- Dec 2024
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Chlamydial cell division is a peculiar event, whose mechanism was mysterious for many years. C. trachomatis division was shown to be polar and involve a minimal divisome machinery composed of both homologues of divisome and elongasome components, in the absence of an homologue of the classical division organizer FtsZ. In this paper, Harpring et al., show that FtsK is required at an early stage of the chlamydial divisome formation.
Strengths:
The manuscript is well-written and the results are convincing. Quantification of divisome component localization is well performed, number of replicas and number of cells assessed are sufficient to get convincing data. The use of a CRISPRi approach to knock down some divisome components is an asset and allows a mechanistic understanding of the hierarchy of divisome components.
Weaknesses:
The authors did not analyse the role of all potential chlamydial divisome components and did not show how FtsK may initiate the positioning of the divisome. Their conclusion that FtsK initiates the assembly of the divisome is an overinterpretation and is not backed by the data. However, data show convincingly that FtsK, if perhaps not the initiator of chlamydial division, is definitely an early and essential component of the chlamydial divisome.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
This study uses all-atom MD simulation to explore the mechanics of channel opening for the NOMPC mechanosensitive channel. Previously the authors used MD to show that external forces directed along the long axis of the protein (normal to the membrane) result in AR domain compression and channel opening. This force causes two changes to the key TRP domains adjacent to the channel gate: 1) a compressive force pushes the TRP domain along the membrane normal, while 2) a twisting torque induces a clock-wise rotation on the TRP domain helix when viewing the bottom of the channel from the cytoplasm. Here, the authors wanted to understand which of those two changes is responsible for increasing the inner pore radius, and they show that it is the torque. The simulations in Figure 2 probe this question with different forces, and we can see the pore open with parallel forces in the membrane, but not with the membrane-normal forces. I believe this result as it is reproducible, the timescales are reaching 1 microsecond, and the gate is clearly increasing diameter to about 4 Å. This seems to be the most important finding in the paper, but the impact is limited since the authors already show how forces lead to channel opening, and this is further teasing apart the forces and motions that are actually the ones that cause the opening.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this study, the authors sought to elucidate the neural mechanisms underlying the role of Naa10 in neurodevelopmental disruptions with a focus on its role in the hippocampus. The authors use an impressive array of techniques to identify a chain of events that occurs in the signaling pathway starting from Naa10 acetylating Btbd3 to regulation of F-actin dynamics that are fundamental to neurite outgrowth. They provide convincing evidence that Naa10 acetylates Btbd3, that Btbd3 facilitates CapZb binding to F-actin in a Naa10 acetylation-dependent manner, and that this CapZb binding to F-actin is key to neurite outgrowth. Besides establishing this signaling pathway, the authors contribute novel lists of Naa10 and Btbd3 interacting partners, which will be useful for future investigations into other mechanisms of action of Naa10 or Btbd3 through alternative cell signaling pathways. The evidence presented for an anxiety-like behavioral phenotype as a result of Naa10 dysfunction is mixed and tenuous, and assays for the primary behaviors known to be altered by Naa10 mutations in humans were not tested. As such, behavioral findings and their translational implications should be interpreted with caution. Finally, while not central to the main cell signaling pathway delineated, the characterization of brain region-specific and cell maturity of Naa10 expression patterns was presented in few to single animals and not quantified, and as such should also be interpreted with caution. On a broader level, these findings have implications for neurodevelopment and potentially, although not tested here, synaptic plasticity in adulthood, which means this novel pathway may be fundamental for brain health.
Summarized list of minor concerns
(1) The early claims of the manuscript are supported by very small sample sizes (often 1-3) and/or lack of quantification, particularly in Figures S1 and 1.
(2) Evidence is insufficient for CA1-specific knockdown of Naa10.
(3) The relationship between the behaviors measured, which centered around mood, and Ogden syndrome, was not clear, and likely other behavioral measures would be more translationally relevant for this study. Furthermore, the evidence for an anxiety-like phenotype was mixed.
(4) Btbd3 is characterized by the authors as an OCD risk gene, but its status as such is not well supported by the most recent, better-powered genome-wide association studies than the one that originally implicated Btbd3. However, there is evidence that Btbd3 expression, including selectively in the hippocampus, is implicated in OCD-relevant behaviors in mice.
(5) The reporting of the statistics lacks sufficient detail for the reader to deduce how experimental replicates were defined.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This is an inspired study that merges the concept of individuality with evolutionary processes to uncover a new strategy that diversifies individual behavior that is also potentially evolutionarily adaptive.
The authors use a time-resolved measurement of spontaneous, innate behavior, namely handedness or turn bias in individual, isogenic flies, across several genetic backgrounds.
They find that an individual's behavior changes over time, or drifts. This has been observed before, but what is interesting here is that by looking at multiple genotypes, the authors find the amount of drift is consistent within genotype i.e., genetically regulated, and thus not entirely stochastic. This is not in line with what is known about innate, spontaneous behaviors. Normally, fluctuations in behavior would be ascribed to a response to environmental noise. However, here, the authors go on to find what is the pattern or rule that determines the rate of change of the behavior over time within individuals. Using modeling of behavior and environment in the context of evolutionarily important timeframes such as lifespan or reproductive age, they could show when drift is favored over bet-hedging and that there is an evolutionary purpose to behavioral drift. Namely, drift diversifies behaviors across individuals of the same genotype within the timescale of lifespan, so that the genotype's chance for expressing beneficial behavior is optimally matched with potential variation of environment experienced prior to reproduction. This ultimately increases the fitness of the genotype. Because they find that behavioral drift is genetically variable, they argue it can also evolve.
Strengths:
Unlike most studies of individuality, in this study, the authors consider the impact of individuality on evolution. This is enabled by the use of multiple natural genetic backgrounds and an appropriately large number of individuals to come to the conclusions presented in the study. I thought it was really creative to study how individual behavior evolves over multiple timescales. And indeed this approach yielded interesting and important insight into individuality. Unlike most studies so far, this one highlights that behavioral individuality is not a static property of an individual, but it dynamically changes. Also, placing these findings in the evolutionary context was beneficial. The conclusion that individual drift and bet-hedging are differently favored over different timescales is, I think, a significant and exciting finding.
Overall, I think this study highlights how little we know about the fundamental, general concepts behind individuality and why behavioral individuality is an important trait. They also show that with simple but elegant behavioral experiments and appropriate modeling, we could uncover fundamental rules underlying the emergence of individual behavior. These rules may not at all be apparent using classical approaches to studying individuality, using individual variation within a single genotype or within a single timeframe.
Weaknesses:
I am unconvinced by the claim that serotonin neuron circuits regulate behavioral drift, especially because of its bidirectional effect and lack of relative results for other neuromodulators. Without testing other neuromodulators, it will remain unclear if serotonin intervention increases behavioral noise within individuals, or if any other pharmacological or genetic intervention would do the same. Another issue is that the amount of drugs that the individuals ingested was not tracked. Variable amounts can result in variable changes in behavior that are more consistent with the interpretation of environmental plasticity, rather than behavioral drift. With the current evidence presented, individual behavior may change upon serotonin perturbation, but this does not necessarily mean that it changes or regulates drift.
However, I think for the scope of this study, finding out whether serotonin regulates drift or not is less important. I understand that today there is a strong push to find molecular and circuit mechanisms of any behavior, and other peers may have asked for such experiments, perhaps even simply out of habit. Fortunately, the main conclusions derived from behavioral data across multiple genetic backgrounds and the modeling are anyway novel, interesting, and in fact more fundamental than showing if it is serotonin that does it or not.
To this point, one thing that was unclear from the methods section is whether genotypes that were tested were raised in replicate vials and how was replication accounted for in the analyses. This is a crucial point - the conclusion that genotypes have different amounts of behavioral drift cannot be drawn without showing that the difference in behavioral drift does not stem from differences in developmental environment.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors present a study of how modulatory activity from outside the classical receptive field (cRF) differs from cRF stimulation. They study neural activity across the different layers of V1 in two anesthetized monkeys using Neuropixels probes. The monkeys are presented with drifting gratings and border-ownership tuning stimuli. They find that border-ownership tuning is organized into columns within V1, which is unexpected and exciting, and that the flow of activity from cell-to-cell (as judged by cross-correlograms between single units) is influenced by the type of visual stimulus: border-ownership tuning stimuli vs. drifting-grating stimuli.
Strengths:
The questions addressed by the study are of high interest, and the use of Neuropixels probes yields extremely high numbers of single-units and cross-correlation histograms (CCHs) which makes the results robust. The study is well-described.
Weaknesses:
The weaknesses of the study are (a) the use of anesthetized animals, which raises questions about the nature of the modulatory signal being measured and the underlying logic of why a change in visual stimulus would produce a reversal in information flow through the cortical microcircuit and (b) the choice of visual stimuli, which do not uniquely isolate feedforward from feedback influences.
(1) The modulation latency seems quite short in Figure 2C. Have the authors measured the latency of the effect in the manuscript and how it compares to the onset of the visually driven response? It would be surprising if the latency was much shorter than 70ms given previous measurements of BO and figure-ground modulation latency in V2 and V1. On the same note, it might be revealing to make laminar profiles of the modulation (i.e. preferred - non-preferred border orientation) as it develops over time. Does the modulation start in feedback recipient layers?
(2) Can the authors show the average time course of the response elicited by preferred and non-preferred border ownership stimuli across all significant neurons?
(3) The logic of assuming that cRF stimulation should produce the opposite signal flow to border-ownership tuning stimuli is worth discussing. I suspect the key difference between stimuli is that they used drifting gratings as the cRF stimulus, the movement of the stimulus continually refreshes the retinal image, leading to continuous feedforward dominance of the signals in V1. Had they used a static grating, the spiking during the sustained portion of the response might also show more influence of feedback/horizontal connections. Do the initial spikes fired in response to the border-ownership tuning stimuli show the feedforward pattern of responses? The authors state that they did not look at cross-correlations during the initial response, but if they do, do they see the feedforward-dominated pattern? The jitter CCH analysis might suffice in correcting for the response transient.
(4) The term "nCRF stimulation" is not appropriate because the CRF is stimulated by the light/dark edge.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This manuscript presents an important exploration of how intrinsic and synaptic conductances affect the robustness of neural circuits. This is a well-deserved question, and overall, the manuscript is written well and has a logical progression.
The focus on intrinsic plasticity as a potentially overlooked factor in network dynamics is valuable. However, while the stomatogastric ganglion (STG) serves as a well-characterized and valuable model for studying network dynamics, its simplified structure and specific dynamics limit the generalizability of these findings to more complex systems, such as mammalian cortical microcircuits.
Strengths:<br /> Clean and simple model. Simulations are carefully carried out and parameter space is searched exhaustively.
Weaknesses:
(1) Scope and Generalizability:<br /> The study's emphasis on intrinsic conductance is timely, but with its minimalistic and unique dynamics, the STG model poses challenges when attempting to generalize findings to other neural systems. This raises questions regarding the applicability of the results to more complex circuits, especially those found in mammalian brains and those where the dynamics are not necessarily oscillating. This is even more so (as the authors mention) because synaptic conductances in this study are inhibitory, and changes to their synaptic conductances are limited (as the driving force for the current is relatively low).
(2) Challenges in Comparison:<br /> A significant challenge in the study is the comparison method used to evaluate the robustness of intrinsic versus synaptic perturbations. Perturbations to intrinsic conductances often drastically affect individual neurons' dynamics, as seen in Figure 1, where such changes result in single spikes or even the absence of spikes instead of the expected bursting behavior. This affects the input to downstream neurons, leading to circuit breakdowns. For a fair comparison, it would be essential to constrain the intrinsic perturbations so that each neuron remains within a particular functional range (e.g., maintaining a set number of spikes). This could be done by setting minimal behavioral criteria for neurons and testing how different perturbation limits impact circuit function.
(3) Comparative Metrics for Perturbation:<br /> Another notable issue lies in the evaluation metrics for intrinsic and synaptic perturbations. Synaptic perturbations are straightforward to quantify in terms of conductance, but intrinsic perturbations involve more complexity, as changes in maximal conductance result in variable, nonlinear effects depending on the gating states of ion channels. Furthermore, synaptic perturbations focus on individual conductances, while intrinsic perturbations involve multiple conductance changes simultaneously. To improve fairness in comparison, the authors could, for example, adjust the x-axis to reflect actual changes in conductance or scale the data post hoc based on the real impact of each perturbation on conductance. For example, in Figure 6, the scale of the panels of the intrinsic (e.g., g_na-bar) is x500 larger than the synaptic conductance (a row below), but the maximal conductance for sodium hits maybe for a brief moment during every spike and than most of the time it is close to null. Moreover, changing the sodium conductance over the range of 0-250 for such a nonlinear current is, in many ways, unthinkable, did you ever measure two neurons with such a difference in the sodium conductance? So, how can we tell that the ranges of the perturbations make a meaningful comparison?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The study investigates the potential influence of the response criterion on neural decoding accuracy in consciousness and unconsciousness, utilizing either simulated data or reanalyzing experimental data with post-hoc sorting data.
Strengths:
When comparing the neural decoding performance of Target versus NonTarget with or without post-hoc sorting based on subject reports, it is evident that response criterion can influence the results. This was observed in simulated data as well as in two experiments that manipulated the subject response criterion to be either more liberal or more conservative. One experiment involved a two-level response (seen vs unseen), while the other included a more detailed four-level response (ranging from 0 for no experience to 3 for a clear experience). The findings consistently indicated that adopting a more conservative response criterion could enhance neural decoding performance, whether in conscious or unconscious states, depending on the sensitivity or overall response threshold.
Weaknesses:
(1) The response criterion plays a crucial role in influencing neural decoding because a subject's report may not always align with the actual stimulus presented. This discrepancy can occur in cases of false alarms, where a subject reports seeing a target that was not actually there, or in cases where a target is present but not reported. Some may argue that only using data from consistent trials (those with correct responses) would not be affected by the response criterion. However, the authors' analysis suggests that a conservative response criterion not only reduces false alarms but also impacts hit rates. It is important for the authors to further investigate how the response criterion affects neural decoding even when considering only correct trials.
(2) The author has utilized decoding target vs. nontarget as the neural measures of unconscious and/or conscious processing. However, it is important to note that this is just one of the many neural measures used in the field. There are an increasing number of studies that focus on decoding the conscious content, such as target location or target category. If the author were to include results on decoding target orientation and how it may be influenced by response criterion, the field would greatly benefit from this paper.
-
- Nov 2024
-
www.columbia.edu www.columbia.edu
-
oncewe reduce the climate forcing enough that Earth’s energy imbalance becomes slightlynegative, feedbacks will work in the opposite sense, helping us move global temperature andclimate patterns back toward their condition before human alterations of the planet began
for - climate crisis - planetary tipping points - irreversible? - Hansen disagrees - part 2 - climate crisis - comparison - planetary tipping points - Hansen vs Rockstrom
climate crisis - comparison - planetary tipping points - Hansen vs Rockstrom - Hansen makes a valid point. What Rockstrom might consider irreversible, although he doesn't explicitly say, but implies, Hansen speaks instead in more precise terms - The perspectives may be dependent on the knowledge that informs each scientist - Hansen's research into the unknown area of climate change, aeresols and cloud cover, is not considered in conventional knowledge that IPCC bases its conclusions on since it is unknown - Hansen's research uncovers that aeresols play a very large role, to such an extent that humans may be able to mitigate exceeding dangerous temperature thresholds pragmatically through aeresol interventions that impact cloud behavior -
-
-
www.amazon.com www.amazon.com
-
AN1.0 out of 5 stars Comply tips are superior Reviewed in the United States on May 16, 2024Model: MVerified Purchase For overall fit, sound quality and isolation Comply tips are much much better. Also when taking off with lots of care one of the tips fell apart (was assemblable). For the price and quality I would just go for the foam comply tips.
This is a customer review (Amazon) of Spinfit Superfine tips (SS) for Airpods Pro 2, whose smallest tips (XS) still hurt my ears esp. the right ear. Note: Comply tips.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors have performed a rigorous study to assess the role of ESR1+ neurons in the PMC to control the coordination of bladder and sphincter muscles during urination. This is an important extension of previous work defining the role of these brainstem neurons, and convincingly adds to the understanding of their role as master regulators of urination. This is a thorough, well-done study that clarifies how the Pontine micturition center coordinates different muscle groups for efficient urination, but there are some questions and considerations that remain.
Strengths:
These data are thorough and convincing in showing that ESR1+ PMC neurons exert coordinated control over both the bladder and sphincter activity, which is essential for efficient urination. The anatomical distinctions in pelvic versus pudendal control are clear, and it's an advance to understand how this coordination occurs. This work offers a clearer picture of how micturition is driven.
Weaknesses:
The dynamics of how this population of ESR1+ neurons is engaged in natural urination events remains unclear. Not all ESR1+neurons are always engaged, and it is not measured whether this is simply variation in population activity, or if more neurons are engaged during more intense starting bladder pressures, for instance. In particular, the response dynamics of single and doubly-projecting neurons are not defined. Additionally, the model for how these neurons coordinate with CRH+ neuron activity in the PMC is not addressed, although these cell types seem to be engaged at the same time. Lastly, it would be interesting to know how sensory input can likely modulate the activity of these neurons, but this is perhaps a future direction.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The manuscript presenting the discovery of a heparan-sulfate (HS) binding domain in monkeypox virus (MPXV) H3 protein as a new anti-poxviral drug target, presented by Bin Zhen and co-workers, is of interest, given that it offers a potentially broad antiviral substance to be used against poxviruses. Using new computational biology techniques, the authors identified a new alpha-helical domain in the H3 protein, which interacts with cell surface HS, and this domain seems to be crucial for H3-HS interaction. Given that this domain is conserved across orthopoxviruses, authors designed protein inhibitors. One of these inhibitors, AI-PoxBlock723, effectively disrupted the H3-HS interaction and inhibited infection with Monkeypox virus and Vaccinia virus. The presented data should be of interest to a diverse audience, given the possibility of an effective anti-poxviral drug.
Strengths:
In my opinion, the experiments done in this work were well-planned and executed. The authors put together several computational methods, to design poxvirus inhibitor molecules, and then they test these molecules for infection inhibition.
Comments on revised version:
The authors have addressed the comments I made in my review.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this study, the authors investigated the release properties of glutamate/GABA co-transmission at the supramammillary nucleus (SuM)-dentate granule cell (DGC) synapses using state -of-the-arts in vitro electrophysiology and anatomical approaches at the light and electron microscopy level. They found that SuM to dentate granule cell synapses, which co-release glutamate and GABA, exhibit distinct differences in paired-pulse ratio, Ca2+ sensitivity, presynaptic receptor modulation, and Ca2+ channel-vesicle coupling configuration for each neurotransmitter. The study shows that glutamate/GABA co-release produces independent glutamatergic and GABAergic synaptic responses, with postsynaptic targets segregated. They show that most SuM boutons form distinct glutamatergic and GABAergic synapses at proximity, characterized by GluN1 and GABAAα1 receptor labeling respectively. Furthermore, they demonstrate that glutamate/GABA co-transmission exhibits distinct short-term plasticity, with glutamate showing frequency-dependent depression and GABA showing frequency-independent stable depression. The authors provide compelling evidence at the anatomical and physiological levels that glutamate and GABA are co-release by different synaptic vesicles within the same synaptic terminal at the SuM-DGC synapses and that the distinct transmission modes of the glutamate and GABA release serve as a frequency-dependent filters of SuM inputs on GC outputs.<br /> This is a fundamental work, that significantly advances our understanding of the mechanism by which the two fast-acting and functionally opposing neurotransmitters glutamate and GABA are co-transmitted at the SuM-DGC synapses and the functional role of this type of Glutamate/GABA co-transmission.
Strengths:
The conclusions of this paper are provided by a large number of compelling data
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors are trying to test the hypothesis that ATP bursts are the predominant driver of antibiotic lethality of Mycobacteria
Strengths:
No significant strengths in the current state as it is written.
Weaknesses:
A major weakness is that M. smegmatis has a doubling time of three hours and the authors are trying to conclude that their data would reflect the physiology of M. tuberculossi that has a doubling time of 24 hours. Moreover, the authors try to compare OD measurements with CFU counts and thus observe great variabilities.
Comments on revisions:
I am surprised that the authors simply did not repeat the study in figure one with CFU counts and repeated in triplicate. Since this is M. smegmatis, it would take no longer than two weeks to repeat this experiment and replace the figure. I understand that obtaining CFU counts is much more laborious than OD measurements but it is necessary. Your graph still says that there is 0 bacteria at time 0, yet in your legend it says you started with 600,000 CFU/ml. I don't understand why this experiment was not repeated with CFU counts measured throughout. This is not a big ask since this is M. smegmatis but it appears that the authors do not want to repeat this experiment. Minimally, fix the graph to represent the CFU.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors show convincing data that increasing NK cell function/frequency can reduce development and progression of metastatic disease after primary tumor resection.
Strengths:
The inclusion of a first-in-human trial highlighting some partial responses of metastatic patients treated with in vitro expanded NK cells is tantalising. It is difficult to perform trials in preventing further metastasis since the timelines are very protracted but more data like these highlighting a role for NK cells in improving local cDC1/T cells anti-tumor immunity will encourage deeper thinking around therapeutic approaches to target endogenous NK cells to achieve the same.
Weaknesses:
As always, more patient data would help increase confidence around the human relevance of the approach.
Comments on revisions:
The authors have addressed all my queries
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
This study from Dr. Emura and colleagues addresses the relevance of AGS3 mutations in the execution of asymmetric cell divisions promoting the formation of the micromere during sea-searching development. To this aim, the authors use quantitative imaging approaches to evaluate the localisation of AGS3 mutants truncated at the N-terminal region or at the C-terminal region, and correlate these distributions with the formation of micromere and correct development of embryos to the pluteus stage. The authors also analyse the capacity of these mutated proteins to rescue developmental defects observed upon AGS3 depletion by morpholino antisense nucleotides (MO). Collectively these experiments revealed that the C-terminus of AGS3, coding for four GoLoco motifs binding to cortical Gaphai proteins, is the molecular determinant for cortical localisation of AGS3 at the micromeres and correct pluteus development. Further genetic dissections and expression of chimeric AGS3 mutants carrying shuffled copies of the GoLoco motifs or four copies of the same motifs revealed that the position of GoLoco1 is essential for AGS3 functioning. To understand whether the AGS3-GoLoco1 evolved specifically to promote asymmetric cell divisions, the author analyse chimeric AGS3 variants in which they replaced the sea urchin GoLoco region with orthologs from other echinoids that do not form micromeres, or from Drosophila Pins or human LGN. These analyses corroborate the notion that the GoLoco1 position is crucial for asymmetric AGS3 functions. In the last part of the manuscript, the authors explore whether SpAGS3 interacts with the molecular machinery described to promote asymmetric cell division in eukaryotes, including Insc, NuMA, Par3 and Galphai, and show that all these proteins colocalize at the nascent micromere, together with the fate determinant Vasa. Collectively this evidence highlighted how evolutionarily selected AGS3 modifications are essential to sustain asymmetric divisions and specific developmental programs associated with them.
The manuscript addresses an interesting question and uses elegant genetic approaches associated with imaging analyses to elucidate the molecular mechanisms whereby AGS3 and spindle orientation proteins promote asymmetric divisions and specific developmental programs. This considered, it might be worth clarifying a few aspects of the reported findings.
(1) In some experimental settings, the presence of AGS3 mutants exacerbates the AGS3 deletion by MO (Fig. 4F). Can the author speculate on what can be the molecular explanation?
(2) Imaging analyses of Figure 4B-C suggest that the mutant AGS1111 does not localise at the vegetal cortex while AGS2222 does (Fig. 4C). However these mutants induce similar developmental defects (Fig. 4F) . What could be the reason?
(3) Figure 7 shows the crosstalk between AGS3 and other asymmetry players including NuMA. Vertebrate and Drosophila NuMA are ubiquitously present in tissues and localises to the spindle poles in mitosi. However in Figure 7A and 7E NuMA seems expressed only in a subset of sea urchin embryonic cells. Is this the case?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Overall, this is a well-executed and insightful study. With some refinement to the presentation and a deeper exploration of the implications, the manuscript will make a significant contribution to the field of cancer genomics and personalized medicine.
Strengths:
The manuscript integrates multi-omics data with machine learning to address the significant heterogeneity of hepatocellular carcinoma (HCC). The use of multiple clustering algorithms and a consensus method strengthens the robustness of the findings. The study successfully develops a prognostic model with excellent predictive accuracy, validated across independent datasets. This adds considerable value to the field, particularly in providing individualized treatment strategies. The identification of two distinct liver cancer subtypes with different biological and metabolic characteristics is well-supported by the data, offering a promising direction for personalized medicine.
Weaknesses:
(1) Consider streamlining the presentation of methods, especially regarding the clustering algorithms and machine learning models. Readers may find it difficult to follow the exact process unless more clearly outlined.
(2) Some figures, such as the signaling pathways and heatmaps, are critical to understanding the study's findings. Ensure that all figures are high quality, easy to interpret, and adequately labeled. You may also want to highlight the key findings within the figure captions more explicitly.
(3) While the manuscript does compare its prognostic model to those previously published, the novelty of the findings could be emphasized more clearly. Discussing the potential limitations of the study (e.g., the reliance on computational models and small sample sizes for scRNA-seq) could strengthen the manuscript.
(4) The manuscript mentions that the data was split into training and validation datasets in a 1:1 ratio. How was the performance verified? Is there an independent test set?
(5) The role of the MIF signaling pathway in subtype differentiation is intriguing, but further mechanistic insights into how this pathway drives the differences between CS1 and CS2 could be discussed in more detail. If experimental evidence for this pathway exists in the literature, it should be mentioned.
(6) Some sentences are quite long and complex, which can affect readability. Breaking them down into shorter, clearer sentences would improve the flow.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors seek to use single-cell sequencing approaches to identify TCRs specific for the SARS CoV2 spike protein, select a candidate TCR for cloning and use it to construct a TCR transgenic mouse. The argument is that this process is less cumbersome than the classical approach, which involves the identification of antigen-reactive T cells in vitro and the construction of T cell hybridomas prior to TCR cloning. TCRs identified by single-cell sequencing that is already paired to transcriptomic data would more rapidly identify TCRs that are likely to contribute to a functional response. The authors successfully identify TCRs that have expanded in response to SARS CoV2 spike protein immunization, bind to MHC tetramers and express genes associated with functional response. They then select a TCR for cloning and construction of a transgenic mouse in order to test the response of resulting T cells in vivo following immunization with spike protein of coronavirus infection.
Strengths:
(1) The study provides proof of principle for the identification and characterization of TCRs based on single-cell sequencing data.
(2) The authors employ a recently developed software tool (DALI) that assists in linking transcriptomic data to individual clones.
(3) The authors successfully generate a TCR transgenic animal derived from the most promising T cell clone (CORSET8) using the TCR sequencing approach.
(4) The authors provide initial evidence that CORSET8 T cells undergo activation and proliferation in vivo in response to immunization or infection.
(5) Procedures are well-described and readily reproducible.
Weaknesses:
(1) The purpose of presenting a failed attempt to generate TCR transgenic mice using a traditional TCR hybridoma method is unclear. The reasons for the failure are uncertain, and the inclusion of this data does not really provide information on the likely success rate of the hybridoma vs single cell approach for TCR identification, as only a single example is provided for either.
(2) There is little information provided regarding the functional differentiation of the CORSET8 T cells following challenge in vivo, including expression of molecules associated with effector function, cytokine production, killing activity and formation of memory. The study would be strengthened by some evidence that CORSET8 T cells are successfully recapitulating the functional features of the endogenous immune response (beyond simply proliferating and expressing CD44). This information is important to evaluate whether the presented sequencing-based identification and selection of TCRs is likely to result in T-cell responses that replicate the criteria for selecting the TCR in the first place.
(3) While I find the argument reasonable that the approach presented here has a lot of likely advantages over traditional approaches for generating TCR transgenic animals, the use of TCR sequencing data to identify TCRs for study in variety of areas, including cancer immunotherapy and autoimmunity, is in broad use. While much of this work opts for alternative methods of TCR expression in primary T cells (i.e. CRISPR or retroviral approaches), the process of generating a TCR transgenic mouse from a cloned TCR is not in itself novel. It would be helpful if the authors could provide a more extensive discussion explaining the novelty of their approach for TCR identification in comparison to other more modern approaches, rather than only hybridoma generation.
Comments on revisions:
The authors have provided additional clarification on the comparisons between the presented method for TCR transgenic generation and the hybridoma method that is more commonly used and added additional verification of the functional response in vivo of T cells expressing the selected TCR. Overall, these additions enhance the evidence that the proposed methods are likely to identify TCRs with a strong immune activation profile and are a reasonable response to the first round of review.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This study aims to demonstrate that E. coli can acquire rapid antibiotic resistance mutations in the absence of a DNA damage response. The authors employed a modified Adaptive Laboratory Evolution (ALE) workflow to investigate this, initiating the process by diluting an overnight culture 50-fold into an ampicillin selection medium. They present evidence that a recA- strain develops ampicillin resistance mutations more rapidly than the wild-type, as indicated by the Minimum Inhibitory Concentration (MIC) and mutation frequency. Whole-genome sequencing of recA- colonies resistant to ampicillin showed predominant inactivation of genes involved in the multi-drug efflux pump system, contrasting with wild-type mutations that seem to activate the chromosomal ampC cryptic promoter. Further analysis of mutants, including a lexA3 mutant incapable of inducing the SOS response, led the authors to conclude that the rapid evolution of antibiotic resistance occurs via an SOS-independent mechanism in the absence of recA. RNA sequencing suggests that antioxidative response genes drive the rapid evolution of antibiotic resistance in the recA- strain. They assert that rapid evolution is facilitated by compromised DNA repair, transcriptional repression of antioxidative stress genes, and excessive ROS accumulation.
Strengths:
The experiments are well-executed and the data appear reliable. It is evident that the inactivation of recA promotes faster evolutionary responses, although the exact mechanisms driving this acceleration remain elusive and deserve further investigation.
Weaknesses:
Some conclusions are overstated. For instance, the conclusion regarding the LexA3 allele, indicating that rapid evolution occurs in an SOS-independent manner (line 217), contradicts the introductory statement that attributes evolution to compromised DNA repair. The claim made in the discussion of Figure 3 that the hindrance of DNA repair in recA- is crucial for rapid evolution is at best suggestive, not demonstrative. Additionally, the interpretation of the PolI data implies its role, yet it remains speculative. In Figure 2A table, mutations in amp promoters are leading to amino acid changes! The authors' assertion that ampicillin significantly influences persistence pathways in the wild-type strain, affecting quorum sensing, flagellar assembly, biofilm formation, and bacterial chemotaxis, lacks empirical validation. Figure 1G suggests that recA cells treated with ampicillin exhibit a strong mutator phenotype; however, it remains unclear if this can be linked to the mutations identified in Figure 2's sequencing analysis.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public review):
In the manuscript, the authors combine SARS-CoV-2 sequence data from a state in Germany and mobility data to help in understanding the movement of virus and the potential to help decide where to focus sequencing. The global expansion in sequencing capability is a key outcome of the public health response. However, there remains uncertainty how to maximise the insights the sequence data can give. Improved ability to predict the movement of emergent variants would be a useful public health outcome.
However, I remain unconvinced that changing surveillance strategies is necessarily sensible as it remains unclear what the ultimate benefit of variant hunting is. Decisions to adapt surveillance strategies should not be taken lightly as there are substantial benefits of maintaining a stable and as representative as possible, system over time. It's unclear what public health action would result of detecting a few more sequences of a variant. Once a variant has been identified (arguably anywhere in the world/region), we already have the necessary information to motivate the development of updated vaccines/monoclonals.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors set out to develop a tissue culture method in which to study the different regenerative abilities of the central and peripheral branch of sensory axons. Neurons developed a small and large branch, which have different regenerative abilities, different transport rates, and different microtubule properties. The study provides convincing evidence that the two axonal branches differ in a way to correspond to in vivo. The different regenerative abilities of the two branches are an important observation because until now it has not been clear whether this difference is intrinsic to the neuron and axons or due to differences in the environment surrounding the axons. The authors have then looked for molecular explanations of the differences between the branches. They find different transport rates and different microtubule dynamics. The different microtubule dynamics are explained by differing levels of spastin, an enzyme that severs microtubules encouraging dynamics.
Strengths:
The differences between the two branches are clearly shown, together with differences in transport, microtubule dynamics, and regeneration. The in vitro model is novel and could be widely used. The methods used are robust and generally accepted.
Weaknesses:
In order for the method to be used it needs to be better described. For instance what proportion of neurons develop just two axonal branches, one of which is different? How selective are the researchers in finding appropriate neurons?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors provide four new annotated genomes for an important taxon within Mollusca known as Polyplacophora (chitons). They provide an impressive analysis showing syntenic relationships between the chromosomes of these four genomes but also other available chiton genome sequences and analysis of 20 molluscan linkage groups to expand this analysis across Mollusca.
Strengths:
The authors have selected particular chiton species for genome sequencing and annotation that expand what is known about genomes across portions of chiton phylogenetic diversity lacking genome sequences. The manuscript is well-written and illustrated in a concise manner. The figures are mostly clear, allowing a reader to visually compare the syntenic relationships of chromosomes, especially within chitons. Their phylogenetic analysis provides a simple manner to map important events in molluscan genome evolution. This study greatly expands what is known about molluscan and chiton comparative genomics.
Weaknesses:
I am not especially convinced that chitons have experienced more substantial genomic rearrangements or other genomic events than other molluscan classes, and for this reason, I did not personally find the title compelling: "Still waters run deep: Large scale genome rearrangements in the evolution of morphologically conservative Polyplacophora." Are the documented events "large scale genomic rearrangements"? It seems that mostly they found two cases of chromosome fusion, plus one apparent case of whole genome duplication. What do they mean by "Still waters run deep"? I have no idea. I guess they consider chitons to be morphologically conservative in their appearance and lifestyle so they are calling attention to this apparent paradox. However, most chiton genomes seem to be relatively conserved, but there are unexpected chromosome fusion events within a particular genus, Acanthochitona. Likewise, they found a large-scale gene duplication event in Acanthopleurinae, a different subfamily of chitons, which is quite interesting but these seem to be geologically recent events that do not especially represent the general pattern of genome evolution across this ancient molluscan taxon.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
The study by Liu et al provides a functional analysis of lnc-FANCI-2 in cervical carcinogenesis, building on their previous discovery of FANCI-2 being upregulated in cervical cancer by HPV E7.
The authors conducted a comprehensive investigation by knocking out (KO) FANCI-2 in CaSki cells and assessing viral gene expression, cellular morphology, altered protein expression and secretion, altered RNA expression through RNA sequencing (verification of which by RT-PCR is well appreciated), protein binding, etc. Verification experiments by RT-PCR, Western blot, etc are notable strengths of the study.
The KO and KD were related to increased Ras signaling and EMT and reduced IFN-y/a responses.
Although the large amount of data is well acknowledged, it is a limitation that most data come from CaSki cells, in which FANCI-2 localization is different from SiHa cells and cancer tissues (Figure 1). The cytoplasmic versus nuclear localization is somewhat puzzling.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this manuscript, Ruhling et al propose a rapid uptake pathway that is dependent on lysosomal exocytosis, lysosomal Ca2+ and acid sphingomyelinase, and further suggest that the intracellular trafficking and fate of the pathogen is dictated by the mode of entry.
The evidence provided is solid, methods used are appropriate and results largely support their conclusions, but can be substantiated further as detailed below. The weakness is a reliance on chemical inhibitors that can be non-specific to delineate critical steps.
Specific comments:
A large number of experiments rely on treatment with chemical inhibitors. While this approach is reasonable, many of the inhibitors employed such as amitriptyline and vacuolin1 have other or non-defined cellular targets and pleiotropic effects cannot be ruled out. Given the centrality of ASM for the manuscript, it will be important to replicate some key results with ASM KO cells.
Most experiments are done in HeLa cells. Given the pathway is projected as generic, it will be important to further characterize cell type specificity for the process. Some evidence for a similar mechanism in other cell types S. aureus infects, perhaps phagocytic cell type, might be good.
I'm a little confused about the role of ASM on the surface. Presumably, it converts SM to ceramide, as the final model suggests. Overexpression of b-toxin results in the near complete absence of SM on phagosomes (having representative images will help appreciate this), but why is phagosomal SM detected at high levels in untreated conditions? If bacteria are engulfed by SM-containing membrane compartments, what role does ASM play on the surface? If surface SM is necessary for phagosomal escape within the cell, do the authors imply that ASM is tuning the surface SM levels to a certain optimal range? Alternatively, can there be additional roles for ASM on the cell surface? Can surface SM levels be visualized (for example, in Figure 4 E, F)?
Related to that, why is ASM activity on the cell surface important? Its role in non-infectious or other contexts can be discussed.
If SM removal is so crucial for uptake, can exocytosis of lysosomes alone provide sufficient ASM for SM removal? How much or to what extent is lysosomal exocytosis enhanced by initial signaling events? Do the authors envisage the early events in their model happening in localized confines of the PM, this can be discussed.
How are inhibitor doses determined? How efficient is the removal of extracellular bacteria at 10 min? It will be good to substantiate the cfu experiments for infectivity with imaging-based methods. Are the roles of TPC1 and TPC2 redundant? If so, why does silencing TPC1 alone result in a decrease in infectivity? For these and other assays, it would be better to show raw values for infectivity. Please show alterations in lysosomal Ca2+ at the doses of inhibitors indicated. Is lysosomal Ca2+ released upon S. aureus binding to the cell surface? Will be good to directly visualize this.
The precise identification of cytosolic vs phagosomal bacteria is not very easy to appreciate. The methods section indicates how this distinction is made, but how do the authors deal with partial overlaps and ambiguities generally associated with such analyses? Please show respective images. The number of events (individual bacteria) for the live cell imaging data should be clearly mentioned.
In the phagosome maturation experiments, what is the proportion of bacteria in Rab5 or Rab7 compartments at each time point? Will the decreased Rab7 association be accompanied by increased Rab5? Showing raw values and images will help appreciate such differences. Given the expertise and tools available in live cell imaging, can the authors trace Rab5 and Rab7 positive compartment times for the same bacteria?
The results with longer-term infection are interesting. Live cell imaging suggests that ASM-inhibited cells show accelerated phagosomal escape that reduces by 6 hpi. Where are the bacteria at this time point ? Presumably, they should have reached lysosomes. The relationship between cytosolic escape, replication, and host cell death is interesting, but the evidence, as presented is correlative for the populations. Given the use of live cell imaging, can the authors show these events in the same cell?
Given the inherent heterogeneity in uptake processes and the use of inhibitors in most experiments, the distinction between ASM-dependent and independent pathways might not be as clear-cut as the authors suggest. Some caution here will be good. Can the authors estimate what fraction of intracellular bacteria are taken up ASM-dependent?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The manuscript by Liang and Guan provides an impressive attempt to characterize the conformational free energy landscape of a melibiose permease (MelB), a symporter member of major facilitator superfamily (MFS) of transporters. Although similar studies have been conducted previously for other members of MFS, each member or subfamily has its own unique features that make the employment of such methods quite challenging. While the methodology is indeed impressive, characterizing the coupling between large-scale conformational changes and substrate binding in membrane transporters is quite challenging and requires a sophisticated methodology. The conclusions obtained from the three sets of path-optimization and free energy calculations done by the authors are generally supported by the provided data and certainly add to our understanding of how sodium binding facilitates the transport of melibiose in MelB. However, the data is not generated reliably which questions the relevance of the conclusions as well. I particularly have some concerns regarding the implementation of the methodology that I will discuss below.
(1) In enhanced sampling techniques, often much attention is given to the sampling algorithm. Although the sampling algorithm is quite important and this manuscript has chosen an excellent pair: string method with swarms of trajectories (SMwST) and replica-exchange umbrella sampling (REUS) for this task, there are other important factors that must be taken into account. More specifically, the collective variables used and the preparation of initial conformations for sampling. I have objectives for both of these (particularly the latter) that I detail below. Overall, I am not confident that the free energy profiles generated (summarized in Figure 5) are reliable, and unfortunately, much of the data presented in this manuscript heavily relies on these free energy profiles.
(2) The authors state that they have had an advantage over other similar studies in that they had two endpoints of the string to work from experimental data. I agree that this is an advantage. However, this could lead to some dangerous flaws in the methodology if not appropriately taken into account. Proteins such as membrane transporters have many slow degrees of freedom that can be fully captured within tens of nanoseconds (90 ns was the simulation time used here for the REUS). Biased sampling allows us to overcome this challenge to some extent, but it is virtually impossible to take into account all slow degrees of freedom in the enhanced sampling protocol (e.g., the collective variables used here do not represent anything related to sidechain dynamics). Therefore, if one mixes initial conformations that form different initial structures (e.g., an OF state and an IF state from two different PDB files), it is very likely that despite all equilibration and relaxation during SMwST and REUS simulations, the conformations that come from different sources never truly mix. This is dangerous in that it is quite difficult to detect such inconsistencies and from a theoretical point of view it makes the free energy calculations impossible. Methods such as WHAM and its various offshoots all rely on overlap between neighboring windows to calculate the free energy difference between two windows and the overlap should be in all dimensions and not just the ones that we use for biasing. This is related to well-known issues such as hidden barriers and metastability. If one uses two different structures to generate the initial conformations, then the authors need to show their sampling has been long enough to allow the two sets of conformations to mix and overlap in all dimensions, which is a difficult task to do.
(3) I also have concerns regarding the choice of collective variables. The authors have split the residues in each transmembrane helix into the cyto- and periplasmic sides. Then they have calculated the mass center distance between the cytoplasmic sides of certain pairs of helices and have also done the same for the periplasmic side. Given the shape of a helix, this does not seem to be an ideal choice since rather than the rotational motion of the helix, this captures more the translational motion of the helix. However, the transmembrane helices are more likely to undergo rotational motion than the translational one.
(4) Convergence: String method convergence data does not show strong evidence for convergence (Figure S2) in my opinion. REUS convergence is also not discussed. No information is provided on the exchange rate or overlap between the windows.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This manuscript builds upon the work of a previous study published by the group (Dennison, 2021) to further elucidate the coregulatory axis of Srsf3 and PDGFRa on craniofacial development. The authors in this study investigated the molecular mechanisms by which PDGFRa signaling activates the RNA-binding protein Srsf3 to regulate alternative splicing (AS) and gene expression (GE) necessary for craniofacial development. PDGFRa signaling-mediated Srsf3 phosphorylation drives its translocation into the nucleus and affect binding affinity to different proteins and RNA, but the exact molecular mechanisms were not known. The authors performed RNA sequencing on immortalized mouse embryonic mesenchyme (MEPM) cells treated with shRNA targeting 3' UTR of Srsf3 or scramble shRNA (to probe AS and DE events that are Srsf3 dependent) and with and without PDGF-AA ligand treatment (to probe AS and DE events that are PDGFRa signaling dependent). They found that PDGFRa signaling has more effect on AS than on DE. A matching eCLIP-seq experiment was performed to investigate how Srsf3 binding sites change with and without PDGFRa signaling.
Strengths:
(1) The work builds well upon the previous data and the authors employ a variety of appropriate techniques to answer their research questions.
(2) The authors show that Srsf3 binding pattern within the transcript as well as binding motifs change significantly upon PDGFRa signaling, providing a mechanistic explanation for the significant changes in AS.
(3) By combining RNA-seq and eCLIP datasets together, the authors identified a list of genes that are directly bound by Srsf3 and undergo changes in GE and/or AS. Two examples are Becn1 and Wdr81, which are involved in early endosomal trafficking.
Weaknesses:
(1) The authors identify two genes whose AS are directly regulated by Srsf3 and involved in endosomal trafficking; however, they do not validate the differential AS results and whether changes in these genes can affect endosomal trafficking. In Figure 6, they show that PDGFRa signaling is involved in endosome size and Rab5 colocalization, but do not show how Srsf3 and the two genes are involved.
(2) The proposed model does not account for other proteins mediating the activation of Srsf3 after Akt phosphorylation. How do we know this is a direct effect (and not secondary or tertiary effect)?
This is a thoroughly revised manuscript. I would like to congratulate the authors to have invested a lot of time, resources, new data, and a more refined discussion to make this a compelling piece of work. I have no further concerns.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public review):
Summary:
Malaria transmission in the Gambia is highly seasonal, whereby periods of intense transmission at the beginning of the rainy season are interspersed by long periods of low to no transmission. This raises several questions about how this transmission pattern impacts the spatiotemporal distribution of circulating parasite strains. Knowledge of these dynamics may allow the identification of key units for targeted control strategies, the evaluation of the effect of selection/drift on parasite phenotypes (e.g., the emergence or loss of drug resistance genotypes), and analyze, through the parasites' genetic nature, the duration of chronic infections persisting during the dry season. Using a combination of barcodes and whole genome analysis, the authors try to answer these questions by making clever use of the different recombination rates, as measured through the proportion of genomes with identity-by-descent (IBD), to investigate the spatiotemporal relatedness of parasite strains at different spatial (i.e., individual, household, village, and region) and temporal (i.e., high, low, and the corresponding the transitions) levels. The authors show that a large fraction of infections are polygenomic and stable over time, resulting in high recombinational diversity (Figure 2). Since the number of recombination events is expected to increase with time or with the number of mosquito bites, IBD allows them to investigate the connectivity between spatial levels and to measure the fraction of effective recombinational events over time. The authors demonstrate the epidemiological connectivity between villages by showing the presence of related genotypes, a higher probability of finding similar genotypes within the same household, and how parasite-relatedness gradually disappears over time (Figure 3). Moreover, they show that transmission intensity increases during the transition from dry to wet seasons (Figure 4). If there is no drug selection during the dry season and if resistance incurs a fitness cost it is possible that alleles associated with drug resistance may change in frequency. The authors looked at the frequencies of six drug-resistance haplotypes (aat1, crt, dhfr, dhps, kelch13, and mdr1), and found no evidence of changes in allele frequencies associated with seasonality. They also find chronic infections lasting from one month to one and a half years with no dependence on age or gender.
The use of genomic information and IBD analytic tools provides the Control Program with important metrics for malaria control policies, for example, identifying target populations for malaria control and evaluation of malaria control programs.
Strength:
The authors use a combination of high-quality barcodes (425 barcodes representing 101 bi-allelic SNPs) and 199 high-quality genome sequences to infer the fraction of the genome with shared Identity by Descent (IBD) (i.e. a metric of recombination rate) over several time points covering two years. The barcode and whole genome sequence combination allows full use of a large dataset, and to confidently infer the relatedness of parasite isolates at various spatiotemporal scales.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This observational study investigates the efficacy of intracameral injected human stem cells as a means to re-functionalize the trabecular meshwork for the restoration of intraocular pressure homeostasis. Using a murine model of glaucoma, human adipose-derived mesenchymal stem cells are shown to be biologically safer and functionally superior at eliciting a sustained reduction in intraocular pressure (IOP). The authors conclude that the use of human adipose-derived mesenchymal stem cells has the potential for long-term treatment of ocular hypertension in glaucoma.
Strengths:
A noted strength is the use of a magnetic steering technique to direct injected stem cells to the iridocorneal angle. An additional strength is the comparison of efficacy between two distinct sources of stem cells: human adipose-derived mesenchymal vs. induced pluripotent cell derivatives. Utilizing both in vivo and ex vivo methodology coupled with histological evidence of introduced stem cell localization provides a consistent and compelling argument for a sustainable impact exogenous stem cells may have on the re-functionalization of a pathologically compromised TM.
Weaknesses:
A noted weakness of the study, as pointed out by the authors, includes the unanticipated failure of the genetic model to develop glaucoma-related pathology (elevated IOP, TM cell changes). While this is most unfortunate, it does temper the conclusion that exogenous human adipose derived mesenchymal stem cells may restore TM cell function. Given that TM cell function was not altered in their genetic model, it is difficult to say with any certainty that the introduced stem cells would be capable of restoring pathologically altered TM function. A restoration effect remains to be seen. Another noted complication to these findings is the observation that sham intracameral-injected saline control animals all showed elevated IOP and reduced outflow facility, compared to WT or Tg untreated animals, which allowed for more robust statistically significant outcomes. Additional comments/concerns that the authors may wish to address are elaborated in the Private Review section.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors used a chemical linker to induce phase separation in U2OS cell nuclei with two different proteins, a coiled-coil protein (Mad1) and a disordered domain (from LAF-1), whose condensates were purported to have different material properties. First, they performed Fluorescence Recovery After Photobleaching (FRAP) and estimated the viscosity via the Stokes-Einstein equation. Combined with droplet fusion assays, this yielded an estimate of the surface tension, wherein the disordered condensates were found to have 130 times higher surface tension than the coiled-coil condensates. Confocal fluorescence microscopy was used to follow condensates over time, enabling classification of growth events as either fusion-, ripening-, or diffusion-based, and subsequent comparison of the relative abundances of these growth events between the two condensate types. Coiled-coil condensates grew primarily by diffusive processes, whereas disordered condensates grew primarily by ripening processes. The coarsening rates were described by growth exponents extracted from power-law fits of average normalized condensate radius over time. In both cases, these growth exponents were smaller than those predicted by theory, leading the authors to propose that nuclear condensate growth is generally suppressed by chromatin mechanics, as found in previous studies albeit with different exponents. The authors developed a theory to understand how the extent of this effect may depend on condensate material properties like surface tension. Treating chromatin as a neo-Hookean elastic solid, the authors assume a form of mechanical pressure that plateaus with increasing condensate size, and the resulting theory is used to analyze the observed condensate growth dynamics. A linearized extension of the theory is used to distinguish between suppressed, elastic, and Ostwald ripening. Finally, the authors consider the impact of different chromatin environments on condensate growth patterns and dynamics, which is achieved experimentally with another cell type (HeLa) and with a drug that decondenses chromatin (TSA). They find that condensate growth patterns are not significantly changed in either condensate type, but that the number of condensates nucleated and their related growth exponent are more sensitive to variations in chromatin stiffness in the coiled-coil system due to its low surface tension.
Strengths:
This work provides evidence that nuclear condensates can coarsen not only by fusion but also by continuous diffusive growth processes, predominant in coiled-coil condensates, and ripening, predominant in disordered condensates. Across these different condensate types and coarsening mechanisms, the authors find growth exponents lower than theoretical expectations, reinforcing the notion that elastic media can suppress condensate growth in the nucleus. Combined with theory, these observed differences in growth patterns and rates are argued to originate from differences in material properties, namely, surface tension relative to local chromatin stiffness. The authors further suggest that the few ripening events that are seen in coiled-coil condensates may be elastic in nature due to gradients in chromatin stiffness as opposed to Ostwald ripening. If this assertion proves to be robust, it would mark an early observation of elastic ripening in living cells.
Weaknesses:
(1) The assertion that nuclear condensates experience an external pressure from the chromatin network implies that chromatin should be excluded from the condensates (Nott et al., Molecular Cell (2015); Shin et al., Cell (2018)). This has not been shown or discussed here. While Movie 1 suggests the coiled-coil condensates may exclude chromatin, Movie 2 suggests the disordered condensates do not. LAF-1, as an RNA helicase, interacts with RNA, and RNA can be associated with chromatin in the nucleus. RNA can also modulate droplet viscosity. The authors' analysis of the disordered condensate data only makes sense if these condensates exclude chromatin, which they have not demonstrated, and which appears not to be the case.
