et al, 2004) the authors already showed that blocking apoptosis with H99 hinders competition and causes wings with Myc clones to be larger than those where apoptosis wasn’t blocked. As these results are well established from prior literature, there is no need to repeat them here. 

      (2) This same comment about Fmi affecting clone growth should be considered in the scrib RNAi clones in Figure 3.

      In later stages, scrib RNAi clones in the eye are eliminated by WT cells. While scrib RNAi clones are not substantially smaller in third instar when competing against fmi cells (Fig 3M), by adulthood we see that WT clones lacking Fmi have failed to remove scrib clones, unlike WT clones that have completely eliminated the scrib RNAi clones by this time. We therefore disagree that the only effect of Fmi could be related to rate of cell division. 

      (3) I don't understand why the quantifications of clone areas in Figures 2D, 2H, 6D are log values. The simple ratio of GFP/RFP should be shown. Additionally, in some of the samples (e.g., fmiE59 >> Myc, only 5 discs and fmiE59 vs >Myc only 4 discs are quantified but other samples have more than 10 discs). I suggest that the authors increase the number of discs that they count in each genotype to at least 20 and then standardize this number.

      Log(ratio) values are easier to interpret than a linear scale. If represented linearly, 1 means equal ratios of A and B, while 2A/B is 2 and A/2B is 0.5. And the higher the ratio difference between A and B, the starker this effect becomes, making a linear scale deceiving to the eye, especially when decreased ratios are shown. Using log(ratios), a value of 0 means equal ratios, and increased and decreased ratios deviate equally from 0.

      Statistically, either analyzing a standardized number of discs for all conditions or a variable number not determined beforehand has no effect on the p-value, as long as the variable n number is not manipulated by p-hacking techniques, such as increasing the n of samples until a significant p-value has been obtained. While some of our groups have lower numbers, all statistical analyses were performed after all samples were collected. For all results obtained by cell counts, all samples had a minimum of 10 discs due to the inherent though modest variability of our automated cell counts, and we analyzed all the discs that we obtained from a given experiment, never “cherry-picking” examples. For the sake of transparency, all our graphs show individual values in addition to the distributions so that the reader knows the n values at a glance.

      (5) Figure 4 - shows examples of cell death. Cas3 is written on the figure but Dcp-1 is written in the results. Which antibody was used? The authors need to quantify these results. They also need to show that the death of cells is part of the phenotype, like an H99 deficiency, etc (see above).

      Thank you for flagging this error. We used cleaved Dcp-1 staining to detect cell death, not Cas3 (Drice in Drosophila). We updated all panels replacing Cas3 by Dcp-1. 

      As described above, cell death is a well established consequence of myc overexpression induced cell death and we feel there is no need to repeat that result. To what extent loss of Fmi induces excess cell death or reduces proliferation in “would-be” winners, and to what extent it reduces “would-be” winners’ ability to eliminate competitors are interesting mechanistic questions that are beyond the scope of the current manuscript.

      (6) It is well established that clones overexpressing Myc have increased cell death. The authors should consider this when interpreting their results.

      We are aware that Myc-overexpressing clones have increased cell death, but it has also been demonstrated that despite that fact, they behave as winners and eliminate WT neighboring cells. And as mentioned in comment (1), WT clones generated in a 3x and 4x Myc background are eliminated and removed from the tissue, and blocking cell death increases the size of WT “losers” clones adjacent to Myc overexpressing clones. 

      (7) A better characterization of discrete Fmi clones would also be helpful. I suggest inducing hs-flp clones in the eye or wing disc and then determining clone size vs twin spot size and also examining cell death etc. If such experiments have already been done and published, the authors should include a description of such work in the preprint.

      We have already analyzed the size of discrete Fmi clones and showed that they did not cause any competition, with fmi-null clones having the same size as WT clones in both eye and wing discs. We direct the reviewer’s attention to Figure 2 Supplement 1.

      (8) We need more information about the expression pattern of Fmi. Is it expressed in all cells in imaginal discs? Are there any patterns of expression during larval and pupal development? 

      Fmi is equally expressed by all cells in all imaginal discs in Drosophila larva and pupa. We include this information and the relevant reference (Brown et al, 2014) in the updated manuscript.

      (9) Overall, the paper is written for specialists who work in cell competition and is fairly difficult to follow, and I suggest re-writing the results to make it accessible to a broader audience.

      We have endeavored to both provide an accessible narrative and also describe in sufficient detail the data from multiple models of competition and complex genetic systems. We hope that most readers will be able, at a minimum, to follow our interpretations and the key takeaways, while those wishing to examine the nuts and bolts of the argument will find what they need presented as simply as possible.

      Reviewer 2:

      Summary: 

      In this manuscript, Bosch et al. reveal Flamingo (Fmi), a planar cell polarity (PCP) protein, is essential for maintaining 'winner' cells in cell competition, using Drosophila imaginal epithelia as a model. They argue that tumor growth induced by scrib-RNAi and RasV12 competition is slowed by Fmi depletion. This effect is unique to Fmi, not seen with other PCP proteins. Additional cell competition models are applied to further confirm Fmi's role in 'winner' cells. The authors also show that Fmi's role in cell competition is separate from its function in PCP formation.

      We would like to thank the reviewer for their thoughtful and positive review.

      Strengths:

      (1) The identification of Fmi as a potential regulator of cell competition under various conditions is interesting.

      (2) The authors demonstrate that the involvement of Fmi in cell competition is distinct from its role in planar cell polarity (PCP) development.