(2) Critical physical parameters like viscosity and surface tension have not been directly measured but rather are estimated indirectly using FRAP and the Stokes-Einstein equation. While not uncommon in the field, this approach is flawed as droplet viscosity is not simply determined by the size of the composing particles. Rather, in polymeric systems, viscosity strongly depends on the local protein concentration and intermolecular interactions (Rubinstein & Semenov Macromolecules (2001)). This unjustified approach propagates to the surface tension estimate since only the ratio of viscosity to surface tension is explicitly measured. Since the paper's conclusions strongly hinge on the magnitude of the surface tension, a more accurate estimate or direct measurement of this salient material property is called for.
(3) The phase diagram of growth modes very much depends on the assumption of neo-Hookean elasticity of the chromatin network. This assumption is poorly justified and calls into question the general conclusions about possible growth phases. The authors need to either provide evidence for neo-Hookean elasticity, or, alternatively, consider a model in which strain stiffening or thinning continues as droplets grow, which would likely lead to very different conclusions, and acknowledge this uncertainty.
(4) There is limited data for the elastic ripening claim. In Figure 3E, only one data point resides in the elastic ripening (δ < 0) range, with a few data points very close to zero.
(5) The authors claim that "our work shows that the elastic chromatin network can stabilize condensates against Ostwald ripening but only when condensate surface tension is low." This claim also depends on the details of the chosen neo-Hookean model of chromatic elasticity, and it is not studied here whether these results are robust to other models.
(6) It is also not clear how the total number of Mad1 proteins and LAF-1 disordered regions change while the condensates evolve with time. As the experiments span longer than 6 hours, continued protein production could lead to altered condensate coarsening dynamics. For example, continued production of Mad1 can lead to the growth of all Mad1 condensates, mimicking the diffusive growth process.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Mortzfeld et al. describe their study of class IIb microcins. Furthering our awareness of the presence and action of microcins is an important line of research. However, several issues related to the premise, sequence analysis, and validation require attention to support the claims.
(1) Previous studies have been published on the broader distribution of microcins across bacteria. The software has been published for their identification. Comparison to this software and/or discussion of previous work should be included to place this work in the context of the field.
(2) It is not clear how immunity proteins were identified and there does not appear to be functional confirmation to show these predicted immunity proteins are real. Thus, it is premature to state that immunity genes have been found. This may also confound some of the validation studies below if proper immunity proteins have not been included.
(3) Please show the nt alignment used to generate the tree. Without seeing it, one would guess that the sequences are either quite similar (making the results from this study less novel) or there would be concerns that the phylogenetic relationship derived from the nt alignment is spurious.
(4) Figure 1 B-C: There are numerous branches that do not have phylogenetic support (values <50%). These are not statistically valid phylogenetic relationships and should be collapsed. The resulting tree should be used in the description of clades.
(5) The discovered microcins are not being directly tested since they are expressed heterologous and reliant on non-native modification systems. The results present the statement that novel microcins have been validated. This should be described accordingly.
(6) The key finding of this paper is the claim that 12 novel class IIb microcins have been validated. To substantiate this claim, original images showing evidence of antibacterial activity must be made available rather than a presence/absence chart. The negative controls for this table are unclear and should be included with the original images.
(7) Further data for the purified microcin is needed. The purification method described is standard practice and should allow for product quantification, which should be included. Standard practice includes an SDS page showing the purity of the microcin, or at least the TEV digest to show microcin has been produced, and importantly a control sample (scrambled sequence, empty vector purification, etc) to show that observed activity (Figure 2B) is not from a purification carry over. This data should be included to support that microcin has been purified and is active.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This study investigates the potential role of CD131, a cytokine receptor subunit shared by GM-CSF and IL-3, in intestinal inflammation. Using heterozygous mice with an inactivating mutation on this gene, the study demonstrates ameliorated inflammation, associated with less infiltration of macrophages. Moreover, the depletion of macrophages prevented many of the inflammatory effects of DSS and made both WT and mutant mice equivalent in terms of inflammation severity. Correlative data showing increased CD131+ cells in tissues of patients with ulcerative colitis is also demonstrating, evidence for plausibility for these pathways in human disease.
Strengths:
The phenotype of mutant mice seems quite robust and the pathways proposed, GM-CSF signaling in macrophages with CCL4 as a downstream pathway, are all plausible and concordant with existing models. Many of the experiments included meaningful endpoints and were overall well performed.
Weaknesses:
(1) Experimental rigor was lacking in this manuscript, which provided limited or no details on the number of independent iterations that each experiment was done, the number of animals per group, the number of technical or biological replicates in each graph, etc.
(2) Details of animal model validation showing that this particular mutant allele results in a lack of CD131 protein expression were not shown. Moreover, since the paper uses heterozygous mice, it is critical to show that at the protein level, there is indeed reduced expression of CD131 in het mice compared to controls (many heterozygous states do not lead to appreciable protein depletion).
(3) Another major weakness is that the paper asserts a causal relationship between CD131 signaling and CCL4 production: the data shown indicates that the phenotypes of CCL4 deficiency (through Ab blockade) and CD131 partial deficiency (in het mice) are similar. However, this does not establish that CD131 signaling acts through CCL4.
(4) Lastly, while the paper claims that CD131 acts through macrophage recruitment, the evidence is circumstantial and not direct. DSS-induced acute colitis is largely mediated by macrophages, so any manipulation associated with less severe inflammation is accompanied by lesser macrophage infiltration in this model: this does not directly establish that CD131 acts directly on macrophages, which would require cell-specific knockout or complex cell reconstitution experiments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this study, Kavaklıoğlu et al. investigated and presented evidence for a role for domesticated transposon protein L1TD1 in enabling its ancestral relative, L1 ORF1p, to retrotranspose in HAP1 human tumor cells. The authors provided insight into the molecular function of L1TD1 and shed some clarifying light on previous studies that showed somewhat contradictory outcomes surrounding L1TD1 expression. Here, L1TD1 expression was correlated with L1 activation in a hypomethylation dependent manner, due to DNMT1 deletion in HAP1 cell line. The authors then identified L1TD1 associated RNAs using RIP-Seq, which display a disconnect between transcript and protein abundance (via Tandem Mass Tag multiplex mass spectrometry analysis). The one exception was for L1TD1 itself, is consistent with a model in which the RNA transcripts associated with L1TD1 are not directly regulated at the translation level. Instead, the authors found L1TD1 protein associated with L1-RNPs and this interaction is associated with increased L1 retrotransposition, at least in the contexts of HAP1 cells. Overall, these results support a model in which L1TD1 is restrained by DNA methylation, but in the absence of this repressive mark, L1TD1 is expression, and collaborates with L1 ORF1p (either directly or through interaction with L1 RNA, which remains unclear based on current results), leads to enhances L1 retrotransposition. These results establish feasibility of this relationship existing in vivo in either development or disease, or both.
Comments on revised version:
In general, the authors did an acceptable job addressing the major concerns throughout the manuscript. This revision is much clearer and has improved in terms of logical progression.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
The present study explores how thoughts map onto brain activity, a notoriously challenging question because of the dynamic, subjective, and abstract nature of thoughts. To tackle this question, the authors collected continuous thought ratings from participants watching a movie, and additionally made use of an open-source fMRI dataset recorded during movie watching as well as five established gradients of brain variation as identified in resting state data. Using a voxel-space approach, the results show that episodic knowledge, verbal detail, and sensory engagement of thoughts commonly modulate visual and auditory cortex, while intrusive distraction modulates the frontoparietal network. Additionally, sensory engagement mapped onto a gradient from primary to association cortex, while episodic knowledge mapped onto a gradient from the dorsal attention network to visual cortex. Building on the association between behavioral performance and neural activation, the authors conclude that sensory coupling to external input and frontoparietal executive control are key to comprehension in naturalistic settings.
The manuscript stands out for its methodological advancements in quantifying thoughts over time and its aim to study the implementation of thoughts in the brain during naturalistic movie watching.
Strengths:
(1) The study raises a question that has been difficult to study in naturalistic settings so far but is key to understanding human cognition, namely how thoughts map onto brain activation.
(2) The thought ratings introduce a novel method for continuously tracking thoughts, promising utility beyond this study.
(3) The authors used diverse data types, metrics, and analyses to substantiate the effects of thinking from multiple perspectives.
-
-
-
Reviewer #2 (Public review):
In this manuscript, Rachubinski and colleagues provide a comprehensive clinical, immunological, and autoantibody assessment of autoimmune/inflammatory manifestations of patients with Down syndrome (DS) in a large number of patients with this disorder. These analyses confirm prior results of excess interferon and cytokine signals in DS patients and extend these observations to highlight early-onset immunological aberrancies, far before symptoms occur, as well as characterizing novel autoantibody reactivities in this patient population. Then, the authors report the interim analysis of an open label, Phase II, clinical trial of the JAK1/3 inhibitor, tofacitinib, that aims to define the safety, clinical efficacy, and immunological outcomes of DS patients who suffer from inflammatory conditions of the skin. The clinical trial analysis indicates that the treatment is tolerated without serious adverse effects and that the majority of patients have experienced clinical improvement or remission in their corresponding clinical cutaneous manifestations as well as improvement or normalization of aberrant immunological signals such as cytokines.
The major strength of the study is the recruitment and uniform, systematic evaluation of an impressive number of DS patients. Moreover, the promising early results from the tofacitinib clinical trial pave the way for analysis of a larger number of patients within the Phase II trial and otherwise, which may lead to improved clinical outcomes of affected patients. An inherent weakness of such studies is the descriptive nature of several parameters and the relatively small size of tofacitinib-treated DS patients. However, the descriptive nature of some of the correlative research analyses are of scientific interest and are useful to generate hypotheses for future additional (including mechanistic) work and treatment of 10 DS patients in a formal clinical trial at interim analysis is not a trivial task for a disease like this. The manuscript achieves the aims of the authors and the results support their conclusions. The authors appropriately acknowledge areas that require more research and areas that are not well understood. The results are represented in a useful manner and statistical methods and analyses appear sound.
Comments on revised version:
The authors have satisfactorily addressed my comments in the revised manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this manuscript, Popli et al investigated the roles of autophagy related gene, Atg14, in the female reproductive tract (FRT) using conditional knockout mouse models. By ablation of Atg14 in both oviduct and uterus with PR-Cre (Atg14 cKO), authors discovered that such females are completely infertile. They went on to show that Atg14 cKO females have impaired embryo implantation as well as embryo transport from oviduct to uterus. Further analysis showed that Atg14 cKO leads to increased pyroptosis in oviduct, which disrupts oviduct epithelial integrity and leads to obstructive oviduct lumen and impaired embryo transport. The authors concluded that Atg14 is critical for maintaining the oviduct homeostasis and keeping the inflammation under check to enable proper embryo transport.
The authors have barely addressed most of my concerns in this revised version with a few minor issues remaining to be addressed:<br /> (1) The authors tried to address my first concern regarding the statement that "autophagy is critical for maintaining the oviduct homeostasis". The revised statement in Line 53-54 "we report that Atg14-dependent autophagy plays a crucial role in maintaining..." is still not correct. It should be corrected as " we report that autophagy-related protein Atg14 plays a crucial role in maintaining...".<br /> (2) Line 349-351 described 80-90% of blastocysts retrieved from oviducts of cKO mice, which is in consistent with Figure 3B (showing more than 98%).<br /> (3) Line 447, "Fig. 5E" should be Fig. 6A. In addition, grammar error in the next sentence.<br /> (4) In Figure 6D, why the composition of blastocysts in chemical treated group do not add up to 100%.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Yamawaki et al., conducted a series of neuroanatomical tracing and whole cell recording experiments to elucidate and characterise a relatively unknown pathway between the endopiriform (EN) and CA1 of the ventral hippocampus (vCA1) and to assess its functional role in social and object recognition using fibre photometry and dual vector chemogenetics. The main findings were that the EN sends robust projections to the vCA1 that collateralise to the prefrontal cortex, lateral entorhinal cortex and piriform cortex, and these EN projection neurons terminate in the stratum lacunosum-moleculare (SLM) layer of distal vCA1, synapsing onto GABAergic neurons that span across the Pyramidal-Stratum Radiatum (SR) and SR-SML borders. It was also demonstrated that EN input disynaptically inhibits vCA1 pyramidal neurons. vCA1 projecting EN neurons receive afferent input from piriform cortex, and from within EN. Finally, fibre photometry experiments revealed that vCA1 projecting EN neurons are most active when mice explore novel objects or conspecifics, and pathway-specific chemogenetic inhibition led to an impairment in the ability to discriminate between novel vs. familiar objects and conspecifics.
Revision 1:<br /> The authors have addressed most of my concerns, but a few weaknesses remain :
(1) I expected to see the addition of raw interaction times with objects and conspecifics for each phase of social testing (pre-test, sociability test, social discrimination), as per my comment on including raw data. However, the authors only provided total distance traveled and velocity, and total interaction time in Figure S9, which is less informative.
(2) The authors observed increased activity in vCA1-projecting EN neurons tracking with the preferred object during the pre-test (object-object exploration) phase of the social tests, and the summary schematic (Figure 9A) depicts animals as showing a preference for one object over the other (although they are identical) in both the social and object recognition tests. However, in the chemogenetic experiment, the data (Fig S9B) indicate that animals did not show this preference for one object over another, making the expected baseline for this task unclear. This also raises an important question of whether the lack of effect from chemogenetic inhibition of vCA1-projecting EN neurons could be attributed to the absence of this baseline preference.<br /> Additionally, the finding that vCA1-projecting EN activity is associated with the preferred object exploration appears to counter the authors' argument that novelty engages this circuit (since both objects are novel in this instance). This discrepancy warrants further discussion.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This study describes a deep mutational scan across CDKN2A using suppression of cell proliferation in pancreatic adenocarcinoma cells as a readout for CDKN2A function. The results are also compared to in silico variant predictors currently utilized by the current diagnostic frameworks to gauge these predictors' performance. The authors also functionally classify CDKN2A somatic mutations in cancers across different tissues
Review:
The goal of this paper was to perform functional classification of missense mutations in CDKN2A in order to generate a resource to aid in clinical interpretation of CDKN2A genetic variants identified in clinical sequencing. In our initial review, we concluded that this paper was difficult to review because there was a lack of primary data and experimental detail. The authors have significantly improved the clarity, methodological detail and data exposition in this revision, facilitating a fuller scientific review. Based on the data provided we do not think the functional characterization of CDKN2A variants is robust or complete enough to meet the stated goal of aiding clinical variant interpretation. We think the underlying assay could be used for this purpose but different experimental design choices and more replication would be required for these data to be useful. Alternatively, the authors could also focus on novel CDKN2A variants as there seems to be potential gain of function mutations that are simply lumped into "neutral" that may have important biological implications.
Major concerns:
Low experimental concordance. The p-value scatter plot (Figure 2 Figure Supplement 3A) across 560 variants shows low collinearity indicating poor replicability. These data should be shown in log2fold changes, but even after model fitting with the gamma GLM still show low concordance which casts strong doubt on the function scores.<br /> The more detailed methods provided indicate that the growth suppression experiment is done in 156 pools with each pool consisting of the 20 variants corresponding to one of the 156 aa positions in CKDN2A. There are several serious problems with this design.
Batch effects in each of the pools preventing comparison across different residues. We think this is a serious design flaw and not standard for how these deep mutational scans are done. The standard would be to combine all 156 pools in a single experiment. Given the sequencing strategy of dividing up CDKN2A into 3 segments, the 156 pools could easily have been collapsed into 3 (1 to 53, 54 to 110, 111 to 156). This would significantly minimize variation in handling between variants at each residue and would be more manageable for performance of further replicates of the screen for reproducibility purposes. The huge variation in confluency time 16-40 days for each pool suggest that this batch effect is a strong source of variation in the experiment
Lack of experimental/biological replication: The functional assay was only performed once on all 156 CDKN2A residues and was repeated for only 28 out of 156 residues, with only ~80% concordance in functional classification between the first and second screens. This is not sufficiently robust for variant interpretation. Why was the experiment not performed more than once for most aa sites?
For the screen, the methods section states that PANC-1 cells were infected at MOI=1 while the standard is an MOI of 0.3-0.5 to minimize multiple variants integrating into a single cell. At an MOI =1 under a Poisson process which captures viral integration, ~25% of cells would have more than 1 lentiviral integrant. So in 25% of the cells the effect of a variant would be confounded by one or more other variants adding noise to the assay.
While the authors provide more explanation of the gamma GLM, we strongly advise that the heatmap and replicate correlations be shown with the log2 fold changes rather than the fit output of the p-values.
In this study, the authors only classify variants into the categories "neutral", "indeterminate", or "deleterious" but they do not address CDKN2A gain-of-function variants that may lead to decreased proliferation. For example, there is no discussion on variants at residue 104, whose proliferation values mostly consist of higher magnitude negative log2fold change values. These variants are defined as neutral but from the one replicate of the experiment performed, they appear to be potential gain-of-function variants.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this paper, the authors aim to explore whether an AI model trained on natural protein data can aid in designing proteins that are resistant to extreme environments. While this is an interesting attempt, the study's computational contributions are weak, and the design of the computational experiments appears arbitrary.
(1) The writing throughout the paper is poor. This leaves the reader confused.
(2) The main technical issue the authors address is whether AI can identify protein mutations that adapt to extreme environments based solely on natural protein data. However, the introduction could be more concise and focused on the key points to better clarify the significance of this question.
(3) The authors did not develop a new model but instead used their previously developed Pro-PRIME model. This significantly weakens the novelty and contribution of this work.
(4) The computational experiments are not well-justified. For instance, the authors used a zero-shot setting for single-point mutation experiments but opted for fine-tuning in multiple-point mutation experiments. There is no clear explanation for this discrepancy. How does the model perform in zero-shot settings for multiple-point mutations? How would fine-tuning affect single-point mutation results? The choice of these strategies seems arbitrary and lacks sufficient discussion.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors present a straightforward and convincing demonstration of a reagent and workflow that they collectively term "MagIC-cryo-EM", in which magnetic nanobeads combined with affinity linkers are used to specifically immobilize and locally concentrate complexes that contain a protein-of-interest. As a proof of concept, they localize, image, and reconstruct H1.8-bound nucleosomes reconstructed from frog egg extracts. The authors additionally devised an image-processing workflow termed "DuSTER", which increases the true positive detections of the partially ordered NPM2 complex. The analysis of the NPM2 complex {plus minus} H1.8 was challenging because only ~60 kDa of protein mass was ordered. Overall, single-particle cryo-EM practitioners should find this study useful.
Strengths:
The rationale is very logical and the data are convincing.
Weaknesses: I have seen an earlier version of this study at a conference. The conference presentation was much easier to follow than the current manuscript. It is as if this manuscript had undergone review at another journal and includes additional experiments to satisfy previous reviewers. Specifically, the NPM2 results don't seem to add much to the main story (MagIC-cryo-EM), and read more like an addendum. The authors could probably publish the NPM2 results separately, which would make the core MagIC results (sans DusTER) easier to read.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This work uses genomic and biochemical approaches for HCMV infection in human fibroblasts and retinal epithelial cell lines, followed by comparisons and some validations using strategies such as immunoblots. Based on these analyses, they propose several mechanisms that could contribute to the HCMV-induced diseases, including closing of TEAD1-occupying domains and reduced TEAD1 transcript and protein levels, decreased YAP1 and phospho-YAP1 levels, and exclusion of TEAD1 exon 6.
Strengths:
The genomics experiments were done in duplicates and data analyses show good technical reproducibility. Data analyses are performed to show changes at the transcript and chromatin level changes, followed by some Western blot validations.
Weaknesses:
This work, at the current stage, is quite correlative since no functional studies are done to show any causal links. For readers who are outside the field, some clarifications of the system and design need to be stated.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:<br /> CTCF is one of the most well-characterized regulators of chromatin architecture in mammals. Given that CTCF is an essential protein, understanding how its binding is regulated is a very active area of research. It has been known for decades that CTCF is sensitive to 5-cystosine DNA methylation (5meC) in certain contexts. Moreover, at genomic imprints and in certain oncogenes, 5meC-mediated CTCF antagonism has very important gene regulatory implications. A number of labs (eg, Schubeler and Stamatoyannopoulos) have assessed the impact of DNA methylation on CTCF binding, but it is important to also interrogate the effect on chromatin organization (ie, looping). Here, Roseman and colleagues used a DNMT1 inhibitor in two established human cancer lines (HCT116 [colon] and K562 [leukemia]), and performed CTCF ChIPseq and HiChIP. They showed that "reactivated" CTCF sites-that is, bound in the absence of 5meC-are enriched in gene bodies, participate in many looping events, and intriguingly, appear associated with nuclear speckles. This last aspect suggests that these reactivated loops might play an important role in increased gene transcription. They showed a number of genes that are upregulated in the DNA hypomethylated state actually require CTCF binding, which is an important result.
Strengths:<br /> Overall, I found the paper to be succinctly written and the data presented clearly. The relationship between CTCF binding in gene bodies and association with nuclear speckles is an interesting result. Another strong point of the paper was combining DNMT1 inhibition with CTCF degradation.
Weaknesses:<br /> The most problematic aspect of this paper in my view is the insufficient evidence for the association of "reactivated" CTCF binding sites with nuclear speckles needs to be more diligently demonstrated (see Major Comment). One unfortunate aspect was that this paper neglected to discuss findings from our recent paper, wherein we also performed CTCF HiChIP in a DNA methylation mutant (Monteagudo-Sanchez et al., 2024 PMID: 39180406). It is true, this is a relatively recent publication, although the BioRxiv version has been available since fall 2023. I do not wish to accuse the authors of actively disregarding our study, but I do insist that they refer to it in a revised version. Moreover, there are a number of differences between the studies such that I find them more complementary rather than overlapping. To wit, the species (mouse vs human), the cell type (pluripotent vs human cancer), the use of a CTCF degron, and the conclusions of the paper (we did not make a link with nuclear speckles). Furthermore, we used a constitutive DNMT knockout which is not viable in most cell types (HCT116 cells being an exception), and in the discussion mentioned the advantage of using degron technology:
"With high-resolution techniques, such as HiChIP or Micro-C (119-121), a degron system can be coupled with an assessment of the cis-regulatory interactome (118). Such techniques could be adapted for DNA methylation degrons (eg, DNMT1) in differentiated cell types in order to gauge the impact of 5meC on the 3D genome."
The authors here used a DNMT1 inhibitor, which for intents and purposes, is akin to a DNMT1 degron, thus I was happy to see a study employ such a technique. A comparison between the findings from the two studies would strengthen the current manuscript, in addition to being more ethically responsible.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
The authors first identify Ankle2 as a regulatory subunit and direct interactor of PP2A, showing they interact both in vitro and in vivo to promote BAF dephosphorylation. The Ankyrin domain of Ankle2 is important for the interaction with PP2A. They then show Ankle2 also interacts with the ER protein Vap33 through FFAT motifs and they particularly co-localize during mitosis. The recruitment of Ankle2 to Vap33 is essential to ER and nuclear envelop membrane in telophase while earlier in mitosis, it relies on the C terminus but not the FFAT motifs for recruitments to the nuclear membrane and spindle envelop in early mitosis. The molecular determinants and receptors are currently not known. The authors check the function of the PP2A recruitment to Ankle2/Vap33 in the context of embryos and show this recruitment pathway is functionally important. While the Ankle2/Vap33 interaction is dispensable in adult flies -looking at wing development, the PP2A/Ankle2 interaction is essential for correct wing and fly development. Overall, this is a very complete paper that reveals the molecular mechanism of PP2A recruitment to Ankle2 and studies both the cellular and the physiological effect of this interaction in the context of fly development.
Strengths:
The paper is well written and the narrative is well-developed. The figures are of high quality, well-controlled, clearly labelled, and easy to understand. They support the claims made by the authors.
Weaknesses:
The study would benefit from being discussed in the context of what is already known on Ankle2 biology in C.elegans and human cells. It is important to highlight the structures shown in the paper are alphafold models, rather than validated structures.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this study, the authors identified CG14545 (and named it Sakura), as a key gene essential for Drosophila oogenesis. Genetic analyses revealed that Sakura is vital for both oogenesis progression and ultimate female fertility, playing a central role in the renewal and differentiation of germ stem cells (GSC).
The absence of Sakura disrupts the Dpp/BMP signaling pathway, resulting in abnormal bam gene expression, which impairs GSC differentiation and leads to GSC loss. Additionally, Sakura is critical for maintaining normal levels of piRNAs. Also, the authors convincingly demonstrate that Sakura physically interacts with Otu, identifying the specific domains necessary for this interaction, suggesting a cooperative role in germline regulation. Importantly, the loss of otu produces similar defects to those observed in Sakura mutants, highlighting their functional collaboration.
The authors provide compelling evidence that Sakura is a critical regulator of germ cell fate, maintenance, and differentiation in Drosophila. This regulatory role is mediated through the modulation of pMad and Bam expression. However, the phenotypes observed in the germarium appear to stem from reduced pMad levels, which subsequently trigger premature and ectopic expression of Bam. This aberrant Bam expression could lead to increased CycA levels and altered transcriptional regulation, impacting piRNA expression. Given Sakura's role in pMad expression, it would be insightful to investigate whether overexpression of Mad or pMad could mitigate these phenotypic defects (UAS-Mad line is available at Bloomington Drosophila Stock Center).
A major concern is the overstated role of Sakura in regulating Orb. The data does not reveal mislocalized Orb; rather, a mislocalized oocyte and cytoskeletal breakdown, which may be secondary consequences of defects in oocyte polarity and structure rather than direct misregulation of Orb. The conclusion that Sakura is necessary for Orb localization is not supported by the data. Orb still localizes to the oocyte until about stage 6. In the later stage, it looks like the cytoskeleton is broken down and the oocyte is not positioned properly, however, there is still Orb localization in the ~8-stage egg chamber in the oocyte. This phenotype points towards a defect in the transport of Orb and possibly all other factors that need to localize to the oocyte due to cytoskeletal breakdown, not Orb regulation directly. While this result is very interesting it needs further evaluation on the underlying mechanism. For example, the decrease in E-cadherin levels leads to a similar phenotype and Bam is known to regulate E-cadherin expression. Is Bam expressed in these later knockdowns?
The manuscript would benefit from a more balanced interpretation of the data concerning Sakura's role in Orb regulation. Furthermore, a more expanded discussion on Sakura's potential role in pMad regulation is needed. For example, since Otu and Bam are involved in translational regulation, do the authors think that Mad is not translated and therefore it is the reason for less pMad? Currently the discussion presents just a summary of the results and not an extension of possible interpretation discussed in context of present literature.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this study, the authors set out to explore how antibiotics known to inhibit bacterial protein synthesis also affect mitoribosomes in HEK cells. They achieved this through mitoribosome profiling, where RNase I and Mnase were used to generate mitoribosome-protected fragments, followed by sequencing to map the regions where translation arrest occurs. This profiling identified the codon-specific impact of antibiotics on mitochondrial translation.
The study finds that most antibiotics tested inhibit mitochondrial translation similarly to their bacterial counterparts, except telithromycin, which exhibited distinct stalling patterns. Specifically, chloramphenicol and linezolid selectively inhibited translation when certain amino acids were in the penultimate position of the nascent peptide, which aligns with their known bacterial mechanism. Telithromycin stalls translation at an R/K-X-R/K motif in bacteria, and the study demonstrated a preference for arresting at an R/K/A-X-K motif in mitochondria. Additionally, alternative translation initiation sites were identified in MT-ND1 and MT-ND5, with non-canonical start codons. Overall, the paper presents a comprehensive analysis of antibiotics in the context of mitochondrial translation toxicity, and the identification of alternative translation initiation sites will provide valuable insights for researchers in the mitochondrial translation field.
From my perspective as a structural biologist working on the human mitoribosome, I appreciate the use of mitoribosome profiling to explore off-target antibiotic effects and the discovery of alternative mitochondrial translation initiation sites. However, the description is somewhat limited by a focus on this single methodology. The authors could strengthen their discussion by incorporating structural approaches, which have contributed significantly to the field. For example, antibiotics such as paromomycin and linezolid have been modeled in the human mitoribosome (PMID: 25838379), while streptomycin has been resolved (10.7554/eLife.77460), and erythromycin was previously discussed (PMID: 24675956). The reason we can now describe off-target effects more meaningfully is due to the availability of fully modified human mitoribosome structures, including mitochondria-specific modifications and their roles in stabilizing the decoding center and binding ligands, mRNA, and tRNAs (10.1038/s41467-024-48163-x).<br /> These and other relevant studies should be acknowledged throughout the paper to provide additional context.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The study investigates the molecular mechanisms underlying chronic pain-related memory impairment by focusing on S1P/S1PR1 signaling in the dentate gyrus (DG) of the hippocampus. Through behavioural tests (Y-maze and Morris water maze) and RNA-seq analysis, the researchers segregated chronic pain mice into memory impairment-susceptible and -unsusceptible subpopulations. They discovered that S1P/S1PR1 signaling is crucial for determining susceptibility to memory impairment, with decreased S1PR1 expression linked to structural plasticity changes and memory deficits.
Knockdown of S1PR1 in the DG induced a susceptible phenotype, while overexpression or pharmacological activation of S1PR1 promoted resistance to memory impairment and restored normal synaptic structure. The study identifies actin cytoskeleton-related pathways, including ITGA2 and its downstream Rac1/Cdc42 signaling, as key mediators of S1PR1's effects, offering new insights and potential therapeutic targets for chronic pain-related cognitive dysfunction.
This manuscript consists of a comprehensive investigation and significant findings. The study provides novel insights into the molecular mechanisms of chronic pain-related memory impairment, highlighting the critical role of S1P/S1PR1 signaling in the hippocampal dentate gyrus. The clear identification of S1P/S1PR1 as a potential therapeutic target offers promising avenues for future research and treatment strategies. The manuscript is well-structured, methodologically sound, and presents valuable contributions to the field.
Strengths:
(1) The manuscript is well-structured and written in clear, concise language. The flow of information is logical and easy to follow.
(2) The segregation of mice into memory impairment-susceptible and -unsusceptible subpopulations is innovative and well-justified. The statistical analyses are robust and appropriate for the data.
(3) The detailed examination of S1PR1 expression and its impact on synaptic plasticity and actin cytoskeleton reorganization is impressive. The findings are significant and contribute to the understanding of chronic pain-related memory impairment.
Comments on revisions:
The authors have satisfactorily addressed all the issues raised.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
The data is largely electrophysiological recordings coupled with behavioral measurements (technically impressive) and some gain-of-function experiments in freely walking flies. Loss-of-function was tested but had minimal effect, which is not surprising in a system with partially redundant control mechanisms. The data is also consistent with/complementary to subsequent manuscripts (Yang 2023, Feng 2024, and Ros 2024) showing additional descending neurons with contributions to steering in walking and flying.
The experiments are well executed, the results interesting, and the description clear. Some hypotheses based on connectome anatomy are tested: the insights on the pre-synaptic side - how sensory and central complex heading circuits converge onto these DNs are stronger than the suggestions about biomechanical mechanisms for how turning happens on the motor side.
Of particular interest is the idea that different sensory cues can converge on a common motor program. The turn-toward or turn-away mechanism is initiated by valence rather than whether the stimulus was odor or temperature or memory of heading. The idea that animals choose a direction based on external sensory information and then maintain that direction as a heading through a more internal, goal-based memory mechanism, is interesting but it is hard to separate conclusively.
The "see-saw", where left-right symmetry is broken to allow a turn, presumably by excitation on one side and inhibition of the other leg motor modules, is interesting but not well explained here. How hyperpolarization affects motor outputs is not clear.
The statement near Figure 5B that "DNa02 activity was higher on the side ipsilateral to the attractive stimulus, but contralateral to the aversive stimulus" is really important - and only possible to see because of the dual recordings.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In the present study, the authors select the coiled-coil protein CCDC113 and revealed its expression in the stages of spermatogenesis in the testis as well as in the different steps of spermiogenesis with expression also mapped in the different parts of the epididymis. Gene deletion led to male infertility in CRISPR-Cas9 KO mice and PAS staining showed defects mapped in the different stages of the seminiferous cycle and through the different steps of spermiogenesis. EM and IF with several markers of testis germ cells and spermatozoa in the epididymis indicated defects in flagella and head-to-tail coupling for flagella as well as acephaly. The authors' co-IP experiments of expressed CCDC113 in HEK293T cells indicated an association with CFAP91 and DRC2 as well as SUN5 and CENTLEIN.
The authors propose that CCDC113 connects CFAP91 and DRC2 to doublet microtubules of the axoneme and CCDC113's association with SUN5 and CENTLEIN to stabilize the sperm flagellum head-to-tail coupling apparatus. Extensive experiments mapping CCDC13 during postnatal development are reported as well as negative co-IP experiments and studies with SUN5 KO mice as well as CENTLEIN KO mice.
Strengths:
The authors provide compelling observations to indicate the relevance of CCDC113 to flagellum formation with potential protein partners. The data are relevant to sperm flagella formation and its coupling to the sperm head.
Weaknesses:
The authors' observations are consistent with the model proposed but the authors' conclusions for the mechanism may require direct demonstration in sperm flagella. The Walton et al paper shows human CCDC96/113 in cilia of human respiratory epithelia. An application of such methodology to the proteins indicated by Wu et al for the sperm axoneme and head-tail coupling apparatus is eagerly awaited as a follow-up study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this manuscript, the authors report GCaMP fiber-photometry recordings from the GnRH neuron distal projections in the ventral arcuate nucleus. The recording are taken from intact, male and female, freely behaving mice. The report three patterns of neuronal activity:
1) abrupt increases in the Ca2+ signals that are perfectly correlated with LH pulses.
2) a gradual, yet fluctuating (with a slow ultradian frequency), increase in activity, which is associated with the onset of the LH surge in female animals.
3) clustered (high frequency) baseline activity in both female and male animals.
Strengths:
The GCaMP fiber-photometry recordings reported here are the first direct recordings from GnRH neurones in free behaving mice. These recordings suggest a rich repertoire of activity, including the integration of distinct "surge" and "pulse" generation signals, and an ultradian rhythm during the onset of the surge.
Weaknesses:
The data analysis methods used for the characterisation of the oscillatory behaviour could be complemented with more advanced wavelet methods to quantify and analyse how the frequency content of the observed Ca2+ signal changes over the cycle.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this study, the authors identified nuclear genome-encoded transcription factors that regulate mtDNA maintenance and mitochondrial biogenesis. They started with an RNAi screening in developing Drosophila eyes with reduced mtDNA content and identified several putative candidate genes. Subsequently, using ChIP-seq data, they built a potential regulatory network that seems to govern mitochondrial biogenesis. Next, they focused on a candidate gene, CG1603 /clifford, for further characterization. Based on the expression of different markers, such as TFAM and SDHA, in RNAi and overexpression clones in the midgut, they argued that CG1603 promotes mitochondrial biogenesis and the expression of ETC complex genes. They used a CG1603 mutant to show reduced mtDNA and mitochondrial protein levels. Clonal analyses showed a reduction in mitochondrial biogenesis and membrane potential upon loss of CG1603. They further showed that the protein is localized to the mitochondria, and binds to polytene chromosomes in the salivary gland. Based on the RNA-seq results from the mutants and the ChIP data, the authors argued that the nucleus-encoded mitochondrial genes are downregulated >2 folds in the CG1603 mutants and that the regulatory elements bound by CG1603 are related to ETC biogenesis. Finally, they showed that YL-1, another candidate in the network, is an upstream regulator of CG1603. The screening strategy was well-designed, and the follow-up experiments were nicely executed.
Comments on revisions:
The authors have addressed my previous comments satisfactorily.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Sphingosine-1-phosphate (S1P) metabolic and signaling genes are expressed highly in retinal Müller glia (MG) cells. This study tested how S1P signaling regulates glial phenotype, dedifferentiation of, reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs using in vivo chick retina. Major techniques used are Sc-RNASeq and immunohistochemistry to determine the gene expression and proliferation of MG cells that co-label with signaling antibodies or mRNA FISH following treating the in vivo eyes with various S1P signaling antagonists, agonists, and signal modulators. The major conclusions drawn are supported by the results presented. However, the methodology they have used to modulate the S1P pathway using various chemical drugs raises questions about the outcomes and whether those are the real effects of S1P receptor modulation or S1P synthesis inhibition.
Strengths:
- Use of elaborated single-cell RNAseq expression data.<br /> - Use of FISH for S1P receptors and kinase as a good quality antibody is not available.<br /> - Use of EdU assay in combination with IHC<br /> - Comparison with human and Zebrafish Sc-RNA data
Weaknesses:
The methodology is not very clean. A number of drugs (inhibitors/ antagonists/agonists signal modulators) are used to modulate S1P expression or signaling in the retina without evidence that these drugs are reaching the target cells. No alternative evaluation if the drugs, in fact, are effective. The drug solubility in the vehicle and in the vitreous is not provided, and how did they decide on using a single dose of each drug to have the optimal expected effect on the S1P pathway?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Shrestha et al investigated the role of IR receptors in the detection of 3 carboxylic acids in adult Drosophila. A low concentration of either of these carboxylic acids added to 2 mM sucrose (1% lactic acid (LA), citric acid (CA), or glycolic acid (GA)) stimulates the consumption of adult flies in choice conditions. The authors use this behavioral test to screen the impact of mutations within 33 receptors belonging to the IR family, a large family of receptors derived from glutamate receptors and expressed both in the olfactory and gustatory sensilla of insects. Within the panel of mutants tested, they observed that 3 receptors (IR25a, IR51b, and IR76b) impaired the detection of LA, CA, and GA, and that 2 others impacted the detection of CA and GA (IR94a and IR94h). Interestingly, impairing IR51b, IR94a, and IR94h did not affect the electrophysiological responses of external gustatory sensilla to LA, CA, and GA. Thanks to the use of GAL4 strains associated with these receptors and thanks to the use of poxn mutants (which do not develop external gustatory sensilla but still have functional internal receptors), they show evidence that IR94a and IR94h are only expressed in two clusters of gustatory neurons of the pharynx, respectively in the VCSO (ventral cibarial sense organ) and in the VCSO + LSO (labral sense organ). As for IR51b, the GAL4 approach was not successful but RT-PCR made on different parts of the insect showed an expression both in the pharyngeal organs and in peripheral receptors. These main findings are then complemented by a host of additional experiments meant to better understand the respective roles of IR94a and IR94h, by using optogenetics and brain calcium imaging using GCamp6. They also report a failed attempt to co-express IR51b, IR94a, and IR94h into external receptors, a co-expression which did not confer the capability of bitter-sensitive cells (expressing GR33a-GAL4) to detect either of the carboxylic acids. These data complete and expand previous observations made on this group and others, and dot to 2 new IR receptors which show an unsuspected specific expression, into organs that still remain difficult to study.
The conclusions of this paper are supported by the data presented, but it remains difficult to make general conclusions as concerns the mechanisms by which carboxylic acids are detected.
(1) All experiments were done with 1% of carboxylic acids. What is the dose dependency of the behavioral responses to these acids, and is it conceivable that other receptors are involved at other concentrations?
(2) One result needs to be better discussed and hypotheses proposed - which is why the mutations of most receptors lead to a loss of detection (mutant flies become incapable of detecting the acid) while mutations in IR94a and IR94h make CA and GA potent deterrents. Does it mean that CA and GA are detected by another set of receptors that, when activated, make flies actively avoid CA and GA? In that case, do the authors think that testing receptors one by one is enough to uncover all the receptors participating in the detection of these substances?
(3) The paper needs to be updated with a recent paper published by Guillemin et al (2024), indicating that LA is detected externally by a combination of IR94e, IR76b and IR25a. IR25a might help to form a fully functional receptor in GR33a neurons (a former study from Chen et al (2017) indicate that IR25a is expressed in all gustatory neurons of the pharynx).
(4) Although it was not the main focus of the paper, it would have been most interesting if the cells expressing IR94a and IR94h were identified, and placed on the functional map proposed by the group of Dahanukar (Chen et al 2017 Cell Reports, Chen et al 2019 Cell Reports).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Salt stress is a significant and growing concern for agriculture in some parts of the world. While the effects of sodium excess have been studied in Arabidopsis and (many) crop species, most studies have focused on Na uptake, toxicity and overall effects on yield, rather than on developmental responses to excess Na, per se. The work by Ishka and colleagues aims to fill this gap.
Working from an existing dataset that exposed a diverse panel of A. thaliana accessions to control, moderate, and severe salt stress, the authors identify candidate loci associated with altering the root:shoot ratio under salt stress. Following a series of molecular assays, they characterize a DUF247 protein which they dub SR3G, which appears to be a negative regulator of root growth under salt stress.
Overall, this is a well-executed study which demonstrates the functional role played by a single gene in plant response to salt stress in Arabidopsis.
Review of revised manuscript:
The authors have addressed my point-by-point comments to my satisfaction. In the cases where they have changed their manuscript language, clarified figures, or added analyses I have no further comment. In some cases, there is a fruitful back-and-forth discussion of methodology which I think will be of interest to readers.
I have nothing to add during this round of review. I think that the paper and associated discussion will make a nice contribution to the field
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Sukhina et al. use a chronic murine dietary restriction model to investigate the cellular mechanisms underlying nutritionally acquired immunodeficiency as well as the consequences of a refeeding intervention. The authors report a substantial impact of undernutrition on the myeloid compartment, which is not rescued by refeeding despite rescue of other phenotypes including lymphocyte levels, and which is associated with maintained partial susceptibility to bacterial infection.
Strengths:
Overall, this is a nicely executed study with appropriate numbers of mice, robust phenotypes, and interesting conclusions, and the text is very well-written. The authors' conclusions are generally well-supported by their data.
Weaknesses:
There is little evaluation of known critical drivers of myelopoiesis (e.g. PMID 20535209, 26072330, 29218601) over the course of the 40% diet, which would be of interest with regard to comparing this chronic model to other more short-term models of undernutrition.
Further, the microbiota, which is well-established to be regulated by undernutrition (e.g. PMID 22674549, 27339978, etc.), and also well-established to be a critical regulator of hematopoiesis/myelopoiesis (e.g. PMID 27879260, 27799160, etc.), is completely ignored here.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors present the first single-cell atlas for syngathid fishes, providing a resource for future evolution & development studies in this group.
Strengths:
The concept here is simple and I find the manuscript to be well written. I like the in situ hybridization of marker genes >> this is really nice. I also appreciate the gene co-expression analysis to identify modules of expression. There are no explicit hypotheses tested in the manuscript, but the discovery of these cell types should have value in this organism and in the determination of morphological novelties in seahorses and their relatives.
Weaknesses:
I think there are a few computational analyses that might improve the generality of the results.
(1) The cell types: The authors use marker gene analysis and KEGG pathways to identify cell types. I'd suggest a tool like SAMap (https://elifesciences.org/articles/66747) which compares single cell data sets from distinct organisms to identify 'homologous' cell types -- I imagine the zebrafish developmental atlases could serve as a reasonable comparative reference.
(2) Trajectory analyses: Authors suggest that their analyses might identify progenitor cell states and perhaps related differentiated states. They might explore cytoTRACE and/or pseudotime-based trajectory analyses to more fully delineate these ideas.
(3) Cell-cell communication: I think it's very difficult to identify 'tooth primordium' cell types, because cell types won't be defined by organ in this way. for instance dental glia will cluster with other glia, dental mesenchyme will likely cluster with other mesenchymal cell types. so the histology and ISH in most convincing in this regard. having said this, given the known signaling interactions in the developing tooth (and in development generally) the authors might explore cell-cell communication analysis (e.g., CellChat) to identify cell types that may be interacting.
Comments on revisions:
I feel essentially the same about this manuscript. it's a useful resource for future experimental forays into this unique system. The team made improvements to deal with comments from other reviewers related to quality of confirmatory in situ hybridization. This is good.
Regarding their response that one can't use CellChat if you're not working in mice or human, this is inaccurate. the assumption one makes is that ligand-receptor pairs and signaling pathways have conserved functions across animals (vertebrates). It's the same assumption the authors make when using the KEGG pathway to score enrichment of pathways in clusters. CellChat used in fishes in Johnson et al 2023 Nature Communications | ( 2023) 14:4891.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Li et al. explored which stage of Stroop conflict processing was influenced by working memory loads. Participants completed a single task (Stroop task) and a dual task (the Sternberg working memory task combined with the Stroop task) while their EEG data was recorded. They adopted the event-related potential (ERP), and multivariate pattern analyses (MVPA) to investigate the interaction effect of task (single/dual) and congruency (congruent/incongruent). The results showed that the interaction effect was significant on the sustained potential (SP; 650-950 ms), the late theta (740-820 ms), and beta (920-1040 ms) power but not significant on the early P1 potential (110-150 ms). They used the representational similarity analyses (RSA) method to explore the correlation between behavioral and neural data, and the results revealed a significant contribution of late theta activity.
Strengths:
(1) The experiment is well-designed.
(2) The data were analyzed in depth from both time and frequency domain perspectives by combining several methods.
Weaknesses:
(1) As the researchers mentioned, a previous study reported a diminished Stroop effect with concurrent working memory tasks to memorize meaningless visual shapes rather than memorize Chinese characters as in the study. My main concern is that lower-level graphic processing when memorizing visual shapes also influences the Stroop effect. The stage of Stroop conflict processing affected by the working memory load may depend on the specific content of the concurrent working memory task. If that's the case, I sense that the generalization of this finding may be limited.
(2) The P1 and N450 components are sensitive to congruency in previous studies as mentioned by the researchers, but the results in the present study did not replicate them. This raised concerns about data quality and needs to be explained.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This study integrated single-cell sequencing and spatial transcriptome data from mouse heart tissue at different time points post-MI. They identified four transcriptionally distinct subtypes of lymphatic endothelial cells and localized them in space. They observed that LECs subgroups are localized in different zones of infarcted heart with functions. Specifically, they demonstrated that LEC ca III may be involved in directly regulating myocardial injuries in the infarcted zone concerning metabolic stress, while LEC ca II may be related to the rapid immune inflammatory responses of the border zone in the early stage of MI. LEC ca I and LEC collection mainly participate in regulating myocardial tissue edema resolution in the middle and late stages post-MI. Finally, cell trajectory and Cell-Chat analyses further identified that LECs may regulate myocardial edema through Aqp1, and likely affect macrophage infiltration through the galectin9-CD44 pathway. The authors concluded that their study revealed the dynamic transcriptional heterogeneity distribution of LECs in different regions of the infarcted heart and that LECs formed different functional subgroups that may exert different bioeffects in myocardial tissue post-MI.
Strengths:
The study addresses a significant clinical challenge, and the results are of great translational value. All experiments were carefully performed, and their data support the conclusion.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
SNX4 is thought to mediate recycling from endosomes back to the plasma membrane in cells. In this study, the authors demonstrate the increases in the amounts of transmitter release and the number of docked vesicles by combining genetics, electrophysiology and EM. They failed to find evidence for its role in synaptic vesicle cycling and endocytosis, which may be intuitively closer to the endosome function.
Strengths:
The electrophysiological data and EM data are in principle, convincing, though there are several issues in the study.
Weaknesses:
It is unclear why the increase in the amounts of transmitter release and docked vesicles happened in the SNX4 KO mice. In other words, it is unclear how the endosomal sorting proteins in the end regulate or are connected to presynaptic, particularly the active zone function.
Comments on revisions:
I am fine with revision in principle. the authors have addressed my concerns.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The work by Arafi et al. shows the effect of Familial Alzheimer's Disease presenilin-1 mutants on endoproteinase and carboxylase activity. They have elegantly demonstrated how some mutants alter each step of processing. Together with FLIM experiments, this study provides additional evidence to support their 'stalled complex hypotheses'.
Strengths:
This is a beautiful biochemical work. The approach is comprehensive.
Weaknesses:
(1) It appears that the purified g-secretase complex generates the same amount of Ab40 and Ab42, which is quite different in cellular and biochemical studies. Is there any explanation for this?
(2) It has been reported the Ab production lines from Ab49 and Ab48 can be crossed with various combinations (PMID: 23291095 and PMID: 38843321). How does the production line crossing impact the interpretation of this work?
(3) In Figure 5, did the authors look at the protein levels of PS1 mutations and C99-720, as well as secreted Ab species? Do the different amounts of PS1 full-length and PS1-NTF/CTF influence FILM results?
(4) It is interesting that both Ab40 and Ab42 Elisa kits detect Ab43. Have the authors tested other kits in the market? It might change the interpretation of some published work.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This study focused on using strictly the slope of the power spectral density (PSD) to perform automated sleep scoring and evaluation of the durations of sleep cycles. The method appears to work well because the slope of the PSD is highest during slow-wave sleep, and lowest during waking and REM sleep. Therefore, when smoothed and analyzed across time, there are cyclical variations in the slope of the PSD, fit using an IRASA (Irregularly resampled auto-spectral analysis) algorithm proposed by Wen & Liu (2016).
Strengths:
The main novelty of the study is that the non-fractal (oscillatory) components of the PSD that are more typically used during sleep scoring can be essentially ignored because the key information is already contained within the fractal (slope) component. The authors show that for the most part, results are fairly consistent between this and conventional sleep scoring, but in some cases show disagreements that may be scientifically interesting.
Weaknesses:
The previous weaknesses were well-addressed by the authors in the revised manuscript. I will note that from the fractal cycle perspective, waking and REM sleep are not very dissimilar. Combining these states underlies some of the key results of this study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary
Li et al. explored which stage of Stroop conflict processing was influenced by working memory loads. Participants completed a single task (Stroop task) and a dual task (the Sternberg working memory task combined with the Stroop task) while their EEG data was recorded. They adopted the event-related potential (ERP), and multivariate pattern analyses (MVPA) to investigate the interaction effect of task (single/dual) and congruency (congruent/incongruent). The results showed that the interaction effect was significant on the sustained potential (SP; 650-950 ms), the late theta (740-820 ms), and beta (920-1040 ms) power but not significant on the early P1 potential (110-150 ms). They used the representational similarity analyses (RSA) method to explore the correlation between behavioral and neural data, and the results revealed a significant contribution of late theta activity.
Strength
The experiment is well designed.<br /> The data were analyzed in depth from both time and frequency domain perspectives by combining several methods.
Comments on revisions:
All my concerns have been properly addressed, no further comments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This study proposes visual homogeneity as a novel visual property that enables observers perform to several seemingly disparate visual tasks, such as finding an odd item, deciding if two items are same, or judging if an object is symmetric. In Exp 1, the reaction times on several objects were measured in human subjects. In Exp 2, visual homogeneity of each object was calculated based on the reaction time data. The visual homogeneity scores predicted reaction times. This value was also correlated with the BOLD signals in a specific region anterior to LO. Similar methods were used to analyze reaction time and fMRI data in a symmetry detection task. It is concluded that visual homogeneity is an important feature that enables observers to solve these two tasks.
Strengths:
(1) The writing is very clear. The presentation of the study is informative.
(2) This study includes several behavioral and fMRI experiments. I appreciate the scientific rigor of the authors.
Weaknesses:
Before addressing the manuscript itself, I would like to comment the review process first. Having read the lasted revised manuscript, I shared many of the concerns raised by the two reviewers in the last two rounds of review. It appears that the authors have disagreed with the majority of comments made by the two reviewers. If so, I strongly recommend that the authors proceed to make this revision as a Version of Record and conclude this review process. According to eLife's policy that the authors have the right to make a Version of Record at any time during the review process, and I fully respect that right. However, I also ask that the authors respect the reviewer's right to retain the comments regarding this paper.
Beside that, I still have several further questions about this study.
(1) My main concern with this paper is the way visual homogeneity is computed. On page 10, lines 188-192, it says: "we then asked if there is any point in this multidimensional representation such that distances from this point to the target-present and target-absent response vectors can accurately predict the target-present and target-absent response times with a positive and negative correlation respectively (see Methods)". This is also true for the symmetry detection task. If I understand correctly, the reference point in this perceptual space was found by deliberating satisfying the negative and positive correlations in response times. And then on page 10, lines 200-205, it shows that the positive and negative correlations actually exist. This logic is confusing. The positive and negative correlations emerge only because this method is optimized to do so. It seems more reasonable to identify the reference point of this perceptual space independently, without using the reaction time data. Otherwise, the inference process sounds circular. A simple way is to just use the mean point of all objects in Exp 1, without any optimization towards reaction time data.<br /> I raised this question in my initial review. However, the authors did not address whether the positive and negative correlations still hold if the mean point is defined as the reference point without any optimization. The authors also argue that it is similar to a case of fitting a straight line. It is fine that the authors insist on the straight line (e.g., correlation). However, I would not call "straight line correlations" a "quantitative model" as a high-profile journals like eLife. Please remove all related arguments of a novel quantitative model.
(2) Visual homogeneity (at least given the current form) is an unnecessary term. It is similar to distractor heterogeneity/distractor variability/distractor saliency in literature. However, the authors attempt to claim it as a novel concept. Both R1 and me raised this question in the very first review. However, the authors refused to revise the manuscript. In the last review, I mentioned this and provided some example sentences claiming novelty. The authors only revised the last sentence of the abstract, and even did not bother to revise the last sentence of significance: "we show that these tasks can be solved using a simple property WE DEFINE as visual homogeneity". Also, lines 851 still shows "we have defined a NOVEL image property, visual homogeneity...". I am confused about whether the authors agree or disagree that "visual homogeneity is an unnecessary term". If the authors agree, they should completely remove the related phrase throughout the paper. If not, they should keep all these and state the reasons. I don't think this is a correct approach to revising a manuscript.
(3) If the authors agree that visual homogeneity is not new, I suggest a complete rewrite of the title, abstract, significance, and introduction. Let me ask a simple question, can we remove "visual homogeneity" and use some more well-established term like "image feature similarity"? If yes, visual homogeneity is unnecessary.
(4) If I understand it correctly, one of the key findings of this paper is "the response times for target-present searches were positively correlated with visual homogeneity. By contrast, the response times for target-absent searches were negatively correlated with visual homogeneity" (lines 204-207). I think the authors have already acknowledged that this positive correlation is not surprising at all because it reflects the classic target-distractor similarity effect. If this is the case, please completely remove the positive correlation as a novel prediction and finding.
(5) In my last review, I mentioned the seminal paper by Duncan and Humphreys (1989) has clearly stated that "difficulty increases with increased similarity of targets to nontargets and decreased similarity between nontargets" (the sentence in their abstract). Here, "similarity between nontargets" is the same as the visual homogeneity defined here. Similar effects have been shown in Duncan (1989) and Nagy, Neriani, and Young (2005). See also the inconsistent results in Nagy& Thomas, 2003, Vicent, Baddeley, Troscianko&Gilchrist, 2009. More recently, Wei Ji Ma has systematically investigated the effects of heterogeneous distractors in visual search. I think the introduction part of Wei Ji Ma's paper (2020) provides a nice summary of this line of research.
Thanks to the authors' revision, I now better understand the negative correlation. The between-distrator similarity mentioned above describes the heterogeneity of distractors WITHIN an image. However, if I understand it correctly, this study aims to address the negative correlation of reaction time and target-absent stimuli ACROSS images. In other words, why do humans show a shorter reaction time to an image of four pigeons than to an image of four dogs (as shown in Figure 2C), simply because the later image is closer to the reference point of the image space. In this sense, this negative correlation is indeed not the same as distractor heterogeneity. However, this is known as the saliency effect or oddball effects. For example, it seems quite natural to me that humans respond faster to a fish image if the image set contains many images of four-leg dogs that look very different from fish. If this is indeed a saliency effect, why should we define a new term "visual homogeneity"?
(6) The section "key predictions" is quite straightforward. I understand the logic of positive and negative correlations. However, what is the physical meaning of "decision boundary" (Fig. 1G) here? How does the "decision boundary" map on the image space?
(7) In my opinion, one of the advantages of this study is the fMRI dataset, which is valuable because previous studies did not collect fMRI data. The key contribution may be the novel brain region associated with display heterogeneity. If this is the case, I would suggest using a more parametric way to measure this region. For example, one can use Gabor stimuli and systematically manipulate the variations of multiple Gabor stimuli, the same logic also applies to motion direction. If this study uses static Gabor, random dot motion, object images that span from low-level to high-level visual stimuli, and consistently shows that the stimulus heterogeneity is encoded in one brain region, I would say this finding is valuable. But this sounds another experiment. In other words, it is insufficient to claim a new brain region given the current form of the manuscript.
References:
* Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433-458. doi: 10.1037/0033-295x.96.3.433<br /> * Duncan, J. (1989). Boundary conditions on parallel processing in human vision. Perception, 18(4), 457-469. doi: 10.1068/p180457<br /> * Nagy, A. L., Neriani, K. E., & Young, T. L. (2005). Effects of target and distractor heterogeneity on search for a color target. Vision Research, 45(14), 1885-1899. doi: 10.1016/j.visres.2005.01.007<br /> * Nagy, A. L., & Thomas, G. (2003). Distractor heterogeneity, attention, and color in visual search. Vision Research, 43(14), 1541-1552. doi: 10.1016/s0042-6989(03)00234-7<br /> * Vincent, B., Baddeley, R., Troscianko, T., & Gilchrist, I. (2009). Optimal feature integration in visual search. Journal of Vision, 9(5), 15-15. doi: 10.1167/9.5.15<br /> * Singh, A., Mihali, A., Chou, W. C., & Ma, W. J. (2023). A Computational Approach to Search in Visual Working Memory.<br /> * Mihali, A., & Ma, W. J. (2020). The psychophysics of visual search with heterogeneous distractors. BioRxiv, 2020-08.<br /> * Calder-Travis, J., & Ma, W. J. (2020). Explaining the effects of distractor statistics in visual search. Journal of Vision, 20(13), 11-11.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this study, the authors measured extracellular electrical features of colliding APs travelling in different directions down an isolated earthworm axon. They then used these features to build a model of the potential ephaptic effects of AP annihilation, i.e. the electrical signals produced by colliding/annihilating APs that may influence neighbouring tissue. The model was then applied to some different hypothetical scenarios involving synaptic connections. In a revised version of the manuscript, it was also applied, with success, to published experimental data on the cerebellar basket cell-to-Purkinje cell pinceau connection. The conclusion is that an annihilating AP at a presynaptic terminal can emphatically influence the voltage of a postsynaptic cell (this is, presumably, the 'electrical coupling between neurons' of the title), and that the nature of this influence depends on the physical configuration of the synapse.
As an experimental neuroscientist who has never used computational approaches, I am unable to comment on the rigour of the analytical approaches that form the bulk of this paper. The experimental approaches appear very well carried out, and the data showing equal conduction velocity of anti- and orthodromically propagating APs in every preparation is now convincing.
The conclusions drawn from the synaptic modelling have been considerably strengthened by the new Figure 5. Here, the authors' model - including AP annihilation at a synaptic terminal - is used to predict the amplitude and direction of experimentally observed effects at the cerebellar basket cell-to-Purkinje cell synapse (Blot & Barbour 2014). One particular form of the model (RTM with tau=0.5ms and realistic non-excitability of the terminal) matches the experimental data extremely well. This is a much more convincing demonstration that the authors' model of ephaptic effects can quantitatively explain key features of experimental data pertaining to synaptic function. As such, the implications for the relevance of ephaptic coupling at different synaptic contacts may be widespread and important.
However, it appears that all of the models in the new Fig5 involve annihilating APs, yet only one fits the data closely. A key question, which should be addressed if at all possible, is what happens to the predictive power of the best-fitting model in Fig5 if the annihilation, and only the annihilation, is removed? In other words, can the authors show that it is specifically the ephaptic effects of AP annihilation, rather than other ephaptic effects of, say AP waveform/amplitude/propagation, that explain the synaptic effects measured in Blot & Barbour (2014)? This would appear to be a necessary demonstration to fully support the claims of the title.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors used rats to determine the receptor for a food-related perception (kokumi) that has been characterized in humans. They employ a combination of behavioral, electrophysiological, and immunohistochemical results to support their conclusion that ornithine-mediated kokumi effects are mediated by the GPRC6A receptor. They complemented the rat data with some human psychophysical data. I find the results intriguing, but believe that the authors overinterpret their data.
Strengths:
The authors examined a new and exciting taste enhancer (ornithine). They used a variety of experimental approaches in rats to document the impact of ornithine on taste preference and peripheral taste nerve recordings. Further, they provided evidence pointing to a potential receptor for ornithine.
Weaknesses:
The authors have not established that the rat is an appropriate model system for studying kokumi. Their measurements do not provide insight into any of the established effects of kokumi on human flavor perception. The small study on humans is difficult to compare to the rat study because the authors made completely different types of measurements. Thus, I think that the authors need to substantially scale back the scope of their interpretations. These weaknesses diminish the likely impact of the work on the field of flavor perception.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This is a well-written methodology paper applying a Bayesian framework to the statistics of cell counts in brain slices. A sharpening of the bounds on measured quantities is demonstrated over existing frequentist methods and therefore the work is a contribution to the field.
Strengths:
As well as a mathematical description of the approach, the code used is provided in a linked repository.
Weaknesses:
A clearer link between the experimental data and model-structure terminology would be a benefit to the non-expert reader.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Koh et al. report an interesting manuscript studying dopamine binding in the lateral accumbens shell of rats across the course of conditioned taste aversion. The question being asked here is how does the dopamine system respond to aversion? The authors take advantage of unique properties of taste aversion learning (notably, within-subjects remapping of valence to the same physical stimulus) to address this.
They combine a well controlled behavioural design (including key, unpaired controls) with fibre photometry of dopamine binding via GrabDA and of dopamine neuron activity by gCaMP, careful analyses of behaviour (e.g., head movements; home cage ingestion), the authors show that, 1) conditioned taste aversion of sucrose suppresses the activity of VTA dopamine neurons and lateral shell dopamine binding to subsequent presentations of the sucrose tastant; 2) this pattern of activity was similar to the innately aversive tastant quinine; 3) dopamine responses were negatively correlated with behavioural (inferred taste reactivity) reactivity; and 4) dopamine responses tracked the contingency of between sucrose and illness because these responses recovered across extinction of the conditioned taste aversion.
Strengths:
There are important strengths here. The use of a well-controlled design, the measurement of both dopamine binding and VTA dopamine neuron activity, the inclusion of an extinction manipulation; and the thorough reporting of the data. I was not especially surprised by these results, but these data are a potentially important piece of the dopamine puzzle (e.g., as the authors note, salience-based argument struggles to explain these data).
Weaknesses for consideration:
(1) The focus here is on the lateral shell. This is a poorly investigated region in the context of the questions being asked here. Indeed, I suspect many readers might expect a focus on the medial shell. So, I think this focus is important. But, I think it does warrant greater attention in both the introduction and discussion. We do know from past work that there can be extensive compartmentalisation of dopamine responses to appetitive and aversive events and many of the inconsistent findings in the literature can be reconciled by careful examination of where dopamine is assessed. I do think readers would benefit from acknowledgement this - for example it is entirely reasonable to suppose that the findings here may be specific to the lateral shell.
(2) Relatedly, I think readers would benefit from an explicit rationale for studying the lateral shell as well as consideration of this in the discussion. We know that there are anatomical (PMID: 17574681), functional (PMID: 10357457), and cellular (PMID: 7906426) differences between the lateral shell and the rest of the ventral striatum. Critically, we know that profiles of dopamine binding during ingestive behaviours there can be highly dissimilar to the rest of ventral striatum (PMID: 32669355). I do think these points are worth considering.
(3) I found the data to be very thoughtfully analysed. But in places I was somewhat unsure:<br /> (a) Please indicate clearly in the text when photometry data show averages across trials versus when they show averages across animals.<br /> (b) I did struggle with the correlation analyses, for two reasons.<br /> (i) First, the key finding here is that the dopamine response to intraoral sucrose is suppressed by taste aversion. So, this will significantly restrict the range of dopamine transients, making interpretation of the correlations difficult.
(ii) Second, the authors report correlations by combining data across groups/conditions. I understand why the authors have done this, but it does risk obscuring differences between the groups. So, my question is: what happens to this trend when the correlations are computed separately for each group? I suspect other readers will share the same question. I think reporting these separate correlations would be very helpful for the field - regardless of the outcome.
(4) Figure 1A is not as helpful as it might be. I do think readers would expect a more precise reporting of GCaMP expression in TH+ and TH- neurons. I also note that many of the nuances in terms of compartmentalisation of dopamine signalling discussed above apply to ventral tegmental area dopamine neurons (e.g. medial v lateral) and this is worth acknowledging when interpreting.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors used deep full-length single-cell sequencing to study human photoreceptor development, with a particular emphasis on the characteristics of photoreceptors that may contribute to retinoblastoma.
Strengths:
This single-cell study captures gene regulation in photoreceptors across different developmental stages, defining post-mitotic cone and rod populations by highlighting their unique gene expression profiles through analyses such as RNA velocity and SCENIC. By leveraging full-length sequencing data, the study identifies differentially expressed isoforms of NRL and THRB in L/M cone and rod precursors, illustrating the dynamic gene regulation involved in photoreceptor fate commitment. Additionally, the authors performed high-resolution clustering to explore markers defining developing photoreceptors across the fovea and peripheral retina, particularly characterizing SYK's role in the proliferative response of cones in the RB loss background. The study provides an in-depth analysis of developing human photoreceptors, with the authors conducting thorough analyses using full-length single-cell RNA sequencing. The strength of the study lies in its design, which integrates single-cell full-length RNA-seq, long-read RNA-seq, and follow-up histological and functional experiments to provide compelling evidence supporting their conclusions. The model of cell type-dependent splicing for NRL and THRB is particularly intriguing. Moreover, the potential involvement of the SYK and MYC pathways with RB in cone progenitor cells aligns with previous literature, offering additional insights into RB development.
Weaknesses:
The manuscript feels somewhat unfocused, with a lack of a strong connection between the analysis of developing photoreceptors, which constitutes the bulk of the manuscript, and the discussion on retinoblastoma. Additionally, given the recent publication of several single-cell studies on the developing human retina, it is important for the authors to cross-validate their findings and adjust their statements where appropriate.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
This is a great paper. Yoshida et al. convincingly show that DnaA does not exclusively do loading of the replicative helicase at the E. coli oriC, but that PriC can also perform this function. Importantly, PriC seems to contribute to helicase loading even in wt cells albeit to a much lesser degree than DnaA. On the other hand, PriC takes a larger role in helicase loading during aberrant initiation, i.e. when the origin sequence is truncated or when the properties of initiation proteins are suboptimal. Here highlighted by mutations in dnaA or dnaC.
This is a major finding because it clearly demonstrates that the two roles of DnaA in the initiation process can be separated into initially forming an open complex at the DUE region by binding/nucleation onto DnaA-boxes and second by loading of the helicase. Whereas these two functions are normally assumed to be coupled, the present data clearly show that they can be separated and that PriC can perform at least part of the helicase loading provided that an area of duplex opening is formed by DnaA.
This puts into question the interpretation of a large body of previous work on mutagenesis of oriC and dnaA to find a minimal oriC/DnaA complex in many bacteria. In other words, mutants in which oriC is truncated/mutated may support the initiation of replication and cell viability only in the presence of PriC. Such mutants are capable of generating single-strand openings but may fail to load the helicase in the absence of PriC. Similarly, dnaA mutants may generate an aberrant complex on oriC that trigger strand opening but are incapable of loading DnaB unless PriC is present.
In the present work, the sequence of experiments presented is logical and the manuscript is clearly written and easy to follow. The very last part regarding PriC in cSDR replication does not add much to the story and may be omitted.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors develop a computational model (and a simplified version thereof) to treat an extremely important issue regarding tumor growth. Specifically, it has been argued that fibroblasts have the ability to support tumor growth by creating physical conditions in the tumor microenvironment that prevent the relevant immune cells from entering into contact with, and ultimately killing, the cancer cells. This inhibition is referred to as immune exclusion. The computational approach follows standard procedures in the formulation of models for mixtures of different material species, adapted to the problem at hand by making a variety of assumptions as to the activity of different types of fibroblasts, namely "normal" versus "cancer-associated". The model itself is relatively complex, but the authors do a convincing job of analyzing possible behaviors and attempting to relate these to experimental observations.
Strengths:
As mentioned, the authors do an excellent job of analyzing the behavior of their model both in its full form (which includes spatial variation of the concentrations of the different cellular species) and in its simplified mean field form. The model itself is formulated based on established physical principles, although the extent to which some of these principles apply to active biological systems is not clear (see Weaknesses). The results of the model do offer some significant insights into the critical factors which determine how fibroblasts might affect tumor growth; these insights could lead to new experimental ways of unraveling these complex sets of issues and enhancing immunotherapy.
Weaknesses:
Models of the form being studied here rely on a large number of assumptions regarding cellular behavior. Some of these seemed questionable, based on what we have learned about active systems. The problem of T cell infiltration as well as the patterning of the extracellular matrix (ECM) by fibroblasts necessarily involve understanding cell motion and cell interactions due e.g. to cell signaling. Adopting an approach based purely on physical systems driven by free energies alone does not consider the special role that active processes can play, both in motility itself and in the type of self-organization that can occur due to these cell-cell interactions. This to me is the primary weakness of this paper.
A separate weakness concerns the assumption that fibroblasts affect T cell behavior primarily by just making a more dense ECM. There are a number of papers in the cancer literature (see, for some examples, Carstens, J., Correa de Sampaio, P., Yang, D. et al. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat Commun 8, 15095 (2017); Sun, Xiujie, Bogang Wu, Huai-Chin Chiang, Hui Deng, Xiaowen Zhang, Wei Xiong, Junquan Liu et al. "Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion." Nature 599, no. 7886 (2021): 673-678) that seem to indicate that density alone is not a sufficient indicator of T cell behavior. Instead, the organization of the ECM (for example, its anisotropy) could be playing a much more essential role than is given credit for here. This possibility is hinted at in the Discussion section but deserves much more emphasis.
Finally, the mixed version of the model is, from a general perspective, not very different from many other published models treating the ecology of the tumor microenvironment (for a survey, see Arabameri A, Asemani D, Hadjati J (2018), A structural methodology for modeling immune-tumor interactions including pro-and anti-tumor factors for clinical applications. Math Biosci 304:48-61). There are even papers in this literature that specifically investigate effects due to allowing cancer cells to instigate changes in other cells from being tumor-inhibiting to tumor-promoting. This feature occurs not only for fibroblasts but also for example for macrophages which can change their polarization from M1 to M2. There needed to be some more detailed comparison with this existing literature.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The study by Obray et al. entitled "Adolescent alcohol exposure promotes mechanical allodynia and alters synaptic function at inputs from the basolateral amygdala to the prelimbic cortex" investigated how adolescent intermittent ethanol exposure (AIE) affects the BLA -> PL circuit, with an emphasis on PAG projecting PL neurons, and how AIE changes mechanical and thermal nociception. The authors found that AIE increased mechanical, but not thermal nociception, and an injection of an inflammatory agent did not produce changes in an ethanol-dependent manner. Physiologically, a variety of AIE-specific effects were found in PL neuron firing at BLA synapses, suggestive of AIE-induced alterations in neurotransmission at BLA-PVIN synapses.
Strengths:
This was a comprehensive examination of the effects of AIE on this neural circuit, with an in-depth dissection of the various neuronal connections within the PL.
Sex was included as a biological variable, yet there were little to no sex differences in AIE's effects, suggestive of similar adaptations in males and females.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
In this manuscript, Otero-Coronel and colleagues use a combination of acoustic stimuli and electrical stimulation of the tectum to study MSI in the M-cells of adult goldfish. They first perform a necessary piece of groundwork in calibrating tectal stimulation for maximal M-cell MSI, and then characterize this MSI with slightly varying tectal and acoustic inputs. Next, they quantify the magnitude and timing of FFI that each type of input has on the M-cell, finding that both the tectum and the auditory system drive FFI, but that FFI decays more slowly for auditory signals. These are novel results that would be of interest to a broader sensory neuroscience community. By then providing pairs of stimuli separated by 50ms, they assess the ability of the first stimulus to suppress responses to the second, finding that acoustic stimuli strongly suppress subsequent acoustic responses in the M-cell, that they weakly suppress subsequent tectal stimulation, and that tectal stimulation does not appreciably inhibit subsequent stimuli of either type. Finally, they show that M-cell physiology mirrors previously reported behavioural data in which stronger stimuli underwent less integration.
The manuscript is generally well-written and clear. The discussion of results is appropriately broad and open-ended. It's a good document. Our major concerns regarding the study's validity are captured in the individual comments below. In terms of impact, the most compelling new observation is the quantification of the FFI from the two sources and the logical extension of these FFI dynamics to M-cell physiology during MSI. It is also nice, but unsurprising, to see that the relationship between stimulus strength that MSI is similar for M-cell physiology to what has previously been shown for behavior. While we find the results interesting, we think that they will be of greatest interest to those specifically interested in M-cell physiology and function.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
This work by Knights et al., makes use of the Cam-CAN dataset to investigate functional compensation during a fluid processing task in older adults, in a fairly large sample of approximately 200 healthy adults ranging from 19 to 87. Using univariate methods, the authors identify two brain regions in which activity increases as a function of both age and performance and conduct further investigations to assess whether the activity of these regions provides information regarding task difficulty. The authors conclude that the cuneal cortex - a region of the brain previously implicated in visual attention - shows evidence of compensation in older adults.
The conclusions of the paper are well supported by the data, and the authors use appropriate statistical analyses. The use of multivariate methods over the last 20 years has demonstrated many effects that would have been missed using more traditional univariate analysis techniques. The data set is also of an appropriate size, and as the authors note, fluid processing is an extremely important domain in the field of cognition in aging, due to its steep decline over aging.
Comment from Reviewing Editor: It would have been nice to see an analysis of a more crystallised intelligence task included too, as a contrast since this is an area that does not demonstrate such a decline (and perhaps continues to improve over aging). This comment does not take away the important contributions of the manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this work, the authors performed a CRISPR knockout screen in the presence of floxuridine, a chemotherapeutic agent that incorporates uracil and fluoro-uracil into DNA, and identified unexpected factors, such as the RNA m6A methyltransferase METTL3, as required to overcome floxuridine-driven cytotoxicity in mammalian cells. Interestingly, the observed N6-methyladenosine was embedded in DNA, which has been reported as DNA 6mA in mammalian genomes and is currently confirmed with mass spectrometry in this model. Therefore, this work consolidated the functional role of mammalian genomic DNA 6mA, and supported with solid evidence to uncover the METTL3-6mA-UNG2 axis in response to DNA base damage.
Strengths:
In this work, the authors took an unbiased, genome-wide CRISPR approach to identify novel factors involved in uracil repair with potential clinical interest.
The authors designed elegant experiments to confirm the METTL3 works through genomic DNA, adding the methylation into DNA (6mA) but not the RNA (m6A), in this base damage repair context. The authors employ different enzymes, such as RNase A, RNase H, DNase, and liquid chromatography coupled to tandem mass spectrometry to validate that METTL3 deposits 6mA in DNA in response to agents that increase genomic uracil.
They also have the Mettl3-KO and the METTL3 inhibition results to support their conclusion.
Weaknesses:
Although this study demonstrates that METTL3-dependent 6mA deposition in DNA is functionally relevant to DNA damage repair in mammalian cells, there are still several concerns and issues that need to be improved to strengthen this research.
First, in the whole paper, the authors never claim or mention the mammalian cell lines contamination testing result, which is the fundamental assay that has to be done for the mammalian cell lines DNA 6mA study.
Second, in the whole work, the authors have not supplied any genomic sequencing data to support their conclusions. Although the sequencing of DNA 6mA in mammalian models is challenging, recent breakthroughs in sequencing techniques, such as DR-Seq or NT/NAME-seq, have lowered the bar and improved a lot in the 6mA sequencing assay. Therefore, the authors should consider employing the sequencing methods to further confirm the functional role of 6mA in base repair.
Third, the authors used the METTL3 inhibitor and Mettl3-KO to validate the METTL3-6mA-UNG2 functional roles. However, the catalytic mutant and rescue of Mettl3 may be the further experiments to confirm the conclusion.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors build a colossal anatomical model of juvenile rat non-barrel primary somatosensory cortex, including inputs from the thalamus. This enhances past models by incorporating information on the shape of the cortex and estimated densities of various types of excitatory and inhibitory neuron across layers. This is intended to enable analysis of the micro- and mesoscopic organisation of cortical connectivity and to be a base anatomical model for large-scale simulations of physiology.
Strengths:
• The authors incorporate many diverse data sources on morphology and connectivity.<br /> • This paper takes on the challenging task of linking micro- and meso-scale connectivity<br /> • By building in the shape of the cortex, the authors were able to link cortical geometry to connectivity. In particular they make an unexpected prediction that cortical conicality affects the modularity of local connectivity, which should be testable.<br /> • The author's analysis of the model led to the interesting prediction that layer 5 neurons' connect local modules, which may be testable in the future, and provide a basis to link from detailed anatomy to functional computations.<br /> • The visualisation of the anatomy in various forms is excellent<br /> • The model is openly shared
Weaknesses:
• There is no effort to determine how specific or generalisable the findings here are to other parts of cortex.<br /> • Although there is a link to physiological modelling in another paper, there is no clear pathway to go from this type of model to understanding how the specific function of the modelled areas may emerge here (and not in other cortical areas).<br /> • Some of the decisions seem a little ad-hoc, and the means to assess those decisions is not always easily available to the reader<br /> • The shape of the juvenile cortex - a key novelty of this work - was based on merely a scalar reduction of the adult cortex. This is very surprising, and surely an oversimplification. Huge efforts have gone into modelling the complex nonlinear development of cortex, by teams including the developing Human Connectome Project. For such a fundamental aspect of this work, why isn't it possible to reconstruct the shape of this relatively small part of juvenile rat cortex?<br /> • The same relative laminar depths are used for all subregions. This will have a large impact on the model. However, relative laminar depths can change drastically across the cortex (see e.g. many papers by Palomero-Gallagher, Zilles and colleagues). The authors should incorporate the real laminar depths, or, failing that, show evidence to show that the laminar depth differences across the subregions included in the model are negligible.<br /> • The authors perform an affine mapping between mouse and rat cortex. This is again surprising. In human imaging, affine mappings are insufficient to map between two individual brains of the same species, and nonlinear transformations are instead used. That an affine transformation should be considered sufficient to map between two different species is then very surprising. For some models, this may be fine, but there is a supposed emphasis here on biological precision in terms of anatomical location.<br /> o Live nature of the model. This is such a colossal model, and effort, that I worry that it may be quite difficult to update in light of new data. For example, how much person and compute time would it take to update the model to account for different layer sizes across subregions? Or to more precisely account for the shape of juvenile rat cortex?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this manuscript, the authors investigate how epithelia maintain intercellular barrier function despite and during cellular rearrangements upon e.g. apoptotic extrusion in simple epithelia or regenerative turnover in stratified epithelia like this epidermis. A fundamental question in epithelial biology. Previous literature has shown that Rho-mediated local regulation of actomyosin is essential not only for cellular rearrangement itself but also for directly controlling tight junction barrier function. The molecular mechanics however remained unclear. Here the authors use extensive fluorescent imaging of fixed and live cells together with genetic and drug-mediated interference to show that Rho activation is required and sufficient to form novo tight junctional strands at intercellular contacts in epidermal keratinocytes (HaCat) and mammary epithelial cells. After having confirmed previous literature they then show that Rho activation activates the transmembrane protease Matriptase which cleaves EpCAM and TROP2, two claudin-binding transmembrane proteins, to release claudins and enable claudin strand formation and therefore tight junction barrier function.
Strengths:
The presented mechanism is shown to be relevant for epithelial barriers being conserved in simple and stratifying epithelial cells and mainly differs due to tissue-specific expression of EpCAM and TROP2. The authors present careful state-of-the-art imaging and logical experiments that convincingly support the statements and conclusion. The manuscript is well-written and easy to follow.
Weaknesses:
Whereas the in vitro evidence of the presented mechanism is strongly supported by the data, the in vivo confirmation is mostly based on the predicted distribution of TROP2. Whereas the causality of Rho-mediated Matriptase activation has been nicely demonstrated it remains unclear how Rho activates Matriptase.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The author developed a new device to overcome current limitations in the imaging process of 3D spheroidal structures. In particular, they created a system to follow in real-time tumour spheroid formation, fusion and cell migration without disrupting their integrity. The system has also been exploited to test the effects of a therapeutic agent (chemotherapy) and immune cells.
Strengths:
The system allows the in situ observation of the 3D structures along the 3 axes (x,y and z) without disrupting the integrity of the spheroids; in a time-lapse manner it is possible to follow the formation of the 3D structure and the spheroids fusion from multiple angles, allowing a better understanding of the cell aggregation/growth and kinetic of the cells.
Interestingly the system allows the analysis of cell migration/ escape from the 3D structure analysing not only the morphological changes in the periphery of the spheroids but also from the inner region demonstrating that the proliferating cells in the periphery of the structure are more involved in the migration and dissemination process. The application of the system in the study of the effects of doxorubicin and NK cells would give new insights in the description of the response of tumor 3D structure to killing agents.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The role of PRC2 in post-neural crest induction was not well understood. This work developed an elegant mouse genetic system to conditionally deplete EED upon SOX10 activation. Substantial developmental defects were identified for craniofacial and bone development. The authors also performed extensive single-cell RNA sequencing to analyze differentiation gene expression changes upon conditional EED disruption.
Strengths:
(1) Elegant genetic system to ablate EED post neural crest induction.
(2) Single-cell RNA-seq analysis is extremely suitable for studying the cell type-specific gene expression changes in developmental systems.
Weaknesses:
(1) Although this study is well designed and contains state-of-the-art single-cell RNA-seq analysis, it lacks the mechanistic depth in the EED/PRC2-mediated epigenetic repression. This is largely because no epigenomic data was shown.
(2) The mouse model of conditional loss of EZH2 in neural crest has been previously reported, as the authors pointed out in the discussion. What is novel in this study to disrupt EED? Perhaps a more detailed comparison of the two mouse models would be beneficial.
(3) The presentation of the single-cell RNA-seq data may need improvement. The complexity of the many cell types blurs the importance of which cell types are affected the most by EED disruption.
(4) While it's easy to identify PRC2/EED target genes using published epigenomic data, it would be nice to tease out the direct versus indirect effects in the gene expression changes (e.g Figure 4e).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary
Croshagen et al develop a range of tools based on selection-linked integration (SLI) to study PfEMP1 function in P. falciparum. PfEMP1 is encoded by a family of ~60 var genes subject to mutually exclusive expression. Switching expression between different family members can modify the binding properties of the infected erythrocyte while avoiding the adaptive immune response. Although critical to parasite survival and Malaria disease pathology, PfEMP1 proteins are difficult to study owing to their large size and variable expression between parasites within the same population. The SLI approach previously developed by this group for genetic modification of P. falciparum is employed here to selectively and stably activate the expression of target var genes at the population level. Using this strategy, the binding properties of specific PfEMP1 variants were measured for several distinct var genes with a novel semi-automated pipeline to increase throughput and reduce bias. Activation of similar var genes in both the common lab strain 3D7 and the cytoadhesion competent FCR3/IT4 strain revealed higher binding for several PfEMP1 IT4 variants with distinct receptors, indicating this strain provides a superior background for studying PfEMP1 binding. SLI also enables modifications to target var gene products to study PfEMP1 trafficking and identify interacting partners by proximity-labeling proteomics, revealing two novel exported proteins required for cytoadherence. Overall, the data demonstrate a range of SLI-based approaches for studying PfEMP1 that will be broadly useful for understanding the basis for cytoadhesion and parasite virulence.
Comments
(1) While the capability of SLI to actively select var gene expression was initially reported by Omelianczyk et al., the present study greatly expands the utility of this approach. Several distinct var genes are activated in two different P. falciparum strains and shown to modify the binding properties of infected RBCs to distinct endothelial receptors; development of SLI2 enables multiple SLI modifications in the same parasite line; SLI is used to modify target var genes to study PfEMP1 trafficking and determine PfEMP1 interactomes with BioID. Curiously, Omelianczyk et al activated a single var (Pf3D7_0421300) and observed elevated expression of an adjacent var arranged in a head-to-tail manner, possibly resulting from local chromatin modifications enabling expression of the neighboring gene. In contrast, the present study observed activation of neighboring genes with head-to-head but not head-to-tail arrangement, which may be the result of shared promoter regions. The reason for these differing results is unclear although it should be noted that the two studies examined different var loci.
(2) The IT4var19 panned line that became binding-competent showed increased expression of both paralogs of ptp3 (as well as a phista and gbp), suggesting that overexpression of PTP3 may improve PfEMP1 display and binding. Interestingly, IT4 appears to be the only known P. falciparum strain (only available in PlasmoDB) that encodes more than one ptp3 gene (PfIT_140083100 and PfIT_140084700). PfIT_140084700 is almost identical to the 3D7 PTP3 (except for a ~120 residue insertion in 3D7 beginning at residue 400). In contrast, while the C-terminal region of PfIT_140083100 shows near-perfect conservation with 3D7 PTP3 beginning at residue 450, the N-terminal regions between the PEXEL and residue 450 are quite different. This may indicate the generally stronger receptor binding observed in IT4 relative to 3D7 results from increased PTP3 activity due to multiple isoforms or that specialized trafficking machinery exists for some PfEMP1 proteins.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Lai and collaborators use a previously published RNAseq dataset derived from an experimental evolution set up to compare the pleiotropic properties of genes whose expression evolved in response to fluctuating temperature for over 100 generations. The authors correlate gene pleiotropy with the degree of parallelisms in the experimental evolution set up to ask: are genes that evolved in multiple replicates more or less pleiotropic?
They find that, maybe counter to expectation, highly pleiotropic genes show more replicated evolution. Such an effect seems to be driven by direct effects (which the authors can only speculate on) and indirect effects through low variance in pleiotropic genes (which the authors indirectly link to genetic variation underlying gene expression variance).
Weaknesses:
The results offer new insights into the evolution of gene expression and into the parameters that constrain such evolution, i.e., pleiotropy. Although the conclusions are supported by the data, I find the interpretation of the results a little bit complicated.
Major comment:
The major point I ask the authors to address is whether the connection between polygenic adaptation and parallelism can indeed be used to interpret gene expression parallelism. If the answer is not, please rephrase the introduction and discussion, if the answer is yes, please make it explicit in the text why it is so.
The authors' argument: parallelism in gene expression is the same as parallelism in SNP allele frequency (AFC) (see L389-383 here they don't mention that this explanation is derived from SNP parallelism and not trait parallelism, and see Figure 1 b). In previous publications, the authors have explained the low level of AFC parallelism using a polygenic argument. Polygenic traits can reach a new trait optimum via multiple SNPs and therefore although the trait is parallel across replicates, the SNPs are not necessarily so.
In the current paper, they seem to be exchanging SNP AFC by gene expression, and to me, those are two levels that cannot be interchanged. Gene expression is a trait, not an SNP, and therefore the fact that a gene expression doesn't replicate cannot be explained by a polygenic basis, because again the trait is gene expression itself. And, actually, the results of the simulations show that high polygenicity = less trait parallelism (Figure 4).
Now, if the authors focus on high parallel genes (present in e.g. 7 or more replicates) and they show that the eQTLs for those genes are many (highly polygenic) and the AFC of those eQTLs are not parallel, then I would agree with the interpretation. But, given that here they just assess gene expression and not eQTL AFC, I do not think they can use the 'highly polygenic = low parallelism' explanation.
The interpretation of the results to me, should be limited to: genes with low variance and high pleiotropy tend to be more parallel, and the explanation might be synergistic pleiotropy.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public review):
Summary:
In this single center, single arm, open label non-randomised study the authors tested the use of paclitaxel at 180-220 mg/m2 and cisplatin at 60mg/m2 in patients with squamous NSCLC and pemetrexed at 500mg/m2 and cisplatin at 60mg/m2 in adenocarcinoma of lung origin in the neoadjuvant setting. The chemotherapy appears to have been given at a relatively standard dose; though the platin dose at 60mg/m2 is somewhat lower than has been used in the checkmate 816 trial (75mg/m2/dose), this is a well-established dose for NSCLC.
Key differences to currently approved neoadjuvant chemo-ICI treatment is that anti-PD1 antibody sintilimab (at 200mg/dose) was given on day 5 and that only 2 cycles of chemotherapy were given pre surgery, but then repeated on two occasions post surgery. Between May/2020 and Nov/2023 50 patients were screened, 38 went on to have this schedule of tx, 31 (~82%) went on to have surgery and 27 had the adjuvant treatment. The rate of surgery is entirely consistent with the checkmate 816 data.
Question to the authors:
It would be very helpful to understand why 7 (~18% of the population) patients did not make it to surgery and whether this is related to disease progression, toxicity or other reasons for withdrawal.
The key clinical endpoints were pCR and mPR rates. 2/38 patients are reported to have achieved a radiological pCR but only 31 patients underwent surgery with histological verification. Supp table2 suggests that 10/31 patients achieved a pCR, 6/31 additional patients achieved a major pathological response and that 13/31 did not achieve a major pathological response
It would be really helpful for understanding the clinical outcome to present the histopathological findings in the text in a bit more detail and to refer the outcome to the radiological findings. I note that the reference for pathological responses incorrectly is 38 patients as only 31 patients underwent surgery and were evaluated histologically.
The treatment was very well tolerated with only 1 grade 3 AE reported. The longer term outcome will need to be assessed over time as the cohort is very 'young'. It is not clear what the adjuvant chemo-ICI treatment would add and how this extra treatment would be evaluated for benefit - if all the benefit is in the neoadjuvant treatment then the extra post-operative tx would only add toxicity
Please consider what the two post-operative chemo-ICI cycles might add to the outcome and how the value of these cycles would be assessed. Would there be a case for a randomised assessment in the patients who have NOT achieved a mPR histologically?
While the clinical dataset identifies that the proposed reduced chemo-ICI therapy has clinical merit and should be assessed in a randomized study, the translational work is less informative.
The authors suggest that the treatment has a positive impact on T lymphocytes. Blood sampling was done at day 0 and day 5 of each of the four cycle of chemotherapy with an additional sample post cycle 4. The authors state that data were analysed at each stage.
The data in Figure 3B are reported for three sets of pairs: baseline to pre day 5 in cycle 1, day 5 to day 21 in cycle 1, baseline of cycle to to day 5. It remains unclear whether the datasets contain the same top 20 clones and it would be very helpful to show kinetic change for the individual 'top 20 clones' throughout the events in individual patients; as it stands the 'top20 clones' may vary widely from timepoint to timepoint. Of note, the figures do not demonstrate that the top 20 TCR clones were 'continuously increased'.
Instead, the data suggest that there are fluctuations in the relative distributions over time but that may simply be a reflection of shifts in T cell populations following chemotherapy rather than of immunological effects in the cancer tissue.<br /> Consistent with this the authors conclude (line 304/5): "No significant difference was observed in the diversity, evenness, and clonality of TCR clones across the whole treatment procedure" and this seems to be a more persuasive conclusion than the statement 'that a positive effect on T lymphocytes was observed' - where it is also not clear what 'positive' means.
The text needs a more balanced representation of the data: only a small subset of four patients appear to have been evaluated to generate the data for figure 3B and only three patients (P5, P6, P7) can have contributed to figure 3C if the sample collection is represented accurately in Figure 3A.
The text refers to flow cytometric results in SF3. However, no information is given on the flow cytometry in M&M, markers or gating strategy.
Please consider changing the terminology of the 'phases' into something that is easier to understand. One option would be to use a reference to a more standard unit (cycle 1-4 of chemotherapy and then d0/d5/d21).
Please make it explicit in the text that molecular analyses were undertaken for some patients only, and how many patients contribute to the data in figures 3B-F. Figure 3A suggests paired mRNA data were obtained in 2 patients (P2 and P5) but I cannot find the results on these analyses; four individual blood samples to assess TCR changes int PH1/PH2/PH3and PH4 were only available in four patients (P4,P5,P7,P9). Only three patients seem to have the right samples collected to allow the analysis for 'C3' in figure 3C.
Please display for each of the 'top 20 clones' at any one timepoint how these clones evolve throughout the study; I expect that a clone that is 'top 20' at a given timepoint may not be among the 'top twenty' at all timepoints.
Please also assess if the expanded clonotypes are present (and expanded) in the cancer tissue at resection, to link the effect in blood to the tumour. Given that tissue was collected for 31 patients, mRNA sequencing to generate TCR data should be possible to add to the blood analyses in the 12 patients in Figure 3A. Without this data no clear link can be made to events in the cancer.
Please provide in M&M the missing information on the flow cytometry methodology (instrument, antibody clones, gating strategy) and what markers were used to define T cell subsets (naïve, memory, central memory, effector memory).
The authors also describe that ctDNA reduces after chemo-ICI treatment. This is well documented in their data but ultimately irrelevant: if the cancer volume is reduced to the degree of a radiological or pathological response /complete response then the quantity of circulating DNA from the cancer cells must reduce. More interesting would be the question whether early changes predict clinical outcome and whether recurrent ct DNA elevations herald recurrence.
Please probe whether the molecular data identify good radiological or pathological outcomes before cycle 2 is started and whether the ctDNA levels identify patients who will have a poor response and/or who relapse early.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this manuscript, the authors follow up on their previous work showing that in the absence of the Sir2 deacetylase the MCM replicative helicase at the rDNA spacer region is repositioned to a region of low nucleosome occupancy. Here they show that the repositioned displaced MCMs have increased firing propensity relative to non-displaced MCMs. In addition, they show that activation of the repositioned MCMs and low nucleosome occupancy in the adjacent region depend on the chromatin remodeling activity of Fun30.
Strengths:
The paper provides new information on the role of a conserved chromatin remodeling protein in regulation of origin firing and in addition provides evidence that not all loaded MCMs fire and that origin firing is regulated at a step downstream of MCM loading.
Comments on revisions:
The authors have addressed my concerns with the addition of new experiments and analysis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The study explores the functional consequence of CDK12 loss in prostate cancer. While CDK12 loss has been shown to confer homologous recombination (HR) deficiency through premature intronic polyadenylation of HR genes, the response of PARPi monotherapy has failed. This study therefore performed an in-depth analysis of genomic sequencing data from mCRPC patient tumors, and showed that tumors with CDK12 loss lack pertinent HR signatures and scars. Furthermore, functional exploration in human prostate cancer cell lines showed that while the acute inhibition of CDK12 resulted in aberrant polyadenylation of HR genes like BRCA1/2, HR-specific effects were overall modest or absent in cell lines or xenografts adapted to chronic CDK12 loss. Instead, vulnerability to genetically targeting CDK13 resulted in a synthetic lethality in tumors with CDK12 loss, as shown in vivo with SR4825, a CDK12/13 inhibitor - thus serving as a potential therapeutic avenue.
The evidence supporting this study is based on in-depth genomic analyses of human patients, acute knockdown studies of CDK12 using a CDK12/13 inhibitors SR4835, adaptive knockout of CDK12 using LuCaP 189.4_CL and inducible re-expression of CDK12, CDK12 single clones in 22Rv1 (KO2 and KO5) and Skov3 (KO1), Tet-inducible knockdown of BRCA2 or CDK12 followed by ionizing radiation and measurement of RAD51 foci, lack of sensitivity generally to PARPi and platinum chemotherapy in cells adapted to CDK12 loss, loss of viability of CDK13 knockout in CDK12 knockout cells, and in vivo testing of SE4825 in LuCaP xenografts with intact and CDK12 loss.
Strengths:
Overall, this study is robust and of interest to the broader homologous recombination and CDK field. First, the topic is clinically relevant given the lack of PARPi response in CDK12 loss tumors. Second, the strength of the genomic analysis in CDK12 lost PCa tumors is robust with clear delineation that BRCA1/2 genes and maintenance of most genes regulating HR are intact. Specifically, the authors find that there is no mutational signature or genomic features suggestive of HR, such as those found in BRCA1/2 tumors. Lastly, novel lines are generated in this study, including de novo LuCaP 189.4_CL with CDK12 loss that can be profound for potential synthetic lethalities.
Weakness:
One caveat that continues to be unclear as presented, is the uncoupling of cell cycle/essentiality of CDK12/13 from HR-directed mechanisms. Is this purely a cell cycle arrest phenotype acutely with associated down-regulation of many genes?
While the RAD51 loading ssRNA experiments are informative, the Tet-inducible knockdown of BRCA2 and CDK12 is confusing as presented in Figure 5, shBRCA2 + and -dox are clearly shown. However, were the CDK12_K02 and K05 also knocked down using inducible shRNA or a stable knockout? The importance of this statement is the difference between acute and chronic deletion of CDK12. Previously, the authors showed that acute knockdown of CDK12 led to an HR phenotype, but here it is unclear whether CDK12-K02/05 are acute knockdowns of CDK12 or have been chronically adapted after single cell cloning from CRISPR-knockout.
Given the multitude of lines, including some single-cell clones with growth inhibitory phenotypes and ex-vivo derived xenografts, the variability of effects with SR4835, ATM, ATR, and WEE1 inhibitors in different models can be confusing to follow. Overall, the authors suggest that the cell lines differ in therapeutic susceptibility as they may have alternate and diverse susceptibilities. It may be possible that the team could present this more succinctly and move extraneous data to the supplement.
The in-vitro data suggests that SR4835 causes growth inhibition acutely in parental lines such as 22RV1. However, in vivo, tumor attenuation appears to be observed in both CDK12 intact and deficient xenografts, LuCAP136 and LuCaP 189.4 (albeit the latter is only nominally significant). Is there an effect of PARPi inhibition specifically in either model? What about the the 22RV1-K02/05? Do these engraft? Given the role of CDK12/13 in RNAP II, these data might suggest that the window of susceptibility in CDK12 tumors may not be that different from CDK12 intact tumors (or intact tissue) when using dual CDK12/13 inhibitors but rather represent more general canonical essential functions of CDK12 and CDK13 in transcription. From a therapeutic development strategy, the authors may want to comment in the discussion on the ability to target CDK13 specifically.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public review):
The manuscript presents interesting findings on the role of gut microbiota in gout, focusing on the interplay between age-related changes, inflammation, and microbiota-derived metabolites, particularly butyrate. The study provides valuable insights into the therapeutic potential of microbiota interventions and metabolites for managing hyperuricemia and gout.
The manuscript has improved with the revisions made, particularly regarding clarifications on experimental design and the inclusion of supplementary data.
Comments on latest version:
The authors have addressed many previous concerns; however, some areas still require clarification and improvement to support more definitive conclusions.
(1) This study suggests that microbiota interventions, particularly butyrate, show promising therapeutic potential for hyperuricemia and gout. While the authors discuss the functions of certain butyrate-producing bacteria, I recommend further validating the gut microbiota-butyrate pathway by supplementing germ-free animal models with a single butyrate-producing strain, such as Clostridium butyricum. To strengthen the manuscript, I suggest the authors make further revisions to address these key issues.
(2) Additionally, I was unable to locate the full-length, uncropped Western blot images in the manuscript or supplementary materials. Could the authors please provide these?
-
-
-
Reviewer #3 (Public review):
Previous work (Chouhan et al., 2022) from the Sehgal group investigated the relationship between sleep and long-term memory formation by dissecting the role of mushroom body intrinsic neurons, extrinsic neurons, and output neurons during sleep-dependent and sleep-independent memory consolidation. In this manuscript, Li et al., profiled transcriptome in the anterior-posterior (ap) α'/β' neurons and identified genes that are differentially expressed after training in fed condition, which supports sleep-dependent memory formation. By knocking down candidate genes systematically, the authors identified Polr1F and Regnase-1 as two important hits that play potential roles in sleep and memory formation. What is the function of sleep and how to create a memory are two long-standing questions in science. The present study used a new approach to identify novel components that may link sleep and memory consolidation in a specific type of neuron. Importantly, these components implicated that RNA processing may play a role in these processes.
I am enthusiastic about the innovative approach employed to identify RNA processing genes involved in sleep regulation and memory consolidation. During the revision process, the authors fully addressed major concerns raised by reviewers. First, the author used the Gal80ts to restrict the knockdown of Regnase-1 in adult animals and concluded that Regnase-1 RNAi appears to affect sleep through development. Second, the author showed that Regnase-1 knockdown produced robust phenotypes for both sleep-dependent and sleep-independent memory, as well as a severe short-term memory phenotype. The author cautiously concluded that flies with constitutive Regnase-1 knockdown could be poor learners, thereby exhibiting a memory phenotype. Although we don't yet have a strong link between sleep and long-term memory consolidation, the interpretation presented in the manuscript is sufficiently justified by the data. This work presents a novel strategy to explore the link between sleep and memory consolidation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
This study utilizes an extensive series of neurulation human embryos to address several open questions about the similarities and differences between human primary and secondary neurulation in the tail. Results are compared to other model systems, such as the chicken and rodent. Histology, in situ hybridization, and apoptosis analysis provide molecular data about how the tail regresses in the human embryo. The number of embryos utilized for the analysis and the quality of the histological analysis provide robustness to the findings.
Comments on revised version:
The authors have meticulously addressed all the concerns raised by the reviewers, using new data and modifications to the text to further strengthen the quality of the manuscript.
This is a fabulous manuscript. I have nothing more scientifically to critique.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The current work investigates the neural signature of category representation in infancy. Neural responses during steady-state visually-evoked potentials (ssVEPs) were recorded in four age groups of infants between 3 and 15 months. Stimuli (i.e., faces, limbs, corridors, characters, and cars) were presented at 4.286 Hz with category changes occurring at a frequency of 0.857 Hz. Results of the category frequency analyses showed that reliable responses to faces emerge around 4-6 months, whereas response to libs, corridors, and characters emerge around 6-8 months. Additionally, the authors trained a classifier for each category to assess how consistent the responses were across participants (leave-one-out approach). Spatiotemporal responses to faces were more consistent than the responses to the remaining categories and increased with increasing age. Faces showed an advantage over other categories in two additional measures (i.e., representation similarity and distinctiveness). Together, these results suggest a different developmental timing of category representation.
Strengths:
The study design is well organized. The authors described and performed analyses on several measures of neural categorization, including innovative approaches to assess the organization of neural responses. Results are in support of one of the two main hypotheses on the development of category representation described in the introduction. Specifically, the results suggest a different timing in the formation of category representations, with earlier and more robust responses emerging for faces over the remaining categories. Graphic representations and figures are very useful when reading the results. The inclusion of the adult sample and results further validate the approach utilized with infants.
Comments on revised submission:
The revised manuscript satisfactorily addressed all my previous comments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This is an outstanding piece of work on the potential of FLO as a viable analgesic biologic for the treatment of postsurgical pain. The authors purified the HC-HA/PTX3 from FLO and demonstrated its potential as an effective non-opioid therapy for postsurgical pain. They further unraveled the mechanisms of action of the compound at cellular and molecular levels.
Strengths:
Prominent strengths include the incorporation of behavioral assessment, electrophysiological and imaging recordings, the use of knockout and knockdown animals, and the use of antagonist agents to verify biological effects. The integrated use of these techniques, combined with the hypothesis-driven approach and logical reasoning, provides compelling evidence and novel insight into the mechanisms of the significant findings of this work.
Weaknesses:
I did not find any significant weaknesses even with a critical set of mind. The only minor suggestion is that the Results section may focus on the results from this study and minimize the discussions of background information.