      Weaknesses:

      (1) The authors provide a superficial description of the related phenotypes, lacking a comprehensive mechanistic understanding. Induction of apoptosis and JNK activation are general outcomes, but it is important to determine how they are specifically induced in Fmi-depleted clones. The authors should take advantage of the power of fly genetics and conduct a series of genetic epistasis analyses.

      We appreciate that this manuscript does not address the mechanism by which Fmi participates in cell competition. Our intent here is to demonstrate that Fmi is a key contributor to competition. We indeed aim to delve into mechanism, are currently directing our efforts to exploring how Fmi regulates competition, but the size of the project and required experiments are outside of the scope of this manuscript. We feel that our current findings are sufficiently valuable to merit sharing while we continue to investigate the mechanism linking Fmi to competition. 

      (2) The depletion of Fmi may not have had a significant impact on cell competition; instead, it is more likely to have solely facilitated the induction of apoptosis.

      We respectfully disagree for several reasons. First, loss of Fmi is specific to winners; loss of Fmi has no effect on its own or in losers when confronting winners in competition. And in the Ras V12 tumor model, loss of Fmi did not perturb whole eye tumors – it only impaired tumor growth when tumors were confronted with competitors. We agree that induction of apoptosis is affected, but so too is proliferation, and only when in winners in competition.

      (3) To make a solid conclusion for Figure 1, the authors should investigate whether complete removal of Fmi by a mutant allele affects tumor growth induced by expressing RasV12 and scrib RNAi throughout the eye.

      We agree with the reviewer that this is a worthwhile experiment, given that RNAi has its limitations. However, as fmi is homozygous lethal at the embryo stage, one cannot create whole disc tumors mutant for fmi. As an approximation to this condition, we have introduced the GMR-Hid, cell-lethal combination to eliminate non-tumor tissue in the eye disc. Following elimination of non-tumor cells, there remains essentially a whole disc harboring fminull tumor. Indeed, this shows that whole fminull tumors overgrow similar to control tumors, confirming that the lack of Fmi only affects clonal tumors. We provide those results in the updated manuscript (Figure 1 Suppl 2 C-D).

      (4) The authors should test whether the expression level of Fmi (both mRNA and protein) changes during tumorigenesis and cell competition.

      This is an intriguing point that we considered worthwhile to examine. We performed immunostaining for Fmi in clones to determine whether its levels change during competition. Fmi is expressed ubiquitously at apical plasma membranes throughout the disc, and this was unchanged by competition, including inside >>Myc clones and at the clone boundary, where competition is actively happening. We provide these results as a new supplementary figure (Figure 5 Suppl 1) in the updated manuscript.

      Reviewer 3:

      Summary: 

      In this manuscript, Bosch and colleagues describe an unexpected function of Flamingo, a core component of the planar cell polarity pathway, in cell competition in the Drosophila wing and eye disc. While Flamingo depletion has no impact on tumour growth (upon induction of Ras and depletion of Scribble throughout the eye disc), and no impact when depleted in WT cells, it specifically tunes down winner clone expansion in various genetic contexts, including the overexpression of Myc, the combination of Scribble depletion with activation of Ras in clones or the early clonal depletion of Scribble in eye disc. Flamingo depletion reduces the proliferation rate and increases the rate of apoptosis in the winner clones, hence reducing their competitiveness up to forcing their full elimination (hence becoming now "loser"). This function of Flamingo in cell competition is specific to Flamingo as it cannot be recapitulated with other components of the PCP pathway, and does not rely on the interaction of Flamingo in trans, nor on the presence of its cadherin domain. Thus, this function is likely to rely on a non-canonical function of Flamingo which may rely on downstream GPCR signaling.

      This unexpected function of Flamingo is by itself very interesting. In the framework of cell competition, these results are also important as they describe, to my knowledge, one of the only genetic conditions that specifically affect the winner cells without any impact when depleted in the loser cells. Moreover, Flamingo does not just suppress the competitive advantage of winner clones, but even turns them into putative losers. This specificity, while not clearly understood at this stage, opens a lot of exciting mechanistic questions, but also a very interesting long-term avenue for therapeutic purposes as targeting Flamingo should then affect very specifically the putative winner/oncogenic clones without any impact in WT cells.

      The data and the demonstration are very clean and compelling, with all the appropriate controls, proper quantification, and backed-up by observations in various tissues and genetic backgrounds. I don't see any weakness in the demonstration and all the points raised and claimed by the authors are all very well substantiated by the data. As such, I don't have any suggestions to reinforce the demonstration.

      While not necessary for the demonstration, documenting the subcellular localisation and levels of Flamingo in these different competition scenarios may have been relevant and provided some hints on the putative mechanism (specifically by comparing its localisation in winner and loser cells). 

      Also, on a more interpretative note, the absence of the impact of Flamingo depletion on JNK activation does not exclude some interesting genetic interactions. JNK output can be very contextual (for instance depending on Hippo pathway status), and it would be interesting in the future to check if Flamingo depletion could somehow alter the effect of JNK in the winner cells and promote downstream activation of apoptosis (which might normally be suppressed). It would be interesting to check if Flamingo depletion could have an impact in other contexts involving JNK activation or upon mild activation of JNK in clones.

      We would like to thank the reviewer for their thorough and positive review.

      Strengths: 

      - A clean and compelling demonstration of the function of Flamingo in winner cells during cell competition.

      - One of the rare genetic conditions that affects very specifically winner cells without any impact on losers, and then can completely switch the outcome of competition (which opens an interesting therapeutic perspective in the long term)

      Weaknesses: 

      - The mechanistic understanding obviously remains quite limited at this stage especially since the signaling does not go through the PCP pathway.

      Reviewer 2 made the same comment in their weakness (1), and we refer to that response. In future work, we are excited to better understand the pathways linking Fmi and competition.