Comments on revisions:
The authors have adequately addressed all the points raised in the last round of review. Thanks!
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The goal of this work is to define the functions of T-box transcription factors Tbx3 and Tbx5 in the adult mouse ventricular cardiac conduction system (VCS) using a novel conditional mouse allele in which both genes are targeted in cis. A series of studies over the past 2 decades by this group and others have shown that Tbx3 is a transcriptional repressor that patterns the conduction system by repressing genes associated with working myocardium, while Tbx5 is a potent transcriptional activator of "fast" conduction system genes in the VCS. In a previous work, the authors of the present study further demonstrated that Tbx3 and Tbx5 exhibit an epistatic relationship whereby the relief of Tbx3-mediated repression through VCS conditional haploinsufficiency allows better toleration of Tbx5 VCS haploinsufficiency. Conversely, excess Tbx3-mediated repression through overexpression results in disruption of the fast-conduction gene network despite normal levels of Tbx5. Based on these data the authors proposed a model in which repressive functions of Tbx3 drive the adoption of conduction system fate, followed by segregation into a fast-conducting VCS and slow-conduction AVN through modulation of the Tbx5/Tbx3 ratio in these respective tissue compartments.
The question motivating the present work is: If Tbx5/Tbx3 ratio is important for slow versus fast VCS identity, what happens when both genes are completely deleted from the VCS? Is conduction system identity completely lost without both factors and if so, does the VCS network transform into a working myocardium-like state? To address this question, the authors have generated a novel mouse line in which both Tbx5 and Tbx3 are floxed on the same allele, allowing complete conditional deletion of both factors using the VCS-specific MinK-CreERT2 line, convincingly validated in previous work. The goal is to use these double conditional knockout mice to further explore the model of Tbx3/Tbx5 co-dependent gene networks and VCS patterning. First, the authors demonstrate that the double conditional knockout allele results in the expected loss of Tbx3 and Tbx5 specifically in the VCS when crossed with Mink-CreERT2 and induced with tamoxifen. The double conditional knockout also results in premature mortality. Detailed electrophysiological phenotyping demonstrated prolonged PR and QRS intervals, inducible ventricular tachycardia, and evidence of abnormal impulse propagation along the septal aspect of the right ventricle. In addition, the mutants exhibit downregulation of VCS genes responsible for both fast conduction AND slow conduction phenotypes with upregulation of 2 working myocardial genes including connexin-43. The authors conclude that loss of both Tbx3 and Tbx5 results in "reversion" or "transformation" of the VCS network to a working myocardial phenotype, which they further claim is a prediction of their model and establishes that Tbx3 and Tbx5 "coordinate" transcriptional control of VCS identity.
Overall Appraisal:
As noted above, the present study does not further explore the Tbx5/Tbx3 ratio concept since both genes are completely knocked out in the VCS. Instead, the main claims are that the absence of both factors results in a transcriptional shift of conduction tissue towards a working myocardial phenotype, and that this shift indicates that Tbx5 and Tbx3 "coordinate" to control VCS identity and function. However, only limited data are presented to support the claim of transcriptional reprogramming since the knockout cells are not directly compared to working myocardial cells at the transcriptional level and only a small number of key genes are assessed (versus genome-wide assessment). In addition, the optical mapping dataset is incomplete and has alternative interpretations that are not excluded or thoroughly discussed.
In sum, while this study adds an elegantly constructed genetic model to the field, the data presented fit well within the existing paradigm of established functions of Tbx3 and Tbx5 in the VCS and in that sense do not decisively advance the field. Moreover, the authors' claims about the implications of the data are not always strongly supported by the data presented and do not fully explore alternative possibilities.
Strengths:
(1) Successful generation of a novel Tbx3-Tbx5 double conditional mouse model.
(2) Successful VCS-specific deletion of Tbx3 and Tbx5 using a VCS-specific inducible Cre driver line.
(3) Well-powered and convincing assessments of mortality and physiological phenotypes.
(4) Isolation of genetically modified VCS cells using flow.
Weaknesses:
(1) In general, the data is consistent with a long-standing and well-supported model in which Tbx3 represses working myocardial genes and Tbx5 activates the expression of VCS genes, which seem like distinct roles in VCS patterning. However, the authors move between different descriptions of the functional relationship and epistatic relationship between these factors, including terms like "cooperative", "coordinated", and "distinct" at various points. In a similar vein, sometimes terms like "reversion" are used to describe how VCS cells change after Tbx3/Tbx5 conditional knockout, and other times "transcriptional shift" and at other times "reprogramming". But these are all different concepts. The lack of a clear and consistent terminology for describing the phenomena observed makes the overarching claims of the manuscript more difficult to evaluate.
(2) A more direct quantitative comparison of Tbx5 Adult VCS KO with Tbx5/Tbx3 Adult VCS double KO would be helpful to ascertain whether deletion of Tbx3 on top of Tbx5 deletion changes the underlying phenotype in some discernable way beyond mRNA expression of a few genes. Superficially, the phenotypes look quite similar at the EKG and arrhythmia inducibility level and no optical mapping data from a single Tbx5 KO is presented for comparison to the double KO.
(3) The authors claim that double knockout VCS cells transform to working myocardial fate, but there is no comparison of gene expression levels between actual working myocardial cells and the Tbx3/Tbx5 DKO VCS cells so it's hard to know if the data reflect an actual cell state change or a more non-specific phenomenon with global dysregulation of gene expression or perhaps dedifferentiation. I understand that the upregulation of Gja1 and Smpx is intended to address this, but it's only two genes and it seems relevant to understand their degree of expression relative to actual working myocardium. In addition, the gene panel is somewhat limited and does not include other key transcriptional regulators in the VCS such as Irx3 and Nkx2-5. RNA-seq in these populations would provide a clearer comparison among the groups.
(4) From the optical mapping data, it is difficult to distinguish between the presence of (a) a focal proximal right bundle branch block due to dysregulation of gene expression in the VCS but overall preservation of the right bundle and its distal ramifications; from (b) actual loss of the VCS with reversion of VCS cells to a working myocardial fate. Related to this, the authors claim that this experiment allows for direct visualization of His bundle activation, but can the authors confirm or provide evidence that the tissue penetration of their imaging modality allows for imaging of a deep structure like the AV bundle as opposed to the right bundle branch which is more superficial? Does the timing of the separation of the sharp deflection from the subsequent local activation suggest visualization of more distal components of the VCS rather than the AV bundle itself? Additional clarification would be helpful.
Impact:
The present study contributes a novel and elegantly constructed mouse model to the field. The data presented generally corroborate existing models of transcriptional regulation in the VCS but do not, as presented, constitute a decisive advance.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This study by Sanchez-Vasquez is a very innovative approach to inducing aneuploidy and then studying the contribution of treated cells to different lineages, including post-implantation. It connects well to the authors' previous work to induce mosaic aneuploidies. The authors identify sensitivity to HIF1a loss in treated embryos with likely aneuploidy. This work is part of an important line of work with evaluates the consequences of aneuploidy in the mammalian embryo.
Weaknesses:
Given that this is a study on the induction of aneuploidy, it would be meaningful to assess aneuploidy immediately after induction, and then again before implantation. This is also applicable to the competition experiments on page 7/8. What is shown is the competitiveness of treated cells. Because the publication centers around aneuploidy, the inclusion of such data in the main figure at all relevant points would strengthen it. There is some evaluation of karyotypes only in the supplemental - why? It would be good not to rely on a single assay that the authors appear to not give much importance.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Gaertner and colleagues present a study examining the transcriptomic diversity and spatial location of dopaminergic neurons from mice and examine the changes in gene expression resulting from knock-in of the Parkinson's LRRK G2019S risk variant. Overall, I found the manuscript presented their study very clearly, well written with very clear figures for the most part. I am not an expert on mouse neuroanatomy but found their classification reasonably well justified and the spatial orientation of dopaminergic neurons within the mouse brain informative and clear. While trends were clear and well presented, the apparent spatial heterogeneity suggests that knowledge of the functional connections and roles of these neurons will be required to better interpret the results presented, but nonetheless their findings exposed significant detail that is required for further understanding.
The study of the transcriptional effects of the LRRK2 KI was also informative and clearly framed in terms of a focused analysis on the effects of the KI only on dopaminergic neurons. However, I think there are issues here in both methodology, narrative, and clarity.
(1) In the GO pathway analyses (both GSEA and DEG GO), I did not see a correction applied to the gene background considered. The study focusses on dopaminergic neurons and thus the gene background should be restricted to genes expressed in dopaminergic neurons, rather than all genes in the mouse genome. The problem arises that if we randomly sample genes from dopaminergic neurons instead of the whole genome, we are predisposed to sampling genes enriched in relevant cell-type-specific roles (and their relevant GO terms) and correspondingly depleted in genes enriched in functions not associated with this cell type. Thus, I am unsure whether the results presented in Figures 8 and 9 may be more likely to be obtained just by randomly sampling genes from a dopaminergic neuron. The background should be limited and these functional analyses rerun.
(2) In the scRDS results, I am unsure what is significant and what isn't. The authors refer to relative measures in the text ("highest") but I do not know whether these differences are significant nor whether any associations are significantly unexpected. Can the x-axis of scRDS results presented in Figure 9 H and I be replaced with a corrected p-value instead of the scRDS score?
(3) The results discussed at the bottom of page 13 state that 48.82% of the proteins encoded by the Calb1 DEGs have pre-synaptic localisations as opposed to 45.83% of the SOX6 DEGs, which does not support the statement that "greater proportions of DEGs are associated with presynaptic locations in cells from vulnerable DA neurons (Sox6 family, [and in particular,Sox6^tafa1]), compared to less vulnerable ones (Calb1 family)".
(4) While an interest in the Sox6^tafa1 subtype is explained through their expression of Anxa1 denoting a previously identified subtype associated with locomotory behaviours, it was unclear to me how to interpret the functional associations made to DEGs in this subtype taken out of context of other subtypes. Given all the other subtypes, it is not possible to ascertain how specific and thus how interesting these results are unless other subtypes are analysed in the same way and this Sox6^tafa1 subtype is demonstrated as unusual given results from other subtypes.
(5) On p12, the authors highlight Mir124a-1hg that encodes miR-124. This is upregulated in Figure 8D but the authors note this has been to be downregulated in PD patients and some PD mouse models. Can the authors comment on the directional difference?
(6) Lastly, can the authors comment on the selection of a LogFC cut-off of 0.15 for their DEG selection? I couldn't see this explained (apologies if I missed it).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The goal of this study was to develop a model for CDHR1-based Con-rod dystrophy and study the role of this cadherin in cone photoreceptors. Using genetic manipulation, a cell binding assay, and high-resolution microscopy the authors find that like rods, cones localize CDHR1 to the lateral edge of outer segment (OS) discs and closely oppose PCDH15b which is known to localize to calyceal processes (CPs). Ectopic expression of CDHR1 and PCDH15b in K652 cells indicates these cadherins promote cell aggregation as heterophilic interactants, but not through homophilic binding. This data suggests a model where CDHR1 and PCDH15b link OS and CPs and potentially stabilize cone photoreceptor structure. Mutation analysis of each cadherin results in cone structural defects at late larval stages. While pcdh15b homozygous mutants are lethal, cdhr1 mutants are viable and subsequently show photoreceptor degeneration by 3-6 months.
Strengths:
A major strength of this research is the development of an animal model to study the cone-specific phenotypes associated with CDHR1-based CRD. The data supporting CDHR1 (OS) and PCDH15 (CP) binding is also a strength, although this interaction could be better characterized in future studies. The quality of the high-resolution imaging (at the light and EM levels) is outstanding. In general, the results support the conclusions of the authors.
Weaknesses:
While the cellular phenotyping is strong, the functional consequences of CDHR1 disruption are not addressed. While this is not the focus of the investigation, such analysis would raise the impact of the study overall. This is particularly important given some of the small changes observed in OS and CP structure. While statistically significant, are the subtle changes biologically significant? Examples include cone OS length (Figures 4F, 6E) as well as other morphometric data (Figure 7I in particular). Related, for quantitative data and analysis throughout the manuscript, more information regarding the number of fish/eyes analyzed as well as cells per sample would provide confidence in the rigor. The authors should also note whether the analysis was done in an automated and/or masked manner.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Identifying an important role for the Integrator complex in repressing HIV transcription and suggesting that by targeting subunits of this complex specifically, INTS12, reversal of latency with and without latency reversal agents can be enhanced.
Strengths:
The strengths of the paper include the general strategy for screening targets that may activate HIV latency and the rigor of exploring the mechanism of INTS12 repression of HIV transcriptional elongation. I found the mechanism of INTS12 interesting and maybe even the most impactful part of the findings.
Weaknesses:
I have two minor comments:
There was an opportunity to examine a larger panel of latency reversal agents that reactivate by different mechanisms to determine whether INTS12 and transcriptional elongation are limiting for a broad spectrum of latency reversal agents.
I felt the authors could have extended their discussion of how exquisitely sensitive HIV transcription is to pausing and transcriptional elongation and the insights this provides about general HIV transcriptional regulation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:<br /> In their manuscript, Fang and colleagues make a notable contribution to the field of oncology, particularly in advancing our understanding of triple-negative breast cancer (TNBC). The research delineates the role of STAMBPL1 in promoting angiogenesis in TNBC through its interaction with FOXO1 and the subsequent activation of the GRHL3/HIF1A/VEGFA axis. The evidence presented is robust, with a combination of in vitro experiments, RNA sequencing, and in vivo studies providing a comprehensive view of the molecular mechanisms at play. The strength of the evidence is anchored in the systematic approach and the utilization of multiple methodologies to substantiate the findings.
Strengths:<br /> The manuscript presents a methodologically robust framework, incorporating RNA-sequencing, chromatin immunoprecipitation (ChIP) assays, and a suite of in vitro and in vivo model systems, which collectively substantiate the claims regarding the pro-angiogenic role of STAMBPL1 in TNBC. The employment of multiple cellular models, conditioned media to assess HUVEC functional responses, and xenograft tumor models in murine hosts offers a comprehensive evaluation of STAMBPL1's impact on angiogenic processes.A salient strength of this work is the identification of GRHL3 as a transcriptional target of STAMBPL1 and the demonstration of a physical interaction between STAMBPL1 and FOXO1, which modulates GRHL3-driven HIF1A transcription. The study further suggests a potential therapeutic strategy by revealing the synergistic inhibitory effects of combined VEGFR and FOXO1 inhibitor treatment on TNBC tumor growth.
Weaknesses:<br /> A potential limitation of the study is the reliance on specific cellular and animal models, which may constrain the extrapolation of these findings to the broader spectrum of human TNBC biology. Furthermore, while the study provides evidence for a novel regulatory axis involving STAMBPL1, FOXO1, and GRHL3, the multifaceted nature of angiogenesis may implicate additional regulatory factors not exhaustively addressed in this research.
Appraisal of Achievement and Conclusion Support:<br /> The authors have successfully demonstrated that STAMBPL1 promotes HIF1A transcription and activates the HIF1α/VEGFA axis in a non-enzymatic manner, leading to increased angiogenesis in TNBC. The results are generally supportive of their conclusions, with clear evidence that STAMBPL1 upregulates HIF1α expression and enhances the activity of HUVECs. The study also shows that STAMBPL1 interacts with FOXO1 to promote GRHL3 transcription, which in turn activates HIF1A.
Impact on the Field and Utility:<br /> This research is poised to exert a substantial impact on the oncological research community by uncovering the role of STAMBPL1 in TNBC angiogenesis and by identifying the STAMBPL1/FOXO1/GRHL3/HIF1α/VEGFA axis as a potential therapeutic target. The findings could pave the way for the development of novel therapeutic strategies for TNBC, a subtype characterized by a paucity of effective treatment options. The methodologies utilized in this study are likely to be valuable to the research community, offering a paradigm for investigating the role of deubiquitinating enzymes in oncogenic processes.
Additional Context:<br /> It would be beneficial for readers to understand the broader context of TNBC research and the current challenges in treating this aggressive cancer subtype. The significance of this work is heightened by the lack of effective treatments for TNBC, making the identification of new therapeutic targets particularly important. Furthermore, understanding the specific mechanisms by which STAMBPL1 regulates HIF1α expression could provide insights into hypoxia signaling in other cancer types as well.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Chronic inflammation of the bone microenvironment conferred by T2DM and obesity may inhibit bone formation and bone strength by decreasing the ratio of Wnt ligands/Wnt inhibitors.
The authors studied 63 postmenopausal women (age >65 years) undergoing hip replacement for osteoarthritis. These were grouped into T2DM and obesity, obesity only, and normal subjects. A set of inflammatory markers was measured in the serum and gene expression of members of the Wnt system in the bone tissue. Bone samples were assessed by micro-CT.
While TNF-α serum levels were higher in T2DM, IL-6 levels were higher in obesity as compared to control. In the bone compartment the most consistent finding was decreased mRNA levels for WNt10b and increased sclerostin mRNA levels, translating into a suppressed Wnt-to-Wnt inhibitor ratio, which was associated with low bone strength.
Strengths:
The study includes clinically well-characterized subjects of three defined subgroups. The analyses were comprehensive.
Weaknesses:
Including data or information on the Wnt inhibitor Dkk1 would be instructive. Analysis were limited to mRNA studies. Validation of protein levels would be supportive (although technically challenging).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this study, the authors investigated the chemotaxis of E. coli swimming close to the bottom surface in gradients of attractant in channels of increasingly smaller width but fixed height = 30 µm and length ~160 µm. In relatively large channels, they find that on average the cells drift in response to the gradient, despite cells close to the surface away from the walls being known to not be chemotactic because they swim in circles.
They find that this average drift is due to the cell localization close to the side walls, where they slide along the wall. Whereas the bacteria away from the walls have no chemotaxis (as shown before), the ones on the left side wall go down-gradient on average, but the ones on the right side wall go up-gradient faster, hence the average drift. They then study the effect of reducing channel width. They find that chemotaxis is higher in channels with a width of about 8 µm, which approximately corresponds to the radius of the circular swimming R. This higher chemotactic drift is concomitant to an increased density of cells on the RSW. They do simulations and modeling to suggest that the disruption of circular swimming upon collision with the wall increases the density of cells on the RSW, with a maximal effect at w = ~ 2/3 R, which is a good match for their experiments.
Strengths:
The overall result that confinement at the edge stabilises bacterial motion and allows chemotaxis is very interesting although not entirely unexpected. It is also important for understanding bacterial motility and chemotaxis under ecologically relevant conditions, where bacteria frequently swim under confinement (although its relevance for controlling infections could be questioned). The experimental part of the study is nicely supported by the model.
Weaknesses:
Several points of this study, in particular the interpretation of the width effect, need better clarification:
(1) Context:
There are a number of highly relevant previous publications that should have been acknowledged and discussed in relation to the current work:<br /> https://pubs.rsc.org/en/content/articlehtml/2023/sm/d3sm00286a<br /> https://link.springer.com/article/10.1140/epje/s10189-024-00450-7<br /> https://doi.org/10.1016/j.bpj.2022.04.008<br /> https://doi.org/10.1073/pnas.1816315116<br /> https://www.pnas.org/doi/full/10.1073/pnas.0907542106<br /> https://doi.org/10.1038/s41467-020-15711-0<br /> http://doi.org/10.1038/s41467-020-15711-0<br /> http://doi.org/10.1039/c5sm00939a
(2) Experimental setup:
a) The channels are built with asymmetric entrances (Figure 1), which could trigger a ratchet effect (because bacteria swim in circle) that could bias the rate at which cells enter into the channel, and which side they follow preferentially, especially for the narrow channel. Since the channel is short (160 µm), that would reflect on the statistics of cell distribution. Controls with straight entrances or with a reversed symmetry of the channel need to be performed to ensure that the reported results are not affected by this asymmetry.
b) The authors say the motile bacteria accumulate mostly at the bottom surface. This is strange, for a small height of 30 µm, the bacteria should be more-or-less evenly spread between the top and bottom surface. How can this be explained?
c) At the edge, some of the bacteria could escape up in the third dimension (http://doi.org/10.1039/c5sm00939a). What is the magnitude of this phenomenon in the current setup? Does it have an effect?
d) What is the cell density in the device? Should we expect cell-cell interactions to play a role here? If not, I would suggest to de-emphasize the connection to chemotaxis in the swarming paper in the introduction and discussion, which doesn't feel very relevant here, and rather focus on the other papers mentioned in point 1.
e) We are not entirely convinced by the interpretation of the results in narrow channels. What is the causal relationship between the increased density on the RSW and the higher chemotactic drift? The authors seem to attribute higher drift to this increased RSW density, which emerges due to the geometric reasons. But if there is no initial bias, the same geometric argument would induce the same increased density of down-gradient swimmers on the LSW, and so, no imbalance between RSW and LSW density. Could it be the opposite that the increased RSW density results from chemotaxis (and maybe reinforces it), not the other way around? Confinement could then deplete one wall due to the proximity of the other, and/or modify the swimming pattern - 8 µm is very close to the size of the body + flagellum. To clarify this point, we suggest measuring the bacterial distributions in the absence of a gradient for all channel widths as a control.
(3) Simulations:
The simulations treat the wall interaction very crudely. We would suggest treating it as a mechanical object that exerts elastic or "hard sphere" forces and torques on the bacteria for more realistic modeling. Notably, the simulations have a constant (chemotaxis independent) rate of wall escape by tumbling. We would expect that reduced tumbling due to up-gradient motility induces a longer dwell time at the wall.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this work, the authors use a theoretical model to study the potential impact of Horizontal Gene Transfer on the number of alternative stable states of microbial communities. For this, they use a modified version of the competitive Lotka Volterra model-which accounts for the effects of pairwise, competitive interactions on species growth-that incorporates terms for the effects of both an added death (dilution) rate acting on all species and the rates of horizontal transfer of mobile genetic elements-which can in turn affect species growth rates. The authors analyze the impact of horizontal gene transfer in different scenarios: bistability between pairs of species, multistability in communities, and a modular structure in the interaction matrix to simulate multiple niches. They also incorporate additional elements to the model, such as spatial structure to simulate metacommunities and modification of pairwise interactions by mobile genetic elements. In almost all these cases, the authors report an increase in either the number of alternative stable states or the parameter region (e.g. growth rate values) in which they occur.
In my opinion, understanding the role of horizontal gene transfer in community multistability is a very important subject. This manuscript is a useful approach to the subject, but I'm afraid that a thorough analysis of the role of different parameters under different scenarios is missing in order to support the general claims of the authors. The authors have extended their analysis to increase their biological relevance, but I believe that the analysis still lacks comprehensiveness.
Understanding the origin of alternative stable states in microbial communities and how often they may occur is an important challenge in microbial ecology and evolution. Shifts between these alternative stable states can drive transitions between e.g. a healthy microbiome and dysbiosis. A better understanding of how horizontal gene transfer can drive multistability could help predict alternative stable states in microbial communities, as well as inspire novel treatments to steer communities towards the most desired (e.g. healthy) stable states.
Strengths:
(1) Generality of the model: the work is based on a phenomenological model that has been extensively used to predict the dynamics of ecological communities in many different scenarios.
(2) The question of how horizontal gene transfer can drive alternative stable states in microbial communities is important and there are very few studies addressing it.
Weaknesses:
(1) There is a need for a more comprehensive analysis of the relative importance of the different model parameters in driving multistability. For example, there is no analysis of the effects of the added death rate in multistability. This parameter has been shown to determine whether a given pair of interacting species exhibits bistability or not (see e.g. Abreu et al 2019 Nature Communications 10:2120). Similarly, each scenario is analyzed for a unique value of species interspecies interaction strength-with the exception of the case for mobile genetic elements affecting interaction strength, which considers three specific values. Considering heterogeneous interaction strengths (e.g. sampling from a random distribution) could also lead to more realistic scenarios - the authors generally considered that all species pairs interact with the same strength. Analyzing a larger range of growth rates effects of mobile genetic elements would also help generalize the results. In order to achieve a more generic assessment of the impact of horizontal gene transfer in driving multistability, its role should be systematically compared to the effects of the rest of the parameters of the model.
(2) The authors previously developed this theoretical model to study the impact of horizontal gene transfer on species coexistence. In this sense, it seems that the authors are exploring a different (stronger interspecies competition) range of parameter values of the same model, which could potentially limit novelty and generality.
(3) The authors analyze several scenarios that, in my opinion, naturally follow from the results and parameter value choices in the first sections, making their analysis not very informative. For example, after showing that horizontal gene transfer can increase multistability both between pairs of species and in a community context, the way they model different niches does not bring significantly new results. Given that the authors showed previously in the manuscript that horizontal gene transfer can impact multistability in a community in which all species interact with each other, one might expect that it will also impact multistability in a larger community made of (sub)communities that are independent of (not interacting with) each-which is the proposed way for modelling niches. A similar argument can be made regarding the analysis of (spatially structured) metacommunities. It is known that, for smaller enough dispersal rates, space can promote regional diversity by enabling each local community to remain in a different stable state. Therefore, in conditions in which the impact of horizontal gene transfer drives multistability, it will also drive regional diversity in a metacommunity.
(4) In some cases, the authors consider that mobile genetic elements can lead to ~50% growth rate differences. In the presence of an added death rate, this can be a relatively strong advantage that makes the fastest grower easily take over their competitors. It would be important to discuss biologically relevant examples in which such growth advantages driven by mobile genetic elements could be expected, and how common such scenarios might be.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Weiler et al use retrograde tracers, two-photon tomography, and automatic cell detection to provide a detailed quantitative description of the laminar and area sources of ipsi- and contralateral cortico-cortical inputs to two primary sensory areas and a primary motor area. They found considerable bilateral symmetry in the areas providing cortico-cortical inputs. However, although the same regions in both hemispheres tended to supply inputs, a larger proportion of inputs from contralateral areas originated from deeper layers (L5 and L6).
Strengths:
The study applies state-of-the-art anatomical methods, and the data is very effectively presented and carefully analyzed. The results provide many novel insights into the similarities and differences of inputs from the two hemispheres. While over the past decade there have been many studies quantitively and comprehensively describing cortico-cortical connections, by directly comparing inputs from the ipsi and contralateral hemispheres, this study fills in an important gap in the field. It should be of great utility and an important reference for future studies on inter-hemispheric interactions.
Weaknesses:
Overall, I do not find any major weakness in the analyses or their interpretation. However, one must keep in mind that the study only analyses inputs projecting to three areas. This is not an inherent flaw of the study; however, it warrants caution when extrapolating the results to callosal projections terminating in other areas. As inputs to two primary sensory areas and one is the primary motor cortex are studied, some of the conclusions could potentially be different for inputs terminating in high-order sensory and motor areas. Given that primary areas were injected, there are few instances of feedforward connections sampled in the ipsilateral hemisphere. The study finds that while ipsi-projections from the visual cortex to the barrel cortex are feedforward given its fILN values, those from the contralateral visual cortex are feedback instead. One is left to wonder whether this is due to the cross-modal nature of these particular inputs and whether the same rule (that contralateral inputs consistently exhibit feedback characteristics regardless of the hierarchical relationship of their ipsilateral counterparts with the target area,) would also apply to feedforward inputs within the same sensory cortices.
Another issue that is left unexplored is that, in the current analyses the barrel and primary visual cortex are analyzed as a uniform structure. It is well established that both the laminar sources of callosal inputs and their terminations differ in the monocular and binocular areas of the visual cortex (border with V2L). Similarly, callosal projections differ when terminating the border of S1 (a row of whiskers), and then in other parts of S1. Thus, some of the conclusions regarding the laminar sources of callosal inputs might depend on whether one is analyzing inputs terminating or originating in these border regions.
Finally, while the paper emphasizes that projections from L6 "dominate" intra and contralateral cortico-cortical inputs, the data shows a more nuanced scenario. While it is true that the areas for which L6 neurons are the most common source of cortico-cortical projections are the most abundant, the picture becomes less clear when considering the number of neurons sending these connections. In fact, inputs from L2/3 and L5 combined are more abundant than those from L6 (Figure 3B), challenging the view that projections from L6 dominate ipsi- and contralateral projecting cortico-cortical inputs.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The manuscript 'Recognition and Cleavage of Human tRNA Methyltransferase TRMT1 by the SARS-CoV-2 Main Protease' from Angel D'Oliviera et al., uncovers that TRMT1 can be cleaved by SARS-CoV-2 main protease (Mpro) and defines the structural basis of TRMT1 recognition by Mpro. They use both recombinant TRMT1 and Mpro as well as endogenous TRMT1 from HEK293T cell lysates to convincingly show cleavage of TRMT1 by the SARS-CoV-2 protease. Using in vitro assays, the authors demonstrate that TRMT1 cleavage by Mpro blocks its enzymatic activity leading to hypomodification of RNA. To understand how Mpro recognizes TRMT1, they solved a co-crystal structure of Mpro bound to a peptide derived from the predicted cleavage site of TRMT1. This structure revealed important protein-protein interfaces and highlights the importance of the conserved Q530 for cleavage by Mpro. They then compare their structure with previous X-ray crystal structures of Mpro bound to substrate peptides derived from the viral polyprotein and propose the concept of two distinct binding conformations to Mpro: P3´-out and P3´-in conformations (here P3´ stands for the third residue downstream of the cleavage site). It remains unknown what is the physiological role of these two binding conformations on Mpro function, but the authors established that Mpro has dramatically different cleavage efficiencies for three distinct substrates. In an effort to rationalize this observation, a series of mutations in Mpro's active site and the substrate peptide were tested but unexpectedly had no significant impact on cleavage efficiency. While molecular dynamic simulations further confirmed the propensity of certain substrates to adopt the P3´-out or P3´-in conformation, it did not provide additional insights into the dramatic differences in cleavage efficiencies between substrates. This led the authors to propose that the discrimination of Mpro for preferred substrates might occur at a later stage of catalysis after binding of the peptide. Overall, this work will be of interest to biologists studying proteases and substrate recognition by enzymes and RNA modifications as well as help efforts to target Mpro with peptide-like drugs.
Strengths:
• The authors' statements are well supported by their data, and they used relevant controls when needed. Indeed, they used the Mpro C145A inactive variant to unambiguously show that the TRMT1 cleavage detected in vitro is solely due to Mpro's activity. Moreover, they used two distinct polyclonal antibodies to probe TRMT1 cleavage.<br /> • They demonstrate the impact of TRMT1 cleavage on RNA modification by quantifying both its activity and binding to RNA.<br /> • Their 1.9 Å crystal structure is of high quality and increases the confidence in the reported protein-protein contacts seen between TRMT1-derived peptide and Mpro.<br /> • Their extensive in vitro kinetic assay was performed in ideal conditions although it is sometimes unclear how many replicates were performed.<br /> • They convincingly show how Mpro cleavage is conserved among most but not all mammalian TRMT1 bringing an interesting evolutionary perspective on virus-host interactions.<br /> • The authors test multiple hypotheses to rationalize the preference of Mpro for certain substrates.<br /> • While this reviewer is not able to comment on the rigor of the MD simulations, the interpretations made by the authors seem reasonable and convincing.<br /> • The concept of two binding conformations (P3´-out or P3´-in) for the substrate in the active site of Mpro is significant and can guide drug design.
Weaknesses:
• The two polyclonal antibodies used by the authors seem to have strong non-specific binding to proteins other than TRMT1 but did not impact the author's conclusions or statements. This is a limitation of the commercially available antibodies for TRMT1.<br /> • Despite the reasonable efforts of the authors, it remains unknown why Mpro shows higher cleavage efficiency for the nsp4/5 sequence compared to TRMT1 or nsp8/9 sequences. This is a challenging problem that will take substantially more effort by several labs to decipher mechanistically.<br /> • The peptide cleavage kinetic assay used by the authors relies on a peptide labelled with a fluorophore (MCA) on the N-terminus and a quencher (Dpn) on the C-terminus. This design allows high-throughput measurements compatible with plate readers and is a robust and convenient tool. Nevertheless, the authors did not control for the impact of the labels (MCA and Dpn) on the activity of Mpro. While in most cases the introduced fluorophore/quencher do not impact activity, sometimes it can.<br /> • An unanswered question not addressed by the authors is if the peptides undergo conformational changes upon Mpro binding or if they are pre-organized to adopt the P3´-out and P3´-in conformations. This might require substantially more work outside the scope of this immediate article.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public review):
This study provides valuable insights into the cellular responses to complex aneuploidy in human preimplantation embryos. The authors have significantly expanded their sample size and conducted additional analysis and experiments to address previous concerns. The revised manuscript presents stronger evidence for gene dosage-dependent effects of aneuploidy on stress responses and lineage segregation. Overall, the findings contribute important knowledge to our understanding of how human embryos respond to chromosomal abnormalities.
Overall, the revision has substantially improved the manuscript and addressed the major concerns raised in the initial review.
-
-
www.researchsquare.com www.researchsquare.com
-
Reviewer #2 (Public review):
Summary:
This work introduces a new method of depleting the ribosomal reads from the single-cell RNA sequencing library prepared with one of the prokaryotic scRNA-seq techniques, PETRI-seq. The advance is very useful since it allows broader access to the technology by lowering the cost of sequencing. It also allows more transcript recovery with fewer sequencing reads. The authors demonstrate the utility and performance of the method for three different model species and find a subpopulation of cells in the E.coli biofilm that express a protein, PdeI, which causes elevated c-di-GMP levels. These cells were shown to be in a state that promotes persister formation in response to ampicillin treatment.
Strengths:
The introduced rRNA depletion method is highly efficient, with the depletion for E.coli resulting in over 90% of reads containing mRNA. The method is ready to use with existing PETRI-seq libraries which is a large advantage, given that no other rRNA depletion methods were published for split-pool bacterial scRNA-seq methods. Therefore, the value of the method for the field is high. There is also evidence that a small number of cells at the bottom of a static biofilm express PdeI which is causing the elevated c-di-GMP levels that are associated with persister formation. This finding highlights the potentially complex role of PdeI in regulation of c-di-GMP levels and persister formation in microbial biofilms.
Comments on revised version:
The authors edited the manuscript thoroughly in response to the comments, including both performing new experiments and showing more data and information. Most of the major points raised between both reviewers were addressed. The authors explained the seeming contradiction between c-di-GMP levels and PdeI expression.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
FOXP3 has been known to form diverse complexes with different transcription factors and enzymes responsible for epigenetic modifications, but how extracellular signals timely regulate FOXP3 complex dynamics remains to be fully understood. Histone H3K4 tri-methylation (H3K4me3) and CXXC finger protein 1 (CXXC1), which is required to regulate H3K4me3, also remain to be fully investigated in Treg cells. Here, Meng et al. performed a comprehensive analysis of H3K4me3 CUT&Tag assay on Treg cells and a comparison of the dataset with the FOXP3 ChIP-seq dataset revealed that FOXP3 could facilitate the regulation of target genes by promoting H3K4me3 deposition.
Moreover, CXXC1-FOXP3 interaction is required for this regulation. They found that specific knockdown of Cxxc1 in Treg leads to spontaneous severe multi-organ inflammation in mice and that Cxxc1-deficient Treg exhibits enhanced activation and impaired suppression activity. In addition, they have also found that CXXC1 shares several binding sites with FOXP3 especially on Treg signature gene loci, which are necessary for maintaining homeostasis and identity of Treg cells.
The findings of the current study are pretty intriguing, and it would be great if the authors could fully address the following comments to support these interesting findings.
Major points:
(1) There is insufficient evidence in the first part of the Results to support the conclusion that "FOXP3 functions as an activator by promoting H3K4Me3 deposition in Treg cells". The authors should compare the results for H3K4Me3 in FOXP3-negative conventional T cells to demonstrate that at these promoter loci, FOXP3 promotes H3K4Me3 deposition.
(2) In Figure 3 F&G, the activation status and IFNγ production should be analyzed in Treg cells and Tconv cells separately rather than in total CD4+ T cells. Moreover, are there changes in autoantibodies and IgG and IgE levels in the serum of cKO mice?
(3) Why did Cxxc1-deficient Treg cells not show impaired suppression than WT Treg during in vitro suppression assay, despite the reduced expression of Treg cell suppression assay -associated markers at the transcriptional level demonstrated in both scRNA-seq and bulk RNA-seq?
(4) Is there a disease in which Cxxc1 is expressed at low levels or absent in Treg cells? Is the same immunodeficiency phenotype present in patients as in mice?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors comprehensively assess differences in the TCRB and TCRA repertoires in the fetal and adult mouse thymus by deep sequencing of sorted cell populations. For TCRB and TCRA they observed biased gene segment usage, less diversity, and greater repertoire sharing among individuals in fetal thymocytes. The TCRB repertoire was less evenly distributed and displayed more evidence of clonal expansions in fetal thymocytes. Both fetal and adult thymocytes demonstrated repertoire skewing in CD4 and CD8 as compared to DP thymocytes, which was attributed to MHC-I- vs MHC-II-restriction during positive selection. Effects of MHC-restriction were notably weaker in fetal thymocytes. The authors conclude that in multiple respects fetal repertoires are distinct from adult repertoires.
Strengths:
The analyses of the F18.5 and adult thymic repertoires are comprehensive with respect to the cell populations analyzed and the diversity of statistical approaches used to characterize the repertoires. Because repertoires were analyzed in pre- and post-selection thymocyte subsets, the data allowed assessment of repertoire selection at different developmental stages. Intriguing differences between fetus and adult are identified.
Weaknesses:
Some of the repertoire characteristics reported are already fairly well documented in the literature. Moreover, an unaddressed limitation of the study is that fetal thymocytes were analyzed at single time-point in their development. As a result, at least some of the conclusions about the fetal repertoire may be viewed not as general conclusions, but rather, due to the synchronous development of fetal thymocytes, as pertaining to the one day of fetal/early neonatal development assayed. Statements suggesting that (1) "progressive TCRa rearrangements occur less frequently in foetal DP cells" (Abstract), (2) "One possible explanation for this bias is that in the foetus progressive rounds of TCRa rearrangement are less common than in young adult" (Discussion), and (3) "Overall, the differences between the foetal and adult thymus TCR repertoires are consistent with the foetal thymus producing abT-cells ... with preference for particular gene segment usage" (Discussion), are oversimplified and potentially misleading.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public Review):
In this manuscript, the authors revealed that genetic deficiencies of ACK1 and BRK are associated with human SLE. First, the authors found that compound heterozygous deleterious variants in the kinase domains of the non-receptor tyrosine kinases (NRTK) TNK2/ACK1 in one multiplex family and PTK6/BRK in another family. Then, by an experimental blockade of ACK1 or BRK in a mouse SLE model, they found an increase in glomerular IgG deposits and circulating autoantibodies. Furthermore, they reported that ACK and BRK variants from the SLE patients impaired the MERTK-mediated anti-inflammatory response to apoptotic cells in human induced pluripotent stem cells (hiPSC)-derived macrophages. This work identified new SLE-associated ACK and BRK variants and a role for the NRTK TNK2/ACK1 and PTK6/BRK in efferocytosis, providing a new molecular and cellular mechanism of SLE pathogenesis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Heparan Sulphate is a general association factor in the extracellular matrix which assists in host cell entry for a multitude of viral and bacterial pathogens by concentrating them in the vicinity of cellular membranes. The neurotropic picornavirus, EV-71 utilizes a protein receptor SCARB-2, in conjunction with Heparan Sulfate, in order to enter cells through the endo-lysosomal pathway. The uncoating and release of viral genome requires both receptor binding and late endosomal pH conditions. The authors have attempted to address a seeming contradiction in the in vitro and in vivo infectivity of strain MP4 variants of EV-71. One of the cell culture adapted strains MP4-L97R/E167G has stronger association with HS, which translates to higher infectivity in cell culture models; however, viral virulence is significantly lower in animal models.
Using an elegant and methodical set of experiments, the authors have probed the steps in the cellular entry pathway of MP4 and its L97R/E167G variant. Their experiments strongly suggest a difference in capsid uncoating mechanisms in the variant, with the L97R/E167G variant being significantly less robust and prone to destabilize earlier in the pathway. While this confers an advantage in terms of cell culture based infectivity, it is posited that the particles will not survive the gastric pH intact, which compromises virulence in the animal model. While the cell culture based uncoating experiments somewhat support this hypothesis, the main weakness of this work is a lack of explanation for the mechanism(s) of capsid destabilization conferred by overall increased positive charge. The structural bioinformatics study in the supplementary section does not explain how receptor binding, pocket factor expulsion, subunit interactions and low pH based capsid dynamics may be influenced by the mutations. Capsid destabilization could be an outcome in alteration of any or all of these processes. It is also unclear whether it is suggested that all mutations enhancing the net positive charge of VP1, or any other structural protein, will cause capsid destabilization by similar pathways. A clearer analysis of the influence of overall charge alterations, or individual mutations, on subunit interaction or particle conformation is needed. The enhancement in cell culture infectivity of the L97R/E167G variant under elevated endosomal pH is also unclear and requires further experimentation.
It has been suggested earlier that increased HS binding in vivo results in virus "trapping" and decreased infectivity. This may still be a major reason for reduced infectivity in vivo, in addition to the capsid destabilization as proposed in this work.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Many naturally occurring networks are assumed to have a power-law (PL) degree distribution. This assumption has certainly been widely held in the field of protein interactomes (PPIs), although important studies around 2010 have conclusively shown that many of these PL distributions are either the result of data mis-handling or of sloppy statistical procedures (see e.g. Porter and Stumpf in Science around 2014, which I would advise the authors to cite). The value of the present study is to introduce a new mechanism, experiment bias, to explain the appearance of such distributions in the PPI case, and in particular to show how correcting empirically for this mechanism can lead to a reappraisal of which proteins are genuine hubs in these networks. The claims are well supported by empirical evidence and some theoretical analysis. Overall, this is a worthwhile contribution although its significance is somewhat dented by the fact that the PL enthusiasm of many had already been tempered by the studies mentioned above.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This was a well-executed and well-written paper. The authors have provided important new datasets that expand on previous investigations substantially. The discovery that changes in diet are not so closely correlated with the presence of alkaloids (based on the expanded sampling of non-defended species) is important, in my opinion.
Strengths:
Provision of several new expanded datasets using cutting edge technology and sampling a wide range of species that had not been sampled previously. A conceptually important paper that provides evidence for the importance of intermediate stages in the evolution of chemical defense and aposematism.
Weaknesses:
There were some aspects of the paper that I thought could be revised. One thing I was struck by is lack of discussion of the potentially negative effects of toxin accumulation, and how this might play out in terms of different levels of toxicity in different species. Further, are there aspects of ecology or evolutionary history that might make some species less vulnerable to the accumulation of toxins than others? This could be another factor that strongly influences the ultimate trajectory of a species in terms of being well-defended. I think the authors did a good job in terms of describing mechanistic factors that could affect toxicity (e.g. potential molecular mechanisms), but did not make much of an attempt to describe potential ecological factors that could impact trajectories of the evolution of toxicity. This may have been done on purpose (to avoid being too speculative), but I think it would be worth some consideration.
In the discussion, the authors make the claim that poison frogs don't (seem to) suffer from eating alkaloids. I don't think this claim has been properly tested (the cited references don't adequately address it). To do so would require an experimental approach, ideally obtained data on both lifespan and lifetime reproductive success.
Update: Revised version: The authors carefully addressed the comments and suggestions on the first draft of the manuscript. In my opinion, these revisions were sufficient and the authors have adequately addressed the previously noted weaknesses in the manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
This study builds upon the team's recent discovery that antibiotic treatment and other disturbances favours the persistence of bacteria with genomes that encode complete modules for the synthesis of essential metabolites (Watson et al. 2023). Veseli and collaborators now provide an in-depth analysis of metabolic pathway completeness within microbiomes, finding strong evidence for an enrichment of bacteria with high metabolic independence in the microbiomes associated with IBD and other gastrointestinal disorders. Importantly, this study provides a new open-source software to facilitate the reconstruction of metabolic pathways, estimate their completeness and normalize their results according to species diversity. Finally, this study also shows that metabolic independence of microbial communities can be used as a marker of dysbiosis. The function-based health index proposed here is more robust to individual's lifestyles and geographic origin than previously proposed methods based on bacterial taxonomy.
The implications of this study have the potential to spur a paradigm shift in the field. It shows that certain bacterial taxa that have been consistently associated with disease might not be harmful to their host as previously thought. These bacteria seem to be the only species that are able to survive in a stressed gut environment. They might even be important to rebuild a healthy microbiome (although the authors are careful in not making this speculation).
This paper provides an in-depth discussion of the results, and limitations are clearly addressed throughout the manuscript (see also the supplementary files for an in-depth assessment of the robustness of the methods). Some of the potential limitations relate to the use of large publicly available datasets, where sample processing and the definition of healthy status varies between studies. The authors have recognised these issues and their results were robust to analyses performed at a per-cohort basis. The potential limitations therefore are unlikely to have affected the conclusions of this study.
Overall, this is manuscript is a magnificent contribution to the field, likely to inspire many other studies to come.
Comments on revisions:
The authors have performed a detailed assessment of the accuracy and robustness of their new methods, and included an informative session comparing their new approach with existing ones. The new analyses have strengthened the manuscript, and the results support the biological interpretations of the study.<br /> I commend the authors for the effort and the excellent research.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
In this manuscript, Senn, Lipinski, and colleagues report on the structure and function of the conserved spliceosomal protein Fyv6. Pre-mRNA splicing is a critical gene expression step that occurs in two steps, branching and exon ligation. Fyv6 had been recently identified by the Hoskins' lab as a factor that aids exon ligation (Lipinski et al., 2023), yet the mechanistic basis for Fyv6 function was less clear. Here, the authors combine yeast genetics, transcriptomics, biochemical assays, and structural biology to reveal the function of Fyv6. Specifically, they describe that Fyv6 promotes the usage of distal 3'SSs by stabilizing a network of interactions that include the RNA helicase PRP22 and the spliceosome subunit SYF1. They discuss a generalizible mechanism for splice site proofreading by spliceosomsal RNA helicases that could be modulated by other, regulatory splicing factors.
This is a very high quality study, which expertly combines various approaches to provide new insights into the regulation of 3'SS choice, docking, and undocking. The cryo-EM data is also of excellent quality, which substantially extends on previous yeast P complex structures. This is also supported by the authors use of the latest data analysis tools (Relion-5, AlphaFold2 multimer predictions, Modelangelo). The authors re-evaluate published EM densities of yeast spliceosome complexes (B*, C,C*,P) for the presence or absence of Fyv6, substantiate Fyv6 as a 2nd step specific factor, confirm it as the homolog of the human protein FAM192A, and provide a model for how Fyv6 may fit into the splicing pathway. The biochemical experiments on probing the splicing effects of BP to 3'SS distances after Fyv6 KO, genetic experiments to probe Fyv6 and Syf1 domains, and the suppressor screening add substantially to the study and are well executed. The manuscript is clearly written and we particularly appreciated the nuanced discussions, for example for an alternative model by which Prp22 influences 3'SS undocking. The research findings will be of great interest to the pre-mRNA splicing community.
Comments on revisions:
I'm satisfied with the changes.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public review):
HIV infection is characterized by viral integration into permissive host cells - an event that occurs very early in viral-host encounter. This constitutes the HIV proviral reservoir and is a feature of HIV infection that provides the greatest challenge for eradicating HIV-1 infection once an individual is infected.
This study looks at how starting HIV treatment very early after infection, which substantially reduces the peak viral load detectable (compared to untreated infection), affects the amount and characteristics of the viral reservoir. The authors studied 35 women in South Africa who were at high risk of getting HIV. Some of these women started HIV treatment very soon after getting infected, while others started later. This study is well-designed and has as its focus a very well characterized cohort. Comparison groups are appropriately selected to address proviral DNA characterization and dynamics in the context of acute and chronic treated HIV-1. The amount of HIV and various characteristics of the genetic makeup of the virus (intact/defective proviral genome) was evaluated over one year of treatment. Methods employed for proviral DNA characterization are state-of-the-art and provide in-depth insights into the reservoir in peripheral blood.
While starting treatment early didn't reduce the amount of HIV DNA at the outset, it did lead to a gradual decrease in total HIV DNA quantity over time. In contrast, those who started treatment later didn't see much change in this parameter. Starting treatment early led to a faster decrease in intact provirus (a measure of replication-competence), compared to starting treatment later. Additionally, early treatment reduced genetic diversity of the viral DNA and resulted in fewer immune escape variants within intact genomes. This suggests that collectively having a smaller intact replication-competent reservoir, less viral variability, and less opportunity for virus to evade the immune system - are all features that are likely to facilitate more effective clearance of viral reservoir, especially when combined with other intervention strategies.
Major strengths of the study include the cohort of very early treated persons with HIV and the depth of study. These are important findings, particularly as the study was conducted in HIV-1 subtype C infected women (more cure studies have focussed on men and with subtype B infection)- and in populations most affected by HIV and in need of HIV cure interventions. This is highly relevant because it cannot be assumed that any interventions employed for reducing/clearing the HIV reservoir would perform similarly in men and women or across different populations. Other factors also deserve consideration and include age, and environment (e.g. other comorbidities and coinfections).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this manuscript by Torelli et al., the authors propose that the major function of MYR1 and MYR1-dependent secreted proteins is to contribute to parasite survival in a paracrine manner rather than to protect parasites from cell-autonomous immune response. The authors conclude that these paracrine effects rescue ∆MYR1 or knockouts of MYR1-dependent effectors within pooled in vivo CRISPR screens.
Strengths:
The authors raised a more general concern that pooled CRISPR screens (not only in Toxoplasma but also other microbes or cancers) would miss important genes by "paracrine masking effect". Although there is no doubt that pooled CRISPR screens (especially in vivo CRISPR screens) are powerful techniques, I think this topic could be of interest to those fields and researchers.
Weaknesses:
In this version, the reviewer is not entirely convinced of the 'paracrine masking effect' because the in vivo experiments should include appropriate controls (see major point 2) in the first submission.
After the revision, although no experiments were added, this reviewer considered that the points have been sufficiently discussed and commented on.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The manuscript by Isotani et al characterizes the hyperproliferation of intestinal stem cells (ISCs) induced by nicotine treatment in vivo. Employing a range of small molecule inhibitors, the authors systematically investigated potential receptors and downstream pathways associated with nicotine-induced phenotypes through in vitro organoid experiments. Notably, the study specifically highlights a signaling cascade involving α7-nAChR/PKC/YAP/TAZ/Notch as a key driver of nicotine-induced stem cell hyperproliferation. Utilizing a Lgr5CreER Apcfl/fl mouse model, the authors extend their findings to propose a potential role of nicotine in stem cell tumorgenesis. The study posits that Notch signaling is essential during this process.
Strengths and Weaknesses:
One noteworthy research highlight in this study is the indication, as shown in Figure 2 and S2, that the trophic effect of nicotine on ISC expansion is independent of Paneth cells. In the Discussion section, the authors propose that this independence may be attributed to distinct expression patterns of nAChRs in different cell types. To further substantiate these findings, the authors provided qPCR analysis of nAchRs in ISCs and Paneth cells from isolated whole small intestine, indicating that α7-nAChR uniquely responds to nicotine treatment among various nAChRs. The authors further strengthen the clinical relevance of the study by exploring human scRNA-seq dataset, in which α7-nAChR is indeed also expressed in human ISCs and Paneth cells.
As shown in the same result section, the effect of nicotine on ISC organoid formation appears to be independent of CHIR99021, a Wnt activator. In the Lgr5CreER Apcfl/fl mouse model, it is known that APC loss results in a constitutive stabilization of β-catenin, thus the hyperproliferation of ISCs by nicotine treatment in this mouse model is likely beyond Wnt activation. The authors have included such discussion.
In Figure 4, the authors investigate ISC organoid formation with a pan-PKC inhibitor, revealing that PKC inhibition blocks nicotine-induced ISC expansion. It's noteworthy that PKC inhibitors have historically been used successfully to isolate and maintain stem cells by promoting self-renewal. Therefore, it is surprising to observe no or reversal effect on ISCs in this context. The authors have now included an additional PKC inhibitor Sotrastaurin to confirm the role of PKC in nicotine-induced ISC expansion.
Overall, the manuscript has provided sufficient experimental evidence to address my concerns and also significantly enhanced its quality.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #3 (Public review):
Summary:
The manuscript coins a term "the census population size" which they define from the diversity of malaria parasites observed in the human community. They use it to explore changes in parasite diversity in more than 2000 people in Ghana following different control interventions.
Strengths:
This is a good demonstration of how genetic information can be used to augment routinely recorded epidemiological and entomological data to understand the dynamics of malaria and how it is controlled. The genetic information does add to our understanding, though by how much is currently unclear (in this setting it says the same thing as age stratified parasite prevalence), and its relevance moving forward will depend on the practicalities and cost of the data collection and analysis. Nevertheless, this is a great dataset with good analysis and a good attempt to understand more about what is going on in the parasite population.
Weaknesses:
None
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this study, Maillie et al. have carried out a set of multiscale molecular dynamics simulations to investigate the interactions between the viral membrane and four broadly neutralizing antibodies that target the membrane proximal exposed region (MPER) of the HIV-1 envelope trimer. The simulation recapitulated in several cases the binding sites of lipid head groups that were observed experimentally by X-ray crystallography, as well as some new binding sites. These binding sites were further validated using a structural bioinformatics approach. Finally, steered molecular dynamics was used to measure the binding strength between the membrane and variants of the 4E10 and PGZL1 antibodies.
The use of multiscale MD simulations allows for a detailed exploration of the system at different time and length scales. The combination of MD simulations and structural bioinformatics provides a comprehensive approach to validate the identified binding sites. Finally, the steered MD simulations offer quantitative insights into the binding strength between the membrane and bnAbs.
While the simulations and analyses provide qualitative insights into the binding interactions, they do not offer a quantitative assessment of energetics. The coarse-grained simulations exhibit artifacts and thus require careful analysis.
This study contributes to a deeper understanding of the molecular mechanisms underlying bnAb recognition of the HIV-1 envelope. The insights gained from this work could inform the design of more potent and broadly neutralizing antibodies.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Intrinsic primary afferent neurons are an interesting population of enteric neurons that transduce stimuli from the mucosa, initiate reflexive neurocircuitry involved in motor and secretory functions, and modulate gut immune responses. The morphology, neurochemical coding, and electrophysiological properties of these cells have been relatively well described in a long literature dating back to the late 1800's but questions remain regarding their roles in enteric neurocircuitry, potential subsets with unique functions, and contributions to disease. Here, the authors provide RNAscope, immunolabeling, electrophysiological, and organ function data characterizing IPANs in mice and suggest that Cdh6 is an additional marker of these cells.
Strengths:
This paper would likely be of interest to a focused enteric neuroscience audience and increase information regarding the properties of IPANs in mice. These data are useful and suggest that prior data from studies of IPANs in other species are likely translatable to mice.
Weaknesses:
The advance presented here beyond what is already known is minimal. Some of the core conclusions are overstated and there are multiple other major issues that limit enthusiasm. Key control experiments are lacking and data do not specifically address the properties of the proposed Cdh6+ population.
Major weaknesses:
(1) The novelty of this study is relatively low. The main point of novelty suggests an additional marker of IPANs (Cdh6) that would add to the known list of markers for these cells. How useful this would be is unclear. Other main findings basically confirm that IPANs in mice display the same classical characteristics that have been known for many years from studies in guinea pigs, rats, mice and humans.
(2) Some of the main conclusions of this study are overstated and claims of priority are made that are not true. For example, the authors state in lines 27-28 of the abstract that their findings provide the "first demonstration of selective activation of a single neurochemical and functional class of enteric neurons". This is certainly not true since Gould et al (AJP-GIL 2019) expressed ChR2 in nitrergic enteric neurons and showed that activating those cells disrupted CMC activity. In fact, prior work by the authors themselves (Hibberd et al Gastro 2018) showed that activating calretinin neurons with ChR2 evoked motor responses. Work by other groups has used chemogenetics and optogenetics to show the effects of activating multiple other classes of neurons in the gut.
(3) Critical controls are needed to support the optogenetic experiments. Control experiments are needed to show that ChR2 expression a) does not change the baseline properties of the neurons, b) that stimulation with the chosen intensity of light elicits physiologically relevant responses in those neurons, and c) that stimulation via ChR2 elicits comparable responses in IPANs in the different gut regions focused on here.
(4) The electrophysiological characterization of mouse IPANs is useful but this is a basic characterization of any IPAN and really says nothing specifically about Cdh6+ neurons. The electrophysiological characterization was also only done in a small fraction of colonic IPANs, and it is not clear if these represent cell properties in the distal colon or proximal colon, and whether these properties might be extrapolated to IPANs in the different regions. Similarly, blocking IH with ZD7288 affects all IPANs and does not add specific information regarding the role of the proposed Cdh6+ subtype.
(5) Why SMP IPANs were not included in the analysis of Cdh6 expression is a little puzzling. IPANs are present in the SMP of the small intestine and colon, and it would be useful to know if this proposed marker is also present in these cells.
(6) The emphasis on IH being a rhythmicity indicator seems a bit premature. There is no evidence to suggest that IH and IT are rhythm-generating currents in the ENS.
(7) As the authors point out in the introduction and discuss later on, Type II Cadherins such as Cdh6 bind homophillically to the same cadherin at both pre- and post-synapse. The apparent enrichment of Cdh6 in IPANs would suggest extensive expression in synaptic terminals that would also suggest extensive IPAN-IPAN connections unless other subtypes of neurons express this protein. Such synaptic connections are not typical of IPANs and raise the question of whether or not IPANs actually express the functional protein and if so, what might be its role. Not having this information limits the usefulness of this as a proposed marker.
(8) Experiments shown in Figures 6J and K use a tethered pellet to drive motor responses. By definition, these are not CMCs as stated by the authors.
(9) The data from the optogenetic experiments are difficult to understand. How would stimulating IPANs in the distal colon generate retrograde CMCs and stimulating IPANs in the proximal colon do nothing? Additional characterization of the Cdh6+ population of cells is needed to understand the mechanisms underlying these effects.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
This manuscript explores the molecular mechanisms that are involved in substrate recognition by the PP1 phosphatase. The authors previously showed that the PP1 interacting protein (PPI), PhactrI, conferred substrate specificity by remodelling the PP1 hydrophobic substrate groove. In this work, the authors aimed to understand the key determinant of how other PIPs, Neurabin and Spinophilin, mediate substrate recognition.
The authors generated a few PP1-PIP fusion constructs, undertook TMT phosphoproteomics and validated their method using PP1-Phactr1/2/3/4 fusion constructs. Using this method, the authors identified phsophorylation sites controlled by PP1-Neurabin and focussed their work on 4E-BP1, thereby linking PP1-Neurabin to mTORC1 signalling. Upon validating that PP1-Neurabin dephosphorylates 4E-BP1, they determined that 4E-BP1 PBM binds to the PDZ domain of Neurabin with an affinity that was greater than 30-fold as compared to other substrates. PP1-Neurabin dephosphorylated 4E-BP1WT and IRSp53WT with a catalytic efficiency much greater than PP1 alone. However, PP1-Neurabin bound to 4E-BP1 and IRSp53 mutants lacking the Neurabin PDZ domain with a catalytic efficiency lesser than that observed with 4E-BP1WT. These results indicate the involvement of the PDZ domain in facilitating substrate recruitment by PP1-Neurabin. Interestingly, PP1-Phactr1 dephosphorylation of 4E-BP1 phenocopies PP1 alone, while PP1-Phactr1 dephosphorylates IRSp53 to a much higher extent than PP1 alone. These results highlight the importance of the PDZ domain and also shed light on how different PP1-PIP holoenzymes mediate substrate recognition using distinct mechanisms. The authors also show that the remodelling of the hydrophobic PP1 substrate groove which is essential for substrate recognition by PP1-Phactr1, was not required by PP1-Neurabin. Additionally, the authors also resolved the structure of a PP1-4E-BP1 fusion with the PDZ-containing C-terminal of Neurabin and observed that the Neurabin/PP1-4E-BP1 complex structure was oriented at 21{degree sign} to that in the unliganded Spinophilin/PP1 complex (resolved by Ragusa et al., 2010) owing to a slight bend in the C-terminal section that connects it to the RVxF-ΦΦ-R-W string. Since no interaction was observed with the remodelled PP1-Neurabin hydrophobic groove, the authors utilised AlphaFold3 to further answer this. They observed a high confidence of interaction between the groove and phosphorylated substrate and a low confidence of interaction between the groove and unphosphorylated substrate, thereby suggesting that the hydrophobic groove remodelling is not involved in PP1-Neurabin recognition and dephosphorylation of 4E-BP1.
In this work, the authors provide novel insights into how Neurabin depends on the interaction between its PDZ domain and PBM domains of potential substrates to mediate its recruitment by PP1. Additionally, they uncover a novel PP1-Neurabin substrate, 4E-BP1. They systematically employ phosphoproteomics, biochemical, and structural methods to investigate substrate specificity in a robust fashion. Furthermore, the authors also compare the interactions between PP1-Neurabin to 4E-BP1 and IRSp53 (PP1-Phactr1 substrate) with PP1-Phactr1, to showcase the specificity of the mode of action employed by these complexes in mediating substrate specificity. The authors employ an innovative PP1-PIP fusion strategy previously explored by Oberoi et al., 2016 and the authors themselves in Fedoryshchak et al., 2020. Although this method, allows for a more controlled investigation of the interactions between PP1-PIPs and its substrates, this methodology may not fully recapitulate the interactions that may occur in a physiological setting. This could potentially be overcome by studying the interactions of the full proteins using classical biochemical approaches in cell lines. Furthermore, the authors have substantially characterised the importance of the PDZ domain using their fusion constructs, however, I believe that further exploration into either structural or AlphaFold3 modelling of PBM domain substrate mutants, or a Neurabin PDZ-domain mutant might further strengthen this claim. Overall, the paper makes a substantial contribution to understanding substrate recognition and specificity in PP1-PIP complexes. The study's innovative methods, biological relevance, and mechanistic insights are strengths, but whether this mechanism occurs in a physiological context is unclear.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public review):
Summary:
This study develops a new artificial intelligence method for high-throughput analysis of skull bone marrow from MRI data, which may be useful for large-scale biological analyses. Using this method, the authors then attempt to estimate skull bone marrow adiposity (BMA) using T1-weighted signal intensity from MRI scans of ~33,000 people, followed by genome-wide association analysis; however, the approach is inadequate because T1-weighted signal intensity is not validated for measurement of bone marrow adiposity. If it could be validated, the study would be an important advance in understanding of bone marrow adiposity and skeletal biology.
Strengths:
This paper is well-written, and the figures are nicely presented. The neural network method used for analysing skull bone marrow is innovative, and the authors validate this through several approaches. Therefore, the authors have achieved the aim of developing a method for large-scale analysis of skull bone marrow from MRI data.
The GWAS is reasonably well-powered and addresses potential ethnicity differences, with one GWAS done across white males and females, and a separate GWAS in non-white participants. The methodology also conforms to common GWAS standards, including for mapping genetic variants to candidate genes. Moreover, the study further investigates the biological roles of these genes by analysing their expression in single-cell RNA sequencing data.
Weaknesses:
The fundamental weakness is that T1-weighted MRI signal intensity (T1W) is used as an estimate of BMA, but it has never been validated for this. The authors show that this T1W parameter measures something that is heritable and can be compared between subjects, but they don't show that it actually measures (or even estimates) calvarial BMA. There is an attempt to do so by comparing the T1W parameter with data from quantitative T1 images: the authors show a reasonable correlation with some of the quantitative T1 image data. However, this still does not show that the parameter is measuring BMA; it could be measuring some other biological characteristic, but this remains unclear. So, there is a need to validate the T1W parameter against an established measure of BMA, such as the bone marrow fat-fraction or proton density fat fraction measured from multi-echo MRI analysis.
Without validating this BMA measurement method, it is not possible to interpret the GWAS or other findings reported in the study.
A less critical weakness is that the GWAS has been done only on a single cohort, without replicating the findings in a follow-up cohort. For example, the authors could repeat their analysis on the remaining ~50,000 UK Biobank imaging participants for whom MRI data is now available. However, this would be pointless without knowing what biological characteristic(s) the T1W parameter is actually reflecting.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Salmonella exploits host- and bacteria-derived β-alanine to efficiently replicate in host macrophages and cause systemic disease. β-alanine executes this by increasing the expression of zinc transporter genes and therefore the uptake of zinc by intracellular Salmonella.
Strengths:
The experiments designed are thorough and the claims made are directly related to the outcome of the experiments. No overreaching claims were made.
Weaknesses:
A little deeper insight was expected, particularly towards the mechanistic aspects. For example, zinc transport was found to be the cause of the b-alanine-mediated effect on Salmonella intracellular replication. It would have been very interesting to see which are the governing factors that may get activated or inhibited due to Zn accumulation that supports such intracellular replication.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this manuscript, Tolossa et al. analyze Inter-spike intervals from various freely available datasets from the Allen Institute and from a dataset from Steinmetz et al. They show that they can modestly decode between gross brain regions (Visual vs. Hippocampus vs. Thalamus), and modestly separate sub-areas within brain regions (DG vs. CA1 or various visual brain areas).
Strengths:
The paper is reasonably well written, and the definitions are quite well done. For example, the authors clearly explained transductive vs. inductive inference in their decoders. E.g., transductive learning allows the decoder to learn features from each animal, whereas inductive inference focuses on withheld animals and prioritizes the learning of generalizable features.
Weaknesses:
However, even with some of these positive aspects, I still found the manuscript to be a laundry list of results, where some results are overly explained and not particularly compelling or interesting, whereas interesting results are not strongly described or emphasized. The overall problem is that the study is not cohesive, and the authors need to either come up with a tool or demonstrate a scientific finding. The current version attempts to split the middle and thus is not as impactful as it could be.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Previous work in the field highlighted the role of the kinesin-10 motor protein Kid (KIF22) in the polar ejection force during prometaphase. However, the biochemical and biophysical properties of Kid that enabled it to serve in this role were unclear. The authors demonstrate that human and xenopus Kid proteins are processive kinesins that function as homodimeric molecules. The data are solid and support the findings although the text could use some editing to improve clarity.
Strengths:
A highlight of the work is the reconstitution of DNA transport in vitro.
A second highlight is the demonstration that the monomer vs dimer state is dependent on protein concentration.
Weaknesses:
The authors make several assumptions of the monomer vs dimer state of various Kid constructs without verifying the protein state using e.g. size exclusion chromatography and/or nanophotometry. They also make statements about monomer-to-dimer transitions on the microtubule without showing or quantifying the data.
The discussion needs to better put the work into context regarding the ability of non-processive motors to work in teams (formerly thought to be the case for Kid) and how their findings on Kid change this prevailing view in the case of polar ejection force.
The authors also do not mention previous work on kinesins with non-conventional neck linker/neck coil regions that have been shown to move processively. Their work on Kid needs to be put into this context.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors aim to provide a comprehensive description of the neurosecretory network in the adult Drosophila brain. They sought to assign and verify the types of 80 neurosecretory cells (NSCs) found in the publicly available FlyWire female brain connectome. They then describe the organization of synaptic inputs and outputs across NSC types and outline circuits by which olfaction may regulate NSCs, and by which Corazon-producing NSCs may regulate flight behavior. Leveraging existing transcriptomic data, they also describe the hormone and receptor expressions in the NSCs and suggest putative paracrine signaling between NSCs. Taken together, these analyses provide a framework for future experiments, which may demonstrate whether and how NSCs, and the circuits to which they belong, may shape physiological function or animal behavior.
Strengths:
This study uses the FlyWire female brain connectome (Dorkenwald et al. 2023) to assign putative cell types to the 80 neurosecretory cells (NSCs) based on clustering of synaptic connectivity and morphological features. The authors then verify type assignments for selected populations by matching cluster sizes to anatomical localization and cell counts using immunohistochemistry of neuropeptide expression and markers with known co-expression.
The authors compare their findings to previous work describing the synaptic connectivity of the neurosecretory network in larval Drosophila (Huckesfeld et al., 2021), finding that there are some differences between these developmental stages. Direct comparisons between adults and larvae are made possible through direct comparison in Table 1, as well as the authors' choice to adopt similar (or equivalent) analyses and data visualizations in the present paper's figures.
The authors extract core themes in NSC synaptic connectivity that speak to their function: different NSC types are downstream of shared presynaptic outputs, suggesting the possibility of joint or coordinated activation, depending on upstream activity. NSCs receive some but not all modalities of sensory input. NSCs have more synaptic inputs than outputs, suggesting they predominantly influence neuronal and whole-body physiology through paracrine and endocrine signaling.
The authors outline synaptic pathways by which olfactory inputs may influence NSC activity and by which Corazon-releasing NSCs may regulate flight. These analyses provide a basis for future experiments, which may demonstrate whether and how such circuits shape physiological function or animal behavior.
The authors extract expression patterns of neuropeptides and receptors across NSC cell types from existing transcriptomic data (Davie et al., 2018) and present the hypothesis that NSCs could be interconnected via paracrine signaling. The authors also catalog hormone receptor expression across tissues, drawing from the Fly Cell Atlas (Li et al., 2022).
Weaknesses:
The clustering of NSCs by their presynaptic inputs and morphological features, along with corroboration with their anatomical locations, distinguished some, but not all cell types. The authors attempt to distinguish cell types using additional methodologies: immunohistochemistry (Figure 2), retrograde trans-synaptic labeling, and characterization of dense core vesicle characteristics in the FlyWire dataset (Figure 1, Supplement 1). However, these corroborating experiments often lacked experimental replicates, were not rigorously quantified, and/or were presented as singular images from individual animals or even individual cells of interest. The assignments of DH44 and DMS types remain particularly unconvincing.
The authors present connectivity diagrams for visualization of putative paracrine signaling between NSCs based on their peptide and receptor expression patterns. These transcriptomic data alone are inadequate for drawing these conclusions, and these connectivity diagrams are untested hypotheses rather than results. The authors do discuss this in the Discussion section.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Adhikari and colleagues developed a new technique, rapamycin-induced proximity assay (RiPA), to identify E3-ubiquitin (ub) ligases of a protein target, aiming at identifying additional E3 ligases that could be targeted for PROTAC generation or ligases that may degrade a protein target. The study is timely, as expanding the landscape of E3-ub ligases for developing targeted degraders is a primary direction in the field.
Strengths:
(1) The study's strength lies in its practical application of the FRB:FKBP12 system. This system is used to identify E3-ub ligases that would degrade a target of interest, as evidenced by the reduction in luminescence upon the addition of rapamycin. This approach effectively mimics the potential action of a PROTAC.
Weaknesses:
(1) While the technique shows promise, its application in a discovery setting, particularly for high-throughput or unbiased E3-ub ligase identification, may pose challenges. The authors now discuss these potential difficulties providing a more comprehensive understanding of RiPA's limitations.
(2) While RiPA will help identify E3 ligases, PROTAC design would still be empirical. The authors provide some discussion of this limitation.
Comments on revisions:
I thank the authors for addressing my prior concerns. I would recommend that individual replicate values are plotted in all the mean -/+ s.d or sem graphs.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This well-written manuscript addresses an important but recalcitrant problem - the molecular mechanism of protein misfolding in Ig light chain (LC) amyloidosis (AL), a major life-threatening form of systemic human amyloidosis. The authors use expertly recorded and analyzed small-angle X-ray scattering (SAXS) data as a restraint for molecular dynamics simulations (called M&M) and to explore six patient-based LC proteins. The authors report that a highly populated "H-state" determined computationally, wherein the two domains in an LC molecule acquire a straight rather than bent conformation, is what distinguishes AL from non-AL LCs. They then use H-D exchange mass spectrometry to verify this conclusion. If confirmed, this is a novel and interesting finding with potentially important translational implications.
Strengths:
Expertly recorded and analyzed SAXS data combined with clever M&M simulations lead to a novel and interesting conclusion.
Regardless of whether or not the CL-CL domain interface is destabilized in AL LCs explored in this (Figure 6) and other studies, stabilization of this interface is an excellent idea that may help protect at least a subset of AL LCs from misfolding in amyloid. This idea increases the potential impact of this interesting study.
Weaknesses:
The HDX analysis could be strengthened.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
These studies investigate the phenotypic variability and roles of neutrophils in tuberculosis (TB) susceptibility by using a diverse collection of wild-derived inbred mouse lines. The authors aimed to identify new phenotypes during Mycobacterium tuberculosis infection by developing, infecting, and phenotyping 19 genetically diverse wild-derived inbred mouse lines originating from different geographic regions in North America and South America. The investigators achieved their main goals, which were to show that increasing genetic diversity increases the phenotypic spectrum observed in response to aerosolized M. tuberculosis, and further to provide insights into immune and/or inflammatory correlates of pulmonary TB. Briefly, investigators infected wild-derived mice with aerosolized M. tuberculosis and assessed early infection control at 21 days post-infection. The time point was specifically selected to correspond to the period after infection when acquired immunity and antigen-specific responses manifest strongly, and also early susceptibility (morbidity and mortality) due to M. tuberculosis infection has been observed in other highly susceptible wild-derived mouse strains, some Collaborative Cross inbred strains, and approximately 30% of individuals in the Diversity Outbred mouse population. Here, the investigators normalized bacterial burden across mice based on inoculum dose and determined the percent of immune cells using flow cytometry, primarily focused on macrophages, neutrophils, CD4 T cells, CD8 T cells, and B cells in the lungs. They also used single-cell RNA sequencing to identify neutrophil subpopulations and immune phenotypes, elegantly supplemented with in vitro macrophage infections and antibody depletion assays to confirm immune cell contributions to susceptibility. The main results from this study confirm that mouse strains show considerable variability to M. tuberculosis susceptibility. Authors observed that enhanced infection control correlated with higher percentages of CD4 and CD8 T cells, and B cells, but not necessarily with the percentage of interferon-gamma (IFN-γ) producing cells. High levels of neutrophils and immature neutrophils (band cells) were associated with increased susceptibility, and the mouse strain with the most neutrophils, the MANC line, exhibited a transcriptional signature indicative of a highly activated state, and containing potentially tissue-destructive, mediators that could contribute to the strain's increased susceptibility and be leveraged to understand how neutrophils drive lung tissue damage, cavitation, and granuloma necrosis in pulmonary TB.
Strengths:
The strengths are addressing a critically important consideration in the tuberculosis field - mouse model(s) of the human disease, and taking advantage of the novel phenotypes observed to determine potential mechanisms. Notable strengths include,
(1) Innovative generation and use of mouse models: Developing wild-derived inbred mice from diverse geographic locations is innovative, and this approach expands the range of phenotypic responses observed during M. tuberculosis infection. Additionally, the authors have deposited strains at The Jackson Laboratory making these valuable resources available to the scientific community.
(2) Potential for translational research: The findings have implications for human pulmonary TB, particularly the discovery of neutrophil-associated susceptibility in primary infection and/or neutrophil-mediated disease progression that could both inform the development of therapeutic targets and also be used to test the effectiveness of such therapies.
(3) Comprehensive experimental design: The investigators use many complementary approaches including in vivo M. tuberculosis infection, in vitro macrophage studies, neutrophil depletion experiments, flow cytometry, and a number of data mining, machine learning, and imaging to produce robust and comprehensive analyses of the wild-derives d strains and neutrophil subpopulations in 3 weeks after M. tuberculosis infection.
Weaknesses:
The manuscript and studies have considerable strengths and very few weaknesses. One minor consideration is that phenotyping is limited to a single limited-time point; however, this time point was carefully selected and has a strong biological rationale provided by investigators. This potential weakness does not diminish the overall findings, exciting results, or conclusions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This work is towards the development of nonantibiotic treatment for C. difficile. The authors screened a chemical library for activity against the C. difficile toxin TcdB, and found a group of compounds with antitoxin activity. Caffeic acid derivatives were highly represented within this group of antitoxin compounds, and the remaining portion of this work involves defining the mechanism of action of caffeic acid phenethyl ester (CAPE) and testing CAPE in mouse C. difficile infection model. The authors conclude CAPE attenuates C. difficile disease by limiting toxin activity and increasing microbial diversity during C. difficile infection.
Strengths/ Weaknesses:
The strategy employed by the authors is sound although not necessarily novel. A compound that can target multiple steps in the pathogenies of C. difficile would be an exciting finding. However, the data presented does not convincingly demonstrate that CAPE attenuates C. difficile disease and the mechanism of action of CAPE is not convincingly defined. The following points highlight the rationale for my evaluation.
(1) The toxin exposure in tissue culture seems brief (Figure 1). Do longer incubation times between the toxin and cells still show CAPE prevents toxin activity?
(2) The conclusion that CAPE has antitoxin activity during infection would be strengthened if the mouse was pretreated with CAPE before toxin injections (Figure 1D).
(3) CAPE does not bind to TcdB with high affinity as shown by SPR (Figure 4). A higher affinity may be necessary to inhibit TcdB during infection. The GTD binds with millimolar affinity and does not show saturable binding. Is the GTD the binding site for CAPE? Autoprocessing is also affected by CAPE indicating CAPE is binding non-GTD sites on TcdB.
(4) In the infection model, CAPE does not statistically significantly attenuate weight loss during C. difficile infection (Figure 6). I recognize that weight loss is an indirect measure of C. difficile disease but histopathology also does not show substantial disease alleviation (see below).
(5) In the infection model (Figure 6), the histopathology analysis shows substantial improvement in edema but limited improvement in cellular infiltration and epithelial damage. Histopathology is probably the most critical parameter in this model and a compound with disease-modifying effects should provide substantial improvements.
(6) The reduction in C. difficile colonization is interesting. It is unclear if this is due to antitoxin activity and/or due to CAPE modifying the gut microbiota and metabolites (Figure 6). To interpret these data, a control is needed that has CAPE treatment without C. difficile infection or infection with an atoxicogenic strain.
(7) Similar to the CAPE data, the melatonin data does not display potent antitoxin activity and the mouse model experiment shows marginal improvement in the histopathological analysis (Figure 9). Using 100 µg/ml of melatonin (~ 400 micromolar) to inactivate TcdB in cell culture seems high. Can that level be achieved in the gut?
(8) The following parameters should be considered and would aid in the interpretation of this work. Does CAPE directly affect the growth of C. difficile? Does CAPE affect the secretion of TcdB from C. difficile? Does CAPE alter the sporulation and germination of C. diffcile?
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors present an interesting paper where they test the antagonistic pleiotropy theory. Based on this theory they hypothesize that genetic variants associated with later onset of age at menarche and age at first birth have a positive causal effect on a multitude of health outcomes later in life, such as epigenetic aging and prevalence of chronic diseases. Using a mendelian randomization and colocalization approach, the authors show that SNPs associated with later age at menarche are associated with delayed aging measurements, such as slower epigenetic aging and reduced facial aging, and a lower risk of chronic diseases, such as type 2 diabetes and hypertension. Moreover, they identified 128 fertility-related SNPs that are associated with age-related outcomes and they identified BMI as a mediating factor for disease risk, discussing this finding in the context of evolutionary theory.
Strengths:
The major strength of this manuscript is that it addresses the antagonistic pleiotropy theory in aging. Aging theories are not frequently empirically tested although this is highly necessary. The work is therefore relevant for the aging field as well as beyond this field, as the antagonistic pleiotropy theory addresses the link between fitness (early life health and reproduction) and aging.
Points that have to be clarified/addressed:
(1) The antagonistic pleiotropy is an evolutionary theory pointing to the possibility that mutations that are beneficial for fitness (early life health and reproduction) may be detrimental later in life. As it concerns an evolutionary process and the authors focus on contemporary data from a single generation, more context is necessary on how this theory is accurately testable. For example, why and how much natural variation is there for fitness outcomes in humans? How do genetic risk score distributions of the exposure data look like? Also, how can the authors distinguish in their data between the antagonistic pleiotropy theory and the disposable soma theory, which considers a trade-off between investment in reproduction and somatic maintenance and can be used to derive similar hypotheses? There is just a very brief mention of the disposable soma theory in lines 196-198.
(2) The antagonistic pleiotropy theory, used to derive the hypothesis, does not necessarily distinguish between male and female fitness. Would the authors expect that their results extrapolate to males as well? And can they test that?
(3) There is no statistical analyses section providing the exact equations that are tested. Hence it's not clear how many tests were performed and if correction for multiple testing is necessary. It is also not clear what type of analyses have been done and why they have been done. For example in the section starting at line 47, Odds Ratios are presented, indicating that logistic regression analyses have been performed. As it's not clear how the outcomes are defined (genotype or phenotype, cross-sectional or longitudinal, etc.) it's also not clear why logistic regression analysis was used for the analyses.
(4) Mendelian Randomization is an important part of the analyses done in the manuscript. It is not clear to what extent the MR assumptions are met, how the assumptions were tested, and if/what sensitivity analyses are performed; e.g. reverse MR, biological knowledge of the studied traits, etc. Can the authors explain to what extent the genetic instruments represent their targets (applicable expression/protein levels) well?
(5) It is not clear what reference genome is used and if or what imputation panel is used. It is also not clear what QC steps are applied to the genotype data in order to construct the genetic instruments of MR.
(6) A code availability statement is missing. It is understandable that data cannot always be shared, but code should be openly accessible.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors provided further evidence that menstrual fluid (MF) can be used as a non-invasive source of endometrial tissue for studying its normal physiological state and when it is abnormal such as in endometriosis. Single-cell RNA sequencing confirmed the presence of the major cell types -blood and tissue immune cells and endometrial stromal, epithelial, and vascular cells. The major new finding was that interindividual variation for the blood immune cells was minimal between multiple MF samples from an individual. A comparison between the ex vivo MF gene profile and cultured MF showed the expected attachment and culture of stromal (and a small number of epithelial) cells, but the immune cells failed to attach. Several differentially expressed genes between controls and endometriosis were suggested as potential biomarkers of the disease, however, these were a mitochondrial pseudogene and a hemoglobin subunit, both very unlikely related to endometriosis pathogenesis.
Strengths:
The Spearman correlation analysis between the control MF gene profiles of multiple samples from the same individual and its graphic presentation provided strong evidence that there is little variation between MF samples. Together with another study which showed similar findings for endometrial stem cells and a number of proteins in MF supernatant, this important data shows MF as a promising biofluid for pathology testing.
The bioinformatic analyses conducted by bioinformatic and computational experts are a major strength of the manuscript and in particular the comparison between MF and endometrial biopsy data obtained from published scRNAseq studies. This is an important finding, particularly if comparisons included late secretory and early proliferative stage biopsy tissue which would be most similar to shedding menstrual endometrium.
The inclusion of workflows in the Figures for the various studies and the use of symbols in the various panels is very helpful for the reader.
MF cell suspensions were enriched for stromal and epithelial cells to enable a detailed bioinformatic analysis of their respective gene profiles
Weaknesses:
Two patient cohorts from different institutions were used in the study and somewhat different methods were used to extract the cellular fraction from these cohorts for further study: (1) sample dilution and differential filtration to separate blood-derived immune cells from endometrial tissue then dissociated into single cells and separated into CD45+, CD45-EpCAM+ and CD45-EpCAM- cells, and (2) gradient density separation to generate unsorted, CD45+, CD45- and putative mesenchymal stem cells (MSC) CD45-CD105+ which were also cultured. In addition, questions on pelvic pain and proven fertility would have addressed the 2 key symptoms of endometriosis.
The use of CD105 to purify MSC from MF rather than well-characterised markers of clonogenic, self-renewing, and mesodermal differentiating endometrial MSC such as CD146+PDGFRB+ or SUSD2 (both mentioned in references 22 and 23) is a weakness. The ISCT markers are not specific and are also found on stromal fibroblasts of many tissues (Phinney and Sensebe Cytotherapy 2013; Demu et al Acta Haematologica 2016).<br /> The UMAPs generated from the scRNAseq were at low resolution and more individual immune and endometrial cell types have previously been identified and reported in MF. More comparisons with these studies would also have enhanced the Discussion.
It was not always possible to work out how the data was reported in the gene expression tables (Supplementary Tables 2, 4-10) as they were not in adjusted P value order and sometimes positive log2 fold change values appeared amongst the negative log2FC. In some comparisons described, the adj P values were not significant but were described as up or down-regulated in the text.
The 2 DEGs highlighted in the endometriosis and control arm of the study appear as poor choices from many others that could have been chosen as MTRNR2L1 is a mitochondrial pseudogene and HBG2 is a hemoglobin subunit. Neither are likely indicators of endometriosis pathogenesis.
The manuscript format and organisation could be improved by reducing the discussion in the Results section and providing a more in-depth Discussion. More references need to be included in the Discussion and other work in the MF analysis field that supports - or not - the authors' findings or at least puts them into context, and should be included and referenced.
The potential to use MF as a non-invasive source of endometrial tissue for potential diagnosis is a very important avenue of research that is currently in its infancy and could have a major impact in the endometriosis research arena.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The present study sets out to examine the impact of counterconditioning (CC) and extinction on conditioned threat responses in humans, particularly looking at neural mechanisms involved in threat memory suppression. By combining behavioral, physiological, and neuroimaging (fMRI) data, the authors aim to provide a clear picture of how CC might engage unique neural circuits and coding dynamics, potentially offering a more robust reduction in threat responses compared to traditional extinction.
Strengths:
One major strength of this work lies in its thoughtful and unique design - integrating subjective, physiological, and neuroimaging measures to capture the variouse aspects of counterconditioning (CC) in humans. Additionally, the study is centered on a well-motivated hypothesis and the findings have the potential to improve the current understanding of pathways associated with emotional and cognitive control.
The data presentation is systematic, and the results on behavioral and physiological measures fit well with the hypothesized outcomes. The neuroimaging results also provide strong support for distinct neural mechanisms underlying CC versus extinction.
Weaknesses:
Overall, this study is a well-conducted and thought-provoking investigation into counterconditioning, with strong potential to advance our understanding of threat modulation mechanisms. Two main weaknesses concern the scope and decisions regarding analysis choices. First, while the findings are solid, the topic of counterconditioning is relatively niche and may have limited appeal to a broader audience. Expanding the discussion to connect counterconditioning more explicitly to widely studied frameworks in emotional regulation or cognitive control would enhance the paper's accessibility and relevance to a wider range of readers. This broader framing could also underscore the generalizability and broader significance of the results. In addition, detailed steps in the statistical procedures and analysis parameters seem to be missing. This makes it challenging for readers to interpret the results in light of potential limitations given the data modality and/or analysis choices.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
This study found that D1-MSNs and D2-MSNs have opposing dynamics during interval timing in a mouse-optimized interval timing task. Further optogenetic and pharmacologic inhibition of either D1 or D2 MSNs increased response time. This study provides useful experimental evidence in the coding of time in striatum. However, there are some major weaknesses in this study.
(1) Regarding the data in Figure S3, The variance within each mouse was too big, the authors need to figure out and explain what caused the large variance within the same mouse, or the authors need to increase the sample size.<br /> (2) Regarding the results in Figure 3 C and D, Figure 6 H and Figure 7 D, what is the sample size? From the single data points in the figures, it seems that the authors were using the number of cells to do statistical tests and plot the figures. For example, Figure 3 C, if the authors use n= 32 D2 MSNs and n= 41D1 MSNs to do the statistical test, it could make small difference to be statistically significant. The authors should use the number of mice to do the statistical tests.<br /> (3) Regarding the results in Figure 5, what is the reason for the increase in the response times? The authors should plot the position track during intervals (0-6 s) with or without optogenetic or pharmacologic inhibition. The authors can check Figure 3, 5, and 6 in paper https://doi.org/10.1016/j.cell.2016.06.032 for reference to analyze the data.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Mitochondria import hundreds of precursor proteins from the cytosol. The TOM and TIM23 complexes facilitate the import on the matrix-targeting pathway of mitochondria. In yeast, Tim50 is a critical and essential subunit of the TIM23 complex that mediates the transition of precursors from the outer to the inner membrane. The human Tim50 homolog TIMM50 is highly similar in structure and a comparable function of Tim50 and TIMM50 was proven by several biochemical and genetic studies in the past.
In this study, the authors characterize human cells which express lower levels or mutated versions of TIMM50. They found that in these TIMM50-depletion cells, the levels of other TIM23 core subunits are also diminished but many mitochondrial proteins are unaffected. Moreover, they observed alterations in the electrical activity and the levels of potassium channels in neuronal cells of TIMM50-deficient mice. They propose that these changes explain the pathology of patients who often suffer from epilepsy.
Strengths:
The paper is written by experts in the field, and it is very clear. The experiments are of high quality and sufficiently well-controlled. The study is interesting for a broad readership.
Weaknesses:
The authors show that even upon low levels of Tim50, mitochondrial proteins are not considerably depleted. However, it remains somewhat unclear why this is. TIMM50 and the TIM23 complex might not be rate-limiting for the biogenesis of mitochondrial proteins. Alternatively, the import defect is compensated indirectly, for example by a reduced growth of cells. It will be interesting to study the physiological consequences of TIMM50-depletion in more depth in the future.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public review):
Summary:
The authors aimed to determine the mechanism by which seizures emerge in Developmental and Epileptic Encephalopathies caused by variants in the gene FGF13. Loss of FGF13 in excitatory neurons had no effect on seizure phenotype as compared to loss of FGF13 in GABAergic interneurons, which in contrast caused a dramatic proseizure phenotype and early death in these animals. They were able to show that Fgf13 ablation and consequent loss of FGF13-S and FGF13-VY reduced overall inhibitory input from Fgf13-expressing interneurons onto hippocampal pyramidal neurons. This was shown to occur not via disruption to voltage gated sodium channels but rather by reducing potassium currents and action potential repolarisation in these interneurons.
Strengths:
The authors employed multiple well validated, novel mouse lines with FGF13 knocked out in specific cell types including all neurons, all excitatory cells, all GABAergic interneurons, or a subset of MGE-derived interneurons, including axo-axonic chandelier cells. The phenotypes of each of these four mouse lines were carefully characterised to reveal clear differences with the most fundamental being that Interneuron-targeted deletion of FGF13 led to perinatal mortality associated with extensive seizures and impaired the hippocampal inhibitory/excitatory balance while deletion of FGF13 in excitatory neurons caused no detectable seizures and no survival deficits.<br /> The authors made excellent use of western blotting and in situ hybridisation of the different FGF13 isoforms to determine which isoforms are expressed in which cell types, with FGF3-S predominantly in excitatory neurons and FGF13-VY and FGF13-V predominantly in GABAergic neurons.
The authors performed highly detailed electrophysiological analysis of excitatory neurons and GABAergic interneurons with FGF13 deficits using whole-cell patch clamp. This enabled them to show that FGF13 removal did not affect voltage-gated sodium channels in interneurons, but rather reduced the action of potassium channels, with the resultant effect of making it more likely that interneurons enter depolarisation block. These findings were strengthened by the demonstration that viral re-expression of different Fgf13 splice isoforms could partially rescue deficits in interneuron action potential output and restore K+ channel current size.
Additionally, the discussion was nuanced, and demonstrated how the current findings resolved previous apparent contradictions in the field involving the function of FGF13.
These findings will have a significant impact on our understanding of how FGF13 causes seizures and death in DEEs, and the action of different FGF13 isoforms within different neuronal cell types, particularly GABAergic interneurons.
Comments on revisions:
I appreciate the author's responses to the previous round of reviews. All my comments have been addressed. Congratulations on an excellent body of work.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this manuscript, Li and collaborators set out to investigate the neuronal mechanisms underlying "subjective time estimation" in rats. For this purpose, they conducted calcium imaging in the prefrontal cortex of water-restricted rats that were required to perform an action (nose-poking) for a short duration to obtain drops of water. The authors provided evidence that animals progressively improved in performing their task. They subsequently analyzed the calcium imaging activity of neurons and identify start, duration, and stop cells associated with the nose poke. Specifically, they focused on duration cells and demonstrated that these cells served as a good proxy for timing on a trial-by-trial basis, scaling their pattern of actvity in accordance with changes in behavioral performance. In summary, as stated in the title, the authors claim to provide mechanistic insights into subjective time estimation in rats, a function they deem important for various cognitive conditions.
This study aligns with a wide range of studies in system neuroscience that presume that rodents solve timing tasks through an explicit internal estimation of duration, underpinned by neuronal representations of time. Within this framework, the authors performed complex and challenging experiments, along with advanced data analysis, which undoubtedly merits acknowledgement. However, the question of time perception is a challenging one, and caution should be exercised when applying abstract ideas derived from human cognition to animals. Studying so-called time perception in rats has significant shortcomings because, whether acknowledged or not, rats do not passively estimate time in their heads. They are constantly in motion. Moreover, rats do not perform the task for the sake of estimating time but to obtain their rewards are they water restricted. Their behavior will therefore reflect their motivation and urgency to obtain rewards. Unfortunately, it appears that the authors are not aware of these shortcomings. These alternative processes (motivation, sensorimotor dynamics) that occur during task performance are likely to influence neuronal activity. Consequently, my review will be rather critical. It is not however intended to be dismissive. I acknowledge that the authors may have been influenced by numerous published studies that already draw similar conclusions. Unfortunately, all the data presented in this study can be explained without invoking the concept of time estimation. Therefore, I hope the authors will find my comments constructive and understand that as scientists, we cannot ignore alternative interpretations, even if they conflict with our a priori philosophical stance (e.g., duration can be explicitly estimated by reading neuronal representation of time) and anthropomorphic assumptions (e.g., rats estimate time as humans do). While space is limited in a review, if the authors are interested, they can refer to a lengthy review I recently published on this topic, which demonstrates that my criticism is supported by a wide range of timing experiments across species (Robbe, 2023). In addition to this major conceptual issue that casts doubt on most of the conclusions of the study, there are also several major statistical issues.
Main Concerns
(1) The authors used a task in which rats must poke for a minimal amount of time (300 ms and then 1500 ms) to be able to obtain a drop of water delivered a few centimeters right below the nosepoke. They claim that their task is a time estimation task. However, they forget that they work with thirsty rats that are eager to get water sooner than later (there is a reason why they start by a short duration!). This task is mainly probing the animals ability to wait (that is impulse control) rather than time estimation per se. Second, the task does not require to estimate precise time because there appear to be no penalties when the nosepokes are too short or when they exceed. So it will be unclear if the variation in nosepoke reflects motivational changes rather than time estimation changes. The fact that this behavioral task is a poor assay for time estimation and rather reflects impulse control is shown by the tendency of animals to perform nose-pokes that are too short, the very slow improvement in their performance (Figure 1, with most of the mice making short responses), and the huge variability. Not only do the behavioral data not support the claim of the authors in terms of what the animals are actually doing (estimating time), but this also completely annihilates the interpretation of the Ca++ imaging data, which can be explained by motivational factors (changes in neuronal activity occurring while the animals nose poke may reflect a growing sens of urgency to check if water is available).
(2) A second issue is that the authors seem to assume that rats are perfectly immobile and perform like some kind of robots that would initiate nose pokes, maintain them, and remove them in a very discretized manner. However, in this kind of task, rats are constantly moving from the reward magazine to the nose poke. They also move while nose-poking (either their body or their mouth), and when they come out of the nose poke, they immediately move toward the reward spout. Thus, there is a continuous stream of movements, including fidgeting, that will covary with timing. Numerous studies have shown that sensorimotor dynamics influence neural activity, even in the prefrontal cortex. Therefore, the authors cannot rule out that what the records reflect are movements (and the scaling of movement) rather than underlying processes of time estimation (some kind of timer). Concretely, start cells could represent the ending of the movement going from the water spout to the nosepoke, and end cells could be neurons that initiate (if one can really isolate any initiation, which I doubt) the movement from the nosepoke to the water spout. Duration cells could reflect fidgeting or orofacial movements combined with an increasing urgency to leave the nose pokes.
(3) The statistics should be rethought for both the behavioral and neuronal data. They should be conducted separately for all the rats, as there is likely interindividual variability in the impulsivity of the animals.
(4) The fact that neuronal activity reflects an integration of movement and motivational factors rather than some abstract timing appears to be well compatible with the analysis conducted on the error trials (Figure 4), considering that the sensorimotor and motivational dynamics will rescale with the durations of the nose poke.
(5) The authors should mention upfront in the main text (result section) the temporal resolution allowed by their Ca+ probe and discuss whether it is fast enough in regard of behavioral dynamics occurring in the task.
Comments on the revised version
I have read the revised version of the manuscript and the rebuttal letter. My major concern was that the task used is not a time estimation task but primarily taps into impulse control and that animals are not immobile during the nose-poking epoch. I provided factual evidence for this (the animal's timing performance is poor and, on average, animals struggle to wait long enough), and I pointed to a review that discusses the results of many studies congruent with the importance of movement/motivation, not only in constraining the timing of reward-oriented actions during so-called time estimation tasks but also in powerfully modulating neuronal activity.
The authors' responses to my comments are puzzling and unconvincing. First, on the one hand, they acknowledge in their rebuttal letter the difficulty of demonstrating a neuronal representation of explicit internal estimation of time. Then, they seem to imply that this issue is beyond the scope of their study and focus in the rebuttal on whether the neuronal activity they report shows signs of being sensitive to movement and motivation, which they claim is independent of movement and motivation. This leads the authors to make no major changes in their manuscript. Their title, abstract, introduction, and discussion are largely unchanged and do not reflect the possibility that there are major confounding factors in so-called time estimation (rodents are not disembodied passive information processors) that may well explain some of the neuronal patterns. Evidently, the dismissive treatment by the authors is not satisfying. I will briefly restate my comments and reply to their responses and their new figure, which not only is unconvincing but raises new questions.
My comments were primarily focused on the behavioral task. The authors replied: "Studying the neural representation of any internal state may suffer from the same ambiguity [by ambiguity they meant that it is difficult to know if animals are explicitly estimating time]. With all due respect, however, we would like to limit our response to the scope of our results. According to the reviewer, two alternative interpretations of the task-related sequential activity exist." The authors imply that my comments are beyond the scope of their study. That is not true. My comments were targeted at the behavior of the animals, behavior they rely on to title their study: "Stable sequential dynamics in prefrontal cortex represents a subjective estimation of time." When I question whether the task and behavioral data presented are congruent with "subjective estimation of time," my comments are not beyond the scope of the study-they directly tackle the main point of the authors. Other researchers will read the title and abstract of this manuscript and conclude: "Here is a paper that provides evidence of a mechanism for animals estimating duration internally (because subjective time perception is assumed to be different from using clocks)." Still, there is a large body of literature showing that the behavior of animals in such tasks can be entirely explained without invoking subjective time perception and internal representation. How can the authors acknowledge that they can't be sure that mice are estimating time and then have such an affirmative title and abstract?
In my opinion, science is not just about forcing ideas (often reflecting philosophical preconceptions) on data and dismissing those who disagree. It is about discussing alternative possibilities fairly and being humble. In their revised version, I see no effort by the authors to investigate the importance of movement and motivation during their task or seriously engage with this idea. It's much easier to dismiss my comments as being beyond the scope of their results. According to the authors, it seems that movements and motivations play no role in the task. Still, the animals are water-restricted, and during the task, they will display decreased motivation (due to increased satiety), and their history of rewarded vs. non-rewarded trials will affect their behavior. This is one of the most robust effects seen across all behavioral studies. Moreover, the animals are constantly moving. Maybe the authors used a special breed of mice that behave like some kind of robots? I acknowledge that this is not easy to investigate, but if the authors did not use high-quality video recording or an experimental paradigm that allows disentangling motivational confounds, then they should refrain from using big words such as subjective time estimation and discuss alternative representations by acknowledging the studies that do find that movement and motivation are present during reward-based timing tasks and do in fact modulate neuronal activity, even in associative brain regions.
To sustain their claim that what they reported is movement-independent, the authors provided a supplementary figure in which they correlated neuronal activity and head movement tracked using DeepLabCut. I have to say that I was particularly surprised by this figure. First, in the original manuscript, there was absolutely no mention of video recording. Now it appears in the methods section, but the description is very short. There is no information on how these video recordings were made. The quality of the images provided in Figure S2 is far from reassuring. It is unclear whether the temporal and spatial resolution would be good enough to make meaningful correlations. Fast head/orofacial movements that occur during nose-poking can be on the order of 20 Hz. To be tracked, this would require at least a 40 Hz sampling rate. But no sampling information is provided. The authors should explain how they synchronized behavioral and neuronal data acquisition. Could the authors share behavioral videos of the 5 sessions shown in Figure S2 so we can judge the behavior of the animals, the quality of the video, and the possibility of making correlations?
Figure S2A-F: I am not sure why the authors correlated nose-poking duration (time estimation) and the duration between upper and lower nose-pokes (reward-oriented movement). It is not relevant to the issue I raised. Without any information about video acquisition frame rate, the y-axis legend (frame) is not very informative. Still, in Figure S2A-F, Rat 5 shows a clear increase in nose-poke duration, which is congruent with decreased impulsivity. Is the time coding different in this rat compared to other rats? There are some similar trends in other animals (Rat 1 and maybe Rat 3), but what is surprising is the huge variability (big downward deflections in the nose-poke duration). I would not be surprised if those deflections occurred after a long pause in activity. Could the authors plot trial time instead of trial number? How do the authors explain such a huge deflection if the animals are estimating time?
Regarding Figure S2H: I don't see how it addresses my concern. My concern is that some of the Ca activity recorded during nose-poking reflects head movements. The authors need to show if they can detect head movement during nose-poking. Aligning the Ca data relative to head movement should give the same result as when aligning the data relative to the time at which the animals pull out of the upper nose-poke.
Minor comments:
In their introduction, the authors wrote: "While these findings [correlates of time perception] provide strong evidence for a neural mechanism of time coding in the brain, true causal evidence at single-cell resolution remains beyond reach due to technical limitations. Although inhibiting certain brain regions (such as medial prefrontal cortex, mPFC,22) led to disruption in the performance of the timing task, it is difficult to attribute the effect specifically to the ramping or sequential activity patterns seen in those regions as other processes may be involved. Lacking direct experimental evidence, one potential way of testing the causal involvement of 'time codes' in time estimation function is to examine their correlation at a finer resolution."<br /> This statement is inaccurate at two levels. First, very good causal evidence has been obtained on this topic (see Monteiro et al., 2023, Nature Neuroscience), and see my News & Views on the strengths and weaknesses of this paper. Second, their proposal is inaccurate. Looking at a finer correlation will still be a correlative approach, and the authors will not be able to disentangle motor/motivation confounds.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
The study aims to elucidate the spatial dynamics of subcellular astrocytic calcium signaling. Specifically, they elucidate how subdomain activity above a certain spatial threshold (~23% of domains being active) heralds a calcium surge that also affects the astrocytic soma. Moreover, they demonstrate that processes on average are included earlier than the soma and that IP3R2 is necessary for calcium surges to occur. Finally, they associate calcium surges with slow inward currents.
The revised manuscript is improved compared to the first iteration. While some concerns have been addressed, my main critique pertaining to ROI approach/sampled area, statistical analyses and anesthesia are in my view still important caveats of the study that I think should have been even more clearly addressed in the manuscript.
Strengths:<br /> The study addresses an interesting topic that is only partially understood. The study uses multiple methods including in vivo two-photon microscopy, acute brain slices, electrophysiology, pharmacology, and knockout models. The conclusions are strengthened by the same findings in both in vivo anesthetized mice and in brain slices.
Weaknesses:
The method that has been used to quantify astrocytic calcium signals only analyzes what seems to be a small proportion of the total astrocytic domain on the example micrographs, where a structure is visible in the SR101 channel (see for instance Reeves et al. J. Neurosci. 2011, demonstrating to what extent SR101 outlines an astrocyte). This would potentially heavily bias the results: from the example illustrations presented it is clear that the calcium increases in what is putatively the same astrocyte goes well beyond what is outlined with automatically placed small ROIs. The smallest astrocytic processes are an order of magnitude smaller than the resolution of optical imaging and would not be outlined by either SR101 or with the segmentation method judged by the ROIs presented in the figures. Completely ignoring these very large parts of the spatial domain of an astrocyte, in particular when making claims about a spatial threshold, seems inappropriate. Several recent methods published use pixel-by-pixel event-based approaches to define calcium signals. The data should have been analyzed using such a method within a complete astrocyte spatial domain in addition to the analyses presented. Also, the authors do not discuss how two-dimensional sampling of calcium signals from an astrocyte that has processes in three dimensions (see Bindocci et al, Science 2017) may affect the results: if subdomain activation is not homogeneously distributed in the three-dimensional space within the astrocyte territory, the assumptions and findings between a correlation between subdomain activation and somatic activation may be affected.
Authors reply: In order to reduce noise from individual pixels, we chose to segment astrocyte arborizations into domains of several pixels. As pointed out previously, including pixels outside of the SR101-positive territory runs the risk of including a pixel that may be from a neighboring cell or mostly comprised of extracellular space, and we chose the conservative approach to avoid this source of error. We agree that the results have limitations from being acquired in 2D instead of 3D, but it is likely to assume the 3D astrocyte is homogeneously distributed and that the 2D plane is representative of the whole astrocyte. Indeed, no dimensional effects were reported in Bindocci et al, Science 2017. We have included a paragraph in the discussion to address this limitation in our study on P15, L23-27:<br /> "The investigation of the spatial threshold could be improved in the future in a number of ways. One being the use of state-of-the-art imaging in 3D(Bindocci et al., 2017). While the original publication using 3D imaging to study astrocyte physiology does not necessarily imply that there would be different calcium dynamics in one axis over another, the three-dimensional examination of the spatial threshold could refine the findings we present here.
Comments on revisions: It is good that 3D imaging aspects are mentioned as a limitation, and I agree that Bindocci et al. do not necessarily suggest that results in this manuscript would have been different if also the third spatial dimension was included in the analyses. However, the way I see it, the added analyses and text changes throughtout still do not adequately address my concern pertaining to basing a spatial threshold on a fraction of the astrocyte territory.
The study uses a heaviside step function to define a spatial 'threshold' for somata either being included or not in a calcium signal. However, Fig 4E and 5D showing how the method separates the signal provide little understanding for the reader. The most informative figure that could support the main finding of the study, namely a ~23% spatial threshold for astrocyte calcium surges reaching the soma, is Fig. 4G, showing the relationship between the percentage of arborizations active and the soma calcium signal. A similar plot should have been presented in Fig 5 as well. Looking at this distribution, though, it is not clear why ~23% would be a clear threshold to separate soma involvement, one can only speculate how the threshold for a soma event would influence this number. Even if the analyses in Fig. 4H and the fact that the same threshold appears in two experimental paradigms strengthen the case, the results would have been more convincing if several types of statistical modeling describing the continuous distribution of values presented in Fig. 4E (in addition to the heaviside step function) were presented.
Authors reply: We agree with the reviewer and have added to the paper a discussion for our justification on the use of the Heaviside step function, and have included this in the methods section. We chose the Heaviside step function to represent the on/off situation that we observed in the data that suggested a threshold in the biology. We agree with the reviewer that Fig. 4G is informative and demonstrates that under 23% most of the soma fluorescence values are clustered at baseline. We agree that a different statistical model describing the data would be more convincing and confirmed the spatial threshold with the use of a confidence interval in the text and supported the use of percent domains active for this threshold over other properties such as spatial or temporal clustering using a general linear model. P18-19, L34-2:<br /> "Heaviside step function<br /> The Heaviside step function below in equation 4 is used to mathematically model the transition from one state to the next and has been used in simple integrate and fire models (Bueno-Orovio et al., 2008; Gerstner, 2000).<br /> 𝐻(𝑎) ∶=<br /> 0, 𝑎 < 𝑎T<br /> {<br /> 1, 𝑎 {greater than or equal to} 𝑎T<br /> (4)<br /> The Heaviside step function 𝐻(𝑎) is zero everywhere before the threshold area (𝑎T) and one everywhere afterwards. From the data shown in Figure 4E where each point (𝑆(𝑎)) is an individual astrocyte response with its percent area (𝑎) domains active and if the soma was active or not denoted by a 1 or 0 respectively. To determine 𝑎T in our data we iteratively subtracted 𝐻(𝑎) from 𝑆(𝑎) for all possible values of 𝑎T to create an error term over 𝑎. The area of the minimum of that error term was denoted the threshold area.
Comments on revisions: Even with the added explanations, I am still not sure that the data show a specific threshold, or that the statistical model enforce a threshold onto the data. The data in Fig. 4G does not in my view clearly show a clear threshold as suggested. The analyses are strengthened with an added statistical modeling, however, the details of the modeling is not presented in the manuscript as far as I can see. As a bare minimum the statistical packages/tools used, the model details and goodness of fit as residual plots must be shown/commented.
The description of methods should have been considerably more thorough throughout. For instance which temperature the acute slice experiments were performed at, and whether slices were prepared in ice-cold solution, are crucial to know as these parameters heavily influence both astrocyte morphology and signaling. Moreover, no monitoring of physiological parameters (oxygen level, CO2, arterial blood gas analyses, temperature etc) of the in vivo anesthetized mice is mentioned. These aspects are critical to control for when working with acute in vivo two-photon microscopy of mice; the physiological parameters rapidly decay within a few hours with anesthesia and following surgery.
Authors reply: We have increased the thoroughness of our methods section. Especially including that body temperature and respiration were indeed monitored throughout anesthesia.
Comments on revisions: Bath temperature for slice experiments, or cutting conditions are still not reported. For the in vivo experiments, it must be commented that this level of physiological monitoring for acute in vivo brain physiology experiments (self breathing, no control of O2/CO2) is barely adequate and could represent a considerable caveat of the study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Zylberberg and colleagues show that food choice outcomes and BOLD signal in the vmPFC are better explained by algorithms that update subjective values during the sequence of choices compared to algorithms based on static values acquired before the decision phase. This study presents a valuable means of reducing the apparent stochasticity of choices in common laboratory experiment designs. The evidence supporting the claims of the authors is solid, although currently limited to choices between food items because no other goods were examined. The work will be of interest to researchers examining decision making across various social and biological sciences.
Comments on revisions:
We thank the authors for carefully addressing our concerns about the first version of the manuscript. The manuscript text and contributions are now much more clear and convincing.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
The authors of this work set out to test ideas about how observers learn to ignore irrelevant visual information. Specifically, they used fMRI to scan participants who performed a visual search task. The task was designed in such a way that highly salient but irrelevant search items were more likely to appear at a given spatial location. With a region-of-interest approach, the authors found that activity in visual cortex that selectively responds to that location was generally suppressed, in response to all stimuli (search targets, salient distractors, or neutral items), as well as in the absence of an anticipated stimulus.
Strengths of the study include: A well-written and well-argued manuscript; clever application of a region of interest approach to fMRI design, which allows articulating clear tests of different hypotheses; careful application of follow-up analyses to rule out alternative, strategy-based accounts of the findings; tests of the robustness of the findings to detailed analysis parameters such as ROI size; and exclusion of the role of regional baseline differences in BOLD responses.
The report might be enhanced by analyses (perhaps in a surface space) that distinguish amongst the multiple "early" retinotopic visual areas that are analysed in the aggregate here. Furthermore, the study could benefit from an analysis that tests the correlation over observers between the magnitude of their behavioural effects and their neural responses.
The study provides an advance over previous studies, which identified enhancement or suppression in visual cortex as a function of search target/distractor predictability, but in less spatially-specific way. It also speaks to open questions about whether such suppression/enhancement is observed only in response to the arrival of visual information, or instead is preparatory, favouring the latter view. The theoretical advance is moderate, in that it is largely congruent with previous frameworks, rather than strongly excluding an opposing view or providing a major step change in our understanding of how distractor suppression unfolds.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors try to show the importance of CHMP5 for skeletal development.
Strengths:
The findings of this manuscript are interesting. The mouse phenotypes are well done and are of interest to a broader (bone) field.
Weaknesses:
The mechanistic insights are mediocre, and the cellular senescence aspect poor.
In total, it has not been shown that there are actual senescent cells that are reduced after D+Q-treatment. These statements need to be scaled back substantially.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors aimed to explore how a key protein in the circadian clock of plants, ELF3, responds to temperature changes by forming molecular condensates. They focused on understanding the role of a specific region of the protein, a polyQ tract, in promoting temperature-sensitive structural changes and regulating the formation of condensates. Through a series of computational simulations, they sought to uncover the molecular basis for ELF3's temperature responsiveness and its broader implications for plant growth and adaptation to environmental conditions.
Strengths:
The study's strength lies in its focus on an important biological question: how plants sense and respond to temperature changes at the molecular level. The authors employed a variety of computational techniques, including coarse-grained simulations, to explore the role of specific molecular features in this process. These methods provide a multi-scale view of protein behavior and offer valuable insights into how molecular structures may influence biological function.
Weaknesses:
However, there are notable weaknesses in the evidence provided. While the authors present trends in molecular changes, such as shifts in helical propensity and the formation of condensates, these results seem subtle and are not strongly substantiated by statistical analysis. The lack of error bars in the figures makes it difficult to distinguish between meaningful signals and potential noise in the data. Furthermore, the temperature-sensitive behavior appears to be influenced more by chain length than by sequence-specific effects of the polyQ region, raising questions about whether the findings truly capture the molecular mechanisms responsible for temperature sensing. Additionally, some simulations, particularly those related to the formation of condensates, do not appear fully converged, which casts further doubt on the robustness of the results.
Additional Context for Readers:
Readers should interpret the results with caution, especially regarding the molecular mechanisms proposed for temperature sensing. While the study presents interesting trends, the evidence is not definitive, and the findings may be more reflective of general protein behavior (such as the effect of chain length on condensate formation) than specific sequence-driven responses to temperature. Further experimental studies and more converged simulations will be necessary to fully understand the role of ELF3 in temperature regulation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors report several interesting species and sex differences in cell type expression that may relate to species differences in behavior. The differential cell type abundance findings build on previously observed species/sex differences in behavior and brain anatomy. These data will be a valuable resource for behavioral neuroscientists. These findings are important but the manuscript goes too far in attributing causal influences to differences in behavior. A second important problem is that dissections used for the sequencing data include other neuropeptide-rich areas of the hypothalamus like the PVN. Although histology is included, the results in the main manuscript often do not include the mPOA making it hard to know if species/sex differences are consistent across different hypothalamic regions. The manuscript would benefit from more precise language.
Strengths:
The data are novel because cell-type atlases are available for only a few species.
The authors have clearly defined appropriate steps taken to obtain trustworthy estimations of cell type abundance. Furthermore, the criteria for each cell type assignment were described in a way for readers to easily replicate. The rigor in comparing cell abundance provides convincing evidence that these species have differences in MPOA cellular composition.
The authors have a good explanation for why 19 of the 53 neuron clusters were not classified (possible Mus/Peromyscus anatomical differences, some cell types don't have well-defined transcriptional profiles).
Validated findings with histology
Weaknesses:
Some methodology could be further explained, like the decision of a 15% cutoff value for cell type assignment per cluster, or the necessity of a multi-step analysis pipeline for gene enrichment studies.
The authors should exercise strong caution in making inferences about these differences being the basis of parental behavior. It is possible, given connections to relevant research, but without direct intervention, direct claims should be avoided. There should be clear distinctions of what to conclude and what to propose as possibilities for future research.
Histology is not performed on all regions included in the sequencing analysis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Haupt and colleagues performed a well-designed study to test the spatial and temporal gradient of perceiving braille letters in blind individuals. Using cross-hand decoding of the read letters, and comparing it to the decoding of the read letter for each hand, they defined perceptual and sensory responses. Then they compared where (using fMRI) and when (using EEG) these were decodable. Using fMRI, they showed that low-level tactile responses specific to each hand are decodable from the primary and secondary somatosensory cortex as well as from IPS subregions, the insula and LOC. In contrast, more abstract representations of the braille letter independent from the reading hand were decodable from several visual ROIs, LOC, VWFA and surprisingly also EVC. Using a parallel EEG design, they showed that sensory hand-specific responses emerge in time before perceptual braille letter representations. Last, they used RSA to show that the behavioral similarity of the letter pairs correlates to the neural signal of both fMRI (for the perceptual decoding, in visual and ventral ROIs) and EEG (for both sensory and perceptual decoding).
Strengths:
This is a very well-designed study and it is analyzed well. The writing clearly describes the analyses and results. Overall, the study provides convincing evidence from EEG and fMRI that the decoding of letter identity across the reading hand occurs in the visual cortex in blindness. Further, it addresses important questions about the visual cortex hierarchy in blindness (whether it parallels that of the sighted brain or is inverted) and its link to braille reading.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This study aims to explore the ferroptosis-related immune landscape of TNBC through the integration of single-cell and bulk RNA sequencing data, followed by the development of a risk prediction model for prognosis and drug response. The authors identified key subpopulations of immune cells within the TME, particularly focusing on T cells and macrophages. Using machine learning algorithms, the authors constructed a ferroptosis-related gene risk score that accurately predicts survival and the potential response to specific drugs in TNBC patients.
Strengths:
The study identifies distinct subpopulations of T cells and macrophages with differential expression of ferroptosis-related genes. The clustering of these subpopulations and their correlation with patient prognosis is highly insightful, especially the identification of the TREM2+ and FOLR2+ macrophage subtypes, which are linked to either favorable or poor prognoses. The risk model thus holds potential not only for prognosis but also for guiding treatment selection in personalized oncology.
Weaknesses:
The study has a relatively small sample size, with only 9 samples analyzed by scRNA-seq. Given the typically high heterogeneity of the tumor microenvironment (TME) in cancer patients, this may affect the accuracy of the conclusions. The scRNA-seq analysis focuses on the expression of ferroptosis-related genes in various cells within the TME. In contrast, bulk RNA sequencing uses data from tumor samples, and the results between the two analyses are not consistent. The bulk RNA sequencing results may not accurately capture the changes happening in the microenvironment.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Avrillon et al. provides a comprehensive assessment of firing rate parameters from a large percentage of the motor unit pool, in two muscles, during voluntary isometric contractions. The authors have used new quantitative methods to extract more unique motor units across contractions than prior studies. This was achieved by recording muscle fibre action potentials from four high density surface electromyogram (HDsEMG) arrays, quantifying residual EMG comparing the recorded and data-based simulation (Fig. 1A-B), and developing a metric to compare the spatial identification for each motor unit (Fig. 1D-E). From identified motor units, the authors have provided a detailed characterization of recruitment and firing rate responses during slow voluntary isometric contractions in the vastus lateralis and tibialis anterior muscles up to 75-80% of maximum intensity. In the lower limb it is interesting how lower threshold motor units have firing rate responses that saturate, whereas higher threshold units that presumably produce higher muscle contractile forces continue to increase their firing rate. Conceptually, the authors rightly focus on the literature of intrinsic motoneurone properties, but in vivo, other possibilities (that are difficult to measure in awake human participants) are that the form of descending supraspinal drive, spinal network dynamics and afferent inputs may have different effects across motor unit sizes, muscles and types of contractions. These results from single trail contractions and with a larger sample of motor units, supports the summary rate coding profiles of motor units in the extensor digitorum communis muscle (Monster and Chan, 1977).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this study, Solyga and Keller use multimodal closed-loop paradigms in conjunction with multiphoton imaging of cortical responses to assess whether and how sensorimotor prediction errors in one modality influence the computation of prediction errors in another modality. Their work addresses an important open question pertaining to the relevance of non-hierarchical (lateral cortico-cortical) interactions in predictive processing within the neocortex.
Specifically, they monitor GCaMP6f responses of layer 2/3 neurons in the auditory cortex of head-fixed mice engaged in VR paradigms where running is coupled to auditory, visual, or audio-visual sensory feedback. The authors find strong auditory and motor responses in the auditory cortex, as well as weak responses to visual stimuli. Further, in agreement with previous work, they find that the auditory cortex responds to audiomotor mismatches in a manner similar to that observed in visual cortex for visuomotor mismatches. Most importantly, while visuomotor mismatches by themselves do not trigger significant responses in the auditory cortex, simultaneous coupling of audio-visual inputs to movement non-linearly enhances mismatch responses in the auditory cortex.
Their results thus suggest that prediction errors within a given sensory modality are non-trivially influenced by prediction errors from another modality. These findings are novel, interesting, and important, especially in the context of understanding the role of lateral cortico-cortical interactions and in outlining predictive processing as a general theory of cortical function.
Comments on revisions:
The authors thoroughly addressed the concerns raised. In my opinion, this has substantially strengthened the manuscript, enabling much clearer interpretation of the results reported. I commend the authors for the response to review. Overall, I find the experiments elegantly designed, and the results robust, providing compelling evidence for non-hierarchical interactions across neocortical areas and more specifically for the exchange of sensorimotor prediction error signals across modalities.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this manuscript, Bosch et al. reveal Flamingo (Fmi), a planar cell polarity (PCP) protein, is essential for maintaining 'winner' cells in cell competition, using Drosophila imaginal epithelia as a model. They argue that tumor growth induced by scrib-RNAi and RasV12 competition is slowed by Fmi depletion. This effect is unique to Fmi, not seen with other PCP proteins. Additional cell competition models are applied to further confirm Fmi's role in 'winner' cells. The authors also show that Fmi's role in cell competition is separate from its function in PCP formation.
Strengths:
(1) The identification of Fmi as a potential regulator of cell competition under various conditions is interesting.<br /> (2) The authors demonstrate that the involvement of Fmi in cell competition is distinct from its role in planar cell polarity (PCP) development.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The study by Jaime-Tobon & Moser is a truly major effort to bridge the gap between classical observations on how auditory neurons respond to sounds and the synaptic basis of these phenomena. The so-called spiral ganglion neurons (SGNs) are the primary auditory neurons connecting the brain with hair cells in the cochlea. They all respond to sounds increasing their firing rates, but also present multiple heterogeneities. For instance, some present a low threshold to sound intensity, whereas others have high threshold. This property inversely correlates with the spontaneous rate, i.e., the rate at which each neuron fires in the absence of any acoustic input. These characteristics, along with others, have been studied by many reports over years. However, the mechanisms that allow the hair cells-SGN synapses to drive these behaviors are not fully understood.
The level of experimental complexity described in this manuscript is unparalleled, producing data that is hardly found elsewhere. The authors provide strong proof for heterogeneity in transmitter release thresholds at individual synapses and they do so in an extremely complex experimental settings. In addition, the authors found other specific differences such as in synaptic latency and max EPSCs. A reasonable effort is put in bridging these observations with those extensively reported in in vivo SGNs recordings. Similarities are many and differences are not particularly worrying as experimental conditions cannot be perfectly matched, despite the authors' efforts in minimizing them.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this paper, the authors use AlphaFold2 to identify potential binding partners of nuage localizing proteins.
Strengths:
The main strength of the paper is that the authors experimentally verify a subset of the predicted interactions.
Many studies have been performed to predict protein-protein interactions in various subsets of proteins. The interesting story here is that the authors (i) focus on an organelle that contains quite some intrinsically disordered proteins and (ii) experimentally verify some (but not all) predictions.
Weaknesses:
Identification of pairwise interactions is only a first step towards understanding complex interactions. It is pretty clear from the predictions that some (but certainly not all) of the pairs could be used to build larger complexes. AlphaFold easily handles proteins up to 4-5000 residues, so this should be possible. I suggest that the authors do this to provide more biological insights.
Another weakness is the use of a non-standard name for "ranking confidence" - the author calls it the pcScore - while the name used in AlphaFold (and many other publications) is ranking confidence.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Lam et al., present a very intriguing whole genome CRISPR screen in Syrian Hamster cells as well as K562 cells to identify key genes involved in hypothermia-rewarming tolerance. Survival screens were performed by exposing cells to 4C in a cooled CO2 incubator followed by a rewarming period of 30 minutes prior to survival analysis. In this paradigm, Syrian hamster-derived cell lines exhibit more robust survival than human cell lines (BHK-21 and HaK vs HT1080, HeLa, RPE1, and K562). A genome-wide Syrian hamster CRISPR library was created targeting all annotated genes with 10 guides/gene. LV transduction of the library was performed in BHK-21 cells and the survival screen procedures involved 3 cycles of 4C cold exposure x4 days followed by 2 days of re-warming.
When compared to controls maintained at 37C, 9 genes were required for BHK-21 survival of cold cycling conditions and 5 of these 9 are known components of the GPX4 antioxidant pathway. GPX4 KO BHK-21 cells had reduced cell growth at 37C and profoundly worse cold tolerance which could be reduced by GPX4 expression. GPX4 inhibitors also reduced survival in cold. CRISPR KO screens and GPX4 KO in K562 cells revealed comparable results (though intriguingly glutathione biosynthesis genes were more critical to K562 cells than BHK-21 cells). Human or Syrian hamster GPX4 overexpression improved cold tolerance.
Strengths:
This is a very nicely written paper that clearly communicates in figures and text complicated experimental manipulations and in vitro genetic screening and cell survival data. The focus on GPX4 is interesting and relatively novel. The converging pharmacologic, loss-of-function, and gain-of-function experiments are also a strength.
Weaknesses:
A recently published article (Reference 43, Sone et al.) also independently explored the role of GPX4 in Syrian hamster cold tolerance through gain-of-function screening. Further exploration of the GPX4 species-specific mechanisms would be of great interest, but this is considered a minor weakness given the already very comprehensive and compelling data presented.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The manuscript by Thakur et. al seeks to establish a novel ASO-based approach to treat 22q11.2 deletion syndrome. Central to this thesis is that an ER membrane complex member called EMC10 is significantly increased in the disorder, which is largely attributed to the loss of miRNA-mediated repression. The authors generated three new iPSC cell lines for the disorder and showed that deletion of EMC10 rescues morphology and Ca-flux deficits. They go on to show that post-symptomatic deletion of Emc10 in mice using a conditional-off tamoxifen allele reverses social memory phenotypes. Finally, in collaboration with Ionis, they developed two new ASOs to knock down EMC10 and show that social and spatial memory phenotypes are rescued, even two months after injection.
Strengths:
In general, this represents a substantial undertaking and an impressive body of work. The experiments follow a logical progression and in most cases are well-controlled. The isolation of EMC10 effects relative to the broader miRNA disruption is viewed as impactful. The use of both genetic and ASO approaches to validate the therapeutic strategy is also viewed as highly positive. The authors' contention that EMC10 can be targeted at post-symptomatic time points to reverse 22q11.2 deletion syndrome is supported by the data. Further, they have provided a therapeutic mechanism to do so. These findings are likely to be impactful and lead to further development efforts.
Weaknesses:
The primary weaknesses of the manuscript lie in incomplete or inappropriate data analysis, as well as a failure to validate key experiments. For example, both genetic and ASO-mediated EMC10-mediated reductions are assessed at the level of mRNA, but only one experiment, in one brain region, is validated at the protein level. This brain region is the PFC, which is problematic when many of the phenotypes used have a strong hippocampal component. Likewise, the iPSC experiments make the case that excitatory neurons are central to the phenotype, but no effort is made to show that the ASOs are entering that type of neuron, or even any quantification of what percentage of cells in the target brain regions (HPC, PFC, etc.) are positive for the ASO. There is only a single image provided of staining with a phosphorothioate antibody and a claim of robust uptake, which cannot be assumed. The iPSC transcriptomics work would also benefit from a more comprehensive comparison between the EMC10 knockout lines and their parent 22q11 deletion lines. Further, there are other examples where the statistics used are either wrong (Figure 3 t-test vs ANOVA) or missing (Figure S2). These technical and analytical shortcomings make it challenging to fully interpret the data and detract from an otherwise exciting manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary
In this study, rats were trained to discriminate auditory frequency and visual form/orientation for both unisensory and coherently presented AV stimuli. Recordings were made in the auditory cortex during behaviour and compared to those obtained in various control animals/conditions. The central finding is that AC neurons preferentially represent the contralateral-conditioned stimulus - for the main animal cohort this was a 10k tone and a vertically oriented bar. Over 1/3rd of neurons in AC were either AV/V/A+V and while a variety of multisensory neurons were recorded, the dominant response was excitation by the correctly oriented visual stimulus (interestingly this preference was absent in the visual-only neurons). Animals performing a simple version of the task in which responses were contingent on the presence of a stimulus rather than its identity showed a smaller proportion of AV stimuli and did not exhibit a preference for contralateral conditioned stimuli. The contralateral conditioned dominance was substantially less under anesthesia in the trained animals and was present in a cohort of animals trained with the reverse left/right contingency. Population decoding showed that visual cues did not increase the performance of the decoder but accelerated the rate at which it saturated. Rats trained on auditory and then visual stimuli (rather than simultaneously with A/V/AV) showed many fewer integrative neurons.
Strengths
There is a lot that I like about this paper - the study is well-powered with multiple groups (free choice, reversed contingency, unisensory trained, anesthesia) which provides a lot of strength to their conclusions and there are many interesting details within the paper itself. Surprisingly few studies have attempted to address whether multisensory responses in the unisensory cortex contribute to behaviour - and the main one that attempted to address this question (Lemus et al., 2010, uncited by this study) showed that while present in AC, somatosensory responses did not appear to contribute to perception. The present manuscript suggests otherwise and critically does so in the context of a task in which animals exhibit a multisensory advantage (this was lacking in Lemus et al.,). The behaviour is robust, with AV stimuli eliciting superior performance to either auditory or visual unisensory stimuli (visual were slightly worse than auditory but both were well above chance).
Weaknesses
I have a number of points that in my opinion require clarification and I have suggestions for ways in which the paper could be strengthened. In addition to these points, I admit to being slightly baffled by the response latencies; while I am not an expert in the rat, usually in the early sensory cortex auditory responses are significantly faster than visual ones (mirroring the relative first spike latencies of A1 and V1 and the different transduction mechanisms in the cochlea and retina). Yet here, the latencies look identical - if I draw a line down the pdf on the population level responses the peak of the visual and auditory is indistinguishable. This makes me wonder whether these are not sensory responses - yet, they look sensory (very tightly stimulus-locked). Are these latencies a consequence of this being AuD and not A1, or ... ? Have the authors performed movement-triggered analysis to illustrate that these responses are not related to movement out of the central port, or is it possible that both sounds and visual stimuli elicit characteristic whisking movements? Lastly, has the latency of the signals been measured (i.e. you generate and play them out synchronously, but is it possible that there is a delay on the audio channel introduced by the amp, which in turn makes it appear as if the neural signals are synchronous? If the latter were the case I wouldn't see it as a problem as many studies use a temporal offset in order to give the best chance of aligning signals in the brain, but this is such an obvious difference from what we would expect in other species that it requires some sort of explanation.
Reaction times were faster in the AV condition - it would be of interest to know whether this acceleration is sufficient to violate a race model, given the arbitrary pairing of these stimuli. This would give some insight into whether the animals are really integrating the sensory information. It would also be good to clarify whether the reaction time is the time taken to leave the center port or respond at the peripheral one.
The manuscript is very vague about the origin or responses - are these in AuD, A1, AuV... ? Some attempts to separate out responses if possible by laminar depth and certainly by field are necessary. It is known from other species that multisensory responses are more numerous, and show greater behavioural modulation in non-primary areas (e.g. Atilgan et al., 2018).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Studying Apteronotus leptorhynchus (the weakly electric brown ghost knifefish), the authors provide evidence that 'chirps' (brief modulations in the frequency and amplitude of the ongoing wave-like electric signal) function in active sensing (specifically homeoactive sensing) rather than communication. Chirping is a behavior that has been well studied, including numerous studies on the sensory coding of chirps and the neural mechanisms for chirp generation. Chirps are largely thought to function in communication behavior, so this alternative function is a very exciting possibility that should have a great impact on the field.
The authors provide convincing evidence that chirps may function in homeoactive sensing. In particular, the evidence showing increased chirping in more cluttered environments and a relationship between chirping and movement are especially strong and suggestive. Their evidence arguing against a role for chirps in communication is not as strong. However, based on an extensive review of the literature, the authors conclude, I think fairly, that the evidence arguing in favor of a communication function is limited and inconclusive. Thus, the real strength of this study is not that it conclusively refutes the communication hypothesis, but that it calls this hypothesis into question while also providing compelling evidence in favor of an alternative function.
In summary, although the evidence against a role for chirps in communication is not as strong as the evidence for a role in active sensing, this study presents very interesting data that is sure to stimulate discussion and follow-up studies. The authors acknowledge that chirps could function as both a communication and homeactive sensing signal, and the language arguing against a communication function is appropriately measured. A given electrical behavior could serve both communication and homeoactive sensing. I suspect this is quite common in electric fish (not just in gymnotiforms such as the species studied here, but also in the distantly related mormyrids), and perhaps in other actively sensing species such as echolocating animals.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors tried to determine how PA28g functions in oral squamous cell carcinoma (OSCC) cells. They hypothesized it may act through metabolic reprogramming in the mitochondria.
Strengths:
They found that the genes of PA28g and C1QBP are in an overlapping interaction network after an analysis of a genome database. They also found that the two proteins interact in coimmunoprecipitation and pull-down assays using the lysate from OSCC cells with or without expression of the exogenous genes. They used truncated C1QBP proteins to map the interaction site to the N-terminal 167 residues of C1QBP protein. They observed the levels of the two proteins are positively correlated in the cells. They provided evidence for the colocalization of the two proteins in the mitochondria and the effect on mitochondrial form and function in vitro and in vivo OSCC models, and the correlation of the protein expression with the prognosis of cancer patients.
Weaknesses:
Many data sets are shown in figures that cannot be understood without more descriptions either in the text or the legend, e.g., Fig. 1A. Similarly, many abbreviations are not defined.
The revision addressed these issues.
Some of the pull-down and coimmunoprecipitation data do not support the conclusion about the PA28g-C1QBP interaction. For example, in Appendix Fig. 1B the Flag-C1QBP was detected in the Myc beads pull-down when the protein was expressed in the 293T cells without the Myc-PA28g, suggesting that the pull-down was not due to the interaction of the C1QBP and PA28g proteins. In Appendix Fig. 1C, assume the SFB stands for a biotin tag, then the SFB-PA28g should be detected in the cells expressing this protein after pull-down by streptavidin; however, it was not. The Western blot data in Fig. 1E and many other figures must be quantified before any conclusions about the levels of proteins can be drawn.
The revision addressed these problems.
The immunoprecipitation method is flawed as it is described. The antigen (PA28g or C1QBP) should bind to the respective antibody that in turn should binds to Protein G beads. The resulting immunocomplex should end up in the pellet fraction after centrifugation, and analyzed further by Western blot for coprecipitates. However, the method in the Appendix states that the supernatant was used for the Western blot.
The revision corrected this method.
To conclude that PA28g stabilizes C1QBP through their physical interaction in the cells, one must show whether a protease inhibitor can substitute PA28q and prevent C1QBP degradation, and also show whether a mutation that disrupt the PA28g-C1QBP interaction can reduce the stability of C1QBP. In Fig. 1F, all cells expressed Myc-PA28g. Therefore, the conclusion that PA28g prevented C1QBP degradation cannot be reached. Instead, since more Myc-PA28g was detected in the cells expressing Flag-C1QBP compared to the cells not expressing this protein, a conclusion would be that the C1QBP stabilized the PA28g. Fig. 1G is a quantification of a Western blot data that should be shown.
The binding site for PA28g in C1QBP was mapped to the N-terminal 167 residues using truncated proteins. One caveat would be that some truncated proteins did not fold correctly in the absence of the sequence that was removed. Thus, the C-terminal region of the C1QBP with residues 168-283 may still bind to the PA29g in the context of full-length protein. In Fig. 1I, more Flag-C1QBP 1-167 was pull-down by Myc-PA28g than the full-length protein or the Flag-C1QBP 1-213. Why?
The interaction site in PA28g for C1QBP was not mapped, which prevents further analysis of the interaction. Also, if the interaction domain can be determined, structural modeling of the complex would be feasible using AlphaFold2 or other programs. Then, it is possible to test point mutations that may disrupt the interaction and if so, the functional effect.
The revision added AlphaFold models for the protein interaction. However, the models were not analyzed and potential mutations that would disrupt the interact were not predicted, made and tested. The revision did not addressed the request for the protease inhibitor.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This manuscript by Poltavski and colleagues explores the relative contributions of Pax2- and Wnt1- lineage derived cells in the enteric nervous system (ENS) and how they are each affected by disruptions in Ret and Endrb signaling. The current understanding of ENS development in mice is that vagal neural crest progenitors derived from a Wnt1+ lineage migrate into and colonize the developing gut. The sacral neural crest was thought to make a small contribution to the hindgut in addition but recent work has questioned that contribution and shown that the ENS is entirely populated by vagal crest (PMID: 38452824). GDNF-Ret and Endothelin3-Ednrb signaling are both known to be essential for normal ENS development and loss of function mutations are associated with a congenital disorder called Hirschsprung's disease. The transcription factor Pax2 has been studied in CNS and cranial placode development but has not been previously implicated in ENS development. In this work, the authors begin with the unexpected observation that conditional knockout of Ednrb in Pax2-expressing cells causes a similar aganglionosis, growth retardation, and obstructed defecation as conditional knockout of Ednrb in Wnt1-expressing cells. The investigators then use the Pax2 and Wnt1 Cre transgenic lines to lineage-trace ENS derivatives and assess the effects of loss of Ret or Ednrb during embryonic development in these lineages. Finally, they use explants from the corresponding embryos to examine the effects of GDNF on progenitor outgrowth and differentiation.
Strengths:
- The manuscript is overall very well illustrated with high resolution images and figures. Extensive data are presented.
- The identification of Pax2 expression as a lineage marker that distinguishes a subset of cells in the ENS that may be distinct from cells derived from Wnt1+ progenitors is an interesting new observation that challenges current understanding of ENS development
- Pax2 has not been previously implicated in ENS development - this manuscript does not directly test that role but hints at the possibility
- Interrogation of two distinct signaling pathways involved in ENS development and their relative effects on the two purported lineages
Weaknesses:
- The major challenge with interpreting this work is the use of two transgenic lines, Wnt1-Cre and Pax2-Cre, which are not well characterized in terms of fidelity to native gene expression and recombination efficiency in the ENS. If 100% of cells that express Wnt1 do not express Cre or if the Pax2 transgene is expressed in cells that do not normally express Pax2, then these observations would have very different interpretations and would not support the conclusions made. The two lineages are never compared in the same embryo, which also makes it difficult to assess relative contributions and renders the evidence more circumstantial than definitive.
- Visualization of the Pax2-Cre and Wnt-1Cre induced recombination in cross-sections at postnatal ages would help with data interpretation. If there is recombination evident in the mesenchyme, this would particularly alter interpretation of Ednrb mutant experiments, since that pathway has been shown to alter gut mesenchyme and ECM, which could indirectly alter ENS colonization.
- The data on distinct lineages in Fig 3 is somewhat weak and the description in the Results section tends to over-interpretation. For example, "A minimum number (approx. 3%) of CGRP+ neurons were labeled by Wnt1Cre ... which indicates that Wnt1Cre-derived cells have little or no commitment to a mechanosensory fate in the distal colon." The data panel in Fig 3f shows that most of the CGRP-IR cells in Wnt1-Cre-Tomato mice are tdTomato+ though their tdTomato fluorescence is less intense than in neighboring smaller, likely glial cells. This suggests that CGRP+/Tomato+ neurons were likely undercounted. IHC for tdTomato to ensure detection of low levels of Tomato expression and quantification of observations would strengthen the authors' claim. CGRP+ enteric neurons have been visualized and functionally described by several investigators in the field using Wnt1-Cre-GCaMP mice, which also challenges the authors' conclusions. Finally, quantification of CGRP+ enteric neurons by measuring CGRP mucosal fiber immunoreactivity is not accurate because it would reflect both ENS CGRP-expressing neurons and visceral afferents from DRG. Moreover, it is not known if all CGRP+ enteric neurons project to the mucosa or if all mucosal-projecting neurons are mechanosensory. Finally, most of the signal seems to be non-specific background staining in the mucosa and quantification of mucosal signal in this context does not seem meaningful.
- No consideration of glia - are these derived from both lineages?
- No discussion of how these observations may fit in with recent work that suggests a mesenchymal contribution of enteric neurons (PMID: 38108810)
- Phospho-RET staining in Figure 7 is difficult to discern and interpret with high background. Positive and negative controls would strengthen these data.
Comments on revised version:
The authors have responded to the weaknesses identified above. Based on my own assessment of the revised manuscript, my assessment is unchanged because the manuscript is largely unchanged.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Rai and coworkers have studied the regulation of the MICAL-family of actin regulators by Rab 8 family GTPases. Their work uses a combination of structural biology, biochemistry, and modelling approaches to identify the regions and specific residues interacting with Rabs and understand the consequences of MICAL1 regulation. The study extends previous work on individual domains by incorporating analysis of the full-length MICAL1 protein and provides compelling evidence for allosteric regulation by Rab binding to two low and high-affinity regulatory sites.
Strengths:
Excellent biochemical and structural analysis.
Weaknesses:
Additional data to test the model for Rab regulation of MICAL1 in the actin-pelleting assay would enhance the study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
This study shows that Osx plays a pivotal role in the dendritic network and intercellular communication of Col1α1-positive osteocytes via targeting Connexin43 (Cx43). It provides solid evidence to broaden our understanding of Osx's roles during bone homeostasis. This work will be of interest to investigators studying bone diseases involving osteocytes, such as delayed fracture healing or osteoporosis.
Comments:
(1) In Figure 1, it appears that the Osx- and Col1α1-positive cells may not be exclusively expressed by osteocytes. Possibly periosteum cells and osteoblasts are also included. This could potentially impact the interpretation of results. The authors should provide a clearer analysis to distinguish the cell types precisely.
(2) Jialiang S. Wang et al. (Nat Commun. 2021 Nov 1;12(1):6274.) have previously reported on the direct role of Osx in osteocytes. In light of this prior research, it is essential for the authors to thoroughly discuss how this study differs from previous findings.
(3) In the methods section, it is crucial to provide detailed information about the manufacturer and country of origin of reagents, like ATRA.
(4) The morphology of osteocytes in cortical bone can vary between the metaphysis site and the middle shaft site of long bones. For SEM data of osteocytes in Figure 2, it is necessary to address this issue. The authors should clarify whether morphological difference was observed between these sites and, if so, how these differences might impact the interpretation of the data.
(5) In the bone research field, two different Col1α1 - CreER mice were used. The authors should specify which type of Col1α1 - CreER mice were utilized in this research.
(6) A more detailed description of the statistical method used in Figure 2G - I is required, particularly with regard to quantifying the number of osteocyte dendritic processes.
(7) In Figure 6C and Figure 6D, while the legend indicates N = 3, there are five data points presented in the statistical graph.
-
-
www.researchsquare.com www.researchsquare.com
-
Reviewer #2 (Public review):
Summary:
This work introduces a new method of depleting the ribosomal reads from the single-cell RNA sequencing library prepared with one of the prokaryotic scRNA-seq techniques, PETRI-seq. The advance is very useful since it allows broader access to the technology by lowering the cost of sequencing. It also allows more transcript recovery with fewer sequencing reads. The authors demonstrate the utility and performance of the method for three different model species and find a subpopulation of cells in the E.coli biofilm that express a protein, PdeI, which causes elevated c-di-GMP levels. These cells were shown to be in a state that promotes persister formation in response to ampicillin treatment.
Strengths:
The introduced rRNA depletion method is highly efficient, with the depletion for E.coli resulting in over 90% of reads containing mRNA. The method is ready to use with existing PETRI-seq libraries which is a large advantage, given that no other rRNA depletion methods were published for split-pool bacterial scRNA-seq methods. Therefore, the value of the method for the field is high. There is also evidence that a small number of cells at the bottom of a static biofilm express PdeI which is causing the elevated c-di-GMP levels that are associated with persister formation. This finding highlights the potentially complex role of PdeI in regulation of c-di-GMP levels and persister formation in microbial biofilms.
Weaknesses:
Given many current methods that also introduce different techniques for ribosomal RNA depletion in bacterial single-cell RNA sequencing, it is unclear what is the place and role of RiboD-PETRI. The efficiency of rRNA depletion varies greatly between species for the majority of the available methods, so it is not easy to select the best fitting technique for a specific application.
Despite transcriptome-wide coverage, the authors focused on the role of a single heterogeneously expressed gene, PdeI. A more integrated analysis of multiple genes and\or interactions between them using these data could reveal more insights into the biofilm biology.
The authors should also present the UMIs capture metrics for RiboD-PETRI method for all cells passing initial quality filter (>=15 UMIs/cell) both in the text and in the figures. Selection of the top few cells with higher UMI count may introduce biological biases in the analysis (the top 5% of cells could represent a distinct subpopulation with very high gene expression due to a biological process). For single-cell RNA sequencing, showing the statistics for a 'top' group of cells creates confusion and inflates the perceived resolution, especially when used to compare to other methods (e.g. the parent method PETRI-seq itself).
-
Reviewer #2 (Public review):
Summary:
This work introduces a new method of depleting the ribosomal reads from the single-cell RNA sequencing library prepared with one of the prokaryotic scRNA-seq techniques, PETRI-seq. The advance is very useful since it allows broader access to the technology by lowering the cost of sequencing. It also allows more transcript recovery with fewer sequencing reads. The authors demonstrate the utility and performance of the method for three different model species and find a subpopulation of cells in the E.coli biofilm that express a protein, PdeI, which causes elevated c-di-GMP levels. These cells were shown to be in a state that promotes persister formation in response to ampicillin treatment.
Strengths:
The introduced rRNA depletion method is highly efficient, with the depletion for E.coli resulting in over 90% of reads containing mRNA. The method is ready to use with existing PETRI-seq libraries which is a large advantage, given that no other rRNA depletion methods were published for split-pool bacterial scRNA-seq methods. Therefore, the value of the method for the field is high. There is also evidence that a small number of cells at the bottom of a static biofilm express PdeI which is causing the elevated c-di-GMP levels that are associated with persister formation. This finding highlights the potentially complex role of PdeI in regulation of c-di-GMP levels and persister formation in microbial biofilms.
Weaknesses:
Given many current methods that also introduce different techniques for ribosomal RNA depletion in bacterial single-cell RNA sequencing, it is unclear what is the place and role of RiboD-PETRI. The efficiency of rRNA depletion varies greatly between species for the majority of the available methods, so it is not easy to select the best fitting technique for a specific application.
Despite transcriptome-wide coverage, the authors focused on the role of a single heterogeneously expressed gene, PdeI. A more integrated analysis of multiple genes and\or interactions between them using these data could reveal more insights into the biofilm biology.
The authors should also present the UMIs capture metrics for RiboD-PETRI method for all cells passing initial quality filter (>=15 UMIs/cell) both in the text and in the figures. Selection of the top few cells with higher UMI count may introduce biological biases in the analysis (the top 5% of cells could represent a distinct subpopulation with very high gene expression due to a biological process). For single-cell RNA sequencing, showing the statistics for a 'top' group of cells creates confusion and inflates the perceived resolution, especially when used to compare to other methods (e.g. the parent method PETRI-seq itself).
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
I appreciate the authors' efforts in addressing previous feedback by correcting typos, clarifying terms, and expanding the methodological descriptions. The revisions have notably improved the manuscript's clarity and readability. However, despite these positive changes, I still have several significant concerns, both conceptual and technical, that need to be addressed to strengthen the conclusions of the paper.
The key idea of this paper is the treatment of rDNA copies in an individual as a pseudo-population and model their sequence evolution with the WFH framework by introducing the parameter V*(K). With this modeling framework, the authors claim that the molecular evolution rate of rDNA relative to that of single-copy genes can be expressed as a simple function V*(K) and C (the copy number per individual). Moreover, when V*(K) is sufficiently large, the neutral molecular evolution of rDNA can be faster than expected under a naïve model without considering horizontal, homogenizing processes and thus be potentially compatible with empirical data. However, several issues persist in the definition, assumptions, and derivation of the model:
(1) Several terms in the model remain undefined. While Ne is clearly defined in the standard single-copy gene model as the reciprocal of genetic drift (i.e., the decay in heterozygosity), its meaning for multiple-copy genes is unclear. Based on the context, it appears that the authors define Ne as the parameter that fits the population polymorphism level (Hs) using the equation in line 165. This definition is reasonable, but it should be explicitly clarified in the text."<br /> (2) Another key parameter V*(K) was still not defined within the paper. In response 9, the authors explained that V*(K) refers to "the number of progeny to whom the gene copy of interest is transmitted (K) over a specific time interval". However, the meaning of "progeny" remains unclear. Are the authors referring to the descendent copies of a gene copy, or the offspring individuals (i.e., the living organisms)? For example, if a variant spreads horizontally through homogenizing processes and transmits vertically to multiple offspring individuals, the number of descent gene copies could differ substantially from the number of descendent individuals to whom a gene copy is transmitted to. This distinction needs to be clarified and clearly stated in the paper.<br /> (3) The authors state that V*(K)>=1 for rDNA genes because of the homogenizing processes (lines 139-141) without providing justification. It is unclear, at least to me, whether homogenizing processes are expected increase or decrease the variance in "reproductive success" across gene copies. Moreover, the authors claim that V*(K) "can potentially reach values in the hundreds and may even exceed C, resulting in C*=C/V*(K)<1" (Response 7). This claim is unlikely to be true, as the minimum value of K is bounded by zero and E(K) is assumed to be 1. Even in the extreme case that 1% gene copies leave large numbers of descends while the others leave none, V*(K) would still be less than 100. Such extreme case seems highly improbable, given realistic rates of the homogenizing processes.<br /> (4) Regardless of how the authors define V*(K), it is not immediately clear why Equation 1 (N*=NC/V*(K)) holds. Both sides of the equation have their independent meanings, so the authors need to provide a step-by-step derivation demonstrating that they are equal. Only by doing this will the implicit underlying assumptions become clearer. I also strongly recommend that the authors conduct forward-in-time simulations with fixed N, C, V*(K) (however they define it) and μ to confirm that the right side of Equation 1 actually predicts the N* as calculated from the polymorphism level using the equation in line 165.<br /> (5) Without providing justification, the authors assumed that a certain number N* exists for rRNA such that it fits both the polymorphism level (line 156) in recent timescales and divergence level in longer timescales (i.e., in the comparison between Tf and Td). However, if N, C or any other relevant parameters have varied substantially throughout evolution, N* is expected to vary with time, and the same value may not fit both polymorphism and divergence data simultaneously.
The authors also provided more detailed description of their data analysis methods, but some of my major concerns remain:<br /> (1) A significant issue with aligning reads to a single reference genome is reference bias, referring to the phenomenon that reads carrying the reference alleles tend to align more easily than those with one or more non-reference alleles, thus creating a bias in genotype calling or variant allele frequency quantification. As a result, there may be an underrepresentation of non-reference alleles in called variants or an underestimate of non-reference allele frequency, particularly in regions with high genetic diversity. Simply focusing on bi-allelic SNVs is insufficient to minimize reference bias. Given the fourfold increase in diversity within rDNA, the authors must either provide evidence that reference bias is not a significant concern or adopt graph-based reference genomes or more sophisticated alignment algorithms to address this issue.<br /> (2) The potential for reference bias also renders the analysis of divergence sites unreliable, as aligning reads from one species (e.g. chimpanzee) to the reference of another species (e.g., human) is likely to introduce biases in variant calling between the two. One commonly adopted approach to address this imbalance is to align reads from both species to a third reference genome that is expected to be equidistantly related to both.<br /> (3) Although it is somewhat reassuring that the estimated divergence rate of rDNA between human and macaque is comparable to that of the rest of the genome, there still remains concern of a under-estimation of divergence in rDNA regions due to reference bias issue. Note that while the "third genome" approach reduces imbalance between two genomes in comparison, it may still under-estimate overall divergence level due to under-calling of non-reference variants.<br /> (4) In response to my question about the similarity in rDNA substitution rates estimated with or without CpG sites, the authors suggest that this "may be due to strong homogenizing forces, which can rapidly fix or eliminate variants" (response17). However, this explanation is insufficient, because the observed substitution rate depends on the mutation rate multiplied by the fixation probability, and accelerated fixation or loss does not alter either. Unless the authors can provide more convincing explanation, technical errors in calling of fixed sites still remain a concern.
Minor points<br /> Line 157: The statement "where μ is the mutation rate of the entire gene" must be wrong, as the heterozygosity calculated with such μ would correspond to the chance of seeing two different haplotypes at gene level, which is incompatible with the empirical calculation specified in Equation 2. Instead, μ must represent the mutation rate per site averaged over the entire gene.
In response 22, the authors explained that the allele frequency spectrum shown in Fig 3 is folded, because the ancestral allele was not determined. However, this is inconsistent with x-axis Fig 3 ranging between 0 and 1. I suspect the x-axis represents the frequency of the alternative (i.e., non-reference) allele. If so, the reported correlation is inflated, as the reference allele is somewhat random, and a variant at joint ALT allele frequencies of (0.9, 0.9) is no different from a variant at (0.1, 0.1). The proper way of calculate this correlation is to first determine the minor allele frequency across individuals and then calculate the correlation between minor allele frequencies.
Similarly, in response 14, it is unclear what the x-axis represents. Is it the ALT allele frequency or derived allele frequency? If the former, why are only variants with AF>0.8 defined as fixed variants, while those with AF<0.2 excluded? If it is the latter, please describe how ancestral state is determined.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Blocking a weak base compound's protonation increased intracellular diffusion and fractional recovery in the cytoplasm, which may improve the intracellular availability and distribution of weakly basic, small molecule drugs and be impactful in future drug development.
Strengths:
(1) The intracellular distribution of drugs and the chemical properties that drive their distribution are much needed in the literature. Thus, the idea behind this paper is of relevance.
(2) The study used common compounds that were relevant to others.
(3) Altering a compound's pKa value and measuring cytosolic diffusion rates certainly is inciteful on how weak base drugs and their relatively high pKa values affect distribution and pharmacokinetics. This particular experiment demonstrated relevance to drug targeting and drug development.
(4) The manuscript was fairly well written.
Comments on revised version:
After reviewing the authors' responses to my questions and concerns, they have adequately corrected the errors, added new information and data based off the reviewers suggestions that improved the manuscript. The manuscript in its current form would add quality information to a part of the literature that is lacking much needed information.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Notably, the authors provide the first structure of human PIEZO1 (hPIEZO1), which will facilitate future studies in the field. They reveal that hPIEZO1 has a more flattened shape than mouse PIEZO1 (mPIEZO1) and has lipids that insert into the hydrophobic pore region. To understand how PIEZO1 GOF mutations might affect this structure and the underlying mechanistic changes, they solve structures of hPIEZO1 as well as two HX causing mild GOF mutations (A1988V and E756del) and a severe GOF mutation (R2456H). Unable to glean too much information due to poor resolution of the mutant channels, the authors also attempt to resolve MCFIC-bound structures of the mutants. These structures show that MDFIC inserts into the pore region of hPIEZO1, similar to its interaction with mPIEZO1, and results in a more curved and contracted state than hPIEZO1 on its own. The authors use these structures to hypothesize that differences in curvature and pore lipid position underlie the differences in inactivation kinetics between wild-type hPIEZO1, hPIEZO1 GOF mutations, and hPIEZO1 in complex with MDFIC.
Strengths:
This is the first human PIEZO1 structure. Thus, these studies become the steppingstone for future investigations to better understand how disease-causing mutations affect channel gating kinetics.
Comments on revisions:
The revised version of the manuscript is stronger and the authors have addressed most of our concerns. The only clarification that remains is data related to the electrophysiology experiments, Figure S2. In the response, the authors mention that they were referring to previously reported mPIEZO1 mutants. However, it is still missing quantification from the human mutant + MDFIC data. This data should be available to the authors and will be more informative than just the representative traces. In the text line 151-152 "Indeed, electrophysiological studies showed that co-expression of these channelopathy mutants with MDFIC resulted in significantly reduced mechanosensitivity and inactivation rate (Fig. S2)." However the updated version does not have any number or the statistics that were performed to indicate significance. I acknowledge that in the response they describe threshold but very descriptively.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this manuscript, Kaplan et al. study mesenchymal Meis2 in whisker formation and the links between whisker formation and sensory innervation. To this end, they used conditional deletion of Meis2 using the Wnt1 driver. Whisker development was arrested at the placode induction stage in Meis2 conditional knockouts leading to the absence of expression of placodal genes such as Edar, Lef1, and Shh. The authors also show that branching of trigeminal nerves innervating whisker follicles was severely affected but that whiskers did form in the complete absence of trigeminal nerves.
Strengths:
The analysis of Meis2 conditional knockouts convincingly shows a lack of whisker formation and all epithelial whisker/hair placode markers were analyzed. Using Neurog1 knockout mice, the authors show equally convincingly that whiskers and teeth develop in the complete absence of trigeminal nerves.
Weaknesses:
The manuscript does not provide much mechanistic insight as to why mesenchymal Meis2 leads to the absence of whisker placodes. Using a previously generated scRNA-seq dataset they show that two early markers of dermal condensates, Foxd1 and Sox2, are downregulated in Meis2 mutants. However, given that placodes and dermal condensates do not form in the mutants, this is not surprising and their absence in the mutants does not provide any direct link between Meis2 and Foxd1 or Sox2. (The absence of a structure evidently leads to the absence of its markers.)
-
-
www.researchsquare.com www.researchsquare.com
-
Reviewer #2 (Public Review):
Summary:
This work introduces a new method of depleting the ribosomal reads from the single-cell RNA sequencing library prepared with one of the prokaryotic scRNA-seq techniques, PETRI-seq. The advance is very useful since it allows broader access to the technology by lowering the cost of sequencing. It also allows more transcript recovery with fewer sequencing reads. The authors demonstrate the utility and performance of the method for three different model species and find a subpopulation of cells in the E.coli biofilm that express a protein, PdeI, which causes elevated c-di-GMP levels. These cells were shown to be in a state that promotes persister formation in response to ampicillin treatment.
Strengths:
The introduced rRNA depletion method is highly efficient, with the depletion for E.coli resulting in over 90% of reads containing mRNA. The method is ready to use with existing PETRI-seq libraries which is a large advantage, given that no other rRNA depletion methods were published for split-pool bacterial scRNA-seq methods. Therefore, the value of the method for the field is high. There is also evidence that a small number of cells at the bottom of a static biofilm express PdeI which is causing the elevated c-di-GMP levels that are associated with persister formation. Given that PdeI is a phosphodiesterase, which is supposed to promote hydrolysis of c-di-GMP, this finding is unexpected.
Weaknesses:
With the descriptions and writing of the manuscript, it is hard to place the findings about the PdeI into existing context (i.e. it is well known that c-di-GMP is involved in biofilm development and is heterogeneously distributed in several species' biofilms; it is also known that E.coli diesterases regulate this second messenger, i.e. https://journals.asm.org/doi/full/10.1128/jb.00604-15).<br /> There is also no explanation for the apparently contradictory upregulation of c-di-GMP in cells expressing higher PdeI levels. Perhaps the examination of the rest of the genes in cluster 2 of the biofilm sample could be useful to explain the observed association.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In the present study, Boffi et al. investigate the manner in which the dorsal cortex of the of the inferior colliculus (DCIC), an auditory midbrain area, encodes sound location azimuth in awake, passively listening mice. By employing volumetric calcium imaging (scanned temporal focusing or s-TeFo), complemented with high-density electrode electrophysiological recordings (neuropixels probes), they show that sound-evoked responses are exquisitely noisy, with only a small portion of neurons (units) exhibiting spatial sensitivity. Nevertheless, a naïve Bayesian classifier was able to predict the presented azimuth based on the responses from small populations of these spatially sensitive units. A portion of the spatial information was provided by correlated trial-to-trial response variability between individual units (noise correlations). The study presents a novel characterization of spatial auditory coding in a non-canonical structure, representing a noteworthy contribution specifically to the auditory field and generally to systems neuroscience, due to its implementation of state-of-the-art techniques in an experimentally challenging brain region. However, nuances in the calcium imaging dataset and the naïve Bayesian classifier warrant caution when interpreting some of the results.
Strengths:
The primary strength of the study lies in its methodological achievements, which allowed the authors to collect a comprehensive and novel dataset. While the DCIC is a dorsal structure, it extends up to a millimetre in depth, making it optically challenging to access in its entirety. It is also more highly myelinated and vascularised compared to e.g., the cerebral cortex, compounding the problem. The authors successfully overcame these challenges and present an impressive volumetric calcium imaging dataset. Furthermore, they corroborated this dataset with electrophysiological recordings, which produced overlapping results. This methodological combination ameliorates the natural concerns that arise from inferring neuronal activity from calcium signals alone, which are in essence an indirect measurement thereof.
Another strength of the study is its interdisciplinary relevance. For the auditory field, it represents a significant contribution to the question of how auditory space is represented in the mammalian brain. "Space" per se is not mapped onto the basilar membrane of the cochlea and must be computed entirely within the brain. For azimuth, this requires the comparison between miniscule differences between the timing and intensity of sounds arriving at each ear. It is now generally thought that azimuth is initially encoded in two, opposing hemispheric channels, but the extent to which this initial arrangement is maintained throughout the auditory system remains an open question. The authors observe only a slight contralateral bias in their data, suggesting that sound source azimuth in the DCIC is encoded in a more nuanced manner compared to earlier processing stages of the auditory hindbrain. This is interesting because it is also known to be an auditory structure to receive more descending inputs from the cortex.
Systems neuroscience continues to strive for the perfection of imaging novel, less accessible brain regions. Volumetric calcium imaging is a promising emerging technique, allowing the simultaneous measurement of large populations of neurons in three dimensions. But this necessitates corroboration with other methods, such as electrophysiological recordings, which the authors achieve. The dataset moreover highlights the distinctive characteristics of neuronal auditory representations in the brain. Its signals can be exceptionally sparse and noisy, which provide an additional layer of complexity in the processing and analysis of such datasets. This will undoubtedly be useful for future studies of other less accessible structures with sparse responsiveness.
Weaknesses:
Although the primary finding that small populations of neurons carry enough spatial information for a naïve Bayesian classifier to reasonably decode the presented stimulus is not called into question, certain idiosyncrasies, in particular the calcium imaging dataset and model, complicate specific interpretations of the model output, and the readership is urged to interpret these aspects of the study's conclusions with caution.
I remain in favour of volumetric calcium imaging as a suitable technique for the study, but the presently constrained spatial resolution is insufficient to unequivocally identify regions of interest as cell bodies (and are instead referred to as "units" akin to those of electrophysiological recordings). It remains possible that the imaging set is inadvertently influenced by non-somatic structures (including neuropil), which could report neuronal activity differently than cell bodies. Due to the lack of a comprehensive ground-truth comparison in this regard (which to my knowledge is impossible to achieve with current technology), it is difficult to imagine how many informative such units might have been missed because their signals were influenced by spurious, non-somatic signals, which could have subsequently misled the models. The authors reference the original Nature Methods article (Prevedel et al., 2016) throughout the manuscript, presumably in order to avoid having to repeat previously published experimental metrics. But the DCIC is neither the cortex nor hippocampus (for which the method was originally developed) and may not have the same light scattering properties (not to mention neuronal noise levels). Although the corroborative electrophysiology data largely alleviates these concerns for this particular study, the readership should be cognisant of such caveats, in particular those who are interested in implementing the technique for their own research.
A related technical limitation of the calcium imaging dataset is the relatively low number of trials (14) given the inherently high level of noise (both neuronal and imaging). Volumetric calcium imaging, while offering a uniquely expansive field of view, requires relatively high average excitation laser power (in this case nearly 200 mW), a level of exposure the authors may have wanted to minimise by maintaining a low number of repetitions, but I yield to them to explain. Calcium imaging is also inherently slow, requiring relatively long inter-stimulus intervals (in this case 5 s). This unfortunately renders any model designed to predict a stimulus (in this case sound azimuth) from particularly noisy population neuronal data like these as highly prone to overfitting, to which the authors correctly admit after a model trained on the entire raw dataset failed to perform significantly above chance level. This prompted them to feed the model only with data from neurons with the highest spatial sensitivity. This ultimately produced reasonable performance (and was implemented throughout the rest of the study), but it remains possible that if the model was fed with more repetitions of imaging data, its performance would have been more stable across the number of units used to train it. (All models trained with imaging data eventually failed to converge.) However, I also see these limitations as an opportunity to improve the technology further, which I reiterate will be generally important for volume imaging of other sparse or noisy calcium signals in the brain.
Transitioning to the naïve Bayesian classifier itself, I first openly ask the authors to justify their choice of this specific model. There are countless types of classifiers for these data, each with their own pros and cons. Did they actually try other models (such as support vector machines), which ultimately failed? If so, these negative results (even if mentioned en passant) would be extremely valuable to the community, in my view. I ask this specifically because different methods assume correspondingly different statistical properties of the input data, and to my knowledge naïve Bayesian classifiers assume that predictors (neuronal responses) are assumed to be independent within a class (azimuth). As the authors show that noise correlations are informative in predicting azimuth, I wonder why they chose a model that doesn't take advantage of these statistical regularities. It could be because of technical considerations (they mention computing efficiency), but I am left generally uncertain about the specific logic that was used to guide the authors through their analytical journey.
In a revised version of the manuscript, the authors indeed justify their choice of the naïve Bayesian classifier as a conservative approach (not taking into account noise correlations), which could only improve with other models (that do). They even tested various other commonly used models, such as support vector machines and k-nearest neighbours, to name a few, but do not report these efforts in the main manuscript. Interestingly, these models, which I supposed would perform better in fact did not overall - a finding that I have no way of interpreting but nevertheless find interesting.
That aside, there remain other peculiarities in model performance that warrant further investigation. For example, what spurious features (or lack of informative features) in these additional units prevented the models of imaging data from converging? In an orthogonal question, did the most spatially sensitive units share any detectable tuning features? A different model trained with electrophysiology data in contrast did not collapse in the range of top-ranked units plotted. Did this model collapse at some point after adding enough units, and how well did that correlate with the model for the imaging data? How well did the form (and diversity) of the spatial tuning functions as recorded with electrophysiology resemble their calcium imaging counterparts? These fundamental questions could be addressed with more basic, but transparent analyses of the data (e.g., the diversity of spatial tuning functions of their recorded units across the population). Even if the model extracts features that are not obvious to the human eye in traditional visualisations, I would still find this interesting.
Although these questions were not specifically addressed in the revised version of the manuscript, I also admit that I did not indent do assert that these should necessarily fall within the scope of the present study. I rather posed them as hypothetical directions one could pursue in future studies. Finally, further concerns I had with statements regarding the physiological meaning of the findings have been ameliorated by nicely modified statements, thus bringing transparency to the readership, which I appreciate.
In summary, the present study represents a significant body of work that contributes substantially to the field of spatial auditory coding and systems neuroscience. However, limitations of the imaging dataset and model as applied in the study muddles concrete conclusions about how the DCIC precisely encodes sound source azimuth and even more so to sound localisation in a behaving animal. Nevertheless, it presents a novel and unique dataset, which, regardless of secondary interpretation, corroborates the general notion that auditory space is encoded in an extraordinarily complex manner in the mammalian brain.
-
-
www.researchsquare.com www.researchsquare.com
-
Reviewer #2 (Public review):
Summary:
Cell intrinsic signaling pathways controlling the function of macrophages in inflammatory processes, including in response to infection, injury or in the resolution of inflammation are incompletely understood. In this study, Rosell et al. investigate the contribution of RAS-p110α signaling to macrophage activity. p110α is a ubiquitously expressed catalytic subunit of PI3K with previously described roles in multiple biological processes including in epithelial cell growth and survival, and carcinogenesis. While previous studies have already suggested a role for RAS-p110α signaling in macrophage function, the cell intrinsic impact of disrupting the interaction between RAS and p110α in this central myeloid cell subset is not known.
Strengths:
Exploiting a sound previously described genetically engineered mouse model that allows tamoxifen-inducible disruption of the RAS-p110α pathway and using different readouts of macrophage activity in vitro and in vivo, the authors provide data consistent with their conclusion that alteration in RAS-p110α signaling impairs various but selective aspects of macrophage function in a cell-intrinsic manner.
Weaknesses:
My main concern is that for various readouts, the difference between wild-type and mutant macrophages in vitro or between wild-type and Pik3caRBD mice in vivo is modest, even if statistically significant. To further substantiate the extent of macrophage function alteration upon disruption of RAS-p110α signaling and its impact on the initiation and resolution of inflammatory responses, the manuscript would benefit from a more extensive assessment of macrophage activity and inflammatory responses in vivo.
In the in vivo model, all cells have disrupted RAS-p100α signaling, not only macrophages. Given that other myeloid cells besides macrophages contribute to the orchestration of inflammatory responses, it remains unclear whether the phenotype described in vivo results from impaired RAS-p100α signaling within macrophages or from defects in other haematopoietic cells such as neutrophils, dendritic cells, etc.
Inclusion of information on the absolute number of macrophages, and total immune cells (e.g. for the spleen analysis) would help determine if the reduced frequency of macrophages represents an actual difference in their total number or rather reflects a relative decrease due to an increase in the number of other/s immune cell/s.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this article, Tian et al present a convincing analysis of the molecular mechanisms underpinning TIPE-mediated regulation of glycolysis and tumor growth in melanoma. The authors begin by confirming TIPE expression in melanoma cell lines and identify "high" and "low" expressing models for functional analysis. They show that TIPE depletion slows tumour growth in vivo, and using both knockdown and over expression approaches, show that this is associated with changes in glycolysis in vitro. Compelling data using multiple independent approaches is presented to support an interaction between TIPE and the glycolysis regulator PKM2, and over-expression of TIPE promoted nuclear translocation of PKM2 dimers. Mechanistically, the authors also demonstrate that PKM2 is required for TIPE-mediated activation of HIF1a transcriptional activity, as assessed using an HRE-promoter reporter assay, and that TIPE-mediated PKM2 dimerization is p-ERK dependent. Finally, the dependence of TIPE activity on PKM2 dimerization was demonstrated on tumor growth in vivo and in regulation of glycolysis in vitro, and ectopic expression of HIF1a could rescue inhibition of PKM2 dimerization in TIPE overexpressing cells and reduced induction of general cancer stem cell markers, showing a clear role for HIF1a in this pathway.
The detailed mechanistic analysis of TIPE mediated regulation of PKM2 to control aerobic glycolysis and tumor growth is a major strength of the study and provides new insights into the molecular mechanisms that underpin the Warburg effect in melanoma cells. The main conclusions of this paper are well supported by data, however further investigation of a potential oncogenic effect of TIPE in melanoma patients is warranted to support the tumor promoting role of TIPE identified in the experimental models. Analysis of patient samples showed a significant increase in TIPE protein levels in primary melanoma compared to benign skin tumours, and a further increase upon metastatic progression. Moreover, TIPE levels correlate with proliferation (Ki67) and hypoxia gene sets in the TCGA melanoma patient dataset. However, intriguingly, high TIPE expression associates with better survival outcomes in the TCGA melanoma patient cohort, therefore further investigation of how TIPE-mediated regulation of glycolysis contributes to melanoma progression is warranted to confirm the authors claims of a potential oncogenic function. Regardless, the new insights into the molecular mechanisms underpinning TIPE-mediated aerobic glycolysis in melanoma are convincing and will likely generate interest in the cancer metabolism field.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Previous NMR and HDX-MS studies on full-length (FL) BTK showed that the covalent BTKi, ibrutinib, causes long-range effects on the conformation of BTK consistent with disruption of the autoinhibited conformation, based on HDX deuterium uptake patterns and NMR chemical shift perturbations. This study extends the analyses to four new covalent BTKi, acalabrutinib, zanubrutinib, tirabrutinib/ONO4059, and a noncovalent ATP competitive BTKi, pirtobrutinib/LOXO405.
The results show distinct conformational changes that occur upon binding each BTKi. The findings show consistent NMR and HDX changes with covalent inhibitors, which move helix aC to an 'out' position and disrupt SH3-kinase interactions, in agreement with X-ray structures of the BTKi complexed with the BTK kinase domain. In contrast, the solution measurements show that pirtobrutinib maintains and even stabilizes the helix aC-in and autoinhibited conformation, even though the BTK:pritobrutinib crystallizes with helix aC-out. This and unexpected variations in NMR and HDX behavior between inhibitors highlight the need for solution measurements to understand drug interactions with the full-length BTK. Overall the findings present good evidence for allosteric effects by each BTKi that induce distal conformational changes which are sensitive to differences in inhibitor structure.
The study goes on to examine BTK mutants T474I and L528W, which are known to confer resistance to pirtobrutinib, zanubritinib, and tirabrutinib. T474I reduces and L528W eliminates BTK autophosphorylation at pY551, while both FL-BTK-WT and FL-BTK-L528W increase HCK autophosphorylation and PLCg phosphorylation. These show that mutants partially or completely inactivate BTK and that inactive FL-BTK can activate HCK, potentially by direct BTK-HCK interactions. But they do not explain drug resistance. However, HDX and NMR show that each mutant alters the effects of BTKi binding compared to WT. In particular, T474I alters the effects of all three inhibitors around W395 and the activation loop, while L528W alters interactions around W395 with tirabrutinib and pirtobrutinib, and does not appear to bind zanubrutinib at all. The study concludes that the mutations might block drug efficacy by reducing affinity or altering binding mode.
Strengths:
The work presents convincing evidence that BTK inhibitors alter the conformation of regions distal to their binding sites, including those involved in the SH3-kinase interface, the activation loop, and a substrate binding surface between helix aF and helix aG. The findings add to the growing understanding of allosteric effects of kinase inhibitors, and their potential regulation of interactions between kinase and binding proteins.
Comments on the revised version:
The authors have satisfactorily addressed my concerns in their revised manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The aim of this manuscript is to use molecular dynamics (MD) simulations to describe the conformational changes of the neurotransmitter binding site of a nicotinic receptor. The study uses a simplified model including the alpha-delta subunit interface of the extracellular domain of the channel and describes the binding of four agonists to observe conformational changes during the weak to strong affinity transition.
Strength:
The 200 ns-long simulations of this model suggest that the agonist rotates about its centre in a 'flip' motion, while loop C 'flops' to restructure the site. The changes appear to be reproduced across simulations and different ligands and are thus a strong point of the study.
Weaknesses:
After carrying out all-atom molecular dynamics, the authors revert to a model of binding using continuum Poisson-Boltzmann, surface area and vibrational entropy. The motivations for and limitations associated with this approximate model for the thermodynamics of binding, rather than using modern atomistic MD free energy methods (that would fully incorporate configurational sampling of the protein, ligand and solvent) could be provided. Despite this, the authors report correlation between their free energy estimates and those inferred from the experiment. This did, however, reveal shortcomings for two of the agonists. The authors mention their trouble getting correlation to experiment for Ebt and Ebx and refer to up to 130% errors in free energy. But this is far worse than a simple proportional error, because -24 Vs -10 kcal/mol is a massive overestimation of free energy, as would be evident if it the authors were to instead to express results in terms of KD values (which would have error exceeding a billion fold). The MD analysis could be improved with better measures of convergence, as well as a more careful discussion of free energy maps as function of identified principal components, as described below. Overall, however, the study has provided useful observations and interpretations of agonist binding that will help understand pentameric ligand-gated ion channel activation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This study reveals a novel role of TET2 in regulating gluconeogenesis. It shows that fasting and a high-fat diet increase TET2 expression in mice, and TET2 knockout reduces glucose production. The findings highlight that TET2 positively regulates FBP1, a key enzyme in gluconeogenesis, by interacting with HNF4α to demethylate the FBP1 promoter in response to glucagon. Additionally, metformin reduces FBP1 expression by preventing TET2-HNF4α interaction. This identifies an HNF4α-TET2-FBP1 axis as a potential target for T2D treatment.
Strengths:
The authors use several methods in vivo (PTT, GTT, and ITT in fasted and HFD mice; and KO mice) and in vitro (in HepG2 and primary hepatocytes) to support the existence of the HNF4alpha-TET-2-FBP-1 axis in the control of gluconeogenesis. These findings uncovered a previously unknown function of TET2 in gluconeogenesis.
Weaknesses:
Although the authors provide evidence of an HNF4α-TET2-FBP1 axis in the control of gluconeogenesis, which contributes to the therapeutic effect of metformin on T2D, its role in the pathogenesis of T2D is less clear. The mechanisms by which TET2 is up-regulated by glucagon should be more explored.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Golov et al has performed the capture MChIP-C using H3K4me3 antibody. The new method significantly increases the resolution of Micro-C and can detect the clear interactions which is not well described in the previous HiChIP/PLAC-seq method. Overall, the paper represented a significant technological advance which can be valuable to the 3D genomic field in the future.
The authors have addressed all my concerns and comments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
5-methylcytosine (5mC) is a key epigenetic mark in DNA and plays a crucial role in regulating gene expression in many eukaryotes including humans. The DNA methyltransferases (DNMTs) that establish and maintain 5mC, are conserved in many species across eukaryotes, including animals, plants, and fungi, mainly in a CpG context. Interestingly, 5mC levels and distributions are quite variable across phylogenies with some species even appearing to have no such DNA methylation.
This interesting and well-written paper discusses the continuation of some of the authors' work published several years ago. In that previous paper, the laboratory demonstrated that DNA methylation pathways coevolved with DNA repair mechanisms, specifically with the alkylation repair system. Specifically, they discovered that DNMTs can introduce alkylation damage into DNA, specifically in the form of 3-methylcytosine (3mC). (This appears to be an error in the DNMT enzymatic mechanism where the generation 3mC as opposed to its preferred product 5-methylcytosine (5mC), is caused by the flipped target cytosine binding to the active site pocket of the DNMT in an inverted orientation.) The presence of 3mC is potentially toxic and can cause replication stress, which this paper suggests may explain the loss of DNA methylation in different species. They further showed that the ALKB2 enzyme plays a crucial role in repairing this alkylation damage, further emphasizing the link between DNA methylation and DNA repair.
The co-evolution of DNMTs with DNA repair mechanisms suggests there can be distinct advantages and disadvantages of DNA methylation to different species which might depend on their environmental niche. In environments that expose species to high levels of DNA damage, high levels of 5mC in their genome may be disadvantageous. This present paper sets out to examine the sensitivity of an organism to genotoxic stresses such as alkylation and oxidation agents as the consequence of DNMT activity. Since such a study in eukaryotes would be complicated by DNA methylation controlling gene regulation, these authors cleverly utilize Escherichia coli (E.coli) and incorporate into it the DNMTs from other bacteria that methylate the cytosines of DNA in a CpG context like that observed in eukaryotes; the active sites of these enzymes are very similar to eukaryotic DNMTs and basically utilize the same catalytic mechanism (also this strain of E.coli does not specifically degrade this methylated DNA) .
The experiments in this paper more than adequately show that E. coli expression of these DNMTs (comparing to the same strain without the DNMTS) do indeed show increased sensitivity to alkylating agents and this sensitivity was even greater than expected when a DNA repair mechanism was inactivated. Moreover, they show that this E. coli expressing this DNMT is more sensitive to oxidizing agents such as H2O2 and has exacerbated sensitivity when a DNA repair glycosylase is inactivated. Both propensities suggest that DNMT activity itself may generate additional genotoxic stress. Intrigued that DNMT expression itself might induce sensitivity to oxidative stress, the experimenters used a fluorescent sensor to show that H2O2 induced reactive oxygen species (ROS) are markedly enhanced with DNMT expression. Importantly, they show that DNMT expression alone gave rise to increased ROS amounts and both H2O2 addition and DNMT expression has greater effect that the linear combination of the two separately. They also carefully checked that the increased sensitivity to H2O2 was not potentially caused by some effect on gene expression of detoxification genes by DNMT expression and activity. Finally, by using mass spectroscopy, they show that DNMT expression led to production of the 5mC oxidation derivatives 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) in DNA. 5fC is a substrate for base excision repair while 5hmC is not; more 5fC was observed. Introduction of non-bacterial enzymes that produce 5hmC and 5fC into the DNMT expressing bacteria again showed a greater sensitivity than expected. Remarkedly, in their assay with addition of H2O2, bacteria showed no growth with this dual expression of DNMT and these enzymes.
Overall, the authors conduct well thought-out and simple experiments to show that a disadvantageous consequence of DNMT expression leading to 5mC in DNA is increased sensitivity to oxidative stress as well as alkylating agents.
Again, the paper is well-written and organized. The hypotheses are well-examined by simple experiments. The results are interesting and can impact many scientific areas such as our understanding of evolutionary pressures on an organism by environment to impacting our understanding about how environment of a malignant cell in the human body may lead to cancer.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this study, Wada et al. investigate the low potential ferredoxin from Bacillus thermoproteolyticus (BtFd) using a combination of neutron crystallography, x-ray crystallography, DFT and spectroscopy to determine the influence of hydrogen bonding networks on the redox potential of ferredoxin's 4Fe-4S cluster. The use of neutron diffraction allowed the authors to probe the precise location of hydrogens around the 4Fe-4S cluster, which was not possible from prior studies, even with the previously reported high-resolution (0.92 Å) structure of BtFd. This allowed the authors to revise prior models of the proposed H bonding network theorized from earlier x-ray crystallography studies ( for example, showing that there is not in fact a H bond formed between the Thr63-O𝛾1 and the [4Fe-4S]-S4 atoms). With this newly described H-bonding network established, the electronic structure of the 4Fe-4S cluster was then investigated using DFT methodology, revealing a startling role of the deprotonated surface residue Asp64, which bears substantial electronic density in the LUMO which is otherwise localized to the 4Fe-4S cluster. While aspartate is usually deprotonated at physiological pH, the authors provide compelling evidence that this aspartate has a much higher pKa than is usual, and is able to act as a protonation-dependent switch which controls the stability of the reduced state of the 4Fe-4S cluster, and thus the redox potential.
The findings of this study and the conclusions drawn from them are well supported by the data and computational work. Their findings have implications for similar control mechanisms in other, non-ferredoxin 4Fe-4S bearing electron transport proteins which have yet to be explored, providing great value to the metalloprotein community. One change that the authors may consider to enhance the clarity of the manuscript regards the nomenclature used for the varying models discussed (CM, CMNA, CMH and so forth). It would be beneficial to the reader if the nomenclature included the redox state (ox. vs red.) of the model in the model's name.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
This manuscript by Yang et al. describes a variety of bilateral and segmented microfossils from the basal Cambrian (Fortunian Stage) Kuanchuanpu Formation, South China. During the Fortunian Stage, body fossils are scarce, and key evidence for the presence of different clades relies on exceptionally preserved microfossils of embryos and larvae. The authors interpret the described microfossils as segmented bilaterians, with anteroposterior and dorsoventral differentiation and paired appendages. The implication of this interpretation is that the microfossils represent important evidence for early bilaterian evolution.
The strength of the manuscript is the convincing presentation of the material's bilateral and segmented nature and its taphonomy. The combined use of scanning electron microscopy and X-ray computed tomography to illustrate the material convincingly supports the argument of a bilaterian affinity. Likewise, the visualization of the cemented vesicles composed of phosphate nanocrystals that make up the fossils' internal molds supports the proposed taphonomic pathway.
The weakness of the manuscript is the further biological interpretations. While the manuscript presents a convincing argument that the molds derive from overall segmented (metameric) body plans, it does not fully explore which cavities/organs are actually molded. Instead, it assumes without discussion that the molds reflect the cuticle with a loss of fine external structures (e.g., setae). While external sclerites and cuticles are convincingly displayed in one case (Figure Supplement 5), more options exist for the rest of the material. Here, molds could perhaps represent other cavities, such as guts (including diverticula) or perivisceral cavities, both consistent with a lack of fine external details as well as an endogenous taphonomic pathway. A proper exploration of what these molds actually represent is, therefore, crucial to interpreting the ecological and evolutionary implications of the fossils.
Despite its weakness, the manuscript demonstrates convincing evidence of bilaterian microfossils in the Fortunian Stage. This evidence, in itself, contributes valuable information on the Cambrian animal radiation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors utilize biochemical approaches to determine and validate NRL protein-protein interactions to further understand the mechanisms by which the NRL transcription factor controls rod photoreceptor gene regulatory networks. Observations that NRL displays numerous protein-protein interactions with RNA-binding proteins, many of which are involved in R-loop biology, led the authors to investigate the role of RNA and R-loops in mediating protein-protein interactions and profile the co-localization of R-loops with NRL genomic occupancy.
Strengths:
Overall, the manuscript is very well written, providing succinct explanations of the observed results and potential implications. Additionally, the authors use multiple orthogonal techniques and tissue samples to reproduce and validate that NRL interacts with DHX9 and DDX5. Experiments also utilize specific assays to understand the influence of RNA and R-loops on protein-protein interactions. The authors also use state-of-the-art techniques to profile R-loop localization within the retina and integrate multiple previously established datasets to correlate R-loop presence with transcription factor binding and chromatin marks in an attempt to understand the significance of R-loops in the retina.
Weaknesses:
In general, the authors provide superficial interpretations of the data that fit a narrative but fail to provide alternative explanations or address caveats of the results. Specifically, many bands are present in interaction studies either in control lanes (GST controls) of Westerns or large amounts of background in PLA experiments. Additionally, the lack of experiments testing the functional significance of Nrl interactions or R-loops within the developing retina fails to provide novel biological insights into the regulation of gene regulatory networks other than, 'This could be a potentially important new mechanism'. Additionally, the authors test the necessity of RNA for NRL/DHX9 interactions but don't show RNA binding of NRL or DHX9 or the sufficiency of RNA to interfere/mediate protein-protein interactions. Recent work has highlighted the prevalence of RNA binding by transcription factors through Arginine Rich Motifs that are located near the DNA binding domains of transcription factors.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Brooks et al. generate a gene expression atlas of the early embryonic cranial neural plate. They generate single-cell transcriptome data from early cranial neural plate cells at 6 consecutive stages between E7.5 to E9. Utilizing computational analysis they infer temporal gene expression dynamics and spatial gene expression patterns along the anterior-posterior and mediolateral axis of the neural plate. Subsequent comparison with known gene expression patterns revealed a good agreement with their inferred patterns, thus validating their approach. They then focus on Sonic Hedgehog (Shh) signalling, a key morphogen signal, whose activities partition the neural plate into distinct gene expression domains along the mediolateral axis. Single-cell transcriptome analysis of embryos in which the Shh pathway was pharmacologically activated throughout the neural plate revealed characteristic changes in gene expression along the mediolateral axis and the induction of distinct Shh-regulated gene expression programs in the developing fore-, mid-, and hindbrain.
Strengths:
This manuscript provides a comprehensive transcriptomic characterisation of the developing cranial neural plate, a part of the embryo that to my knowledge has not been extensively analysed by single-cell transcriptomic approaches. The single-cell sequencing data appears to be of high quality and will be a great resource for the wider scientific community. Moreover, the computational analysis is well executed and the validation of the sequencing data using published gene expression patterns is convincing. Taken together, this is a well-executed study that describes a relevant scientific resource for the wider scientific community.
Weaknesses:
Conceptually, the findings that gene expression patterns differ along the rostrocaudal, mediolateral, and temporal axes of the neural plate and that Shh signalling induces distinct target genes along the anterior-posterior axis of the nervous system are more expected than surprising. However, the strength of this manuscript is again the comprehensive characterization of the spatiotemporal gene expression patterns and how they change upon ectopic activation of the Shh pathway.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In the manuscript "Mapping HIV-1 RNA Structure, Homodimers, Long-Range Interactions and 1 persistent domains by HiCapR" Zhang et al report results from an omics-type approach to mapping RNA crosslinks within the HIV RNA genome under different conditions i.e. in infected cells and in virions. Reportedly, they used a previously published method which, in the present case, was improved for application to RNAs of low abundance.
Their claims include the detection of numerous long-range interactions, some of which differ between cellular and virion RNA. Further claims concern the detection and analysis of homodimers.
Strengths:
(1) The method developed here works with extremely little viral RNA input and allows for the comparison of RNA from infected cells versus virions.
(2) The findings, if validated properly, are certainly interesting to the community.
Weaknesses:
(1) On the communication level, the present version of the manuscript suffers from a number of shortcomings. I may be insufficiently familiar with habits in this community, but for RNA afficionados just a little bit outside of the viral-RNA-X-link community, the original method (reference 22) and the presumed improvement here are far too little explained, namely in something like three lines (98-100). This is not at all conducive to further reading.
(2) Experimentally, the manuscript seems to be based on a single biological replicate, so there is strong concern about reproducibility.
(3) The authors perform an extensive computational analysis from a limited number of datasets, which are in thorough need of experimental validation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public review):
Summary:
In this manuscript, Zhang et al. investigate the conductivity and inhibition mechanisms of the Kv2.1 channel, focusing on the distinct effects of TEA and RY785 on Kv2 potassium channels. The study employs microsecond-scale molecular dynamics simulations to characterize K+ ion permeation and compound binding inhibition in the central pore.
Strengths:
The findings reveal a unique inhibition mechanism for RY785, which binds to the channel walls in the open structure while allowing reduced K+ flow. The study also proposes a long-range allosteric coupling between RY785 binding in the central pore and its effects on voltage-sensing domain dynamics. Overall, this well-organized paper presents a high-quality study with robust simulation and analysis methods, offering novel insights into voltage-gated ion channel inhibition that could prove valuable for future drug design efforts.
Weaknesses:
(1) The study neglects to consider the possibility of multiple binding sites for RY785, particularly given its impact on voltage sensors and gating currents. Specifically, there is potential for allosteric binding sites in the voltage-sensing domain (VSD), as some allosteric modulators with thiazole moieties are known to bind VSD domains in multiple voltage-gated sodium channels (Ahuja et al., 2015; Li et al., 2022; McCormack et al., 2013; Mulcahy et al., 2019).
(2) The study describes RY785 as a selective inhibitor of Kv2 channels and characterizes its binding residues through MD simulations. However, it is not clear whether the identified RY785-binding residues are indeed unique to Kv2 channels.
(3) The study does not clarify the details, rationale, and ramifications of a biasing potential to dihedral angles.
(4) The observation that the Kv2.1 central pore remains partially permeable to K+ ions when RY785 is bound is intriguing, yet it was not revealed whether polar groups of RY785 always interact with K+ ions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The work aims to further understand the role of macrophages in lung precancer/lung cancer evolution
Strengths:
(1) The use of single-cell RNA seq to provide comprehensive characterisation.
(2) Characterisation of cross-talk between macrophages and the lung precancerous cells.
(3) Functional validation of the effects of S100a4+ cells on lung precancerous cells using in vitro assays.
(4) Validation in human tissue samples of lung precancer / invasive lesions.
Weaknesses:
(1) The authors need to provide clarification of several points in the text.
(2) The authors need to carefully assess their assumptions regarding the role of macrophages in angiogenesis in precancerous lesions.
(3) The authors should discuss more broadly the current state of anti-macrophage therapies in the clinic.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public review):
Summary:
This study by Jiang et al. aims to establish the streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM) mouse model in vivo and the STZ-induced pancreatic β cell MIN6 cell model in vitro to explore the protective effects of Eugenol (EUG) on T1DM. The authors tried to elucidate the potential mechanism by which EUG inhibits the NRF2-mediated anti-oxidative stress pathway. Overall, this study is well executed with solid data, offering an intriguing report from animal studies for a potential new treatment strategy for T1DM.
Strengths:
In vivo efficacy study is comprehensive and solid. Given STZ-induced T1DM is a devastating and harsh model, the in vivo efficacy from this compound is really impressive.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This paper develops an under-flow migration tracker to evaluate all the steps of the extravasation cascade of immune cells across the BBB. The algorithm is useful and has important applications.
Strengths:
The algorithm is almost as accurate as manual tracking and importantly saves time for researchers. The authors have discussed how their tool compares to other tracking methods.
Weaknesses:
Applicability can be questioned because the device used is 2D and physiological biology is in 3D. However, the authors have addressed this point in their revised manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
In the manuscript "Full-length direct RNA sequencing uncovers stress-granule dependent RNA decay upon cellular stress", Dar, Malla, and colleagues use direct RNA sequencing on nanopores to characterize the transcriptome after arsenite and oxidative stress. They observe a population of transcripts that are shortened during stress. The authors hypothesize that this shortening is mediated by the 5'-3' exonuclease XRN1, as XRN1 knockdown results in longer transcripts. Interestingly, the authors do not observe a polyA-tail shortening, which is typically thought to precede decapping and XRN1-mediated transcript decay. Finally, the authors use G3BP1 knockout cells to demonstrate that stress granule formation is required for the observed transcript shortening. The manuscript contains intriguing findings of interest to the mRNA decay community.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Lian et al. provide novel and exciting findings related to exercise-induced intestinal injury that have many implications for those engaging in any kind of training protocol. The authors continue to provide data demonstrating that different forms of exercise training impart a unique signature to the gut microbiota. The paper is well-written, easy to follow, and contains ample information in all sections. The figures are displayed in a clear and comprehensible format, with elegant images. I do have a few concerns regarding some aspects of the paper listed below, but otherwise, I feel that the authors clearly state their objectives, implement valid methods, and summarize their findings with the appropriate conclusions given their experimental constraints.
(1) The authors performed extensive experiments demonstrating the immediate effects of a bout of exercise on intestinal integrity throughout a 6-week training program. Additionally, the authors go as far as to show that successive exercise sessions appear to augment the observed damage. This is very important and noteworthy data. But I wonder, had the endpoint collections been taken 24 hours+ after the last exercise bout, would the findings be different? My concern is that the 1-hour time point is biased towards seeing more damage. I understand the acute effects of exercise occur and are important to report, but they can be transient, and adaptations ensue. My main concern is that the data shows the onset of the initial damage, but nothing addresses an adaptive or recovery response that could counter the observed exercise-induced intestinal injury. Even metrics such as stool consistency/ pellets per hour/ abnormal defecation measurements could indicate the function of the GI system after exercise and may offer more information related to damage vs recovery.
(2) An additional concern arises with the model of forced treadmill running. It was previously shown that forced treadmill running resulted in more gut damage compared to voluntary wheel running, with or without dextran sodium sulfate-induced colitis (PMID: 23707215). This type of training appears to be very important in initiating damage to the GI. Understanding how much of this is related to the chosen exercise protocol, forced treadmill running, will be very important for future experiments. Exercise intensity has been suggested to be a major factor in exercise-induced intestinal damage. Therefore, the group designated as MOD-EX in this paper may be over the intensity threshold that limits GI damage. The protocols used in this manuscript may be inherently biased towards enhancing exercise-induced GI damage, which is not necessarily negative, especially when a damaging protocol is needed. However, how much this relates to and can be translated to humans is not clear and needs further experimentation.
(3) I think the comparison between groups at the specified time point is important, but I believe additional comparisons should be included that show within-group differences across each time point. For example, in the Mod group, does FITC- dextran change between 4 and 6 weeks? Are there morphological change differences between 2, 4, and 6 weeks within each group? Essentially addressing a progression in damage as a function of the duration of exercise training. The authors clearly show exercise-induced damage to the GI, but we do not know how this damage is handled or if the continuation of exercise continues to reinforce the disruption in the epithelial cells.
(4) The authors describe the purpose of this study as being to identify key regulators of the destruction and reconstruction process of the GI after exercise (introduction lines 128-129). While the authors did sufficient work to describe certain contributing factors, I do not believe they have provided compelling data on the key regulators of exercise-induced intestinal injury, at least experimentally they did not perform exhaustive experiments to identify such. Nor did the authors include data showing any kind of reconstruction that occurs in the GI after exercise. I believe the authors need to revise this statement to reflect that they investigated certain or specific regulators of the damage response in the intestines after exercise training.
(5) Was water intake monitored and recorded per group? If so I think it would be important to include in the supplemental data. Fluid intake/proper hydration can also contribute to changes in the microbiome and if the data is available, it would complement the food intake. If for any reason the exercise groups were taking in less fluid it may be a confounding factor that should be considered.
(6) Methods section - Treadmill running exercise protocol, line 143, I think there is a typo with "exercise straining". Did the authors mean to write "exercise training"? If it is indeed a typo, the same appears in the supplemental material under the same section.
(7) The microbiome analysis is sufficient, and the authors speculate on the possible consequences of the observed changes to the microbiota. However, I believe Figures 5E-G are misleading. The positive correlation is present because of the increase in gut leakiness and the observed exercise-induced increase in microbes. However the same correlation could be made with any positive adaptation to exercise and the observed gut leakiness. I believe those correlations, as described now, postulate these microbes (members of the family Lachnospiraceae) are associated with increased gut leakiness. However, this correlation is not compelling as it is, and additional experiments are warranted to justify this. It cannot be ruled out that the microbes are increasing due to exercise itself. Additionally, reports have suggested species within the Lachnospiraceae family do increase in response to exercise in mice and are associated with positive adaptations to exercise (PMID: 28862530, PMID: 37940330, PMID: 36517598). With this, it should be noted that Lachnospiraceae was also found to be negatively associated with endurance performance (PMID: 35002754). Therefore, specific species or stains of Lachnospiraceae may be highly responsive to exercise while others are not. Without deeper sequencing it is impossible to tease this out and therefore, the authors should be careful with any interpretation beyond discussing what is observed. Additionally, these correlations between Lachnospiraceae and gut leakiness should be interpreted cautiously or more experiments should be included which demonstrate these microbes are connected to gut leakiness. Much more research is needed to determine exactly what strains are positively and negatively associated with exercise adaptations and performance.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors utilize a new technique to measure mitochondrial respiration from frozen tissue extracts, which goes around the historical problem of purifying mitochondria prior to analysis, a process that requires a fair amount of time and cannot be easily scaled up.
Strengths:
A comprehensive analysis of mitochondrial respiration across tissues, sexes, and two different ages provides foundational knowledge needed in the field.
Weaknesses:
While many of the findings are mostly descriptive, this paper provides a large amount of data for the community and can be used as a reference for further studies. As the authors suggest, this is a new atlas of mitochondrial function in mouse. The inclusion of a middle aged time point and a slightly older young point (3-6 months) would be beneficial to the study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this study the authors systematically explore mechanism(s) of impaired postnatal lung development with relevance to BPD (bronchopulmonary dysplasia) in two murine models of 'alveolar simplification', namely hyperoxia and epithelial loss of TGFb signaling. The work presented here is of great importance, given the limited treatment options for a clinical entity frequently encountered in newborns with high morbidity and mortality that is still poorly understood, and the unclear role of TGFb signaling, its signaling levels, and its cellular effects during secondary alveolar septum formation, a lung structure generating event heavily impacted by BPD. The authors show that hyperoxia and epithelial TGFb signaling loss have similar detrimental effects on lung structure and mechanical properties (emphysema-like phenotype) and are associated with significantly decreases numbers of PDGFRa-expressing cells, the major cell pool responsible for generation of postnatal myofibroblasts. They then use a single-cell transcriptomic approach combined with pathway enrichment analysis for both models to elucidate common factors that affect alveologenesis. Using cell communication analysis (NicheNet) between epithelial and myofibroblasts they confirm increased projected TGFb-TGFbR interactions and decreased projected interactions for PDGFA-PDGFRA, and other key pathways, such as SHH and WNT. Based on these results they go on to uncover in a sequela of experiments that surprisingly, increased TGFb appears reactive to postnatal lung injury and rather protective/homeostatic in nature, and the authors establish the requirement for alpha V integrins, but not the subtype alphaVbeta6, a known activator of TGFb signaling and implied in adult lung fibrosis. The authors then go beyond the TGFb axis evaluation to show that mere inhibition of proliferation by conditional KO of Ect2 in Pdgfra lineage results in alveolar simplification, pointing out the pivotal role of PDGFRa-expressing myofibroblasts for normal postnatal lung development.
Strengths:
(1) The approach including both pharmacologic and mechanistically-relevant transgenic interventions both of which produced consistent results provides robustness of the results presented here.
(2) Further adding to this robustness is the use of moderate levels of hyperoxia at 75% FiO2, which is less extreme than 100% FiO2 frequently used by others in the field, and therefore favors the null hypothesis.
(3) The prudent use of advancement single cell analysis tools, such as NicheNet to establish cell interactions through the pathways they tested and the validation of their scRNA-seq results by analysis of two external datasets. Delineation of the complexity of signals between different cell types during normal and perturbed lung development, such as attempted successfully in this study, will yield further insights into the underlying mechanism(s).
(4) The combined readout of lung morphometric (MLI) and lung physiologic parameters generates a clinically meaningful readout of lung structure and function.
(5) The systematic evaluation of TGFb signaling better determines the role in normal and postnatally-injured lung.
Weaknesses:
(1) While the study convincingly establishes the effect of lung injury on the proliferation of PDGFRa-expressing cells, differentiation is equally important. Characterization of PDGFRa expressing cells and tracking the changes in the injury models in the scRNA analysis, a key feature of this study, would benefit from expansion in this regard. PDGFRa lineage gives rise to several key fibroblast populations, including myofibroblasts, lipofibroblasts, and matrix-type fibroblasts (Collagen13a1, Collagen14a1). Lipofibroblasts constitute a significant fraction of PDGFRa+ cells, and expand in response to hyperoxic injury, as shown by others. Collagen13a1-expressing fibroblasts expand significantly under both conditions (Fig.3), and appear to contain a significant number of PDGFRa-expressing cells (Suppl Fig.1). Effects of the applied injuries on known differentiation markers for these populations should be documented. Another important aspect would be to evaluate whether the protective/homeostatic effect of TGFb signaling is by supporting differentiation of myofibroblasts. Postnatal Gli1 lineage gains expression of PDGFRa and differentiation markers, such as Acta2 (SMA) and Eln (Tropoelastin). Loss of PDGFRa expression was shown to alter Elastin and TGFb pathway related genes. TGFb signaling is tightly linked to the ECM via LTBPs, Fibrillins and Fibulins. An additional analysis in the aforementioned regards has great potential to more specifically identify the cell type(s) affected by the loss of TGFb signaling and allow analysis of their specific transcriptomic changes in response and underlying mechanism(s) to postnatal injury.
[The authors have added in detailed transcriptomic description of the fibroblast populations.]
(2) Of the three major lung abnormalities encountered in BPD, the authors focus on alveolarization impairment in great detail, to very limited extend on inflammation, and not on vascularization impairment. However, this would be important not only to better capture the established pathohistologic abnormalities of BPD, but also is needed since the authors alter TGFb signaling, and inflammatory and vascular phenotypes with developmental loss of TGFb signaling and its activators have been described. Since the authors make the point about absence of inflammation in their BPD model, it will be important to show the evidence.
[While this an important question, assessment of these components goes beyond the scope of this paper.]
(3) Conceptually it would be important that in the discussion the authors reconcile their findings in the experimental BPD models in light of human BPD and potential implications it might have on new ways to target key pathways and cell types for treatment. This allows the scientific community to formulate the next set of questions in a disease relevant manner.
[The authors have amended the discussion in this regard.]
Comments on latest version:
This reviewer would like to thank the authors for their efforts to address the concerns, in particular the better transcriptomic description of the fibroblast populations. The reviewer is well aware of the issues with PDGFRa antibodies that work on mouse tissue and also the problem with available reporters and lineage tracers in terms of haploinsufficiency.
There are no further concerns from this reviewer's side.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Blackwell et al. investigated the structure, localization and physiological function of Plasmodium falciparum (Pf) heme oxygenase (HO). Pf and other malaria parasites scavenge and digest large amounts of hemoglobin from red cells for sustenance. To counter the potentially cytotoxic effects of heme, it is biomineralized into hemozoin and stored in the food vacuole. Another mechanism to counteract heme toxicity is through its enzymatic degradation via heme oxygenases. However, it was previously found by the authors that PfHO lacks the ability to catalyze heme degradation, raising the intriguing question of what the physiological function of PfHO is. In the current contribution, the authors determine that PfHO localizes to the apicoplast, determine its targeting sequence, establish the essentiality of PfHO for parasite viability, and determine that PfHO is required for proper maintenance of apicoplasts and apicoplast gene expression. In sum, the authors establish an essential physiological function for PfHO, thereby providing new insights into the role of PfHO in plasmodium metabolism.
Strengths:
The studies are rigorously conducted and the results of the experiments unambiguously support a role for PfHO as being an apicoplast targeted protein required for parasite viability and maintenance of apicoplasts.
Weaknesses:
While the studies conducted are rigorous and support the primary conclusions, the lack of experiments probing the molecular function of PfHO somewhat limits the impact of the work. Nevertheless, knowledge that PfHO is required for parasite viability and plays a role in the maintenance of apicoplasts is still an important advance.
Comments on revisions:
The authors thoughtfully addressed all the reviewer comments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public review):
Mohseni and Elhaik challenge the widespread use of PCA as an analytical and interpretive tool in the study of geometric morphometrics. The standard approach in geometric morphometrics analysis involves Generalised Procrustes Analysis (GPA) followed by Principal Component Analysis (PCA). Recent research challenges PCA outcomes' accuracy, robustness, and reproducibility in morphometrics analysis. In this paper, the authors demonstrate that PCA is unreliable for such studies. Additionally, they test and compare several Machine-Learning methods and present MORPHIX, a Python package of their making that incorporates the tools necessary to perform morphometrics analysis using ML methods.
Mohseni and Elhaik conducted a set of thorough investigations to test PCA's accuracy, robustness, and reproducibility following renewed recent criticism and publications where this method was abused. Using a set of 2 and 3D morphometric benchmark data, the authors performed a traditional analysis using GPA and PCA, followed by a reanalysis of the data using alternative classifiers and rigorous testing of the different outcomes.
In the current paper, the authors evaluated eight ML methods and compared their classification accuracy to traditional PCA. Additionally, common occurrences in the attempted morphological classification of specimens, such as non-representative partial sampling, missing specimens, and missing landmarks, were simulated, and the performance of PCA vs ML methods was evaluated.
Comments on revisions:
I have gone over the revised manuscript and the detailed responses to the previous round of review. While there are places where I personally would have used slightly toned-down phrasing, the authors' get to set the tone of their manuscript, and I will not argue with that any further.
In general, the restructuring, addition of new paragraphs, minor revisions and new title make for a much better manuscript, which as stated in the previous review, will be a valuable resource for workers in the field.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this work, Walker and collaborators study the evolution of hepatitis C virus (HCV) in a cohort of 14 subjects with recent HCV infections. They focus in particular on the interplay between HCV and the immune system, including the accumulation of mutations in CD8+ T cell epitopes to evade immunity. Using a computational method to estimate the fitness effects of HCV mutations, they find that viral fitness declines as the virus mutates to escape T-cell responses. In long-term infections, they found that viral fitness can rebound later in infection as HCV accumulates additional mutations.
Strengths:
This work is especially interesting for several reasons. Individuals who developed chronic infections were followed over fairly long times and, in most cases, samples of the viral population were obtained frequently. At the same time, the authors also measured CD8+ T cell and antibody responses to infection. The analysis of HCV evolution focused not only on variation within particular CD8+ T cell epitopes but also on the surrounding proteins. Overall, this work is notable for integrating information about HCV sequence evolution, host immune responses, and computational metrics of fitness and sequence variation. The evidence presented by the authors supports the main conclusions of the paper described above.
Weaknesses:
One notable weakness of the present version of the manuscript is a lack of clarity in the description of the method of fitness estimation. In the previous studies of HIV and HCV cited by the authors, fitness models were derived by fitting the model (equation between lines 435 and 436) to viral sequence data collected from many different individuals. In the section "Estimating survival fitness of viral variants," it is not entirely clear if Walker and collaborators have used the same approach (i.e., fitting the model to viral sequences from many individuals), or whether they have used the sequence data from each individual to produce models that are specific to each subject. If it is the former, then the authors should describe where these sequences were obtained and the statistics of the data.
If the fitness models were inferred based on the data from each subject, then more explanation is needed. In prior work, the use of these models to estimate fitness was justified by arguing that sequence variants common to many individuals are likely to be well-tolerated by the virus, while ones that are rare are likely to have high fitness costs. This justification is less clear for sequence variation within a single individual, where the viral population has had much less time to "explore" the sequence landscape. Nonetheless, there is precedent for this kind of analysis (see, e.g., Asti et al., PLoS Comput Biol 2016). If the authors took this approach, then this point should be discussed clearly and contrasted with the prior HIV and HCV studies.
Another important point for clarification is the definition of fitness. In the abstract, the authors note that multiple studies have shown that viral escape variants can have reduced fitness, "diminishing the survival of the viral strain within the host, and the capacity of the variant to survive future transmission events." It would be helpful to distinguish between this notion of fitness, which has sometimes been referred to as "intrinsic fitness," and a definition of fitness that describes the success of different viral strains within a particular individual, including the potential benefits of immune escape. In many cases, escape variants displace variants without escape mutations, showing that their ability to survive and replicate within a specific host is actually improved relative to variants without escape mutations. However, escape mutations may harm the virus's ability to replicate in other contexts. Given the major role that fitness plays in this paper, it would be helpful for readers to clearly discuss how fitness is defined and to distinguish between fitness within and between hosts (potentially also mentioning relevant concepts such as "transmission fitness," i.e., the relative ability of a particular variant to establish new infections).
One concern about the analysis is in the test of Shannon entropy as a way to quantify the rate of escape. The authors describe computing the entropy at multiple time points preceding the time when escape mutations were observed to fix in a particular epitope. Which entropy values were used to compare with the escape rate? If just the time point directly preceding the fixation of escape mutations, could escape mutations have already been present in the population at that time, increasing the entropy and thus drawing an association with the rate of escape? It would also be helpful for readers to include a definition of entropy in the methods, in addition to a reference to prior work. For example, it is not clear what is being averaged when "average SE" is described.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This work provides a comprehensive understanding of cellular immunity in bivalves. To precisely describe the hemocytes of the oyster C. gigas, the authors morphologically characterized seven distinct cell groups, which they then correlated with single-cell RNA sequencing analysis, also resulting in seven transcriptional profiles. They employed multiple strategies to establish relationships between each morphotype and the scRNAseq profile. The authors correlated the presence of marker genes from each cluster identified in scRNAseq with hemolymph fractions enriched for different hemocyte morphotypes. This approach allowed them to correlate three of the seven cell types, namely hyalinocytes (H), small granule cells (SGC), and vesicular cells (VC). A macrophage-like (ML) cell type was correlated through the expression of macrophage-specific genes and its capacity to produce reactive oxygen species. Three other cell types correspond to blast-like cells, including an immature blast cell type from which distinct hematopoietic lineages originate to give rise to H, SGC, VC, and ML cells. Additionally, ML cells and SGCs demonstrated phagocytic properties, with SGCs also involved in metal homeostasis. On the other hand, H cells, non-granular cells, and blast cells expressed antimicrobial peptides. This study thus provides a complete landscape of oyster hemocytes with functional validation linked to immune activities. This resource will be valuable for studying the impact of bacterial or viral infections in oysters.
Strengths:
The main strength of this study lies in its comprehensive and integrative approach, combining single-cell RNA sequencing, cytological analysis, cell fractionation, and functional assays to provide a robust characterization of hemocyte populations in Crassostrea gigas.
(1) The innovative use of marker genes, quantifying their expression within specific cell fractions, allows for precise annotation of different cellular clusters, bridging the gap between morphological observations and transcriptional profiles.
(2) The study provides detailed insights into the immune functions of different hemocyte types, including the identification of professional phagocytes, ROS-producing cells, and cells expressing antimicrobial peptides.
(3) The identification and analysis of transcription factors specific to different hemocyte types and lineages offer crucial insights into cell fate determination and differentiation processes in oyster immune cells.
(4) The authors significantly advance the understanding of oyster immune cell diversity by identifying and characterizing seven distinct hemocyte transcriptomic clusters and morphotypes.
These strengths collectively make this study a significant contribution to the field of invertebrate immunology, providing a comprehensive framework for understanding oyster hemocyte diversity and function.
Weaknesses:
(1) The authors performed scRNAseq/lineage analysis and cytological analysis on oysters from two different sources. The methodology of the study raises concerns about the consistency of the sample and the variability of the results. The specific post-processing of hemocytes for scRNAseq, such as cell filtering, might also affect cell populations or gene expression profiles. It's unclear if the seven hemocyte types and their proportions were consistent across both samples. This inconsistency may affect the correlation between morphological and transcriptomic data.
(2) The authors claim to use pathogen-free adult oysters (lines 95 and 119), but no supporting data is provided. It's unclear if the oysters were tested for bacterial and viral contaminations, particularly Vibrio and OsHV-1 μVar herpesvirus.
(3) The KEGG and Gene Ontology analyses, while informative, are very descriptive and lack interpretation. The use of heatmaps with dendrograms for grouping cell clusters and GO terms is not discussed in the results, missing an opportunity to explore cell-type relationships. The changing order of cell clusters across panels B, C, and D in Figure 2 makes it challenging to correlate with panel A and to compare across different GO term categories. The dendrograms suggest proximity between certain clusters (e.g., 4 and 1) across different GO term types, implying similarity in cell processes, but this is not discussed. Grouping GO terms as in Figure 2A, rather than by dendrogram, might provide a clearer visualization of main pathways. Lastly, a more integrated discussion linking GO term and KEGG pathway analyses could offer a more comprehensive view of cell type characteristics. The presentation of scRNAseq results lacks depth in interpretation, particularly regarding the potential roles of different cell types based on their transcriptional profiles and marker genes. Additionally, some figures (2B, C, D, and 7C to H) suffer from information overload and small size, further hampering readability and interpretation.
(4) The pseudotime analysis presented in the study provides modest additional information to what is already manifest from the clustering and UMAP visualization. The central and intermediate transcriptomic profile of cluster 4 relative to other clusters is apparent from the UMAP and the expression of shared marker genes across clusters (as shown in Figure 1D). The statement by the authors that 'the two types of professional phagocytes belong to the same granular cell lineage' (lines 594-596) should be formulated with more caution. While the pseudotime trajectory links macrophage-like (ML) and small granule-like (SGC) cells, this doesn't definitively establish a direct lineage relationship. Such trajectories can result from similarities in gene expression induced by factors other than lineage relationships, such as responses to environmental stimuli or cell cycle states. To conclusively establish this lineage relationship, additional experiments like cell lineage tracing would be necessary, if such tools are available for C. gigas.
(6) Given the mention of herpesvirus as a major oyster pathogen, the lack of discussion on genes associated with antiviral immunity is a notable omission. While KEGG pathway analysis associated herpesvirus with cluster 1, the specific genes involved are not elaborated upon.
(7) The discussion misses an opportunity for comparative analysis with related species. Specifically, a comparison of gene markers and cell populations with Crassostrea hongkongensis, could highlight similarities and differences across systems.
Conclusion:
The authors largely achieved their primary objective of providing a comprehensive characterization of oyster immune cells. They successfully integrated multiple approaches to identify and describe distinct hemocyte types. The correlation of these cell types with specific immune functions represents a significant advancement in understanding oyster immunity. However, certain aspects of their objectives have not been fully achieved. The lineage relationships proposed on the basis of pseudotime analysis, while interesting, require further experimental validation. The potential of antiviral defense mechanisms, an important aspect of oyster immunity, has not been discussed in depth.
This study is likely to have a significant impact on the field of invertebrate immunology, particularly in bivalve research. It provides a new standard for comprehensive immune cell characterization in invertebrates. The identification of specific markers for different hemocyte types will facilitate future research on oyster immunity. The proposed model of hemocyte lineages, while requiring further validation, offers a framework for studying hematopoiesis in bivalves.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors aimed to understand the mechanisms underlying chronic kidney disease (CKD) induced by cisplatin treatment. Acute or chronic kidney diseases are major adverse effects of cisplatin chemotherapy for cancer, which limits the treatment's efficacy. Understanding the disease's genesis is fundamental to identifying targets for preventing or treating these conditions.
Strengths:
The authors employed an in vivo model of cisplatin-induced chronic kidney disease (CKD) in mice, which displayed similar adverse effects of the therapy as seen in humans. The model called repeated low-dose cisplatin (RLCD), caused similar tissue and functional damage in the kidneys, led to harmful effects on the intestines by altering the microbiota and epithelial cell barrier, and impaired systemic vascular blood flow.
The authors demonstrated that the detrimental effects on the intestinal barrier led to the release of bacterial compounds into the circulation, which, in association with reactive oxygen species formed by the inflammatory and oxidative action of cisplatin, activated blood, and kidney neutrophils to release neutrophil extracellular traps (NETs). In turn, they suggested circulating NETs migrated into kidney tissue, causing damage. Moreover, they showed NETs are capable of trapping coagulation factors responsible for impaired systemic blood flow.
These conclusions were primarily based on reduced CKD symptoms and vascular damage in genetically modified animals that do not form NETs, as well as the observation that a bacterial compound (lipopolysaccharide) associated with cisplatin induces NET formation in isolated neutrophils. Moreover, treating animals with an anti-inflammatory and antioxidant natural compound simultaneously with cisplatin administration abolished the harmful effects on the kidneys and intestines.
The authors conclude that the intestinal damage and inflammatory properties of cisplatin lead to NET release, which, in turn, is responsible for the kidney and vascular damage evoked by cisplatin treatment.
Hence, the manuscript employs a well-designed experimental model and covers several important manifestations of cisplatin toxicity. It also uses genetically deficient mice to demonstrate the involvement of NETs in the development of chronic kidney disease (CKD)
Weaknesses:
Overall, the work was well executed. However, a few aspects require additional experiments to confirm the conclusions. The involvement of NETs in the genesis of CKD is unquestionable; nonetheless, the roles of locally induced versus circulating NETs, as well as the translation of in vitro NET release to in vivo CKD genesis, need further evaluation. Additionally, the primary mechanism of the natural anti-inflammatory compound used appears to be antioxidative, which does not promote the formation of reactive oxygen species necessary for NET formation. It is not clear in the title.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This manuscript by Boda et al. describes the results of a targeted RNAi screen in the background of Vps16A-depleted Drosophila larval fat body cells. In this background, lysosomal fusion is inhibited, allowing the authors to analyze the motility and localization specifically of autophagosomes, prior to their fusion with lysosomes to become autolysosomes. In this Vps16A-deleted background, mCherry-Atg8a-labeled autophagosomes accumulate in the perinuclear area, through an unknown mechanism.
The authors found that the depletion of multiple subunits of the dynein/dynactin complex caused an alternation of this mCherry-Atg8a localization, moving from the perinuclear region to the cell periphery. Interactions with kinesin overexpression suggest these motor proteins may compete for autophagosome binding and transport. The authors extended these findings by examining potential upstream regulators including Rab proteins and selected effectors, and they also examined effects on lysosomal movement and autolysosome size. Altogether, the results are consistent with a model in which specific Rab/effector complexes direct the movement of lysosomes and autophagosomes toward the MTOC, promoting their fusion and subsequent dispersal throughout the cell.
Strengths:
Although previous studies of the movement of autophagic vesicles have identified roles for microtubule-based transport, this study moves the field forward by distinguishing between effects on pre- and post-fusion autophagosomes, and by its characterization of the roles of specific Dynein, Dynactin, and Rab complexes in regulating movement of distinct vesicle types. Overall, the experiments are well-controlled, appropriately analyzed, and largely support the authors' conclusions.
Weaknesses:
One limitation of the study is the genetic background that serves as the basis for the screening. In addition to preventing autophagosome-lysosome fusion, disruption of Vps16A has been shown to inhibit endosomal maturation and block the trafficking of components to the lysosome from both the endosome and Golgi apparatus. Additional effects previously reported by the authors include increased autophagosome production and reduced mTOR signaling. Thus Vps16A-depleted cells have a number of endosome, lysosome, and autophagosome-related defects, with unknown downstream consequences. Additionally, the cause and significance of the perinuclear localization of autophagosomes in this background is unclear. Thus, interpretations of the observed reversal of this phenotype are difficult, and have the caveat that they may apply only to this condition, rather than to normal autophagosomes. Additional experiments to observe autophagosome movement or positioning in a more normal environment would improve the manuscript.
Specific comments
(1) Several genes have been described that when depleted lead to perinuclear accumulation of Atg8-labeled vesicles. There seems to be a correlation of this phenotype with genes required for autophagosome-lysosome fusion; however, some genes required for lysosomal fusion such as Rab2 and Arl8 apparently did not affect autophagosome positioning as reported here. Thus, it is unclear whether the perinuclear positioning of autophagosomes is truly a general response to disruption of autophagosome-lysosome fusion, or may reflect additional aspects of Vps16A/HOPS function. A few things here would help. One would be an analysis of Atg8a vesicle localization in response to the depletion of a larger set of fusion-related genes. Another would be to repeat some of the key findings of this study (effects of specific dynein, dynactin, rabs, effectors) on Atg8a localization when Syx17 is depleted, rather than Vps16A. This should generate a more autophagosome-specific fusion defect. Third, it would greatly strengthen the findings to monitor pre-fusion autophagosome localization without disrupting fusion. Such vesicles could be identified as Atg8a-positive Lamp-negative structures. The effects of dynein and rab depletion on the tracking of these structures in a post-induction time course would serve as an important validation of the authors' findings.
(2) The authors nicely show that depletion of Shot leads to relocalization of Atg8a to ectopic foci in Vps16A-depleted cells; they should confirm that this is a mislocalized ncMTOC by co-labeling Atg8a with an MTOC component such as MSP300. The effect of Shot depletion on Atg8a localization should also be analyzed in the absence of Vps16A depletion.
(3) The authors report that depletion of Dynein subunits, either alone (Figure 6) or co-depleted with Vps16A (Figure 2), leads to redistribution of mCherry-Atg8a punctae to the "cell periphery". However, only cell clones that contact an edge of the fat body tissue are shown in these figures. Furthermore, in these cells, mCherry-Atg8a punctae appear to localize only to contact-free regions of these cells, and not to internal regions of clones that share a border with adjacent cells. Thus, these vesicles would seem to be redistributed to the periphery of the fat body itself, not to the periphery of individual cells. Microtubules emanating from the perinuclear ncMTOC have been described as having a radial organization, and thus it is unclear that this redistribution of mCherry-Atg8a punctae to the fat body edge would reflect a kinesin-dependent process as suggested by the authors.
(4) To validate whether the mCherry-Atg8a structures in Vps16A-depleted cells were of autophagic origin, the authors depleted Atg8a and observed a loss of mCherry- Atg8a signal from the mosaic cells (Figure S1D, J). A more rigorous experiment would be to deplete other Atg genes (not Atg8a) and examine whether these structures persist.
(5) The authors found that only a subset of dynein, dynactin, rab, and rab effector depletions affected mCherry- Atg8a localization, leading to their suggestion that the most important factors involved in autophagosome motility have been identified here. However, this conclusion has the caveat that depletion efficiency was not examined in this study, and thus any conclusions about negative results should be more conservative.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public review):
This paper compares the synaptic and membrane properties of two main subtypes of interneurons (PV+, SST+) in the auditory cortex of control mice vs mutants with Syngap1 haploinsufficiency. The authors find differences between control and mutants in both interneuron populations, although they claim a predominance in PV+ cells. These results suggest that altered PV-interneuron functions in the auditory cortex may contribute to the network dysfunctions observed in Syngap1 haploinsufficiency-related intellectual disability.
The subject of the work is interesting, and most of the approach is rather direct and straightforward, which are strengths. There are also some methodological weaknesses and interpretative issues that reduce the impact of the paper.
(1) Supplementary Figure 3: recording and data analysis. The data of Supplementary Figure 3 show no differences either in the frequency or amplitude of synaptic events recorded from the same cell in control (sEPSCs) vs TTX (mEPSCs). This suggests that, under the experimental conditions of the paper, sEPSCs are AP-independent quantal events.<br /> However, I am concerned by the high variability of the individual results included in the Figure. Indeed, several datapoints show dramatically different frequencies in control vs TTX, which may be explained by unstable recording conditions. It would be important to present these data as time course plots, so that stability can be evaluated. Also, the claim of lack of effect of TTX should be corroborated by positive control experiments verifying that TTX is working (block of action potentials, for example). Lastly, it is not clear whether the application of TTX was consistent in time and duration in all the experiments and the paper does not clarify what time window was used for quantification.
(2) Figure 1 and Supplementary Figure 3: apparent inconsistency. If, as the authors claim, TTX does not affect sEPSCs (either in the control or mutant genotype, Supplementary Figure 3 and point 1 above), then comparing sEPSC and mEPSC in control vs mutants should yield identical results. In contrast, Figure 1 reports a _selective_ reduction of sEPSCs amplitude (not in mEPSCs) in mutants, which is difficult to understand. The proposed explanation relying on different pools of synaptic vesicles mediating sEPSCs and mEPSCs does not clarify things. If this was the case, wouldn't it also imply a decrease of event frequency following TTX addition? However, this is not observed in Supplementary Figure 3. My understanding is that, according to this explanation, recordings in control solution would reflect the impact of two separate pools of vesicles, whereas, in the presence of TTX, only one pool would be available for release. Therefore, TTX should cause a decrease in the frequency of the recorded events, which is not what is observed in Supplementary Figure 3.
(3) Figure 1: statistical analysis. Although I do appreciate the efforts of the authors to illustrate both cumulative distributions and plunger plots with individual data, I am confused by how the cumulative distributions of Figure 1b (sEPSC amplitude) may support statistically significant differences between genotypes, but this is not the case for the cumulative distributions of Figure 1g (inter mEPSC interval), where the curves appear even more separated. A difference in mEPSC frequency would also be consistent with the data of Supplementary Fig 2b, which otherwise are difficult to reconciliate. I would encourage the authors to use the Kolmogorov-Smirnov rather than a t-test for the comparison of cumulative distributions.
(4) Methods. I still maintain that a threshold at around -20/-15 mV for the first action potential of a train seems too depolarized (see some datapoints of Fig 5c and Fig7c) for a healthy spike. This suggest that some cells were either in precarious conditions or that the capacitance of the electrode was not compensated properly.
(5) The authors claim that "cHet SST+ cells showed no significant changes in active and passive membrane properties (Figure 8d,e); however, their evoked firing properties were affected with fewer AP generated in response to the same depolarizing current injection".<br /> This sentence is intrinsically contradictory. Action potentials triggered by current injections are dependent on the integration of passive and active properties. If the curves of Figure 8f are different between genotypes, then some passive and/or active property MUST have changed. It is an unescapable conclusion. The general _blanket_ statement of the authors that there are no significant changes in active and passive properties is in direct contradiction with the current/#AP plot.
(6) The phase plots of Figs 5c, 7c, and 7h suggest that the frequency of acquisition/filtering of current-clamp signals was not appropriate for fast waveforms such as spikes. The first two papers indicated by the authors in their rebuttal (Golomb et al., 2007; Stevens et al., 2021) did not perform a phase plot analysis (like those included in the manuscript). The last work quoted in the rebuttal (Zhang et al., 2023) did perform phase plot analysis, but data were digitized at a frequency of 20KHz (not 10KHz as incorrectly indicated by the authors) and filtered at 10 kHz (not 2-3 kHz as by the authors in the manuscript). To me, this remains a concern.
(7) The general logical flow of the manuscript could be improved. For example, Fig 4 seems to indicate no morphological differences in the dendritic trees of control vs mutant PV cells, but this conclusion is then rejected by Fig 6. Maybe Fig 4 is not necessary. Regarding Fig 6, did the authors check the integrity of the entire dendritic structure of the cells analyzed (i.e. no dendrites were cut in the slice)? This is critical as the dendritic geometry may affect the firing properties of neurons (Mainen and Sejnowski, Nature, 1996).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
In response to the two referee reports, the authors have made substantial improvements. Regarding my previous concerns, the new data provided in Fig.6 for demonstrating that the droplet size distribution is stable over time is particularly valuable.
As to several of my other previous concerns regarding possible change in droplet size distribution over time, etc., the authors responded by stating that their system was below the critical concentration and therefore the possible scenarios pointed out in my previous report were not expected. While there may be a certain degree of validity to their argument, it would be much more helpful to the readers if the authors would bring up my previous concerns briefly (as readers of the journal will likely have similar concerns) and then address them succinctly within the manuscript.
Apparently, as a key element in the authors' response to the referees, the term "transition concentration" in the originally submitted manuscript is now changed to "critical concentration" (including in the title and abstract). But the two terms do not have identical meaning. A transition concentration is usually recognized as the saturation concentration at which phase separation or some other transition process commences at a given temperature. The transition concentration can be lower than the critical concentration, whereas the critical concentration is associated with the critical temperature, above (or below, depending on the temperature dependence of phase separation) which phase separation is not possible. It will be best if the authors can clarify their usage of transition concentration vs. critical concentration in the version of record of their manuscript.
-
-
osf.io osf.io
-
Reviewer #2 (Public review):
Summary:
The study focuses on how relatedness with existing memories affects the formation and retention of new memories. Of core interest were the conditions that determine when prior memories facilitate new learning or interfere with it. Across a set of experiments that varied the degree of relatedness across memories as well as retention interval, the study compellingly shows that relatedness typically leads to proactive facilitation of new learning, with interference only observed under specific conditions and immediate test and being thus an exception rather than a rule.
Strengths:
The study uses a well-established word-pair learning paradigm to study interference and facilitation of overlapping memories. It however goes more in depth than a typical interference study in the systematic variation of several factors: (1) which elements of an association are overlapping and which are altered (change target, change cue, change both, change neither); (2) how much the changed element differs from the original (word relatedness, with two ranges of relatedness considered); (3) retention period (immediate test, 2-day delay). Furthermore, each experiment has a large N sample size, so both significant effects as well as null effects are robust and informative.
The results show the benefits of relatedness, but also replicate interference effects in the "change target" condition when the new target is not related to the old target and when test is immediate. This provides reconciliation of some existing seemingly contradictory results on the effect of overlap on memory. Here, the whole range of conditions is mapped to convincingly show how the direction of the effect can flip across the surface of relatedness values.
Additional strength comes from supporting analyses, such as analyses of learning data, demonstrating that relatedness leads to both better final memory and also faster initial learning.
More broadly, the study informs our understanding of memory integration, demonstrating how interdependence of memory for related information increases with relatedness. Together with a prior study or retroactive interference and facilitation, the results provide new insights into the role of reminding in memory formation.
In summary, this is a highly rigorous body of work that sets a great model for future studies and improves our understanding of memory organization.
Weaknesses:
The evidence for the proactive facilitation driven by relatedness is very convincing. However, in the finer scale results, the continuous relationship between the degree of relatedness and the degree of proactive facilitation/interference is less clear. The relationship was only found in the wider stimulus set, where some pairs were unrelated and other pairs related, and only when GloVe metric for measuring relatedness was used. The absence of a relationship between relatedness and memory in the narrow stimulus set (where all pairs were related to some degree) suggests this could be potentially an all-or-none effect (facilitation for related) rather than a matter of degree. Furthermore, a different metric of relatedness, associative strength AS, did not show the same relationship. The discrepancy between the metrics is not fully resolved. This is less of a problem with interdependence analyses where the results are more converging across narrow and wider range as well as the two metrics.
A smaller weakness, acknowledged by the authors, is generalizability beyond the word set used here. Using a carefully crafted stimulus set and repeating the same word pairings across participants and conditions was important for memorability calculations and some of the other analyses. However, highlighting the inherently noisy item-by-item results, especially in the Osgood-style surface figures, makes it challenging to imagine how the results would generalize to new stimuli, even within the same relatedness ranges as the current stimulus sets.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
This manuscript investigates the role of Perk (Protein kinase RNA-like endoplasmic reticulum kinase) and Atf4 (Activating Transcription Factor-4) in neurodegenerative and regenerative responses following optic nerve injury. The authors employed conditional knockout mice to examine the impact of the Perk/Atf4 pathway on transcriptional responses, with a particular focus on canonical Atf4 target genes and the involvement of C/ebp homologous protein (Chop).
The study demonstrates that Perk primarily operates through Atf4 to stimulate both pro-apoptotic and pro-regenerative responses after optic nerve injury. This Perk/Atf4-dependent response encompasses canonical Atf4 target genes and limited contributions from Chop, exhibiting overlap with c-Jun-dependent transcription. Consequently, the Perk/Atf4 pathway appears crucial for coordinating neurodegenerative and regenerative responses to central nervous system (CNS) axon injury. Additionally, the authors observed that neuronal knockout of Atf4 mimics the neuroprotection resulting from Perk deficiency. Moreover, Perk or Atf4 knockout hinders optic axon regeneration facilitated by the deletion of the tumor suppressor Pten.
These findings contrast with the transcriptional and functional outcomes reported for CRISPR targeting of Atf4 or Chop, revealing a vital role for the Perk/Atf4 pathway in orchestrating neurodegenerative and regenerative responses to CNS axon injury.
However, the main concern is the overall data quality, which appears to be suboptimal. The transfection efficiency of AAV2-hSyn1-mTagBFP2-ires-Cre used in this study does not seem highly effective, as evidenced by the data presented in Supplementary Figure 1. The manuscript also contains several inconsistencies and a mix of methods in data collection, analysis, and interpretation, such as the labeling and quantification of RGCs and the combination of bulk and single-cell sequencing results.
Despite these limitations, the study offers valuable insights into the role of the Perk/Atf4 pathway in determining neuronal fate after axon injury, emphasizing the significance of understanding the molecular mechanisms that govern neuronal survival and regeneration. This knowledge could potentially inform the development of targeted therapies to promote neuroprotection and CNS repair following injury.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Canonically cerebellar neurons are derived from 2 primary germinal zones within the anterior hindbrain (dorsal rhombomere 1). This manuscript identifies an important, previously underappreciated origin for a subset of early cerebellar nuclei neurons - likely the mesencephalon. This is an exciting finding.
Strengths:
The authors have identified a novel early population of cerebellar neurons with likely novel origin in the midbrain. They have used multiple assays to support their conclusions, including immunohistochemistry and in situ analyses of a number of markers of this population which appear to stream from the midbrain into the dorsal anterior cerebellar anlage.
The inclusion of Otx2-GFP short term lineage analyses and analysis of Atoh1 -/- animals also provide considerable support for the midbrain origin of these neurons as streams of cells seem to emanate from the midbrain. However, without live imaging there remains the possibility that these streams of cells are not actually migrating and rather, gene expression is changing in static cells. Hence the authors have conducted midbrain diI labelling experiments of short term and long term cultured embryos showing di-labelled cells in the developing cerebellum. These studies confirm migration of cells from the midbrain into the early cerebellum.
The authors have appropriately responded to review issues, replacing panels in figures and updating legends and text. They have also appropriately noted the limitations of their work.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
The manuscript by Chen et al. describes how low levels of CPT1A in colorectal cancer (CRC) confer radioresistance by expediting radiation-induced ROS clearance. The authors propose that this mechanism of ROS homeostasis is regulated through FOXM1. CPT1A is known for its role in fatty acid metabolism via beta-oxidation of long-chain fatty acids, making it important in many metabolic disorders and cancers.
Previous studies have suggested that upregulation of CPT1A is essential for the tumor-promoting effect in colorectal cancers (CRC) (PMID: 32913185). For example, CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis (PMID: 29995871), and repression of CPT1A activity renders cancer cells more susceptible to killing by cytotoxic T lymphocytes (PMID: 37722058). Additionally, CPT1A-mediated fatty acid oxidation (FAO) sensitizes nasopharyngeal carcinomas to radiation therapy (PMID: 29721083). While this suggests a tumor-promoting effect for CPT1A, the work by Chen et al. suggests instead a tumor-suppressive function for CPT1A in CRC, specifically that loss or low expression of CPT1A confers radioresistance in CRC. This makes the findings important given that they oppose the previously proposed tumorigenic function of CPT1A.
The study has several strengths. The authors employ both in vitro and in vivo models to demonstrate that low CPT1A levels lead to radioresistance in CRC cells. They use isogenic HCT15 CRC cell lines that are radioresistant and show that overexpression of CPT1A sensitizes these cells to radiotherapy. Interestingly, the radioresistant cells exhibit lower CPT1A levels, suggesting that downregulation of CPT1A may be involved in the acquisition of radioresistance. Throughout the manuscript, the authors acknowledge the limitations of their work and avoid overextending their conclusions.
However, there are some major limitations to the study:
(1) Unexplored Contradictions with Previous Studies<br /> While the authors propose a tumor-suppressive function for CPT1A in CRC, they do not sufficiently address the contradiction with prior studies that indicate a tumor-promoting role for CPT1A. The discussion briefly mentions that this discrepancy may stem from heterogeneity or differences in tumor stages, but a more thorough exploration is needed. Delving deeper into the contexts and conditions under which CPT1A exhibits differing roles would be critical for reconciling these findings and guiding future research.
(2) Limited Patient Data Analysis<br /> The authors demonstrate that CPT1A levels are significantly lower in COAD (colon adenocarcinoma) and READ (rectal adenocarcinoma) compared to normal tissues. However, data from TCGA indicate that CPT1A expression levels are lower in 26 out of 31 tumor types compared to COAD or READ (as noted in the authors' response to the previous review). It is possible that reduced CPT1A expression might be a common feature across various cancers, not just CRC. A more comprehensive analysis comparing matched normal and tumor tissues across different cancer types would clarify whether the observed phenomenon is unique to CRC or part of a broader pattern. This is particularly important since several studies have reported CPT1A overexpression in tumors.
(3) Limitations in Experimental Scope<br /> The experimental design primarily involves CPT1A knockout in HCT116 cells and CPT1A overexpression in SW480 cells, which may limit the generalizability of the findings. Utilizing additional cell lines would account for genetic heterogeneity and enhance the robustness of the conclusions. Moreover, while the authors suggest an opposing effect of CPT1A in CRC compared to other studies, they have not investigated this through pharmacological means. Previous studies have shown that pharmacological inhibition of CPT1A can limit cancer progression (e.g., PMID: 33528867, PMID: 32198139) and sensitize cells to radiation therapy (PMID: 30175155). Testing whether pharmacological inhibitors like etomoxir or ST1326 replicate the effects observed with genetic knockout would provide valuable insights and have significant implications for therapeutic strategies in CRC patients.
Conclusion
This study offers valuable insights into the role of CPT1A in CRC radioresistance, proposing a tumor-suppressive function that challenges previous findings of its tumor-promoting role. While the findings are interesting and could have significant implications for cancer therapy, the limitations in experimental scope and the lack of a thorough discussion reconciling contradictory evidence warrant caution. Expanding the research to include a wider range of CRC cell lines, conducting pharmacological inhibition studies, and performing more detailed analyses would strengthen the conclusions and enhance our understanding of CPT1A's complex role in cancer progression and treatment response.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors study the excitability of layer 2/3 pyramidal neurons in response to layer four stimulation at temperatures ranging from 30 to 39 Celsius in P7-8, P12-P14, and P22-P24 animals. They also measure brain temperature and spiking in vivo in response to externally applied heat. Some pyramidal neurons continue to fire action potentials in response to stimulation at 39 C and are called stay neurons. Stay neurons have unique properties aided by TRPV3 channel expression.
Strengths:
The authors use various techniques and assemble large amounts of data.
Weaknesses:
(1) No hyperthermia-induced seizures were recorded in the study.
(2) Febrile seizures in humans are age-specific, extending from 6 months to 6 years. While translating to rodents is challenging, according to published literature (see Baram), rodents aged P11-16 experience seizures upon exposure to hyperthermia. The rationale for publishing data on P7-8 and P22-24 animals, which are outside this age window, must be clearly explained to address a potential weakness in the study.
(3) Authors evoked responses from layer 4 and recorded postsynaptic potentials, which then caused action potentials in layer 2/3 neurons in the current clamp. The post-synaptic potentials are exquisitely temperature-sensitive, as the authors demonstrate in Figures 3 B and 7D. Note markedly altered decay of synaptic potentials with rising temperature in these traces. The altered decays will likely change the activation and inactivation of voltage-gated ion channels, adjusting the action potential threshold.
(4) The data weakly supports the claim that the E-I balance is unchanged at higher temperatures. Synaptic transmission is exquisitely temperature-sensitive due to the many proteins and enzymes involved. A comprehensive analysis of spontaneous synaptic current amplitude, decay, and frequency is crucial to fully understand the effects of temperature on synaptic transmission.
(5) It is unclear how the temperature sensitivity of medium spiny neurons is relevant to febrile seizures. Furthermore, the most relevant neurons are hippocampal neurons since the best evidence from human and rodent studies is that febrile seizures involve the hippocampus.
(6) TRP3V3 data would be convincing if the knockout animals did not have febrile seizures.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
By using simulations of common signal artefacts introduced by acquisition hardware and the sample itself, the authors are able to demonstrate methods to estimate their influence on the estimated lifetime, and lifetime proportions, when using signal fitting for fluorescence lifetime imaging.
Strengths:
They consider a range of effects such as after-pulsing and background signal, and present a range of situations that are relevant to many experimental situations.
Weaknesses:
A weakness is that they do not present enough detail on the fitting method that they used to estimate lifetimes and proportions. The method used will influence the results significantly. They seem to only use the "empirical lifetime" which is not a state of the art algorithm. The method used to deconvolve two multiplexed exponential signals is not given.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this work, the investigators isolated one Lacticaseibacillus rhamnosus strain (P118), and determined this strain worked well against Salmonella Typhimurium infection. Then, further studies were performed to identify the mechanism of bacterial resistance, and a list of confirmatory assays was carried out to test the hypothesis.
Strengths:
The authors provided details regarding all assays performed in this work, and this reviewer trusted that the conclusion in this manuscript is solid. I appreciate the efforts of the authors to perform different types of in vivo and in vitro studies to confirm the hypothesis.
Weaknesses:
I have two main questions about this work.
(1) The authors provided the below information about the sources from which Lacticaseibacillus rhamnosus was isolated. More details are needed. What are the criteria to choose these samples? Where did these samples originate from? How many strains of bacteria were obtained from which types of samples?
Lines 486-488: Lactic acid bacteria (LAB) and Enterococcus strains were isolated from the fermented yoghurts collected from families in multiple cities of China and the intestinal contents from healthy piglets without pathogen infection and diarrhoea by our lab.
Lines 129-133: A total of 290 bacterial strains were isolated and identified from 32 samples of the fermented yoghurt and piglet rectal contents collected across diverse regions within China using MRS and BHI medium, which consist s of 63 Streptococcus strains, 158 Lactobacillus/ Lacticaseibacillus Limosilactobacillus strains, and 69 Enterococcus strains.
(2) As a probiotic, Lacticaseibacillus rhamnosus has been widely studied. In fact, there are many commercially available products, and Lacticaseibacillus rhamnosus is the main bacteria in these products. There are also ATCC type strains such as 53103.
I am sure the authors are also interested to know whether P118 is better as a probiotic candidate than other commercially available strains. Also, would the mechanism described for P118 apply to other Lacticaseibacillus rhamnosus strains?
It would be ideal if the authors could include one or two Lacticaseibacillus rhamnosus which are currently commercially used, or from the ATCC. Then, the authors can compare the efficacy and antibacterial mechanisms of their P118 with other strains. This would open the windows for future work.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
This study addresses the question of how UBCs transform synaptic input patterns into spiking output patterns and how different glutamate receptors contribute to their transformations. The first figure utilizes recorded patterns of mossy fiber firing during eye movements in the flocculus of rhesus monkeys obtained from another laboratory. In the first figure, these patterns are used to stimulate mossy fibers in the mouse cerebellum during extracellular recordings of UBCs in acute mouse brain slices. The remaining experiments stimulate mossy fiber inputs at different rates or burst durations, which is described as 'mossy-fiber like', although they are quite simpler than those recorded in vivo. As expected from previous work, AMPA mediates the fast responses, and mGluR1 and mGluR2/3 mediate the majority of longer-duration and delayed responses. The manuscript is well organized and the discussion contextualizes the results effectively.
The authors use extracellular recordings because the washout of intracellular molecules necessary for metabotropic signaling may occur during whole-cell recordings. These cell-attached recordings do not allow one to confirm that electrical stimulation produces a postsynaptic current on every stimulus. Moreover, it is not clear that the synaptic input is monosynaptic, as UBCs synapse on one another. This leaves open the possibility that delays in firing could be due to disynaptic stimulation. Additionally, the result that AMPA-mediated responses were surprisingly small in many UBCs, despite apparent mRNA expression, suggests the possibility that spillover from other nearby synapses activated the higher affinity extrasynaptic mGluRs and that that main mossy fiber input to the UBC was not being stimulated. For these reasons, some whole-cell recordings (or perforated patch) would show that when stimulation is confirmed to be monosynaptic and reliable it can produce the same range of spiking responses seen extracellularly and that AMPA receptor-mediated currents are indeed small or absent in some UBCs.
A discussion of whether the tested glutamate receptors affected the spontaneous firing rates of these cells would be informative as standing currents have been reported in UBCs. It is unclear whether the firing rate was normalized for each stimulation, each drug application, or each cell. It would also be informative to report whether UBCs characterized as responding with Fast, Mid-range, Slow, and OFF responses have different spontaneous firing rates or spontaneous firing patterns (regular vs irregular).
Figure 1 shows examples of how Fast, Mid-range, Slow, and OFF UBCs respond to in vivo MF firing patterns, but lacks a summary of how the input is transformed across a population of UBCs. In panel d, it looks as if the phase of firing becomes more delayed across the examples from Fast to OFF UBCs. Quantifying this input/output relationship more thoroughly would strengthen these results.
Inhibition was pharmacologically blocked in these studies. Golgi cells and other inhibitory interneurons likely contribute to how UBCs transform input signals. Speculation of how GABAergic and glycinergic synaptic inhibition may contribute additional context to help readers understand how a circuit with intact inhibition may behave.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this article, the authors examined the organization of misplaced retinal inputs in the visual thalamus of albino mice at electron-microscopic (EM) resolution to determine whether these synaptic inputs are segregated from the rest of the retinogeniculate circuitry.
The study's major strengths include its high resolution, achieved through serial EM and confocal microscopy, which enabled the identification of all synaptic inputs onto neurons in the dorsolateral geniculate nucleus (dLGN).
The experiments are very precise and demanding; thus, only the synaptic inputs of a few neurons were fully reconstructed in one animal. A few figures could be improved in their presentation.
Despite this, the authors clearly demonstrate the synaptic segregation of misrouted retinal axons onto dLGN neurons, separate from the rest of the retinogeniculate circuitry.
This finding is impactful because retinal inputs typically do not segregate within the mouse dLGN, and it was previously thought that this was due to the nucleus's small size, which might prevent proper segregation. The study shows that in cases where axons are misrouted and exhibit a different activity pattern than surrounding retinal inputs, segregation of inputs can indeed occur. This suggests that the normal system has the capacity to segregate inputs, despite the limited volume of the mouse dLGN.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The study by VanBalzen et. al. compares chromatin immunoprecipitation (ChIP-seq) and chromatin endogenous cleavage sequencing (ChEC-seq2) to examine RNA polymerase II (RNAPII) binding patterns in yeast. While ChIP-seq shows RNAPII enrichment mainly over transcribed regions, ChEC-seq2 highlights RNAPII binding at promoters and upstream activating sequences (UASs), suggesting it captures distinct RNAPII populations that the authors speculate are linked more tightly to active transcription. The authors develop a stochastic model for RNAPII kinetics using ChEC-seq2 data, revealing insights into transcription regulation and the role of the nuclear pore complex in stabilizing promoter-associated RNAPII. The study suggests that ChEC-seq2 identifies regulatory events that ChIP-seq may overlook.
Strengths:
(1) This is a carefully crafted study that adds significantly to existing literature in this area. Transgenic MNase fusions with endogenous Rpb1 and Rpb3 subunits were carefully performed, and complemented by fusions with several additional proteins that help the authors to dissect the transcription cycle. Both the S. cerevisiae lines and the sequencing data are likely to be of significant use to the community
(2) The validation of ChEC-seq2 and its comparison with ChIP-seq is highly valuable technical information for the community.
(3) The kinetic modeling appears to be thoughtfully done.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The core findings demonstrate that the neuropeptide-like protein FLP-2, released from the intestine of C. elegans, is essential for activating the intestinal oxidative stress response. This process is mediated by endogenous hydrogen peroxide (H2O2), which is produced in the mitochondrial matrix by superoxide dismutases SOD-1 and SOD-3. H2O2 facilitates FLP-2 secretion through the activation of protein kinase C family member pkc-2 and the SNAP25 family member aex-4. The study further elucidates that FLP-2 signaling potentiates the release of the antioxidant FLP-1 neuropeptide from neurons, highlighting a bidirectional signaling mechanism between the intestine and the nervous system.
Strengths:
This study presents a significant contribution to the understanding of the gut-brain axis and its role in oxidative stress response and significantly advances our understanding of the intricate mechanisms underlying the gut-brain axis's role in oxidative stress response. By elucidating the role of FLP-2 and its regulation by H2O2, the study provides insights into the molecular basis of inter-tissue communication and antioxidant defense in C. elegans. These findings could have broader implications for understanding similar pathways in more complex organisms, potentially offering new targets for therapeutic intervention in diseases related to oxidative stress and aging.
Weaknesses:
(1) The experimental techniques employed in the study were somewhat simple and could benefit from the incorporation of more advanced methodologies.
(2) The weak identification of the key receptors mediating the interaction between FLP-2 and AIY neurons, as well as the receptors in the gut that respond to FLP-1.
(3) The study could be improved by incorporating a sensor for the direct measurement of hydrogen peroxide levels.
Comments on revised version:
The authors answered my main questions. Although many of the experiments I suggested are in the beginning stages, it is clear that the authors noted that they are critical to understanding the mechanism of action of FLP-2, and hopefully they will continue to push forward and develop more approaches to further identify the receptor mechanism.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Choi et al. describes a new approach for enabling input-specific CRISPR-based genome editing in cultured cells. While CRISPR-Cas9 is a broadly applied system across all of biology, one limitation is the difficulty in inducing genome editing based on cellular events. A prior study, from the same group, developed ENGRAM - which relies on activity-dependent transcription of a prime editing guide RNA, which records a specific cellular event as a given edit in a target DNA "tape". However, this approach is limited to detection of induced transcription, and does not enable the detection of broader molecular events including protein-protein interactions or exposure to small molecules. As an alternative, this study envisioned engineering the reconstitution of a split prime editing guide RNA (pegRNA) in a protein-protein interaction (PPI)-dependent manner. This would enable location- and content-specific genome editing in a controlled setting.
Strengths:
The strengths of this paper include an interesting concept for engineering guide RNAs to enable activity-dependent genome editing in living cells in the future, based on discreet protein-protein interactions (either constitutively, spatially, or chemically induced). Important groundwork is laid down to engineer and improve these guide RNAs in the future (especially the work describing altering the linkers in Supplementary Figure 3 - which provides a path forward).
Weaknesses:
In its current state, the editing efficiency appears too low to be applied in physiological settings. Much of the latter work in the paper relies on a LambdaN-MCP direction fusion protein, rather than two interacting protein pairs. Further characterizations in the future, especially varying the transfection amounts/durations/etc of the various components of the system, would be beneficial to improve the system. It will also be important to demonstrate editing at additional sites; to characterize how long the PPI must be active to enable efficient prime editing; and how reversible the reconstitution of the split pegRNA is.
In the revised version, the authors clearly describe the present limitations of the system in the discussion section, and also highlight specific actions and potential approaches for improving the efficiency of the system for application in biological systems. They also add further insight into why it is advantageous to design engineered guideRNAs, as opposed to engineered Cas9 enzymes, to improve the modularity of the system in the future.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This paper addresses the bottom-up and top-down causes of hearing difficulties in middle-aged adults with clinically-normal audiograms using a cross-species approach (humans vs. gerbils, each with two age groups) mixing behavioral tests and electrophysiology. The study is not only a follow-up of Parthasarathy et al (eLife 2020), since there are several important differences.
Parthasarathy et al. (2020) only considered a group of young normal-hearing individuals with normal audiograms yet with high complaints of hearing in noisy situations. Here, this issue is considered specifically regarding aging, using a between-subject design comparing young NH and older NH individuals recruited from the general population, without additional criterion (i.e. no specifically high problems of hearing in noise). In addition, this is a cross-species approach, with the same physiological EFR measurements with the same stimuli deployed on gerbils.
This article is of very high quality. It is extremely clear, and the results show clearly a decrease of neural phase-locking to high modulation frequencies in both middle-aged humans and gerbils, compared to younger groups/cohorts. In addition, pupillometry measurements conducted during the QuickSIN task suggest increased listening efforts in middle-aged participants, and a statistical model including both EFRs and pupillometry features suggests that both factors contribute to reduced speech-in-noise intelligibility evidenced in middle-aged individuals, beyond their slight differences in audiometric thresholds (although they were clinically normal in both groups).
These provide strong support to the view that normal aging in humans leads to auditory nerve synaptic loss (cochlear neural degeneration - CNR- or, put differently, cochlear synaptopathy) as well as increased listening effort, before any clearly visible audiometric deficits as defined in current clinical standards. This result is very important for the community since we are still missing direct evidence that cochlear synaptopathy might likely underlie a significant part of hearing difficulties in complex environments for listeners with normal thresholds, such as middle-aged and senior listeners. This paper shows that these difficulties can be reasonably well accounted for by this sensory disorder (CND), but also that listening effort, i.e. a top-down factor, further contributes to this problem. The methods are sound and well described and I would like to emphasize that they are presented concisely yet in a very precise manner so that they can be understood very easily - even for a reader who is not familiar with the employed techniques. I believe this study will be of interest to a broad readership.
I have some comments and questions which I think would make the paper even stronger once addressed.
Main comments:
(1) Presentation of EFR analyses / Interpretation of EFR differences found in both gerbils and humans:
a) Could the authors comment further on why they think they found a significant difference only at the highest mod. frequency of 1024 Hz in their study? Indeed, previous studies employing SAM or RAM tones very similar to the ones employed here were able to show age effects already at lower modulation freqs. of ~100H; e.g. there are clear age effects reported in human studies of Vasilikov et al. (2021) or Mepani et al. (2021), and also in animals (see Garrett et al. bioXiv: https://www.biorxiv.org/content/biorxiv/early/2024/04/30/2020.06.09.142950.full.pdf).
Furthermore, some previous EEG experiments in humans that SAM tones with modulation freqs. of ~100Hz showed that EFRs do not exhibit a single peak, i.e. there are peaks not only at fm but also for the first harmonics (e.g. 2*fm or 3*fm) see e.g.Garrett et al. bioXiv https://www.biorxiv.org/content/biorxiv/early/2024/04/30/2020.06.09.142950.full.pdf.
Did the authors try to extract EFR strength by looking at the summed amplitude of multiple peaks (Vasilikov Hear Res. 2021), in particular for the lower modulation frequencies? (indeed, there will be no harmonics for the higher mod. freqs).
b) How do the present EFR results relate to FFR results, where effects of age are already at low carrier freqs? (e.g. Märcher-Rørsted et al., Hear. Res., 2022 for pure tones with freq < 500 Hz). Do the authors think it could be explained by the fact that this is not the same cochlear region, and that synapses die earlier in higher compared to lower CFs? This should be discussed. Beyond the main group effect of age, there were no negative correlations of EFRs with age in the data?
(2) Size of the effects / comparing age effects between two species:
Although the size of the age effect on EFRs cannot be directly compared between humans and gerbils - the comparison remains qualitative - could the authors at least provide references regarding the rate of synaptic loss with aging in both humans and gerbils, so that we understand that the yNH/MA difference can be compared between the two age groups used for gerbils; it would have been critical in case of a non-significant age effect in one species.
Equalization/control of stimuli differences across the two species: For measuring EFRs, SAM stimuli were presented at 85 dB SPL for humans vs. 30 dB above the detection threshold (inferred from ABRs) for gerbils - I do not think the results strongly depend on this choice, but it would be good to comment on why you did not choose also to present stimuli 30 dB above thresholds in humans.
Simulations of EFRs using functional models could have been used to understand (at least in humans) how the differences in EFRs obtained between the two groups are *quantitatively* compatible with the differences in % of remaining synaptic connections known from histopathological studies for their age range (see the approach in Märcher-Rørsted et al., Hear. Res., 2022)
(3) Synergetic effects of CND and listening effort:
Could you test whether there is an interaction between CNR and listening effort? (e.g. one could hypothesize that MA subjects with the largest CND have also higher listening effort).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Although recent cochlear micromechanical measurements in living animals have shown that outer hair cells drive broadband vibration of the reticular lamina, the role of this vibration in cochlear fluid circulation remains unknown. The authors hypothesized that motile outer hair cells may facilitate cochlear fluid circulation. To test this hypothesis, they investigated the effects of acoustic stimuli and salicylate, an outer hair cell motility blocker, on kainic acid-induced changes in the cochlear nucleus activities. The results demonstrated that acoustic stimuli reduced the latency of the kainic acid effect, with low-frequency tones being more effective than broadband noise. Salicylate reduced the effect of acoustic stimuli on kainic acid-induced changes. The authors also developed a computational model to provide a physical framework for interpreting experimental results. Their combined experimental and simulated results indicate that broadband outer hair cell action serves to drive cochlear fluid circulation.
The major strengths of this study lie in its high significance and the synergistic use of electrophysiological recording of the cochlear nucleus responses alongside computational modeling. Cochlear outer hair cells have long been believed to be responsible for the exceptional sensitivity, sharp tuning, and huge dynamic range of mammalian hearing. However, recent observations of the broadband reticular lamina vibration contradict widely accepted view of frequency-specific cochlear amplification. Furthermore, there is currently no effective noninvasive method to deliver the drugs or genes to the cochlea, a crucial need for treating sensorineural hearing loss, one of the most common auditory disorders. This study addresses these important questions by observing outer hair cells' roles in the cochlear transport of kainic acid. The well-established electrophysiological method used to record cochlear nucleus responses produced valuable new data, and the custom-developed developed computational model greatly enhanced the interpretation of the experimental results.
The authors successfully tested their hypothesis, with both the experimental and modeling results supporting the conclusion that active outer hair cells can enhance cochlear fluid circulation in the living cochlea.
The findings from this study can potentially be applied for treating sensorineural hearing loss and advance our understanding of how outer hair cells contribute to cochlear amplification and normal hearing.
-